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- - ABSTRACT

Some new theory and applications of certain bivariate

non-normal distributions are presented. In particular , new

bivariate negative binomial and gamma distributions are dis-

I cussed and an existing bivariate exponential distribution is

I 
applied to single stage and tandem queueing systems (both

single server) which have particular kinds of correlated

I structure.ç~~
One new bivariate negative binomial distribution is de-

I rived by convoluting an existing bivariate geometric distri-

• I bution ; the probability function has six parameters and ad-

mits of positive or negative correlations and linear or non-

I linear regressions. Given are the moments to order two and

for special cases , the regression function, a recursive form-

I ula for the probabilities , a method of moments parameter es-

I timation technique , the likelihood equations , the differential-

difference equations and for maximum likelihood parameter es-

I timates , a necessary relationship for the parameters . Certain

results are extended to a dual bivariate gamma distribution .

I Another bivariate negative binomial distribution , which has

I four parameters , results by reducing a particular trivariate

negative binomial distribution with independent marginals;

I only positive correlations and linear regressions are possible

here . Both bivariate negative binomial distributions are

_ _ _ _

~~~

i

~
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I

fitted to data and their special features illustrated.

I 
Applications of bivariate distributions to certain air-

I 
craft logistical problems are investigated. Primarily, a

bivariate negative binomial distribution is fitted to spare

parts demand data in two periods and to monthly abort data

on either side of a large scale maintenance event and it is

shown how the associated sample distributions can be useful

in parts inventory control and in investigating the effect

I of maintenance on an aircraft ’s performance.

I A bivariate exponential distribution is applied to tan-

dem queues to study the effect of correlated exponential ser-
I- 

- vice times and to single stage queues to study the effect of

correlation between a customer ’s service time and the inter-

I arriva l interval separating himself and his predecessor. Ar-

I rivals to both systems are according to a Poisson process.

Simulation is used to show that the mean waiting time is quite

I sensitive to departures from the traditional assumptions of

mutually independent service times for tandem queues and inde-

1 pendence of service times and interarrival intervals for single

stage queues , especially at higher utilizations . For the cases

of infinite interstage storage between two-stage tandem queues

I and infinite storage before a single stage queue, system per-

formance is increased by positive correlation and impaired by

I negative correlation . For two-stage queues this change is re-

versed for zero interstage storage and depends on the value of

xi

_ _ _  _ _ _ _ _ _ _ _

- i -
- .- - -~~ - -~ - - - -~ 
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I

the utilization rate for the case where interstage storage

I equals unity . By using spectral analysis techniques and a

nonparametric test applied to sample power spectra associ-

I ated with certain simulated waiting times the effects are

I shown to be statistically significant. For correlation

equal unity and infinite interstage storage results are

I given for two through twenty-five stages in series.

I
I

I
I
I
I
I
I

I
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PART 1

I INTRODUCTION

I The objectives of this research are (1) to develop

I 
two new bivariate negative binomial probability functions,

(2) to derive , where applicable , corresponding properties for

I a dual bivariate gamm a distribution , and (3) to show that bi-

variate approaches to data analysis and mathematical modeling

I can provide , in some cases , more meaningful and representative

results than traditional approaches. The first bivariate nega-

I tive binomial (bnb) distribution is derived , via convolution ,

I from an existing bivariate geometric distribution and the second

one is developed, via reduction , from a certain independent tn-

I variate negative binomial distribution . Certain properties re-

lated to infinite divisibility and parameter estimation are

I shown to be directly applicable to an existing bivariate gamma

I distribution .

In analyzing bivariate data from self-pairing type

I studies usually the data are transformed to obtain a univariate

random variable; sometimes this technique is acceptable partic-

I ularly if the data are approximately normal but often a bivariate

‘ 
random variable , say, representing count data, cannot be ade-

quately treated in this way and so an alternate approach is

I deemed necessary . Most often in these cases a first step is

to find a reasonable bivariate probability function to repre-

I sent the data and for this purpose several probability functions

I
1 1  

_ _ _ _  

_ _ _ _
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2

I
are usually compared. That these new bnb distributions should

I be useful in practical applications is suggested by showing,

for two bivariate samples from the literature , how certain pro-

perties of these distributions better represent the data. Addi-

I tionally, we introduce some new bivaniate data Sets related to

aircraft operations and maintenance and show how bivariate ap-

I proaches can be useful in analyzing certain problems dealing

I with these data.

Another new bivariate approach is related to com e-

I lated queueing systems. For instance, single server tandem

queues traditionally have been modeled by assuming that cus-

I tomer service times at the individual servers are independent;

• I sometimes this is a reasonable assumption but in certain impor-

tant applications , for example , production lines , such is often

I not the case and a more realistic model is desired. We show

for two servers in series the effect of correlated exponential

I service times by assuming that a customer ’s service times at

I 
the two servers are given by a bivariate exponential distribu-

tion . Also we provide a similar analysis for single server ,

I single stage queues with correlated interarrival and service

processes.

I Part 2 describes the new bnb distributions with cer-

tain associated results for a bivariate gamma distribution and

I also shows how the bnb distributions fit some empirical data.

We introduce in Part 3 some new discrete bivariate data sets

H c ’
i i  

_ _  

_ _ _ _  

_ _ _

—
V 
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I
I

related to aircraft operations and maintenance and show how

I bnb distributions can be useful in analyzing certain problems

I dealing with these data. Also we describe how bivariate gamma

distributions could be useful in similar problems associated

I with continuous data. Part 4 shows the results on correlated

queueing systems . More introductory and historical remarks

I are included in these parts .

I
I
1
I
I
I

, 1
I
I
I

I
I

• 
~1~~~•; ~ _ _ _  

_ _ _ _ _
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PART 2

I ON B IVARIATE NEGATIVE BINOMIAL

I 
(AND GAMMA) DISTRIBUTIONS

2.1 Introduction and Historical Review

I In this part we develop and fit to data two new bnb dis-

tributions and show how certain properties relate to an existing

I bivariate gamma distribution.

I That a bnb should be important in statistical theory and

applications is suggested by the wide acceptance of the uni-

variate negative binomial distribution as a reasonable model

for a broad range of problems representing univariate discrete
- I random variables (see Boswell and PatH (1970) for a discussion

I of fifteen stochastic models which give rise to the univariate

negative binomial distribution). It is reasonable to suspect

I 

that a bnb distribution would be useful in describing bivaniate

random variables for which correlation exist between the members

I of the bivariate pair and the marginals are negative binomial.

I
A few bnb distributions have been presented in the literature ;

next we show the particular forms of the univariate negative

binomial to be used herein and then review these bnb distribu-

tions and some of their applications.

The univariate negative binomial with parameters v>0 and

0>0 is defined (Johnson and Kotz (1969)) as the distribution of

I a random variable (r .v .)  X for which

I 4
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Pr E X =x] a 

~~~~~~ 
(.L

~
)”(r2.

~
.)-
~’ , x’0 ,l,2,... (2.1)

and the characteristic function is

$(t) E[e’~~J a ( 1+ O ( l_ e 1t )F~~. (2.2)

The mean and variance of X are vO and vO(l+O), respectively.

i Thus , it is characteristic of the negative binomial distribu-

tion that the variance is greater than the mean. A method of

I moments parameter estimation technique is described in Johnson

and Kotz. }br v=l we have the geometric distribution .

I Another common representation is to let O=p/(l~p), or

• 
I 

equivalently , p=9/(1+O), in (2.1) and so

Pr(Xax] = 

~~~~~~ 
(l-p) ” p

X
, xa0,l,2,... (2.3)

and

I 
$(t)  = [l+~~~~ (l~~e

1t )]~~~ (l~~e
1t
]~ v (2.4)

This latter representation is referred to as a negative bi-

nomial distribution with parameters v and p. We use both

forms throughout. -

I The negative binomial distribution can be viewed as a

I compound distribution (Johnson and ICotz). In fact, a mixture

of Poisson distributions such that the expected values, A , of

the Poisson distributions vary according to a Type I I I  (g amma )

distribution with probability density function

‘ I

— 
—

I 
_ _ _  -

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I - —~~I - _ _ _ _ _ _ _ _  - - _ _ _  --~ - ______



• - • -.

6

a

I 
f()) a 

~~~~~~ ~~~~~~ 
~ 
]
e )10, X>0; ~~~~~~ 8)0 (2.5)

leads to 2.1. A multivaniate negative binomial distribution

I was constructed in an analogous way by Bates and Neyman (1952).

I We describe the bivaniate case. Suppose we consider the joint

distribution of the two independent random variables X and Y

I where X is distributed as a Poisson r.v. with expected value A

and Y is also a Poisson n.y. but its expected value is aPi, ~>0

I and constant. If we assume that A is distributed according to

I the gamma distribution in (2.5), then the marginal distribution

o f X  and Y is

Pr[X-x,Y-yl - 

~~~~ 
(l-p-q)” pxqy, x,y-0,l,2,... (2.6)

1 where p—8/[l+ (a+l)8] , q—ap , v>0 , 0 <p < 1, 0 < q < 1, and

0 < p+q < 1. The characteristic function is

•( t1, t 2
) - E[e1tl~~~

t2Y1 [~~pe
1~qe

t2
]
_v 

(2 7)

or in terms of 8 ,

I •(t 1, t 2 ) [1+0(l~e1t1) + a9(l~ e1t2 ) J ~~~. (2.8)

I We have that the mean vector is

- I
— (2.9)

I VaO

and the covariance matrix is

I
I I

~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~ 
U.
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I
vO (l+0) vc~0 2

I a (2.10)
oxy vcz O 2 v cz O( l+ c z 0)

Prom the characteristic function it is clear that the margin-

I als are again negative binomial . The conditional distribution

can be shown to be

I 
Pr(Yf xl = :~~~

-
~
- (1~q)

X
~~ qY, y-O ,l,2,... (2.11)

or a negative binomial with parameters x~v and q. Therefore,

the conditional mean or regression function is

• I E [ Y I x ]  = q(v+x)/ (l-q) (2.12)

and we note that the form is linear. Note also that this

probability function admits of positive correlations only.

I Besides Bates and Neyman in 1952 others have studied the

above bnb distribution ~4ardia (1970) gives an historical re-

I view). G uldberg introduced this distribution in 1934, Lundberg

first used it in 1940 as a model for accident proneness and

I Arbous and Kerrich (1951) exp anded Guldberg’s work and fitted

I the distribution to bivariate data related to accidents in in-

dustrial settings. In addition to their theoretical contribu-

tions Bates and Neyman fitted the distribution to numerous bi-

variate data sets related to diseases in industrial workers .

I In 1954 Arbous and Sichel fitted it to shift-worker absenteeism

data for adj acent time periods . Youngs , Geisler , and Brown in 

. : :-~~~~~~~~ %~~~ - •
,
~~~~ • - - 

•

~~~~~

.

• ~~~~~~~~~~ 
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- - —• •  -•- - - -  • 
~~~~~~~~T 1;~

_
~~

- - -

~
•
- . - - - .-•-- - -  - - -

I _& -_--- - — --———- ---— -



1 8

a
1955 studied the conditional distribution of this bivariate

I r.v. and showed how it could be used for the prediction of

I demand for aircraft spare parts. In 1961 Edwards and Gurland

generalized (2.6) and compared the fits obtained from the two

I distributions . The regression function for their distribution

is linear also. Subrahmaniam (1966) and Subrahmaniam and

I Subrahmaniam (1973) also studied this latter bnb distribution.

Thr purposes of comparison we choose to call the bnb dis-

tribution in (2.6) the G uldberg-Bates-Neyman model with para-

meters ~~, e and v and to designate it G -B-N(c&,8,v).

Certain data sets do not exhibit empirical regressions

• which are linear nor do some data Sets show positive correla-

I 
tion and so it is natural , for these cases , to work with a

bivaniate probability function which allows for nonlinear me-

I gressions or negative correlations or both. The classical

Bates and Neyman paper exhibited empirical data best fitted

I by regression curves which were obviously nonlinear, and , con-

sequent]y,their results were not entirely satisfactory . hir-

I therinore, we show a new bivaniate data set related to aircraft

flight aborts which has a negative sample correlation coefficient.

In the next section we discuss a new bnb distribution which

admits of nonlinear regressions and negative correlations and

j derive several of its properties.

1
I

_ _ _ _  _ _ _ _  - ~~~~~~~~~~~~~~~.~~~~~~~~~-;- -
_ 

_ _
-

~~
-

~~~~~~~~~~~~~~~~
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2.2 A New Bivariate Negative Binomial (and G amma) Distribution,
~~a Convolution, and Some Properties

The purpose of this section is to show how a new bnb dis-

I tribution may be obtained , by the process of convolution , from

a certain bivariate geometri c distribution. A number of proper-

I ties such as the moments to order two , the regression function ,

a recursive formula for the cell probabilities , and the likeli-

hood equations are obtained for certain special cases.

Paulson and ~~puluri (1972) showed that the bivariate r.v.

QC ,Y) ,  where each element in the pair is defined on the non-

I negative integers, has a bivariate geometric distribution if

its characteristic function , ~~t1,t2), satisfies the character-

istic-functional equation

I ~~Tt = ~n EI$CTV I (2.13)

I where

I T — (t1,t2), ~,(T) = *1(t1,0) 1j12(0,t2),

I ip1(t1,0) = [l+
~
2
~ 

(l_e 1t1)]~~~,

I *2(0,t2) — (1+ ~~~ (l_e~
t2)] 1 ,

and V is a 2x2 matrix-valued r.v. having values in the setI ~ fg g] , {~ 
g} , [~ ~

] , [
~ ~

} } with probabilities a,b ,c

I and d, respectively. Here 0 < p < 1, 0 < q < 1, a+b+c+d— l,

b+d 4 and c+d4. Thus the characteristic functional equation

I can be rewritten as

i l  ___ • 

-

~~~~~ ~~~•
_ i~~~~~ _ • 

- • ~~; : -~~~~~~
- 

r ~
_ _ _ _  _ _ _ _  -- 

~~:~~~ ‘-;~~~~~~~~~Ti - • - -  •

I ~~~~~~~ - -~--_ _ __ _--•_ - •- - -~~~~~~ ________—---— 

_~ y --  • - _ j  —
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1 
•(T) = ~p1(t 1, 0) ~i2(0,t2)(a+b~ (t1,0) + c~ (0 ,t 2 ) + dt , (T) J (2 . 14)

and it is easy to show that

(a+c)~p1 ~~~~ 1
~(t1,0) = l-(b+d)iP1 

= [1+8 1(1-e
’ 1)1

I (a+b)~p2 .-
~~ -l1 4~(0,t2) T-(c+dJij 

= [l+0 2(l-e
’ 2)1 (2.15)

I where

I 81 = p/((l-p)(a+c)], 02 = q/[(l-q)(a+b)] (2.16)

I and the arguments of *1(t1,0) and *2(0,t2) have been suppressed

(and will be in the sequel). Comparing (2.15) and (2.2) we see

I that the marginals are geometric.

In (2.13) the characteristic function ~ (T) =

I ~p2(0,t2) corresponds to a bivariate geometric distribution with

I independent geometric marginals and as Block (1975) points out ,

(2.13) gives the characteristic-functional equation of the bi-

I variate random variable
N1 N2

I QC ,Y) = ( ~ X 1, ~ Y1) .  (2 . 17)
i=l i—l

I The pair (N 1,N2) is a certain bivariate geometric distribution

and is independent of 
~~~~~~~~~~~~~~~~~~ 

i=l,2,3,..., which are indepen-

I dent and identically distributed (i.i.d.) random variables with

characteristic function *(T). Thus (2.13) corresponds to a

I special kind of bivariate geometric compounding of the distri -

bution with characteristic function *(T). It is also clear that

I
I
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- ~~~~~~~~~~~~ • 
~~

•
• . 

-

~~~~~~~
— — .- — - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ *,
— --- -- - -——
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a
if ~(T) has geometric marginals , then •(T) will have geometricI marginals. This is even more apparent from (2 .17)  since un i-

I variate random geometric sums of i.i.d. geometric random vari-

ables are geometric.

I Paulson (1973) has shown that (2.13) also characterizes a

bivariate exponential distribution where ~~T) is the character-

I istic function of independent exponential r.v. ’s. In addition

I he forms , in a way to be described here for a bnb distribution ,

a bivariate gamma distribution . Certain properties to be de-

I rived for this bnb distribution will be extended to his bivari-

ate gamma distribution.
- I Paulson and l4puluri obtained the moments of the distribu-

I tion of (X ,Y) in (2.13) to order two and showed that the corre-

lation coeff ic ient  has values in the interval -0 .25  < p < 1.

I They also presented recursive formulae for determining the

probability function.

I Clark (1972) obtained a closed form representation for

the bivariate geometric distribution characterized by (2.13)

1 for the special case b=c 0 and extended it to a bnb distribu-

1 tion . Next we summarize that development. (By defining a

multivariate analogue of the characteristic-functional equation

1 (2.13), Clark also constructed a multivariate geometric distri-

bution and extended it to a multivariate negative binomial dis-

tribution ; Appendix A shows the unpublished derivation.)

I
I

I i ’  

_ _ _  

_____ _ __ _  

_ _ _ _ _ _  
_ _
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-- 
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I
We conside r the case b=c=0 in (2 .14)  and so

• ( T)  = ~1~~2~~~~~~ (Tfl . (2 .18)

Solving for •(T) leads to

I ~ (T) = a~1~2[1-d~1~2]
1 (2.19)

and upon expansion

• ( T)  = aip 1~ 2 [1+dip 1*2 + (d~p1~i2)
2 

+ . . . ]  . ( 2 . 2 0 )

I The inverse transform of 4 (T) , that is , the prob ab i l i t y  fun c-

tion , say , g1(x ,y), may be obtained termwise from (2.20) since
• 

I 
the resultant series converges uniformly and absolutely for all

x,y=0 ,l,2,..., (Titchmarsh(1964)); we have

g1 (x ,y) - a(l~p)p
X(l q)qY ~ (

X+))(Y~~)[d(1 p)(1 q)]J (2.21)

I j=0

where x,y0 ,l ,2,... . Expanding the combinatorial terms gives

g1(x ,y) = a(l_p)pX (l_q)q Y F(x+l,y+l; 1; d(l-p)(l-q)) (2.22)

where F(a,b;c;z) is the G aussian hypergeometric series given

by

(a).(b). j
F(a ,b;c;z) = 1 + 

~c).
J 

~~ (2 .23 )
:1— 1 3

and the term (n)~ is defined by

(fl) j  
— r~

n+)
~~ = n(n+l)(n+2)...(n+j-l) . (2.24)

1•
1~

_ _ _  - -—— •~~~~~~~~~~~~~~~~~~~~~
•

-

~~~~~~
- 
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~~~~~~~ 
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Taking the v - f o l d  convolu t ion  of g1(x ,y) w i t h  i t s e l f

yie lds  a bnb d i s t r i b u t i o n  which  is denoted by g~ (x,y). The

c h a r a c t e r i s t i c  funct ion  of g~ (x,y) is

- 

•~~
(T) = [q~(T) J

” =

I 
= (a~ 1~ 2 ) V [l+v(d ~ 1~ 2 ) + ~~~~~ (d~1~2)~ 

+ .. .1 ( 2 . 2 5 )

and in the same manner as before  we obtain

g~~(x ,y) = a”h 1(x)h 2 (y) F(x+v , y+ v ;v ; z )  ( 2 . 2 6 )

where

h1(x)

h 2 (y) = (V + Y _ l ) ( l_ q ) VqY , ( 2 . 2 7 )

z = d(l-p)(l—q)

and x,y=0 ,l,2,... . Of cours e , v=l leads to ( 2 . 2 2 ) . I t  can

I be shown that

- I $~~(t 1, 0) = [l+8 1(l_e
1tl) ]

~~

and

•~ (0 ,t 2 ) = [1+02 (l_e
1t2) ]

~~ (2.28)

where 01 and 82 are defined as in (2.16) and so the marginals
I of (X ,Y) are negative binomial.

-

i

— • - -- - 
- 

- r-——----- ----.~~~~~~~
- - - -- -••
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Clark ob ta ined  the moments  to orde r two of t h i s  bnb dis-

t r i b u tio n ; the remainde r of his  work was l i m i t e d  to numer ica l

investigations of the bivariate geometric d i s t r i b u t i o n  charac-

terized by (2.14) with b~0 and c~0, and he showed figures of

I the probability surface and the regression function as it de-

pends upon p, the correlation coefficient. The probability

I su r f ace was comp u t ed by us ing the recurs ive formulae g ive n by

Paulson and i~pu1uri and then the regression funct ion was com-

puted by using the definition of a conditional mean , that is ,

I E[YIxl = y Pr (ylx) , where the summation is taken over all

non-nega t ive  y. His numerical  resul ts  showed that  the proba-
• b i l i t y  func t ion  admits of nonl inear  regress ion functions wi th

either positive or negative correlations .

Next we gene ra l i ze  Clark ’s work for  the cases b and c not

I equal zero and show , among other th ings , an ana ly t ica l  deriva-

tion of the regression function for some special cases.

We construct  in a way parallel  to Paulson ’s (1973) den -

• va t ion  for  a bivariate gamm a distribution a bnb distribution .

Prom ( 2 . 1 4 )

• ( T)  = ~,14~2(a + b~1 + c~2 + d$ (T) J ( 2 . 2 9 )

or

*1
111

2
• ( T )  — 

(1-d* 14,2J 
(a + b~1 + c$2] (2.30)

and convolving as in (2.25) yields

I
I

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~
• - -
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*11112a ( I_ d*1*2
) ” [a + bip 1 ~ (2.3 1)

Prom (2.29) on we wr i t e  and for ~ (t 1, O) and 4 ( O , t 2 ) ,

respectively. Recalling from (2 .13)  that  and *2 are func-

tions of p and q respectively, we choose to designate the par-

I t icu la r  bab distribution which results here as the BNB(a,b ,c,p,g,v)

d i s t r i bu t ion  and to label the prob abi l i ty  function as f~ (x ,y) .

It is relatively easy to show from (2.31) that the marginals

are negative binomial. The following theorems and results are

now presented.

Theorem 1: The inverse transform of •~
(T) defined by (2.31)

with a,b ,c,d as probabilities and a+b+c+d= l , b+d-zl , c+d<l and v

integer is

_ _ _  
8 X y

— 

~ ~~ 
aa ‘b c 

~l.8 
~ g~(x,y) * 

~2 .y  (2.32)

where ~ runs over all cz,B ,y > 0 such that a + + y =

I x,y0 ,l,2,..., g~ (x ,y) is the probability function for the

BNB (a,O ,O ,p,q,v) of equation (2.26) and

I 
— 1 ~8~x+8-l 

01
•l.8 ;.1+

_
O ~‘ ‘-. 

~~ 
)~~~~~4~~ 

)

2.y 
a ~~~~~ Y(Y ~~ ) ( 1~0 )

Y~ (2.33)

1 The operator * for convolution over x is defined for two func-

I tions h 1(x ,y) and h 2 (x ,y) by

I h1 * h 2 — 

~ 
h 1(~~,y)h 2 ( x -F ,y ) .  (2 .34)

1

I ~~~ ~
- - - - ,

~~~~~
- - 

• •
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I - y
The operator * is defined similarly.

Proof: Prom (2.31) and using the multinomial expansion

I gives

$
~
1T) — ( l~~~~

2
~ ) v 

~ ~~~~~~ 

aa(b,1)
B(c~2)

Y (2.35)
a, ,y

where the ~ is over all cz ,8 ,y > 0 such that a + ~ 
+ y v.

Recall from (2.15) that = [l+0 1(l_e
]tl)] 1 and

I — (1+02 (l_e
1t2)] ]. and changing to z-transforms by letting

clt’ — r~~ and e
1t2 

= s~~ we can write

lr 1+01 [ 
r 

1 
and 2s 

= 1+02 02• I
( where and ‘

~2s 
are the corresponding transformations . Taking

the inverse z-transform , ~~~~~~~~~ of and we get (from theI z-trans fonin pair number 24, Jury(l964))

1 
~~~~~~~ ~1.$ 

= c ) 8 (x+~ -l ) ( 1~~~ ) x , 8>1 , •i.~ =’ ,

I and

I #~~ l (~ Y ) — 2.y = (1~~~)
Y(Y4Y..l)( 1~~~)

Y, y>l , 2.0~~

Except for the constant ~t
”
, the inverse transform of 

~l~~* ~t 1 2
is g~ (x,y) in equation (2.26) 50 (2.35) may readily be inverted

I (after changing to z-transforms throughout) by first holding s,

say, constant and inverting with respect to r and then completing

I
I

JL~ -— 

TIT
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the inve rsion by inver t ing  wi th  respect to s. Thus we ar r ive

at (2.32). This equation is analogous to Paulson ’s (1973) re-

sult for a bivariate gamma distribution (aa in equation (26)

of tha t  paper should be replaced wi th  a~~
’1) .  Directly from

I Theorem 1 we have

Corollary 1: 1br v=l and a~0, the probability function

for the BNB(a,b ,c,p,q,l) distribution is

I f1(x ,y) = g1(x ,y) 1~el~
(l+~l~~ 

* g1(x ,y)

+ ~(1~0 ~~1÷o 
)y * g1(x ,y) (2.36)

where g1(x ,y) is the probability function for the BNB(a,0,0,p,q,l)
of (2.21). This is a closed form representation of Paulson and

~~puluri ’s bivaniate geometric distribution .

Obviously, the utility of f~ (x ,y) in (2.32) is limi ted by

the integral requirement for v and so we seek a representation

for v real valued. Except for the case c=0 our attempts to de-

rive a general representation have been unsuccessful . Next we

I give the results for c=0 (or for b=0 by symmetry). Also , we

show how these results are directly applicable to Paulson ’s bi-
I variate gamma distribution.

Theorem 2: For the BNB(a,b ,0,p,q,’v) distribution with

v>O ,

1 f~ (x ,y) - g~ (x ,y) + g~ (x ,y) 
J1 

h(b ,k ) ( l _ p) k (~~~~~ )p x (2 .3 7)

I-
1 

__ _ _
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where g~(x,y) is the BNB(a,0,0,p,q,v) of ( 2 . 2 6 )  and

I h(b ,k) = (~~(b+d) ] k 
J0 ~~~~~~~~~~~~~~~~ 

(2.38)

Proof :  In (2 .31)  we wr i t e  •~~(c= O) for the characteristic

function when c 0  and by using (2.15) it follows that

a*1*2 bip1
= (I_ d**

)’
~
[1+ r~~b+d)*

]’
~
. (2.39)

The leading term in this expression is the characteristic func-

tion for the case b=c=O and for it we write •~
(b=c=0). Re-

writing the second term and expanding in an infinite series

gives

• 1-di~1
= _________

= •~
(c=0)(.l+ ~ 

( 
~ (~~~

) (~)(b+d) d~J(-*1)
’
~k l  n=0

I = •~
(b=

~~
0){l+ ~ h(b ,k)*1

k} (2.40)
• k=l

I whe re h(b ,k) is defined in (2.38). Since the infinite series

in (2.40) is uniformly convergent we can invert termwise to get

(2.37). It &s easily verified that b=0 leads to g~ (x,y) in

1 
(2.26) and v 1  gives f1(x ,y) in Corollary 1 with c=0.

1 As stated before, equation (2.13) characterizes a bivariate

• 
exponential distribution and for that case *1(t1,O)4,2(0,t2) —

[l-0 1it1] [1-02it2J where 0~ and 02 are different from those[ in (2.16). From the characterization , Pculson (1973) formed a

bivariate gamma distribution and for the special case of c-O a

1’
‘

f

-
fl [

_ _ _ _  ~~~~~~~~~~~~~~~~~~ 
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I
corresponding result to Theorem 2 is

I X 1 k k-l -x/01f~(x ,y) = g~ (x ,y) + g~ (x ,y) * 

k~1 
h(b ,k)(.~.—) 

x (2.41)

where

I g~(x,y) - ~~e
a
r(v)(d~~p ) e /8l~~

T/’02 I
~~1

(2(
~~~

Y
~~
), (2.42)

h(b,k) is the same as in (2.38), and Iv_ l (2(~~-~~)
½) is the mod-

• ified Bessel function of the first kind and order v-l . That

I this result is true follows directly from (2.40) since in

this situation is (l-0 1it1]~~ . For v— i and c—0 , (2.41) checks

with a result by Kohberger (1975). In a slightly different
• 

I form (2.42) is the bivariate gamma distribution obtained im-

plicitly by Wicksell (1933) and explicitly by Kibble (1941).

The bivariate exponential distribution defined by (2.13) will

be discussed in more detail in Part 4. We continue ~with some

more properties of the BNB(a,b ,c,p,q,v) distribution .

By using the characteristic function $
~
(T) in (2.31) and

the usual differentiation techniques there follows , after sev-

I eral tedious operations,

I Theorem 3: The mean vector and covariance matrix for the

BNB(a ,b ,c,p,q v) distribution are

v0
1

I p a (2.43a)
- 

v02• F

Li _ _ ______ 
_

1 :~~ 

— 

~~~~~

— 

~~~~

—-____
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I-
and 

v0 1(1+8 1) v(ad:bc) 0 8

I — (2.43b)
v(ad:bc) 9 0  v0 2 ( 1+0 2 )

I We digress briefly at this point and give a method of moments

parameter estimation technique for the special case b=c=0.

1. In and set 81-i/v and 02=57/v and take the pro-

duct of and a.~ to be equal to the product of the sample

variances. There results a quadratic function in v:
2 2sx s~ F

(1 - _
I
~~ 

~~ L 
+ (~+~7)~ + 0 (2.43c)

xy

and for 4s~ > 3ë)7, which is expected if the marginals are

approximately negative binomial, there is exactly one posi-

tive root that we can take as our estimate of v.

I 2. In substitute 01—~fv and 02-y/v and set GX \r  equal

to the sample covariance , ~~~ Solving for the parameter a,

we have

I a = i _ ~~~~
’k’.

I 3. Worn (2.16), 81—p/[ (1-p)a] and so

aO —,
— 1+ — 

ax,~i (2.43e)a 1 l+ ai~/v

4. In a like manner,

q — 
a~/v 

• (2.43f)
• 

I 
1+a~ /v

Li 
_ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _  

_ _ _ _ _ _
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I
The next theorem establishes that the regression function

I for the bivariate geometric distribution in Corollary 1 is non-

linear.

Theorem 4: For the BNB(a,b ,c ,p,q,l) distribution (bivar-

I iate geometric of Paulson and Uppuluri) where b~0 the regression

function is

E[YIxJ = 
~
1_ 

~~~~~~~ 
+ (~~ 

- ~)k~
C
~~] (2.44)

where

in = p + (l-p) (a+c) , A=cm/ ((a+c)(a+b)],

k = m/[m + b(l-p)] and d = 1-a-b-c. (2.45)

I Proof: For the conditional mean E[Ylx], which is a

function of x, take as a generating function the z-transforin

s
~-(E(Y t xJ) = g(z )  = ~ z X E[Y~x]. (2.46)I U

By using the definition of E [YIx] we can write

I (l+0~)g(z) (llO i) ~ ~ zo 1
X yf 1(y, x) (2 .47)

x—0 y—0 1I since the marginal density of X is Pr[X=x] = (1
~~

9 ) ( 1
~~~~) X

•

I This last equation can be written as

1+0
g(z) (l+e i) .~~~ P(  zp~~

)t h 1 X a 1 (2.48)

I
j S . 

_ _ _
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where P[.,~ ] is the probability generating function of theI bivariate pair (X,Y). The probability generating function

can be obtained from •V~~
T

~ 
by substituting r=eitl and s=e1t2

and after some computation and simplification we get

1 g ( z )  - 

~T m+b (1-pJ t + (z-~)(21P 
(2.49)

where m, k and A are defined in (2.45). Inverting g(z) (Jury

(1964)) gives (2.44). This type of a nonlinear regression

function is sometimes called an exponential regression function .

In a direct way using the de f in i t ion  of E (YlxJ we obtain

1 Theorem 5: For the BNB (a ,0 ,0 ,p ,q ,v) dis t r ibut ion

I 
E(Y I x] = i~~~~:~f~~~3x ] (2.50)

where d—l -a.

I The following theorem is very useful for computations .

I Theorem 6: For the BNB(a ,0,O ,p,q,v) distribution the

probability function can be computed with the recursive formula

g~ (x ,y+l )  — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2.51)

x > 1, y > 0 and z — d(l-p)(l-q). Coupled with

g~(0~0) 
- _ _ _ _ _ _ _ _ _ _

the prob ability function is dete rmined.

I
I

.- - 
~~~

•
~~~~~~~
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Proof: By using the following relation for F(a,b;c ;z)

I and two of its conti guous functions (15.2.18, Abramowitz and

- Stegun (1964)):

(c-a-b)F(a ,b;c;z) - (c-a)F(a-l ,b ;c;z)

+ b(l-z)F(a,b+1;c;z) = 0,

(2.26) can be written as

g
~

(x ,y) = aVh1(x)h 2(y){~4
~~[xF(v÷x~l,v4y;v;z)

+ (v+y)(1-z)F(v+x ,v+y+l;v;z)]}

• 
I and (2.51) follows easily with some elementary operations .

The cell probability at (0,0) is obvious from (2.26) and (2.23).

An important result for parameter estimation is next .

Theorem 7: For the BNB(a,0,0,p, q ,v) distribution and if

v is known the likelihood equations for a random sample of size

n are

f ?~1og L: ~~. + V - 0

F ~ iog L. (l-~)~~+~~~~~~~1 0

• I ~-lo g L . (l-~)V +~~~~~R~~~0 (2.SZc)

1 where L is the likelihood function , i and j~ are the sample
1 +1 g (x ,y+1)

means for the marginal distributions, R~~ n (L__) v 
(x ) ‘x ,y ~~ q ~~

I-
1 . 1  

_ _ _ _ _ _-- 
~~~~,.-~~~~~r--~~~~~ -— -- — - -~~~ - • -

~~~~~~~ 
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is the number of observations for which X=x , Y=y, and

I g~ (x,y) is the probability function in (2.26).

Proof: If the probability function in (2.26) is di f fe r-

ent ia ted with respect to the parameters a, p and q the follow-

ing differential-di fference equations result:

I. ~g~ (x ,y) 
= (~~~~ 

+ ~)g~(x ,y) - ~ (~~~~)g ~~(x ,y+l)  (2 .53a)

~g (X~5 f  x 1 +1
________  = (~~

. + 1
Z.
~)g~ (x,y) - ~—~(Y.~._)g~ (x ,y+l) (2.53b )

~ g~ (x ,y) 
= (~~ 

+ 1
)~~)g~ (x ,y) - ~~~~~~L)g~ (x ,y+l). (2.53c)

These equations follow by using (15.2.1 , Abramowitz and Stegun)

- 
b F ( a ,b ; c ;z )  

= ~~.F(a+l,b+l;c+l;z)

and (exercise 1, page 296, Whittaker and Watson (1965))

F(a,b+l;c;z) - F(a,b; c ;z)  = ~iF(a+l,b+l;c+l;z).

The log likelihood function, log L , for a random sample

I of size n is 

~~~ 
~~~ log g~ (x ,y) and so

I ~log L 
— ~. ~ g~ (x ,y)

I b a  
~~~~~ 

xy g~ (x ,y) .
~~a *

Using (2.53a) and a few simple operations leads to (2 .52a) .

Similarly , (2.52b) and (2.52c) obtain. We were unable to get
~g~ (x ,Y)[ a d i f fe ren t i a l -d i f ference equation involving v ~ v as-

suined unknown .

I

i~~
I 

-~~~ ,- -- . -~~~•~~~ • •  - - -- ,-___
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1
From (2.52) it is c lear  t ha t

F f1-~~)~~ = 
(l -~~)~ = (2.54)

and these r e l a t i o n s h i p s  are very usefu l  in e s t i m a t i n g  the para-

meters via the method of maximum likelihood. For v known or

not , the conditions in (2.52) are necessary for a maximum like-

lihood solution to the likelihood function for b=c=0. There-

fore , (2.54) can be used to reduce the dimensionality of the

unknown parameter space from four if v is unknown , to two by

taking, say , p = qx/ [qx+(l-q)~ J and a = v q/ [( 1- q )~~]. We have

used a nonlinear optimization computer program (Cross (1970))

to solve for the parameter estimates and the dimensionality

reduction permits  extremely shorter running times.

• Next we show a corresponding result to Theorem 7 for

Paulson ’s bivariate gamma distribution. For the distribution

defined in (2.42) and if v is known the l ikel ihood equations

for a random sample of s ize  n are:

— blog L. v v+l  —

~
a

blog L~ i~ v+l - o

•blo~~~~~~L 
- 

~
j-
~
- - = 0 (2.55)

wher e L , ~ and ~ are as in Theorem 7, a 1-d , ~~~~~~ ~

- I ~I _ 1 (z) 
x,y

I*a(z/2) 
~~~~ 

, I—I ,~,1 (z) and z_2[(l_a)xy/(0102) ] ½ . The

result follows , after some lengthy but straightforward computa-

F
I~~. - -

•

• - • -

-

•— - • -  

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I
tions , by taking L = It g~ (x ,y) where g~~(x ,y) is in ( 2 . 4 2 )

x,y
and forming

blog L 1 ~g~ (x,y)
_______ — 

x ,y g [x,yJ ~ A

( for X c ( a , O~ 02 }. I t  is obvious that  necessary conditions for

the parameters are

= ~~~— = . ( 2 . 5 6 )

We show in a la ter  section the bnb of this  section f i t t ed

to some data. First we introduce another bnb distribution

which has certain desirable properties .

2.3 A New Bivariate Negative Binomial Distribution, Via a
~rivaria~e_Reduction, and Some Properties

The two previous ly discussed bivariate negative binomial

distributions have marg inals which are negative binomial with

parame ters 8
~
, i-1 ,2, and common parameter v. In this section

we introduce another bivariate negative binomial distribution

whose marginals have parameters v1, i=l ,2, and common parameter

0. Data are shown later for which this latter model seems more

appropriate.

We construct via reduction of a certain trivariate nega-

tive binomial distribution with i~idependent marginals a bivari-

ate negative binomial distribution. Mardia (1970) refers to

this as a trivariate reductio~i; Holgate (1964) used this tech-

nique to construc t a bivar iate Poisson distribution and Arnold

I ,
I~ ~~~~~~~~~~~~~~~~~ - -•

~~~~~~~~~~~~~~~~~~~~~~~
•:_-

~~~~~~~~~~~~
_
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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(196’) g e n e r a l i z e d  the procedure .

Theorem 8: Let X 1, X 2 ,  X 3 be independent  n e g a t i v e  bi-

I nomia l  r . v . ’s w i t h  common parameter  8 and indiv idual  para-

meters and v3, respectively. Then the probability

I func t ion  of X = X1 + X 2 , Y = X 2 + X 3 is given by

V +\) +5.) x v +w-l
h (x ,y) = 

1 2 1 
w )X

I v 2+x-w-l v 3~y-x+w-l

~~~~~~~~ ~~~~~~~~~~ 
-~f (2.57)

where

- I l o ,
k = 

~ 
x-y, if x > y.

Proof: The joint distribution of X1, X2, X3 is

3 v~ +x1— l ~ 
X
lf ( x 1,x2,x3) 

= 

i~ l 
~ ~ i

and by taking the transformation of variables X = + X 2 ,

y - + X~ and W 
= X 1 it follows in the usual way that the

I joint distribution of (X,Y) is (2.57).

This bivariate negative binomial distribution is designated

I I  BNB-TR (0,v1, V 2 , V 3) and from the defining relations its marginals

are negative binomial ; X has parameters 0 and + and Y has

parametexs O and v2 + v3 (Johnson and Katz). The marginal means

-
p

— ~~~~~ 
‘“ 

-

~~ 
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and variances are thus known and the covariance of (X,Y) is

cov(X ,Y) = cov(X 1+X 2 ,  X 2+X 3) = . (2.58)

Therefore , p = v 2 / [ (V 1+v 2 ) ( v 2 +v 3) ]  ½ and we see that  p is re-

s t r i c t ed  to nonnegative values.

Theorem 9: The regression function for the bivariate r.v.

in (2 .57 )  is

E(Y (xl = v 38 + 

~~~~~ 
(2 .59)

Proof:  Given X=x , the r .v . Y !x  has expectat ion E [ X 2 1x]

+ v 38 since X3 and X are independent and so we desire the dis-

t r i bu t ion  of X 2 1x. By writing the joint distribution of X1
and X 2 and tran s forming to new vari ables by l e t t ing  X = + X 2 ,

X 2 = X 2 ,  we obta in  for the j o in t  d i s t r ibu t ion  of (X , X 2 ) ,

f(x,x2) = ( l 2 )( 2 2 ) ( 1~~~l 2 (6~~X

0 < x2 < x . ( 2 . 6 0 )

From de f in i t i ons  it follows that

v + x_ x  -l v +x -l
( 1 2  ) ( 2 2 )

f(x 2 I x )  = 
2 2 

, 0<x 2 < x (2 .61)

and

~ 
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I 
___H1 E[X 2 1x 1 = (2.62)

Equation (2.59) results.

I The next section shows how these bnb distributions com-

pare with the Guldberg-Bates-Neyman mode l in fitting bivariate

I data related to shift worker absenteeism and disease data for

industrial workers.

2.4 Bivariate Negative Binomial Distributions Fitted to Data

In this section we fit two data sets from the l i t e r a tu re

wi th the three previous ly discussed bnb distributions . Our
- 

ob jec t i ve in using these data is to i l l u s t r a t e  cer ta in aspects
- I of the distributions . The first data set is given by A rbous

and Sichel (1954) and concerns absenteeism for 248 shift workers

I in two adjacent yearly time periods and the second one is due

to Bates and Neyman (1952) and shows the number of cases of in-

capacity suffered , per individual , during a common time period

I and due to two diseases ; the sample size is 1286. For the ab-

senteeism data we show that either the G-B-N(a ,O ,v) model in

I (2.6) or the BNB(a ,0,0,p,q,v) model in (2.26) fit the bivariate

data reasonably well but that the regression function from the

l a t te r model describes be t te r  the observed condit ional  me ans .

I None of the three models adequately describe the jo in t  distri-

bution of the disease data even though the marginals are accep-

I tably f i t t e d  by a univariate negative binomial distribution. It

S 

_________  

______—— —-  ~~~~~ - ——-—  
-• —— - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - C .
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will be shown, howeve r, that the two new bnb distributions do

I describe certain properties of the disease data bette r than

the G-B-N(c&,0,v) distribution , though .

Parameter estimates for the various models are by the

I method of maximum likelihood estimation (MLE). Bates and

Neyman show how to solve the likelihood equations for the

I G-B-N(c*,0,v) distribution; for the BNB(a ,b ,c , p , q , v) and BNB-TR

(e,v1,v2,v3) distributions we use a computer optimization pro-

gram (Cross) directly on the log likelihood function to obtain

our estimates. For the parameters b and c defined to be zero

in the BNB (a,b ,c ,p,q,v) model we use the necessary conditions

in (2.54) to reduce the dimensionality of the parameter space.

Corresponding to the observed pairs (x1,y1), i=l ,2,...,n ,

representing a random sample from the unknown probability func-

I tion f(x,y), we wish to test the hypothesis H0: f (x ,y)=f0(x ,y),

where f0(x ,y) is specified to be one of the referenced bnb dis-

I tributions. The x
2 test is used as a goodness-of-fit test of

H0; we point out that the problems with grouping cells whichI are generally associated with this test in univariate settings

I are even more dramatic for bivariate cases. To illustrate ,

Table 10 shows two independent groupings for a data set to be

I described in the next part. Before commenting on the table ,

certain remarks are required.

I Following the practice of Bates and Neyman in their paper,

cells which have expected frequencies less than three are

1 ,
1 

_ _ _ _ _ _ _  

_ _ _ _ _  

_ _ _ _

_
_ _ _ _ _

— 
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- f  I
grouped. In Table 10 and s imi la r  ones to follow , the dashed

1 lines indicate the boundary of the particular cells; heavy

I lines indicate the grouping adopted for the application of the

x2 test. Three numbers are shown in each cell: the observed

I frequencies are shown in the upper left corner of particular

I 

cells and the decimal numbers are the expected frequencies on

the left and the contributions to on the right . If several

I adjoining cells are grouped then the expected frequency and x
2

values shown are for the entire group . The P value given is

the probability of obtaining a value of x2 exceeding the corn-
• puted amount assuming H0 is true.

Table 10 clearly shows how the probability P is affected

by different groupings. Unlike the univariate situation we

have two directions to contend with here for grouping and it

is not obvious how to proceed. This is pointed out to empha-

size the need for an alternate goodness-of-fi t test for bivari-

I ate data (and in general multivariate data), one perhaps being

independent of any grouping. For lack of a better test we re-

sort to the x2 test. In every fit to be shown herein the

I groupings are completely independent of the observations and the

findings are from a single attempt at grouping the expected fre-

I quencies for the minimum value of three .

Table 1 shows certain summary results for all of the data

to be analyzed. The f i rs t column identifies the data , column

2 gives the sample size and correlation, column 3 specifies the

marginal random var iables and shows the assoc iated sample means

F- I ,

— •  - 
— - -• 

~~~~~~~~~~~~~~~ - - ~~. • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • —
k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —_________________________ —~~~ ___________ —— - —
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— t
and variances , columns 4 and 5 show the parameters of the uni-

I variate negative binomial fitted to the marginals and the assoc-

iated x
2 values , degrees of freedom and probability levels , re-

- spectively . Results from this table will be presented along

I wi th  a discussion of the individual data sets. The absenteeism
- 

data is examined first.

One of the objectives of the Arbous-Sichel paper was to

extend the notion of accident-proneness introduced by earlier

I. workers (see Kemp (1970) for a history) to absence-proneness

i in shift workers . Table 2 shows the observed and expected cell

frequencies for the number of absences in two adjacent  yearly

• I time periods (1947 and 1948) for 248 workers ; the expectations

are from the G-B-N(1,8,v) symmetric model (ci=l) .

From Table 1 we see that the marginal distributions are

fitted rather nicely by the univariate negative binomial and

coupled with the fairly large sample correlation coefficient ,

j it seems reasonable to expect a bnb distribution to adequately

describe the data.

Table 3 shows the expected cell frequencies from the BNB

(a ,0,0,p,q,v) distribution ; no goodness-of-fit test is attempted

for this data set since Arbous and Sichel do not show their

( grouping. They report a x
2 value of 17.0 with 13 degrees of

freedom (df) and P-0.20 associated with the G-B-N(l ,0,v) model

so certainly the fit is reasonable. A visual comparison of

the expected cell frequencies for the two models indicates a

I
I

:. .~~~

• 
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I
close agreement and so we would expect a similar probability

I P to obtain for the fit of the BNB(a ,0,0,p,q,v) distribution .

Although the fit of the G-B-N(l ,8,v) mode l to the ob-

I served data is reasonably good , the authors point out that

I 12 of 18 observed means lie below the theoretical regression

function (MLE estimates are used in (2.12)). The BNB( a ,0 ,0 ,p,q , v)

mode l, and using MLE estimates , gives rise to a regression func-

tion for which only 10 of the 18 observed means are less than

the predicted values.

We tried to fit the BNB(a,b ,c,p,q,l) and the BNB(a,b ,0,p,q,v)

models in equations (2.36) and (2.37), respectively, to these

• 
- data but got zero MLE estimates of b and c in the first model

and an es t imate  of b equals zero in the second. The apparent

I lack of influence of the parameters b and c wi l l  be noted again

for the Bates-Neyman data.  No attempt was made to f i t  the BN B -TR

(8 ,v 1, v 2 , v 3) dis tr ibut ion of (2 .57)  to this  data set since the

I marginal es t imates  of the parameter v (column 4 of Table 1) are

approximately the same. Next we discuss the disease data.

In their paper Bates and Neyman present several data sets

related to injuries and diseases suffered during a common period

of time by office and industrial  workers . For the set associ-

I ated with two kinds of diseases for 1286 industrial workers the

fit of the G-B-N(a,O ,v) distribution is deficient both in des-

cribing the bivariate data and the observed regression function.

That a bnb distribution should be a candidate model for the

I
I

• -
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data , though , is suggested by Table 1 since the marginals are

reasonably well fitted by a univariate negative binomial and

the sample correlat ion coeff icient  is moderate .

I In the fol lowing diagram we show the empirical and theo-

J retical  regression functions for this data;  theoretical  values

result by substituting MLE parameter estimates , via fitting

the jo in t  raw data , int o (2.12). Although a “by-eye ” fit of

a regression function to the data fails somewhat due to the

fact that the observed means are based on varying sample sizes ,

shown at the bottom of the diagram , it is apparent that there

is some nonlinearity in the data.

THEORETICAL AND OBSERVED REGRESSION
FUNCT IONS FOR BATES -NEYMA N DATA

E[YIx]

30 
~~~~~~~~~~~~~~~~ funct ion

20

1 / . — data
10 •

• X - Digestive Disease
Y - Respiratory Disease

- 
S S 4 . 4 1 4 4.  I

0 10 20 x

I 61$ S~ II IT 10 1 l~ 0 2 t — Number in meanat~ U 33 iø 8 3 I 3 0 

- w 
~~~~~~~~~~~~~~~~~~~~~~~ 
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Table 4 shows the observed and expected cell frequencies

g iven by Bates and Neyman for the disease data;  the expected

frequencies are based upon the G - B - N ( ~~, 0 ,v) dist r ibution . From

the previous diagram and the table it is clear that this par-

I ticular model fails to adequately describe the jo in t  data and

the regression function so it is natural to seek a better rep-

I resentation for the data.  To this end we f i t  to the data the

new bnb distributions ; our results are not completely success-

ful in that the joint fits are also inadequate even though the

x2 values are much reduced from that of the G-B-N(cz,8,v) fit.

That the empirical regression function is described better will

I be i l lus t ra ted .

We now give in displays like Table 4 the results  of apply-

ing the new bnb d is t r ibut ion  to these data. In orde r to pro-

I vide a close comparison with  the Bates-Neyman resul ts  we change

their groupings only when necessary to maintain the minimum ex-

I pectation of three . Tables 5 through 8 show the results and

Figure 1 gives some of the associated regression functions .

I Table S illustrates our first attempt at fitting these data;

the bivariate geometric was chosen since it leads to a nonlinear

regression function (see 2 .44) . Choosing a cri terion of x2, the

I fit is much better than the one in Table 4 but still inadequate.

Figure 1* g ive s the regression function from (2.44) with MLE

1 estimates; lb shows the least squares fi t  of the curve

which is the form of (2 .44 ) , to the data. We emphasize the

I-,I ,
1 k
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fact that all parameter estimates are based on the raw data;

I that is , these curves were not fitted to the illustrated means.

Tables 6 and 7 show how the BNB(a,b ,0,p,q,v) in (2.37)

and the BNB(a,0,0,p,q,v) in (2.26) , respectively , describe the

bivariate data. Figures ic and d give the corresponding re-

gression functions . We note that the regression function for
- th e BNB ( a ,b ,0 ,p ,q , v) d is t r ibut ion  is nonlinear.  It  is observe d

that the x2 values are approximately the same in Tables 5, 6

~nd 7 so none of the special cases considered seem superior in

describing the joint observations . The regression functions

are d i f fe ren t , t~iough , and it appears as if the BN B(a ,b ,0 ,p ,q ,~~)

regression mode l is best , at least among the ones based on MLE

estimates.

A possible reason for the d i f f i cu l ty  in adequately f i t t i ng

I these data is that each of the distributions discussed in Tables

4 through 7 has a common v parameter associated with the margin-

als , but the individual sample values of v from Table 1 are

quite different . For one marginal the estimate of v is 0.53

I and for the other , 1.69. Thus we are lead to apply the BNB-TR

(e,v1,v2,v3) distribution in (2.57) ; Table 8 displays the fit.

We see an improvement in the x2 value but still not enough to

I produce a reasonable fit. Figure le shows the regression fun c-

tion for this model. For reference we give the least squares

linear regression in Figure i f .

1•

I
I I  I 
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Associated with each bivariate display in Tables 4 to 8

I.. is an implied marginal fit. None of the distributions ade-

quately describe both observed marginal distributions although

- the G-B-N(ct,O ,v) model does describe adequately (P’0.30) the

I random variable labeled respiratory disease and the BNB-TR

(6,v1,v2,v3) model gives P&0.05 for the digestive disease mar-( ginal and PzO.02 for the other one.

For the Arbous-Siche l data and for special cases of the

I general BNB(a,b ,c,p,q,v) model we saw that the parameters b

and c were not needed to describe those data. Here for the

Bates -Neyman data we see from Tables 6 and 7 that the impact

of the parameter b appears minimal in that the expected cell

frequencies are about the same. Ignoring the observation that

the BNB(a,b ,0,p,q, ) model leads to a nonlinear regression

I function , whereas the BNB(a,0,0,p,q,v) distribution gives a
- linear one as shown in (2.50) , we suspect for parent populations

I with positive correlation that the latter model is fairly ro-

bust against alternatives involving nonzero parameters b and
— I. c. A lthough not attempted here , this conjecture could be ex-

amined via simulation; plots of the probability surface as a

function of some of the parameters could be helpful too.

2.5 Summary

In this part we discussed the bnb distribution introduced

by Guldberg (1934) and generalized by Bates and Neyman (1952).

I This bnb distr ibution admits of positive correlations and linear

- -~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~•: 
- - -
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regression functions . Also we introduced and derived several

properties for two new bnb distributions , one obtained by con -

voluting a bivariate geometric distribution given by Paulson

and Uppuluri (1972) , and another obtained by reducing a certain

trivariate negative binomial distribution. For the convolution

process a dual bivariate gamma distribution exists (Paulson

(1973)) and for it the duality implies the exactly analogous

properties.

For the bnb distribution resulting from a convolution ,

labeled BNB(a,b ,c ,p,q,’u), we established the following results :

( 1) for v integer, the probability function in (2.32),

(2) for v>0 , the moments to order two in (2.43 a and b),

(3) for c~0 and ‘v>O , the probability function in (2.37),

the probability density fun ction for the dual bivariate gamma

distribution in (2.41) and the nonlinearity of the regression

function in Figure lc ,

(4) for v=l , the probability function in (2.36) and the

equation for the regression function (nonlinear) in (2.44) ,

(5) for b~c~0 and v>0 , a method of moments parameter es

timation technique in (2.43 c-f), the equation for the regres-

sion function in (2.50), a recursive formula for the probabili-

ties in (2.51), the likelihood equations for a random sample

(assume v known) in (2.52), the differential-difference equa-

tions Cv known) in (2.53), in (2.54) a ne cessary relationship

for the parameters in optimizing the likelihood function and

-

‘ 
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the likelihood equations for the dual bivariate gamma in (2.55)

and the necessity condition for its parameters in (2.56).

Contrary to the Guldberg-Bates-Neyinan d i s t r ibu t ion  this

one gives rise to positive or negative correlations and to

linear or nonlinear regression functions.

For the bnb distribution which resulted from a reduction

we derived the probability function in (2.57), the moments to

order two in (2.58) and the regression function in (2.59) . This

distribution is basically different from the two previously

discussed ones in that its marginals have characteristic func-

tions of the form (l+O (l_e lt)]  1, i=l ,2 ,whe reas the character-

istic functions associated with the latter distributions are of

the form (l+8 1(l_e
1t)]

_
~~, i=1 ,2. Equation (2.1) shows how the

resulting marginal distributions would differ. From the appli-

cations of these distributions to data we suspect that bnb

models wh ich give rise to marginals with characteristic func-

tions of the form tl+O i(
l_e ]t)]  1

, i l ,2, would be useful.

We applied these distr ibutions to the bivariate data g iven

by Arbous and Sichel (1954) on absenteeism among 248 shift wor-

kers in two yearly periods and to disease data of two types

among 1286 industrial workers.

Arbous and Sichel fitted the symmetric (cv l) Guldberg-

Bates-Neyman model in (2.6) to absenteeism data and got a rea-

sonabie fit (P 0.20) but the regression function , with para-

meters via MLE, overestimated the observations in that 12 of

___________ 
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18 means were below the computed r egress ions . We app l i ed

the BNB (a , 0 , 0 , p , q , v )  d i s t r i b u t i o n  to these j o i n t  da ta  and

the regression f u n c t i o n  was such tha t  only 10 of 18 means

were below it . Arbous and Sich el did not show the cell

groupings they adopted for use in the x
2 tes t for the bivari-

ate fit so we could not compare the BNB (a,O ,O ,p , q ,v ) model

to the Guldberg-Bates-Neyman model. By- eye , the fits seemed

comparable .

Bates and Neyman applied the Guldberg-Bates-Neyman dis-

tribution to disease data but the fit did not adequate ly  des-

cribe the observed bivariate data or the observed means which

clearly sugges ted a nonlinear form for the regression func-

tion . We applied several special cases of the BNB(a ,b ,c ,p,q,v)

model and the so called BNB-TR(9,v1,v2,v3) model in ( 2 . 5 7 )  to

these data and never got a reasonable fit although the values

of x
2 were much reduced; from the latter mode l the x2 value

was about one-half of the value reported by Bates and Neyman.

The nonlinear regression functions resulting from the special

cases of the BNB(a ,b ,c,p,q,v) distribution described much bet-

ter the observed means .

From our experience in fitting special cases of the BNB

(a ,b ,c,p,q,v) distribution to these data and to the data to be

discussed in the next part we suspect that the parameters b

and c are relatively unimportant in fitting bivariate data

from populations with positive correlation . Except in those

____ 

_____- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ S — -
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cases where  the e m p i r i c a l  r egress ion  f u nc t i o n  is obv ious ly

I non l ine a r the B N B ( a , O , O ,p , q , v)  case is p robab ly  a fairl y ro-

bust model. The recursive formula and parameter reduction

I technique deve l oped here make it relatively easy to work with ,

too.

- 

‘
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PART 3

SOME B I V A R I A T !;  APPROACHES FOR A N A L Y Z I N G  A I R C R A FT
OPERAT I ONS AND MAINTENANCE DATA

3.1 I n t r o d u c t i o n  and H i s to r i c a l  Review

Our objective in this part is to apply hivariate distri-
I 

butions to some problems related to inventory control and

main tenance in mi lita ry a i r c ra f t log istics. In a way to be

shown we form bivariate r.v. ‘s related to these problems and

illustrate their utility with actual data. Although the dis-

cussion is restricted to apply ing two of the aforementioned

bnb distributions to certain data sets , the techniques are

applicable to other settings .

The analyses presented here , for the most part , are in

I the context of fitting dis tribu tions to b ivar i ate da ta and

1 then us ing the se samp le dis tr ibu tions to address cer tain prob-

lems . Several authors have postulated areas in reliability

I where certain continuous bivariate distributions can be ex-

pected to result. See , for example , Downton (1970), H ar r i s

1 (1968) , Hawkes (1972), and Marshall and 01km (1967) who study

bivaria te exponential distributions . Closer to the techniques

envis ioned here are the works of Fawcett and Gilbert (1966) for

I characterizing demand pa tterns (un iva r i a te ) for  a irc raf t spare

parts and Youngs , Ge is ler and Brown ( 195 5) for  pred ict in g de-

I mand for aircraft spare parts using the method of conditional

probab ilities. The account by Dade (1973) for some alternative

approaches to maintenance analysis is of interest also.

Ii
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In the next section we present some bivariate approaches

to problems dealing with discrete data. Section 3 describes

how similar approaches could be used with continuous data.

3 . 2  Some B i v a r i a t e  Analy ses of Discre te Da ta

The purpose of this section is to illustrate with several

examp les how discrete bivariate r.v. ‘s can be associated with

ce rtain aircraft operations and maintenance problems and sub-

sequently give rise to meaningful analysis techniques. In par-

ticular , we present demand data for aircraft spare parts and

use bivariate distributions to suggest how a particular kind

of inventory model can be constructed; additionally, aircraft

abort data are given and it is shown how the regression func-

tion for a certain bivariate r.v. related to these data can be

used to suggest the effect of overhaul on an aircraft ’s per-

formance . Besides the above applications an important observa-

tion in its own right is that these data , properly defined ,

can be described adequately by univariate and bivariate nega—

tive binomial distributions .

Firs t we show that bnb distributions adequately describe

demand data for aircraft spare parts in two adjacent time per-

iods . Table 9a gives for a random sample of 72 aircraft parts

actual demand data for a four month period where we have formed

bivariate data by splitting the period into two smaller inter-

vals; we take the first interva l to be the first three months

and the second interval to be the fourth month . As an illustra-

________________  

____________
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tion of the data two parts were demanded five times in the

first three months and then a single time in the fourth month .

From Tab le 1 we see that the sample correlation coefficient for

the bivariate data is 0.54 and that the marginals are fitted ,

reasonably wel l , wi th the univariate negative binomial distri-

bution (illustrated in 9b) . We expect then that one of the

bnb dis tr ibu tions should de scribe thes e da ta and in Table 9a

we show the fit of the Guldberg-Bates-Neyman mode l of (2.6).

(In this entire part procedures for estimating parameters , ap-

p ly ing  the tes t and i l lus tra ting resul ts are all the same

as were described in Section 2 . 4 . )  For t h i s  fit we have P~0.l8

indicating that approximately 18 of 100 fits would be worse ,

assuming, of cours e , that the G-B-N(a ,8,v) mode l is the unde r-

lying parent population. That another bnb distribution describes

these data is illustrated next .

In Table 10 we show how the BNB(a ,0,0,p,q,v) dis tr ibu t ion

in equation (2.26) describes the data ; this is the same data

set that was used before to illustrate how the P value associated

wi th the test is affected by cell groupings . We reiterate

that an alternate goodness-of- fit test , one , perhaps, being in-

dependen t of cell groupings , would be desirable but here we use

the x
2 test and agree to report results based upon a single at-

tempt at grouping the cells for the minimum expectation of three.

By inspection the fits illustrated in Tables 9 and 10 seem

to be about the same . The P values associated with the marginal

fits of the BNB(a,O ,O ,p,q,v) distribution to the univariate ob-

_________________ ______________________________________ ___________________________________________
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- serva tions are 0.24 and 0.27 and the G-B-N(ct,O ,v) mode l giv es

rise to similar values.

I That bnb distributions can be applied to these kinds of

da ta should  be us e fu l  in inven tory con t rol and par ti c u l a r ly

I to problems where shor t range predic tions are required , such

I 
as in cons t ruc t ing fly-away kits. In military air operations

cer tain par ts are set aside from normal opera t ing chann els and

in an emergency are supposed to provide enough spares to last

for a fixed amoun t of time , usually one month. These parts

make up a so called fly-away kit. Youn gs , et. al. (1955) sug-

ges t this applica tion in their  repor t bu t show no dis tribu tions

fitted to bivariate data as we do. We leave this area and next

discuss some aircraft abort data.

That bivariate distributions which admit of negative corre-

I la t ions can be usefu l  in applica tions is i l lus tra ted wi th the

following data set. We show in Table 11 flight aborts (missions

I interrupted during fligh t) for a random sample of 109 aircraft

for two consecutive six month time periods . The flight aborts

are limi ted to those caused by materiel failures. From Table 1

I the sample correlation coefficient is -0.16 and we see that one

of the marg inals is very well fitted with the univariate nega-

tive binomial but the other fit is inadequate . The expected

cell frequencies in Table 11 are from the BNB(a,b ,c ,p,q,l) dis-

I tribution and a P value of 0.12 results.

- I
I

i
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I
Next we give other aircraft abort data and show an anal-

ysis which suggests the effect of overhaul on an aircraft ’s

performance . Aircra ft undergo large scale overhaul programs

per iodica l ly  and it is impor tan t to know if  the programs are

beneficial. Traditionally, the se programs have been jus ti f ied

by the common assumption that the aircraft are restored to a

bet ter condition; the following diagram depic ts one way this

benefi t is perceived.
maintenance
variable

H

-9 -6 -3 0 +3 +6 +9

Months before Months after
overhaul overhaul

Before overhaul , for an individual aircraft , we show an in-

creasing trend to denote degradation of a variable such as

number of failures , number of aborts or perhaps , unscheduled

maintenance manhours and an improvement immediately after the

event followed by degradation again.

Previous attempts at investi gating the effect of overhaul

have centered on collecting sample data for some variable on

either side of the event and then performing , say , an analysis

of variance or a regression analysis to determine if such

I-
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1
degradation trends do , in fact, seem reasonable. Certain

I studies have indicated that aircraft are not in a degraded

condi tion prior to overhaul and are not improved by the event

(Dade (1973)). Some qualifying statements are requi red here——

1 certainly an analysis of this nature is very complex in that

many fac tors such as environmen t, previous missions , f ly ing

hour his tory and total age of the aircraft are involved so evi-

- dently no one analysis can be expected to be complete and ex-

haustive . These types of analyses can be suggestive of the

effect of overhaul , though , and in this respect we seek to
I-, -- I

contribute another technique and illustrate , with some new

- I data , its use. Although not attempted here common experimental

design techniques could be employed to control some of these

other factors .

We are pr imar i ly  interested in developing techniques ap-

plicable to non-normal data and particularly to discrete data ,

such as aborts which are typically small. From here on we

analyze total abor ts , which are mission interruptions discovered

during pre-flight or in-flight operations . As before we study

only those aborts caused by materiel failures.

To examine the effect of overhaul we define two bivariate

I r.v. ’s related to the periods shown in the following diagram .

Periods 1 and 2 (common to all aircraft) are two adjacent six

I
Aircraft Overhaul

I delivery 1 2 3 4

I- ~~~time

I
‘ •l ~

—~~~~~ 
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month per iods where no ove rhaul was pe r fo rme d and periods 3

and 4 are the six month periods immediately befo re and after

an ove rhaul , respectively. The period lengths were chosen

arb itrarily. If A
~ 

is the n umber of total abor ts per a i rc ra f t

in period i , i=l ,2 ,3,4, then we wish to comp are the prob abi l i ty

distribution of the pair (A3, A4) where an intervening overhaul

was performed to the probability distribution of the pair (A1,

A2) where no intervening overhaul occurred. Under a nul l hypo-

thesis of the overhaul being ineffective in changing an air-

‘ craf t ’s performance , as measured by aborts , these two dis tri-

butions should be the same. The regression function is a

descriptor of a bivariate distribution (Kendall and Stuart

(197 3) )  and so one simple way to compare these two dis tribu tions

would be to examine the two regression functions associated with

sample data. All other factors being equal any two aircraft

wi th the s ame number of abor ts in periods 1 and 3 should have

f the same number of aborts , on the average , for periods 2 and 4

if overhaul is ineffective and so any difference in the corre-

sponding regression functions should be suggestive of the effect

of overhaul.

This type of analysis presupposes the existence of a suit-

able bivariate distribution which will adequately describe ob-

served data . Next we present sample data related to the bivari—

ate r.v.’s (A1,A2) and (A3,A4) and fit them with the BNB

(a,0,O ,p,q,v) distribution in equation (2.26). This distribu-

-
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I
tion was chosen arbitrarily and we suspect that other bnb

dis t r ibu tions could be used equ al ly  we l l .  Sample value s of

w i l l  be deno ted by ~~~ j=1 ,2 ,3,4.

Table 12 gives the number of total aborts in periods 1

and 2 for 203 aircraf t. To obtain this samp le we considered

an entire population of aircraft of a particular type (about

500) and excluded those aircraft with an overhaul during the

time periods specified as 1 and 2 and also those aircraft with-

ou t 12 ful l  mon ths of repor ted abor t da ta during tha t time - -

203 aircraft resulted. As an illustration of the data three

aircraft had ten total aborts in period 1 followed by six total

aborts in period 2.

For these data we can use the ordinary sign test (Gibbons

(1971)) for a bivariate r.v. to conclude that where no inter-

vening overhaul is involved aircraft incur the same number of

total aborts in two adjacent six month periods (here we are

actually testing the hypothesis that the median of the r.v.

(A1-A 2) is zero versus a two-sided alternative ; a normal ap-

proximation to the binomial used in this nonparametric test

gives a sample value of IzI=l .25) .

I Table 1 shows certain descriptive statistics for these

[ data and it is apparent that the univariate negative binomial

distribution can be used to describe the marginal observations .

1 We wish to describe further the bivariate data , though , and

so we attemp t to f i t  the joint observations wi th a b ivar ia te

I negative binomial distribution .

~~

-

- I 
- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _



F- — - -.-- - -

1 50

Table 13 shows the expected cell frequencies which result

by applyin g the BNB (a ,0,0 ,p, q ,v) dis tribution of (2.26) to these

da ta and Table 14 gives the observed and expected frequencies

toge ther and the x
2 values. For convenience , we sum the obser-

vations in any one “super-cell” as is our cus tom for the ex pec-

tations . We conclude that the bivariate fit , as measured by x
2,

I is good (P 0.65). The P values for the associated marg inal  f i ts

are 0.04 for A1 and 0.56 for A2. From equation (2.50) with MLE

I param eter es tima tes we see tha t the regression func tion , or the

I mean number of aborts for period 2 given the observed number of

aborts for period 1, is E [A2 fa 1]=4.53 + 0.26 a1. It can be

shown that the least squares regression function for these data

is E[A2 1a 1J - 4.4l + 0.28 a1. Next we show the same analysis for

I sample data from periods 3 and 4; that is , before and after an

overhaul.

Tables 15 , 16 and 17 give observations , expectations and

F the x
2 test for periods 3 and 4 for 387 aircraft . These are

the same type of aircraft as before and we have an aircraft

being included in this sample if it has six full months of re-

ported abort data on adjacent sides of a common overhaul event.

We point out that periods 3 and 4 may be separated by two or

three months which is usually the length of an overhaul for

these aircraft .

I If we apply the sign test to the bivariate data for (A3,

A4) shown in Table 15, as was done for the observed data for

I — 
~~
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t (A 1, A2) ,  there results a sample value of zI= 4.51 and we can

conclud e that value s of A4 gre ater than A3 are more l ik ely in

these data; that is , total abor ts per a i rc ra f t are genera l ly

grea ter af ter overhaul .

Column 5 of Table 1 shows how the univariate negative bi-

nomi al distribution fits the marginals. For the joint data,

the P value (0.12) associated with the fit of the BNB(a ,0,0,

p , q , v) distribution is not as high as for the previous data

but we assume that it is acceptable. The implied marginal fits

give rise to P values of 0.43 for A3 and 0.05 for A4. As a

descriptor of these bivariate data , the regression function

(using MLE estimates) is E[A41a 31=7 .l3 + 0.26 a3. The least

squares regression function is E [A4~a3]=7 .32 + 0.23 a3. Figure

2 shows on one graph the estimated regression functions (via

I MLE) for these two da ta se ts. We view the regression functions

being useful in the following way . If two aircraft have the

I same number of aborts in periods I and 3, say , ten , then the

aircraft which has an overhaul will have , on the average , abou t

I nine and one-half aborts in the next six months and the air-

craft that does not get an overhaul will have about seven , again

on the average . An important advantage in being able to fit

I the data as we have illustrated here is that a confidence in-

terval could be placed on the predicted number of aborts by

using the estimated bivariate probability function ; thus , we

avoid the normality assumption that is traditionally involved

I_i
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w i t h  p lac ing  conf idence  l i m i t s  on th e pred ict ions (Draper and

Smi th (1966)).

Apar t from the development described here using bnb dis-

tributions and if we were willing to invoke the necessary nor-

mali ty assump tions , an al terna tive appro ach would be to use

the least square regression functions in the above way . The

resul ts for these da ta would be abou t the s ame .

Of interest is another bivariate r.v. which is formed by

taking A4 and A5 where A5 is a r.v. represen ting the total

abor ts in the six mon ths immedia tely af ter the four th period.

Thus , we have a new bivar iate r.v. associated with the aircraft ’s

perfo rmance righ t af ter overhaul and we are in tere sted in how

i t compares wi th (A 3,A4) ,  the r.v. representing total aborts

on ei ther side of overhaul. Sp e c i f i c a l l y ,  we are in ter ested

in whether or not aborts decrease again; if the overhaul is

responsible for the observed increase in period 4 perhaps the

degradation is similar to that usually experienced in a new

i tem ’s performance and which gradually declines to a lower

level.

Table 18 shows sample data for (A4 , A5) from 42 8 ai rcraf t

of the same type previously considered; forming the differ-

ences (a4-a5)~~
, i=l ,2,...,428, and using the sign test for an

hypothesis of zero median difference for the r.v. A4—A 5, versus

a two-sided alternative , leads to a sample value of z=0.74 and

so we take the hypothesis to be true for these data. Evidently

I I  - 
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1
then , the number of total abor ts is abou t the same for periods

4 and 5 for an individual aircraft.

We poin t out the rathe r large values of P , 0.75 for A4

and 0.56 for A5, which resul t from fitting the univariate nega-

tive binomial distribution to the marg inal observations (see

column S of Table 1). Although not illustrated , we applied to

these sample data the same bnb distribution that was used in

the two previous instances ; the MLE parameter estimates which

resulted are a=0.7485 , ~~0.7728 , q=0.7642 and v=2.0285. Assoc-

iated with the bivariate fit is P~0.27 and for the marginals ,

P=0.66 for A4 and P~0.76 for A5. We accept the fit. Based on

MLE es tima tes , the regression function is E[A5 1a 4]=6.97 + 0.20 a4

and from leas t square s , E[A 5 1a 4]6.84 
+ 0.21 a4; the dashed line

in Fi gure 2 shows the former. The upper two regression func-

tions in the figure are probab ly within sampling error of one

another; no attempt is made to test for true differences.

Al though no t done here it would be of interest to make a

similar comparison before overhaul ; that is , take a s ix  mon th

period preceding period 3 and form a bivariate r.v. for the

number of total aborts in the new period and period 3 and then

compare that r.v. to (A3,A4). Another analysis planned for

the future is to compare (A1,A2) to (A3,A4) where just those

aircraft with overhauls during periods 1 and 2 are selected

for consideration in periods 3 and 4. In this way we have two

samples during the same calendar time (approximately) and any

-
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possible  con tr ibu t in g causes from tha t fac to r would be some-

wha t con trol led; Dade poin ts ou t tha t changes in man agemen t

policy or hardware and tactics connected to calendar time have

often made maintenanc3 data analyses difficult.

For a large group of a i rc raf t of a par ticul ar type our

results show how these aircra ft performed after overhaul. The

resu lts are only suggestive ; with only the surface analysis des-

cribed here , we are no t prepare d to argue tha t the observa tions

represen t true degradation or that they were caused by the over-

haul. We do think the approach is worthy of considera tion

though and coupled with a comprehensive experimental design

could provide unbiased results.

Other de f in i t ions of the periods mig ht lead to more re-

vealing resul ts; some alternatives are fixed flying hour inter-

vals , a fixed number of sorties , or shorter monthly intervals.

Here the total aborts were taken for the whole aircraft; per-

haps total aborts for a particular subsystem would be better.

In the next section we discuss briefly similar applications

for problems dealing wi th continuous data.

3.3 Continuous Bivariate Distributions Applied to Aircraft
Failure Data

In this secti.in we describe how bivariate probability den-

si ty functions associated with certain aircraft failure data

could be useful in managing aircraft operations and maintenance

• programs . Although the discussion is centered on using bivari-

- 
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1
ate gamma distributions the techniques are applicable to

other  b iv a ria te densi ties .  F i r st we de scribe the basi c ran-

dom var iable  of in terest and then sh ow how meanin g ful  b ivar i-

ate models can be constructed.

For an aircraft we take as a r.v. X the operating time

between f a i lu res  on any component for which the univar ia te

gamma dis tr ibu tion is expec ted to adequa tely descr ibe the ob-

served failure times. An examination of historical data would

indicate candidate components . (We use the term component to

represent an individua l part or a subsystem of parts.) For

applications to be defined later we also require on each air-

craft the delivery date and dates of overhauls . These over-

hauls are on the en tire ai rcraf t and no t jus t on the componen t

itse l f .

On the following time axis we illustrate , for a par ticu-

lar a i rcraf t and componen t, the random variable and even ts

described above .

— Ove rhaul
Delive ry 1 2 i-l ~. 1+1 -2 -l +1 +2

I— ~~•.. I i I I I ~— t im e
X

2 
X
1 

X~~~~1 
X

B 
XA

Failure s occur at epochs 1,2,..., and the observed operating

times are x1,x2 Here the observation x
~ 

is taken to be

a realization of X1 which is the random variable representing

the operating time between the (i-1)st and ith failures. An

-
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aircraft ove rhaul occurs at the indicated point and the

previous failure s are labeled -l and -2; the intervening

erating time is denoted by X B . In a l ik e mann er the nex

failures after overhaul are labeled +1 and +2 and the in

vening operating time is xA . Next we describe some biva

mode ls and possible uses.

For some components it is reasonable to expect that

operating times X~ and X~41 are related (particularly ft

ponen ts that are repaire d and replaced on the same a i r c r

and so we assume th e exi sten ce o f a b ivar ia te dis tr ibu ti

describe t h i s  dependence . Given b i v a r i a t e  data  (x 1, x~ + 1
n=1 ,2,. . . ,N , we coul d de termine if the sample value s x~
x 1~ 1 are co r re la ted  and if , in fact , the obs erved da ta c

be f i tted adequ at e ly wi th any of the exis tin g bivariate

• distributions. To describe some poss ib le  uses of b i v a r i

p rob ab i l ity mo dels in th is  context  we assume the data  co

be fitted adequately.

If the random variables X~ and X~41 can be desc r ibe

a bivariate distribution and if , for a par ti cu lar a i rc ra

an observa tion x 1 is g iven , then the condi tional distrib

of cou ld be used to pre d ict the t ime of the nex t

on t h i s  a i r c r a f t , at least  due to the componen t being co

The regress ion func tion , that is , the mean of the condi t

dis tribution could be used to predict the mean time of t

failure . This would be an improvement over a prediction

•I~~~~ - -
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equal to the mean t ime between f a i l u r e  (MTBF) w h i c h  is typ i-

call y used and is computed as i f  the rand om var iab les X 1 and

X~ ÷1 are independ en t and iden ti ca ll y dis t r ibu ted.

Ai rc ra f t componen ts gener al ly are assume d to exh ibi t

f a i l u r e ra tes wh ich vary w ith time accordin g to the clas sic

ba th tub curve . Thus , fa i lu re s occur more rapidly  at f i r s t

then de creas e to a somewha t cons tan t leve l and f i na l ly  increase

in frequency. Failures in these three periods commonly are

call ed initial , chance , and wear-ou t failures , respec tively

(Mann , et. al. (1974)). A comparison of the bivariate den-

si ties asso ci a ted wi th the sample opera ting t ime s on ei ther

side of several failures could suggest a pattern of component

aging.

One of the prime considerations in simulation studies in-

volving a comp osite of aircraft operations and support func-

tions is in generating realistic component failures. Certainly,

if  t imes to f a i l u r e  are dependen t then a mechanism which allows

for pairs of observations with the proper correlation would be

an improvemen t over a model which ignored the dependence.

A major  objec t ive o f a i rc raf t ove rh aul is to res tore the

aircraft to a more reliable condition . As before we are inter-

ested in determining if the overhaul does improve performance .

If we assume the existence of a bivariate model to describe tIe

dependence between and X1,.1 where no ove rhaul is involve d ,

then we can investigate the effect of overhaul by comparing a

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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samp le dis tribution associated with (X~ ,X~~ 1) to the distri-

bution which results by fitting the observe d data (X B,xA)

from a random sample of aircraft with an overhaul .

These are but a few of the bivariate r.v.’s and applica-

tions which could be described for Continuous data.

3.4  Summa~~
In this part we applied discrete bivariate probability

dis tr ibu t ions to actual a i rcraf t opera tions and main tenance

data and showed how these distributions could be used in prob-

lems rela ted to inventory contro l and aircraft overhaul . Addi-

tiona l ly ,  we described how continuous bivariate distributions

could be used to analyze certain Continuous failure data. All

of the applications presented were for self-pairing type situa-

tions; without doub t , bivar ia te applica tions exis t also in

si tuations involving a dependency between two separate items .

The latter is a more traditional approach for continuous bi-

variate r.v.’s.

- I We presen ted several new data se ts rela ted to demand for

aircraf t spare parts and materiel failure induced aborts . For

the demand and abor t da ta we inves tigated the marg inal  and

joint data and showed how the univariate and bivariate negative

binomial distributions fitted the observations . The P values

associated with the x
2 goodness-of-fit test ranged between 0.01

and 0.85 with the average being about 0.36. One of these data

_ _ _ _ _ _ _ _ _ _ _  
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sets had a negative sample correlation coefficient which em-

phasizes the need for bnb distributions that can describe such

dependencies (in Part 2 we discussed such a distribution) .

As a possib le way to inves tiga te the e f fe ct of a no ted

even t on an i tem ’s performance we illus trated , wi th a i rc raf t

abor t da ta and the overhaul even t, how bivaria te distributions

•could be used. Our methodology involved comparing two bivari-

ate dis tribu t ions , one defined for r.v.’s on either side of

the even t and the other de fined for a s imi lar  r .v. not separated

by the event of interest. We used the sample regress ion func-

tions to compare the distributions .

Ex tensi ons to mul tivariate (beyond two) se tt ings are ob-

vious . Certainly the difficulty of obtaining parameter esti-

mates is compounded though .

In the next part we apply a bivariate exponential distri-

bution to some correlated queueing systems .

‘5  
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PART 4

CORRELATED QI JEUEING SYSTEMS

4.1 Introduction and Historical Review

Using simulation techniques Paulson and Beswick (1973)

showed the effect of dependent exponential service times on

queues in series. In this part we review their wo rk and pre-

sent a set of recursive formulae useful in simulating the

queuein g process.  We use spec tral analy tic technique s to show

that the effect is indeed statistically significan t. Also , we

investigate the effect of correlated interarrival and service

- 
- processes on sing le server , single stage queues.

Firs t , we describe two physical settings where taiidem

queues wi th dependent service times can be expected to arise.

In a paper mil l , large rolls of pape r typica l ly  pass

through an inspection or winding operation prior to being cut

into smaller rolls. A poor quality roll takes a relatively

longer time in the inspection process because defective sec-

tions must be removed and splices made . When this same roll

reaches the f ina l  cutt ing stage it mus t be processed more slowly

to avoid breaking the splices and to repair them when they do

break . Hence process times at the two stages tend to be cor-

related; indeed , it is conceptually possible that they be highly

correlated. The process times at the two stages on any two dif-

ferent rolls would generally be independently distributed. In

the current context considerable interest would be centered on

60
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I
the e f f e c t , i f  any , produced by non- independence  of process

-
~~ time s at diffe rent stages.

Jackson (1954) in discussing queueing systems wi th  phase

type servic e poin ted ou t that a typical  sequence of even ts in

I the overhaul of an aircraft engine consist of stripping, de-

tai led  examina tion , repairs , assembly and testing . Generally,

I an engine with a large number of maintenance requirements can

be expec ted to spend mo re time in each of the la tte r four  phas es

I and so the possible e f fe ct of correla ted service time s on

throughput time would be of interest. It is not difficult to

envision a hos t of other si tuations involving queues in series

in which the service times at the various stages for a given

customer are correlated.

A large proportion of the literature concerning tandem

queue s has cen tere d on Poisson arriva l processes , exponen tial

cervice times, and steady state solutions. The assumption of

I independence of service times is intricately interw oven into

the fabric of the traditional birth-death equation approach to

finding a transient and steady state solution to the tandem

queueing phenomenon . We shall remain within this same framework

wi th the exception that we shall drop the heretofore universal

I (but tacit!) assumption of mutual independence of all exponen-

tial service times. An obvious approach is to use a multivar-

iate exponential distribution with non-zero correlations in

place of the usual independent exponential service times. In

- W - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~
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our situation it is not clear that the birth -death equation

approach can be mod i f ied to incorpora te dependen t service

times. Moreover , any such formulation would very likely be

analy t i ca l ly  intractable. The problem is howeve r amenable to

a simula tion approach and it is in this way that we assess the

effect of departures from independence of service times on

steady state system performance .

The bulk of this part is concerned with two stage queues

in series  since our main concern is showin g tha t a subs tan tial

e f f e ct on sys tem performance is indeed induced by correla ted

service times.

For the unusual single serve r , single stage queue where

the leng th of a cus tome r ’s service time is determined , wi th

probabili ty one , by the length of the interarrival interval

separa t ing h imsel f  and his  predecessor , Conolly (1968) g ive s

the waiting time distribution and its moments . It is also

shown that this pattern of server behavior results in a dras-

tic reduction of the mean and variance of the waiting time as

compared wi th the conventional M/M/l system . Conolly refers

to this type of system as self-regulating and other results

are given by he and Hadidi (1969, 1974). We study , via simu-

lation , this type of system where the dependence between the

service time and interarrival interval is assumed to be proba-

bilistic according to a bivariate exponential distribution .

— — — —— —5- - -  ---5 -----— .-~~~~~~~ - — 
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Other inves tigations involving dependency between the

service and in te r a r r i v al proce sses have typic al ly  all owed for

a dependence be tween a se rv ice t ime and an a r r iva l  one in ter-

val later than the one we consider; See , f or example L ind ley

(1952) and John (1963). Next we discuss tandem queues.

4.2 The Effect of Correlated Exponential Service Time s on
Sin gle_Server Tandem Queues

4.2.1 The Tandem Queueing Sys tem and Recursive Formula e

Conside r the tandem queuein g process dep ic ted in

the following diagram . Customers from an infinite popu-
S
’ la tion arrive at a two stage sys tem according to a Poisson

process wi th me an ra te A which we shal l , wi thou t loss of

generali ty ,  take to be unity. An unlimited queue is al-

ways allowed before  the f i rs t stage bu t before the second

stage the queue length may be either restricted or unlimited.

A single serve r is allowed at each stage ; the service dis-

cipline is first-come , first-served.

CUSTOME RS ARR IVE IN
ACCORDANCE WITH A POISSON STAGE 1 STAGE 2
PROCESS WITH INTENSITY A [

c c c c SINGLE INTERSTAGE ISINGLE
n+2’ n+1’ ~~~ ~~~ ELEMENT STORAGE OF IELEMENT

SERVER CAPACITY q-11~ERVE R

CUSTOMER SERVICE TIMES ARE
GOVERNED BY A BIVARIATE
EXPONENT I AL DISTRIBUTIO N WITH
MEANS AND I

~2 
AND CORRELATION

p ,  — .25  < p < 1 . 0 .
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The sys tem per fo rmance mea sure is taken to be mean

wai t in g t ime per cus tome r and in this  sec t ion we develop

a set of formulae to recursively compute the waiting time

per customer. We use the recursive formulae for the un-

limi ted interstage storage case in order to demonstrate

prec ise ly  how the queueing sys tem consis t in g of two s tages

in ser ies  wi th dependen t servi ce times is rela ted to a

s ing le  serve r sys tem w i t h  in te rdependent  a r r iva l  and ser-

vice processes as discussed by Bhat  (1969) . An interpre-

ta t ion  by Conolly (1968) for  a special type of th i s  l a t t e r

in terdependence is shown to be helpful  in su gges tin g why

mean wai ting t ime is af fec ted by correla ted service time s .

Denote by (T ,, T the times between arrivaln ,. n ,

epochs of cus tomers c~~ 1 and c~ at the f i r s t and second

stage s and le t c~ experience the service times (S~~ 1, S~~ 2)

at each stage , n=l ,2 The sequences of interarrival

times (Tn,i~ T~ ,2) and the (S~~ 1. Sn ,2) for di ff eren t cus-

tomers are both assumed to be mutually independen t and in-

dependen t of each other.

We take ~~~~~~~~~~ w~
2
~ ) to be the wai ting t ime s , ex-

cluding service , and (W~’~~, W~
2
~) to be the total waiting

t ime s , of cus tome r ~~~ at the respective stages , n=l ,2 

We illus trate these definitions with an arbitrary combina-

tion of arrival and service times in the following diagram .

The illus tration is for two queues in series with unlimited

1 ’  
_ _ _ _ _ _ _  
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in ters tage s tora ge; dia grams l ike this  are useful  in

developing the recursive formulae for the di fferent cases

to be presented.

cn DEPARTS c~~ 1 DEPARTS
1st STAGE , 1st STAGE ,ARRIVES ARRIVES 2nd ARRIVES ARRIVES 2nd

TIME 1s t STAGE STAGE 1st STAGE STAGE
AXIS I

I I I I

I I

I ‘ ( 2 )  I

n i n

CUSTOME

~~~~OME R H ~~~~~~~~~~~~~~~~~~~
-— T~~ 1,2

Case A. Two stage queues in series, unlimited inter-
stage storage

Customer c~~1’s total waiting time at the first

stage and interarr ival  time at the second stage are given

by

- -r

_j : 
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s
~
4 1 1

~ 
- 

i f  T~~ 1 1 >W~’~

~
( 
~ = (4.1)

Wn -T~ ÷ 1 1 +S~ 41 1~ if T~~÷ 1 1
-czW~

and

Tn+l l~W~
1)+Sn+l l~ ~~~~ T~ ÷1 ,11W~

1
~

T +1 2 
= (4.2)n 

~f T~~ 1 1 <W~~
).

The cond it ion in (4 .1)  and ( 4 . 2 )  tha t

Tn+l l > ~~~~ s imply me an s tha t c~ ÷1 arrives at server

one af ter cn has depar ted , and likewise Tn+i i 
<

means Cn+l arr iv es be fore c~ leaves.

Similar to (4.1), c~~ 1
t s waiting time at the

second stage is

5n+l ,2 ’ if Tn+ 1 2 ~
W
~
2
~ 

( 4 . 3 )
n 

w~
2)-T~ 4 1 2 +s~ +1 , 2 ,  if T~~ 1 2

<W~
2
~~.

The above diagram illus trates (4.1), (4.2),

and (4.3) for Tn+l 1 ~~~~ and Tn+l 2 < WJ~
2) . Simi la r

diagrams resu lt for the remaining conditions .

In an obvious way , we can use these rela ti on-

ships to build up a set of recurs ive formulae for any

number of stages in series where the interstage storage

between stages is unlimited (See Appendix B).

-— 
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Since each cus tomer mus t proceed thr ough both

stages the output of the first stage becomes the input

of the second stage and there fore we have , in steady

state , that the time interval between arrivals at the

second stage satisfies a Poisson process with the same

i n t e r a r r i v a l  i n t e n s i t y  parameter  A as the input  d is t r i -

bution (Burke (1956)). Unlike the first stage , however ,

cs’s service time at the second stage is correlated with

the interarrival time there . In the above diagram , this

corresponds to a correlation between S~ ,.1 2 and Tn+ l 2 •

This result is apparent from (4.2) since S~ 41 ,1 and

5n+l ,2 
are dependen t by assumption.

If  S~ 4 1 1  and 5n+l ,2 are independen t as is

usual ly  assume d for two stage serie s sys tems then each

s tage , in steady state , can be analyzed independ en tly and

sin ce Tn~ l 2  and S~~ 1 2  are independen t, as are

and 5n+ l 1’ the regular M/M/l results obtain for each

stage .

Bha t (196 9) describes five d i f f e r e n t classes of

single server first-come first-serve d , sys tems wi th Po is-

son inpu t and exponential service times which result from

relaxing some of the assumptions of independence which

are typically assumed. These classes represent more rea-

l istic operating systems than those with assumptions of

independence ; Bhat further points out that more work needs
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to be done on these problems than the limited amoun t re-

ported at that time . One of these classes is for systems

with interdependent arriva l and service processes as is

the case here for T~÷1 ,2 and Sn+l 2~
Cono l ly  ( 196 8) and Cono l ly and Had id i ( 1969, 1974)

have studied a dependent structure somewhat similar to

F this wherein the ratio of service time to interarrival

time is constant for all n; they give transient as well

as steady state results for the system. Conolly showed

numerically that this pattern of serve r behavior results

in a dras t ic reduc ti on in the mean and var iance  of the

wai ting t ime as compare d w ith a conven tional M/ M/ l  que ue .

I t was no ted by Conolly tha t this  kind of server behavior

is to be expected from a wel l  r egu la ted  service  f a c i l i t y

where the server a d j u s t s  the service time of a custome r

according to that custome r ’s interarrival time , wh ich the

server observes without error. In this way , a long in ter-

val gives r i se  to a long service t ime , and shor t  i n t e r v a l s

correspondin g to a succession of rap id a r r iva ls , are fol-

lowed by correspondingly short service times. This regu-

la ted behavi or there fore p reven ts a long queue from forming

and Cuts down on the mean and variance of the w a i t i n g  time

in the system.

Returning to the two stages in series problem

unde r s tudy we see tha t this  sys tem , via equation (4.2),

can be viewed as a type of self- regulated system since

I 1
• __ 
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I i

I 
S~ ÷ 1 2  and T~÷ 1 2  ar e rela ted , although not in the deter-

ministic way assume d by Conolly. It will be demonstrated

I later that our type of stochastic dependence between S1~4 1 2

and T~~ 1 2  give s rise to results wh ich arc consistent with

I Conol ly ’s .  This  a r t i f i c i a l  way of v i e w i n g  the s y s t e m  as a

self-regulating device is employed so le ly  to make the ef-

I f ec t s  seem mo re rea sonable  and in no way i n f l u e n c e  the

resul ts.

Case B. Two s t age  Queues in ser ies,  no i n t e r s t age  s torage .

For t h i s  case , C
a

’ S total waiting time at the

second s tage , ~~~~~ is al ways equal to th e Sn 2 so the
I . . . (1)only quantity of interest here is W . Since there is

I rest ric ted (z ero) in ters tage storage , the ph enomenon o f

blocking occurs and so the waiting time computation is a

I b i t  more compl ica ted  than in Case A.

1 
Blockin g of stage one occurs when a cus tome r wh o

has been serve d there is denied entry into the second

s tage  because no space remains  in the queue ing  are a for

stage two . The custome r there fore stays in the firs t

I s tage and pr even ts tha t serve r from accep t ing a wai tin g

1 customer for service. In effect , the first serve r ’s util-

I ization is diminished (Saaty (1961)).

1 Th e total wai t ing time for c~.1 ,.1 at the f i r s t

server is given by one of four relationships depending

I upon the algebraic sign of W~’~ - T~ ÷1 ,1 --  that is , upon

I 
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I—
w h e t h e r  or not  c~~~1 ar r ive s at s tage  one b e f o r e  o

lea ves.

- For ~(1)

- (1 1W~
1)-5Tn+l l+Sn+l l, i fS n+i i~

Sn 2

I Wn+I =1
, if S <S

L n n+l ,l n ,2 n+1 ,l n ,2

and for T~~1 ,~~ 
> W~

’
~

~~Sn+1 1, if

n+l 
W~ ’~ -T +S i f  S <W~~~ -T- 

L n n-’- l ,l n ,2’ n+l ,l n n+

The fo l lowing  diagram i l l u s t r a t e s  ( 4 . 4 )

Sn+l l < Sn 2 ~

I W~’~ W~
2
~

___A___ __A___

CUS

~

OMER

~~~~~~~~~~~

) s
~~

1

I n+l
I 

_ _ _ _ _  _ _ _ _ _ _

CUSTOME R T~~~~~~~~~~~1BL0CK I~~~0
c~~ 1 - ~

4_ T
n+i i

_*jWn+~ I S
~+1 1: SERVER 1

Si m i l a r l y,  the other condi t ions can be v e r i f i e d .

- - ~~~~~~~~~~~~~ 
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- 

-

-

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_
-~~--

I.. -
~~ 

— ~~
1. 

~~~



—5

71

Case C. Two stage queues in series, interstage storage
c~paci ty equal s one .

As in the previous cas e bl ocking can occur at

I the first stage but here a custome r ’s total wai ting time

at stage two can exce ed the service time since in ters tage

I storage is permitted on a restricted basis.

I 
The total waiting time of c~~ 1 at serve r one de-

pends on the al gebraic sign of - T~~11 .

I If T~~1 1  <

1 1 
1 1 ) _Tn+l ,l+sn÷l ,l, if

I W (4.6)

- i ~~~~~~~~~~~~~~~~~~~~~~ if  Sn+1 1<W~
2
~~

Sn 2

and c~~ 1
t s interarrival time at server two is

I ISn+i ,i~ if Sn+i i~
W
~

2)
~
Sn 2

I T 1 2  =
~~~~ ( 4 . 7 )

- 
n , I (2) (2)

~~~ ~~n ,2’ if S~ .,.1 1<W~ ~
Sn 2 ~

I If  T~~ 1,1

if  Sn+l ,l T Y~~~
Tn+1 ,l

+W~
2
~~ S

• (1~~ 
n n ,2

— W’-~~ = (4 .8)n 
~~~~~~~~~~~~~~~~~~~~~~~ if

I
and

I
I

- 
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1 
T~÷ 1 1 -W~’~+S~÷1 1, if S~+ 1 1 1W~

’
~ -T~+ 1 1

I’ n,2
T~ ÷ 1 2  = 

(2)  (1) 
( 4 . 9 )

W -S i f S  <W -Tn n ,2 ’  n + l , l n n+ 1 , l

I n n ,2

Next the total waiting time of cn+l at stage

two, ~~~~~ is computed by using (4.3) in Case A with

I T~÷ 1 2  as define d in (4 .7) or (4.9).

The following diagram is descriptive of (4.8)

I and (4.9) where T~+1 11W~
’
~ 

and 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

W~
2
~n n

CUS ~OME R
~~~~~~

l) Snl1~~~~
) Sn 2 ~~~~___

I 
i n+i n+1

- I I ~~
---

~~~~
--

~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I 
CU~~~~ ER 

~ 
Tn+l ,l~~

_ 
L~i ~~~~~~~~

I ~~~~~~~~~ ~

4.2.2 A Bivariate Exponential Distribution

I There are a n umber of b ivar ia te exponen tial dis-

t r ibu t ions  which could be used to describe the dependence

-~~

- ~~~~~~~
-
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a
assumed be tween S1 and 

~2 
(we drop the subscripts n).

I We choose to use a special case of the bivariate gamma

I dis tr ibu t ion discus sed by Wicksel l  (1933 ) and Kibbl e

(1941), and more general ly by Krishnamoor thy and Par tha-

I sarty (1951) and Paulson (1973). The functional form

can be wri tten as

I a 
_5

l/01 
- 52/02 ds 1s2f (s 1,s2) = 0182 

e ‘o(2(ej~2 )~~) (4.10)

2k
where 

~l -~~- ~~ ~~~ 
0, and 10( z )  = ~ (z~~)1,~ is the

k=0

modif ied Bessell function of the first kind and order

- I 
- 

zero . Here a > 0, d > 0, and a + d = 1.

The dens ity (4.10) has mean vector

I
01/a

I ‘-A = = 
, (4.11)

~2 
82/a

I covariance matrix

I r2 1
i 1-11

= (a. .) = I (4.12 )
I [du1~ 2 u2 _J
I and correlation p=d with 0 < p < 1. The marginal dis-

tributions of S1 and S2 are exponential with means

I and 
~2 

respectively . A generalization of (4.10) due to

Paulson admits of correlation values - .25 < p < 1.

I
I

L i  
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I
The var ia tes (S 1,S2), given by (4 .1 0) ,  can be

readily simulated. Let ~~~~ j=1 ,2 , . .  .} be independen t

iden ti ca l ly  dis tr ibu ted exponen tial wi th me an for

i=1 ,2 and let N denote a geometric random variable with

dens i ty func t ion

Pr [N=i] ~i~ l q,  i=l ,2 ,...

where p=d and q=a.

Then

N N
(S 1,S2) = (~~~ 

X1~ , 
~ 

X 2~) (4.13)
3 3

has the bivariate exponential distribution (4.10) (see

Downton (1970)). The simulation proceeds by simulating N

and then adding that number of i.i.d. exponentials accor-

ding to (4.13).

I t would be easy to cons truc t si tuations in wh i ch

the service times are negatively correlated. In order

tha t we may readily consider this cas e we require a bi-

variate exponential distribution which is conveniently

s i m u l a t e d .  Such a d i s t r i b u t i o n, which includes the dis-

tr ibu tion in (4.10 ) as a special case is due to Paulson
S I

(1973). The actual simulation of variates S from

tha t dis tribu tion is e f fe cted through

s = x 1 + v
1
x
2 

+ V1 V2 X 3 + ... ; (4.14)

.j 
~~-. 

- % - ~~ 
~~ .
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1
here X .  is a 2-vector  of independent exponent ia l  van -

I 0,
ates with mean vector and the V~ are random 2x2

I ma trices wh i ch take on value s in the set f [
~ 

g] , [
~ ~

]
[g 
~] 

, [~ ~
] } w i t h  p robab i l i t i e s  a ,b , c ,d respect ive ly.

I All the X
3
’s and V

i ’s are mutua l ly  independent .  Note

tha t  even tua l ly  the product  1TV~ w i l l  resul t  in a m a t r i x

I of zeros and so w i t h  prob ab i l i t y  one ~~ is represented

I 
by a finite sum (Kesten (1973), Kohberger (1975)). It

turns out that (4.13) is really a special case of (4.14).

I The b ivar ia te  random variable  ~~~~,, in (4.14) has

mean vector

I 
* 

01/ (a+c)

~1 = = (4.15)
— 

112 02/(a+b)

I and covariance matrix

ad-bc
I * 1

(111) l-d °1 2 1
= I I (4.16)

a l ad-b c8 0 * 2

I L~
d 1 2 (112 )

4.2.3 Simulation Results and Interpretation

Simulated results are presented in this section

I for three cases of interstage storage capacity : (A)

infinite (q=oo) , (B) zero (q=l) , and (C) one (q=2) . For

I the i n f i n i t e  inters tage storage case resul ts  wi l l  be

given for two stages in series for various values of

correlation and for two through twenty-five stages in

I
I .’ 

_ __ _ _  
_ _
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I
series for  cor re la t ion  equal unity. The latter depicts

I how adding stages mi ght a f f ec t  system performance g iven

cor re la t ion  p > O ;  mo re prec ise ly ,  i t  provides an envelope

I within which system performance will vary since for a

fixe d number of stages and uti l i za tion correla tion uni ty

provide s an extremum and correlation zero provides another.

In each of the three cases we allow infinite storage be-

I fore stage one. 
-

l_ In the ordinary case in which the corre la t ion be-

1 tween paire d servi ce times is zero a few steady s ta te  re-

sults  are avai lable for  comparison purposes.
- I We have taken the mean arrival rate to be unity

and so the steady state uti l ization , v , at stage i is

simply the mean service time It will suffice for our

purposes to take i.i
1 

= ~~~ = 11 since similar steady state
- behavior  wi l l  obtain for  111 ~ 112. Rirthermore , there do

I not seem to be many results available for purposes of com-

parison for Cases B and C when 111 ~ 
112. For A = 1, our

I. system performance measure of mean waiting time (queueing

plus service), is equivalent to the expected number in

- the system.

Case A. k stage queues in series, infinite interstage
storage.

I (Graphs are labeled k Q for k-queues).
Steady state results for k stages in series with

I no correlation between pairs of service times are avail-

I 
- 

~~~
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_
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I
able (Saaty(l96l))and we have that  the expec ted  number

I of customers  at each s tage  is v / ( l - v )  and kv / ( 1- v )  in

I 
the sys tem .

- The f o l l o w i n g  diagram provi de s for  two s tages

I ~ fl series the mean wai t ing time a t the second s tage ,
— (2) for v = 0.75 and p = -0.25 , 0, 0 .5 0, and 1.0. In

I this  case the mean wai ting time at the f i r s t stage is

independent of p since no blocking occurs and hence it

I su f f i ce s  to examine the me an w a i t i n g  time at the second

‘ 
stage to determine the e f f ec ts  of correla ted service

t imes .  In some of the s imula t ion  resul t s  to fol low we

I replicate , many times , runs of much shor te r  length ; here

we choose to i l l u s t r a t e  the me an wa i t i ng  time as a func-

1 tion of n with one very long run . Long runs , such as

I
1

(2)

I wn
1 4

SYSTEM

3 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I - --—-- ----——-- (2.40)p = 1.0 (537)

2

I I I ~~ _ _ I  I I I I
10 20 30 4~~5O 60 70 80 90 100 ~

I CUST OMERS( IN THOUSANDS )

I
I I I 

_ _ _  _ _  _

—
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I
j this one , may be cons idered as bein g composed of repl ica-

I t ions of smal le r  run s where the s t a r t i n g  condi t ion  of a

new repl ica ti on is the ending value of the previous repli-

cation (Conway(1963)). From the diagram it is clear that

J each graph tends to stab i l i z e for incr easing n in accor-

dance with the law of large numbers .

I The numbers adj acen t to the value s of p in the

dia g ram are the mean wa it ing time s for the second stage

I and me an wa it in g t ime s in the sys tem af ter 100,000 service

completions . We point out that for p=O the mean waiting

times at stages one and two are 2.99 and 3.05 respectively

- I and these are in close agreement with the expectation of

3.0 for this utilization. R~r p~ O we see here a bonus

I attached to positive correlation in service times since

system performance improves with increasing correlation .

On the other hand , sys tem performance de ter iora tes wi th

j negative correlation .

Each i l lus tra tion like this one has a star ting

condi tion based on the mean waiting time from a p ilo t run

and then we omit the wai ting time s of the f i rs t 1,00 0 cus-

tomers in the actual computations shown .

I Figure 3 gives system performance for di fferent

values of v and for p=0 ,1. These graphs are intended to

I show that there is no discernable effect due to correla-

tion p>O at utilization v = 0.6 but as v increases from

I

~1 
_ _

~~~~~~~~~~~~~
-
_ _ _  
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I
0.6 to 0.9 a definite trend appears .

I Figure 4 shows the ratio of mean time in the

I 
system for various values of p to the mean waiting time

in the system at p 0  (Paulson and Beswick(1973)). These

I kinds of graphs are based on an average of 100 replica-

tions of 1,400 service completions (after an initializa-

tion of 400 service completions were discarded) .

The solid lines in Figures 4 , 7, and 9 depic t

a smoothed fit to the actual data. Sampling variation ,

I of course , precludes the possibility of obtaining such

a smoo th fit without extremely long runs or extensive

I repl icat ions  but  each curve was spot-checked to ascer ta in

whether or not the fit was spurious . In no case was any

I sub stan tial devia tion recorded .

Now we show how these ef f ects are consi sten t
- wi th Conolly ’s (1968) resu l t s  for the case of v = 0 . 9  and

J correlation of p l.0 between the service times in the two

stages. Conolly showed for his single serve r queueing

I system where the ratio of service time to the interarrival

time was cons tan t for all  n , that for a u ti l i z a tion of 0 .9

(the ratio) the mean waiting tLne (queueing plus service)

I was 2.71. lbr service time independent of interarrival

time the steady state expec tation , for this utilization ,

I is 9.0. The interarrival time and service time in Conolly ’s

system are perfectly correlated whereas in our system theI

~ 1
1

5--.—— ——----— 5- ———-5—-— —~~ 
— 

—— 
—
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I
two service times are perfectly correlated. It is clear

from equation (4.2) that the correlation between the in-

tera r r iva l  time at the second stage and the service time

there is less than one and so the improvement in system

performance for our system should be less than Conolly ’s

(an elementary derivation shows the correlation to be vp

or 0.9 in this case) . We see from Figure 3 that the mean

waiting time at the second stage after 100 ,000 customers

is 4.13 and indeed the improvement is less.

In Figure Sa we show the mean wai tin g t ime as a

function of n for five stages in series where the service

times are equal at each stage . The graphs are labeled

~ (k) corresponding to the mean wai tin g time at stage k ,

k=l ,2,. - .  ,5. We see that the mean waiting time ~i
(2 )  

, for

the second stage , is cons isten t wi th the resul ts in Figure

3. The results for ~~~ ~~~~~~~~~~~~~ and suggest that fur-

ther improvements in system performance occur over the p=O

case but the e f f e c t  seems to approach a limit. The number

in pa r en thes i s  to the r i gh t  of is the ra t io

~ 
~i~~~/(kv/(1-v)), 2 < k < 5. Figure Sb shows this  ra t io

for  two th roug h t w e n t y - f i v e  s tages in series for  p = l .  These

resu l t s  were obtaine d by extending recurs ive formulae (1),

( 2 ) ,  and (3). In th is ex treme case of correla tion , adding

stages has an effect on system performance which depends

markedly on the utilization rate ; e.g., for v=0.7 system

I
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I
performance is impr oved through the fi rs t four s tages

and then is reduced. A utilization of 0.9 gives rise

I to much improve d system performance through twenty-five

stages.

I Cases B and C. Two stage queues in series, finite (in-
cluding zer)~~ interstage storage.

Thr these cases the util iza tion is e f f ec-

tive ly reduced in value (Saaty(196l)). The maximum effec-

I tive utilization is “max = (q+1)/(q~2) where the queue in

stage two is limited to a length of q-l units . We conside r

the cases q=1 and q=2.

- I Figure 6 shows the me an wai ting time at

the firs t stage for q 1  and several values of v.  Thr this

I case each cus tomer ’s wai ting time at the second stage is

simply the servic e time there so we are con cern ed only w ith

the wai tin g t ime proce ss at stage one . Figure 7 shows , for

I stage one , the ratio of mean waiting time at stage one with

p~ 0 to the mean waiting time at stage one with p-=O.

- I Steady s tate resul ts fcr the mean numb er

of customers in the system , L, for p=0 , q=l and with util-

iza tion v are given in Morse (1958); we have that

L = 4v (2-v 2)/((2+v)(2-3v)). (4.17)

lbr v=0.4 , 0.5, and 0.6 and for p=O , the

observed (expec ted) values of L are 1.55 (1.53) , 2 .87 ( 2 . 8 0) ,

and 7.80 (7.57) respectively. The observed values are fro~u

J Figure 6.

_ _ _  __________ 

_ _ _ _
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R r  p
~~
O , again we see a dramatic effect

I in sys tem per formance . Sys tem pe r fo rmanc e de te r iora tes

I 

as the correlation p increases throug h p osi tive valu es
- and improves as p decreases through negative values. Hence

I when there  is no storage allowe d before stage two the de-

parture from independence results in sign ificantly differ-

I ent steady state behaviors , especially as the value Vmax
is approa ched.

- F in a l l y ,  we consider the case q 2. Figure

8 shows the mean wa iti ng t ime as a function of n at the

f i r s t stag e and the ending va~ ue for the me an wai ting

t ime in the second stage . The mean w a i t i n g  time a t stage

two was ve ry stabl e for al l value s of n so tho se values

w ill not be illustrated. The effect for v=0.6 is in the

same dire ction as for q=l but reverses as v increases so

that for values close to Vmax the chan ge in sys tem perfo r-

I mance is consistent with the q=~ case ; that is , improv e-

men t for p>O and deterioration for p<0. Figure 9 shows

the effect in this case for p~’0.

1 4.2.4 Spec tral Analys is of {w~
1
~ } and (W~

2
~ }

In this section we review briefly the theory of

I spec tral analysis , show the samp le power spec tr a of the

time series CW~~ -~} and (w~
2
~ } and finally apply a non-

parame tric test to the ra tio of cer tain es tima ted power

spec tra .

I 
~~~~

.- 

I
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I
- I Several authors give complete accounts of the

theory and application of spectral analysis; e.g. see

1 Anderson (1971) and Jenkins (1961). Fishman and Kiviat’ s

(1967) paper on the analysis of simulation generated time

serie s is also of dire ct in terest . Our ob jec tive her e is

to rev iew enoug h of the fun damen tals of spec tr al analy sis

to motivate the nonparametric test to be presented later .

In general we take ~~~~ teT} to be a stochastic

process and we let {z
~~
, tcT} deno te a sequenc e of obser-

I 

vations from the process; the sequence is referred to as

a rea l iza tion of the pr ocess or sim ply as a time se ries .
- I We take the index se t T to consis t of discre te , equispaced

time points . From the time series we seek to describe the

under ly ing process .  Se ldom can we de term ine the form o f

the multivariate distribution which generated the realiza-

tion and most often we must make simplify ing assumptions

even to descr ibe any of the dis tr ibu tion ’s moments .

We assume that the process is in a particular state

- of equilibr ium where the first and second moments are m d ’

penden t of time . Therefore ,

- E ( Z~ ) = 11 (4. 18)

and

I

Cov(Zt,Zt+k) 
= 

~
‘k 

(4.19)

I

- 
- - - 
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1~~ for all integers k. G iven a sample of N observations

I from the process , we estimate ~i and with I and

where

z ~~~ z (4.20)
t—l

I and

I Ck = 
~ 

(zt
_I)(zt+k-i). (4.21)

I The type of equilibrium described above is called

weak or covariance stationarity or stationari ty in the

I wide sense. A study of the time series in terms of its

• 
autocovariances (the 

~~~ 
is re ferred to as a time domain

analysis. Another type of analysis is concerned with the

I frequency content of the time series, namely spectral

analysis.

I The Iburier cosine transform of the autocovariances

~~ ~~~~~~~ 

y2,•••, is called the power spectrum. Denoting

U the power spectrum by f(w), we can write

I f(ti ~) ~ 
+ 2 

~ 
cos 2irwkj, 0 < w ½ (4.22)

I and inverting f(w) we can express 
~k 

as

I ~k — f(~a) cos 27rwk dw, k”O ,1,2,... . (4.23)

When k .0 we obtain the variance y of the process as the

integral of the power spectrum :

‘ I

-
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I
= f (w)  dw. (4 .24)

Thus the power spectrum can be considered as a decomposi-

I tion of the variance at different frequencies .

To get sample results which are statistically con-

I sistent we do not estimate the spectrum at a particular

I frequency but instead estimate the average power about the

frequency of concern. The average power corresponds to

I weighting the autocovariances in the time domain and we

typically estimate f(w) with the truncated estimate

I
~.[A 0 c0 + 2 J1 Ak Ck cos 2irw~kJ (4.25)

where j/(2m), j—0,l,2,...,m and the weights Ak,

I k-O ,l,2,...,m, form a so-called lag window. We choose

‘ 
the Blackman-Tukey “hamming ” window ,

Ak • 0 .54 + 0.46 cos irk/rn, k—0 ,l,2,...,m. (4.26)

In (4.25), the sample autocovar iances c~~1~ ~~~~~~~~~~~~

are omitted since, for m suff icien tly larg e, they should

contribute little information. As a result, only in auto-

I covariances need be calculated and savings in computation

I may be considerable. Considerable care must be used when

selecting m , howeve r , because too large a value will in-

crease the variance of the estimates and too small a value

will not give enough resolution.

~H ~~~~~~~~~~~~~~~~~~~~~~~~
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I
Next we examine several sample power spectra as-

I sociated with the simulated waiting times for the two-

I 
server infinite interstage storage case. We take the sim-

ulated values {W~’~ }, n—l ,2,...,N; izl ,2, to be time series

I where , as before , w~’~ is the total waiting time , queueing

plus service , of customer n at server i. Figure 10 shows

a portion of the sample spectra for and

n— l ,2,...,2000, and for correlation values of p—0 , 0.25,

1. 0.50, and 1.0. Utilization , v , is 0.90. The 2000 sample

J values were chosen from the end of a simulation run of

length 30,000 to ensure that any possible effects of start-

• 
F 

up conditions were eliminated. After making several pilot

run s, m in equation (4.25) was set equal to 400. Ibr

F p—0.50 and p—1 .0 in I~gure 10 it is obvious that the waiting

I times at the second server give rise to different spectra

than the waiting times at the first server.

I, Since the integral of the power spectrum measures

the variance of the process and the area under the sample

I spectrum should be indicative of the sample variance, we

see that the effect of positive correlation is to reduce

the variance of the waiting time process. Again this is

I consis tent with Cono l ly ’s results (1968) for the single

server system in which a customer’s service is comple tely

I determined by the length of the interarrival interval sep-

• arating himself and his predecessor. Ibr a utilization

F
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H
of 0.9, Conolly ’s system reduces the steady state variance

I of the waiting time from 81, for the classic ‘f f’4/i system ,
to 1.16; the sample variance associated with the waiting

times at server 2 in ~.gure lOd for p—l .O is 2.05 (the sam -

I pie variance associated with the waiting times at server

1 is 60.1). Recall from Section 4 that the condition p—l.O

I for the correlation between a customer’s service times at

I 
the two servers is equivalent to a correlation of v , or 0.9

in this case, between his interarrival time and service

I time at the second server. Therefore, the reduction in

variance is consistent with Conolly ’s results since the

• 
I 

corresponding correlation in his system is one.

Next we develop a nonparametric test for the hypo-

1 thesis that f~~~(w) — f~
2
~ (w) , 0 < w <0.5 , where f~’~ (w)

represents the power spectrum at frequency w associated

with the time series {W~
’
~}, n—1 ,2,...,N; i=1 ,2. The

I Biackman-Tukey “hamm ing” lag window in (4.25) gives rise

to spectral estimates which are not independent and so we

- 
- 1 employ the notion of equivalent independent estimates

(Jenkins(1961)) which implies , for this window , that esti-

mates are approximately independent if they are about

I 5/(4m) cycles apart. Since the estimates in (4.25) are

separated by a basic frequency of l/(2m) cycles, this

I spacing of S/(4m) cycles amounts to taking, as independent,

those estimates which are separated by an interval of 2.5

•— -- 
- 
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times the basic frequency. Since the waiting times are

I not normally distributed and the assumption of normali ty

is implicit in the development of equivalent independentI estimates we take this spacing of 2 .5  time s the basic fre-

quency simply to be a rough guide. Actually , the normality

assumption is more critical for making distributional as-

I sumptions about the spectral estimates than for the usage

here. To select a practical spacing and to reduce any

Ii possible effects of the normality assumption , we take es-

,, timates at the frequencies j/(2m), j—l ,4,7,..., to be ap-
I proximately independent (the spacing here is 3 times the

1 basic frequency). Therefore, of the 401 estimates in each

spectrum partially illustrated in Figure 10, we take 134

I.. estimates at the frequencies j/800, j—1 ,4,7,...,399, to be

approximately independent.
I Now for each approximately independent estimate we

F can regard the ratio ~~~~~~~~~~~~~ as a Bernoulli trial

(greater than unity or less than unity) and under the null

hypo thes is of homogene ity of the two spectra , we can take

as a test Statistic the number of ratios which are less

I than unity. Figure 11 shows the ratio for p—O and p—O.25.

I Of the 134 approximately independent ratios in Figure h a ,
• 

- 

64 are less than unity and in Figure lib, 43 of the 134[ ratios are less than unity. thder the null hypothesis, a

ratio greater than unity is as equal ly likely as a ratio

: 11 
_ _ _ _  
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I
less than unity and taking a normal approximation to the

I implied binomial distribution , we have a probability of

I 0.31 associated with observing 64 or fewer ratios less than

unity in ila and a probability of .001 associated with ob-

I serving 43 or fewer ratios less than unity in jib . Although

not illustrated , the results for p~O.50 and p”l.O are even

I more conclusive: for p—O.5O , 23 of the 134 approximately

independent estimates are less than unity and for p—l.0,

none of the ratios are less than unity . Therefore, for the

I case presented here we have good statistical evidence that

the power spectra associated with the waiting times at each

I server are not homogeneous for correlation p>O . We expect

I 
similar results for other values of correlation, utiliza-

tion, and interstage storage to obtain.

I In the next section we study in a similar way single

server queues (not in tandem) which have correlated inter-

I arrival and service processes.

I 4.3 Single Server Queues with Correlated Interarrival and
Serv ice Processe s -

I In this section we are concerned with a single serve r ,

first-come , first-served queueing system where we depart from

I the usual assumption of independence by taking a customer’s in-

te rarrival interva l and subsequent service time s to be correlated

I according to the bivartate exponential distribution described in

4.2.2. Her. the customer’s interarrival interval is measured be-

tween his arrival time and that of his predecessor. It is assumed

.:~ i _______________________ _________________ 
_ _ _ _ _

~~~~~~~~
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I
that customers from an infinite population arrive at a single

I stage according to a Poisson process with rate A , which we

I take , without loss of generality , to be uni ty ; an unlimited

queue is allowed.

I As in the previous section , the system perfo rmance measure

is taken to be the mean waiting time per custome r and in this

I section we show a formula to recursively compute the waiting

time per customer. We give simulated results which show the

effect of correlation and apply the nonparametric test of the

I last section to show that the effect  is indeed s tat is t ical ly

significant .
• 
I Denote by T~ the time between arrival epochs of customers

I 
c~..1 and c~ to the queue and let c~ experience the service time

S~, n—l ,2,3,... . The sequence of interarrival times ’{T~} and

I service times - {S~ } for diffe rent cus tomers are both assumed to

be independe nt; for customer c~ we assume the r.v. (T~ ,S~) has

I the bivariate exponential distribution given in (4.10) with

p~~l (to be associated with T~) and u 2 —v (fo r Sn) ,  0 < V  < 1,

I so that the steady state utilization is ii2—v .

I Ibr cus tome r c~ we de fine w~ to be the waiting time , ex-

cluding service , and W~ to be the total waiting time, n l ,2,...;

I the following diagram illustrates the definitions. ft is ob-

vious that a recursive formula for W is

i: I I’ 

n+l

- T~~1 + S~,1, if T~~1 < t In

I Wn+l — (4.27)

n+l’ n+1 — n

1
- • 
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(
cn+l cn

I ARRIVE S ARRI VES DEPARTSTIME 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

AX IS WI- I n I
__________A__________

CUSTOME R 
_ _ _ _ _ _

CUSTOMER 
~~~~~~ ~~~w 1 S~~1 ________

( ~~r Tn+l and Sn+i independent as is normally assumed it

can be shown (Morse(1958)) that the mean waiting time per cus-

tomer, in steady state , is v/Cl-u). At the other extreme for

I’ 
p 1 , Conolly (1968) gives the distribution of the waiting time

1 and its mean and variance for the case S~ ,1 = ‘vT~~1 for all n.

I Our results are for other values of correlation. Next we use

(4.27) to show simulated results.

I In Figure 12 we show how nonzero correlation affects the

mean waiting time for v 0.70. (The simulations are performed

I the same as described in the previous section.) Ibr zero corre-

I lation the expected waiting time in steady state is 2.333 and

we see that the simulated results are in close agreement (2.323).

I Conolly shows for his system (p i) that the expected waiting time

for this value of v is 1.427 and again the agreement is very good

1 (1.421). ~ r positive correlation we have a benefit in system

I performance in that mean waiting time decreases; negative corre-

lation degrades the process .

$

I _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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I
Figure 13 shows the rat io of me an time in the system

I for various values of p to expected waiting time in the system

I at p=0 and we see that the e f fec t  of nonzero correlat ion is

greatest for large u t i l i za t ions . In eve ry case s imulat ion re-

suits were in close agreement with known results  ( for  p = 0 and

p 1) .

I Next we examine sample power spectra asoociated with the

wai t ing  time process and test the hypothesis f 0(w) =

1 0 < w  < ½, where f 0 (w) is the powe r spectrum associated with

J the wait ing t ime process at p=0 and l ikewise , f~ (~ ) corresponds

to p~ 0.

J We take the simulated values {W~}, n=l ,2,...,2000, to be a

time series and Figure 14 shows a portion of the sample power

I spectra for pzO , 0.50, and 1.0; utilization is 0.70. The spec-

I tra appear different and we suspect that the variances of the

waiting time processes decrease with positive correlation due

I to the relation of the illustrated graphs. In fact, the corre-

sponding simulated waiting time series have variances as follows :

I p—0, 4.763; p—0.50, 2.141; and p—l .0, 0.514. (The expected

variance for p-0 is 5.444 (Morse 1958) and Conolly ’s model for
I p l  gives rise to a variance of 0.613.) Coupled with the simu-

I lated result that p -0.25 leads to a variance of 10.451 we see

that the effect of positive correlation is to reduce the variance

F of the waiting time process and negative correlation causes an

increase.

I
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1

As a function of the app roximately independent estimates

I defined in 4 . 2 . 4 , Figure 15 shows the ratios , ~ (w) / ~~~(w) , for

I 
p 0.5 where the caret s ignif ies  that we are using sample esti-

mates . Recall that we regard each ratio as a Bernoulli trial

I (greater than unity or less than unity) and under the null hy-

pothesis of homogeneity of the two spectra we take as a test

I s ta t is t ic  the number of rat ios which are less than unity . In

the figure , 22 of the 134 approximately independent ratios are
I less than unity which is very strong evidence that the null hy-

pothesis is false ; for other cases of p the n umber of ratios

less than unity are: p -0.25, 87; p O .25 , 43 and p= l .0 , none .

I Additionally we applied the test to ~0 •2 5 (w) /~ 0 •50 (w) and got

38 of the 134 approximately independent ratios less than un i ty .

1. We reject the implied null hypotheses in all cases and conclude

I that the wait ing time process as a function of p leads to dif-

ferent power spectra.

For interest ’s sake we investigated the system under study

for a different bivariate exponential distribution. Primarily

I. due to the ease with which the variates can be simulated , we

chose the bivariate exponential distribution of Marshall and

01km (1967). If the r.v.’s U, V and W are independent exponen-

I tia].s with parameters X~ , X~ and A 12, respectively, then the

- 
bivariate r.v. (T, S), where T—min(U, W), S—mm (V, W), has the

1. indicated distribution. It can be shown that I and S have means

1/CA 1 + A 12) and 1/CA 2 + A 12 ) ,  respectively , and the correlation

~

- • --.- - -~ 
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I
between the two is A 12 / ( A 1 + A 2 + A 12) .  For the proper choice

I of parameters then , we can generate a bivar ia te  r . v .  where

I 
E [T J— l , E[S]= v and the correlation is p.

Figure 16 show s comparative results for the Marsha l l and

I 0 1km mode l and the Wicksei l -Kibble  special case in (4.10) .

Al th ough not i l lus t ra ted, we applied the homogeneity test to

the two sample spectra shown with the result  that  65 of 134

approximately independent ratios (~ W_ K (W) /~ 1~ O ( W ))  wer e less

I than unity.  The probabi l i ty  is approximately 0.37 of observing

1 65 or fewer ratios less than unity if the hypothesis 
~~~~~~

is true so we fa i l  to reject i t .  We expect s imilar  re-

J suits for other values of correlation and u t i l i za t ion  to obtain .

I 4 . 4  Summary

We have extende d the work of Paulson and Beswick (1973)

for the effect  of dependent exponential service time s on the

system performance of tande m que ueing systems . We assumed that
I each queue has a single server and the service discipline is

I first-come first-served.

For the two stage queueing system we derived recursive

I formulae for the total waiting time per customer at each queue

for the cases of zero, one, and infinite interstage storage .

1 Simulation results for the mean waiting time , under the assump-

• E 
tion of correlated service times, showed that the system ’s be-

havior is quite sensitive to departures from the traditional

I
I

I
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I

assumption of mutually independent service time s , especially

I at higher utilization rates. For the case of infinite ir~ter-

i stage storage , mean waiting time is reduced by positive corre-

I lation and increased by negative correlation . This change is

I reversed , however , for zero interstage storage and depends on

the value of the utilization rate for the case wht~re interstage

I storage equals unity. By using spectral analysis and a non-

parametric test applied to the sample power spectra associated

with the simulated waiting times we showed that the effect is

I statistically sign ificant; in addition we showed that the vari-

ance of the waiting time process is reduced for positive corre-

• J lation.

We showed in a precise way how the two stage queueing sys-

tem with dependent service times and infinite interstage storage

I is related to a single server system with interdependent arriva l

and service processes; an interpretation by Conolly (1968) for a

I special type of this latter interdependence is shown to be use-

ful in suggesting why the mean and variance of the waiting time

- I process are affected by correlated service times.

For correlation equal unity and infinite interstage storage ,

results were shown for two through twenty-five stages in series;

I these results provide an envelope within which system performance

will vary since for a fixed number of stages and utilization

1. correlation unity provides one extremum and correlation zero

provides another.

I
-

~~~ 
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I
Additionally, we studied single server, single stage

I queueing systems wherein a customer ’s interarrival interval

and subsequent service times are governed by a bivariate ex-

I ponential distribution . For the case of unlimited storage

I capacity we showed that positive correlation leads to reduced

mean waiting times and nega~tive correlation increases the mean

I waiting times , both more so at higher utilizations . The results

were shown to be statistically significant. We also showed that

1 the variance of the waiting time process is reduced for positive

correlation and increased for negative correlation . Briefly we

investigated the effect of using the Marshall and 01km (1967)

I bivariate exponential distribution ; results were similar .

I

I
I
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I
PART 5

I DISCUSSION AND CONCLUSIONS

I Here we have investigated various bivariate non-normal

distributions and showed several areas to which they could be

I applied. Of principal concern were bivariate negative binomial

I and gamma distributions . In Part 2 we discussed numerous theor-

etical aspects and fitted the distributions to data, Part 3 ii-

I lustrated some bivariate approaches for analyzing aircraft op-

erations and maintenance data and lastly , Part 4 showed how

I bivariate exponential distributions could be applied to queueing

systems with certain kinds of correlation . Summary results were

given in each part ; next, we highlight these results and suggest

1 areas for future research.

One bnb distribution was obtained by convolving the Paulson-

I Uppuluri (1972) bivariate geometric distribution which is de-

I 
fined by a certain characteristic-functional equation . The dis-

tribution has six parameters and admits of positive or negative

1 correlation and linear or nonlinear regression functions. Shown

were the moments to order two and for special cases , the regres-

I sion function, a recursive formula for the cell probabilities ,

l 
a meth~d of moments parameter estimation technique , the likeli-

hood equa tions, the differential-difference equations and for

I maximum likelihood estimation , a necessary relationship for the

parameters . Certain analogous properties were shown for a dual

I bivariate gamma distribution. For both of these distributions

I
I
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I
areas for future research include determining an infinite ly

I divisible representation for the full model (all six para-

meters) and developing parameter estimation techniques. Both

areas represent sizeable tasks.

I We discussed another bnb distribution which resulted by

reducing a certain trivariate negative binomial distribution

I with independent marginals. Moments to order two and the re-

gression function were provided. This distribution has mar-

I ginals whose characteristic functions are of the form

I [l+O(l~e
1t ) ]  1

, whereas the aforementioned distribution ’s

marginal characteristic functions are like (l+e 1(l_e
1t) ]~ J,i_l ,2.

• I 
Although not investigated here we suspect that bnb distribu-

tions which allow 0 and v to vary would have practical value.

1 That these bnb distributions should be useful was illus-

i trated by analyzing sample data sets , some with negative corre-

I lation and norlinear regression.

1 Another rnajor  effo rt centere d on fo rming bivariate r.v. ’s

related to particular aircraft operations and maintenance prob-

I lems. For a random sample we showed that the negative binomial

I distribution could be used to adequately describe demands for

aircraft  spare parts for single time periods (univariate) and

I adjacent time periods (bivariate) . An application for fly-away

kits was discussed. Additionally , we investigated aircraf t

I abort data for single six month periods and adjacent six month

periods and showed how the univariate and bivariate negative

I
, I
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I
binomial distributions fitted the data. The P values assoc-

I iated with the goodness-of- fit test ranged between 0.01

and 0.85 with  the ave rage being about 0.36 . Wi th these abort
1 data we illustrated a possible way to examine the effect of a

I noted event on an item ’s performance . Here we were interested

in the effect of overhaul on an aircraft’s perform ance when

measured by aborts for six month periods. Basically the method

involved comparing two bivariate distributions , one defined for

I. r.v.’s on either side of the event (overhaul) and the other de-

I fined for a similar r.v. not separated by the event. We used

the regression functions to compare the sample distributions.

• For our data, aborts increased after overhaul but since our

analysis was limited in certain ways we were unable to conclude

that the rise was due to overhaul. We intend to investigate

f this application more in the future.

The last part showed the effect of certain correlated r.v.’s

on the system performance of tandem and single stage queueing

systems. A bivariate exponential distribution was used. In

• I both cases we assumed that arrivals were according to a Poisson

process , the service discipline was first-come, first-served

and a single server was available.

I For the two stage tandem queueing system we showed , via

- 
simulation, that the mean waiting time is quite sensitive to

departures from the traditional assumption of mutually indepen-

dent service times, especially at higher utilizations. For

.1 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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I
the case of infinite interstage storage , mean waiting time

I is re duced by positive correlation and increased by negative

correlation . This change is reve rsed, however , for zero inter-
I stage storage and depends on the value of the u t i l iza t ion  rate

I for the case where interstage storage equals unity . A result

by Cono lly (1968) was shown to be usefu l in explaining the

I effect for the infinite interstage storage case.

For single stage queueing systems where a customer’s

1. interarrival interval and subsequent service times are corre-

lated we showed that positive correlation reduces mean waiting
I time and negative correlation increases mean waiting time.

- I The storage area was assumed to be infinite.

By using spectral analysis and a nonparametric test ap-

I plied to the sample power spectra associated with certain sim-

ulated waiting times we showed the effect, in both cases, to

be statistically significant.

I
I
I

• 
• I
I

~j ____________________ 
_ _  

_ _

_
~L~



r ~~
—“— 

• 
— 

~~~~~~~~~~~~~~~~~ -

H 
I

H i
PART 6

I REFERENCE S

I Ab rainowitz , M. and Stegun , l.A., eds. (1964). Handbook of
Mathematical Functions. Superintendent of Documents,
U.S. Government Printing Office , Washington , D.C.

I Anderson, I. W , (1971). The Statistical Analysis of Time
Series, John Wiley ~ Sons, Inc., New Yo~k.

I Arbous , A. G. and Kerrich , J. E. (1951). “Accident Statistics
and the Concept of Accident-Proneness,” Biometrics, Vol . 7,
340-432.

I Arbous , A. G. and Sichel, H. S. (1954). “New Techniques for
the Analysis of Absenteeism Data,” Biometrics , Vol. 41,

1 77-90.

Arno ld, B. C, (1967). “A Note on Multivariate Distributions
wi th Specif ied Mar ginals,” J. Amer. Statist. Ass., Vol.• 1 62 , 1460-1.

Bates , G. E. and Neyman, J. (1952). “Contributions to the
Theory of Accident Proneness, I,” University of California
Publications in Statistics, 215-54.

Bhat , U. N. (1969). “Queueing Systems with First-Order De-
pendence,” Opsearch, Vol. 6, No. 1, 1-24.

Block , H. W. (1975). “Physical Models Leading to Multivariate
Exponen tial and Nega tive Binomial Dis tr ibutions, ” Rens selaer
Polytechnic Institute, 0. R. and S. Research Paper No.
37-75-P3.

Boswe ll , M. T. and Patil, G. P. (1970). “Chance Mechanisms
Generating the Negative Binomial Distributions,” pub lished
in Random Counts in Models and Structures, Vol. 1, edited

I by G~ P. Patil , Penn. State Univ. Press , 3-22.

Burke , P. J. (1956). “The Output of a Queueing System,” Opera-

I tions Research, Vol. 4, 699-704.

Clark , J. R. (1972). Properties of a New Multivariate Geometric
i and Negative Binomial Distribution With Yossible Applications,
I LS. thesis, Univ. of Tenn.

Conolly, B. W. (1968). “The Waiting Time Process for a Certain[ Correlated Queue,” Operations Research, Vol. 16, 1006-1015.

101

_ _ _  - 

• .
~

. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•

I!? 
~~~~~ —



— - - - - -•-•— - --

• 
1 102

I I
Conolly, B. W. and Hadidi , N. (1969). “A Correlated Queue,”

I J. Appi. Prob ., Vol. 6, No. 1, 122-136 .

Conolly, B. W. and Hadidi , N. (1974). “A Comparison of the
Operational Features of Conventional Queues with a Self-

I Regulating System,” Appl. Statist., Vol. 18, 41-53.

Conway , R. W. (1963). “Some Tactical Problems in Digital

1 Simulation,” Management Science , Vol. 16, No. 1, 47-61.

Cross , K. (1970). A Gradient Projection Method for Constrained
Optimization , Report No . K -]746 , Oak Ridge National Labora-I tory, Oak Ridge, Tennessee.

Dade , M. (1973) . Examples of Aircraft Scheduled-Maintenance

I Anal~sis Problems, The Rand Corp., R-1Z99-I’R.

Downton , F. (1970). “Bivariate Exponential Distributions in
i Reliability Theory,” J. Royal Statist. Society, Series ~~
I Vol. 32, 408-417.

Draper , N. R. and Smith , H. (1966). Applied Regression Analysis,
I John Wiley ~ Sons , Inc. ,  New York .

Edwards , C. B. and Gurland, J. (1961). “A Class of Distribu-

t tions Applicable to Accidents ,” JASA, Vol. 56 , 503-517.

Paucett , W. M. and Gilbert, R. D. (1966). Characteristics
of Demand Distributions for Aircraft Spare Parts, Research

I and Engineering Departments (ERR-FW-5l2) , General Dynamics ,
Fort Worth Division.

Fishman , G. S. and ICiviat , P. J. (1967). “The Analysis of
I Simulation-Generated Time Series,” Management Science,

Vol. 13, 525-557.

I Gibbons , J. D. (1971). Nonparametric Statistical Inference,
McGraw-Hill Book Company , New York.

I Guldberg , A. (1934). “On Discontinuous Frequency Functions
of Two Variables ,” Skand. Aktuar. , Vol. 17 , 89-117.

I Harr is , R. (1968) . “Rel iabi l i ty  Applications of a Bivariate• I Exponential Distribution ,” Operations Research, Vol. 16,
No. 1, 18-27.

• 
I Hewkes , A. G. (1972). “A Bivariate Exponential with Applica-

tions to Reliability ,” J.Royal Statist. Society, Series B,

i 
Vol. 34, 129-131.

_ _ _ _ _ _ _  _ _
T~~



~~~~ 
— —~~~-- - -

1 103

‘ I Ho lgate, P. (1964). “Estimation for the Bivariate Poisson
i Distribution ,” Biometrika, Vol. 51, 241-S.
I Jackson , R. R. P. (1954). “Queueing Systems with Phase Type
1 

Service ,” Operations Research, Vol. 5, 109-120.
I Jenk ins , C. M. (1961). “Gene ral Conside rations in the Analysis

~~‘ Spectra ,” Technometrics, Vol. 3, No . 2 , 133-166 .

I John , F.l. (1963). “Single Server Queues with Dependent Ser-
vice and Interarrival Intervals ,” J. Soc. Indust. Appl.
Math., Vol. 11, 526-534.

I Johnson , N. L. and Kotz , S. (1969). Discrete Distributions,
Houghton M i f f l in  Co., Boston.

I Jury , E. I. (1964) . Theory and Application of z-Transforin
Method, John Wiley ~ Sons , Tnc., New York.

1 Kemp , C. D. (1970). “Accident Proneness and Discrete Distri-
c’ bution Theory ,” published in Random Counts in Scientific

Work, Vol. 2, edited by G. P. Patil, Penn. State Univ.

I Vress , 41-66.

Kendal l, M. G. and Stuart, A. (1973). The Advanced Theory of
Statistics, Vol. 2, Hafner Publishing Co., New York .

Kes ten , H. (1973). “Random Difference Equations and Renewal
Theory for Products of Random Matrices ,“ Acta Mathematica,I Vol. 131, 207—248.

Kibble , W. F. (1941). “A Two-Variate G amma Type Distribution ,”

I Sankhya, Vol. 5 , 137- 150.

Kohberge r , R. C. (1975) . “On Certain Multivariate Exponential
r Distributions ,“ Ph.D. Thesis , Rensselaer Polytechnic Insti-
I tute , Troy , New York.

Krishn amoorthy , A. S. and Parthasarty , M. (1951) . “A Multi-
I variate Gamma Type Distribution ,“ Ann. Math. Statist .,

Vol.22, 549-557.

I Lindley, D. V. (1952). “The Theo ry of Queues with a Single
I Serve r ,” Proc. Camb. Phil. Soc., Vol. 48 , 277-289 .

r Lundberg, 0. (1940). On Random Processes and their Application
1. to Sickness and Accident Statistics, Uppsala: Almquist and• Wiksell.

4 1
‘b~ I 

___________________________ t
•.,[

~ f - ‘— — — -- - — —
~~~~~~~~~::••.•~~_•• - - —

~~~~~~~~~~~~~~~~~~~~~ 
• ~•-~~~~r~• • . •  • •



a 104

Mann , N. R . ,  Schafe r , R . E . ,  and Singpurwalla , N. D. (1974) .
Methods for S ta t i s t ica l  Analysis  of Re liab i l i ty  and FailureI Data, John Wiley ~ Sons , m c . , New York

Mardia , K. V. (1970). Families of Bivariate Distributions,

I Hafner Publishing Co., New York.

Marshall, A. W. and 01km , I. (1967). “A Multivariate Expon-
ential Distribution ,” J.Ame r. Statist. Assoc., Vol. 62,I 30-44.

Morse , P. M. (1958). Queues, Inventories and Maintenance,

1 John Wiley ~ Sons , Inc., New York.

Pau lson , A.S. (1973). “A Characterization of the Exponential
Distribution and a Bivariate Exponential Distribution , ”

I Sankhyi, Series A, Vol. 35, 69-78.

Pau lson , A. S. and Beswick , C. A. (1973). “The Effect of De-I pendent Exponential Servi ce Time s on Queues in Series ,”
Department of Operations Research and Statistics , Rensselaer
Polytechnic Institute Research Report No. 37-73-P2 .

I Paulson , A. S. and Uppul uri , V. R. (1972). “A Characterization
of the Geometric Distribution and a Bivariate Geometric
Distribution ,” Sankhya, Series A, Vol. 34, 297-300.

I Saaty , T. L. (1961). Elements of Queueing Theory with Appli-
cations, McGraw-Hill, New York.

I Sub rahman iam , IC. (1966). “A Test for “Intrinsic Correlation ”
in the Theory of Accident Proneness ,” J. Royal Statist.

I Society, Series B, Vol. 28, 180-189.
- Subrahman iam , Kocherlakata and Subrahmaniam , Kathleen (1973).

1. “On the Estimation of the Parameters in the Bivariate

I 
Negative Binomial Distribution ,” J. Royal Statist. Society,
Series B, Vol. 35, 131-146.

I Titchmarsh, E. C. (1964). The Theory of Functions, London ,
I. Oxford University Press.

• Whittaker, E. T. and Watson, G. N. (1965). A Course of Modern
I Analysis, Cambridge University Press.

Wickse ll , S. D. (1933). “On Correlation Functions of Type III ,”I Biometrika, Vol. 25, 121-133.

Youngs , J.W.T., Geisler, M.A. and Brown, B.B. (1955). The

I Prediction of Demand for Aircraft Spare Parts Using Th’e
Method of Conditional Probabilities, The Rand Corp., RM-l413.

_ _ _  
_________ 

_ _  
II •

~~~~ 

— -—•- . .,• — ‘---- — 
• •, • ,• • ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

---——-- - • — -_______



—
. 

•

I
APPENDI X A

1 A NEW MULTIVAR IAT E NEGAT I VE BINO M IA L DISTRIBUTION

I 
In this appendix we show Clark ’s (1972) derivation of a

new multivariate negative binomial distribution . The distri-

1 bution results by convolving a multivariate geometric distri-

bution.

I The mul t ivar ia te  analogue of (2.13) is

I •(T) — q’(T)E[$(TV)]

I where

• I T = Ct1, t2,...,t),

n p . it. -1I *(T) — I’ (l’~) 
(1-e )~~Pj

and V is the set of all n dimensional diagonal matrices of

I zeroes and ones (2fl matrices in al l).  Here vEV assumes a par-

I ticular value with probability av, ~ ~~ 1 and a~ + a1 < 1,
I — vcV — —

V ~ 0, I where 0 is the zero matrix and I is the identity matrix.

I Equation (A.1), which can be written as

1 •(T) — *(T) ~ 
a
~~

(Tv) ,
vcV —

• I 
defines a multivariate geometric distribution.

I t can be shown tha t
it

— [l+Om(l—e 
m)] -l (A.3)

where

~
i

I

j  
:~~ 
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I
i ~m r-~~ ~

I and v*CV such that mth diagonal term is one (2~~~ matrices

in all). Therefore the marginals are geometric and it fol-

lows that

I 
E(X m )

Var (X m ) — °m~~~°m~’ 
m— l ,2,...,n. (A.4)

In (A.2)  if av - 0 for v ~ 0 , I we have

(A.5)

where a is associated with  a 0 and d wi th  a 1. Convolutin g as in

( 2 . 2 5 )  y ie lds

I $~
(T) —

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(A. 6)

and inverting gives the multivariate negative binomial dis-

I t r ibut ion

I g~ (x11 x2,...,x~) C[ n Fn l (v+x l, v+ x 2 , . . . ,

v+x~ ;v ,v ,... ,v ;d  fl (l-p1))1,i=l

where

n v+x~-l x.
• C — ~ C 

~~ 
) ( l - p . ) ” (p . )  3

i_ i  j

I-
;
, ... 

I•
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I

1 
and 

~~~~~~~~~~~~~~ 
bi,...,bn_ i ;z) —

I 
~ (a1)....(a~). ~i1 

~j~ l 
(•b

i) j~~~s(b n _ j J j  
~~~~~~~ (A.7 )

Clark concluded by showing that

E ( X m ] - VOm

and

Var (X m ] = “°m ~°m~’ 
m=l ,2,...,n;

I he also showed that the distribution is infinitely divisible .

I

I
I
I

j

I - 

_ 
_ _ _ _ _ _ _ _ _ _  

_ _ _  _ _  
I
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APPENDIX B
p 

RECURSIVE FORMULA FOR WAITING T IMES

I In this append ix we show how a set of recursive formulae

for the wai tin g time s can be cons tructed for any n umber of

I queues in series where interstage storage is unlimited.

Re fer r ing  to the fol lowing diagram for c~ and C~~~1 ’S

I queueing and service times at stages two and three (a continua-

tion of the diagram preceding equation (4.1) in the text) , we

see that c~~.1’s interarr ival  time at stage three is

I 
T - 

JTn+l ,2~
Wn

(2) +Sn+l ,2~ if

n+l ,3 ‘

~ (2)I 
J1
Sn+l 2’ if

I
I w(2)

I CUSTOMER
n 

~~~I n+l n+l
I • -~~~~ _ __ _

CU~TOMER 
~~~~~~~n+l ,2

W
n~1 

Sn+1,2 ~~~~~~ 
1~~~+1,3 L

I 
...— T~.,.1,3 .~~

I
I
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I
Similar  t o equation ( 4 . 3 )  in the text , c~ ,1 ’s waiting

I time at the th i rd  stage is

I 
~~~~~~~~~~~ 

~~~n+l ,3’ if

Comparing T~~ 1 2  and Tn+l ,3 we have , in general , for

cI~~1’s interarrival time at stage i, 
i=2 ,3,...,

I 1T f l + l j l f l
(1)+Sfl+ l ,~~l, if T~+1~~~1~W~

(1 1)

n+l ,i 
— 

( - l )if T
~+i ~_ i <W~ 

‘

• Similarly, comparing W~~ 1
(’). ~~~~~~~ and W~~1

(3) give s

a general recursive fnrmula for c~~1 s waiting time at stage

I i, i=l ,2,..

(i) 1~n+l ,i , 
if ~~~~~~~~~~~

I 
fl+l = 

~~~~~~~~~~~~~~~~ 
if Tn+i i 4Vn~

’
~~•

I Thus , we can obtain the recursive formulae for any n umber

of queues in series .

I

I
I

‘
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I TABLE ~~~~. G-B-N(°’,e,~~) MODEL
’

OB SER VED AND EXP E CTED CE LL FREQUENC I ES

I FOR BATES-NE’ .~MMU DAT A (1286 WORKERS).
Y T T - - T~ T -r r -r -r -r r- -r -r -r- -r ~1

I 24 
~~~~ + ++++ ÷ ~~~21

÷ + +÷ . .+ + ÷ +÷ + + + + + + +÷ ~~

I 26 ÷÷~~~~÷ . .+ +÷ ÷ ++ + +++ + ++ . 1
2S

+~~~t+ + .+ +÷ ÷+~~~~+ ÷ + ÷ + ++~~

I 1 4 — . 1 1 1 1 1 1  J I l l  I I I  I
23 

_ _ _ _

22 .~.4 _ ..f —4— I I i I i ~‘~i i i i I t I

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~ 
I~ I 1, I I ~~ I I I I I I I

t5 _ _ .{_ i.~~_ I I I I ‘ I ’’’2 2 ’ a~~
I I

IT ~~ I I I ~‘ i  I
La i~~1r~~~’~~~~~~ z 1 2 1 I i I I t  i~~I I I I I-

I 2 5 , 7 2 1 3  I ~ 2.Y I I I I I, I I •~I~ I I (I II I I I
La ‘~ ~~ S 

~iL i I i t i i ll
~~~ (,4 I~~~~~~~ ’.

$
1 Z

~~’a
I I I I I~~~ I

0 
~~~~~~~~~~~~~~~~~~~ 

I I I I II I I~ I, ,,l, I I I I I I I
I >_ I3 , _ ’~~~~_ .~~~~ I I  I I  1 ’ l  I I t i l l
I ~~~ ~~~~~~~~~~~~~~~~~~~~~ ‘ 

I ‘ i ,  i ,

0 IZ j- •~, ~~ 5.L.. ’1 I I I I I I~~I
I— ,.~ •~ 3 ~~&I ‘ ~ 

3 , ~ 
I~ 1 3 I i I, ‘i

I ~~ ,~~~~~~~~~~~~) 9 I, I I I I , I ,~I , I I I I I I I< St 1.3 44 14 4 •.)  I

~ ~~~~~~~~~~~~~~~~~ i t i ~ I 4~- i  i t i
~I, H • 

I ,~ 
.3 
~ 

2 ‘ ‘2 I~ I~ u” I I I
• ( I  I I f ~I

H I~ 
•
~ 

.3 I I I I i I ,  I I

I 1.1 •~~s .. ‘ •‘ ci i i
..

~~, 
i-i

:, ~ 
S 3I•’~ ~~ ‘~ ~ I I I i— I I I I I

~~~ ~~~~~~~~t2 - - f r + + - f - , ;I-+++± + + 1
6
~~ 3 . _ tL ’21.~~.~_ I I I I “ I I I I

1 (, 3I ,, 4 5 l a l t I., I I I ~1 I I I I I I I~

~~ ‘ii. ~~ tL. i.!-. I I I I I
~~ 

$ j  7 ,., 3 I I I I I~ I 1 J~
I I I I I i

• 
II~~ 33 .7 3 ~ ~ S I I I U I I I

I
4 + + + - f -  1- f ’+ -I- 1- + + 1

a O II34 )~~~~~ I I I I I I I I • I I I I I 1 1

1 0 I Z 3 5 ~ 6 q tO 11 12 3 I~ ~S ~ ii is
7 DIGESTIVE DISEAcE

I ~Guldberg-Bates-Neyman bivariate negative binomialdistribution of (2.6). ML estimates are:
A A a 2

I ct—3.l98, 0 0.952, v—l.47l. There results x —353.8
and PóO for df 94.
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I
I TABLE~ ~~~. BI4S(o~,b ,c,p,q, t )  MODEL ’

0~ S ERVED AND EXPE CTED CELL FREQUENC IES

I FOR BATES-P4ENMAN DAT A ( 1286 WORKERS) .

-r -r -r -r rr -r i- -r -r -r -r r i  -r -r -r r i

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I 2$ ÷++÷ +++++++++++++~~

27 
~~~~~~~~~~~~~~~~~~~~~~~~~

I
U

~~~~~~~~~~~~~~~~~~~~~~~~~ I I I I I 1 1 1 I I I I
1 23 

I I H - + + + + +4 - + + + + + ++ 1
22 ;+~~~+~ ~~++ + +-~ + +~~~-+  +± +

1 

21 . —f— 1~j f—— 12 I I, I I I I~~I I I I I I 4 1
I ZO

+M+* ,. + *f *+ + + +- + - 4 -+ + ± ± 1
II I t~ I I I I”~I I I I I I I I

J , l~~, i’ —
~~~~~ ,

— I I I I I I’’ I I I I I I I I
La ;t r ~ -i+z ++++-I- *-Ir +++++-1

I i I I~~ I I
I & 5,. 2 ~ 3 . 3  ~ 

I I I I~ ~ i ~I, I i ‘I U~ I I
I U) II ~~~~~~~~~ i I I  I J ~

~~ I I ~I U I l l I I 13

~ :; •
— 

~~ ~ 
~~~ ; I, 1, 1, I 12 I~

:
L,I, 1 I I I I I I

I ~~~ 
I o. S .i _z $

~~.~~~~~~
t I I I 0 1 I I , I

I O~~~~t~~L~~.L tL . .  I l l - I l I~’I

~~ I~~, l~~. 1~~ . I •f 3 •, 2 1~ Ij  Ii Ii ~i I

< II C f I) I 1 I I I I I

I ~~~~~~~~~ 
I I I I 1I~ I I

I &~~~~~~‘ ‘ ~~~
r-s ” I I I ~ ~ ‘ I I I

I ( I )  U, 1 1 1 $ , . 7 ~~ 1 J , , Z L I~ I I

4 I 1 ~ I l ” I  ‘ I I I I
31,. “,, & 3 ., I I I I I

-~~ I ,
~~ • ~~~

-
, ~~~~ ~~~~ ~ ,,I , I , 1~ I-~ I’ I I I I I— I —f—-I

I ~~~ I~~~~~I S I~ -1 ++

~~~~~~~~~~~~~~~~~~~~~~ 
I I I I”I i I I

I I I U I I I I I ‘I

I :~ ~~~~i~~~~~~ $~~~~~; + + + +  + +~ ;f -++  + +  + +1
• 05 III ~ ~~~_ ‘ I I I I I

II ,
~~ 

S ,~ 7 .2 ~ I ‘I I I, I I Ii
3 4•i I l l  !j •~ I I I

4 ~~~~~~~~~~~~~~~~~~~ 
I~ I I I I I

I I
I ~~~~ + ++ + ~

$
~~~+ Ia+ + ÷ ÷ .i-÷+-I

I 0
~~~”~;f_ ’t~

_ I L I I I I I ~~~~~ • I I I I I I

0 I 2 3 ‘~ S ~ 1 • q 10 Ii $2 $3 i’, IS $ rr IS

DIGESTIVE DISEASE

11 1Paulson-Uppuluri bivariate geometric distribution

of (2.36). ML estimates are: a—O.1338 , ~—0 .0l91,

I ~.0.0330, ~—0.1860, q— 0•4516. There results
202.4 and P—0 for df 87.
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TABLE 6 BF~1B(a.,b,o,p,~ ,i.’) MODEL ’.

I OBSER VE D AND E X P EC T E D  CELL FREQUENCIES

FOR BATE~-NE’ (MM1 DATA ((286 WORKERS ).

I . T -r -r -r - T~ T -r r -r i- ‘ -r -r -r -r -r- -r- -i
21 .

~~~~~÷÷ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~20 
~~~~~~~~

l 27 ÷+÷+ .÷++++++++++++~26 
~~~~~~~~~~~~~~~ 

•~~~~~ ++ ++ ~ q+ + + + ++ +1
25
+++÷ .,+++++~~
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-h+ + +~*± ++ + + +I

I 
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I
. 
+ +4 ~~ + +* + + + +÷ + + +1

O P ~J I 4.l 4•  I I i I i  I I INS. I I I  I U I 3

0 I 2 3 ‘t 5 5 7 6 q io ii 12 3 I~ IS IS $7 5

I DIGESTIVE DISEASE

New bivariate negative binomial distribution of

1 (2.37). ML estimates are : —O.2844, 6—0.0256 ,

~—0 .2S37, ~~0.S880, ~‘l.1687. There results x2—
194.9 and P O  for df—86.
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I TABLE 1. BNB(o. ,o 1 o , p3 c

~
, ~~) MODEL’ .

OBS ERVED AND EXP E CTED CELL FREQUENCIES

FOR BATES-NE ~fMAM DAT A (1286 WORKERS) .
i- -r -r r - -r r -r -r -r -r r -r -r -r

21 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ - + + + 4 ~+ + + + + + + ++ - I

I
i
I

21 ._ . . ..I!...+ . ... I I  1 1 1 1  I I I I I I I  ~
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TABt..E It . BN8(o.,b,c,p,q,~) MODEL’ .
OBSERVED AND EXPECT ED CELL ~REQUEPiC 6S
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