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INTRODUCTION

Spectral analysis of stationary random processes via linear predictive,

maximum entropy, and autoregressive techniques has attracted much attention

lately, especially for short data segments; see, for example, the biblio-

graphies listed in referencesl, 2, and 3. For a univariate process, it

appears that the Burg algorithm (Ref. 4), which guarantees a stable correla-

tion recursion, is as good as any of the currently available techniques of
C,,

similar nature that employ an all-pole model of the available process (Ref. 3).

Accordingly, it is desirable to develop a spectral analysis technique

for the multivariate case in such a way that: we employ a physically mean-

ingful error minimization for the determination of the filter coefficients;

the technique yields a stable correlation recursion; and it reduces to Burg's

algorithm for the univariate case. It will be shown in the following that

,qe have accomplished these goals, with the exception that we have not proved

(or disproved) the stability requirement. A FORTRAN program for this spectral

analysis techpique was published in Ref. 5, along with an example of its

application. Virtually simultaneously, the same technique was investigated

independently and published in Ref. 6. In this report, we will document the

derivations and equations that lead to the program presented in Ref. 5, and

indicate an extension of that result.

Our approach in this report will be to investigate, in some detail, first

the case where the correlation of the multivariate process under consideration

I is known for a limited range of argument values, and to extract all the

relevant important properties of the solution so that they may be 'forced to

be satisfied later when we treat the unknown correlation case. This property-

u1

!I
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extraction procedure will be found to: furnish guides to the analysis of

the unknown correlation case; allow us to cut down on computer execution

time and storage by employing the properties; and make us aware of some of

the shorccomings of the unknown (versus known) correlation cases. This

procedure should also be helpful to those who are not thoroughly familiar

with spectral analysis of multivariate processes and their properties.

Throughout this report, we assume we are dealing with equispaced

samples of a stationary zero-mean complex random process X(t) of dimension-

ality M; that is, sample

is an M x I column matrix, where A is the common sampling interval for all

the component processes of X(t). It is not assumed that X(t) is Gaussian.

In section 2, we will assume that the correlation matrix of process

{Xn}, namely the M x M matrix*

RK~, Y2; (2)

is known exactly for a limited range of values of k, and will show how

an approximation for tne spectrum of process {Xn1 can be obtained. In

section 3, the input correlation matrix Rk will be unknown, and all that

is available is a finite set of N data samples, X,, X2, ... , XN, from

which an estimate of the spectrum of process {Xn} is desired. The end

result will be a FORTRAN program for multivariate spectral analysis.

*The case of complex samples is treated so that we can handle complex

envelope or complex demodulated processes. Specialization to real processes
is immediate, and (2) becomes R,:RA. An overbar indic&tes an ensemble
average, superscript T denotes a transpose, and superscript H denotes a
conjugate transpose. Matrices are indicated by capital letters.
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2. KNOWN CORRELATION

!f the correlation in (2) is known for all k, the standard (double-

sided) definition of the spectrum of process {Xn} is

{ ) --i.-CkA Rk, I(3)

The complex M x M matrix G(f) is Hermitian and non-negative definite for

any value of frequency f (see appendix A), but need not be even in frequency

f. When Rk is not known for all k, but only for a range j , an approxi-

mation to (3) must be accepted; this problem will be pursued below.

2.1 DERIVATION OF EQUATIONS

Suppose M-dimensional samples X .... X are available, and we

attempt a one-step linear prediction of Xk according to the p-th orde,"

operation

(4)

where complex coefficient matrix An is M x M, n = 1, 2, ,.., p. The

instantaneous error at time kA is defined as

A.XSA-. (5))(h x- X1, = - _A.. ,

The linear operators in (4) and (5) constitute stable linear filters regard-

less of the choice of co. rficients; the filter of (4) is called the predictive

filter, that of (5) is called the predicive error filter. Notice that we are

not assuming that process {X } actually satisfies an autoregressive relation;
n

rather we are simply attempting to linearly predict {X n on the basis of the

most recent p past values.

3
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The minimum value of the scala, error

p
by choice of coefficients {A n1, is given (in appendix B) by the solution

of the linear matrix equations

S -(7)

where the explicit dependence on the order p is indicated. Knowledge of

Rk for INI', is required in (7).

MP
Before we discuss the solution of (7) for {A'n , we consider one-step

linear "backward prediction" of process {Xnl. Suppose samples Xk, Xkl,

Xk-p+l are available, and we attempt a one-step linear prediction of Xk.p

according to
V

- P-B,, (8)

The instantaneous error is defined as

-V , X W .f (9 )

The minimum value of the scalar error

H (10)

by choice of coefficients fB n, may be shown (in a manner similar to that

of appendix B) to be given by the solution of the linear matrix equations

For the optimum coefficients in (7) and (11), we find (see appendix B)

that thp optimum error matrices take the form

4

A.-
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In general, these two matrices, their diagonal elements, and their traces are

unequal (as the simple example of p=l will show). Howc.ver, their determinants

are equal, as will be shown in subsection 2.2.

The solutions of (7) and (11) can be accomplished simultaneously in a

recursive fashion (Ref. 7). Define

,4~

(13)

PP-1

ThenA~= V' 1"f B '
A F -I (14)

and

A " "(15)

These relations will be simplified somewhat in subsection 2.2. For M=l,

a univariate process, (7) and (11) immediately yield

4) (16)

where we have used (2) in the form R = R for a urivariate process. No
k -k

such simple relation as (16) holds for M > 2.

We will now derive a chain interpretation of the above results that will

prove very useful later when we have to deal with the unknown correlation case.

For the optimum filter coeff3icientsA an 3 , define the p-th

order forward and backward residuals (see (5) and (9)) as the outputs of the

forward and backward predicti e error filters:

5
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S(17)

Then using (15), we can expre<

JZo A' --

And similarly

(19

ZLIV

a(p) nZP)

Thus p-th order residualsYK K are related to the(p-l)th order residuals

simply Chrough the coefficientsA and . A block diagram of the relation-

ships in (18) and (19) is given in figure 1, where z'denotes an M x M matrix

filter of unit delay.

6
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y(P-1) (p-l)
k Z k

'1: (0) (0)kk= -

Figure 1. Chain Representation of Residuals

Thus matrix operators ¢' and 'can be interpreted as those coefficients

which minimize____ ( ', I; t (2(p 0)

respectively, at the output of the p-th stage in figure 1, where{} and

-{ - ! are determined by minimizations at lower order stages. Ag") and
p p

are called tFe partial correlation coefficients. Stated alternatively, stage

by stage minimizations of (20), via choices of partial correlation coefficients

and B respectively, results in the same overall filter as if the powers
P p

in

A.i (21)3

were minimized by the choices of {An), and (Bn1P, respectively, each in one

simultaneous optimization. This will furnish an important reference point

7
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for the unknown correlation case irt section 3.

If we let the transfer functions (z-transforms) to the outputs of the
p-th stage in figure 'I be denoted by A (z) and 1(z), it immediately

follows, from figure 1 or equations (18) and (191), that

'+A

= = T_ (22)

In closed form, these predictive error filter transfer functions are express-

ible as (see (17)) -_ A _ )
'A%*

.- e I .- '

( 2 3 )-:

Net. _-

2.2 PROPERTIES AND INTERPRETATIONS

Suppose that process {Xn1 were scaled according to

W (24)

where M x M matrix D is arbitrary, but invertible, Then the correlation of

the scaled proces; is

N, n s and musta (25)

Yn~ T' X4 DX.XD J)R1 1

Now from (7), since the solutions An an must sat'isfy

8
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respectively, the solutions are related by d similarity transformation:

(28)

This is called the scaling property. A similar property holds for the back-

ward coefficients

An immediate by-product of the scaling property is that A and A haven n
the same eigenvalues:

Similarly, Bland 'B have the same eigenvalues, regardless of scaling matrix

n n

D.

The remainder of this subsection will deal .4ith the quantities Up and

V defined in (12), and C and D defined in (13). The quantity U can be
p p p p
interpreted physically as the correlation matrix of the p-th order forward

residual; see (12), (5), and (17). Similarly, Vp is the correlation matrix

of the p-th order backward residual; see (12), (9), and (17). That is,

(P) v"H (30)

Thus U and V are Hermitian:
p p

HH (31)

VP

and Up and V are non-negative definite:pp_

jCV T) .2 (32)

for any M x 1 matrix 'V In appendix C, it is shown that simple recur-

sions hold for Up and Vp:

p 9
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(33)

It immediately follows from (33) that (see appendix C)

'1e &- Vr' r - (. %34)
This property was prLved in Ref. 8, page 240.

The quantity Cp defined in (13) can be interpreted as the cross-corre-

lation matrix between the p-th orde,- forward and backward residuals at one

unit of delay: -

" 35)

Mr.0 17.0
where we have used (17), (2), (7), and (13). Similarly

~ ~ ~(36)

where we have used (17), (2), (11), and (13). It immediately follows from

(35) and (36) that DF C (37

Thus it is not necessary to do the additional calculation of D in the
p

solution given in (13).

Another interpretation of C is available as follows:
p

"-% - - - -n $ (38)

where we have employed (17), (2), (12), (7), and (13) in order. Thus the

p-th order forward residual is uncorrelated with the p most recent past
10

10

-": ___ -___
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values of the input, and the crosscorrelation at p + 1 units of delay is

just Cp. Similarly, the backward residual satisfies
p

"- V-(39)) - •

Yet another interpretation of C and D will be given in subsection 2.3.
P p

As the order p in the linear prediction (4) increaIs (38) yields

, t'-- ." "(40)

Therefore the autocorrelation matrix of the forward residual becomes

(P)

That is, p-th order residual YkP tends to white noise with a correlation

matrix at zero time delay of value U,, which is not necessarily diagonal.

The Hermitian property in (37) allows us to combine (14) into the

equation

ATF ' (42)
P1B
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where we utilized (31). This constraint on the partial correlation coeffi-

cients will be of paramount importance in the unknown correlation case. It

immediately follows from (42) and (34) ;-hat

((43

No such simple relation holds between det Anand det B" for n<p, except

for M = 1, a univariate process.

2.3 EXTRAPOLATION OF CORRELATION VALUES

In subsection 2.1, we minimized the error in prediction (4) and found

that for a p-th order prediction, knowledge of Rk for IMsp was rL ired;

see (7). Now suppose that this is all the knowledge available about tRk};

that is, suppose Rk is unknown for Iklp. What can be done about approximating

these unknown values?

One approach is as follows: we assume that the p-th order residual

process in (17) is white (i.e., uncorrelatedfor all non-zero delays), and

that APO(otherwise we could reduce the value of p). That is, we assume we

can do nothing more in prediction by choosing more terms in the sum (4),

which is tantamount to assuming maximum uncertainty (entropy) about the

residual process " This is a very extensive assumption; we now investi-

gate its ramifications.

We know from (38) that

12
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(44)

must satisfy

6~~~~(45)

Additionally, employing (17), the autocorrelation matrix of the p-th order

residual is

Y ?)) (46)k-J- A A ) ,I

Now for j = 1, the white noise assumption on process !'w}}yields, via (46)

and (45),

o:-P e(,)A. F A+ v i .F,: (47)

And for j = 2, the white assumption (in conjunction with (47)) yields

0 =-{.F- ,p ; t'e. -z . (48)
(48

Continuing in this way, the white assumption is tantamount to assuming that

+ -  I . (49)

Returning to expression (44), this means that we are assuming that

-, = r p. + m;(50)

that is,

Using more explicit notation, and denoting these assumed values of correlation

as forward extrapolationsp(J, we have

13
\
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/ r''(52)

where "starting values"

(53)

Equation (52) is called the correlation recursiorn equation. It is interesting

to note that the form of the correlation recursion (52) is identical to the

form (4) for the individually predicted waveform values.

The correlation values in (52) are called the maximum entropy correlation

extrapolations. The recursion is stable if and only if (see (23))

possesses all its zeros within the unit circle in the complex z-plane;

this property will be treated in subsection 2.4.

A similar procedu,'e for backward correlation extrapolation, assuming

that residual process {Vj is white, yields

- -Rp+1 < (55)

where

14
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Backward recursion (55) is identical in form to the backward prediction (8).

The recursion (55) is stable if and only if (see (23)).

-A=) (57)

possesses all its zeros within the unit circle.

As a special case o, (52) and (53), the one-step forward extrapolated

correlation based on a p-th order prediction is

But from (13), we now can see that

=~ -~'~(59)
L e \Pf I P. I

That is, C is the difference between the true correlation value Rp+1 and the
p

one-step forward extrapolated correlation R based upon knowledge of {Rk p "p+1-p. .

A similar procedure shows that

P~ I (60)

That is, D is the difference between the true correlation value R-p_ 1 and
p

the one-step backward extrapolated correlation R--1 based upon knowledge

of k  .

When (59) and (60) re combined with the Hermitian property in (37), we

see that

_ = . (61)

15
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This is a special case of the more general property (demonstrated in appendix

D) that

(62)

that is, the backward and forward extrapolated correlation matrices are

Hermitians of each other. This is a desirable property of the extrapolations

and is consistent with the same property, (2), which holds for tile known

correlation values,

It was noted in (54) and (57) that the zeros of cet W' (z) and detV(z-1)

must be within the unit circle in order that recursions (52) and (55), respect-

ively, be stable. It is shown in appendix E that

(63)
II: j 'g(P H

That we need consider only the zeros of one of th.se quantities; the location

of these zeros is considered below.

It is also shown in appendix E that

{y ~ (64)

and

dd = (~e+4 ~(65)

2.4 SPECTRAL APPROXIMATION

Equations (52) and (33) define the forward extrapolated correlaLijns for

Al m_ O. We extEnd these to negati/e m via

A H
I " l l(66)

16
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which is consistent with (2). We will now use the Fourier transform of this

infinite sequence, as in (3), as an approximation to the spectrum of process

{Xn}. In appendix F, it is shown that the approximate spectrum is given by

where ) -2 (68)

is the forward predictive error filter transfer function. Since U is non-
4 (p)

negative definite by (32), spectral approximation G (P)(f) is nonnegative

definite for any f; it is also obviously Hermitian by (31). Thus the desir-

able properties of appendix A are. achieved by approximation (67). In order

to evaluate (67), one M x M matrix inverse (of H (f)) is needed at each

value of f of interest.

A similar [-ocedure applied to the backward correlation recursion of

(55) and (56) yields the spectral approximation

(69)

where

-y xf;2 n)3p (70)

is the backward predictive error filter transfer function. Since the extra-

polated correlations via (52) or (55) are equal, as shown in subsection 2.3,

the same notatior, G(O(f), is used for both (67) and (69); however, we have

two different factorizations for the unique spectral approximation G(P)(f).

In appendix F, it is also shown that the zeros of det W(r) (see (22)

and (23)) all lie inside the unit circle in the complex z-plane. Additionally,

the poles of (,- all lie inside the unit circle, and the zeros

17
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all lie at z = 0. Thus the recursion (52) is stable. This point is

discussed in Ref. 7, p. 132.

2.5 EXAMPLE

A simple example for M :2 will be considered. Let the process be
generated according to

where f795 -_,i:

(72)

and white noise Wk satisfies

r. (73)

Then it may be shown that

S :. + , at , (74 )

with solution - .
,~135 F1.11 -12.01'k = (75)

L,+ I2 21 - 1.12 15'(%4

By means of (7) and (11), we find

[8 -.15 400 .752-79
A, I (76)

and AA, )A"= 2 r-,p_ . We observe

and A ) The determinants of (76) are both .955.

Evaluation of (12) gives

(77)

2V434 1. 1965

18
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These matrices and their traces and eigenvalues are unequal, but their

determinants are both 1.

3. UNKNOWN CORRELATION

4
In this section, the correlation values {Rk} are unknown, and the only

information available about the random process is a finite set of N data

points X1, X , "'" X from which we have removed the sample mean. From2 N'
these N data po..its, we desire an estimate of the spectrum G(f). But we

!cannot minimize or utilize any ensemble averages as was done in section 2,

since we have only a finite segment of one member function to work with.

3.1 PHILOSOPHY OF APPROACH

k
I: For the known correlation case above, we had the set of normal equations ,

bI=(78A)

where%(78B)

R--

where and were the unknowns. Now in the unknown correlation

case, we make a change by assuming that tand are known* (along withR,,

for jr'l s p-I, from lower order solutions), and by letting ', andRl be unknown.

The equations in the unknowns are still linear, and the solution is given by

AV% Bt 2) (79A

-'m P ' P' J(79B)

*The manner of specifying and will be considered in subsection 3.4.
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R ) (80A)

1 ~-p ~ -(80B)

(It must be noted that in this section denotes an estimate of the true

(unknown) correlation value; for notational convenience, no distinguishing

symbol has been added to R., to emphasize this distinction.) However, we
shall insist that the correlation estimates (80) that we obtain at the p-th

stage satisfy

-1 (81)

in keeping with property (2). Since equations (78) and (81) are identical

to those encountered in the known correlation case, the mathematical defini-

tions and interrelationships employed there can be applied here also. How-

ever, some of the proope-ties and physical interpretations may be different,

since we are now dealing with estimates, rather than true values.
I

To solve (78), we begin by defining

14 (82)

Now consider p=l in (78); we have

Now if and are known, we can compute unknowns R, and R., But by

constraint (81), ,4i and must be chosen such that

(84)

Thus when we select A, and Fj, constraint (84) must be kept in mino; that is,

20
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and Er cannot be specified independently of each other.

At stage p( >2), if At) is known (and J' are known from earlier
stages with property o1,:s k sI), we could solve the linear equations

(78A) for TA and R,, according to (79A) and (80A), where the lower order

quantities in (79) and (80) are available from earlier stages. Similarly

if is known, we use (79B) and (80B) to solve (78B). However, by (81),

we must constrain the selection of and

To see exactly what constraint (81) implies about the selection of

and notice that, for p? 2 , (and defining ",
0

+ A?
AllI ?r-, P ' )..

- A~~o J J '(35)

where we have employed (80A) and (79A). Now define forward extrapolated

correlation estimates based on order p-l according to (see (52) and (53))

Ar '"- (86)

where

(87)

Then, in particular, the one-step forward extrapolated correlation estimate

based on order p-l is

R : / ,-(88)

Also define (see (12))

21
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vP~t - -(89)

This quantity has the physical interpretation as the esimat of the corre-

lation matrix of the (p-l)th order backward residual at zero time delay

(see (30)); its properties are considered in subsection 3.3. Then by means

of (88) and (89), (85) can be epressed as

(Thi eqatio issimiar ~(90)

(This equation is similar to a combination of (14) and (59) for the known

correlation case.)

At the same time, by (808) and (79B) (and defining) "-L),

-( -91)

;,OW define backward extrapolated correlation estimates based on order p-i

as (see (55) and (56))

' ,= , , k(92 )

where

" 0 <-- p-i. (93)

Then, in particular,

22
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(94)

Also define (see (12))

n'1 ,  (95)

This quantity is an estimate of the correlation matrix of the (p-l)th order

forward residual at zero time delay (see (30)). Then by means of (94) and

(95), (91) can be expressed as

+ B; (96)

(This equation is similar to a combination of (14) and (60) for the known

correlation case.) But now it can be shown (see appendix G) that the

extrapolated correlation estimates in (86) and (94) satisfy

(97)

Therefore, if (81) is to be satisfied, (90) and (96) in conjunction

with (97) force

" T - - " (98)

(This reduces tc (84) for p=l.) Thus the selection procedure of " and
at the p-th stage must be done according to (98), where V and are

quantities already available from the (p-l)th stage, according to (89) and

(95). The precise selection procedure will be undertaken in subsection 3.4.
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3.2 COMPARATIVE FEATURES

There are alternative techniques to the estimation of the correlation

matrices and the spectral density matrix that could be considered. For

example, the standard Yule-Walker technique (e.g., Ref 2, page 186) uses

correlation estimates

)(R N-LJ (99)

where the sum is over all nonzero summands, and then solves recursively for

I and B'j via tne metiod in subsection 2.1. This apriori decision

on the form (99) of the correlation estimate gives poorar spectral estimates

for M=l (Refs. 2 and 3), and probably does so for M>l. The estimated

correlation matrix is Hermitian, block Toeplitz, and nonnegative

definite:

II-/

wherein, is Mxl. However the stability of the correlation recursion (52)

is unknown to this author. The estimate (99) is unchanged by the addition

of more stages, that is, larger values of p.

24
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Another technique would be to minimize the prediction error

Y4 7A~x, p+i SkAO (101)

over the available data points directly, by choice of 1AW 2 . We have the

error matrix

h)J K"+ )i" S,,A:O (102)

where

'm"-' - k- (/, " X 0s pn- (103)

The optimum coefficients for minimum trace of the error matrix, (102), are

solutions of

A : (104)

Matrix L ,, is not block Toeplitz, and a significant computer problem

exists for M>1 when it is noted that solution of linear equations (104) must

be done anew for each different value of p. This was a good technique for

spectral estimation when M=l (see Ref. 3); however, computer time was

greater than for the Burg technique. Moreover, stability of the correlation

recursion (52) is unlikely in view of the (occasionally unstable) results

for M:l in Ref. 3.

This technique could be extended to include backward prediction in

addition to (101). However, the lack of the block Toeplitz property and

lack of stability make it a very undesirable technique.
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The technique suggested here (in subsection 3.1) lets the correlation

estimate be yielded according to solution (80), once partial correlation

coefficients and have been specified. And we shall see in subsection

3.4 that these latter quantities are determined according to a physically

meaningful minimization problem. Stability of the correlation recursion

(52) has not been proved; however, numerous examples have all yielded stable

solutions. The estimate (80) is unchanged by the addition of more stages,

that is, larger values of p. And it will be seen that the current technique

reduces to Burg's algorithm (Ref. 4) for M=l. Thus the current technique

appears to be very attractive among those techniques that employ an all-pole

representation of the input process.

3.3 PROPERTIES AND INTERPRETATIONS

15
The quantities U., and were defined in (95) and (89) and were

interpreted as estimates of the correlation matrices of the (p-l)th order

forward and backward residuals, respectively, at zero time delay. It is

shown in appendix H that they satisfy the recurrence relations

(105)

just as for the known correlation case. It is also shown that1,
4 - ) r , (106)

and

d6 4tVr (107)
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However, we are not able to prove 4, or Vp nonnegative definite without

specifying the method by which A and Dr are selected; no relations like
s f

(30) and (32) exist here.

By means of (106), the constraint (98) on selection of 4) and 13,0 takes

the form (see 42))

(108)

This will be used in the next subsection.

3.4 EVALUATION OF PARTIAL CORRELATI-ON COEFFICIENTS

We recall from subsection 2.1 that, in the known correlation case, the

partial correlation, coefficients and minimized

kr K~ d -t r (109)

respectively, when lower order stages had already been optimized. We extend

this idea to the unknown correlation case as follows: let (as in (18) and

(19))

XK (110)

and for 1, I , define errors (resiouals)

The block diagram for (111) is identical to that in. figure 1 on page 7.
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Define for p2!, the error (residual) matrix over the available data

points as

this nonnegative definite matrix is an unbiased estimator o+YI

Substitution of (111) in (112) yields

IH'- r or Ay Ap',r+  ' -

where

JuuJ

P ' (14A)

j-p (114B)

N
-75€, - , . (114C)

Also define for rz 1, error matrix

t =j

S Substitution of (11ll) in (115) yields '

Now error matrices Eand Fp are Hermitian and nonnegative definite.

T'h-.refore matrix JAErJ". is Hermitian and nonnegative definite for any ;

MxM weighting matrix A. :
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for any Mxl matrix 'V, Also since

only the product :.AzC.matters in so far as the trace of-k j is concerned; .k

notice that A is ermitian and nonnegative definite. We shall be interested

in nimniz-ing the traces of weighted error matrices A.F-pA. and P. F-l ra.

the exact choice of, and the reason for, weightings .k and will be under-

, taken in the next subsection.

Now if we were to minimize -,,I by choice of Ar' we would find o,

(see appendix B for method) that we must solve

_ _,_ (119)

and the choice ofJ4, would be irrelevant. Also, if we were to minimize

t .4FI by choice dB , we would find that we must solve

-' ' 1 -' -' '(120)

and the choice of , would be irrelevant, Furthermore, we would not satisfy

constraint (108) genrrally. But since the behavior of error matrix F is

just as important as that of E,, we should take both matrices into account

in any errcr minimization; in fact, for known correlation, recall that the

determinants of residual matrices and VPwere equal.
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We therefore choose to minimize the sum of the traces of the weighted

error matrices ,-.ir-\LA4

where ., and r are Hermitian and nonnegative definite,

by choice of and EVsubject to constraint (108). If we let

P (122)

then we can express

"P", [ T - - -VU-, (123)

"' - "~ C- -.U" '"n
4' %4,

in terms of the single unknown matrix Gp. Our problem therefore is to

minimize the trace of (123) by choice of the single quantity Gp, subject

to no constraints; we can then solve for the best coefficients according to

-(F,) H - (124)

Also we can compute the corrElation estimate from (90) and (88) according

to

+ (125)

In appendix I, it is shown that the minimum of the trace of (123) is

realized when Gp is the solution of the bilinear matrix equation (Ref. 9)

<+ CT 4-, P ,+'
r i /(126)
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where

~ r'
pu-" s~ -
4' V

Uniqueness of the solution uf (126) is considered in subsection 3.6. (It

is interesting to note that the separate minimizations in (119) and (120)

yield
-]o 4 = -- 0 . (128)

Thus whereas both these quantities had to be equal separately to the zero

fmatrix, we now require only that they be equal to each other.)

For the special case of M=1 (a univariate process), (105) and (108)

yield

uvy
Then (126) and (127) can be solved for the scalar

+- t - 1_U (M=,) (130)

L44
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Now, if arid only if

(3

(130) reduces to Burg's algorithm (Ref, 4); in fact, it can be shown that

(131) is the only choice of weights in (130) which guarantees a stable

correlation recursion for M=l. Thus we shall insist that the weights

satisfy (131) when we deal with their selection below.

3.5 WEIGHTING OF ERROR MATRICES

It is necessary to apply weighting to error matrices Ep and F in (112)
p p

and (115), prior to minimization of the trace in (121), for several reasons.

First, without weighting, the larger amplitude components of errors (111)

would receive most of the emphasis in the minimization; thus, some weighting

inversely proportional to the component strengths is desired. Second, it

is desired that stable correlation recursions result and that matrices Up

and Vp be nonnegative definite. Without weighting, it has been discovered

(by an example to be presented in subsection 3.9) that both of these require-

ments can be violated. Third, we will insist that the scaling property

introduced in subsection 2.2 hold for the unknown correlation case as well;

that is, if

\S DX, :D 0 (132)

we shall insist that the coefficients satisfy

32
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The matrix equation (126) can be combined with (122) to yield the

simultaneoi4s set of equations

We4 +~ cosdr-An l thten

We now consider several possible choices of waightings . and that tend

to simplify the form of (134). The first choice is no weightinq:

C6cJ (135)

The problem with this choice is that the weighting is not related to the

error component strengths, and it may be readily verified that the solutions

to (134) and (135) do not satisfy the scaling property (133). Also an unstable

correlaion recursion can occur. However, the solutions do reduce to Burg's

algorithm for M=I; see (131).

Our next candidate weighting is

ApI Q-I -IC 1e 16

which are Hermitian and are nonnegative definite if Up

nonnegative definite. This weighting is inversely proportional to the

-,,ponont strengths, as desired; more will be said on this below. The

equations (134) become

I) (137)

The solutions of (137) satisfy the scaling property (133), and they reduce

to Burg's algorithm for M=l; (129) shows that (131) is satisfied for the

choice (136). Although stability of the correlation recursions (52)
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and (55), and nonnegative definiteness of U and Vp, have not been proven
p

for general M!!2, no counter examples have been discovered.

We next consider
-L .# • -I. -I

1 r, I

"V ., ., _ CJ4oIce C (138)

in which case (134) becomes

+ +~~ 5"'
AO ~ ' (139)

VP,, -,- 4

However, the weighting (138) is not necessarily Hermitian, is not necessarily

nonnegative definite, and is not directly related to the error component

strengths. Also the solutions of (139) do not satisfy the scaling priperty.

Furthermore, the solutions do not reduce to Burg's algorithm for M=l, and

can yield unstable correlation recursions for M=1.

The last choice is

V Ci~oce 4=o 04-1I p-1 , (140)

which are Hermitian and nonneqative definite, and for which (134) becomes

,: 'v,_, u,_, BF! -- o.Rv'' VPu:7

This choice is a very interesting one in that the solutions of (141) are

immediate and do not require that a bilinear matrix equation be solved. The

weighting (140) is inversely proportional to the error component strengths,

and the solutions of (141) do satisfy the scaling pruperty. In fact, this

choice is very close to Choice 2, since Up1 and (V!Oare both estimates of

the correlation matrix of process y')J at zero time delay, and should be
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fairly close to each other, However, the solutions of (141) do not reduce

to Burg's algorithm for M=l, and the correlation recursion (52) can be

unstable, even for M=l, In fact, the solutions to (141) are identical

to those for Choice 3 for M=l.

Therefore, of the four choices considered, only Choice 2 in (136)

yields solutions that satisfy the scaling property (133) and reduces to

Burg's algorithm for M=l. The stability of the correlation recursions has

not been proved or disproved for choice (136) of weighting.

IThere is another strong reason for choosing weighting (136), which has

to do with a whitening interpretation. We recall that Ut., and V

defined in (95) arid (89), are estimates of the correlation matrices of

processes ' and , respectively, at zero time delay. Now let

(for non-negative definite U?_. and V,

1~) L~ 3  ~ H(142)

where 4j, and V are (lower triangular) square root matrices. Then scaled

processes

-I-
k VP-114 (143)

each have estimated correlation matrices at zero time delay equal to I; that
is, all the components of j '"' o' ) have unit power and are

uncorrelated with each other at zero time delay.
'S

Now define, for p+_ ,

ppTk A-1

35S
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where - " , ,(145)

PP-

Also define the estimated correlation matrix at zero time delay of process

as
(146)

where we have used (144) and (112). Therefore

where we have used (I-1) and (142). Thus, minimizing the trace of U,- Ep,

by choice of Ar >is equivalent to minimizing the trace of Fp by choice of

A' (see (144)), where process I is the error in prediction of (p-l)th

order processes with estimated correlation matrices at zero time delay equal

to I.

In a similar fashion, for rtsk iN,

v~z~v~ (~-B,~, k~- ~%j~)(148)
where

F-1 (149)

And

':~ '~: ~~j' , V~ (150)
N- p -

with

7P- (151)
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If we solve (145) and (149) for , and and then utilize constraint

(108) along with (142), we find that the constraint takes the form

WH1

(152)

This could be used as the starting point in a minimization of error matrices

_ and ]. In fact, if we minimize the unweightea trace of__&*@ by choice

of ,we find the optimum choice to be given by

r ~ =(153)

where the notation is an obvious modification of (114). By employing (145),

(143), and (142), we can show that (153) is equivalent to (137), as it must

be. (This alternative approach may be useful for proving the stability of

the correlation recursion.)

3.6 SOLUTION OF BILINEAR MATRIX EQUATION

If we substitute definitions (127) into bilinear matrix equation (126),

and premultiply by and postmultiply by . , we obtain the equation

( + = 4-(154)

where

Up- p*' N
1
pgp..

(155)
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Now the Hermitian matrices o and are non-negative definite; e.g.,

= [r h  0 (156)

for any MXI matrix if, since is non-negative definite. We have employed

the Hermitian property of and ? above; see (118) et seq. This means

that the eigenvalues of ; and must be non-negative. Therefore the

solution of (154) exists and is unique (Ref. 10, eq. 3). 3
Solution of the bilinear matrix equation (126) or (154) has been addressed ]

by many authors (Reft 9 - 17). In particular, for the equation involving MxM

matrices,

XB3+AX= C) (157)

one form for the solution is given by

(158)

where

-p ., a B'j C(159)

are MxM matrices. The constants 104 are given by (Ref. 18, pp. 87-88)

and the matrices A. are given by

I, k:M (161)

Here, M-2 full matrix multiplications are necessary when we note that AM = 0

38
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by the Cayley-Hamilton theorem.

For M = 2, (159) takes the form

far .2(162)

where we have used the Cayley-Hamilton theorem to express

~zt4~>~-d4B) 4~rI~2.(163)

Equations (162) and (158) are the forms used in the FORTRAN program for M - 2.

3.7 SPECTRAL ESTIMATION

Having obtained correlation estimates {l }r by means of (82) and (80A),08A)

we now extrapolate these, as in subsection 2.3 (equations (52) and (66)), to

yield JA'

(164)

This defines an infinite sequence NIL which is assumed stable; its Fourier

transform will be taken as the spectral estimate of the process under consid-

eration. In a manner identical to that given in appendix F, it is found that

H

(165)

where and )are given by (95) and (68), respectively. It follows that
4-

potoSp le iO .r (1O). ( 166)

Also, as in subsection 2.4, an alternative factorization is available as

e) H1 )- V. P (167)
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where V7 and ( are given in (89) and (70). If Uor is non-negativenon-ngativ

definite, then cf() is non-negative definite, as desired for a spectral

estimate. Since (165) and (167) are equal, we concentrate henceforth on

form (165).
Since

Ajj (168)

(165) can be expressed 3

= ~ '~JA~ ~r)]~~-~j .(169)

Since O'9Jis Hernitian, matrix Cr(?) need be computed only on ana above its

main diagonal, at each frequency of interest. Efficient computat.ion of

HX"(f) by means of an FFT is undertaken in appendix J. It is shown that we

need to perform W k-point FFTs of p+l non-zero numbers, in order to evaluate

H; ) at NF frequency cells in the frequency range (-_ , A-).

Real Multivariate Process

The results above have been derivcd for a complex multivariate process

For a real multivariate proces.3, 4 is real and ' are real. Then

= for a real process, (170)

and

-(?** for a real process. (171)
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Thus we need compute matrix 0)(f) only for fb, for a real multivariate

process.

In order to avoid complex matrix multiplicationswe develop (169) more

explicitly; let

/IAJA (172)

where and ;(f) are real MxM matrices at each f. Then since U is real,

U and upon substituting (172) in (169), we find

~ M~) M~)'](173)
4mr C1 rtl ?"CeV3,

where

(174)

Since M(U) is real, the quantity iM{f)-i M(f) is zero on the main diagonal;

therefore we need not compute the main diagonal of Mf). All the matrix

multiplications in (173) are real.

Real Bivariate Process

We now further specialize to M = 2, a bivariate process. Let the real

and imaginary parts of the filter transfer function be denoted by XX

and YY, respectively (where these symbols are unrelated to X and Y introduced
A

earlier); that is

FAf) X (it) Y R (175)

Then from (172), for 2 X 2 matrices,

4XX f) (176)

41
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and

; Ah=j JAfr j Wf - (177)L

Substitution of (176) and (177) in (173) yields spectral estimate

14\&t w~? [xxVX) X+YYA (W Y 1(f)T + mr)o iO

V- ct ) na ;a.i'cde ro X ess"  (178) !

where

AA
The 2X2 matrices involved ip (178j are all real, and XXA(f) and YY~)are 4,

the adjoints of the real and imaginary parts of H , respectively. The

form (178) is used in the program for the spectral estimate of a real

bivariate process.

3.8 TERIINATION PROCEDURE

For unknown correlation, the correct value of p to use in (79) and (80)

is unknown. We adopt the Akaike information criterion (AIC) derived in

Ref. 19, page 719:

S•N 4,, V, 2 8oi

where we have utilized (107); namely, we compute AIC, for p O, 1)..,pmax,

and we use that value of p, pbest for which AIC is a minimum. Selection
' p

of Pmax is discussed below.

For purposes of updating Up and V, we can combine (105), (106), and

(122) to yield

42
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in terms of the solution, Gp of bilinear matrix equation (126).

At this point, it is worthwhile to review the procedure adopted here.

From the actual data, we could have estimated the input correlation matrix

via (99) (or some scaled version of it). Also we could have used (112) and

(115) as error matrix estimates; in fact, these matrices are guaranteed

Hermitian and non-negative definite. However, since 4etwe would

have had to settle on some average like

for purposes of tne information criterion. As for the spectral estimate, we~~f))

could have adopted, instead of (165), the quantity ANW - pH j

or a F for example.

Instead, we have chosen consistently to stick with the results of the

normal equations (78). Thus the estimate of the input correlation matrix is

obtained from (80)(dnd (82)); the estimates of the correlation matrices of the

residuals are given by (89) and (95) (or more computationally convenient via

(181)); and the spectral estimate is given in terms of or V by (165) or

(167), respectively, for p=p best The major gap in this procedure is that

we have not proved that Up or V is non-negative definite for Choice 2 of
p

weighting in (136); however, no counter examples have been discovered.

Our selection of Pmax 4s accomplished as follows: in ref. 1, page 575,

Akaike is quoted as suggesting F-1N for M = 1, a univariate process. Since

the number of coefficients evaluated is p, and the number of available data
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points is N, this ratio was upper bounded by 3N". Le extend this idea

directly to the multivariate case: the number of scalar coefficients

evaluated is M2p, and the number of available scalar data points is MN.

Upper bounding this ratio by 3N , we find we should choose the filter

order

M (183)

in terms of the number of data points, N, and the dimensionality of the

time series, M.

3.9 EXAMPLES

It is worthwhile to summarize here the sequence of calculations required.

For data X1 , X2,.., X available (with the sample mean removed), we have
2 - N

N-I 

Z4- i-1

0 XZ X

Then fori and choice (136) of weighting,

~H -

U ,.- A~j

AT1%2N 1A d 4 +2W (185)
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Nit)
). $ ,H (186)

14 (187)

P N -I J(,, " -,

For p = Pmax' it is not necessary to compute (186) through (187). 'hz.1 the

best value of p, pbest'is found from AIC , we can then compute the spectral
P

estimate (165).

We now consider an example for M 2, N = 4:

,:vo I°.,(188)
Then for weighting (136), we find

, -I L 4 '~ 2](189)

The 12 I 2L

The eigenvalues of are (-3±i')/12, which are both bounded by 1 in magnitude,

as they must be for the correlation recursion (164) for p = 1 to bUe stable.

Also,

V (190)
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which is non-negative definite. Thus, for weighting (136), all the

desirable properties are realized.

However, for no weighting, (135), we find, for the same example (188),r :
[2030)

The eigenvalues of A, are 4/9 and -10/9; since the latter is larger than I

in magnitude, the recursion i A,Rm_, , ?I, is unstable. Also

- (192)

which is not a non-negative definite matrix. It is found that the spectral
estimate obtained from (165) has frequency rangeswhere the two autospectra i

(diagonal terms of (165)) are negative, and where the magnitude-squared

coherence can be negative or greater than 1. These are all unacceptable.

For the alternative example for M = 2, N 4, of

(193)

and no weighting, we find a stable correlation recursion, but U1 and V1  are

not non-negative definite, and values of the magnitude-squared coherence

greater than 1 are realized in some frequency ranges. Because of these

unacceptable behaviors, the choice of no weighting, (135),, is discarded from

future consideration.

An example for M = 2, N 100, and weighting (136), generated via (71) -

(73) of subsection 2.5 yielded the results below; the program and its output

are given in appendix K. We find p l and

best
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-1024 56

-o4.326.5-3 (194)-6032 5~35 6312 9 7

il6 f a t@og A30?o .31fflj (195)LIto
~~70077 1 I0 236+ 100 ~O87j

It is worthwhile to compare these estimates for N 100 with the exact values

in (76) and (77). The scale factor .09110 in (195) is unimportant and is due

to the fact that the white noise used here had variance 1/12 rather than I

as in (73); except for the scale factor, the matrices in (195) have

determinants equal to 1. The estimated magnitude-squared coherence reaches

a maximum of .999745, versus the true peak of .999013.

Observations from other examples of real bivariate processes have pointed

out that: the eigenvalues of A and B, are identical and are bounded

by 1 in magnitude; the eigenvalues of and are not identical for

p 2 , and can be larger than I in magnitude; and the eigenvalues of A,

and D for n<p can be larger than 1 in magnitude.

Timing Results

Some sample execution times on a UNIVAC 1108 for SUBROUTINE PCC,

which evaluates the partial correlation coet'icients, are presented below

for M 2, a bivariate real process.
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Table I. Timing of Subroutine PCC

N Pmax Time of Execution (sec)

100 10 0.25

100 15 0.35

1000 10 2.63

1000 40 9.23

10000 50 120

10000 1 150 326

The execution time is almost linearly proportional to N and Pmax' The

execution time for PEFTF was 1.25 seconds, and that for SDM was 0.55

seconds, both for NF 1024 frequency cells; see appendix K for program.

4. SUMMARY

A method for multivariate linear predictive spectral analysis,

employing weighted forward and backward averaging, has been presented and

programmed in FORTRAN. The method constitutes a generalization of Burg's

univariate a'gorithm (Ref. 4) to the multivar late case.

The choice of weighting in the error minimization is very important,

and several candidates have been considered. The weighting retained, (136),

is the only one of those considered that satisfies both the scaling property

(133) for all M, and reduces to Burg's algorithm for M 1. Also, the

weighting retained is equivalent to minimizing the unweighted traces of

48
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error processes that are the differences of approximately white processes;

in fact, (136) could be used as the starting point of the error minimization.

The major gaps in the analysis are that we have not proved that Up and

V are non-negative definite, and we have not proved that correlation
p

recursion (164) is stable; however, no counterexamples have been encountered.
llr I

The major analytical block in this endeavor is the bilinear matrix equation,

(126), which requires special treatment for its solution.

kj

449/50
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Appendix A

PROPERTIES OF A SPECTRAL DENSITY MATRIX

Suppose an arbitrary linear filter with impulse response {Hn} isn

excited by input (Xk}. The output at time kA is

where the sum is over all non-zero summands. Xk and Yk are M x 1 matrices,

whereas Hn is M x M. In steady state, the spectra of the processes in (A-l)

are related by
H

where transfer function

H ) 21 e'({-2-vn) ., (A-3)

and f frequency in Hz and is real.
Now

"T F itx(il Q " a T (- t ) (A-4)

where we have employed (2). Thus G x(f) is Hermitian at any value of f.

Similarly Gy(f) is Hermitian at any f.

Also
o Y. = ( y (A-5)

is non-negative definite for any H(f), because

fI y:- 0 (A-6)

A-1
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for any M x 1 column matrix . Therefore

-~ -~ (A-7)

is non-negative definite for any H(f). I then follows that

To prove this, assume that Gx(fl) is not non-negative definite; than if we

choose H(f)- I A(f-fl), 'chat is, an impulsive transfer function near

frequency fl, we get RM.o " Gx(fl) from (A-7), which contradicts the conclusion

that (Y)must be non-negative definite.

0

Thus a spectral density matrix must always be Hermitian and non-negative

definite for all f. In particular, this implies, that all the auto spectra I
(diagonal terms of the matrix) must be real and non-negative. It also implies

that all coherences are bounded by unity in magnitude.

.A

A

A-2

.1 -'' '
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Appendix B

MINIMIZATION OF TRACE OF ERROR MATRIX

From (4) and (5), we have

X ax (B-1)

where

OLA ArlI /*L~' ) ,,, (B-2) -

Let

(B-3)

Here,(7 is M x Mp, % is Mpxl, . is MxMp, and Q is MpxMp. We notice

that QH = 0 and VNQt: l/H 4 >O for any Mpxl matrix V4#O, if no exact

linear relation exists between the elements 
of X.., ,...* X,., ; that is,

Q is Hermitian and positive definite.

Now 4. Y- (\K- 04 (. -  '9a"
: 'H _ e o- ¢ " + 0 (a " ( -4 )

C G-C'C + (a -COr) a (a -Co-)". (B-5)
Let

(B-6)

where'Oj is an Mpxl matrix. Then for the M x M matrix in (B-5),

B-1

,4-1
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L io(Q)(Q- 9Q (B-7)
JWA- )

where complex scalar

X OVU~,. (B-8)

The real quantity ).Ofor any'lo , since Q is Hermitian and positive j

definite; the minimum value of A11 is zero and is attained if and only if

-/Therefore, tr L is minimized, attaining value zero, by the choice

4 0 1I -i sJ M. Thus -r YKYV-' Y, is minimized by the choice of d as

Ott: (8-9)

since the leading two terms in (B-5) are independent of a.

Then we have opt L : 0 and

opt :- (B-10)

Also

It should be noted that the solution (B-9) is attainable directly from
€H

(B-4) if the coefficient ofajH(oro,) is set equal to zero; this observation

will be useful later.

Equations (B-9) and (B-10) can be developed as follows:

10Q yields, with the use of (B-2) and (B-3),

R r (B-12)

LRI-P

B-2 P

£ 1'I

- ~ . ~ -~ -- -.
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that is,

,(B-13)

4And (3-10) can be expressed as

ortN -1 A104jool~ (B-14)

Equations (B-13) and (B-14) are the main results of this appendix.

If an exact linear relation exists between the elements of X.

then

>C= x- . or 5 e ~ L 0.(B-15)

In this case, (B-i) yields

K-' ' x, Aj- )'jA ~ c (B -16)

Therefore we can get zero error by choosing

A" "(B-17)

Thus 0 if an exact linear relation exists between the elements of

Also we have the following general theorem:

No exact linear relation %14 is positive definite. (B-18)
between elements of Y.,..., X . is

To prove this, let

(B-19)

B-3
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Then F v yW '  is a scalar. Now if and only if an exact linear relation

A' exists, FM = 0 for some D 0, no matter which member function of the

I:ensemble we select (with probability one). We also notice that

and that the ensemble average in (B-20) is equal to the matrix in (B-18).

Assume that F. 0 for any D 0. Then IF,,r >o for any D 0, and

the right-hand side of (B-20) is positive for any D 0 0. Therefore

is positive definite.

Conversely if X*" is positive definite, the right-hand side of

(B-20) is positive for any D 0. Theni >0 for any D 0 0, yielding

FX 0 for any D 0.

{V
rV

B-4

01e
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Appendix C

INTERRELATIONSHIPS OF Up AND V
P p

We start with the definition (12) and develop U as
p

w ''- ils "-l "

(by (15))iiVi

Is-A?

W_ +/ (r.)R (by (12))+~ AF "-F -

k~- A~D~~1 (by (13))

(by (14))
IU.iAr 13FP-1

This relaticn holds for p'kl, with U,, Rt,. A similar derivation for V p

yields
(C-2)

p? ,

The determinant of Up is given by
et L: : )  u.

= 4eA dt(o )~'~ C3

whereas the determinant of V is

(C-4)c , Apr("- V;?) A, A' f, vp..

C-1

\ ,, o'+4
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Now if det Up,1 = det Vp-1 , then (C-3) and (C-4) indicate that

Ckt dt vp(C-5)

But since U. =Vo = RO ,detU =det V.. Therefore (C-5) holds for

pzO, by induction.

C-2

+ +' 
4
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Appendix D

HERMITIAN PROPERTY OF EXTRAPOLATED CORRELATIONS

We know that

14-

We then solve

Ar i< k <--  (D-2)
lli'l

f or ' 'IP and set

"~-1P)Ap f~ ~J k i*'J~~ V 11. ' ~ (D-3)

We then define

fp 4 -1 (0-4)

In a similar fashion for the backward case, we solve

i I=-Rk -  (D-5)

for , and set

V}

We then define

= +- - . (D-7)

D-1

444,, , 4, + 4 - 4
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We know from the definitions above that

A(PHfor kr*(D-8)
-All K

Now we assume that

?k (rf or kS ri w.Ae.ve r.1 -2 (D-.9)

that is, from (D-6) and (D-3),

=- A(P)
,In - -4 r ISk5 -(D 0

Now from recursion definition (D-6),

-rn-I = hl I-,o u,,

)a,

NA I I '" .9 " I( (-i))

I =

Therefore we have extended (D-9) by one step, and the proof follows for all

kkp+l by induction.

D-

D- 2
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Appendix E

RELATIONSHlIP OF DETERMINANTS

The forward correlation recursion is given in (52) as

4-I(E-1)

The z-transform of this sequence is

A 00 ~ < g0 j. w~)~
ivlo =.(E-2)

The inner sum on m can be expressed as (see (53))

A

Therefore,

4 4~)(E-4)
or

A

i" A(,, g (E-5)

At the same time, we define the z-transform of the backward correltion

recursion as

1 P+.1 -w (E-6)

and note that, via (62),

E-1

~~J4
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A comment on notation is timely here. If matrix

)(E-8)

where z is a complex scalar variable, then

-T M (E-9)

But

" = _2 ) (1) , (E-10)

which is not always equal to (E-9), unless z is real.

But let us also develop definition (E-7) by means of backward recursion

(55), in a manner similar to that above in (E-1) through (E-5). We find

bN= Ip4

(E-11)

The inner sum on m is

5-2- (E-12)

where we used (56), (2), (E-3), and (E-11). Therefore

or

E-2
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Combining (E-5) and (E-14) according to (E-7), we see that

S- (E-1 5)

must have the same zeros, since these two quantities determine the singul-

arity locations of (E-5) and (E-14). The quantity In(z) defined in (E-3)

is singular only at z 0.

Furthermore

'Ii ~ ~ t~'t-~A'~pJ(E-16)
A IA%

end

- d -..z , ; ):i r- r '  ..- - (f-
p)I .M, rr (E-17)

-, where we have utilized the observations that the quantities in (E-15) have

the same zeros, the same pole at z=0, and the same scale factor. Therefore
the two determinants in (E-15) are equal.

Also since

Cr -- - -. .- 'i de6 / (E-18)Ra.I

it follows that

-6, (E-19)

and

:~ de{ : .(E-20)
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Numerical examples show that generally

and

ldef~1# k{D~ ~'rkp.(E-22)

E-4

i,

E-4,
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Appendix F

SPECTRUM FROM EXTRAPOLATED CORRELATIONS

The forward correlation recursion is given by

r4 I (F-1)

where

A+p (F-2)

and

-w Sm? (F-3) I
rI

We wish to evaluate the z-transform of { m  5

JF-4)U,() _. . I-
In order to do so, consider a fictitious process with the orre-4.L

lation given by (F-i; throjqh F-3 Corsider the output of the optinum f
predictive error filter, 3iven ! 44,

AMX

The crosscorrelati3r

,s n 7 + a ' 7- '
-

,
7r A: I,(¢. Xo.)

jsinq drd - - ~*

A A

, -r ' I ... .... .......for

; N-
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A

that is, predictive error filter output Y. is uncorrelated with all past
A

values of input )(.

Also, output autocorrelation

A4

-- A!, Vigo (F-8)

using (F-5) and (F-6). But now employment of (F-7) in (F-8) shows that

A

Also (F-7), (F-6), (F-2), and (12) yield

AAA ) (F-II)

And since, from definition (F-8),

we have

that is, predictive error filter output / is white for input Xk. (Of

course, U is not diagonal).

A

At the same time, autocorrelation Dm can be expressed (by means of

(F-5)) as

A: K. x A.R: .all(F-13)
19.0 Joe "'

Therefore the z-transfor of Ci 'A is

--- ----
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A -a

s = oe ),,,.g , )

where we have used (F-13), (23), (F-4), and (E-9). When we couple (F-14)

with (F-12), we obtain

(F-15)

or

whr arxui ')(4 - 4tI -')

where matrix U is independent of z. This is one of the main results of

,, this appendix.

If we let (for f real)
(F-17): { ,,) if) <

and denote the forward predictivE error filter transfer function and spectral

estimate as ~~*#

~P)(e(;2~)) 4(F-18)

AlA
respectively, then the spectrum of process can be expressed as

)(F-19)
!a

where we have utiized the result that (see (E-8)) through (E-10))

"° (L\H j "$ ' (F-20) i

AuuA

F-3
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The procedure for the backward correlation recursion parallels that

above to yield (using (23))

(F21
= 0 '1t' : v [Vp)".- (F-21)

and

FI
t p (F-22)

ZERO LOCATIONS OF

Vo 
-f

Assume that Q(z) has a zero at z=z, 0; that is,

1as5UM( Q(C j) 0 4A) -e,,-o ,.ia,-b,,
(F-23)

where 0 < . But

+I- ,_ef ore
Therefore is finite for o<II, yielding

QC,) ' , :o # r. (-
Therefore assumption (F-23) is invalid, indicating that

Q to f o fb o -Il (F-26)

Now fron (F-24)

F-4

L 4. ,
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therefore,

"1. (F-28)

Thus Q(z) has a p-th order zero at z=O, but is not equal to the zero matrix

for OcjzI. Of course, the individual elements of matrix Q(z) can have zeros }
anywhere.

POLE LOCATIONS OF

Since from (F-24)

Z (F-29)

where Qp(z) is a matrix of polynomials in z of order p, it follows that

e A

ii 1~ I)(F-30)

where ,(9- ) is a matrix of polynomials in z of order (M-l)p. Therefore
4

the poles of Q(z) are caused by the zeros of det Qp(z); that is, the poles

of are caused by the zeros of det ( .As lei*, fvv -2)

therefore, Q(z) I as 3el-%0, ,o that Q(z) has no poles at I = .

Thus the poles of Q(z) are located where det

We now consider the problem of determining when dete%(-)=O: the

following derivation is based upon Ref. 7. Let

' .(F-31)

be an Poxl matrix. Define prediction

A (F-32)
I,
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where C is MpxMp. And define error

(F-33)

Then ___________

kk -V 7 (F-34)

= ~, % 'CW~+ (c -it, %O71, (C-111%)"
where

L •jff N (F-35)

The minimum value of 6' f is realized when (see appendix B) we select

ic ct (F-36)

The corresponding value of

since ,. Now let the left eigenvectors and eigenvalues of the optimum

C be denoted as

H H4 < F  MP. (F-38) ,

(The eigenvectors 11'j may not all be linearly independent). Then

(F-39)

F-6
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Now is Hermitian, block Toeplitz, non-negative definite, and has

the form

I, I.(F-40)

Therefore II!I for I-- iMp,, that is, all the eigenvaines of C are

bounded by unity in magnitude, Furthermore, Ref. 7, p. 134, shows that
if there is no exact linear relation between the elements of

then J\,,<c for l-iMp (see also appendix B).

Now we develop the error in (F-33) in more detail:

CS .,.L cJ[XJ

(F-41)

Minimizing t -y can be seen to make C of the form

1: 0 0

o : 0 (F-42)

0 T 0
L _j

Therefore (Ref. 7, eqs. (35) and (36)),

F-7
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If we were to assume that 0, where Iai!- I , we would have det(C-?,I> 0.

But this contradicts,I<l for Im5-Mp. Therefore, the zeros of det

all lie inside the unit circle; that is, the poles of Q(z) all lie inside

the unit circle.

F-8
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Appendix G

HERMITIAN PROPERTY OF ONE-STEP EXTRAPOLATED
CORRELATION MATRIX ESTIMATES

From (78), at the (p-1)th stage, we know that

Now we start sith (94) and express

H

-> r -N,," ,I

. l, . . _.'Bir
j P -j

: Rh

7 < '  (G -2 ) -e

Thus, the one-step extrapolated currelatior matrix estimates, based on

order p-:, are Hermitlans of each other.

4

G-1/G-2
Reverse Blank

, - . -- -;, - , -', , -,< ,,,,,,
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* Appendix H

INTERRELATIONSHIPS OF U~ AND V pFOR UNKNOWN CORRELATION CASE

We develop the definition (95) as follows:

+ At

(7 B

(H-1)((H-2

14 ~~~Therefore r - j - H2

4,i At r,,,

(H-3)

In a similar manner, we can show that

VP E (IB 'A"') V, (H-4)

In order to show that U is Hermitian, we recall the constraint (98)

P p

and express

H-1
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4-

4 -(H-6)
to

Similarly since H

it also immedlately follows that

'4Z~p.(H-7)

But properties (H-6) and (H-7) are obviously true for p 0, because

H (H-8)
-0 0

Therefore kH-6) and (H-7) are true for all p, by induction.

In order to relate the determinants of U and Vp, we express (H-3)
P p

and (H-4) as

'I
Therfore if det UP- = deA V- 6.c-,

Jet up je tVP (H-10)

But (H-l0)is obviously true for p=O by (H-8). Therefore (H-10) is true

for all p, by induction.

Prope-ites (H-6), (H-7), and (H-l0) applied to (98) immediately show

that

H-2
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Appendix I

;INIMIZATION OF TRACE OF WEIGHTED ERROR MATRICES

We wish to minimize the trace of (123) by choice of matrix Gp. We

use the fact that, for square matrices P and Q,

to express

.., u,. - V i' ), (1-2)

Now (1-2) is an analytic function of the variaDles Re(Gn) and Im(Gn).

Therefore the minimum of (I-2) is realized simply by setting the coefficientH -,I

of H pequal to zero (Ref. 20). We obtain, after premultiplying by .A, and
i',thoeqution-or-G

post-multiplying by the equation for G

(G is not Hermitian or Toeplitz, as numerical examples will show.) In
p

terms of A*)and BR'f), we have the simultaneous equations
P p

P' + A , , #P. , ,S (1-4)

A V -u
where we utlizec (122).

Reverse Blank
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Appendix J

COYPUTATIO , OF FILTER TRATUSFER FUNCTIO,,

The forward predictive error filter transfer function is given in

(68) as

Sexr) ; 2,f,,m) A") J
- , )(J-1)

Now divide the frequency range (- -) into NF cells of width

I -L(J-2)

Then for I- /

H WO

Nr-, (J-3)

where

(J-4)
0) f 4 ~~

Now if we let the sum in (J-3) be denoted as an NF-point FFT,
N -I

os : , _ (J-5)

then (J-3) becomes

HA A = (J-6)
17_%+ ,N/2 _ _-

Then quantity _ in (J-5) is an MxM matrix for each value of m.

J-l/J-2
Reverse Blank
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Appendix K

PROGRAM FOR SPECTRAL ASRALYSIS

In this appendix we present the program for tne procedure summarized

in (184) - (187) and (165). The spectral estimate. (165), is computed

at frequencies fbl/(NY))3

--. N 4
.! '( K-i) )

where the forward predictive error transfer function HtI is given

by (J-6). The specific scalir3 adopted is based upon (166), which takes

the sampled form

L. (K-2)

where fw. is a set of integration weights (e.g., trapezoidal). The

approximation is a good one if G(P)(f) -I's sampled finely enough; that is,

if N F is large enough to resolve the peaks and valleys of G(P)(f). If we

employ (J-2), (K-2) becomes

W() 1 , ; (K-3A)Wm =- N,11 N~

or, for trapezoidal weighting,

?4/
_. a (K-3B)

where we have employed the periodic nature of G(P)(f) (See (165) and (68)).

K-1

CI- ~
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Thus the sun of samples rMI -)Mequals the sample power, (80).

For a real multivariate process, we can employ (171); a modified form-

emerges: iI
~e .IWI. -~7) R~, bi- ~m ~fICiS~(K-4)

where J;Q is another set of integration weights. This is the form

programmed in the following; the quantities computed are

NA

The real part of their weighted sum equals the sample power, R . The FFTo

Sused here to ev~luate J-5) is given in Ref. 21; it is limited to powers of

2, hut could be replaced if desired. Input parameters are N, PMAX, and

NF in line 22, and the input data call is in line 37 and SUBROUTINE DATA;

all these quantities have to be changed by the user to fit his particular

applization. The program is written for a real multivariate process

(general M), with the exception of FUNCTION DETERM, SUBROUTINEs SDM,

INVERT, and SOLVE, and the printout of the spectral density matrix, (K-5).

Arrays used in the program are explained by comment statements. A sample

printout follows the program.

K-2
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iii.0LTIVARIATL LINL.Ak PkEDICTIVE SPECTRAL A4ALISIS,

L. EMPLOQ146 L-LihTL. FORWARD AND BACKWARD AVERAGIN6,
L. TtiIS PROGRAM IS NRITTLN FOR REAL PROCESSES AND GENUERAL Mt wITH THE
C EXCLPTION OF FUNCTIONJ DETILRM AND SU1BROuTJNES SD~tp INVERT# ANC SOLE,
L AjiJ ImL PRINT OUT 3F THE SPECTRtAL DENS~ITY M4B TRIx.
LUSEH: CHANGE LI4L.S 22 AND 370 AND REPLACE SUb8ROjTINE DATA,

L = jlJmtNSONAL17y OF MULTIVARIATE PROCESS; IlJTEGER INPUT I
C. PRCPUT L'ATA; ALTERELJ ON OUTP-iT L

C PH-AX = MAXIMUM ORDER OF FILTER$ INdTEGER INPUT
i. lF SILL OF VFT (MUST BE A P0~iER OF 2 To USE kiKLFFT8; IN.TEGER Ifit-UT

L- AVE. AL~ANS UF INPUT LJAIAi OUTPUT
L. k CVVARIANCE MATRIX OF IN~PUT DATAI OUTPUT
L AIC = AKAIKEIS INFORMATION CRITERION; OUTPUT
L, PbLsT = 8EST ORDLR OF FILTER; INTL~GER OUTPUT
k,. uoLS] = MATRIX OF COEI-FICIENTS IN SPECTRAL LSTIlArL; )L'TPUT
LAP =MATRIX OF FORwvAR) PARTIAL CORRELATIO14 CO(.FFlCILi,,TSl THEN

L MATkIX OF FORWARD PREUICTIvE FILTER COEFFICIENTS FOR~ PBESTI OUTPUT
L. BP = MATRIX OF BACKWARD PARTIAL CORRELATION COEFFICILwTS; OUTPUT
SXXvYY = SPECTRAL MATRICES$ OUTPUT

PARAMETER M=2 W~ BIVARIATE PROCE$SA
PARAMETER N= 100 o PMAX= 10? NF=1024# ijF4jljF/4+11
INTrEGER PUESTrP
L;IMENSION X(NPM),Y(N.M),Z(NpM).UBEST(MMI.Af'DMof~iP:,AX,
$bpH(MNIPMAX) ,AVE(M) ,XX(NFMM) ,YY(I1JFMtN!) ;C.CSI (NF-41)t
$U(M.PM) ,V(MPM) eUl(MeMIeVI (MPM) A(MPM) ,B(MiI'.) *q t.jM-)
SV.A(M#,M),WB(MM)PWC(MtM),WD(MPM)PWE(MPM),AIC(P-,AX),AIC0(2)I E-wUIVALENCL (XpY)t(AIC(1)rAiCO(2))

L PRIkT OUT VALUES OF PARAMLTERS
I=N
~JPMAX

L:NF
PRINT 1, ItJ*KPL

1 FORMAT(lHlol N ',1l6tlOXo'PmAX =lp14019XflP =l?12plOXo9NF :''15)

C INPUT DATA INX(,).XN),,X(M..CI')
CALL DATA
PRI~NT 2

2 FOHMAT(/ INPUT DATA:')

L=14200
LiO 3 11,pM

4 FRINT 4F I
IF(N.LE.200) bO TO 5

PRINT 7, L
't FORMAT(IbP' INPUT DATA POINTS NOT PRINTED HERE')

PRINT bt (X(K#I)#K;l#N)
a CONTINUE
4 FORMAT(' PROCESS NUMER',X2)
b FOtHMAT(5E20,S)
C EVALUATE PARTIAL CoRRLLATION COEFFICILNTS

CALL PCC
PRI14T 8
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FO~K!4AT(/f MLANS OF INJPUT DATA:')
P-RINT be (AVELII11M)
I RItIT 9Z

9 FOKMAT(/ COVARIANCI MATRIX OF INPUT DATA:')

I-HitT 10
10 FORD4AT(/# AKAIKE Ia~FORMATIOt1 CRITERION:')

1 FORMAT(Il0,E20ed)

PRINT 12p PI3EST
12 FO~RMATW, PI3EST =0#13)

1. PQti4AT(/' UbEST:')

F RINT 14

1L4 0KMAT(/ FOR14ARU PARTIAL CORRELATION COEFFICIENTS:')
LUj lb P~lPPMAX

1b P'RINT Tbe Pt((AP(IeJ#P)#,11,M)#J1,pM)
lb FUKMAT(Il0pbE20,8)

H INT 17
17 FO~)tmAT(/! bACKvIAHD PARTIAL CORI'ELATION COL.FFILIEfjTS:') I

U 16 P:IePt.IAX
18 Vd.IPJ16vb Pt((13P(IeJvP),I::l#M)#J=1#M)

IF(PtiE!TL,LO0) GO ro 19

EVALuATL PREDICTIVE FILTER COEFFICIENTSU
CALL 23C

40 FORPIAT(/ FORWARD PREDICTIVE FILTER COEFFICIENTS FOR PbLst:')

LO 21 PzltPbEST
el HilINT l6p Pt((AP(It~vP)vI1,M),J1p,)I

L EVIALUATE PREL)ICT1VEE.mROR FILTER TRANSFER FUNCTI~ji\
19 (.ALL PEFT-
L EVdALUATE SPECTRAL DLN$ITY MATRIX AND COHERENCE

K=14F/2+1
CALL SUM
PRINT 22

L2 I-ORMAT(/ SPECTRAL DENSITY MATRIX AN4D COHLRE'JLE FuR M=2:9)
FRi~fr 23 i

e3 FOkiMAT(8XP'BIN',10X,!AUTOl',4X,'AUTO2',iO,(,'HEAL(CkUSS12)',7X,'

$I:VIM3CRCSlJ2)1p9Xp'MAG SQ COH'r11Xt#ARGUMIJT')
PRINT 16p (LeXX(LeJ.,l) ,XX(Lt22) eXX(L,1,2) eYY(Lel,2) PYY(L,1,1) ,YYB

SU6ROUTINL DATA
GTHIS SUBROUTIN~E GENERATgS DATA FOR MZt BIVARIATL PROCESS
DEFINE IRAND;I*5**15tU1l-SIGN(IeI*5** 151)2*343597383b7
ULF INE RANP=FLOATM()/343597383676
I=5281
TAO.9

Do 1 K:1,100 W~ WILI. DI$CARD TijESE INITIAL POINTS
I=IRANL)
T=.85*TA-.75#TU+RANDY.*5
I:IRAND
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Ta=*65*TA.. 55.T8+RAt4O-,5
TAZT
xilti)=TA
htl#2)=TBI

OU 2 K=Zetd
1=1HAND
Tz985*TA- *75fT83,RAf4O". 5

1b * 65.TA+. 55*T6tRAW4-. 5
TA=T

kET URN
SdLSNOUTINL PCC

L T.,11-1 SUdHiTINL C~oIPUrES PbE-7STp UbESTt AND THE PA,(TI- L
LCO)NI.LATIO'. LOEFFICILNTS FojR P 1 TO pMAX; AN~Y N

IriPMAX.GT.IA) PRINiT lt JvIolA '
1FORMi.AT(/ PMAX =',14p' IS TOO LmRGE- Fok rwUifiJk OF DATA POINTS ~
spool; SLARCH LlMiTLO TO P =',14)

1A=;IN(UA*PPAX) W, UPPER~ BOUNJD ON PMAX; L; 183
AL=2**;*M'N FAr=0, iOUL) FORCE PBLST E~juAL TO PMAX

L SUu1NACT 4FANS; F-ILL 114 DATA ARRAYS; EQ 110

LA) 2 I:1,M

35 fA=1'A+Y(KpI)
TA=TA/N
AvL(I)=TA

L2 K1,PN
Y ( ,I)=Y (KI) -TA

4 (KtI)=Y(KPI)
L14 IIT IALIZE CORRELAT1iOi MATRICE51 LUS 132, 11L4t A'IL 10t)

z CALL AUTO(2tN-1,Y,iC)
LQ 4 I=1,M

bo4 J=19M
1A::(1, )*Y(1,J)
TL=Y(NtI)*Y(NJ)
K(Ij)=(WCC Ij)+TA+Tb)/i4
hA( I J)=WCCIPJ)+Tb

K (oi I) 1H J)

CALL E~UAL(R#U)
CALL E(.UAL(RPV)

CBEG Iv4 RECURSION
AIC(O)=LOG(DETENM(U))

FiLSTO0
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CALL EQUALIU*UBEST)
Lbu 5 P:1,IA

L EVALUATE MATRICES REQUIRED IN BILINEAR MATRIX EQUATION1 LQ 126
CALL ItNVERT(VPVL)
CALL MULT(VIod#wU)
CALL EWUAL(WD#Wd)
LALL li4VERTCUPUI)
CALL LUUAL~umAeWD)
CALL NULTCWD#UIPWA)
CALL AUD(SCp0C#*C)

L !SOLV. BILINE.AR MATRIX EQUATION; EGwS 157-161
CALL SOLVE

C vALUATE PARTIAL CORRLLATION COEFFICIENTS; EU 124
LALL MULT(WC#VIPA)
CALL TRANS V#CswO)
LALL MULT(WUUIPB)
CALL EUUALjApAP(1,1,~p))
CALL E(WUAL~b#3P(lvl#P))

C UPUATh. MATRICES U AND V; EU 181
CALL MULT(ApWDpwE)
(ALL SUB(UWEPU)

CALL MULT(U#WCPWE)
CALL SUF3(V#WEPV)I

C CALCJLATE AKAIKE'S INFORMATION CRIrERIoN; EO 18o
AIC(P)=LOG(0ETERfM(U))+FAC*P
1-(AIC(P)*GEoAICMIW~ GO TO 6
AICMIN=AIC(P)
PBdLST=P
CALL EOUAL(UtUdEST)
1F(P.EQ.IA) GU TO 5

CUP[JATL UAIA SEQUENCES Y AND Z; EQ 111
L=P+1
LO 7 K=N#Lt-l

IA=Z(K-1#I)
C2O 9 J=1#M

9 TA=TA-B(I'J)*Y(K#J)

GO 10 1=19M
7A=Y(K#I)
LU 11 J=1#M

11 TAAA(IPJ)*(K'1pJ)
10 l(Ktl)=TA
7 CoiNTINUE
C CALCOLATE NEW CORRELATION MATRICES; EQ 114

CALL AuTO(P+2#NPY#WA)r4 ~ CALL AUTO(P+1,N-1lvpWB)
CALL ROSS(P+2#NpYvZpWC)f

b CONTINUE
IF(,M-iEGi.1) RETURN
KZM-1
LO 12 I=1eK
=1 +1

~f2 K-6
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t3dLsr1I J)=.5*(UBL )T(I.J)+UHEST(Jtl))

12 UinSTJvI)UBLhr(Itj)

JLUvkOTINL F'FL '
L TrilS SoUtNOUINE C0r'PUE: THIE PREDICTIVE

1F(PbjLST.LL,1) r(LTUKN
(0 I P=2pPbEST

tUU 2 L=:IiAI

CALL SU6(AP(1u1rL)pApWA)
CALL M'ULr(bP(1,1,P) eAP(IPXIL) .,d5)
CALL SU93(UP(jiIb) ewl3bp(j,jpIh))

2 CALL Lr.t'ALWAtAt(jpjpL))
1 v.%T IN'UL

kL1URN

SUaRQITNE P'EI-1
C YA~S SUBFRO~.Tlij. LOMPUTES THE PREDICTIVE-ERROk
C FlLILC TRIIfjFU, I-u~CTlON; ANY M; LLUS b8 AND 1J-5)-(J-t))

K=1.4427*LOG(NF) +.o
CALL tlRICUS (COS1r
LJ 1 1=1#M

Lv 1 J=IA

IF(1I,WJ)0.~llJ)l

IF(PbESTiEO.0) bO TO 2
IA=P6LSr+1
DO 3 L=PPIA
XX (Li 1,j)=AP(IpJPL-1)
YY (Li ,J)=0,

i IA=PtSST+k

LV 4$ L=IAtNF
Xx(L. I ,J/=.

1CA-LL r4KLFFT(XX(±IJp) eYY(1eIJ) FCj)sIK,-l)

SUbI<UUTirNE sDm
CTHIs SUBHOtiTINE COM~PUTES TtiE SpECTHAL DENSITT

T=2*/rlF
UO I L=1,K

VA (1t2)=!XX (Lii.2)
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1 4LETERM(A)-OETEH54(W8)

7b=A(11)*wB(2,2)twA(2,2)*wB(1,1)-WA(1,2)*ALC2e1)-*AC2pl)WB( ?)
TA=T/(TA*S2*Tb**2)
LAL.L Tk~ANSI*AooC)
CALL 'ULT(U8EST#CvwCU)
CA~LL MULT(%jwJpb.C)

LALL MLL(WAPWUPWC)
t.MLL rRAN$(ft8#wG)
LALL MULr(UbEsTpwDewL)
CLL MULT(htsoEWE')
CALL ADfl(WC#WUoC)

ll(L#2p2)=AlAN2(TbC(1e2) ) .,AkGuMETT

xx(L~pl)=A~hClvl)AUT011
AX(Lpg22)=TA*hC(2#4) AUTt.,22

Y(Li 1t2)=TA*78INA(C3SS
XA(LP2#1I)=O.

1 CIJTINU.

'ZUbROUTINE CROSS(N1,N2#Ati#C) Q APBPA NG
L. TijIS SU8ROojTlNE COMPUTES A CROSS LORRiELATI0Il i"AIIXI At1JY 4; LQ 1

LIMErJSILN A(N#M)vB(NpM)vC(mpM)
LJuubLL. PHLCXSION T
b~o I 1:1cm
Lo 1 J1,tm
T=O.DO
LO 2 K=Nl#N2

2 T=T+A(,KI)*L,(K-1,.j)

kETURN
L

SUbROUTIN. AUTO(Nl#142PAPBi Q APA NG
L TriSb SUB3ROUTINE COMIPUTESp AN AUTO CORRELATION ikATHIX; ANY A; LC '1i.,A

LiMENSION A(N#M)pb(MpM)
LOUIJLE PRECISIOw T
101I I1?M
LO 1 J=IM
T =0 * D
LO 2 K=Nl#N2

e (=.J(pI)3(Kp0

ht.IURN
C

SUtRUUTINL EQUAL(APE);z
L. THIS SUB3ROUTINE SLTS TWO MXM MATRICES EQUAL

iIMENSION A(Mtil)pbiM#M)
LO. 1 I1#M
Lo) 1 J=IM

I h(itJ)=A(ItJ)
1L IURN
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SUOROUTINE TRANS(AE3) G AtA NG
C Ti-S !:UbROUTINE TRANSPOSES AN mXM MATRIX

,LIMENSION A(MPM)PB8M#M)
K.) 1 I1,PM

1 IvJ)A(JvI)
I-LTUkN

SUbOUTINL ADL)(A~bvC) Q. ApripA OK
(. itiS SUJRuuIINL AUDS TWO MXM MATRICES

LIM'tEvSICN A(Mer4) pbMtM) ,C(M,M)
L%) 1 I=j.M

LO 1 J=ItM

1 C(ij)A(I#J)+(Ioj)

SUuRNUUTINE SUb(AtbtC) fa AeE~eA OK
L. TtiS iLIIsHOUTINE bUtTRA CTS TWO mXM MATRICES

LIME.NSION A(M#M)#E8MM)PC(MtM)
L-V 1 I1,fM
(0) 1 J1,FM

K . TURN

SUiOUrTINE MULT(ApotC) fJ APBPA NG
L THIS 3UI3ROUTINL MULTIPLIES TWO MXNM MATRICLS

LiM.ENSION A(MPM) Pb(M#M) CMpf.1)

L~U 1 J=IM

10 2 K=1#M
T:T+A(ItK)*b(KPJ)

SUbHOUTIN. INVLRT(AP3) r1w AiA NG
L. TIns SUtJROUTlNE INVERTS A 2X2 NATRIX

11h4LNSION A(2v2).LbjZ.2)
TA=1,/L)ETLRM(A)

olpl,)=A(2rZ)*TA

b(1#2V=-A(lt2)*TA

S~oROUTIN. SOLVE
C TtiIS SUBJRUtiTiNE SOLVE$ bILINEAR MATRIX EQUATION
L. FOR 1=2p 61IVARIATE PROCESSi EU 157t 158p ANU 16 -

T8=ULTLHM(vA)-0ETahM(Wb)
CALL MULT(WCPWBPWO)

AC.( 1.2) :-WA C 1.2)
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CALL v-uj.T(wEPWACPWA)
CALL AD(WU#WA#WD)
At3(ltlI)=TA**B(1e1)tTb
o~o22)TA*V.Bi2#2)+Tb

1. l2) :TA*W.B(1e2)

LALL INVERT(WbewE)
L,LL MULT(WUPWEPWC)
kL.TURN

L- THIS I-uNCTION LOMPUTES THE DETERMIuJANT OF A 2Xe2_ NATRIx

L N'JL

MjL)NU1INL NKLFFT(A#YPCCM.ISN)
LIMENS JON XC(1) p Y(1) P CC (1) P L (12,1

I (,7eL(a) ) e L6'LC7) I P L5,L(8) ) (L4,L(9) ) ,(L,5,L(1O) IP (L2,L(11)) p

kL)U4='J/4
l.Y+'P1=:,u4+1
ijjP2=i'JD4P1+l

fUeP2g=t,4+NO4P2
UO a Lu~lpMI
LMIA2*# (M-LO)
L IA=2*L,"X
1 SCL=N/LIX
L.j 83 LM~lPLNIX
I AK-G (L'i ) * ISCL,+

Cz-CC (f,12P2-IARG)

zs=lSi'i*CC(CIARG-ND4) ;
L-O TO 6

4 C=CC ( IARG)
S=lS,'1*CC (NLD4P2-IAkb)

J1=LI-LI X+Li~
jeJl+LVX
TI=X(Jl)-X~j2)
TeY~jl)-YCJ2)

Y ~jl)Y (Jl)+Y(J2)

S(J2)=C*Tl-S*T2

ykj2)=C*T2+S*1
6j CUATI NUC

Us4' Jlt12
L (J)=l

K-10
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40 CONTINUE 1
LA0 60 Jl11.LI
b'0 60 J2'.JlPL2pL1
('U 60) J3=02PL3PL2
DO 60 J4=~J~5L~pL3
D'O 60 J5:=i4tLbL+
tJU 6C J6=JbtLbPL5
DO 60 J7hJbL7pLb
DO0 b3) J8=J7tLBPL7
LU bO J9=JbL9tL8
LO bO Jl0=J9tL10eL9
DO0 60 Jll=JlOtLlltLl0
Lu 60 JR=J11,L12#Lll

51 H=X(JN)

F I=Y W14i)

Y(JR)=FI
5?- v.4JN+1
60 CUNTINUE

KLTURN
LU

SUbROUT IN UTHCOS(CPN)
L1ikENSI0N CUl)
N4 1 N/ 441
SCL~b. 2831b5307/N
L10 I 11,N41

1 C(i)=C0S((I-1)*SCL)
KETURN
E14U

M 1 K-11
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