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INTRODUCTION

Spectral analysis of stationary random processes via linear predictive,
maximum entropy, and autoregressive techniques has attracted much attention
lately, especially for short data segments; see, for example, the biblio-
graphies listed in referencesl, 2, and 3. For a univariate process, it
appears that the Burg algorithm (Ref. 4), which guarantees a stable correla-

tion recursion, is as good as any of the currently available techniques of

similar nature that employ an all-pole model of the available process (Ref. 3).

Accordingly, it is desirable to develop a spectral analysis technique
for the multivariate case in such a way that: we employ a physically mean-
ingful error minimization for the determination of the filter coefficients;
the technique yields a stable correlation recursion; and it reduces to Burg's
algorithm for the univariate case. It will be shown in the following that
we have accomplished these goals, with the exception that we have not proved
(or disproved) the stability requirement. A FORTRAN program for this spectral
analysis technique was published in Ref. 5, along with an example of its
applicatiorn. Virtually simultaneously, the same technique was invastigated
independently and published in Ref. 6. In this report, we will document the

derivations and equations that lead to the program presented in Ref. 5, and

indicate an extension of that result.

Our approach in this report will be to investigate, in some detail, first
the case where the correlation of the multivariate process under consideration
is known for a limited range of argument values, and to extract all the
relevant important properties of the solution so that they may be forced to

be satisfied later whan we treat the unknown correlation case. Tnhis property-
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evtraction procedure will be found to: furnish guides to the analysis of
the unknown correlatien case; allow us to cut down on computer execution
time and storage by employing the properties; and make us aware of some of
the shorccomings of the unknovin (versus known) correlation cases. This
procedure should also be helpful to those who are not thoroughly familiar

with spectral analysis of multivariate processes and their properties.

Throughout this report, we assume we are dealing with equispaced
samples of a stationary zero-mean complex random process X(t) of dimension-

ality M; that is, sample
T
(o) = X - 2] 0

is an M x 1 column matrix, where A is the common sampling interval for all

the component processes of X{t). It is not assumed that X(t) is Gaussian.

In section 2, we will assume that the correlation matrix of process

{X,}> namely the # x M matrix*

N ———

Re = X, Xy = R, @)
is known exactly for a limited range of values of k, and will show how
an approximation for tne spectrum of process {X,} can be obtained. In
section 3, the input correlation matrix Ry will be unknown, and all that
is available is a finite set of N data samples, X,, X,, ..., Xy, from
which an estimate of the spectrum of process {X,} is desired. The end

result will be a FORTRAN program for multivariate spectral analysis.

*The case of complex samples is treated so that we can handle complex
envelope or complex demodulated processes. Specialization to real processes
is immediate, and (2) becomes Rn=[§:. An overhar indicates an ensemble
average, superscript T denotes a transpose, and superscript H denotes a
conjugate transpose. Matrices are indicated by capital letters.
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; 2, KNOWN CORRELATION i
{1 ]
5 If the correlation in (2) is known for all k, the standard (double- %ﬁ
\E : i
E é sided) definition of the spectrum of process {X,} is ¥
g :" % (3) 2.3
P = o sen (=i A ‘
= &) = a 2 2ok R, | If]<ss L
i % The complex M x M matrix G(f) is Hermitian and non-negative definite for
¢ H
§ ‘ any value of frequency f (see apperdix A}, but need not be even in frequency R
$ f. When R is not known for all k, but only for a range |kj<p, an approxi- }3%
§ mation to (3) must be accepted; this problem will be pursued below. z;
| !
- 2.1 DERIVATION OF EQUATIONS .
%,P
Suppose M-dimensional sampies Xk-p’ cee, Xk_1 are available, and we i
' 4 &
‘ attempt a one-step linear prediction of X, according to the p-th order éﬁ
: 3
§ operation %3
;3 v .
g XK z ,%Anxk-n ) (4) ;‘
¢ i
. . . i<
. where complex coefficient matrix An isMxM,n=1,2, ..., 0. The ¢
:' ~N
: instantaneous error at time kA is defined as P
i’ S ]
: A P. - - (b) N {%
, Yk * Xu- XK = %A" Xin A° =-1I. ,,
: The Tinear operators in (4) and (5) constitute stable linear filters regard- %g
less of the choice of cozrficients; the filter of (4) is called the predictive i,
filter, that of (5) is called the predictive error filter. nNotice that we are }”
1
not assuming that process {Xn} actually satisfies an autoregressive relation; fﬁ
rather we are simply attempting to linearly predict {Xn} on the basis of the e
A
most recent p past values. %é
b,
3 g
A
R oo e e e e e e e vﬁ}
te——— e o - Wy — " ——
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The minimum value of the scala: error

v v wvH &
3‘ ‘ Y:-,Ya"{YYqu ? (&)
5 P
4 by chcice of coefficients {An}l, is given (in appendix B) by the solution
£
% of the linear matrix equations
i )
Z AR =R, 1emsp, )

where the explicit dependence on the order p is indicated. Knowledge of

Rk for lk!sr is required in (7).

SR DA RN, e b SN s

o LR

. . P .
Before we discuss the solution of (7) for {N?}' , We consider one-step

ey

linear "backward prediction" of process {Xn}. Suppose samples Xy, Xg_1s «-.»
Xk-p+] are available, and we attempt a one-step linear prediction of Xk-p

according to
v

X

P
o 2B, Xipn - (8)

P

The instantaneous error is defined as

Z, ¥, - X, =- é&xw B,:-T. (9)

Y T T S e S Y YO TR AT G S M PE ARG e

The minimum value of the scalar error

L (10)
{ 2«?*' vzﬁ?ﬂ )

g by choice of coefficients {Bn}?, may be shown (in a manner similar to that

: ; of appendix B) to be given by the solution of the linear matrix equations

; {

r i

: : ﬁB?Rn__.=R_") i< wms p. (1)
i i %z)

For the optimum coefficients in (7) and (11), we find (see appendix B)

G

that the optimum error matrices take the form

Wrn.«-« NN T e S A O G ¥ 8

3% e wrir sy 53

Cw O ArA R 4k

FU? U AR s R G0 I b A WS

Y SR

Lt

'
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gt LY = R, - ﬁA“” =U,, U=R,,
ot ZZ”=R°-§B?R.,EV,, = Re.

(12)

In general, these two matrices, their diagonal elements, and their traces are
unequal (as the simple example of p=1 will show). However, their determinants
are equal, as will he shown in subsection 2.2.

The solutions of {7) and {11) can be accomplished simultaneously in a

recursive fashion (Ref. 7). Define

-2 AR, A=

h=o P4
13)
) (
P°' : ﬁ BH'R.., , B, s-T.
Then - =)
v _ A ) ol
and Af’ B o Vr" , B DP* Up. (14)
R\ A(ﬂB(r-')
A, = A, <nsp- (P-’-’-)- (15)
§-8 e A"’"
These relations will be simpiified somewhat in subsection 2.2. For M=1,
a univariate process, (7) and (11) immediately yield
) i (16)
A?‘ - B for M=),

where we have used (2) in the form Rk = R*k for a urivariate process. No

such simple relation as (16) holds for M > 2.

We will now derive a chain interpretation of the above results that will

prove very useful later when we have to deal with the unknown correlation case.

() P PP
For the optimum filter coefficients {A:}l and {B:S , define the p-th
- \
order forward and backward residuals (see (5) and (9)) as the outputs of the

forward and backward predictive error filters:

L A rEta . sy
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S\ AV Oy o A
Y‘?:-ZA.,X-,”X,“'A, xm APXx-p )
) \i —.._p?
Zn ﬁ B? k-;»n = x-p" B\ Xu—yﬂ Br Xx
Then using (15), we can express

Y- X- SAPY, - KX

r

(17)

k-
X B (E-REDX KX,
- ”‘Eo AVX,, + AD éBf:’ X...

)
W A, =X W A 27 (18)

Jo J K}"J

And similarly
2 % 2B Ky B
N~ 2 (E BN X B X

| 19

- 2 Yo " B 2 A X
=27_‘£?+§£AH X -—ZE—B,?YS"’_ (19)

jo
() )
Thus p-th order residua]sYP andz’f are reiated to the (p-1)th order residuals
simply through the coefficients A(P) andB P . A block diagram of the relation-
ships in {18) and (19) is given in figure 1 wherez“Idenotes an M x M matrix

filter of unit delay.
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(p-1) (p-1l
Y
k Z,
51 1 (0) ) Z(O)= y
- k k~ "k

(p) (p)
Y Z,

Figure 1. Chair: Representation of Residuals

Thus matrix operators A? and B?can be interpreted as those coefficients

which minimize

I e
YWYP o 2z (20)

respectively, at the output of the p-th stage in figure 1, where {4:"}’?' and
{ﬁ:’}?' are determined by minimizations at lower order stages. AT; and Bi’

are called tre partial correlation coefficients. Stated alternatively, stage
by stage minimizations of (Z0), via choices of partial correlation coefficients
A” and B‘;’, respectively, results in the same overall filter as if the powers

P

m
- é&XH aud ’ﬁ& X“'?"‘ (21)

nao

were minimized by the choices of {An}? and {Bn}e, respectively, each in one

simuitaneous optimization. This will furnish an important reference point

s
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for the unknown correlation case in secticn 3.

If we let the transfer functions (z-transforms) to the outputs of the
S
p~th stage in figure 1 be denoted by %;(z) and ‘#:’(z), it immedictely

follows, from figure 1 or equations (i8) and {i5), that

) i . ;
Ko % 6- Y40
M- Y6 - B #{"@) ,
Ny 6) = 44)@) =

[Ee———

(22)

AN TR ETE P T F eiend " O SRR D Bt TS

In closed form, these predictive error filter transfer functions are express-

| ible as (see (17) NP = - ;g'_ A - % AT

| AT

%z) (;) é 2.- B?) = é 2") B ®

Py

iP[I 2z P"”] (23)

ney
2.2 PROPERTIES AND INTERPRETATIONS

11

W N A 4,.?—(—5(‘2,?75 P AT ATIE A T aro e

g

f Suppose that process {X,} were scaled according to
- (24)
g Xn = D Xn
i
! where M x M matrix< D is arbitrary, but invertible, Then the correlation of
: § the scaled process is

! Y ——— —

‘ ) VERVLA H ¥ " (25)

.Rk s Yn Xch = DX,. Xn.p.:D = :DR,‘D .
Now from (7), since the solutions fA:’} and ﬁ:’} must satisfy

‘ e (26)
s %A"R""':R") V3msp,

%

— _ . - -
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oD P <wms
S AR =%, 1=mep (27)
w=)
respectively, the solutions are related by « similarity transformation:

A” DA(P ) l=n=p. (28)

This is called the scaling property. A similar property holds for the back-

ward coefficients {Iﬁ?},

An immediate by-product of the scaling property is that Af and KZ’have

the same eigenvalues:
det(AP-2T) = det (AT 3'-0T) = det(P-A1). @

.. " . .
Similarly, B: and iﬁ? have the same eigenvalues, regardless of scaling matrix

D.

The remainder of this subsection will deal «ith the quantities Up and

Vp defined in (12), and Cp and Dp defined in (13). The quantity Up can be

interpreted physically as the correlation matrix of the p-th order forward

residual; see (12), (5), and (17). Similariy, Vp is the correlation matrix

of the p-th order backward residual; see {12), (9), and (17). That is,

- ) M - 2 e (30)
\)r - \T:? \X:? ) \/ - izx 32; .

P

Thus Up and Vp are Hermitian:

o H B ) (31)
U-UP)VP—JF)

and Up and V are non- negau1ve definite:

a U”V VNEXIY YO 20 @)

for any M x 1 matrix Y. In appendix C, it is shown that simple recur-

sions hold for Up and Vp:
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Ur - (1- A(I"tB;)) Up-) ) l"L K,
Vp = (I-B‘: A” Vr-' ’ V-

It imediately follows from (33) that (see appendix C)
= det (34)

This property was prcved in Ref. 8, pajze 240.

(33)

The quantity Cp defined in (13) can be 1nterpreted as the cross-corre-

lation matrix between the p-th order forward and backward residuals at one

b SN

N0 Mmey \'35)

= (EA?RM»QB?“ = gA?&w i

mco \nsQ
where we have used (17), (2), (7), and (13). Similarly

I e

et NWro

Z(ZB0R,, I -ZB0R - (%)

"o Vo “ptem P
where we have used (17), (2), (11), and (13). It immediately follows from
(35) and (36) that

unit of delay: ) N
29" _
Y: Ly ~

Y
= \
Thus it is not necessary to do the additional calculation of Dp in the

solution given in (13).

Another interpretation of Cp is available as follows:

\)P)m=0
VL) ® H \k - <ms<ph.
F:r)EY:XH"“gAnxk-nXx-m=-%AﬂRm-n 0) "M‘P {38)
CP) m:P"l

where we have employed (17), (2), (12), (7), and (13) in order. Thus the

p-th order forward residual is uncorrelated with the p most recent past
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values of the input, and the crosscorrelation at p + 1 units of delay is

just Cp. Similarly, the backward residual satisfies

-

V;, m=0 )
EY,‘:,, =-§8:’X,‘_WX,:”=-§B§’;’RW_, =Y 0, lsmsP‘
I%,m=P+lJ

Yet another interpretation of C

p and Dp will be given in subsection 2.3.

As the order p in the linear prediction (4) increa.zs (38) yields

3
SRV RN A A
= \r? )( - G5 ’>-> .
™ X K-m
6, lsm
Therefore the autocorrelation matrix of the forward residual becomes

F\;’Ew = - ﬁYq‘ Xk_r_“ At)“—o ’ . as p> .

neo K

That is, p-th order residual Yg’tends to white noise with a correlation

matrix at zero time delay of value U_, which is not necessarily diagonal.

The Hermitian property in (37) allows us to combine (14) into the

equation

Ay -y B

. (39)

(41)

N
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where we utilized (31). This constraint on the partial correlation coeffi-
cients will be of paramount importance in the unknown correlation case. It

immediately follows from (42) and (34) that

nH ¥
;19 A
dethy = det B = fet 3)
) (43)
No such simple relation holds between det Ag'and det Bﬁ”for n<p, except

for M = 1, a univariate process.
2.3 EXTRAPDLATION OF CORRELATION VALUES

In subsection 2.1, we minimized the error in prediction (4) and found

that for a p-th order prediction, knowledge of Ry for IKisp was re ired;

see (7). Now suppose that this is all the knowledge available about {Ry};
that is, suppose Ry is unknown for |k|>p. What can be done about approximating

these unknown values?

One approach 1s as follows: we assume that the p-th order residual
process {Y”} in (17) is white (i.e., uncorrelated for all non-zero delays), and
that Af#o (otherwise we could reduce the value of p). That is, we assume we
can do nothing more in prediction by choosing more terms in the sum (4),
which is tantamount to assuming maximum uncertainty (entropy) about the
residual process i‘ﬁr}. This is a very extensive assumption; we now investi-

gate its ramifications.

We know from (33) that

12
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must satisfy

)
F::() ‘For 5 wm=x p (45)

Additionally, employing (17), the autocorrelation matrix of the p-th order

residual is
H
W’ ?) i\/‘?’ Aq” iF(r) \& . (46)
X - . all ;.
k)'“ n=o m‘) A" ’ J
Now for j = 1, the white noise assumption on process {Y’}yields, via (46)

and (45), )
0--= (”’AP F"’A“” ie. E"=0. (47)

n=o "‘H P4 P+

And for j = 2, the white assumption (in conjunction with (47)) yields

H ) A , ®
b--ZFP A - F‘P“’ j le .

nao

Continuing in this way, the white assumption is tantamount to assuming that
) 49)
}:? =0 {;y‘ r-&! s m. (49)
m

Returning to expression (44), this means that we are assuming that

BB 0 o g @
=0
that is,
®
R..,= éAn Rm’” Gr pti = m. (51)

Using more explicit notation, and denoting these assumed values of correlation

; R (P
as forward extrapolations JR!™}, we have
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A )A
Rf)fﬁAfo), , ptl=sm,

X (52)

where "starting values"

Ar)
RmeRm) 0 S ms p (53)

Equation (52) is called the correlatio: recursior. equation. It is interesting
to note that the form of the correlation recursion (52) is identical to the

form (4) for the individually predicted waveform values.

The correlation values in (52) are called the maximum entropy correlation

extrapolations. The recursion is stable if and only if (see (23))

det(1- ZA) - det A (54

possesses all its zeros within the unit circle in the complex z-plane;

thic property will be treated in subsection 2.4,

A similar procedu'e for backward correlation extrapolation, assuming

that residual process {27 is white, yields

v P .
(P) £, v
R_m S EB: R:i , pHI=m, (55)
naj
where
\"‘-)
'R\Z: 5R-m ) ()smsr. (56)
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Backward recursion (55) is identical in form to the backward prediction (8).

The recursion (55) is stable if and only if (see (23)).

det(T- Z"B7) - det[279)(") (57

possesses all its zeros within the unit circle.

As a special case o1 (52) and (53), the one-step forward extrapolated
correlation based on a p-th order prediction is

o - SR - AR )

s\ P“—n W=
But from (13), we now can see that
- @ _ _DwP (59)
G éA"Rrﬂ—“ “ R~ Rt

That is, Cp is the difference beiween the true correlation value Ry and the

one-step forward extrapolated correlation ﬁ’;

p+] based upon knowledge of {Rk}ep,

A similar procedure shows that

D,=R,,-RP (60)

-1

Y
the one-step backward extrapolated correlation ﬁfg_] based upon knowledge

That is, D is the difference between the true correlation value R.p_y and

of 1“k}g'

Wien (59) and (60) re combined with the Hermitian property in (37), we

see that

go' . Re

- p¥i (61)
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This is a special case of the mcre general property (demonstrated in appendix

D) that " -
P _ P - .
’k-u - R"” ) P+i =" (62)

that is, the backward and forward extrapolated correlation matrices are
Hermitians of each other. This is a desirable property of the extrapolations
and is consistent with the same property, (2), which holds for the known

, P
correlation values, {R;Lr

It was noted in (54) and (57) that the zeros of det?(z)(z) and detﬁg)(z"])
must be within the unit circle in order that recursions (52) and (55), respect-

jively, be stable. It is shown in appendix E that
sl B ) atf-Zop) @

That we need consicer only the zeros of one of these quantities; the location

of these zeros is considered below.

It is also shown in appendix E that

b (wsl)

(64)

and
det A = [t BY )

2.4 SPECTRAL APPROXIMATION

Equations (52) and (J53) define the forward extrapolated correlaiions for

A1l m>0. We extend these to negatise m via

AU’ = )H
R,,,ER_"’; S ms o0 (66)
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which is consistent with (2). We will now use the Fourier transform of this
infinite sequence, as in (3), as an approximation tc the spectrum of process

{Xn}. In appendix F, it is shown that the approximate spectrum is given by

4 "
SO -6 U WE, W<k )
z’({) == é er(-} 21ran>Aff) (68)

is the forward predictive error filter transfer function. Since Up is non-

(p)

where

negative definite by (32), spectral approximation G~ "(f) is nonnegative
definite for any f; it is also obviously Hermitian by (31). Thus the desir-
able properties of appendix A are achieved by approximation (67). In order
tc evaluate (67), one M x M matrix inverse (of H:)(f)) is needed at each

value of f of interest.

A similar [ ~ocedure applied to the backward correlation recursion of

(55) and (56) yields tke spectral approximation

éﬁ({') = 4 HS(‘F).. VP H(:)G:)-)H | \{-‘k;‘; ’ (69)
where

. )
H?(F): - ﬁ Qxy(—»Zm%a)Bg;" (70)

n=o

is the backward predictive error filter transfer function. Since the extra-
polated correlations via (52) or (5%) are equal, as shown in subsection 2.3,
the same notatior, Guﬂ(f), is used for both (67) and (69); however, we have

two different factorizations for the unique spectral approximation G(p)(f).

In appendix F, it is also shown that the zeros of det?ﬁnﬁo (see (22)
and (23)) all lie inside the unit circle in the complex z-plane. Additionally,

the poles of 7(12)(})-‘ all lie inside the unit circle, and the zeros of ﬂ:)(;)"
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all lie at z = 0. Thus the recursion (52) is stable.

discussed in Ref. 7, p. 132.

2.5 EXAMPLE

A simple example for M = 2 will be considered.

generated according to

where 85

T =

N1

and white noise wk satisfies

an GXM+W,‘ )

—,75‘,

.5'5J

WW! -§ T

Then it may be shown that

R,,,: GRN,, + Sm L, m20,

with solution r
'Ro ' 7.5.)35 4.962

L4562 21643

By means of (7) and (11), we find
-7
}*D ) .86 -5
b les ssf

/

17,718
19.012

E§”“ .559)0

- 64400

This point is

Let the process be

~12.099
13- 064

15279

. 34070

and A‘f’: A‘:’) A‘i’: 0,2=n<p . Me observe A?:/:Bf’) KB+ BPAY,

and ;ﬂr'¢ B’. The determinants of (76) are both .955.

Evaluation of (12) gives

‘ .91330
U=I, V=

.28334
\ 18
[
b N T
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28934

|, 18659

L e AL

g LTSN,
T

(71)

AR

AERRIVA,

S SSATLIN AL

(73)

(75)

™ .‘“V‘M“'Wlw‘dlwkﬁﬁ!*%@

L
-

N
gt

(76)

5.4‘11 . R

(77)
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These matrices and their traces and eigenvalues are unequal, but their

determinants are both 1.
3. UNKNOWN CORRELATION

In this section, the correlation valuec {Ry} are unknown, and the only
information available about the random process is a finite set of N data

points Xl, xz, ... X,, from which we have removed the sample mean. From

N’
these N data po.ats, we desire an estimate of the spectrum G(f). But we
cannot minimize or utilize any ensemble averages as was done in section 2,

since we have only a finite segment of one member function to work with.
3.1 PHILOSOPHY OF APPROACH

For the known correlation case above, we had the set of normal equations

\ud
nﬁ:'j{" 'R»H = 'RM (78A)

!5m.s?,

‘ ﬁB?R _ {788)

—m
N= ) v

where {A:’K and {B(:)}T were the unknowns. Now in the unknown correlation
case, we make a change by assuming that A:) and B;.P are kiown* (along with &,
for \mjs p-1, from lower order solutions), and by letting R, andR_' be unknown.

The equations in the unknowns are still linear, and the solution is given by

(y-') )
A‘?’ A AP Jensp (FZ 2) ) (79A)
) -1) ?) ‘P")
B -8 'Br Ar*

{798)

*The manner of specifying A:’andﬁ’win be considered in subsection 3.4.
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Rp = g’b‘?wm ) oo
R,= = BR

net rpo- (808)

(It must be noted that R,in this section denotes an estimate of the true
{unknown) correlation value; for notational convenience, no distinguishing
symbol has been added to R, to emphasize this distinction.) However, we

shall insist that the correlation estimates (80) that we obtain at the p-th

stage satisfy

=R
jk? i (81)

in keeping with property (2). Since equations (78) and (81) are identical
to those encountered in the known correlation case, the mathematical defini-
tions ana interrelationships einployed there can be applied here also. How-
ever, some of the properties and physical interpretations may be different,

since we are now dealing with estimates, rather than true values.

To solve (78), we begir by defining

N H
A Mo (82)
R0=Ngxnxx =K, .
Now consider p=1 in (78); we have

AR.=R , BR=R,. (83)

Now if A' and B are known, we can compute unknowns R, and R.,. But by

1)

constraint (81), 4

and Bf’lnust be chosen such that

]
MR, - R -

Thus when we select A? and Eﬁ’, constraint (84) must be kept in mina; that is,
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" ey ces 4
A, and B, cannot be specified independently of each other.

At stage p(az), if A;) is known (and {R.:S:_; are known from earlier
stages with property Rﬁﬂ.“., 0sksp-1), we could solve the linear equations
(784) for {A:’}r and R,, according to (79A) and (80A), where the lower order
quantities in (79) and (80) are available from earlier stages. Similarly

. ) .
if B‘; is known, we use (79B) and (80B) to solve (78B). However, by (81),

we must constrain the selection of A;’ and B’?.

To see exactly what constraint (81) implies about the selection of
A? and B:’ notice that, for p>2, {and defining Bow):—t)

Rps SHR. - 2 (- KB R + AR,

O
-BAR.- A ZEDR,

- ) 1o )
JBAR - NS BR )
“e § " r J.=° J J )
where we have employed (80A) and (79A), Now define forward extrapolated
correlation estimates based on arder p-1 according to (see (52) and (53))

5 ! - )
'R(,C’ S E:A(:)R(P) ‘ﬁsr m2p,

W
net m-

(86)
where

)

Rm = ?m ) 05»15})4. (87)
Then, in particular, the one-step forward extrapolated correlation estimate
based on order p-1 is "

N \ )

U] Al 6-) g (88)

= : ’ = n - -
RT :jf Ao Rpw = 35 T Res

Also define {see (12))
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~ ~1)
= - %B‘: R, . (89)

This quantity has the physical interpretation as the estimate of the corre-
lation matrix of the (p-1)th order backward residua’ at zero time delay
(see (30)); its properties are considered in subsection 3.3. Then by means

of (88) and (89), (85) can be eapressed as
R - RV“” " A?)\/ (90)
P P A S
(This equation is similar to a combination of (14) and (59) for the known

correlation case.)

At the same time, by (80B) and (79B) {and defining A?‘"h];),

R'P ) n—? i (BM A(r o)‘Rn7+ B;?K

g
=HR, B2 AR
:nziz*’*’ B ZAR, o

#wow de’ine backward extrapolated correlation estimates based on order p-1

as (see (55) and (56))

YE ?")RZ;) for w2 p, (92)

ne d

R, R

-w - )

where
Dsm=x )>-!- (93)

Then, in particular,
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?-ﬂ) nﬁB@—u}R‘-;) _ § B?-»)Rn-r | (90)

Also define (see (12))
-1
=
- éA" K., . (95)

This quantity is an estimate of the correlation matrix of the (p-1)th order
forward residual at zero time delay (see (30)). Then by means of (94) and

(95), (91) can be expressed as
(p- (y)
R_’) = R"P + Br \)r..’ . (96)

(This equation is similar to a combination of (14) and (60) for the known
correlation case.) But now it can be shown (see appendix G) that the
extrapolated correlation estimates in (88) and (94) satisfy
R(r')H - w-o (97)
-p P -
Therefore, if (81) iS to be satisfied, (90) and (96) in conjunction

with {97) force

U B"’"

Y P" (98)

(This vreduces tc (84) for p=1.) Thus the selection procedure of 4¢ and Eﬁ?
at the p-th stage must be done according to (98), where \Q*and byqare
quantities already available from the (p-1)th stage, according to (89) and

(95). The precise selection procedure will be undertaken in subsection 3.4.
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3.2 COMPARATIVE FEATURES

There are alternative techniques to the estimation of the correlation
matrices and the spectral density matrix that could be considered. For

example, the standard Yu’e-Walker technique (e.g., Ref 2, page 186) uses

correlation estimates

L S H ‘ (99)
Re =% XX,
where the sum is over 211 nonzero summands, and than solves recursively for
{ﬁ?}r and {Bf?r via the methed in subsection 2.1. This apriori decision

on the form (99) of the correlation estimate gives poorar spectral estimates
for M=1 (Refs. 2 and 3), and probably does so for M>1. The estimated

correlation matrix Bz,_,]f is Hermitian, block Toeplitz, and nonnegative

definite:

AR |- - SN

‘V n,mz0 Wmzo0
4

j a‘r?i[g‘l{,"x"_,)’ 20 fo auy 147 (100)

where®, is Mx|. However the stability of the correlation recursion (52)

is unknown to this author, The estimate (99) is unchanged by the addition

of more stages, that is, larger values of p,
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Another technique would be to minimize the prediction error

T R e

over the available data points directly, by choice of fA;;f. We have the

; error matrix

o

Matrix [5,,]? is not block Toeplitz, and a significant computer problem
exists for M>1 when it is noted that solution of linear equations {104) must
be done anew for each different value of p. This was a good technique for
spectral estimation when M=1 (see Ref. 3); however, computer time was
greater than for the Burg technique. Morcover, stability of the correlation
recursion (52) is unlikely in view of the (occasionally unstabie) results

for M=1 in Ref, 3.

This technique could be extended to include backward prediction in
addition to (101). However, the lack of the block Toeplitz property and

lack of stability make it a very undesirable technique.
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Y, - éA,Xw pH sk (A,=- 1) (101)

(103)

K=p+) ", m=0 m (102)
where
: S = '—-—-———-' '—\N/—‘ X; X H <
: = - = =
: WA M—-r "’P"' -9 " K-m ) 0 W) n P
The optimum coefficients for minimum trace of the error matrix, (102), are
solutions of
T
>~ = (104)
pe) M C'mn Sm, ) = MsF.
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4

The technique suggested here {in subsection 3.1) lets the correlation
estimate be yielded according to solution {80), once partial correlation
coefficients Ag, and Bf)have been specified. And we shall see in subsection
3.4 that these latter quantities are determined according to a physically
meaningful minimization problem. Stability of the correlation recursion
(52) has not been proved; however, numerovus examples have all yielded stable
solutions. The estimate (80) is unchanged by the addition of more stages,
that is, larger values of p. And it wili be seen that the current technique
reduces to Burg's algorithm (Ref, 4) for M=1. Thus the current technique
appears to be very attractive among those techniques that employ an all-pole

representation of the input process.

3.3 PROPERTIES AND INTERPRETATIONS

The quantities \»4 and V;,

interpreted as estimates of the correlation matrices of the (p-1)th order

were defined in (95) and (89) and were

forward and backward residuals, respectively, at zero time delay. It is

shown in appendix H that they satisfy the recurrence relations
\ i -
\)y - KI- ”far)ur' ) UO Rﬂ )
V' = (I" B?».A:)Vr-» N v. = R0 )

just as for the known correlation case, It is also shown that

UrH=U,, V=V, (106)

and

det U, = det . (107)

T —hs e

(105)
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However, we are not able to prove \} or V; nonnegative definite without
specifying the method by which A: and E§9 are selected; no relations like
(30) and (32) exist here.

By means of (106), the constraint (98) on selection of Ar and E#? takes
the form (see 42))

\d _ q»"
AN U 5

(108)
This will be used in the next subsection,

3.4 EVALUATION OF PARTIAL CORRELATION COEFFICIENTS
We recall from subsection 2.1 that, in the known correlation case, the

) .
partial correlaticn coefficients A(; and 33’ minimized

"\ =p o7

respectively, when lower order stages had clready been optimized. We extend

this idea to the unknown correlation case as follows: 1let (as in (18) and

(19))
V) 2
Y=X, B =X, t=k=N, (110)

and for pz1, define errors (resiauals)
YN e e

\“r"wf "‘Ariiq

R Y 3

Zu'zm'Bpr'

isksN
) P (111)

The block diagram for (111) is identical to that in figure 1 on page 7.
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Define for p21, the error (residual) matrix over the available data

N
I NG A =L
E,,s “""ZYKY.? B EP 2 (112)

N-p kept

points as

)
this nonnegative definite matrix is aa unbiased estimator of Yf"‘ﬂ:”

Substitution of (111) in (112) yields

. W A(p),.m) — 02 pig" ) 62) A pH
EF SP" - r P-l 5?-1 A + A(P -1 AP) ) “]3)

where
o L A o () H
e S VIt PR PR MU (114A)
S'&f‘\ - T‘]“_P‘ éw YY')Zf:»H, (1148)
;?EEJ:;%, ::) Y.:)" = SSH. (114c)

(P) ¥ "
P P K= P”ZN a (115)
Substitution of (111) in (115) yields
- ® BY St _ M ", RO o
r? f)r_, N Sﬁp , +BPS(}HB; . (116)

Now error matrices Ep and Fp are Hermitian and nonnegative definite.

. LI o . cs
Trerefore matrix A(E A, 1s Hermitian and nonnegative definite for any

MxM weighting matrix A,:

Vsl (Lo
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for any Mx1 matrix 4/, Also since

bWEN) - H(MLE) = & (AE), o

only the pr‘oduct.bjt:,k“matters in so far as the trace ofJ\,E,.A: is concerned;

m

notice that A is Hermitian and nonnegative definite. We shall be interested

. .

. cs . . . H
in minimizing the traces of weighted error matrices AgEpdy and IJF, PQH;

the exact choice of, and the reason for, weightings Jln and Pa will be under-

taken in the next subsection.

Now if we were to minimize fr(-L,.,EQ by choice of h‘:, we weuld find

(see appendix B for method) that we must solve

1)
P <6 Y
J\'P-‘ Ar SP-! = ‘j\'}’“ N Y (ns)
and the choice of.Af. would be irrelevant. Also, if we were to minimize

)
{y(l;F', by choice JBV, we would find that we must solve

r

N A I
PR P i S (120)
and the choice of [, would be irrelevant. Furthermore, we would not satisfy
constraint (108) gencrally, But since the behavior of error matrix F; is

just as important as that of E,, we should take both matrices into account

in any errcr minimization; in fact, for known correlation, recall that the

determinants of residual matrices |}, and V, were equal.

29

P U 7 P

- =3 TLIRS LT e | - .
F*"""’*'-?—p—v—:r-r g . -

© —n At

A R A R AR D i g
T

e

-
C AN

S S ] ~»§\§N«R’J B g
¢
Al

©

RN

Sabviar Big AN R e PPV, 7

V-3
[

<

- \



LRt SR TR Y R i P SO

o TPE A T REaKS

TR 5501

We therefore choose to minimize the sum of the traces of the weighted
error matrices

f‘r(./\_r, Er>++r "' F) J"'(‘AP E+ [ o F;)’ (121)

where j\rq and [;q are Hermitian and nonnegative definite,

by choice of A: and éﬁsubject to constraint (108)., If we let

; ) N
A?V ] U B?’ . ¢ (122)
2 = %
Lo then we can express
’ !
| A Gk -
. 4y =} N Ny, ~1 H S P [ IR
’z ; —Ap-n [S n‘G V..$, “xvr,e- +%Vr,i' vy_' G?] (123)
) 9 -1 " Ay =
: +PP" S rqﬁ SWUP-v G'r+ U’-IS""' LL: G}]
} in terms of the single unknown matrix Gp. Our problem therefore is to
% minimize the trace of (123) by choice of the single quantity Gp, subject
f to no constraints; we can then solve for the best coefficients according to
U ;- P 1 (124)
/¥P ) 6;; \V?" ) IB G; \J%-! -
Also we can compute the correlation estimate from (90) and (88) according
to )
\ el
= + .
T&? R’, Gi’ (125)
E In appendix I, it is shown that the minimum of the trace of (123) is
o realized when Gp is the solution of the bilinear matrix equation (Ref. 9)
— )
& ’L/’Gr =Pt (126)
30
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where
.‘

S
f = .A_Pu.‘n Uf:: %ﬁg\)-' (127)
S AV -
P 3 Vs T

»= Al Yo S¥

Uniqueness of the solution uf (126) is considered in subsection 3.6. (It
is interesting to ncte that the separate minimizations in (119) and (120)

yield

G- p = V/g% =0. (128)

Thus whereas both these quantities had to be equal separately to the zero

matrix, we now require only that they be equal to each other.)

For the special case of M=! (a univariate process), (105) and (108)

yield
L

UP i Vr ) B;ﬁ - Ag (M=), ee)

Then (126) and (127) can be solved for the scalar

I",, I+J\-p :)S-; (Mz ) . (130)

Ci? 9 -
S §° -
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Now, if and only if

r;,-. ’-f\.,-. (M =), (131)

(130) reduces to Burg's algorithm (Ref, 4); in fact, it can be shown that
(131) is the only choice of weights in (130) which guarantees a stable
correlation recursion for M=1. Thus we shall insist that the weights

catisfy (131) when we deal with their selection below.

3.5 WEIGHTING OF ERROR MATRICES

It is necessary to apply weighting to error matrices Ep and Fp in (112)
and (115), prior to minimization of the trace in (121}, for several reasons.
First, without weighting, the larger amplitude components of errors (111)
would receive most of the emphasis in the minimization; thus, some weighting
inversely proportional to the component strengths is desired. Second, it
is desired that stable correlation recursions result and that matrices Up
and Vp be nonnegative definite, Without weighting, it has been discovered
(by an example to be presented in subsection 3.9) that both of these require-
ments can be violated. Third, we will insist that the scaling property

introduced in subsection 2.2 hold for the unknown correlation case as well;

that is, if
szbx’( ) D er)rl'réﬂj, (132)
we shall insist that the coefficients satisfy
@ _ A(wD-ﬂ
A D 1< n=p, all P (133)

Bf» B?’
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The matrix equation (126) can be combined with (122) to yield the ;
simultaneois set of equations
@f - =t -y -1 (',H- Wyt ! -t -} ) ;
SN E AV VB STV IR A U (134) |
® H |
A\IVN’U?'B? = 0.
We now consider several possible choices of weightings.hfq and f;d that tend

to simplify the form of (134). The first choice is no weighting:

—A?-‘ = I) ,;-I = T. C!ﬂo;cg | (135)

The problem with this choice is that the weighting is not related to the

ervor component strengths, and it may be readily verified that the solutions

to (134) and (135) do not satisfy the scaling property (133). Alsoc an unstable
correlation recursion can occur, However, the solutions do reduce to Burg's

algorithm for M=1; see (131).

Our next candidate weighting is

-1
-A-p- P" ) P" = \4’-4 , Choice 2 (136)

which are Hermitian and are nonnegative definite if Up_q and V _, are

p-1
nonnegative definite. This weighting is inversely proportional to the

vanonent strengths, as desired; more wiil be said on this below. The

S‘”” B‘?f” (:re)

F' %
A(;p) b Y g

The solutions of (137) satisfy the scaling property {133), and they reduce

equations (134) become

. - PR

to Burg's algorithm for M=1; (129) shows that (131) is satisfied for the

choice (136). Although stability of the correlation recursions (52)

33

ot £ s - o e -3
R N N o e e b e et s 3 s . o o
by e i — o

I o e i

i’m o




 caniia
g

Ao Ty

i
e

PR

BN T e S e TS e MESRIO = ZTp e L o IF TR @ A R N AP N MR ST S OIS e SO Y

ot TS

G

2B

T T

R e ARk

TR 5501

and (55), and nonnegative definiteness of Up and Vp, have not been proven

for general M22, no counter examples have been discovered.

We next consider

- 31 , - -
_Ar',=5f‘j' U | f},,‘ =\{,_,5® Choice >  (138)

P

in which case (134) becomes
) ~ _

A oe B ST sse

p B - 0.
However, the weighting (138) is not necessarily Hermitian, is not necessarily
nonnegative definite, and is not directiy related to the error component
strengths, Also the solutions of (139) do not satisfy the scaling property.
Furthermore, the solutions do not reduce to Burg's algorithm for M=1, and

can yield unstable correlation recursions for M=1,
The last choice is
. )
7\ VL SY Cholce 4
'AT “‘2’“' r‘ ) {;"'V“' e VP" ) € (140)

which are Hermitian and nonnegative definite, and for which (134) becomes

) N o) -

A@?\’-' '%~\)?-,B?,) - SUSTY ,+QHS:’,“’ 33}); (141)

V.- Uy, B -
This choice is a very interesting one in that the solutions or (141) are
immediate and do not require that a bilinear matrix equation be solved. The
weighting (140) is inversely proportional to the error component strengths,
and the solutions of (141) do satisfy the scaling pruperty. In fact, this
choice is very close to Choice 2, since Up_] and Q?are both estimates of

the correlation matrix of processiyf"g at zero time delay, and should be
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fairly close to each other, However, the solutions of (141) do not reduce
to Burg's algorithm for M=1, and the correlation recursion (52) can be
unstable, even for M=1, In fact, the solutions to (141) are identical

to those for Choice 3 for M=1,

Therefore, of the four choices considered, only Choice 2 in (136)
yields solutions that satisfy the scaling property (133) and reduces to
Burg's algorithm for M=1. The stability of the correlation recursions has

not been proved or disproved for choice (136) of weighting.

There is another strong reasen for choosing weighting (136), which has
to do with a whitening interpretation. We recall that Urq and V;q ,
defined in (95) and (89), are estimates of the correlation matrices of
processes fﬁﬁ””} and {ZS’A} , respectively, at zero time delay. Now let

(for non-negative definite k»q and V., )

\)P—\ - Up—\ ‘d?_' ) Vr-\ = Vr—l V Vg (142)

where khh, and \4». are (lower triangular) square root matrices. Ther scaled

processes

v ) 2~ (o )
LARER VIR ol 207\ peke N,  (m)

each have estimated correlation matrices at zero time delay equal to I; that

is, all the components of {¥#"] (or {fo")} ) have unit power and are

uncorrelated with each other at zero time delay.

Now define, for P*nsk-sN,

Y L)

"

vP? AP 5 e
v - AP Zk—t )

-

(144)
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where

=47 @
= UP” ,\? VP" ' (145)

Also define the estimated correlation matrix at zero time delay of process

'} s
/ Graral - LRy Y e Y (146)

where we have used (144) and (112). Therefore

6=+ (Y1507 (2" - +(y05), (147)

where we have used (I-1) and (142). Thus, minimizing the trace of U}:,’ Ep,
by choice of A‘: ,is equivalent to minimizing the trace of é‘P by choice of
A‘: (see (144)), where process {‘y:"}w the error in prediction of (p-1)th
order processes with estimated correlation matrices at zero time delay equal

to I.

In a similar fashion, for PHsks N,

AL AL A S EEA: S

where
BV B Y "
And
'3r N-p x:,,,’zr oM _ _'j;:“ [, Z‘to)a?)” 2*/""’—_;\4,_‘,’ (150)
with |
b, =t (VOR) -
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If we solve (145) and (149) for Ar and E%? , and then utilize constraint

(108) aleng with (142), we find that the constraint takes the form

Aw: g?H (152)
P .
This could be used as the starting point in aminimization of error matrices
é} and ﬁir . In fact, if we minimize the unweightea trace of‘}*ﬁ; by choice
of Agﬂ , we €ind the optimum choice to be given by
~ = o)

RS SR - 257,
where the notation is an cbvious modification of (114). By employing (145),
(143), and (142), we can show that {(153) is equivalent to (137}, as it must
be. (This alternative approach may be useful for proving the stability of

the correlation recursion.)
3.6 SOLUTION OF BILINEAR MATRIX EQUATION

If we substitute definitions (127) into bilinear matrix equation (126),

. Y . ¥ . .
and premultiply by.ﬁ?: and postmultiply by f;-:, we obtain the equation

ér;<+(§(§?=ﬂ+§) (154)

where
X |3 %
pe AT
R e Y AN VR e
x r;q \‘ﬂ - \Gq EL,
- A - -
. VN AR
¢ 53;5,?(1”#. (155)
P"A‘P“ r‘v,-. r;..
D)
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Now the Hermitian matrices & and P’ are non-negative definite; e.g.,

”l/“ Y-\ (r, ‘1/) 5 'r-' %/) (156)

for any MX1 mairix Q/, since spﬂ is non-negative definite. We have employed
the Hermitian property of \‘4 andl;* above; see (118) et seq. This means
that the eigenvalues of & and ﬁ must be non-negative. Therefore the

solution of (154) exists and is unique (Ref. 10, eq. 3).

Solution of the bilinear matrix equation (126) or (154) has been addressed

by many authors (Refs 9 - 17). In particular, for the equation involving MxM

XB+AX= G 097

matrices,

one form for the solution is given by

X = ?Q"' ) (158)

where

P 2EFACE™
q <2t aB"™" (159)

are MxM matrices, The constants {a,} are given by (Ref. 18, pp. 87-88)

qﬁz--’l;—{:r(i\i\m)) IsKsM (Q,w)) (160)

and the matrices fA“} are given by

A, AA +a9, T l<ksMm (A°=I>' (161)

Here, M-2 full matrix multiplications are necessary when we note that Ay = 0
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oy the Cayley-Hamilton theorem.
For M = 2, (159) takes the form
P=CB-(A-+@0I)C
(A-+0 1) be M=2, (162)

Q=(hA+tB)B+(tA-&tDT

where we have used the Cayley-Hamilton theorem to express

B -=403- det®) T for M=2. (163)
Equations (162) and (158) are the forms used in the FORTRAN program for M = 2.

3.7 SPECTRAL ESTIMATION
Having obtained correlation estimates {Rm}f by means of (82) and {80A),

we now extrapolate these, as in subsection 2.3 (equations (52) and (66)), to

yield Rm ﬁA(:)R,,,,, y pth=m,

n= |\

- H (164)
RM - R m< O.

This defines an infinite sequence ﬁhﬁf which is assumed stable; its Fourier
-0
transform will be taken as the spectral estimate of the process under consid-

eration. In a manner identical to that given in appendix F, it is found that

-2 emlimmtmaR, = a0, O Ko, 0

where U; and }ﬁ?@)are given by (95) and (68), respectively. It follows that

i!‘- )
gd{ G‘v(f-) = Ro = Saucple power (80) . (166)
"%

Also, as in subsection 2.4, an alternative factorization is available as
) P\ P ..‘H
dfm:“Hb(f) V},H‘,;(H ) If) < 25 2 (167)
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vhere Vr and Hb“) are given in (89) and (70). If U’ or \/r is non-negative
definite, then GP(P) is non-negative definite, as desired for a spectral

estimate. Since (165) and (167) are equal, we concentrate henceforth on

form (165},
Since
L@
|—|@()t)” - Mw (168)
A

det W)

g

(165) can be expressed as

&) - a ddH?({—‘), m)ﬁ” JUP[A%H ”‘)J (169)

Since &P is Hermitian, matrix er(f) need be computed only on ana above its

main diagonal, at each frequency of interest., Efficient computation of
H;’)(f) by means of an FFT is undertaken in appendix J. It is shown that we
need to perform M N-point FFTs of p+1 non-zero numbers, in order to evaluate

H;”(;) at Nc frequency cells in the frequency range (~,~g ,-zl;)

Real Multivariate Process

The results above have been derived for a complex multivariate process

{x“}. For a real multivariate process, U? is real and {A‘:’}: are real. Then
0 . uPnX  for a real process, (170)
H-) - Wt

and

FLl- oy
= AHZ)F)" U? )f"@ G(ﬂ )* for a real process. (171)
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Thus we need compute matrix ﬁj"(f) only for f20, for a real multivariate

process.

In order to avoid complex matrix multiplications, we develop (169) more

explicitly; let

Adj‘ H?(f) =K ) +i LW, (172)

where T&&) and I;«) are real MxM matrices at each f. Then since k% is real,
\&f: \)r , and upon substituting (172) in (169), we find

G -a

det "lz)(f;)l-l [&@\%K(F)ZUF)\,},I, )+ i MP)-i M({:)T] (173)

‘For Q Y‘eol fwcn:,
where

M“) = ];‘F)QR,&)T (174)

. . L ..
Since M(f) is real, the quantity tM(f)—n M{f) is zerc on the main diagonal;
therefore we need not compute the main diagonal of M{f). All the matrix

multiplications in (173) are real.

Real Bivariate Prccess

We now further specialize to M = 2, a bivariate process. iet the real
and imaginary parts of the filter transfer function Pﬁ” be denoted by XX
and YY, respectively (where these symbols are unrelated to X and Y introduced

earlier); that is

HX)H = XXE) +i YY), (175)

Then from (172), for 2 X 2 matrices,
RAG) ’Rcffrdj H:»(F)} Ad)' Re?Hz)fﬁ} = Ad XXHF) = XX 0, e
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‘L'{Adjﬂ?g‘} =Ad B.Z)-ﬁ) } A YY) = YV, 6. (177)

Substitution of (176) and (177) in (173) yields spectral estimate

- | 04 00 T Y 0 Y5 M- )

fiv o vog) Livaviade proce ss, (178)
where

M = YY) U, X%, ()"

{179)

The 2X2 matrices involved ip (178, are all real, and XXp(f) and YYA(f) are
the adjoints of the real and imaginary parts of rﬁﬂ(F) , respectively. The

form (178) is used in the program for the spectral estimate of a real

bivariate process.

3.8 TERMINATION PROCEDURE

For unknown correlation, the correct value of p to use in (79) and (80)

is unknown. We adopt the Akaike information criterion (AIC) derived in

Ref. 19, page 719:

ATS = i b debly v 2M7
*N I et V’ t+ 2M2P, (180)

where we have utilized (107); namely, we compute AICp forp=20,1,..,p

ana we use that value of p, pbest’ for which AICp is a minimum. Selection

of p is discussed below.
max

For purposes of updating Up and Vp, we can combine (105), (106), and
(122) to yield
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) W pH
-1 -A V = ~B;, 181
U= U A&, b4 -8B &, (181)
in terms of the solution, Gp, of bilinear matrix equation (126).

At this point, it is worthwhile to review the procedure adopted here.
From the actual data, we could have estimated the input correlation matrix
via (99) (or some scaled version of it). Also we could have used {112) and
(115) as error matrix estimates; in fact, these matrices are guaranteed
Hermitian and non-negative definite. However, zince det £+ do’cf;, we would

nave had to settle on some average like

In(detEy - 4etE) = £ (I el £+ bt F) (162

for purposes of ihe information criterion, As for the spectral estimate, we

- K
could have adopted, instead of (165), the quantity A}ﬁpﬁ) & H%”H)' ,

(P! ty =t H
OrAHb(D f; H;(f) ,» for example,

Instead, we have chosen consistently to stick with the results of the
normal equations (78). Thus the estimate of the input correlation matrix is
obtained from {80){and (82)); the estimates of the correlation matrices of the
residuals are given by (89) and (95) (or more computationally convenient via
(181})); and the spectral estimate is given in terms of \& or \? by (165) or
(167), respectively, for p=pbest' The major gap in this procedure is that
we have not proved that U  or Vp is non-negative definite for Choice 2 of

Y
weighting in (136); however, no counter examples have been discovered.

Our selection of P is accomplished as follows: 1in ref. 1, page 575,

max

Akaike is quoted as suggesting f;u=3ﬁ%for M =1, a univariate proucess. Since

the number of coefficients evaluated is p, and the number of available data
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points is N, this ratio was upper bounded by BAfﬁ. We extend this idea
directly to the multivariate case: the number of scalar coefficients
evaluated is ﬁﬂ’P , and the number of available scalar data points is MN.

Upper bouncing this ratio by 3rd~b, we find we should choose the filter
order

N2

Paae = ———

M (183)

in terms of the number of data points, N, and the dimensionality of the

time series, M.

3.9 EXAMPLES
It is worthwhile to summarize here the sequence of calculations required.

For data X], XZ"" X available (with the sampie mean removed), we have

N
Y:”Z:”, an s ks i
5‘¥9=L—§~KXXH= S{:y)”

N-1 K=2
(3]
N H — H‘
0.1 By - B ST
) ]
$P. L XX

N N N (]84)
Ut R 2 X WY

Then forrzl and choice (136) of weighting,

o<=VP'_: 'S;.?

G I
=3 U
P: P = 5“_;’)

G, via (126)

-Gy, B 6y

Uy G- A7 G

v, >y, -BG

ATG =N | det U, +2Mp (185)
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jf "?44 k= N
(186)

oM <t
N-p=1 kept2
N gl N=t o) M H
s, 1 = gP2¥ .1 ’_3@
Nop-t g ™1 . N-p-1 k-ruzr?f

(187)

For p = Prax it is not necessary to compute (186) through (187). Wza the
best value of p, pbect’is found from AICp, we can then compute the spectral
estimate (165).

We now consider an example for M = 2, N = 4:

11,
(188)
UVR[
Then for weighting (136), we find

o W o 13
G,—-,zl;, Z;J , k=8 =-t[( 1] {189)

The eigenvalues of A? are ngfﬁjﬂz » which are both bounded by 1 in magnitude,
as they must be for the correlation recursion (164) for p = 1 tg be stable.

Also,
\)z\/:—‘-7 ° (190)
U 1

& 16}
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which is non-negative definite. Thus, for weighting {136), all the

desirable properties are realized.

However, for no weighting, (135), we find, for the same example (188),

20 30 ) -jo ©
" ] : Anzs's‘# :) (191)
30 431/ -2} 4.

The eigenvalues of Aﬁ’ are 4/9 and -10/9; since the latter is larger than 1
in magnitude, the recursion K, = A‘:‘ Rm., »m2l, is unstable. Also

32 5
=V 2o (192)
“l' Vi ’6‘2 [5-’ 5.34 ,

which is not a non-negative definite matrix. It is found that the spectral
estimate obtained from (165) has frequency rangeswhere the two autospectra
(diagonal terms of (165)) are negative, and where the magnitude-squared

coherence can be negative or greater than 1. These are all unacceptable.

For the alternative example for M= 2, N = 4, of

-2 -131s 5 75
Xlgi-i.!: ) X: =[ls|] ) X.)’)j 9») ’ X«f:[-ﬂ], (193)

and no weighting, we find a stable correlation recursion, but U, and V] are
not non-negative definite, and values of the magnitude-squared coherence
greater than 1 are realized in some frequency ranges. Because of these
unacceptable behaviors, the choice of no weighting, (135), is discarded from

future consideration,

An example for M = 2, N = 100, and weighting (136), generated via (71) -
(73) of subsection 2.5 yielded the results below; the program and its output

are given in appendix K. We find pbest=] and
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-
0 Busy  -717e624 9,, 36613 .77018
- ,3
6332 56035 '’ - 6342 .26573 ] ,  (194)
9618 - 00867 A7 3488 195
U’=.09||o , VM =.09u0 j (193)
=00%C7 0234 di4r3 ),10087_/.

It is worthwhile to compare these estimates for N = 100 with the exact values
in (76) and (77). The scale factor .09110 in (195) is unimportant and is due
to the fact that the white noise used here had variance 1/12 rather than |

as in (73); except for the scale factor, the matrices in (195) have
determinants equal to 1. The estimated magnitude-squared coherence reaches

a maximum of .599745, versus the true peak of ,999013.

Observations from other examples of real bivariate processes have pointed
out that: the eigenvalues of A? and BT) are identical and are bounded
by 1 in magnitude; the eigenvalues of A? and B‘;’ are not identical for
p22 , and can be larger than 1 in magnitude; and the eigenvalues of Af,”

and B for n<p can be larger than 1 in magnitude.

Timing Results

Some sample execution times on a UNIVAC 1108 for SUBROUTINE PCC,
which evaluates the partial correlation coet icients, are presented below

for M = 2, a bivariate real process.
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Table 1. Timing of Subroutine PCC

N Pmax Time of Execution {sec)
100 10 0.25
100 15 0.35
1000 10 2.63
1000 40 9.23
10000 50 120
10000 150 326

The execution time is almost linearly proporiional to N and Pmax+ 1he
execution time for PEFTF was 1.25 seconds, and that for SDM was 0.55

seconds, both for N = 1024 frequency cells; see appendix K for program.

4. SUMMARY

A method for multivariate linear predictive spectral analysis,
employing weighted forward and backward averaging, has been presented and
programmed in FORTRAN. The method constitutes a generalization of Burg's

univariate a.gorithm (Ref. 4) to the multivariate case,

The choice of weighting in the error minimization is very important,
and several candidates have been considered. The weighting retained, (136),
is the only one of those considered that satisfies both the scaling property
(133) for all M, and reduces to Burg's algorithm for M = 1. Also, the

weighting retained is equivalent to minimizing the unweighted traces of
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in fact, (136) could be used as the starting point of the error minimization. :
. The major gaps in the analysis are that we have not proved that U, and 3
| E
;oo Vp are non-negative definite, and we have not proved that correlation ;
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ey . .
e recursion (164) is stable; however, no counterexamples have been encountered. !
% . . . . . Py . .
§§ The major analytical block in this endeavor is the bilinear matrix equation, ;
3 5
. . i . . e
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é |
[ ]
& 3
& i
¥ !
3% i
g £
B
‘;'
g i
x H
: ;
(z 3
¥ 7‘
¥ %
3 3
£ H
h
i
: i
; F
:
‘
Ed
¥ ’
¥
g
i
1 3
- i-‘:
. .
t : ‘
;3 49/50 :
H g
Reverse Blank 3
% . b
§“‘k~ b\ I ;
M ’.o “?vm b m’;’\um‘:'w«“ "‘f}‘w it A Y/ P A Fumy P dad ¥ e B e e . W;}f
i——:‘—ﬁ‘m* - vt . as oy e - D ——itv




TR 5501

Appendix A
PROPERTIES OF A SPECTRAL DENSITY MATRIX

Suppose an arbitrary linear filter with impulse response {Hn} is

excited by input {Xk}. The output at time kA is

= (A-1)
YK = ""'- Hn Xk-" ’

where the sum is over all non-zero summands. Xk and Yk are M x 1 matrices,
whereas H, is M x M. In steady state, the spectra of the processes in (A-1)

are related by

G ) = HE &6 HE)',

(A-2)
where transfer function
Hif) = = exp(-i2mfna) H, | (A-3)
and f frequency in Hz and is real.
Now
G»x@)" =4 g.otxr(i}rfkn)g: . A“i exp(-i2rfna)R, = G, (F), (A-4)

where we have employed (2). Thus Gx(f) is Hermitian at any value of f.

Similarly GY(f) is Hermitian at any f.

Also

¢Y) H
R = Y Y (A-5)

is non-negative definite for any H(f), because

VRY -V V0 e

A-1

|
1
4
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for any M x 1 column matrixq/ . Therefore

L A
- (#e S» # D& H HE)" (A-7)

is non-negative definite for any H(f), [* then follows that
GEX (F) s non—nega'l?ive deflinite for all £ (A-8)

To prove this, assume that Gx(f]) is not non-negative definite; than if we
choose H(f)~ 1 J(f-f]), that is, an impulsive transfer function near

frequency f], we get Rg)an(f]) from (A-7), which contradicts the conclusion

iy
0

that R must be non-negative definite,

Thus a spectral density matrix must always be Hermitian and non-negative
definite for all f. In particular, this implies that all the auto spectra
(diagonal terms of the matrix) must be real and non-negative. It also implies

that all coherences are bounded by unity in magnitude.
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Appendix B
MINIMIZATION OF TRACE OF ERROR MATRIX

From (4) and (5), we have

Y. X;%A,,Xk.ﬁx,‘-a?(, (8-1)

where ~ xk-n
a = LAy'"Ay]) flk E[ ; ) (B-2)
X., |

Xx%: - C, mz Q. (B-3)

Here,g) is M x Mp, %, is Mpx1, € is MxMp, and Q is MpxMp. We notice

that Q= @, and Y'QY = |¥" Xu|* >0 for any Mpx1 matrix ¥#0, if no exact

lTinear relation exists between the elements of ¥ ; that is,

k-1 ) Xk-r

Q is Hermitian and positive definite.

Now

Y= (X ax)x-%a”)
-%-ac-ca"+aaQ" (8-4)
R-cdc+(p-ca)al-cc)’ (3-5)
Let

/M
Y

a- CQ—, . (8-6)
%

where%{j is an Mpx1 matrix. Then for the M x M matrix in (B-5),

B-1
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: (a-Co™)a(a-e¢") =[43,]J_: ) 57)
where complex scalar

A=Y oY

(8-8)

The real quantity %5‘7,[0%” for any‘gl#o , since @ is Hermitian and positive
definite; the minimum value of Xﬁ is zero and is attained if and only if
‘|/. =0 . Therefore, tr L is minimized, attaining value zero, by the choice

qé,o Isj=M. Thus {’rY Y“ Y“ « 1s minimized by the choice of [ as

&o}"t : [A(f) A:)] ) @Q-') (8-9)

since the leading two terms in (B-5) are independent of 4.

Then we have opt L = 0 and

ot WY = R,- €GC"-R-0,C"- 8,4, Q0 w0

Also

WY, < b gt - brR-€6C) - Nt (cae”) B

It should be noted that the solution (B-9) is attainable directly from

(B-4) if the coerficient ofaH(ora) is set equal to zero; this observation

will be useful later.
Equations (B-9) and (B-10) can be developed as follows:

(]*Q C yields, with the use of (B-2) and (B-3),
R., R R?..

(4| S Y W A 012
e R

B-2

SR A A o Ngx:&;s,g%grwlm
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:
¢ . ¥
; that is, L
4 < b.
> AR, " Re, 1570 =
Z: M R (8-13) i
G _ py
5 And (R-10) can be expressed as " 7,
”: t ? %
: voal | R- 2 AP ¥
‘ Dt A . = uR
s P =R, - ¥ ] . R ot " (8-14) i
R
k
4 Equations (B-13) and (B-14) are the main results of this appendix. 5
i ]
jg f If an exact linear relation exists between the elements of X .. ,Xn-n %
1 then &
o c
;o = ﬁG.X { .}? L B-15
g ! )
3 I In this case, (B-1) yields
5 = 5%, -hX |
i Yu-, = K™ e Ao Kron = K™ i AJ"' Xej A?X"’*? " (B-16) q
) ,
g ' Therefore we can get zero error by choosing &
l§ '<
; A(?) Gm.) 'S'WSP_| i
P " (8-17)
‘f ’ O "= P !
? Thus ﬁ;w if an exact linear relation exists between the elements of L
%{ ‘ Xu-») »Xt-p 4
: Also we have the following general theorem: ’
| Ro®l o - :
No exact linear relation &S "\ is positive definite. (B-18)

‘ between elements of X,,.., X“_? R, R,

To prove this, let X d,

r i X“ = ) D * )

L B-19

| X b ) 5
" B-3 h
%i .
{
] {
t‘) N > > !
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Then F = b“ Xn is a scalar. Now if and only if an exact linear relation
exists, F, = 0 for some D # 0, no matter which member function of the

ensemble we select (with probability one). We also notice that

R -DXXD (520

and that the ensemble average in (B-20) is equal to the matrix in (B-18).

2

Assume that F, # O for any D # 0. Then JF.J' >0 for any D # 0, and

the right-hand side of (B-20) is positive for any D # 0. Therefore
‘X;X‘“ is positive definite.

Conversely if -f:f«“ is positive definite, the right-hand side of
(B-20) is positive for any D # 0. Then |R|’ >0 for any D # 0, yielding
Fx # 0 for any D # 0.
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Appendix C
INTERRELATIONSHIPS OF Up AND Vp
We start with the definition (12) and develop Up as
0 =R, Z R
- @

_R- Z(-ABLIR- AR, (o (05
R SATRLEA SR,

L o by (12
O Aré;Bf R, (by (12))

\M { 3
‘UP-"A? Dy, (by (13))
VIRV 18- 4V (by (19))
(T- ), e

This relaticn holds for p>1, with U,= R,. A similar derivation for V,

yields

%= (I'B?A(;))V-. pzi; V=R (c-2)

The determinant of Up is given by
det Gy = det (T-APEY) det U
= det A? clct(f‘:f’- - B:))-dt{.' U?.. , (C-3)

whereas the determinant of Vp is

dek \ = det (I~ BYA”) - det .
-1 (C"4 )
B tj(‘l‘ (A: - B?) df{ Ai) U‘(t VP-I

¢-1
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Now if det Up_] = det Vp_], then (C-3) and (C-4) indicate that
et U, = et V.

But since U, = V, = R, , det U, = det V,. Therefore (C-5) holds for
p20, by induction.

C-2

L3

(C-5)
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Appendix D

HERMITIAN PROPERTY OF EXTRAPOLATED CORRELATIONS

We know that

R-:‘ = Re for IH= P (D-1)

We then solve

iAx’)Rx-» = Rk ) lSkS P (D-2)

N=

for {Aﬂol? , and set

({{th éA(P)R:”) for all k21; ﬁff)z R, for k)= p- (0-3)

We then define

A H
R = RY For priz k. (0-4)

In a similar fashion for the backward case, we solve

ﬁB?RM =R, ,1sk=P (0-5)

W= 1

for {Eﬁ?]r , and set

R(P = ﬁ&fﬁR:Fz ﬂ)r all k=2i; R_ff)z R—x ﬁ,, Ikl=< p- (D-6)

~K ne |

We then define

.M
ﬁiﬂ _R? for pH < k. (D-7)

D-1
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We know from the definitions above that

H o A
ﬁ_(z) =R,((r br < P (0-8)

Now we assume that
vt A
R,:: =R.,ﬂ for M= m, wheve m2 P (D-9)

that is, from (D-6) and (D-3),

¥ P v ot & AP S A (7)
Ry = ﬁR:fk BY =2 AR =R" ke 1ckem 0i0)

Rhe} nz)

Now from recursion definition (D-6),

M P v H H
RP - =k BY

-m-) any B

- ZA0 B (by B-9)

ZEARE (o)

. ﬁ ?ﬁim Bw” (by (D-?))

RS T e ) I

LZ AR by 6-)

J'sl

. RY by 0-5). (0-17)

Therefore we have extended (D-9) by one step, and the proof follows for all

kzp+1 by induction.
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Appendix E
RELATIONSHIP OF DETERMINANTS
The forward correlation recursion is given in (52) as

(r) .4 ( -
;:g:ﬂA ]( » ) P+1 <m (E-1)

The z-transform of this sequence is
) - = AP _
G((E) = ;E%;fl 1§” = <

The inner sum on m can be expressed as (see (53))

gz'(w‘i( + Z (m)ﬁ(") = 2)+J? (E-3)

Wz pH wzp H

- o~ -(m-m) A
2"AE,P} S )R,_(:: , (E-2)
M:PH

Therefore,

f(=) - é 2"ALR,R) + ﬁ AP @ (E-4)

A )=( iz A(P)) ﬁi"A‘fé{n(;). (E-5)

Ve

At the same time, we define the z-transform of the backward correl-‘ion

recursion as

00 v
{
Re) = > 2"RP -
and note that, via (62),

Bw- = %P - 2R Kis).

E-1

o e e
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A comment on notation is timely here. [If matrix

&Gk = =2'D. (-8)

where z is a complex scalar variable, then

H

H - -n
G = 4:12 D (E-9)

»

But

H Q= ﬁ-” H
- 2 (@)
&) = \Z :D») (E-10)
which is not always equal to (E-9), unless z is real.

But let us also develop definition (E-7) by means of backward recursion

(55), in a manner similar to that above in (E-1) through (E-5). We find

Bo- 280 - SoZ0 80 69)

bz ps m.,4n n=

- ol ~(m-n) ¥ A Q" £-11

-2 2 (2 z CRPIB (E-11)
w=| bnp‘*‘ W=

The inner sum on m is

% (,,,,,) E Z -(n-n)R(p) : &’(?) +ﬂzH(?), (€-12)
Mz p)

where we used (56), (2), (E-3), and (E-11). Therefore

&H@ n:, "’)B@ ?)ﬁ " rn (E-13
&H(?) =é'?-"g“‘(})Bb"”H (I" éTz-nB?)“\).’ oo
£-2

o i a3 R T R e
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.
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Combining (E-5) and (E-14) according to (E-7), we see that
- @ - (p)H
de{('.l} =t A») and c}e{'(l-' é?”B: ) (E-15)

must have the same zeros, since these two quantities determine the singul-
arity locations of (E-5) and (E-14). The quantity'&n(z) defined in (E-3)

is singular only at z = 0.
Furthermore s%z(
N _ M N AN A G
T2 - Ml 2R ) - L5
and

M
d(:-ﬁssr'%i”’&ef(z'r-%f'ar“-----%*’?=I’;ﬁﬁ )

where we have utilized the observations that the quantities in (E-15) have

the same zeros, the same pole at z=0, and the same scale factor. Therefore

the two determinants in (E-15) are equal.

Also since
det(1- 227G,

1t follows that

"

|- iIUch-, -4 ;f‘zanrdef%, ) (E-18)

NSO e

\

and

det A? = det B:,)H - (ae% 'B?)*' (£-20)

TP Gk LT
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(E-21)
(E-22)

‘{VA?\#\{rB?\ L 1<ksp
|0t AV] # (6t B & k<

Numerical examples show that generally
£-4
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Appendix F
SPECTRUM FROM EXTRAPOLATED CORRELATIONS

The forward correlation recursion is given by

R0 - SARD g ()

where

RD <R, e p "

1A

and

S (p) (r)
r R , M2 ptil. (F-3)

2
We wish to evaluate the z-transform of {ARfj} :
- ()
}9 @) : & —2_ R, P F-4)
m:-.cp
In order to do so, consider a fictitious process {x"} with the corre-
lation given by (F-1; through "F-3 . Corsider the output of the optimum

predictive error filter, jlven o,

-

(Al

an K -

n=o ke )
The crosscorrelatior
- R .? a P ‘er
e Y, Xt SRR }%A.
NeO ite

JSInG 7 arg T-l . ae ee TRt

,»t:[v . e . . e P L.
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A
that is, predictive error filter output \; is uncorrelated with all past
A

values of input X;_

Also, output autccorrelation

A IR 2w ¥ a ¥
D,,,'-’Y,(Yh ='"%Yuxk-:.q A:) ’."Mﬁo CmAw ) (F-8)

using (F-5) and (F-6). But now employment of (F-7) in (F-8) shows that

D=0 for mxl. (F-9)

Also (F-7), (F-6), (F-2), and (12) yield

A A )
ﬁo = G =- ﬁA?»)K.(:) == iATK" = UP . (F-10)

Reo nzo

And since, from definition (F-8),

L A" (F-11)

we have

3 . { |
0, cﬂxnsse} ’ (F-12)

A A
that is, predictive error filter output Y; is white for input Xy - (of

course, Up is not diagonal).

A
At the same time, autocorrelation 0, can be expressed (by means of

(F-5)) as

B ZELK XA - > ﬁA‘.”ﬁ‘_’;,Af’" , all = (F-13)

[ L\ )'-o ned j:o

Therefore the z-transfor= of {A D,y 1s

SR 2 2y 8 5 I S 2 SRS 2 S
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A i{mﬁ. - ii- Az’ A Z“z_-(mj-")»ﬁ(p) izj Afr)”

T ey myj-n j=o J

(F-14)

Y v -
- R @,
where we have used (F-13), {23), (F-4), and (E-9). When we couple (F-14)

with (F-12), we obtain

G-asor'e) e

}QW(;) = A[ka)(z)]—’\)y @f’u(z“'ﬂ_, ) (F-16)

where matrix Up is independent of z. This is one of the main results of

this appendix.

If we let (for f real)

. (F-17)
2= exy(u?wFA> ) If) <55 s

and denote the forward predictive error filter transfer function and spectral

estimate as

ﬂ:,(MP(l'}wfo» s - é;exp(-; )W{;M)A?n }-L')(f),
«&P’(wp(m&)) = Anjz.‘&(?(-;hfm‘)ﬁr =iy (F-18)

L)
respectively, then the spectrum of process {X,} can be expressed as

-,H
6 -2 WO B 0

where we have utiiized the result that (see (E-8)) through (E-10))
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The procedure for the backward correlation recursion parallels that

above to yield (using (23))

ey e
= a 'V WP

and

(F-22)
-}
ZERD LCCATIONS OF R ()
Assume that 7[;"(;)-' £ Q(z) has a zero at z=z, # 0; that is,
A 55ume Q(z,) = 0, the zevo m{nx, (F-23)

where 0 < )2] . But

) - ) Q) - ‘9)
(;) 38 Al = 2r[ﬁ§+2A;,.+---+2' A;er] (F-24)

hzo

Therefore %(a) is finite for D<la,|, yielding

‘ . S A e : PRIV TS R EW Ao
2 ’Hn..w,.mybm,nnwu&w‘nguiﬂp&*@»g;w:w:x S R Pk g L3 e S e i el W PN M

) :

Q@ W) =0 ¢ T. (F-25)

O

Therefore assumption (F-23) 1s tnvalid, indicating that ?
Qz) #0 for 0« lal. (F-26) ?

Now from (F-24) ;
D)o - s O,
W, @~ -2A A
4
'
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therefore,

!
Q(Z‘) ~ - 2’ Ai: as H—’ 0. (F-28)

Thus Q(z) has a p-th order zero at z=0, but is not equal to the zero matrix

for 0<RR]. Of course, the individual elements of matrix Q(z) can have zeros

anywhere.

-1
POLE LOCATIONS OF &,P(2)
Since from (F-24)

%W) =- -YQ (2‘) ) (F-29)

where Qp(z) is a matrix of polynomials in z of order p, it follows that

Q@) = —276}?(2)_ = - dc‘t Qr(“') QM op ?), (F-30)

where Qn-y)p(’) is a matrix of polynomials in z of order (M-1)p. Therefore
the poles of C{z) are caused by the zeros of det Qp(z); that is, the poles

-l
of %:’){i) are caused by the zeros of det 7{:”)(2). As \zn,a,ﬁf‘(e)~rwr-24);
therefore, Q(z) ~ 1 as |2|»®, 50 that Q(z) has no poles at |aj=®

Thus the poles of Q(z) are located where det ‘ﬂ (;)

We now consider the problem of determining when detﬁ (=-0: the

following derivation is based upon Ref. 7. Let

X
‘P < (F‘3])

hed
KT"

be an Mpx] matrix. Define prediction

A
fn . C XM , (F-32)
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where C is MpxMp. And define error

‘gt: :fk- ?k = j:c - Cj’k-» . (F-33)

Then
5§ - (- CRE-50CY)
= q’i -CU.,- U C'+ CU ¢ (F-34)
Y- U +(C-uw >‘i(, (c-2ar)’
where

U= %5

The minimum value of tv §, S: is realized when (see appendix B) we select

(F-35)

C = ‘l(,‘b(: . (F-36)

The corresponding value of

S =W -uWy -, -y (F-37)

since ‘B{::'!l, . Now let the left eigenvecters and eigenvalues of the optimum

C be denoted as

H -
?:C"'\;..?m ) \imSMP. (F-38)
(The eigenvectors {fn} may not all be linearly independent). Then
2 He on H H
os|Stsl = 65 % - 5o (- cU TS
H (F-39)
= ?m uo?n (l' ‘\h\z) .

F-6
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% X' - ﬁ.c.',,,)( 3
£ N }:‘
; S - (F-41) ;
4 _ 2 f
§ Xepe™ 2 Cp Xo :
- :
f Minimizing tr § §' can be seen to make C of the form :
i — ¢ )
? | A AJ
D r o0 0 )
é C=lo ro (F-42) %
| : o
0 T O | g
‘ : Therefore (Ref. 7, eqs. (35) and (36)),
i ;
Mp aff (F-43) -
- ' # -
det (C-OI) = (-3 &t % ().
§§°S
‘ F-7 p
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Now % is Hermitian, block Toeplitz, non-negative definite, and has

the form

R R - R
‘uo =fnfku = |’

R, R

Therefore |M\, || for |swmsMp; that is, all the eigenvaiues of C are

(F-40)

bounded by unity in magnitude. Furthermore, Ref. 7, p. 134, shows that
if there is no exact linear relation between the elements of X,,7X.._,,...,X,‘.p

then ])¥|<| for |=m=Mp (see also appendix B).
Now we develop the error in (F-33) in more detail:

X, 1 o ... C,’ Xy-.
SKQX-Cfmz . -

X"?" C.P‘“ C" xk-’
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But this contradictsMy,j! for |sm=Mp. Therefore, the zeros of det %‘(')(3)

If we were to assume that det6)
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all lie inside the unit circle; that is, the poles of Q(z) all lie inside

the unit circle.
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% Appendix G

1

@ HERMITIAN PROPERTY OF ONE-STEP EXTRAPOLATED

¢ CORRELATION MATRIX ESTIMATES

Tg From (78), at tne (p-1)th stage, we know that 1§
4 &
8 1@
; P = H o)" ! ‘P")" . -4) _ £
g ‘R:‘. E‘R‘WBi' :ng-.Bn =§At R.,..‘R»;”"'SP"' (G-1) i
;
i Now we start with (94) and express ;
%
\E )" b W = i)” ?;
\’E RP > ER"'Y ﬂi- = E‘RP«K £
is, r 3
‘\ i % Pi' Atr')-R B(rg" (L (G_,)) ; §
Y i J P d ] ;’é
| 2
! 2 g & -)H %;‘
ié = % AJ ; Rr_._’ w. : %
3 E
3 =) . &
r 3
: -

: - Rt (}3 (78» (6-2) N
} \Q\%\v‘

%

‘? .

L T O

Thus, the one-step extrapolated correlatior matrix estimates, based on

R

order p-., are Hermitians of each other.

e

% ¢

7

ot S DRSS S e S R AR PG ~ T 0 DS
3 -

- —————

em

G-1/6-2
Reverse Biank

LI T I




24
&
<
£3
g -
.
A
5
3
¥
R
A
5
ki
x
Y
", 1
Ad

N s

0 9L USRI
mvrm‘—x«x&%\;w‘kﬂ\wﬁ’r’aﬂ’%"‘”

Ld

~
. . .
B i

s
AR -t A

e

PR 2o

Lol PR )

s
i
Lo
¥

N

< o ——— T

TR 5501

Appendix H
INTERRELATIONSHIPS OF Up AND Vp FOR UNKNOWN CORRELATION CASE

We develop the definition (95) as follows:

- 2R, -R-ZAR AR,

R = 5 2 (A A‘L’B‘,’TZ)R A“’iBf’?,,, (by 1) aud €08)
E K%, A ZHIR..

EEA) b

Now
- -1
~) - (' )
%ét’ Rup = }%B (H-2)
Therefore
U -V, ')B”r%i\ R, R:] (Bj (75))
Y-+ pY g
) 1 b
. Ur‘ AV (1y069)
0 P -3
(1-AB >Ur" . (H-3)
In a similar manner, we can show that
V.= (z-80A7)V,, (1et)

In order to show that Up is Hermitian, we recall the constraint (98)

and express

H-1
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0, U - AVBOU,. < U ATV AT

P (H-5)
Ity ]
Therefore if U,_, = U, ande,: V,: , it immediately follows that
H
U, = Yy (H-6)

Similarly since
__P(?’__ﬂr’nq»"
\k-° \,p~n E"/‘? \/p-t" \¢-i Eé’ \)P-, ESP )
it also immediately follows that

VP" =V?. (H-7)

But properties (H-6) and (H-7) are obviously true for p = 0, because
H
-\ - - (H-8)
U,-V,=R =R .

Therefore (H-6) and (H-7) are true for all p, by induction.

In order to relate the determinants of Up and Vp, we express (H-3)

and (H-4) as

U= AT AT~ BP0, Vs (4391

(H-9)

Ther=fore if det L)P" = det \40-;, +hen
But (H-10)is obviously true for p=0 by (H-8). Therefore (H-10) is true
for al1 p, by induction.

Prope~ites (H-6), (H-7), and (H-10) applied to (98) immediately show
that

X
det B(? = @ewa . (H-11)
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Appendix |
MINIMIZATION OF TRACE OF WEIGHTED ERROR MATRICES

We wish to minimize the trace of {123) by choice of matrix Gp. We

use the fact that, for square matrices P and Q,

te(PQ) = 2Py = 2Z0m P = t(QF), (1-1)

L Yl

to express

B 1B A ST -G STAL RSN Y G
(B VS U STUIG Bt ST VI SPR)E ]

Now (I-2) is an analytic function of the variaples Re(Gmn) and Im(Gmn).

Therefore the minimum of (I-2) is realized simply by setting the coefficient

-1
of Gg equal to zero (Ref. 20). We obtain, after premultiplying by JA7_, and
-1

post-multiplying by f;_l , the equation for Gp:

,.._)r.,V ! ?:,‘t/\, UP_. S’”\-}_’G S(ynv-- :,|+_fl‘;:U-,l ;l?'r) (1_3)

(Gp is not Hermitian or Toeplitz, as numerical examples will show.) In

terms of Ag°and Bgﬁ we have the simultaneous equations

BV R AN STERL RS e
APV -V, Bf’"= 0

-
where we utilized (122). P
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Appendix J

COMPUTATION OF FILTER TRANSFER FUNCTION

The forward predictive error filter transfer function is given in

(68) as
0 - Sen ey
'..(‘:lf ?X? ) QYFWA)A (4-1)
Now divide the frequency range Q{B,g;) into N cells of width
AF -+ 1 (J-2)
N &
Then for |m|< h&/l,
® P(m )
o 4) - H2) == 2 expllsarmai) A7
N,-! (J-3)
= 2 exp(i2emn/N) 2,
n=o
where
~ﬁﬁ)) 0shsp
Z,* (J-4)
0, prisns N-
Now if we let the sum in (J-3) be denoted as an Ng-point FFT,
Nt
then (J-3) becomes
z Dsms )
2o 2., N/
A wa) 9. . (J-6)
Z,‘m , —NF/2 <sms-
Then quantity 2; (J-5) is an MxM matrix for each value of m.
J-1/J-2
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Appendix K
PROGRAHM FOR SPECTRAL ANALYSIS

In this appendix we present the program for tne procedure summarized
in (184) - (187) and (165). The spectral estimate, (165), is computed

at frequencies {m/(Ny8)}"

GPGE) - HGE) U RS me Nz, (k-i)

where the forward predictive error transfer furction H:”C—‘.'-"-;) is given
by (J-6). The specific scalirj adopted is based upon (166), which takes
the samplied form

Ne/a
2 46y = R,

‘Iow (K-z)
where {u_} is a set of integration weights (e.g., trapezoidal). The
approximation is & good one if G(p)(f) 's sampled finely enough; that is,
if N_ is large enough to resolve the peaks and valleys of G(p)(f). If we

F
employ (J-2), (K-2) becomes

Ny/a
e OREY (k-3A)

or, for trapezoidal weighting,

A
) e R

where we have employed the periodic nature of G(p)(f) (See (165) and (68)).
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Thus the sum of sa::ples,t&mﬁ) equals the sample power, (80).

For a real multivariate precess, we can employ (171); a modified form ‘

i,

emerges: ‘
Mofa " 1

Kc % . N,AG ( A) = K, ﬁ;r real precess, (K-4) 4

where W} is another set of integration weights. This is the form

Ehand 3,

programmed in the following; the quantities computed are

260G - TRy, R oo
3

The real part of their weighted sum equals the sample power, Ro' The FFT
used here to ev.liuate (J-5) is given in Ref. 21; it is limited to powers of

2, hut could be replaced if desired. Input parameters are N, PMAX, and

s g g

NF in line 22, and the input data call is in line 37 and SUBROUTINE DATA;

CEW ST NPEY
S

all these quantities have to be changed by the user to fit his particular

f application. The program is written for a real multivariate process %é

f (general M), with the exception of FUNCTION DETERM, SUBROUTINEs SDM, %3

g INVERT, and SOLVE, and the printout of the spectral density matrix, (K-5). %;

! Arrays used in the program are explained by comment statements. A sample él

g printout follows the program. %%

{ |

s b1
|

% 4 S O Xiynng /. ion g b D W g R ARkt g o ¥ 5
% St LT R EASAREHS . £ A = o - Pl RO S R v =
A ~ *

ST
e, e W
PR

; K-2

')(&‘:*e‘a;‘&-; -

&

s

=

&

N ¥
‘

f

g
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SULTIVARIATE LINEAK PREODICTIVE SPECTRAL ANALYSIS,
EMPLOY LG =L1GhTEL FORWARD AND BACKWARD AVERAGIMG,
Tiils PROGRAM IS mRITTEN FOR REgL PROCESSES AND GENWERAL My WITH Thi

ExCePTION OF FUNCTION CETERM AND SUBROUTINES SDMes INVERTe ANC SOL /€

Aiw Tnk PRINT QUT OF THE SPECTRAL DENSITY MATRIL.

USEr: CHANGE LINES 22 AND 37 AND REPLACE SUBROJTINE DATA,

M = UIMENSTONALITY OF MULTIVARIATE PROCESSH 1UTEGER InPUT

N = nuMBER OF ULATA POINTS SN EACH PROCESS: INVEGER IWPUT
K(lod)eooX(Nel)oeasrX{loM), 4 X{NsM) = INPUT LATA} ALTERED ON OUYPT
PrAx = #AXIMUM OKRDER OF FILTER; INTEGER INPUT

NF = SIZt OF FFT (MUST BE A POWER OF 2 TO USE MKLFFT); INTEGER Ihy-UT

AVE = HEANS OF INPUT uATA3 QUTPUT
Kk = CUVARLANCE MATRIX OF InPUT DATA: QuTPUT
AJC = AKAIKE'S INFORMATION CRITERIONI oUTPUT
PbEST = BEST ORDER OF FILTERS INTEGER oOUTPUT
UbtST = MATHIX OF COEFFICIENTS IN SPECTRAL ESTIATE: QUTPUT
AP = MATRIX OF FORwARD PAKRTIAL CORRELATION COCFFICILNTSE THEN =
MATRIX OF FORWARD PREDICTIVE FILTER COEFFICIENMTS FOR PBEST! OUTPUY
8P = MATRIX OF BACKWARD PARTIAL CORRELATION COEFFICILNTSI QUTPUT
XXeYY = SPECTRAL MATRICESH OUTpUT

PARAMETER Mz2 W BIVARIATE PHROCESS

PARAMETER Nz 100 » PMAX= 10, NF=1024» HFU1zF/74+]

INTEGER PUBESTP

CIMENSION X{NoM) o Y{NoM)}Z(N,M)oUBEST(MyM) s Al (h oMo' tAX)

SEP (MeMyPMAX) s AVE (M) p XX (NF oM M) oYY (NFeidpM) s LCSLINFLL)

SUMeM) pV(MoM) s UT(MeMAoVI(MpM) o ALMyM)sB(Mrla) (40 M),

SvWA(MoM) ,WB(MpM) g WC(MsM) yWD(MoM) pWE(MeM) »ALC (PFAX),AICO(2)

EQUIVALENCE (X2Y) e (AIC(1),A3C0(2))
PRINT OUT VALUES OF PARAMETERS

I=N

JzPMAX

k=M

L=NF

PRINT 1, IedeKoL

FORMAT{(1HLp* N ='916010Xs'PMAX = pI4010Xe '™ =1, 12,10X,'NF ='r15)
INPUT DATA IN X(lfl)roox(Nvl)'..o'X(l'M)ooox(N"“”

CALL DATA

PRINT 2

FORMAT (/' INPUT DATALY)

J=N=99

L=h=200

U0 3 I=1M

FRINT 4, 1

IF(N.LE,200) GO TO 5

PRINT 6, (X(Kel)sKZ1e1(0)

PRINT 7y L

FORMAT (Ibe ' INPUT DATA POINTS NOT PRINTED HERE')

PRINT oy (X(KeI)rKSJ?N)

00 TO 3
FRINT o0 (X(KeI)rKFleN)
CONTINUE
FORMAT (! PROCESS NUMBER'),2)
FORMAT (5€£20,8)
EVALUATE PAKRTIAL CORREL.ATION CQEFFICIENTS
CAaLL PCC
PRINT 8

K-3

e
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PR ungiy

%
RV

g T e

S Yo
S rmi g

Py
Il

TR

ot SO

RO PR
- %..,4
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FORMAT (/' MEANS OF THPUT DATA®')

FRINT 6, (AVE(I)sI=1eM)

tRINT O

FORMAT (/' COVARIANCE MATRIX OF INPUT DATAL')
PRINT o ((R(IsJ)eI=1oM)ru=yeM)

FRINT 10

FORMAT (/% AKAIKE InFORMATIOpN CRITERION:®)
FRINT 110 (PeAIC(P)P=0,PMAY)
FORMAT(110,£20,4)

FRINT 12, PBEST

FURMAT (/' PBEST =',13)

FRINT 13

rORMAT (/' UBEST:')

FRINT 6, ((UBEST(Lled)sI=1sM)pJd=1eM)

PRINT 14

FORMAT (/' FORWARU PARTIAL CORRELATION COEFFICIEZNTS:')
LU 1% Pz1lyPMAX

PRINT 160 Poe((AP(IoJsP)yI=1,M)eJd=1eM)

FURMAT (110,0E20,.8)

PRINT 17

FURMAT (/Y BACKWARD PARTIAL CORKELATION COLFFICIELTSS')
LU 18 P=l.PMAX

FRINT 160 Py ((BP(IsJoP),121,M)ru=1sM)
IF(PBEST,EQ,0) GO 1O 19

EVALUATE PREDICTIVE FILTER COEFFICIENTS

CAlLL PFC

FRINT 20

FORMAT (/' FORWARD PREDICTIVE FILTER COEFFICIENTS FOR PLESTS')
LY 21 Pz1PBEST

PIINT 160 Po ((AP(LIedrP)yI=1 M) rd=1eM)

EVALUATE PREUDICTIVE~ERROR FILTER TRANSFER FUNCTIOUN

CALL PEFTF

EVALUATE SPECTRAL DENSITY MATRIX AND COHERENCE

h=NF/2+1
caLl SLM
FRINT 22
FORMAT (/' SPECTRAL DENSITY MATRIX AND COMLRENCE FuR Mz2:1)
PRINT 23

FORMAT (8Xr 'BIN' 910X, JAUTOL11 014Xy *AYTO0R22" 110X, 'REAL (CRUSS12) 7, 7X, !

SImAGICROSS12) ' 19X» 'MAG SQ COH' v 11X» *ARGUMENT?)

PRINT 160 (LoaXX(Lolpl)pXX(L,202) 0 XX(Lolo2) oYY (Leds2)oYY(Lo1y1),YY(

SLy202) 0 L=10K)
SUBROUTINE DATA

THIS SUBROUTINE GENERATES DATA FOR M=2, BIVARIATE PROCESS

DEFINE IRANDF1#5¥%*154((1-SIGN{1lsIx5x%15))/2) 434359738367
DEFINE RAND=FLOAT(I)/34359738367,

1:5281

TA=0,

T8=0,

DO 1 K=1¢100 W WILL DISCARD THESE INITIAL POINTS
I=IRAND

T=e85%2TA=e 75%TB+RAND®, 5

I1=1IRAND

K-4
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To=.658TA+,553 TB+RAND=, 5 3
1 TAsT )
X(101)=TA 3
x(102)=78 §
DU 2 K=2oN 3
1=1RAND §
; 72.85%TA~. 758 TO+RAND® 5 ;
1 1=1RAND 3
| TE=,658TA+, 558 TH+RAND=, 5 3
| TA=T _
I X(hel}=TA !
: c X(Re2)=TH »
: RETURN 4
SUUKOUTINE PCC :
L TalS SUskULTINE COMPUTES PHEST, UBESTe AND THE PARTIAL £
( CURLELATIO COEFFICIENRTS FOR P = 1 TO PMAX: AKy & §
j BT 2
J=PMAX g
JAS3,85LRT(N) /M i
Ir tPMAX (GTJA) PRINT 1, Jol,1A ¢
1 1 FURKHMAT(/' PMAX ='»1ks* S TOO LARGE FOk numbik OF DAT* POINTS N = 4
L $,iDs'i SEARCH LIMITED TO P =',14) ?
S IA=MIN{IA+PMAX) W UPPER BOUND ON PMAXP b, 183 g
E FALZ2 45 vaN/N W FAG=0, wOULD FORCE PRLST EuuklL TO FMAX by
B (C SUBTKRACT MEANSS FILL IN DATA ARRAYSH EQ 110 3
F LU 2 Iziem g
’1‘ 1)‘.—.0. i
, vl 3 KzioN *
3 TASTA+Y (K» 1) ;2
. TA=TA/N 4
R AVE(I)Z=TA '{'ﬁ
& vu 2 KZ1N %g
| Y(RoI)ZY(KpI1)=TA b
1 ¢ LIk 1))=Y (K T) %
| C INITIALIZE CORRELATION MATRICESS EGS 82 114, AL 105 ‘Q
N CALL AUTOL2yN=1,YsdC) e
1 LO 4 Iz1oM M
by 4 J=IeM #
3 TAZY (1o 1)*Y(10J) 4
i ¢ TBSY (Np )XY (NoJ) ¥
gg K(Ird)S(WCEIoU)+TA+TE) /N N
A WAL J)=WC(ZIod)+TB 2
g WolL1ed)=WC(Ted)+TA N
&,; KideI)=R(Ied) =
H WA(Jr 1) ZWA(Tod) 7
%4 4 wB(JrI)zWB(1.J) 1§
fv CALL EQUAL{R,V) 3
S CALL EQUAL(RsV) 1,
T CALL CROSS(2/NeYrYswC) i
P ¢ BEGIN RECURSION 3
%g ) ALC(0)=LOG(DETERM(U)) ¥
. ALCMINZAIC(O) i,
g; : FBEST=0 ¢
£ ¥
B :
i f K-5 ;
& . — -
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CALL EQUAL (L,UBEST)
Lv 5 P=1.1A
EVALUATE MATRICES REQUIRED IN BILINEAR MATRIX EQUATIONS t@ 126
CALL INVERT(Vsv])
CALL MULT(VIengeWD)
CALL EWUAL (wDsdB)

LAkl INVERT(UNUI)
CALL BEQUAL(wArwD)
CALL MULT(WD,UI,WA)
CALL AUDINC,HTonC)
C SuuvE BILINEAR MATRIX EGQUATION; EGS 157=161
Call SOLVE
L EVALUATE PARTIAL CORRELATION COEFFICIENTS: EQ 12¢
CALL MULT(WCsVIsA)
CALL TRANS{WCswD)
LAkl MULT(WD,UI,B)
CALL EQUALfArAP(Ll01,P))
CALL EQUAL(B¢3P(1¢1,P))
C UPLATE MATRICES U AND vi EqQ 183
CALL MULT(A»WD,wE)
CALL SUB(UsWEU)
Call MULT(B/WCoWE)
CALL SUB(VenErV)
C CALCULATE AKALIKE'S INFORMATION CRITERION: EQ 18¢
AJC(P)=ZLOG(DETERM{U) ) +FAC*P
1r (AIC(P) «GE,AICMIiv) GO TO ¢
AICMIN=AIC(P)
PBEST=P
CALL EQUAL(U,UBEST)
1IF(P,EQ,IA) GU YO 5
C UPDATE DATA SEQUENCES Y ANC 2% EQ@ 111
LzP+%
LO 7 K=Noely=}
Lu 8 I=1M
TAZZ(K=1,1)
0 9 JU=iM
TASTA=B(1leJ) %Y (Ko J)
b c(KeI)=TA
CO 10 I=1:M
TASY (K1)
Lo 11 J=1irM
12 TaSTA=A (v J) %L (K=19J)
10 Y(KeI)=TA
7 CONTINUE
C CALCULATE NEW CORRELATION MATRICES: EQ 114
CALL AUTO(P+2eN»YewA)
CALL AUTO(P+31oN=1rZ,WB)
CALL “ROSS(P+2:NeYeZoVWC)
] CONT INUE
IF(M.EG,1) RETURN
K=M=]
LO 12 I=2eK
L=l+1
LO 12 uzLeid

K-6
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UBEST(1,J)Z .58 (UBEST(I»J)+UREST(Je 1))
12 ustST(Jde1)ZUBLST (TN Y)

E TURI
C

SULRVUT INE PFC
¢ TrlS SUBROUTINE COmPUTES THE PREDICTIVE
C FILTeh COuFFICIENTSE ANY M bw 79
IF(PBESTILE,1) RETUKN
[V 1 P=2+PbEST
1azP=1
LO 2 L=1vlA
lo=pP=_
vabl MULT(AF(19o10F) oBP(19191B)saA)
CALL SUS(AP(121/L)snArnA)
Cuil MULf(bP(lolvP)oAP(lvlpL)ohU)
CALL SUB{BP(10101B)sWByusP(1,1016))
CALL EGJAL(WAPAP(Ll010L))
LunTINUE
kL TURN

S
[ adi \V]

SUbROUTINE FEFTF
TalS SUBROUTINE COMPUTES THE PREDICTIVE=ERKROK
FILTER TRANSFEK FUiICTIONG ANY M3 QS 6 AND (Jed)=({de=p)
Rl QU4273LOGINF ) +,5
CablL QTRCOS(CUSIeNiF)
Lty 1 I=1sM
Lu 1 J=1M
xX(l,1vJ)=0,
IF(leEw,J) XX(1sleu)=1,
Yr(lelod)=0,
IF (PBESTSEQ,0) 60O TO 2
1ASPBEST+1
DO 3 L=2s1A
AX{Le LoJ)==AP(IyJUrL~1)
YY(L'I'J):OQ
c TASPUEST+2
Ly 4 LSIAWNF
AX(Lslodi=0,
YY{L,1rJ)=0,
Call MKLFFT(XXC(LeloJd) oYY (1oT0J) eCOSTrKs=1)
he TURMN

o0

> O

- &

v

e
1t RO e e Eais

SUBKOUTINE SDM
THIS SUBROUTINE COMPUTES THE SPECTKAL DENSITY
MATHRIAX ANU COHERENCE FOR Mz=23 EQS 178 AHD K=%

T:2./NF

LO 1 L=tk

WA(Lel)=XX(Loe2r2)

wA(le2)==XX(Lsls2)

wA(20l)z=XX(Loe2s1l)

WA(Sr2)=XX(Lolyl)

wd(lel)zYY(Ls202)

wd(le2)z=YY(Lolr2)

Wi{2e1)z==YY(Lr2s1)

aB(2e2)=YY(Lo1V1)

AT A TRER T
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Py T LaeEaAT e
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TAZDETERM(®A} =DETERM (WB) L
THEWA (L1, 1)0WB(2+2)+4WA(2,2)8wBl1s1)=WA(102)8a0(201)=RA(201)8wB(,2)
Ta=T/ (Tass24TBes2) 5
CALL TRANS{wnAsnC)
caLl MULT(UBEST +nCrwD) r:
CaLl MULT(wBowuenC)

TozaC(1,2)=wC(2:,1)

Lakl MULT(WA,wUIwWC)

Ll TRANS (nBew()

Cabl MULTIUBEST »wDewk)

Cubl MULT (ntsoWE WD)

Cakl. ADD(wC WU, aC)
YY(Lelo2)S(wC(102)#82+Tuns2)/(WC(2el)snul(Z02)) s MAL SG COH

11 lLe202)SATANS (TBewC(1s2)) » ARGUMENT
AX(Le1ls1)=TARNC(101) e AUTOL1
AX(Le202)=TASK(C (20c) w AUTO22
XA(Lels2)STARWC(1lsc) o REAL{CRUSSY.)
YY(Lr102)STARTH » IMAG(CKROSSY )
AX(Lr201)=0,

YY(Le201)=0,

1 CUNTINUE
rETURN

PO

e

2 ol P, e

AR O e L IR

LUbROUTINE CROSS(N1¢eN2,AeBrc) @ AsBrA NG
Tils SUBROUTINE COMPUTES A CROSS CORRELATION (fATHIXE ANY 43 EQ 114k

LCIMEHNSICN A(Nem)oB{NeM),C(M,M)

LouBLt PRECISION T

LO 1 I=ieM

LO 1 J=1sM

T=0,00

L0 2 KznleN2
P2 T=T+A(Ko 1) %L (K=10J)
1 C(lsd)=1

KETURN

o

SUbROUTINE AUTO(N1+1i2eA,B) i ArA NG

L TrilS SUBROUTINE COMPUTES AN AUTO CORRELATION mATHIX: ANY M3 EQ 11.,A
UDIMENSION A(NiM)eBIMeM)
LOUBLE PRECISION T

L et o e ‘
%/ X 25 v

s st

g TR e

LO 1 I=1sM
LO 1 JU=IsM
3 7=0.,0°C b
o LO 2 KzN1eN2 3
i 2 T=T+A (K D) %A (Ko ) i
; F{lod)=T i
H 1 b(Je1)z=B(1sJ) ¥
" ¢
; SUBROUTINE EQUAL(A/E) 13
F C  THIS SUBROUTINE SETS TWO MxM MATRICES EGQUAL e
3 [LIMENSION A(Mri) o (MeM) i
g LO 1 I=1eM i
% Lo 1 Jz1eM e
3 1 t(led)zA(Ied) £ i
£ ke TURN 3
5 g
; K
{ A H
i3 %

st
&
Py

17
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SUBROUTINE TRANS(AB) @ ArA NG
TAls SUBROUTINE TRANSPOSES AN MXM MATRIX

CIMENSION A(MoM) e B(MeM)

Ly 1l I=1eM

vl 1 U=leM

t (Ied)zA(Jr])

FETURN

SQUBRUUTINE ADU(ArBsC) s ArceA OK
1111S SUBRUUTINE ADDS TWO MxXxM MATRICES

LIMENSION A(MeM) oB(MeM),C(M,M)

Lo 1 Iz1eM

LO 1 JU=1eM

C(ird)z=A(led)+bs(l0y)

KE TURN

SUBRUUTINE SUB(AsbeC) id AeboeA OK
THIS SUBROUTINE SUBTRACTS TWO uXM MATKICES

LIMENSION A(MoM)sB{MIM),C(M,M)

Lru 1 I=teM

(o 1 Jz1eMm

Ciird)zA(Iced)=t(Ied)

ke TURN

SUBROUTINE MULT(ArpsC) 4 ArBeA NG
ThIS SUBRUUTINE MULTIPLIES TwO MXM MATRICLS

LAMENSION A{MeM) obB(MeM),C(M, M)

vV 1 I=1eM

Lo 1 J=1M

T=U,

LO 2 Kz=1,M

T=T+A(L 1K) XB (Ko J)

C(ir)=T

kETURN

SUBROUTINE INVERT(A,B) v AsA NG
THIS SUBROUTINE INVERTS A 2X2 MATRIX

CIMENSION A(2r2)eB(dr2)

TA=1,/0ETERM(A)

B{lrl)=A{2+2)%TA

L(2e2)=A{1s1)%TA

E(le2)==A(1,2)%TA

bs(2e1)==A(291)%TA

hE TUKN

SUbROUTINE SOLVE
T41S SUBROUTINE SOLVES BILINEAR MATRIX EQUATICON
FOR v=2¢ SIVARIATE PROCESS: Ews 1579 1%8, ANU 162
TA=SWA(L1,1)+wA(2:2)+WB(1,1)+ywB(2/,2)
TBSUETERM(WA ) =OETERM(WE)
call MULT(wWC,wB/yWD)
ni(lrl)=nA(2+2)
aelle2)==WA(1+2)
wel201l)z==wA(211)
ab(2s2)=WA(L1c]1)

TR 5501
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CaLll MULT(wWwE)WCHWA) §
\ CALL ADL(WDs»WA,»wD) ;
AB8(lel)=TA®nwB(1,1)+TB E
w3(2e2)=TA¥RB12:2)+Tb ;
wd(102)=TAxwB(1/,2) :
rtif{2e1)=TAsWB{2,1) !
CaLL INVERT(wbowk) :
CAkL MULT (KD WE»WC) ;
Re TURN ‘
C
rUnNCTION DETERM(A)
C  THIS FUNCTION COMPUTES THE DETERMINANT OF A 2X2 ~MATRIx
LIMLNSION A(202)
CLlERM=ZA(L1)3A(2e2)=A(1e2) %A {20 1)
reTURN
L U

SULRUUTINE MKLFET{XeY2CCoMy ISN)

t IMENSION X(1)eY(1)oCCe1) (12

EQUIVALENCE (L120L 1)) o (L21,L(2))0(L10,L(3)) o (LI (8)) o (LBWL(S))
1(57'L(0))'(L6'L(7))0‘L5'L(8))'(L“oL(g))'(LﬁoL(lO))'(LaoL(ll))v
clLirLiad)

1.=2%*M

Wod=N/u :
LOWPLINDET]L b
LHusP2=nN04P1+1

I veP2=nb 4+ NDYP2

LY 8 LuzleM

LMAZ2 %4 (M=0)

Lix=2% X

ISCL=N/LLX

\ Lo 8 LM=1/sLMX

ITAKG= (LM=1) xI5CL+]

| It (JARG,LE JNDHFPL) GO TO 4
‘ ==CC (WD2P2=1ARG)

waAeA YA

R T LI A SRR DU LN S

oy sbmsers

3
3

5= 15i4%CC ( IARG=NDY ) 3
cO TO & ¥

4 C=CC(IARG) 3

ok

\ 5= 1SN*CC{NDYP2-TAKO)
| o L0 8 LI=LIXsNsLIX
} JISLI=LIX+LM
\ J2SJl+LMX
| TL=X(J1)=X(J2)
| 12=Y(ul)=Y(J2)
| X(J1)=a(J1)+X(JU2)
1 Y (J1)=Y(J1)+Y(J2)
x(J2)=CxT1=5%T2
| Y(J2)=CxT2+5#T1
‘ 6 CONTINUEL
| Lu 40 J=1e12
L(vi=1

l 1F(J=M) 31,3140

31 L(uw)z2%x(Meled)
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40

51

Se
60

b2

CONTINUE

JiH=1

LO 60 Ji=l,L1

(0 60 Je=Jdl.L2,L 1
Ly 6% J3z=Jd2yL3eL2
DO 60 JusudsLtrL3
LO 60 JUS=J4,LDyLY
DO 6L J6=JbeLELD
L0 68 J7=J6L7eL6
LO 69 UB=JTL8ILT
LO 63 J9=JB»i 9,8
LO 60 J10=J9,L10,LY
0O 69 J11=U10eL11,1.10
LU 60 JR=Jil,L12/L11
Ir (UN=UR) B1,51,52
R=A (JN)

A{JIN) =X (JR)

X JR) =R

FI=Y(un)
Y(JH)I=Y1JR)

Y(JR)=FI

UINSUN+L

CONTINUE

ReTURN

t.NU

SUBROUTINE QTRCOS({CyN)
LIMENSION C(1)
N4lan/4+1
SCL=6,283165307/N

DO 1 I=1oNi)
C(L)=COS((I=1)%SCL)
KETURN

ENU
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