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ABSTRACT

N

Some new theory and applications of certain bivariate
non-normal distributions are presented. In particular, new
bivariate negative binomial and gamma distributions are dis-
cussed and an existing bivariate exponential distribution is
applied to single stage and tandem queueing systems (both
single server) which have particular kinds of correlated
structure.

One new bivariate negative binomial distribution is de-
rived by convoluting an existing bivariate geometric distri-
bution; the probability function has six parameters and ad-
mits of positive or negative correlations and linear or non-
linear regressions. Given are the moments to order two and
for special cases, the regression function, a recursive form-
ula for the probabilities, a method of moments parameter es-
timation technique, the likelihood equations, the differential-
difference equations and for maximum likelihood parameter es-
timates, a necessary relationship for the parameters. Certain
results are extended to a dual bivariate gamma distribution.
Another bivariate negative binomial distribution, which has
four parameters, results by reducing a particular trivariate
negative binomial distribution with independent marginals;
only positive correlations and linear regressions are possible

here. Both bivariate negatiVe binomial distributions are




fitted to data and their special features illustrated.

Applications of bivariate distributions tolcertain air-
craft logistical problems are investigated. Primarily, a
bivariate negative binomial distribution is fitted to spare
parts demand data in two periods and to monthly abort data
on either side of a large scale maintenance event and it is
shown how the associated sample distributions can be useful
in parts inventory control and in investigating the effect
of maintenance on an aircraft's performance.

A bivariate exponential distribution is applied to tan-
dem queues to study the effect of correlated exponential ser-
vice times and to single stage queues to study the effect of
correlation between a customer's service time and the inter-
arrival interval separating himself and his predecessor. Ar-
rivals to both systems are according to a Poisson process.
Simulation is used to show that the mean waiting time is quite
sensitive to departures from the traditional assumptions of
mutually independent service times for tandem queues and inde-
pendence of service times and interarrival intervals for single
stage queues, especially at higher utilizations. For the cases
of infinite interstage storage between two-stage tandem queues
and infinite storage before a single stage queue,system per-
formance is increased by positive correlation and impaired by
negative correlation. For two-staée queues this change is re-

versed for zero interstage storage and depends on the value of

xi




the utilization rate for the case where interstage storage
equals unity. By using spectral analysis techniques and a
nonparametric test applied to sample power spectra associ-
ated with certain simulated waiting times the effects are
shown to be statistically significant. For correlation
equal unity and infinite interstage storage results are

given for two through twenty-five stages in series.

xii




PART 1
INTRODUCTION

The objectives of this research are (1) to develop

two new bivariate negative binomial probability functions,

(2) to derive, where applicable, corresponding properties for

a dual bivariate gamma distribution, and (3) to show that bi-
variate approaches to data analysis and mathematical modeling
can provide, in some cases, more meaningful and representative
results than traditional approaches. The first bivariate nega-
tive binomial (bnb) distribution is derived, via convolution,
from an existing bivariate geometric distribution and the second
one is developed, via reduction, from a certain independent tri-
variate negative binomial distribution. Certain properties re-
lated to infinite divisibility and parameter estimation are
shown to be directly applicable to an existing bivariate gamma
distribution.

In analyzing bivariate data from self-pairing type
studies usually the data are transformed to obtain a univariate
random variable; sometimes this technique is acceptable partic-
ularly if the data are approximately normal but often a bivariate
random variable, say, representing count data, cannot be ade-
quately treated in this way and so an alternate approach is
deemed necessary. Most often in these cases a first step is
to find a reasonable bivariate probability function to repre-

sent the data and for this purpose several probability functions
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are usually compared. That these new bnb distributions should
be useful in practical applications is suggested by showing,

for two bivariate samples from the literature, how certain pro-
perties of these distributions better represent the data. Addi-
tionally, we introduce some new bivariate data sets related to
aircraft operations and maintenance and show how bivariate ap-
proaches can be useful in analyzing certain problems dealing
with these data.

Another new bivariate approach is related to corre-
lated queueing systems. For instance, single server tandem
queues traditionally have been modeled by assuming that cus-
tomer service times at the individual servers are independent;
sometimes this is a reasonable assumption but in certain impor-
tant applications, for example, production lines, such is often
not the case and a more realistic model is desired. We show
for two servers in series the effect of correlated exponential
service times by assuming that a customer's service times at
the two servers are given by a bivariate exponential distribu-
tion. Also we provide a similar analysis for single server,
single stage queues with correlated interarrival and service
processes.

Part 2 describes the new bnb distributions with cer-
tain associated results for a bivariate gamma distribution and
also shows how the bnb distributions fit some empirical data.

We introduce in Part 3 some new discrete bivariate data sets
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related to aircraft operations and maintenance and show how
bnb distributions can be useful in analyzing certain problems
dealing with these data. Also we describe how bivariate gamma
distributions could be useful in similar problems associated
with continuous data. Part 4 shows the results on correlated
queueing systems. More introductory and historical remarks

are included in these parts.
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PART 2

ON BIVARIATE NEGATIVE BINOMIAL
(AND GAMMA) DISTRIBUTIONS

2.1 Introduction and Historical Review

In this part we develop and fit to data two new bnb dis-
tributions and show how certain properties relate to an existing
bivariate gamma distribution.

That a bnb should be important in statistical theory and
applications is suggested by the wide acceptance of the uni-
variate negative binomial distribution as a reasonable model
for a broad range of problems representing univariate discrete
random variables (see Boswell and Patil (1970) for a discussion
of fifteen stochastic models which give rise to the univariate
negative binomial distribution). It is reasonable to suspect
that a bnb distribution would be useful in describing bivariate
random variables for which correlation exist between the members
of the bivariate pair and the marginals are negative binomial.

A few bnb distributions have been presented in the literature;
next we show the particular forms of the univariate negative
binomial to be used herein and then review these bnb distribu-
tions and some of their applications.

The univariate negative binomial with parameters v>0 and
6>0 is defined (Johnson and Kotz (1969)) as the distribution of

a random variable (r.v.) X for which
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x+v=-1)!

PrRSX] i X. (V- .

(o) (2%, x=0,1,2,... (2.1
and the characteristic function is
o(t) = E[e1®] = [1+0(1-e1t)] V. (2.2)

The mean and variance of X are v6 and v8(1+6), respectively.
Thus, it is characteristic of the negative binomial distribu-
tion that the variance is greater than the mean. A method of
moments parameter estimation technique is described in Johnson
and Kotz. Fr v=1 we have the geometric distribution.

Another common representation is to let 6=p/(1-p), or

equivalently, p=6/(1+6), in (2.1) and so

& L
Pr[Xx=x] = x?+:-1 v (1-p)V p%, x=0,1,2,... (2.3)

and

s it
¢(t) = [10yBs(1-e'D)17 - [li-?-;-l—] B (2.4)

This latter representation is referred to as a negative bi-
nomial distribution with parameters v and p. We use both
forms throughout.

The negative binomial distribution can be viewed as a
compound distribution (Johnson and Kotz). In fact, a mixture
of Poisson distributions such that the expected values, A, of

the Poisson distributions vary according to a Type III (gamma)

distribution with probability density function
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f(x) = (%)v Y%UT Av'le'x/e, A>0; v>0, 6>0 (2.5)

leads to 2.1. A multivariate negative binomial distribution
was constructed in an analogous way by Bates and Neyman (1952).
We describe the bivariate case. Suppose we consider the joint
distribution of the two independent random variables X and Y
where X is distributed as a Poisson r.v. with expected value A
and Y is also a Poisson r.v. but its expected value is oA, a>0
and constant. If we assume that A is distributed according to
the gamma distribution in (2.5), then the marginal distribution

of X and Y is

& (]
PrX=x,Y=y] = % (1-p-q)" p*d’, x,y=0,1,2,... (2.6)

where p=6/[1+(a+1)8], q=ap, v>0, 0 <p <1, 0 <q <1, and

0 <p+q <1. The characteristic function is

& ” it it
< it)X+ityY _ (l-pe'tl-gelt2 .y
¢(ty,ty) = E[e” 1 1 e o 17 (2.7)
or in terms of o,
#(ty,t,) = [1+0(1-e1t1) + a0(1-et2)] V. (2.8
We have that the mean vector is
W ve
Hy vab
and the covariance matrix is
— - e e <
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qf Oy vo(1+8) vaez
) = . = (2.10)
o%y Oy vao? vad (1+aB)|

Prom the characteristic function it is clear that the margin-
als are again negative binomial. The conditional distribution

can be shown to be

e ]
Prv[x] = Gt (-a*™ @, y=0,1,2,...  (2.11)

or a negative binomial with parameters x+v and q. Therefore,

the conditional mean or regression function is
E[Y|x] = q(v+x)/(1-q) (2.12)

and we note that the form is linear. Note also that this
probability function admits of positive correlations only.
Besides Bates and Neyman in 1952 others have studied the
above bnb distribution (Mardia (1970) gives an historical re-
view). Guldberg introduced this distribution in 1934, Lundberg
first used it in 1940 as a model for accident proneness and
Arbous and Kerrich (1951) expanded Guldberg's work and fitted
the distribution to bivariate data related to accidents in in-
dustrial settings. In addition to their theoretical contribu-
tions Bates and Neyman fitted the distribution to numerous bi-
variate data sets related to diseases in industrial workers.
In 1954 Arbous and Sichel fitted it to shift-worker absenteeism

data for adjacent time periods. Youngs, Geisler, and Brown in

\
ik
gsr
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1955 studied the conditional distribution of this bivariate
r.v. and showed how it could be used for the prediction of
demand for aircraft spare parts. In 1961 Edwards and Gurland
generalized (2.6) and compared the fits obtained from the two
distributions. The regression function for their distribution
is linear also. Subrahmaniam (1966) and Subrahmaniam and
Subrahmaniam (1973) also studied this latter bnb distribution.
Pr purposes of comparison we choose to call the bnb dis-
tribution in (2.6) the Guldberg-Bates-Neyman model with para-

meters a, 6 and v and to designate it G -B-N(a,08,v).

Certain data sets do not exhibit empirical regressions
which are linear nor do some data sets show positive correla-
tion and so it is natural, for these cases, to work with a
bivariate probability function which allows for nonlinear re-
gressions or negative correlations or both. The classical
Bates and Neyman paper exhibited empirical data best fitted
by regression curves which were obviously nonlinear, and, con-
sequently, their results were not entirely satisfactory. Hr-
thermore, we show a new bivariate data set related to aircraft
flight aborts which has a negative sample correlation coefficient.

In the next section we discuss a new bnb distribution which
admits of nonlinear regressions and negative correlations and

derive several of its properties.
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2.2 A New Bivariate Negative Binomial (and Gamma) Distribution,
Via Convolution, and Some Properties

The purpose of this section is to show how a new bnb dis-
tribution may be obtained, by the process of convolution, from
a certain bivariate geometric distribution. A number of proper-
ties such as the moments to order two, the regression function,
a recursive formula for the cell probabilities, and the likeli-
hood equations are obtained for certain special cases.

Paulson and Uppuluri (1972) showed that the bivariate r.v.
X,Y), where each element in the pair is defined on the non-
negative integers, has a bivariate geometric distribution if
its characteristic function, ¢(t1,tz), satisfies the character-

istic-functional equation
¢(T) = ¢(T) E[¢(TV)] (2.13)
where
T = (ty,t5), (1) = ¥;(t;,0) ¥,(0,t,),
¥y (£,0) = [1ogBs (1-eMt1)71,
000,85 = (1+ $ (et 7Y,

and Vis a 2x2 matrix-valued r.v. having values in the set
{ [g 8] ’ [é g] ” [g g] . [3 2] } with probabilities a,b,c
and d, respectively. Here 0 <p <1, 0 <q <1, a+b+c+d=1,
b+d <1 and c+d<l. Thus the characteristic functional equation

can be rewritten as
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¢$(T) = wl(tl,O) ¢2(0,t2)[8*b¢(t1.0) > C¢(0:t2) * d¢(T)](2-14)

and it is easy to show that

6(t;,0) = % - [1v6 (1117,
$(0,t,) = ;i%;;;%$; = [1+0,(1-e'2)] 7! (2.15)
where
8, = p/[(1-p)(a+c)], 6, = q/[(1-q) (a+b)] (2.16)

and the arguments of wl(tl,O) and wz(O,tz) have been suppressed
(and will be in the sequel). Comparing (2.15) and (2.2) we see
that the marginals are geometric.

In (2.13) the characteristic function Y (T) = wl(tl,O)-
wz(O,tz) corresponds to a bivariate geometric distribution with
independent geometric marginals and as Block (1975) points out,
(2.13) gives the characteristic-functional equation of the bi-

variate random variable

N N;

X,Y) = ( Z Xi, _Z Yi)- (2.17)

i=1 i=1
The pair (Nl,Nz) is a certain bivariate geometric distribution
and is independent of (Xi,Yi), i=1,2,3,..., which are indepen-
dent and identically distributed (i.i.d.) random variables with
characteristic function ¢(T). Thus (2.13) corresponds to a

special kind of bivariate geometric compounding of the distri-

bution with characteristic function ¢(T). It is also clear that
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if Y(T) has geometric marginals, then ¢(T) will have geometric
marginals. This is even more apparent from (2.17) since uni-
variate random geometric sums of i.i.d. geometric random vari-
ables are geometric.

Paulson (1973) has shown that (2.13) also characterizes a
bivariate exponential distribution where yY(T) is the character-
istic function of independent exponential r.v.'s. In addition
he forms, in a way to be described here for a bnb distribution,
a bivariate gamma distribution. Certain properties to be de-
rived for this bnb distribution will be extended to his bivari-
ate gamma distribution.

Paulson and Uppuluri obtained the moments of the distribu-
tion of (X,Y) in (2.13) to order two and showed that the corre-
lation coefficient has values in the interval -0.25 <p < 1.
They also presented recursive formulae for determining the
probability function.

Clark (1972) obtained a closed form representation for
the bivariate geometric distribution characterized by (2.13)
for the special case b=c=0 and extended it to a bnb distribu-
tion. Next we summarize that development. (By defining a
multivariate analogue of the characteristic-functional equation
(2.13), Clark also constructed a multivariate geometric distri-
bution and extended it to a multivariate negative binomial dis-

tribution; Appendix A shows the unpublished derivation.)
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We consider the case b=c=0 in (2.14) and so
$(T) = y,v,(a+d¢(T)). (2.18)
Solving for ¢(T) leads to
6(T) = av v, [1-dy,v,]"" (2.19)

and upon expansion
O(T) = ap v, [1+dyyy, + (duyv )% + .01 . (2.20)

The inverse transform of ¢(T), that is, the probability func-
tion, say, gl(x,y), may be obtained termwise from (2.20) since
the resultant series converges uniformly and absolutely for all
xX,y=0,1,2,..., (Titchmarsh(1964)); we have
gy (x,y) = a(1-p)p*(1-q)q” z CH O a-p -1’ (2.2
J=

where x,y=0,1,2,... . Expanding the combinatorial terms gives
g;(x,y) = a(1-p)p*(1-q)q” F(x+1,y+1; 1; d(1-p)(1-a)) (2.22)

where F(a,b;c;z) is the Gaussian hypergeometric series given

by
°° (a);(b);

F(a,bjc;z) = 1 + —Jm—J- -T (2.23)

and the term (n)j is defined by

(m); = Lﬁ%%)_ = n(n+1) (n+2)...(n+j-1). (2.24)
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Taking the v-fold convolution of gl(x,y) with itself

yields a bnb distribution which is denoted by gv(x,y).

characteristic function of gv(x,y) is

6,(T) = [6(T)]° = (avy9,) [1-dy v,]17"

v(v+1)

= (ay ;) [1+v(dugy,) + CURTO LI,
and in the same manner as before we obtain
g8, (x,y) = a’h;(x)h,(y) F(x+v,y+v;v;z)
where
- (%=1 R
By (R} = £ JEI5B) B
) = CYha-ov,
z = d(1-p)(1-q)

and x,y=0,1,2,... . Of course, v=1 leads to (2.22).

be shown that
0,(t1,0) = [1+6;(1-e ' *1)]™"
and

6,(0,t,) = [1+6,(1-e1t2)] ™V

The

(2.25)

(2.26)

£2.17)

It can

(2.28)

where 81 and 6, are defined as in (2.16) and so the marginals

of (X,Y) are negative binomial.
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Clark obtained the moments to order two of this bnb dis-
tribution; the remainder of his work was limited to numerical
investigations of the bivariate geometric distribution charac-
terized by (2.14) with b#0 and c#0, and he showed figures of
the probability surface and the regression function as it de-
pends upon p, the correlation coefficient. The probability
surface was computed by using the recursive formulae given by
Paulson and Uppuluri and then the regression function was com-
puted by using the definition of a conditional mean, that is,
E[Y|x] = § y Pr(ylx), where the summation is taken over all
non-negative y. His numerical results showed that the proba-
bility function admits of nonlinear regression functions with

either positive or negative correlations.

Next we generalize Clark's work for the cases b and c not
equal zero and show, among other things, an analytical deriva-
tion of the regression function for some special cases.

We construct in a way parallel to Paulson's (1973) deri-
vation for a bivariate gamma distribution a bnb distributicn.
From (2.14)

0(T) = wyv,la + bo; + co, + do(T)] (2.29)

or

Y1¥2
¢(T) = U:W[a + b¢1 + C¢2] (2.30)

and convolving as in (2.25) yields




i i

V¥,
¢v(T) - (Trawjr-) [a + b¢1 + C¢2]v- (2.31)

From (2.29) on we write ¢1 and ¢Z for ¢(t1,0) and ¢(0,t2),
respectively. Recalling from (2.13) that ¥y and ¥, are func-
tions of p and q respectively, we choose to designate the par-

ticular bnb distribution which results here as the BNB(a,b,c,p,q,v)

distribution and to label the probability function as fv(x,y).
It is relatively easy to show from (2.31) that the marginals
are negative binomial. The following theorems and results are

now presented.

(% Theorem 1: The inverse transform of ¢v(T) defined by (2.31)
with a,b,c,d as probabilities and a+b+c+d=1, b+d<l, c+d<l and v
% integer is
' W X Y
£.0Gy) = 1 orprer a%7VbPCYe, o g (x,y) * e, o (2.32)
v a,B,y & 1.8 \Y 2.Y

where § runs over all a,8,y > 0 such that a + B + y = v,

900,325 00 gv(x,y) is the probability function for the

BNB(a,0,0,p,q,v) of equation (2.26) and

0
BT iy ¢ T

°1.8 = (I+61 X I+§1
g e
2.0 = ook Y D ey @59

X
The operator * for convolution over x is defined for two func-

tions hl(x,y) and hz(x,y) by

X
l hl " hz - {Z h (EoY)h (x-£,y). (2.34)
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The operator * is defined similarly.

Proof: Prom (2.31) and using the multinomial expansion
gives

6,(T) = (1—3—-—%% WV f =y a%(0,)%(ce,)Y  (2.39)

Y = ‘lez aoBoY- 1 C¢2 3
a,B,Y

where the ] is over all a,B,y > 0 such that a + B + y = v.
Recall from (2.15) that ¢; = [1+6,(1-e'%1)]"! and
¢, = [1'*62(1--e1t2)]"1 and changing to z-transforms by letting

2% = 2") and 0382 o Y o can write

¢ S T d o 1 S
1r I+§1 61 o5 ¢Zs I+62 92
"F‘q 5‘T+T2

where ¢1r and ¢2$ are the corresponding transformations. Taking

=

the inverse z-transform, % , Of ¢§r and ¢§s we get (from the

z-transform pair number 24, Jury(1964))

6
o T S - 1 B x+8-1 1 <% 2
RCORIUIRRC e MG Ioe DL S NN

and

5 . 8

Except for the constant a’

, the inverse transform of (Ii%zl——)v
1Y2

is g,(x,y) in equation (2.26) so (2.35) may readily be inverted

(after changing to z-transforms throughout) by first holding s,

say, constant and inverting with respect to r and then completing
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the inversion by inverting with respect to s. Thus we arrive
at (2.32). This equation is analogous to Paulson's (1973) re-
sult for a bivariate gamma distribution (a% in equation (26)
of that paper should be replaced with aa'v). Directly from

Theorem 1 we have

Corollary 1: For v=1 and a#0, the probability function

for the BNB(a,b,c,p,q,1) distribution is
£ ( S ol %ot
1 X,Y) gl(X.Y) ; g(r:g;)(r:g;) 81(X,Y)
6 y
2
+ %(Iréz)(rrgg)y * gy(x,y) (2.36)

where g, (x,y) is the probability function for the BNB(a,0,0,p,q,1)
of (2.21). This is a closed form representation of Paulson and
Uppuluri's bivariate geometric distribution.

Obviously, the utility of fv(x,y) in (2.32) is limited by
the integral requirement for v and so we seek a representation
for v real valued. Except for the case c=0 our attempts to de-
rive a general representation have been unsuccessful. Next we
give the results for c=0 (or for b=0 by symmetry). Also, we
show how these results are directly applicable to Paulson's bi-

variate gamma distribution.

Theorem 2: For the BNB(a,b,0,p,q,v) distribution with
v>0,

X 4
£,067) = 8,(57) + g, (xy) * T RGPS 237

S ",‘\39; ¥
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where gv(x,y) is the BNB(a,0,0,p,q,v) of (2.26) and
k
h(b,) = (-1 | GZ) () ()™ (2.38)
n=
Proof: In (2.31) we write ¢v(c=0) for the characteristic

function when c¢=0 and by using (2.15) it follows that

T e L S v 2
v -39, 9, [ ITTEIHTWI] . (2.39)

The leading term in this expression is the characteristic func-
tion for the case b=c=0 and for it we write ¢v(b=c=0). Re -
writing the second term and expanding in an infinite series

gives

¢,(c=0) = ¢,

1}
©
~

c
1]
(g]
"
o
~
~
!
+
<
-
[
<

k
dyre=0) 1+ [ [ L G0 Q) (e ¥ M -y

8, (b=c=0) {1+ kzl h(b,k)y,*) (2.40)

where h(b,k) is defined in (2.38). Since the infinite series
in (2.40) is uniformly convergent we can invert termwise to get
(2.37). 1t is easily verified that b=0 leads to gv(x,y) in
(2.26) and v=1 gives fl(x,y) in Corollary 1 with c=0.

As stated before, equation (2.13) characterizes a bivariate
exponential distribution and for that case wl(tl,O)wz(O,tz) =
[l-elif:ll'l[l-ezitz]'1 where Bl and ez are different from those
in (2.16). From the characterization, Pzulson (1973) formed a

bivariate gamma distribution and for the special case of c=0 a
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corresponding result to Theorem 2 is

X K xk-le-xle1

£,(x,y) = g,(x,y) + g (x,y) * kzl h(b,k)c%;I) T (2.41)
where
g, (x,y) = B_1_‘_?_}"_(@_(3:_%62)!s(v-l)e-xlel-y/ez Iv-ﬂ”‘@i%?k)’ (2.42)
h(b,k) is the same as in (2.38), and IV_I(Z(%)”) is the mod-
ified Bessel function of the first kind and order v-1. That
this result is true follows directly from (2.40) since 121 in
this situation is [l-elitll'l. For v=1 and c=0, (2.41) checks
with a result by Kohberger (1975). In a slightly different
form (2.42) is the bivariate gamma distribution obtained im-
plicitly by Wicksell (1933) and explicitly by Kibble (1941).
The bivariate exponential distribution defined by (2.13) will
be discussed in more detail in Part 4. We continue with some
more properties of the BNB(a,b,c,p,q,v) distribution.

By using the characteristic function ¢v(T) in (2.31) and
the usual differentiation techniques there follows, after sev-

eral tedious operations,

Theorem 3: The mean vector and covariance matrix for the
BNB(a,b,c,p,q,v) distribution are

vel
| (2.433)

vez
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and
i =
v(ad-bc
ve, (1+8,) J‘1’2?1"1"1"2
J = ¢ (2.43b)
v (ad-bc
-L—l——d—)—_ 8,0, v0,(1+6,)

We digress briefly at this point and give a method of moments
parameter estimation technique for the special case b=c=0.

1. In af and o% set 61=§7u and 92=?7v and take the pro-
duct of qg and c% to be equal to the product of the sample
variances. There results a quadratic function in v:

2.2
v b

Xy

(1 - ) vZ 4 (T+Y)v + Xy = 0 (2.43¢)

and for 535% > Xy, which is expected if the marginals are
approximately negative binomial, there is exactly one posi-
tive root that we can take as our estimate of v.

2. Inopy substitute eltf/v and 92=7/v and set oy y equal
to the sample covariance, SXy* Solving for the parameter a,

we have

v
P R o (2.43d)

xy
3. Prom (2.16), el-p/[(l-p)a] and so

ad -
1 ax/v
p = — (2.43e)
1*ad;  jiax/v
4. In a like manner,
q v 2. (2.43f)
l+ay/v
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The next theorem establishes that the regression function

for the bivariate geometric distribution in Corollary 1 is non-

linear.

Theorem 4: For the BNB(a,b,c,p,q,1) distribution (bivar-

iate geometric of Paulson and Uppuluri) where b#0 the regression

function is
E[Y[x] = r37 52+ & - H**Y (2.44)
where
m = p + (1-p)(a+c), A=cm/[(a+c)(a+b)],
k = m/[m + b(l-p)] and d = l-a-b-c. (2.45)

Proof: For the conditional mean E[Y|x], which is a

function of x, take as a generating function the z-transform

?.(E[le]) = g(z) = xzo g E[Y]x). (2.46)
By using the definition of E[Y|x] we can write
SN ey
g(z) = (1+6;) xzo yZO g1 YH,0.0 (2.47)
since the marginal density of X is Pr[X=x] = (I%UI)(IT%IJX'
This last equation can be written as

1+61
g(2) = (1+0)) & PlggoAl [y g (2.48)
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where P[:,*] is the probability generating function of the

bivariate pair (X,Y). The probability generating function
can be obtained from ¢v(T) by substituting r=e 1 and s=eitZ
and after some computation and simplification we get

z(z-m) )

g(z) = (T%a)(ﬁTFTT_—T)(i:f GO0 (2.49)

where m, k and A are defined in (2.45). Inverting g(z) (Jury
(1964)) gives (2.44). This type of a nonlinear regression
function is sometimes called an exponential regression function.

In a direct way using the definition of E[Y[x] we obtain
Theorem 5: For the BNB(a,0,0,p,q,v) distribution
Y o v+d(1l-p)x
E(Y|x] = rlolrqrrpy) (2.50)

where d=1-a.

The following theorem is very useful for computations.

Theorem 6: For the BNB(a,0,0,p,q,v) distribution the

probability function can be computed with the recursive formula
8, (x,¥+1) = rrptrray [(x#y+v) 8, (x,¥) -p(v+x-1)g, (x-1,7)], (2.51)
x>1, y >0 and z = d(1-p)(1-q). Coupled with

g,(0,0) = [2l=pli-a);v

the probability function is determined.

POE— _— —— —— NN e i 2 A o
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Proof: By using the following relation for F(a,b;c;z)
and two of its contiguous functions (15.2.18, Abramowitz and

Stegun (1964)):
(c-a-b)F(a,bj;c;z) - (c-a)F(a-1,b;c;z)
+ b(1-z)F(a,b+1l;c;z) = 0,
(2.26) can be written as
g, (x,y) = a\’hl(X)hz(y){x—,,—)l;+—\,[xF(v*x-1,v+Y;v;2)

+ (v+y) (1-z) F(v+x,v+y+l;v;2z) ]}

and (2.51) follows easily with some elementary operations.
The cell probability at (0,0) is obvious from (2.26) and (2.23).

An important result for parameter estimation is next.

Theorem 7: For the BNB(a,0,0,p,q,v) distribution and if

v is known the likelihood equations for a random sample of size

n are
_9_1.39_5.&: 'g.*;:-ﬁ-o (2.52a)
){oopg L, & (—li;ﬂf +7y-R=0 (2.52b)
dlog L, \jl(-l_q)i\sy-n-o (2.52c)

where L is the likelihood function, x and y are the sample
(Ll g, (x,y+1)

q "g,(x,y) °’

means for the marginal distributions, R-é )

n
x,y
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Ny is the number of observations for which X=x, Y=y, and

g,(x,y) is the probability function in (2.26).

Proof: If the probability function in (2.26) is differ-
entiated with respect to the parameters a, p and q the follow-

ing differential-difference equations result:

g, (x,y)
L - G Pey oy - 3hg, (e

28,(x,Y)
—%—15— . (% i rgg)gv(x,y)

2 8, (X,Y)
e (5 f PO

(2.53a)

z r}_ﬁcxai)gv(x’y-#l) (2.53b)
1 y+1

- &G E, YD) (4550

These equations follow by using (15.2.1, Abramowitz and Stegun)

OR(a,biciz) _
d 2

%EF(a+1,b+1;c+1;z)
and (exercise 1, page 296, Whittaker and Watson (1965))
F(a,b+*l;c;z) - F(a,bj;c;z) = %iF(a+1,b+1;c+1;z).

The log likelihood function, log L, for a random sample

of sizenis } n__ log g,(x,y) and so
X,y

Xy
blog E 2 2 1 Bgv(X.Y)
da X,y Xy 8\,(x:YT D2

Using (2.53a) and a few simple operations leads to (2.52a).

Similarly, (2.52b) and (2.52c) obtain. We were %nab§e to get
g,(X,Yy
a differential-difference equation involving !—3%77———, vV as-

sumed unknown.

v
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From (2.52) it is clear that
1-p)~ {(1-q)e= _-V
X = = = 2,54
3 Ste mis (2.54)

and these relationships are very useful in estimating the para-
meters via the method of maximum likelihood. For v known or
not, the conditions in (2.52) are necessary for a maximum like-
lihood solution to the likelihood function for b=c=0. There-
fore, (2.54) can be used to reduce the dimensionality of the
unknown parameter space from four if v is unknown, to two by
taking, say, p = qx/[qx+(1-q)y] and a = vq/[(1-q)y]. We have
used a nonlinear optimization computer program (Cross (1970))
to solve for the parameter estimates and the dimensionality
reduction permits extremely shorter running times.

Next we show a corresponding result to Theorem 7 for
Paulson's bivariate gamma distribution. For the distribution
defined in (2.42) and if v is known the likelihood equations
for a random sample of size n are:

(

+
P

Vv

_dlog L. R = S S
»a a 2
dlog L, X yY  » .

o - ool 3 Ao 8 Rl

—"1—,:55&: k312:--%1-§=0 (2.55)
where L, X and ¥ are as in Theorem 7, a=1-d, 5=1 I I*/1,

n x
21,.4(2) it

I'-(z/Z)——ir;————, I'Iv-l(z) and z-Z[(l-a)xy/(elez)] . The

result follows, after some lengthy but straightforward computa-
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tions, by taking L = I gv(x,y) where gv(x,y) is in (2.42)
X,y
and forming :
1 08, (x,y)
g,(x,y) 2}

ubo% L o 08

X,y
for Ae{a,erez}. It is obvious that necessary conditions for

the parameters are

g_=%__=§. (2.56)
1 2
We show in a later section the bnb of this section fitted

to some data., First we introduce another bnb distribution

which has certain desirable properties.

2.3 A New Bivariate Negative Binomial Distribution, Via a
Trivariate Reduction, and Some Properties

The two previously discussed bivariate negative binomial
distributions have marginals which are negative binomial with
parameters ei, i=1,2, and common parameter v. In this section
we introduce another bivariate negative binomial distribution
whose marginals have parameters Vi i=1,2, and common parameter
#. Data are shown later for which this latter model seems more
appropriate.

We construct via reduction of a certain trivariate nega-
tive binomial distribution with independent marginals a bivari-
ate negative binomial distribution. Mardia (1970) refers to
this as a trivariate reduction; Holgate (1964) used this tech-

nique to construct a bivariate Poisson distribution and Arnold

——
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(1967) generalized the procedure.

Theorem 8: Let Xl’ XZ’ X3 be independent negative bi-
nomial r.v.'s with common parameter 6 and individual para-
meters vy, Vv, and Vs, respectively. Then the probability
function of X = X; *+ X5, Y = X, + Xg is given by

X v1+w-1

Vi +V, +V
0
h(x,y) = () © 2 g’ L, )X
w=k
Vo +X-W-1 v,ty-X+w-1
2 3 0 \w
SNl (AL (2.57)

where
o0, it x <y
X=y, 1f x> y.

Proof: The joint distribution of xl, X,, X3 is

V,+V,+v 3 v.+x.-1 X
i 1 R S - N 0
f(xlsx29x3) i (1,,,9) igl ( xj_ )(1"'.9)

and by taking the transformation of variables X = X; * XZ,
T M Re x3 and W = Xy it follows in the usual way that the
joint distribution of (X,Y) is (2.57).
This bivariate negative binomial distribution is designated’

BNB-TR(e,vl,vZ,vs) and from the defining relations its marginals

are negative binomial; X has parameters 6 and v * v, and Y has

parameters 8 and vy, * vg (Johnson and Kotz). The marginal means

s e e g s -
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and variances are thus known and the covariance of (X,Y) is

2

cov(X,Y) = cov(X1+X2, X, +X = oxz. (2.58)

2*X3)

1
Therefore, p = vz/[(vl+v2)(v2+v3)] ‘and we see that p is re-

stricted to nonnegative values.

Theorem 9: The regression function for the bivariate r.v.
in (2.57 is

\)ZX
E(Y|x] = Vg8 + .

3 (2.59)
Y Vs

Proof: Given X=x, the r.v. Y|x has expectation E[X,[x]

+ v _08 since X3 and X are independent and so we desire the dis-

3
tribution of X,|x. By writing the joint distribution of X,
and X2 and transforming to new variables by letting X = Xl + XZ’

X2 = X,, we obtain for the joint distribution of (X,XZ),

V,o+X=-X,-1 Vv, +v
0
£0x, %) = x_x; A0 Ygrp) T e
0 <x;, <x (2.60)
From definitions it follows that
(v1+x7x2-1 v2+x2-1)

X"XZ X

f(lex) = s 0<x,<x (2.61)

v1+v2+x-1

(7 )

and
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\)ZX

E[X,|x] = (2.62)

Equation (2.59) results.
The next section shows how these bnb distributions com-
pare with the Guldberg-Bates-Neyman model in fitting bivariate

data related to shift worker absenteeism and disease data for

industrial workers.

2.4 Bivariate Negative Binomial Distributions Fitted to Data

In this section we fit two data sets from the literature
with the three previously discussed bnb distributions. Our
objective in using these data is to illustrate certain aspects
of the distributions. The first data set is given by Arbous
and Sichel (1954) and concerns absenteeism for 248 shift workers
in two adjacent yearly time periods and the second one is due
to Bates and Neyman (1952) and shows the number of cases of in-
capacity suffered, per individual, during a common time period
and due to two diseases; the sample size is 1286. For the ab-
senteeism data we show that either the G-B-N(a,f8,v) model in
(2.6) or the BNB(a,0,0,p,q,v) model in (2.26) fit the bivariate
data reasonably well but that the regression function from the
latter model describes better the observed conditional means.
None of the three models adequately describe the joint distri-

bution of the disease data even though the marginals are accep-

tably fitted by a univariate negative binomial distribution. It
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will be shown, however, that the two new bnb distributions do
describe certain properties of the disease data better than
the G-B-N(a,8,v) distribution, though.

Parameter estimates for the various models are by the
method of maximum likelihood estimation (MLE). Bates and
Neyman show how to solve the likelihood equations for the
G-B-N(«,8,v) distribution; for the BNB(a,b,c,p,q,v) and BNB-TR
(e,vl,vz,vS) distributions we use a computer optimization pro-
gram (Cross) directly on the log likelihood function to obtain
our estimates. For the parameters b and c defined to be zero
in the BNB(a,b,c,p,q,v) model we use the necessary conditions
in (2.54) to reduce the dimensionality of the parameter space.

Corresponding to the observed pairs (xi,yi), T R TR (R
representing a random sample from the unknown probability func-
tion f(x,y), we wish to test the hypothesis HO: f(x,y)-fo(x,y),
where fo(x,y) is specified to be one of the referenced bnb dis-

2 test is used as a goodness-of-fit test of

tributions. The ¥
HO; we point out that the prcblems with grouping cells which
are generally associated with this test in univariate settings
are even more dramatic for bivariate cases. To illustrate,
Table 10 shows two independent groupings for a data set to be
described in the next part. Before commenting on the table,
certain remarks are required.

Following the practice of Bates and Neyman in their paper,

cells which have expected frequencies less than three are
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grouped. In Table 10 and similar ones to follow, the dashed
lines indicate the boundary of the particular cells; heavy
lines indicate the grouping adopted for the application of the
xz test. Three numbers are shown in each cell: the observed
frequencies are shown in the upper left corner of particular
cells and the decimal numbers are the expected frequencies on

the left and the contributions to x2

on the right. If several
adjoining cells are grouped then the expected frequency and xz
values shown are for the entire group. The P value given is
the probability of obtaining a value of x2 exceeding the com-
puted amount assuming Hy is true.

Table 10 clearly shows how the probability P is affected
by different groupings. Unlike the univariate situation we
have two directions to contend with here for grouping and it
is not obvious how to proceed. This is pointed out to empha-
size the need for an alternate goodness-of-fit test for bivari-
ate data (and in general multivariate data), one perhaps being
independent of any grouping. For lack of a better test we re-
sort to the x2 test. In every fit to be shown herein the
groupings are completely independent of the observations and the
findings are from a single attempt at grouping the expected fre-
quencies for the minimum value of three.

Table 1 shows certain summary results for all of the data
to be analyzed. The first column identifies the data, column

2 gives the sample size and correlation, column 3 specifies the

marginal random variables and shows the associated sample means
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and variances, columns 4 and 5 show the parameters of the uni-
variate negative binomial fitted to the marginals and the assoc-
iated xz values, degrees of freedom and probability levels, re-
spectively. Results from this table will be presented along
with a discussion of the individual data sets. The absenteeism
data is examined first.

One of the objectives of the Arbous-Sichel paper was to
extend the notion of accident-proneness introduced by earlier
workers (see Kemp (1970) for a history) to absence-proneness
in shift workers. Table 2 shows the observed and expected cell
frequencies for the number of absences in two adjacent yearly
time periods (1947 and 1948) for 248 workers; the expectations
are from the G-B-N(1,6,v) symmetric model (a=1).

From Table 1 we see that the marginal distributions are
fitted rather nicely by the univariate negative binomial and
coupled with the fairly large sample correlation coefficient,
it seems reasonable to expect a bnb distribution to adequately
describe the data.

Table 3 shows the expected cell frequencies from the BNB
(a,0,0,p,q,v) distribution; no goodness-of-fit test is attempted
for this data set since Arbous and Sichel do not show their
grouping. They report a xz value of 17.0 with 13 degrees of
freedom (df) and P=0.20 associated with the G-B-N(1,6,v) model
so certainly the fit is reasonable. A visual comparison of

the expected cell frequencies for the two models indicates a

I N T L NP S ety 4



g
-

¥

o

T

33

close agreement and so we would expect a similar probability

P to obtain for the fit of the BNB(a,0,0,p,q,v) distribution.
Although the fit of the G-B-N(1,6,v) model to the ob-

served data is reasonably good, the authors point out that

12 of 18 observed means lie below the theoretical regression

function (MLE estimates are used in (2.12)). The BNB(a,0,0,p,q,Vv)

model, and using MLE estimates, gives rise to a regression func-
tion for which only 10 of the 18 observed means are less than

the predicted values.

We tried to fit the BNB(a,b,c,p,q,1) and the BNB(a,b,0,p,q,v)

models in equations (2.36) and (2.37), respectively, to these
data but got zero MLE estimates of b and ¢ in the first model
and an estimate of b equals zero in the second. The apparent
lack of influence of the parameters b and c will be noted again
for the Bates-Neyman data. No attempt was made to fit the BNB-TR
(e’”l’VZ’vs) distribution of (2.57) to this data set since the
marginal estimates of the parameter v (column 4 of Table 1) are
approximately the same. Next we discuss the disease data.

In their paper Bates and Neyman present several data sets
related to injuries and diseases suffered during a common period
of time by office and industrial workers. For the set associ-
ated with two kinds of diseases for 1286 industrial workers the
fit of the G-B-N(a,08,v) distribution is deficient both in des-
cribing the bivariate data and the observed regression function.

That a bnb distribution should be a candidate model for the
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data, though, is suggested by Table 1 since the marginals are
reasonably well fitted by a univariate negative binomial and
the sample correlation coefficient is moderate.

In the following diagram we show the empirical and theo-
retical regression functions for this data; theoretical values
result by substituting MLE parameter estimates, via fitting
the joint raw data, into (2.12). Although a 'by-eye' fit of

a regression function to the data fails somewhat due to the

fact that the observed means are based on varying sample sizes,

shown at the bottom of the diagram, it is apparent that there

is some nonlinearity in the data.

THEORETICAL AND OBSERVED REGRESSION
FUNCTIONS FOR BATES-NEYMAN DATA

E[Y]|x]

——regression function
(MLE)

data

X - Digestive Disease
Y - Respiratory Disease
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Table 4 shows the observed and expected cell frequencies
given by Bates and Neyman for the disease data; the expected
frequencies are based upon the G-B-N(a,6,v) distribution. From
the previous diagram and the table it is clear that this par-
ticular model fails to adequately describe the joint data and
the regression function so it is natural to seek a better rep-
resentation for the data. To this end we fit to the data the
new bnb distributions; our results are not completely success-
ful in that the joint fits are also inadequate even though the
xz values are much reduced from that of the G-B-N(a,6,v) fit.
That the empirical regression function is described better will
be illustrated.

We now give in displays like Table 4 the results of apply-
ing the new bnb distribution to these data. In order to pro-
vide a close comparison with the Bates-Neyman results we change
their groupings only when necessary to maintain the minimum ex-
pectation of three. Tables 5 through 8 show the results and

Figure 1 gives some of the associated regression functions.

Table 5 illustrates our first attempt at fitting these data;

the bivariate geometric was chosen since it leads to a nonlinear
regression function (see 2.44). Choosing a criterion of xz, the
fit is much better than the one in Table 4 but still inadequate.
Figure la gives the regression function from (2.44) with MLE

estimates; 1lb shows the least squares fit of the curve ao+a1kx,

which is the form of (2.44), to the data. We emphasize the
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fact that all parameter estimates are based on the raw data;
that is, these curves were not fitted to the illustrated means.

Tables 6 and 7 show how the BNB(a,b,0,p,q,v) in (2.37)
and the BNB(a,0,0,p,a,v) in (2.26), respectively, describe the
bivariate data. Figures lc and d give the corresponding re-
gression functions. We note that the regression function for
the BNB(a,b,0,p,q,v) distribution is nonlinear. It is observed
that the xz values are approximately the same in Tables 5, 6
e2ad 7 so none of the special cases considered seem superior in
describing the joint observations. The regression functions
are different, tiough, and it appears as if the BNB(a,b,0,p,q,Vv)
regression model is best, at least among the ones based on MLE
estimates,

A possible reason for the difficulty in adequately fitting
these data is that each of the distributions discussed in Tables
4 through 7 has a common v parameter associated with the margin-
als, but the individual sample values of v from Table 1 are
quite different. For one marginal the estimate of v is 0.53
and for the other, 1.69. Thus we are lead to apply the BNB-TR
(e’vl’VZ'vS) distribution in (2.57); Table 8 displays the fit.

» value but still not enough to

We see an improvement in the ¥
produce a reasonable fit. Figure le shows the regression func-
tion for this model. For reference we give the least squares

linear regression in Figure 1f.




TS

37

Associated with each bivariate display in Tables 4 to 8
is an implied marginal fit. None of the distributions ade-
quately describe both observed marginal distributions although
the G-B-N(a,8,v) model does describe adequately (P=0.30) the
random variable labeled respiratory disease and the BNB-TR
(e,vl,vz,vs) model gives P=0.05 for the digestive disease mar-
ginal and P=0.02 for the other one.

For the Arbous-Sichel data and for special cases of the
general BNB(a,b,c,p,q,v) model we saw that the parameters b
and ¢ were not needed to describe those data. Here for the
Bates-Neyman data we see from Tables 6 and 7 that the impact
of the parameter b appears minimal in that the expected cell
frequencies are about the same. Ignoring the observation that
the BNB(a,b,0,p,q, ) model leads to a nonlinear regression
function, whereas the BNB(a,0,0,p,q,v) distribution gives a
linear one as shown in (2.50), we suspect for parent populations
with positive correlation that the latter model is fairly ro-
bust against alternatives involving nonzerc parameters b and
¢. Although not attempted here, this conjecture could be ex-
amined via simulation; plots of the probability surface as a

function of some of the parameters could be helpful too.

2.5 Summary

In this part we discussed the bnb distribution introduced
by Guldberg (1934) and generalized by Bates and Neyman (1952).

This bnb distribution admits of positive correlations and linear

———
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regression functions. Also we introduced and derived several
properties for two new bnb distributions, one obtained by con-
voluting a bivariate geometric distribution given by Paulson
and Uppuluri (1972), and another obtained by reducing a certain
trivariate negative binomial distribution. For the convolution
process a dual bivariate gamma distribution exists (Paulson
(1973)) and for it the duality implies the exactly analogous
properties.

For the bnb distribution resulting from a convolution,
labeled BNB(a,b,c,p,q,v), we established the following results:

(1) for v integer, the probability function in (2.32),

(2) for v>0, the moments to order two in (2.43 a and b),

(3) for c=0 and v>0, the probability function in (2.37),
the probability density function for the dual bivariate gamma
distribution in (2.41) and the nonlinearity of the regression
function in Figure lc,

(4) for v=1, the probability function in (2.36) and the
equation for the regression function (nonlinear) in (2.44),

(5) for b=c=0 and v>0, a method of moments parameter es-
timation technique in (2.43 c-f), the equation for the regres-
sion function in (2.50), a recursive formula for the probabili-
ties in (2.51), the likelihood equations for a random sample
(assume v known) in (2.52), the differential-difference equa-
tions (v known) in (2.53), in (2.54) a necessary relationship

for the parameters in optimizing the likelihood function and
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the likelihood equations for the dual bivariate gamma in (2.55)
and the necessity condition for its parameters in (2.56).

Contrary to the Guldberg-Bates-Neyman distribution this
one gives rise to positive or negative correlations and to
linear or nonlinear regression functions.

For the bnb distribution which resulted from a reduction
we derived the probability function in (2.57), the moments to
order two in (2.58) and the regression function in (2.59). This
distribution is basically different from the two previously
discussed ones in that its marginals have characteristic func-
tions of the form [1+e(1-eit)]-vi, i=1,2,whereas the character-
istic functions associated with the latter distributions are of
the form [1+ei(1-eit)]'v, i=1,2. Equation (2.1) shows how the
resulting marginal distributions would differ. From the appli-
cations of these distributions to data we suspect that bnb
models which give rise to marginals with characteristic func-
tions of the form [1+ei(1-eit)]-vi, i=1,2, would be useful.

We applied these distributions to the bivariate data given
by Arbous and Sichel (1954) on absenteeism among 248 shift wor-
kers in two yearly periods and to disease data of two types
among 1286 industrial workers.

Arbous and Sichel fitted the symmetric (a=1) Guldberg-
Bates-Neyman model in (2.6) to absenteeism data and got a rea-

sonable fit (P=0.20) but the regression function, with para-

meters via MLE, overestimated the observations in that 12 of

ayr g
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18 means were below the computed regressions. We applied
the BNB(a,0,0,p,q,v) distribution to these joint data and
the regression function was such that only 10 of 18 means
were below it. Arbous and Sichel did not show the cell

2 test for the bivari-

groupings they adopted for use in the ¥
ate fit so we could not compare the BNB(a,0,0,p,q,v) model

to the Guldberg-Bates-Neyman model. By-eye, the fits seemed
comparable.

Bates and Neyman applied the Guldberg-Bates-Neyman dis-
tribution to disease data but the fit did not adequately des-
cribe the observed bivariate data or the observed means which
clearly suggested a nonlinear form for the regression func-
tion. We applied several special cases of the BNB(a,b,c,p,q,Vv)
model and the so called BNB-TR(B,vl,vZ,vS) model in (2.57) to
these data and never got a reasonable fit although the values
of x2 were much reduced; from the latter model the x2 value
was about one-half of the value reported by Bates and Neyman.
The nonlinear regression functions resulting from the special
cases of the BNB(a,b,c,p,q,v) distribution described much bet-
ter the observed means.

From our experience in fitting special cases of the BNB
(a,b,c,p,q,vY distribution to these data and to the data to be
discussed in the next part we suspect that the parameters b
and ¢ are relatively unimportant in fitting bivariate data

from populations with positive correlation. Except in those
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cases where the empirical regression function is obviously
nonlinear.the BNB(a,0,0,p,q,v) case is probably a fairly ro-
bust model. The recursive formula and parameter reduction
technique developed here make it relatively easy to work with,

too.




PART 3

SOME BIVARIATE APPROACHES FOR ANALYZING AITRCRAFT
OPERATIONS AND MAINTENANCE DATA

3.1 Introduction and Historical Review

Our objective in this part is to apply bivariate distri-
butions to some problems related to inventory control and
maintenance in military aircraft logistics. In a way to be
shown we form bivariate r.v.'s related to these problems and
illustrate their utility with actual data. Although the dis-
cussion is restricted to applying two of the aforementioned
bnb distributions to certain data sets, the techniques are
applicable to other settings.

The analyses presented here, for the most part, are in
the context of fitting distributions to bivariate data and
then using these sample distributions to address certain prob-
lems. Several authors have postulated areas in reliability
where certain continuous bivariate distributions can be ex-
pected to result., See, for example, Downton (1970), Harris
(1968), Hawkes (1972), and Marshall and Olkin (1967) who study
bivariate exponential distributions. Closer to the techniques
envisioned here are the works of Fawcett and Gilbert (1966) for
characterizing demand patterns. (univariate) for aircraft spare
parts and Youngs, Geisler and Brown (1955) for predicting de-
mand for aircraft spare parts using the method of conditional
probabilities. The account by Dade (1973) for some alternative

approaches to maintenance analysis is of interest also.
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In the next section we present some bivariate approaches
to problems dealing with discrete data. Section 3 describes

how similar approaches could be used with continuous data.

3.2 Some Bivariate Analyses of Discrete Data

The purpose of this section is to illustrate with several
examples how discrete bivariate r.v.'s can be associated with
certain aircraft operations and maintenance problems and sub-
sequently give rise to meaningful analysis techniques. In par-
ticular, we present demand data for aircraft spare parts and
use bivariate distributions to suggest how a particular kind
of inventory model can be constructed; additionally, aircraft
abort data are given and it is shown how the regression func-
tion for a certain bivariate r.v. related to these data can be
used to suggest the effect of overhaul on an aircraft's per-
formance. Besides the above applications an important observa-
tion in its own right is that these data, properly defined,
can be described adequately by univariate and bivariate nega-
tive binomial distributions.

First we show that bnb distributions adequately describe
demand data for aircraft spare parts in two adjacent time per-
iods. Table 9a gives for a random sample of 72 aircraft parts
actual demand data for a four month period where we have formed
bivariate data by splitting the period into two smaller inter-
vals; we take the first interval to be the first three months

and the second interval to be the fourth month. As an illustra-
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tion of the data two parts were demanded five times in the
first three months and then a single time in the fourth month.
From Table 1 we see that the sample correlation coefficient for
the bivariate data is 0.54 and that the marginals are fitted,
reasonably well, with the univariate negative binomial distri-
bution (illustrated in 9b). We expect then that one of the
bnb distributions should describe these data and in Table 9a
we show the fit of the Guldberg-Bates-Neyman model of (2.6).
(In this entire part procedures for estimating parameters, ap-
plying the xz test and illustrating results are all the same
as were described in Section 2.4.) For this fit we have P=(0.18
indicating that approximately 18 of 100 fits would be worse,
assuming, of course, that the G-B~N(a,6,v) model is the under-
lying parent population. That another bnb distribution describes
these data is illustrated next.

In Table 10 we show how the BNB(a,0,0,p,q,v) distribution
in equation (2.26) describes the data; this is the same data
set that was used before to illustrate how the P value associated

¢ test is affected by cell groupings. We reiterate

with the ¥
that an alternate goodness-of-fit test, one, perhaps, being in-
dependent of cell groupings, would be desirable but here we use

2 test and agree to report results based upon a single at-

the ¥

tempt at grouping the cells for the minimum expectation of three.
By inspection the fits illustrated in Tables 9 and 10 seem

to be about the same. The P values associated with the marginal

fits of the BNB(a,0,0,p,q,v) distribution to the univariate ob-
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servations are 0.24 and 0.27 and the G-B-N(a,8,v) model gives
rise to similar values.
That bnb distributions can be applied to these kinds of
data should be useful in inventory control and particularly
to problems where short range predictions are required, such
as in constructing fly-away kits. In military air operations
certain parts are set aside from normal operating channels and
in an emergency are supposed to provide enough spares to last
for a fixed amount of time, usually one month. These parts
make up a so called fly-away kit. Youngs, et. al. (1955) sug-
gest this application in their report but show no distributions
# fitted to bivariate data as we do. We leave this area and next
discuss some aircraft abort data.
That bivariate distributions which admit of negative corre-
{ lations can be useful in applications is illustrated with the
' following data set. We show in Table 11 flight aborts (missions
interrupted during flight) for a random sample of 109 aircraft

for two consecutive six month time periods. The flight aborts

are limited to those caused by materiel failures. From Table 1
’ ] the sample correlation coefficient is -0.16 and we see that one
of the marginals is very well fitted with the univariate nega-
tive binomial but the other fit is inadequate. The expected
cell frequencies in Table 11 are from the BNB(a,b,c,p,q,1) dis-

tribution and a P value of 0.12 results.
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Next we give other aircraft abort data and show an anal-
ysis which suggests the effect of overhaul on an aircraft's
performance. Aircraft undergo large scale overhaul programs
periodically and it is important to know if the programs are
beneficial. Traditionally, these programs have been justified
by the common assumption that the aircraft are restored to a
better condition; the following diagram depicts one way this

benefit is perceived.

maintenance
variable
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4 ek I\ $
1
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overhaul overhaul
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Before overhaul, for an individual aircraft, we show an in-
creasing trend to denote degradation of a variable such as
number of failures, number of aborts or perhaps, unscheduled
maintenance manhours and an improvement immediately after the
event followed by degradation again.

Previous attempts at investigating the effect of overhaul
have centered on collecting sample data for some variable on
either side of the event and then performing, say, an analysis

of variance or a regression analysis to determine if such
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degradation trends do, in fact, seem reasonable. Certain
studies have indicated that aircraft are not in a degraded
condition prior to overhaul and are not improved by the event
(Dade (1973)). Some qualifying statements are required here--
certainly an analysis of this nature is very complex in that
many factors such as environment, previous missions, flying
hour history and total age of the aircraft are involved so evi-
dently no one analysis can be expected to be complete and ex-
haustive. These types of analyses can be suggestive of the
effect of overhaul, though, and in this respect we seek to
contribute another technique and illustrate, with some new
data, its use. Although not attempted here common experimental
design techniques could be employed to control some of these
other factors.

We are primarily interested in developing techniques ap-
plicable to non-normal data and particularly to discrete data,
such as aborts which are typically small. From here on we
analyze total aborts, which are mission interruptions discovered
during pre-flight or in-flight operations. As before we study
only those aborts caused by materiel failures.

To examine the effect of overhaul we define two bivariate
r.v.'s related to the periods shown in the following diagram.

Periods 1 and 2 (common to all aircraft) are two adjacent six

Aircraft Overhaul
delivery 1 2 X 5 Iu 4
= % { } -+ I t —¥= time
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month periods where no overhaul was performed and periods 3

and 4 are the six month periods immediately before and after

an overhaul, respectively. The period lengths were chosen
arbitrarily. If A is the number of total aborts per aircraft
in period i, i=1,2,3,4, then we wish to compare the probability
distribution of the pair (AS,A4) where an intervening overhaul
was performed to the probability distribution of the pair (Al’
AZ) where no intervening overhaul occurred. Under a null hypo-
thesis of the overhaul being ineffective in changing an air-
craft's performance, as measured by aborts, these two distri-
butions should be the same. The regression function is a
descriptor of a bivariate distribution (Kendall and Stuart
(1973)) and so one simple way to compare these two distributions
would be to examine the two regression functions associated with
sample data, All other factors being equal any two aircraft
with the same number of aborts in periods 1 and 3 should have
the same number of aborts, on the average, for periods 2 and 4
if overhaul is ineffective and so any difference in the corre-
sponding regression functions should be suggestive of the effect
of overhaul.

This type of analysis presupposes the existence of a suit-
able bivariate distribution which will adequately describe ob-
served data. Next we present sample data related to the bivari-
ate r.v.'s (Al,AZ) and (AS,A4) and fit them with the BNB

(a,0,0,p,q,v) distribution in equation (2.26). This distribu-
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tion was chosen arbitrarily and we suspect that other bnb
distributions could be used equally well. Sample values of
Aj will be denoted by aj, j=1,2,3,4.

Table 12 gives the number of total aborts in periods 1
and 2 for 203 aircraft. To obtain this sample we considered
an entire population of aircraft of a particular type (about
500) and excluded those aircraft with an overhaul during the
time periods specified as 1 and 2 and also those aircraft with-
out 12 full months of reported abort data during that time --
203 aircraft resulted. As an illustration of the data three
aircraft had ten total aborts in period 1 followed by six total
aborts in period 2.

For these data we can use the ordinary sign test (Gibbons
(1971)) for a bivariate r,.,v. to conclude that where no inter-
vening overhaul is involved aircraft incur the same number of
total aborts in two adjacent six month periods (here we are
actually testing the hypothesis that the median of the r.v.
(A1°A2) is zero versus a two-sided alternative; a normal ap-
proximation to the binomial used in this nonparametric test
gives a sample value of [z|=1.25).

Table 1 shows certain descriptive statistics for these
data and it is apparent that the univariate negative binomial
distribution can be used to describe the marginal observations.
We wish to describe further the bivariate data, though, and
so we attempt to fit the joint observations with a bivariate

negative binomial distribution.
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Table 13 shows the expected cell frequencies which result
by applying the BNB(a,0,0,p,q,v) distribution of (2.26) to these
data and Table 14 gives the observed and expected frequencies
together and the xz values. For convenience, we sum the obser-
vations in any one '"super-cell'" as is our custom for the expec-
tations. We conclude that the bivariate fit, as measured by xz,
is good (P=0.65). The P values for the associated marginal fits
are 0.04 for A1 and 0.56 for AZ' From equation (2.50) with MLE
parameter estimates we see that the regression function, or the
mean number of aborts for period 2 given the observed number of
aborts for period 1, is E[A2|a1]=4.53 +0.26 a;. It can be
shown that the least squares regression function for these data
is E[A2|a1]=4.41 + 0.28 aj. Next we show the same analysis for
sample data from periods 3 and 4; that is, before and after an
overhaul.

Tables 15, 16 and 17 give observations, expectations and
the xz test for periods 3 and 4 for 387 aircraft. These are
the same type of aircraft as before and we have an aircraft
being included in this sample if it has six full months of re-
ported abort data on adjacent sides of a common overhaul event.
We point out that periods 3 and 4 may be separated by two or
three months which is usually the length of an overhaul for
these aircraft.

I1f we apply the sign test to the bivariate data for (A3’

A4) shown in Table 15, as was done for the observed data for
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(AI’AZ)’ there results a sample value of [z|= 4.51 and we can
conclude that values of A4 greater than A3 are more likely in
these data; that is, total aborts per aircraft are generally
greater after overhaul,.

Column S5 of Table 1 shows how the univariate negative bi-
nomial distribution fits the marginals. For the joint data,
the P value (0.12) associated with the fit of the BNB(a,0,0,
pP,q,v) distribution is not as high as for the previous data
but we assume that it is acceptable. The implied marginal fits
give rise to P values of 0.43 for Az and 0.05 for A,. As a
descriptor of these bivariate data, the regression function
(using MLE estimates) is E[A4[a3]=7.13 +0.26 ag. The least
squares regression function is E[A4|a3]=7.32 > Qo253 az. Figure
2 shows on one graph the estimated regression functions (via
MLE) for these two data sets. We view the regression functions
being useful in the following way. If two aircraft have the
same number of aborts in periods 1 and 3, say, ten, then the
aircraft which has an overhaul will have, on the average, about
nine and one-half aborts in the next six months and the air-
craft that does not get an overhaul will have about seven, again
on the average. An important advantage in being able to fit
the data as we have illustrated here is that a confidence in-
terval could be placed on the predicted number of aborts by
using the estimated bivariate probability function; thus, we

avoid the normality assumption that is traditionally involved

.
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with placing confidence limits on the predictions (Draper and
Smith (1966)).

Apart from the development described here using bnb dis-
tributions and if we were willing to invoke the necessary nor-
mality assumptions,lén alternative approach would be to use
the least square regression functions in the above way. The
results for these data would be about the same.

Of interest is another bivariate r.v. which is formed by
taking A, and A; where A is a r.v. representing the total
aborts in the six months immediately after the fourth period.
Thus, we have a new bivariate r.v. associated with the aircraft's
performance right after overhaul and we are interested in how
it compares with (AS,A4), the r.v. representing total aborts
on either side of overhaul. Specifically, we are interested
in whether or not aborts decrease again; if the overhaul is
responsible for the observed increase in period 4 perhaps the
degradation is similar to that usually experienced in a new
item's performance and which gradually declines to a lower
level.

Table 18 shows sample data for (A4,A5) from 428 aircraft
of the same type previously considered; forming the differ-
ences (a4-as)i, i=1,2,...,428, and using the sign test for an
hypothesis of zero median difference for the r.v. A4-A5, versus
a two-sided alternative, leads to a sample value of 2=0.74 and

so we take the hypothesis to be true for these data. Evidently




[

P~

53

then, the number of total aborts is about the same for periods
4 and 5 for an individual aircraft.

We point out the rather large values of P, 0.75 for A4
and 0.56 for As, which result from fitting the univariate nega-
tive binomial distribution to the marginal observations (see
column 5 of Table 1). Although not illustrated, we applied to
these sample data the same bnb distribution that was used in
the two previous instances; the MLE parameter estimates which
resulted are a=0.7485, p=0.7728, q=0.7642 and v=2.0285. Assoc-
iated with the bivariate fit is P=0.27 and for the marginals,
P=0.66 for A4 and P=0.76 for AS’ We accept the fit. Based on
MLE estimates, the regression function is E[A5|a4]=6.97 +0.20 a,
and from least squares, E[A5|a4]=6.84 + 0,21 a,; the dashed line
in Figure 2 shows the former. The upper two regression func-
tions in the figure are probably within sampling error of one
another; no attempt is made to test for true differences.

Although not done here it would be of interest to make a
similar comparison before overhaul; that is, take a six month
period preceding period 3 and form a bivariate r.v. for the
number of total aborts in the new period and period 3 and then
compare that r.v. to (A3,A4). Another analysis planned for
the future is to compare (AI’AZ) to (AS,A4) where just those
aircraft with overhauls during periods 1 and 2 are selected
for consideration in periods 3 and 4. In this way we have two

samples during the same calendar time (approximately) and any
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possible contributing causes from that factor would be some-
what controlled; Dade points out that changes in management
policy or hardware and tactics connected to calendar time have
often made maintenance data analyses difficult.

For a large group of aircraft of a particular type our
results show how these aircraft performed after overhaul. The
results are only suggestive; with only the surface analysis des-
cribed here, we are not prepared to argue that the observations
represent true degradation or that they were caused by the over-
haul. We do think the approach is worthy of consideration
though and coupled with a comprehensive experimental design
could provide unbiased results.

Other definitions of the periods might lead to more re-
vealing results; some alternatives are fixed flying hour inter-
vals, a fixed number of sorties, or shorter monthly intervals.
Here the total aborts were taken for the whole aircraft; per-
haps total aborts for a particular subsystem would be better.

In the next section we discuss briefly similar applications
for problems dealing with continuous data.

3.3 Continuous Bivariate Distributions Applied to Aircraft
Failure Data

In this section we describe how bivariate probability den-
sity functions associated with certain aircraft failure data
could be useful in managing aircraft operations and maintenance

programs., Although the discussion is centered on using bivari-
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ate gamma distributions the techniques are applicable to
other bivariate densities. First we describe the basic ran-
dom variable of interest and then show how meaningful bivari-
ate models can be constructed.

For an aircraft we take as a r.v. X the operating time
between failures on any component for which the univariate
gamma distribution is expected to adequately describe the ob-
served failure times. An examination of historical data would
indicate candidate components. (We use the term component to
represent an individual part or a subsystem of parts.) For
applications to be defined later we also require on each air-
craft the delivery date and dates of overhauls. These over-
hauls are on the entire aircraft and not just on the component
itself.

On the following time axis we illustrate, for a particu-
lar aircraft and component, the random variable and events

described above.

: Overhaul
PRIAVETY 'y 3 4.3 5 ged =3 ea ] e 2
F‘ + +— - 4 + e e = + I —+ + = time
Xy X, X3 Xi41 Xp Xp

Failures occur at epochs 1,2,..., and the observed operating
times are X19Xp 000 o Here the observation X4 is taken to be
a realization of X5 which is the random variable representing

the operating time between the (i-1)st and ith failures. An




o e

aircraft overhaul occurs at the indicated point and the
previous failures are labeled -1 and -2; the intervening
erating time is denoted by Xp - In a like manner the nex
failures after overhaul are labeled +1 and +2 and the in
vening operating time is Xp- Next we describe some biva
models and possible uses.

For some components it is reasonable to expect that
operating times X; and X5, are related (particularly fo
ponents that are repaired and replaced on the same aircr
and so we assume the existence of a bivariate distributi
describe this dependence. Given bivariate data (xi,xi+1
n=1,2,...,N, we could determine if the sample values X4

X are correlated and if, in fact, the observed data c

i+l
be fitted adequately with any of the existing bivariate
distributions. To describe some possible uses of bivari
probability models in this context we assume the data co
be fitted adequately.

If the random variables X, and Xi+1 can be describe
a bivariate distribution and if, for a particular aircra
an observation x; is given, then the conditional distrib
of X-1+1|xi could be used to predict the time of the next
on this aircraft, at least due to the component being co
The regression function, that is, the mean of the condit

distribution could be used to predict the mean time of t

failure. This would be an improvement over a prediction
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equal to the mean time between failure (MTBF) which is typi-
cally used and is computed as if the random variables Xi and

X are independent and identically distributed.

i+l

Aircraft components generally are assumed to exhibit
failure rates which vary with time according to the classic
bath tub curve. Thus, failures occur more rapidly at first
then decrease to a somewhat constant level and finally increase
in frequency. Failures in these three periods commonly are
called initial, chance, and wear-out failures, respectively
(Mann, et. al. (1974)). A comparison of the bivariate den-
sities associated with the sample operating times on either
side of several failures could suggest a pattern of component
aging.

One of the prime considerations in simulation studies in-
volving a composite of aircraft operations and support func-
tions is in generating realistic component failures. Certainly,
if times to failure are dependent then a mechanism which allows
for pairs of observations\with the proper correlation would be
an improvement over a model which ignored the dependence.

A major objective of aircraft overhaul is to restore the
aircraft to a more reliable condition. As before we are inter-
ested in determining if the overhaul does improve performance.
I1f we assume the existence of a bivariate model to describe the

dependence between X; and X, , where no overhaul is involved,

then we can investigate the effect of overhaul by comparing a
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sample distribution associated with (Xi,Xi+1) to the distri-
bution which results by fitting the observed data (xB,xA)
from a random sample of aircraft with an overhaul.

These are but a few of the bivariate r.v.'s and applica-

tions which could be described for continuous data.

3.4 Summar

In this part we applied discrete bivariate probability
distributions to actual aircraft operations and maintenance
data and showed how these distributions could be used in prob-
lems related to inventory control and aircraft overhaul. Addi-
tionally, we described how continuous bivariate distributions
could be used to analyze certain continuous failure data. All
of the applications presented were for self-pairing type situa-
tions; without doubt, bivariate applications exist also in
situations involving a dependency between two separate items.
The latter is a more traditional approach for continuous bi-
variate r.v.'s.

We presented several new data sets related tc demand for
aircraft spare parts and materiel failure induced aborts. For
the demand and abort data we investigated the marginal and
joint data and showed how the univariate and bivariate negative
binomial distributions fitted the observations. The P values
associated with the XZ goodness-of-fit test ranged between 0.01

and 0.85 with the average being about 0.36. One of these data
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sets had a negative sample correlation coefficient which em-
phasizes the need for bnb distributions that can describe such
dependencies (in Part 2 we discussed such a distribution).

As a possible way to investigate the effect of a noted
event on an item's performance we illustrated, with aircraft
abort data and the overhaul event, how bivariate distributions

@ could be used. Our methodology involved comparing two bivari-
ate distributions, one defined for r.v.'s on either side of
the event and the other defined for a similar r.v. not separated
by the event of interest, We used the sample regression func-
tions to compare the distributions.

Extensions to multivariate (beyond two) settings are ob-
vious. Certainly the difficulty of obtaining parameter esti-
mates is compounded though.

In the next part we apply a bivariate exponential distri-

bution to some correlated queueing systems.




PART 4
CORRELATED QUEUEING SYSTEMS

4.1 Introduction and Historical Review

Using simulation techniques Paulson and Beswick (1973)
showed the effect of dependent exponential service times on
queues in series. In this part we review their work and pre-
sent a set of recursive formulae useful in simulating the
queueing process. We use spectral analytic techniques to show
that the effect is indeed statistically significant. Also, we
investigate the effect of correlated interarrival and service
processes on single server, single stage queues.

First, we describe two physical settings where tandem
queues with dependent service times can be expected to arise.

In a paper mill, large rolls of paper typically pass
through an inspection or winding operation prior to being cut
into smaller rolls. A poor quality roll takes a relatively
longer time in the inspection process because defective sec-
tions must be removed and splices made. When this same roll
reaches the final cutting stage it must be processed more slowly
to avoid breaking the splices and to repair them when they do
break. Hence process times at the two stages tend to be cor-
related; indeed, it is conceptually possible that they be highly
correlated. The process times at the two stages on any two dif-
ferent rolls would generally be independently dictributed. In

the current context considerable interest would be centered on
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the effect, if any, produced by non-independence of process
times at different stages.

Jackson (1954) in discussing queueing systems with phase
type service pointed out that a typical sequence of events in
the overhaul of an aircraft engine consist of stripping, de-
tailed examination, repairs, assembly and testing. Generally,
an engine with a large number of maintenance requirements can
be expected to spend more time in each of the latter four phases
and so the possible effect of correlated service times on
throughput time would be of interest. It is not difficult to
envision a host of other situations involving queues in series
in which the service times at the various stages for a given
customer are correlated.

A large proportion of the literature concerning tandem
queues has centered on Poisson arrival processes, exponential
cservice times, and steady state solutions. The assumption of
independence of service times is intricately interwoven into
the fabric of the traditional birth-death equation approach to
finding a transient and steady state solution to the tandem
queueing phenomenon. We shall remain within this same framework
with the exception that we shall drop the heretofore universal
(but tacit!) assumption of mutual independence of all exponen-
tial service times. An obvious approach is to use a multivar-
iate exponential distribution with non-zero correlations in

place of the usual independent exponential service times. In
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our situation it is not clear that the birth-death equation
approach can be modified to incorporate dependent service
times. Moreover, any such formulation would very likely be
analytically intractable. The problem is however amenable to
a simulation approach and it is in this way that we assess the
effect of departures from independence of service times on
steady state system performance.

The bulk of this part is concerned with two stage queues
in series since our main concern is showing that a substantial
effect on system performance is indeed induced by correlated
service times.

For the unusual single server, single stage queue where
the length of a customer's service time is determined, with
probability one, by the length of the interarrival interval
separating himself and his predecessor, Conolly (1968) gives
the waiting time distribution and its moments. It is also
shown that this pattern of server behavior results in a dras-
tic reduction of the mean and variance of the waiting time as
compared with the conventional M/M/1 system. Conolly refers
to this type of system as self-regulating and other results
are given by he and Hadidi (1969, 1974). We study, via simu-
lation, this type of system where the dependence between the
service time and interarrival interval is assumed to be proba-

bilistic according to a bivariate exponential distribution.
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Other investigations involving dependency between the
service and interarrival processes have typically allowed for
a dependence between a service time and an arrival one inter-
val later than the one we consider; See, for example Lindley
(1952) and John (1963). Next we discuss tandem queues.

4.2 The Effect of Correlated Exponential Service Times on
Single Server Tandem Queues

4.2.1 The Tandem Queueing System and Recursive Formulae

Consider the tandem queueing process depicted in

the following diagram. Customers from an infinite popu-
lation arrive at a two stage system according to a Poisson
process with mean rate A which we shall, without loss of
generality, take to be unity. An unlimited queue is al-

ways allowed before the first stage but before the second
stage the queue length may be either restricted or unlimited.
A single server is allowed at each stage; the service dis-

cipline is first-come, first-served.

CUSTOMERS ARRIVE IN
ACCORDANCE WITH A POISSON  STAGE 1 STAGE 2
PROCESS WITH INTENSITY A

SINGLE |[INTERSTAGE |[SINGLE
—o-ELEMENT [STORAGE OF [ELEMENT |—»
SERVER |CAPACITY q-1SERVER

cn+2’cn+1’cn’cn-1

CUSTOMER SERVICE TIMES ARE
GOVERNED BY A BIVARIATE
EXPONENTIAL DISTRIBUTION WITH
MEANS My AND LP) AND CORRELATION \

Py =.25 < p < 1.0.
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The system performance measure is taken to be mean
waiting time per customer and in this section we develop
a set of formulae to recursively compute the waiting time
per customer. We use the recursive formulae for the un-
limited interstage storage case in order to demonstrate
precisely how the queueing system consisting of two stages
in series with dependent service times is related to a
single server system with interdependent arrival and ser-
vice processes as discussed by Bhat (1969). An interpre-
tation by Conolly (1968) for a special type of this latter
interdependence is shown to be helpful in suggesting why
mean waiting time is affected by correlated service times.

Denote by (T Tn Z) the times between arrival
’

n,l1’
epochs of customers ¢ _; and c  at the first and second
stages and let c_ experience the service times (S s S )
n n,l n,2
at each stage, n=1,2,... . The sequences of interarrival

times (T Paik ) and the (S ) for different cus-
n,l n,2

n,1° Sn,2
tomers are both assumed to be mutually independent and in-
dependent of each other.

We take (wél), wéz)) to be the waiting times, ex-
cluding service, and (Wél), wéz)) to be the total waiting

times, of customer c at the respective stages, n=1,2,... .

n’
We illustrate these definitions with an arbitrary combina-
tion of arrival and service times in the following diagram.

The illustration is for two queues in series with unlimited

I, o o o - . ————— a4 5 v A
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interstage storage; diagrams like this are useful in
developing the recursive formulae for the different cases

to be presented.

c, DEPARTS ¢+ DEPARTS
1st STAGE Cn+1 1st STAGE,
Cn ARRIVES  4pRIVES 2nd  ARRIVES  ARRIVES 2nd
TIME 1st STAGE STAGE 1st STAGE STAGE
AXIS : } 1 }
| I ] |
] | ] I
I (1) 5£2) ,
l wn : lwn :
E it 2 s
CUSTOMER | ' :
Cn ; ' |
D @) . .
____J—;;—“-Sn,l Yn - Sn,2 g e e
| ' | '
| | | (1) '
' | LW (2)
| | | n+l : Wn+1
| | § it N - A By
| |
CUSTOMER o '
-~ , n+l,1 ! s 1)
} ; n+l,1 : n+l §n+1,2 o
| |
} ]
S ST ST,

Case A. Two stage queues in series, unlimited inter-

stage storage

Customer c

n+1's total waiting time at the first

stage and interarrival time at the second stage are given

by
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; (1)
1 Sn+1,1’ | if Tn+1,1->--wn
wil) . (4.1)
i (1) (1) '
Mo The1,1"%ns1 17 1f The1,1%,
and
wl) : (1
Tn+1,1 wn *Sn+1,1’ if Tn+1,13-wn
n+1,2 ¥ (1) (4'2)
Sn+1,1° L PYT a
The condition in (4.1) and (4.2) that
Tn+1’1 > ng) simply means that Cn+l arrives at server

: : (1)
one after Ch has departed, and likewise Tn+1,1 < Wn

means c arrives before h leaves.

n+l
Similar to (4.1), cn*l's waiting time at the

second stage is

: (2)
(2) Sn+1,2’ if Tn+1,21-wn
W = (4.3)
(2). ; (2)
wn Tn+1,2*sn+1,2’ if Tn+1,2<wn
The above diagram illustrates (4.1), (4.2),
(1) (2) G
and (4.3) for Tn+1,1 > Wn and Tn+1,2 < wn . Similar

diagrams result for the remaining conditions.

In an obvious way, we can use these relation-
ships to build up a set of recursive formulae for any
number of stages in series where the interstage storage

between stages is unlimited (See Appendix B).
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Since each customer must proceed through both
stages the output of the first stage becomes the input
of the second stage and therefore we have, in steady
state, that the time interval between arrivals at the
second stage satisfies a Poisson process with the same
interarrival intensity parameter )\ as the input distri-
bution (Burke (1956)). Unlike the first stage, however,
cn's service time at the second stage is correlated with
the interarrival time there. In the above diagram, this
corresponds to a correlation between an’2 and Tn+1,2'
This result is apparent from (4.2) since Sn+1 1 and

’

Sn*1,2 are dependent by assumption.

If S and an’z are independent as is

n+l,1
usually assumed for two stage series systems then each
stage, in steady state, can be analyzed independently and
since Tn+1,2 and Sn+1,2 are independent, as are Tn+1,1

and S the regular M/M/1 results obtain for each

)24 B B4
stage.

Bhat (1969) describes five different classes of
single server first-come first-served, systems with Pois-
son input and exponential service times which result from
relaxing some of the assumptions of independence which
are typically assumed. These classes represent more rea-

listic operating systems than those with assumptions of

independence; Bhat further points out that more work needs
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to be done on these problems than the limited amount re-
ported at that time. One of these classes is for systems
with interdependent arrival and service processes as is
the case here for Tn+1,2 and Sn+1,2‘

Conolly (1968) and Conolly and Hadidi (1969, 1974)
have studied a dependent structure somewhat similar to
this wherein the ratio of service time to interarrival
time is constant for all n; they give transient as well
as steady state results for the system. Conolly showed
numerically that this pattern of server behavior results
in a drastic reduction in the mean and variance of the
waiting time as compared with a conventional M/M/1 queue.
It was noted by Conolly that this kind of server behavior
is to be expected from a well regulated service facility
where the server adjusts the service time of a customer
according to that customer's interarrival time, which the
server observes without error. In this way, a long inter-
val gives rise to a long service time, and short intervals
corresponding to a succession of rapid arrivals, are fol-
lowed by correspondingly short service times. This regu-
lated behavior therefore prevents a long queue from forming
and cuts down on the mean and variance of the waiting time
in the system.

Returning to the two stages in series problem
under study we see that this system, via equation (4.2),

can be viewed as a type of self-regulated system since
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S and T are related, although not in the deter-

n+l, 2 n+l .2
ministic way assumed by Conolly. It will be demonstrated
later that our type of stochastic dependence between Sn+1,2
and Tn+1,2 gives rise to results which are consistent with
Conolly's. This artificial way of viewing the system as a
self-regulating device is employed solely to make the ef-

fects seem more reasonable and in no way influence the

results.

Case B. Two stage queues in series, no interstage storage.

For this case, cn's total waiting time at the

second stage, W&Z), is always equal to the Sn,Z so the
only quantity of interest here is W(l). Since there is
restricted (zero) interstage storage, the phenomenon of
blocking occurs and so the waiting time computation is a
bit more complicated than in Case A.

Blocking of stage one occurs when a customer who
has been served there is denied entry into the second
stage because no space remains in the queueing area for
stage two. The customer therefore stays in the first
stage and prevents that server from accepting a waiting
customer for service. In effect, the first server's util-
ization is diminished (Saaty (1961))

The total waiting time for Ch+q at the first
server is given by one of four relationships depending

s i 1 ;
upon the algebraic sign of Wé > Tn+1,1 -- that is, upon

e —— B it i+




whether or not c

arrives at

stage one before o

n+l
<h leaves.
(1)
g e S
(1) .
W Tel 1 et 00 if 8,41,125,2
w(l) =
n+1l (1) "
Wa -Tn+1,1+sn,2’ if Sn+1,1<Sn,2
(1)
and for Tn+1,1 = Wy
. (1)
Sn+1,1’ if Sn+1,lzwﬂ Tn+
w(li =
n+
(210 : (1) _
wn Tn+1,1+sn,2’ if Sn+1,l<wn Tn+
The following diagram illustrates (4.4)
SHeL gy o
w(D W(2)
n n
- /\ e e AN
CUSTOMER (1)
c, el “n Sn,l Sn,Z i
| (1)
: wn+1
' I\
| / -
| I e e
]
CUSTOMER ; 23 ' BLOCKING O
Cn+1 P—Tn+1,1 Y+l Sn+1,1: SERVER 1

Similarly, the other conditions can be verified.
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Case C.

9%

Two stage queues in series, interstage storage

capacity equals one.

As in the previous case blocking can occur at

the first stage but here a customer's total waiting time

at stage two can exceed the service time since interstage

storage is permitted on a restricted basis.

The total waiting time of c

at server one de-

n+1l
: : (1)
pends on the algebraic sign of W, = Tn+1,1'
(1)
1f Tn+1,1 i wn ?
(3). : (2)
(1) Ha " haet 1 50 3 if S41,12% 55,2
el "9y (2) (2) i
e T i i N TR T e e
and cn+1's interarrival time at server two is
: w(2)
Sh+1,1° if 541,129 " 55,2
*anigz " () ‘ v (4.7)
# o on, 20 T L e
(1)
Ml a 28
- kL) .
Sn+1,1° 1€ Sp41,12% “Thet 1
+w(2)-s
(1) n B2
Wpai =7 49 o4 A (4.8)
Mo The1,1*™a  Sn,20 1 Spe oM “lnery
L +W(2)-S
n 42
and
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(1)

Toe1.1°%  *Spii 1o T O e R Y T
(2)
J +wn Sn,2
LT e 1 (4.9)
b -Sn,Z’ 1f 8,01,1%% -Tn+l,1
(2) .
\ "l Sn,Z'
Next the total waiting time of c__, at stage
two, ngi, is computed by using (4.3) in Case A with
Tn+1,2 as defined in (4.7) or (4.9).
The following diagram is descriptive of (4.8)
(1) (L) . (2) _
and (4.9) where Tn+1,lzwn and sn+1,13wn Tn+l,1+wn Sn,Z‘
(1) (2)
wn "
P 30 - A ey
CUSTOMER (1) (2)
- F I — Yn Sn,l 5 Sn,2
[ ' i
| : |
[
(1) (2)
' : wn+1 wn+1
| l = —A- - A:
CUSTOMER ' .
St il ' @ s
& n+1,1 n+1,1 Yn+l n+1,2

4.2.2 A Bivariate Exponential Distribution

There are a number of bivariate exponential dis-

tributions which could be used to describe the dependence
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assumed between S1 and S2 (we drop the subscripts n).

We choose to use a special case of the bivariate gamma
distribution discussed by Wicksell (1933) and Kibble
(1941), and more generally by Krishnamoorthy and Partha-
sarty (1951) and Paulson (1973). The functional form
can be written as

-.1/91 - sz/e2 dsls2

: R R
% gtehee; ( )

8

b ok Lt

o2

L 2k
Y (z/2) is the
k=g K°K:

modified Bessell function of the first kind and order

where s, 2 o0, $,> 0, and Io(z) =

gero., Here a > 0, d >0, and a +d = 1.

The density (4.10) has mean vector

i 8,/a
u.o= = : (4.11)
UZ ez/a
covariance matrix
2
vy duqu,
=. c'. = 4
= k0y4) ; (4.12)
dujuy Uy

and correlation p=d with 0 < p < 1. The marginal dis-
tributions of S1 and S2 are exponential with means My
and My respectively. A generalization of (4.10) due to

Paulson admits of correlation values -.25 < p < 1.
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The variates (Sl,SZ),given by (4.10), can be
readily simulated. Let {Xij’ j=1,2,...} be independent
identically distributed exponential with mean 65 for
i=1,2 and let N denote a geometric random variable with

density function

Pr [N=i] = pi-1

q, i=1,2,...
where p=d and g=a.
Then

X (4.13)

ne-12z

i’ 23

N
(8.8 =} X
1*=2 ju1. L 1

j
has the bivariate exponential distribution (4.10) (see
Downton (1970)). The simulation proceeds by simulating N
and then adding that number of i.i.d. exponentials accor-
ding to (4.13).

It would be easy to construct situations in which
the service times are negatively correlated. In order
that we may readily consider this case we require a bi-
variate exponential distribution which is conveniently
simulated. Such a distribution, which includes the dis-

tribution in (4.10) as a special case is due to Paulson

S
(1973). The actual simulation of variates S = sl from
3 2
that distribution is effected through
O "Ry * Iy * Y VaXg® v 3 (4.14)
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here ij is a 2-vector of independent exponential vari-

0
ates with mean vector [el and the V. are random 2x2
2

matrices which take on values in the set { B g] ’ B 8]

[8 ‘1’] : [3 ‘1’] } with probabilities a,b,c,d respectively.

All the ij's and Vj's are mutually independent. Note
that eventually the product HVj will result in a matrix
of zeros and so with probability one S_ is represented
by a finite sum (Kesten (1973), Kohberger (1975)). It
turns out that (4.13) is really a special case of (4.14).

The bivariate random variable S_ in (4.14) has

mean vector

My 6,/ (a+c)
o= = (4.15)
My 6,/ (a+b)

and covariance matrix

(u;)z ad:bcelez |
z A ad-bce 6 ( *)2 e
S 77 i Db

4.2.3 Simulation Results and Interpretation

Simulated results are presented in this section
for three cases of interstage storage capacity: (A)
infinite (q=«), (B) zero (q=1), and (C) one (q=2). For
the infinite interstage storage case results will be
given for two stages in series for various values of

correlation and for two through twenty-five stages in
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series for correlation equal unity. The latter depicts
how adding stages might affect system performance given
correlation p>0; more precisely, it provides an envelope
within which system performance will vary since for a
fixed number of stages and utilization correlation unity
provides an extremum and correlation zero provides another.
In each of the three cases we allow infinite storage be-
fore stage one.

In the ordinary case in which the correlation be-
tween paired service times is zero a few steady state re-
sults are available for comparison purposes.

We have taken the mean arrival rate to be unity
and so the steady state utilization, v, at stage i is
simply the mean service time My It will suffice for our
purposes to take Mp = My = U since similar steady state
behavior will obtain for My # My Rurthermore, there do
not seem to be many results available for purposes of com-
parison for Cases B and C when Mq # Mp. TFor A = 1, our
system performance measure of mean waiting time (queueing
plus service), is equivalent to the expected number in

the system.

Case A. k stage queues in series, infinite interstage

storage.
(Graphs are labeled k Q for k-queues).

Steady state results for k stages in series with

no correlation between pairs of service times are avail-
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able (Saaty(1961))and we have that the expected number
of customers at each stage is v/(1-v) and kv/(1-v) in
the system.

The following diagram provides for two stages
in series the mean waiting time at the second stage,
W(2), for v = 0.75 and p = -0.25, 0, 0.50, and 1.0. In
this case the mean waiting time at the first stage is
independent of p since no blocking occurs and hence it
suffices to examine the mean waiting time at the second
stage to determine the effects of correlated service
times. In some of the simulation results to follow we
replicate, many times, runs of much shorter length; here
we choose to illustrate the mean waiting time as a func-

tion of n with one very long run. Long runs, such as
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this one, may be considered as being composed of replica-
tions of smaller runs where the starting condition of a
new replication is the ending value of the previous repli-
cation (Conway(1963)). From the diagram it is clear that
each graph tends to stabilize for increasing n in accor-
dance with the law of large numbers.

The numbers adjacent to the values of p in the
diagram are the mean waiting times for the second stage
and mean waiting times in the system after 100,000 service
completions. We point out that for p=0 the mean waiting
times at stages one and two are 2.99 and 3.05 respectively
and these are in close agreement with the expectation of
3.0 for this utilization. For p#0 we see here a bonus
attached to positive correlation in service times since
system performance improves with increasing correlation.
On the other hand, system performance deteriorates with
negative correlation.

Each illustration like this one has a starting
condition based on the mean waiting time from a pilot run
and then we omit the waiting times of the first 1,000 cus-
tomers in the actual computations shown.

Figure 3 gives system performance for different
values of v and for p=0,1. These graphs are intended to
show that there is no discernable effect due to correla-

tion p>0 at utilization v = 0.6 but as v increases from
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0.6 to 0.9 a definite trend appears.

Figure 4 shows the ratio of mean time in the
system for various values of p to the mean waiting time
in the system at p=0 (Paulson and Beswick(1973)). These
kinds of graphs are based on an average of 100 replica-
tions of 1,400 service completions (after an initializa-
tion of 400 service completions were discarded).

The solid lines in Figures 4, 7, and 9 depict
a smoothed fit to the actual data. Sampling variation,
of course, precludes the possibility of obtaining such
a smooth fit without extremely long runs or extensive
replications but each curve was spot-checked to ascertain
whether or not the fit was spurious. In no case was any
substantial deviation recorded.

Now we show how these effects are consistent
with Conolly's (1968) results for the case of v=0.9 and
correlation of p=1.0 between the service times in the two
stages. Conolly showed for his single server queueing
system where the ratio of service time to the interarrival
time was constant for all n, that for a utilization of 0.9
(the ratio) the mean waiting time (queueing plus service)
was 2.71, For service time independent of interarrival
time the steady state expectation, for this utilization,
is 9.0. The interarrival time and service time in Conolly's

system are perfectly correlated whereas in our system the

T
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two service times are perfectly correlated. It is clear
from equation (4.2) that the correlation between the in-
terarrival time at the second stage and the service time
there is less than one and so the improvement in system
performance for our system should be less than Conolly's
(an elementary derivation shows the correlation to be vp
or 0.9 in this case). We see from Figure 3 that the mean
waiting time at the second stage after 100,000 customers
is 4.13 and indeed the improvement is less.

In Fgure 5a we show the mean waiting time as a
function of n for five stages in series where the service
times are equal at each stage. The graphs are labeled
W(k) corresponding to the mean waiting time at stage k,
k=1,2,...,5. We see that the mean waiting time W(Z), for
the second stage, is consistent with the results in Hgure
3. The results for W{s), W{4), and W(%) suggest that fur-
ther improvements in system performance occur over the p=0
case but the effect seems to approach a limit. The number

in parenthesis to the right of #X) is the ratio

E ..

) W(l)/(kv/(l'v)), 2 <k <5, Hgure 5b shows this ratio
i=1 ML e

for two through twenty-five stages in series for p=1. These

results were obtained by extending recursive formulae (1),
(2), and (3). In this extreme case of correlation, adding
stages has an effect on system performance which depends

markedly on the utilization rate; e.g., for v=0.7 system
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performance is improved through the first four stages
and then is reduced. A utilization of 0.9 gives rise
to much improved system performance through twenty-five

stages.

Cases B and C. Two stage queues in series, finite (in-
cluding zero) interstage storage.

For these cases the utilization is effec-
tively reduced in value (Saaty(1961)). The maximum effec-
tive utilization is Vae ™ (q+1)/(q+2) where the queue in
stage two is limited to a length of gq-1 units. We consider
the cases q=1 and q=2.

Figure 6 shows the mean waiting time at
the first stage for q=1 and several values of v. For this
case each customer's waiting time at the second stage is
simply the service time there so we are concerned only with
the waiting time process at stage one. FHgure 7 shows, for
stage one, the ratio of mean waiting time at stage one with
p#0 to the mean waiting time at stage one with p=0.

Steady state results fcr the mean number
of customers in the system, L, for p=0, q=1 and with util-

ization v are given in Morse (1958); we have that
L = 4v(2-v2)/((2+v) (2-3v)). (4.17)

For v=0.4, 0.5, and 0.6 and for p=0, the
observed (expected) values of L are 1.55 (1.53), 2.87 (2.80),

and 7.80 (7.57) respectively. The observed values are froui

Fgure 6.

~ e A
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For p#0, again we see a dramatic effect

' in system performance. System performance deteriorates

as the correlation p increases through positive values

and improves as p decreases through negative values. Hence

when there is no storage allowed before stage two the de-

parture from independence results in significantly differ-

ent steady state behaviors, especially as the value Vo o
is approached.

Finally, we consider the case q=2. FHgure
8 shows the mean waiting time as a function of n at the
first stage and the ending value for the mean waiting
time in the second stage. The mean waiting time at stage
two was very stable for all values of n so those values
F will not be illustrated. The effect for v=0.6 is in the
same direction as for q=1 but reverses as v increases so
that for values close to Vi the change in system perfor-

mance is consistent with the q=» case; that is, improve-

ment for p>0 and deterioration for p<0. Hgure 9 shows

the effect in this case for p#0.

4.2.4 Spectral Analysis of {W(1)} anda (%)}

In this section we review briefly the theory of
spectral analysis, show the sample power spectra of the

| time series {ng)} and {Wgz)} and finally apply a non-
parametric test to the ratio of certain estimated power

i spectra.

e
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Several authors give complete accounts of the
theory and application of spectral analysis; e.g. see
Anderson (1971) and Jenkins (1961). Fishman and Kiviat's
(1967) paper on the analysis of simulation generated time
series is also of direct interest. Our objective here is
to review enough of the fundamentals of spectral analysis
to motivate the nonparametric test to be presented later.

In general we take {Zt’ teT} to be a stochastic
process and we let {Zt’ teT} denote a sequence of obser-
vations from the process; the sequence is referred to as
a realization of the process or simply as a time series.
We take the index set T to consist of discrete, equispaced
time points. From the time series we seek to describe the
underlying process. Seldom can we determine the form of
the multivariate distribution which generated the realiza-
tion and most often we must make simplifying assumptions
even to describe any of the distribution's mcments.

We assume that the process is in a particular state
of equilibrium where the first and second moments are inde -

pendent of time. Therefore,

E(Z,) = v (4.18)
and
Cov(Zt,Zt+k) s (4.19)
- A IR A
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for all integers k. Given a sample of N observations
from the process, we estimate u and v, with Z and Cx
where

122 8 (4.20)
N eay TR
and
1 N-k
DRl SV CRDICRNL (4.21)

The type of equilibrium described above is called
weak or covariance stationarity or stationarity in the
wide sense. A study of the time series in terms of its
autocovariances (the yk) is referred to as a time domain
analysis. Another type of analysis is concerned with the
frequency content of the time series, namely spectral
analysis.

The Purier cosine transform of the autocovariances
Yor Ypr Yzreees is called the power spectrum. Denoting

the power spectrum by f(w), we can write
f(w) = % (Yo * 2 kzl Yy cos 2rwk], 0 <w < (4.22)

and inverting f(w) we can express Yi as
Yy = /¢ £(w) cos 2muk dw, k=0,1,2,... . (4.23)

When k=0 we obtain the variance Yo of the process as the

integral of the power spectrum:
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Yo = /¢ £(w) du. (4.24)

Thus the power spectrum can be considered as a decomposi-
tion of the variance at different frequencies.

To get sample results which are statistically con-
sistent we do not estimate the spectrum at a particular
frequency but instead estimate the average power about the
frequency of concern. The average power corresponds to
weighting the autocovariances in the time domain and we
typically estimate f(w) with the truncated estimate

m

%(wj) = %[Ao co * 2 kzl Ak Cy Cos wajk] (4.25)

where “j = j/(2m), j=0,1,2,...,m and the weights Ak'
k=0,1,2,...,m, form a so-called lag window. We choose

the Blackman-Tukey 'hamming'' window,
Ap * 0.54 + 0.46 cos nk/m, k=0,1,2,...,m, (4.26)

In (4.25), the sample autocovariances Cmel? Spe2reee»

are omitted since, for m sufficiently large, they should
contribute little information. As a result, only m auto-
covariances need be calculated and savings in computation
may be considerable. Considerable care must be used when
selecting m, however, because too large a value will in-
crease the variance of the estimates and too small a value

will not give enough resolution.
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Next we examine several sample power spectra as-
sociated with the simulated waiting times for the two-
server infinite interstage storage case. We take the sim-
ulated values {Wéi)}, n=1,2,...,N; i=1,2, to be time series
where, as before, Wéi) is the total waiting time, queueing
plus service, of customer n at server i. Figure 10 shows
a portion of the sample spectra for {ng)} and {Wéz)},
n=1,2,...,2000, and for correlation values of p=0, 0.25,
0.50, and 1.0. Utilization, v, is 0.90. The 2000 sample
values were chosen from the end of a simulation run of
length 30,000 to ensure that any possible effects of start-
up conditions were eliminated. After making several pilot
runs, m in equation (4.25) was set equal to 400. Pr
0=0.50 and p=1.0 in Fgure 10 it is obvious that the waiting
times at the second server give rise to different spectra
than the waiting times at the first server.

Since the integral of the power spectrum measures
the variance of the process and the area under the sample
spectrum should be indicative of the sample variance, we
see that the effect of positive correlation is to reduce
the variance of the waiting time process. Again this is
consistent with Conolly's results (1968) for the single
server system in which a customer's service is completely
determined by the length of the interarrival interval sep-

arating himself and his predecessor. For a utilization

s B
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of 0.9, Conolly's system reduces the steady state variance
of the waiting time from 81, for the classic MM/1 system,
to 1.16; the sample variance associated with the waiting
times at server 2 in Fgure 10d for p=1.0 is 2.05 (the sam-
ple variance associated with the waiting times at server

1 is 60.1). Recall from Section 4 that the condition p=1.0
for the correlation between a customer's service times at
the two servers is equivalent to a correlation of v, or 0.9
in this case, between his interarrival time and service
time at the second server. Therefore, the reduction in
variance is consistent with Conolly's results since the
corresponding correlation in his system is one.

Next we develop a nonparametric test for the hypo-
thesis that £(1) (w) = £V (w), 0 < w <0.5, where £(})(u)
represents the power spectrum at frequency w associated
with the time series W{!)}, n=1,2,...,N; i=1,2. The
Blackman-Tukey 'hamming' lag window in (4.25) gives rise
to spectral estimates which are not independent and so we
employ the notion of equivalent independent estimates
(Jenkins (1961)) which implies, for this window, that esti-
mates are approximately independent if they are about
5/(4m) cycles apart. Since the estimates in (4.25) are
separated by a basic frequency of 1/(2m) cycles, this
spacing of 5/(4m) cycles amounts to taking, as independent,

those estimates which are separated by an interval of 2.5
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times the basic frequency. Since the waiting times are
not normally distributed and the assumption of normality
is implicit in the development of equivalent independent
estimates we take this spacing of 2.5 times the basic fre-
quency simply to be a rough guide. Actually, the normality
assumption is more critical for making distributional as-
sumptions about the spectral estimates than for the usage
here. To select a practical spacing and to reduce any
possible effects of the normality assumption, we take es-
timates at the frequencies j/(2m), j=1,4,7,..., to be ap-
proximately independent (the spacing here is 3 times the
basic frequency). Therefore, of the 401 estimates in each
spectrum partially illustrated in Figure 10, we take 134
estimates at the frequencies j/800, j=1,4,7,...,399, to be
approximately independent.

Now for each approximately independent estimate we
can regard the ratio ?(1)(w)/%(2)(u) as a Bernoulli trial
(greater than unity or less than unity) and under the null
hypothesis of homogeneity of the two spectra, we can take
as a test statistic the number of ratios which are less
than unity. Fgure 11 shows the ratio for p=0 and p=0.25.
Of the 134 approximately independent ratios in Figure 1lj,,
64 are less than unity and in Figure 11b, 43 of the 134

ratios are less than unity. Under the null hypothesis, a

ratio greater than unity is as equally likely as a ratio
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less than unity and taking a normal approximation to the
implied binomial distribution, we have a probability of
0.31 associated with observing 64 or fewer ratios less than
unity in 1la and a probability of .001 associated with ob-
serving 43 or fewer ratios less than unity in 11b. Although
not illustrated, the results for p=0.50 and p=1.0 are even
more conclusive: for p=0.50, 23 of the 134 approximately
independent estimates are less than unity and for p=1.0,
none of the ratios are less than unity. Therefore, for the
case presented here we have good statistical evidence that
the power spectra associated with the waiting times at each
server are not homogeneous for correlation p>0. We expect
similar results for other values of correlation, utiliza-
tion, and interstage storage to obtain.

In the next section we study in a similar way single
server queues (not in tandem) which have correlated inter-

arrival and service processes.

4.3 Single Server Queues with Correlated Interarrival and
Service Processes

In this section we are concerned with a single server,
first-come, first-served queueing system where we depart from
the usual assumption of independence by taking a customer's in-
terarrival interval and subsequent service times to be correlated
according to the bivariate exponential distribution described in
4.2.2. Here the customer's interarrival interval is measured be-

tween his arrival time and that of his predecessor. It is assumed
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that customers from an infinite population arrive at a single
stage according to a Poisson process with rate A, which we
take, without loss of generality, to be unity; an unlimited
queue is allowed.

As in the previous section, the system performance measure
is taken to be the mean waiting time per customer and in this
section we show a formula to recursively compute the waiting
time per customer, We give simulated results which show the
effect of correlation and apply the nonparametric test of the
last section to show that the effect is indeed statistically
significant.

Denote by Tn the time between arrival epochs of customers

Cn-1 and ¢ to the queue and let c  experience the service time

n
Spo n=1,2,3,... . The sequence of interarrival times'{Tn} and
service times (S } for different customers are both assumed to
be independent; for customer c  we assume the r.v. (Tn’sn) has
the bivariate exponential distribution given in (4.10) with
u1-1 (to be associated with Tn) and M=V (for Sn)' 0 <v <1,
so that the steady state utilization is M =V,

For customer c  we define w, to be the waiting time, ex-
cluding service, and "n to be the total waiting time, n=1,2,...;
the following diagram illustrates the definitions. [t is ob-

vious that a recursive formula for "n+1 is

"n 5 Tn+1 5 sn+1' it Tn+1 % "n
W - (4.27)

n+l
S Wn

€T, 2

n+l’
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Pbr Tn+1 and Sn+1 independent as is normally assumed it
can be shown (Morse(1958)) that the mean waiting time per cus-
tomer, in steady state, is v/(l-v). At the other extreme for
p=1, Conolly (1968) gives the distribution of the waiting time

and its mean and variance for the case Sn+1 = VT for all n.

n+l
Our results are for other values of correlation. Next we use
(4.27) to show simulated results.

In Figure 12 we show how nonzero correlation affects the
mean waiting time for v=0.70. (The simulations are performed
the same as described in the previous section.) Fr zero corre-
lation the expected waiting time in steady state is 2.333 and
we see that the simulated results are in close agreement (2.323).
Conolly shows for his system (p=1) that the expected waiting time
for this value of v is 1.427 and again the agreement is very good
(1.421). BPr positive correlation we have a benefit in system

performance in that mean waiting time decreases; negative corre-

lation degrades the process.

gl
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Figure 13 shows the ratio of mean time in the system
for various values of p to expected waiting time in the system
at p=0 and we see that the effect of nonzero correlation is
greatest for large utilizations. In eve}y case simulation re-
sults were in close agreement with known results (for p=0 and
p=1).

Next we examine sample power spectra asoociated with the
waiting time process and test the hypothesis fo(w) = fp(w),

0 <w <%, where f,(w) is the power spectrum associated with
the waiting time process at p=0 and likewise, fp(w) corresponds
to p#0.

We take the simulated values (W }, n=1,2,...,2000, to be a
time series and Figure 14 shows a portion of the sample power
spectra for p=0, 0.50, and 1.0; utilization is 0.70. The spec-
tra appear different and we suspect that the variances of the
waiting time processes decrease with positive correlation due
to the relation of the illustrated graphs. In fact, the corre-
sponding simulated waiting time series have variances as follows:
p=0, 4.763; p=0.50, 2.141; and p=1.0, 0.514. (The expected
variance for p=0 is 5.444 (Morse 1958) and Conolly's model for
p=1 gives rise to a variance of 0.613.) Coupled with the simu-
lated result that p=-0.25 leads to a variance of 10.451 we see
that the effect of positive correlation is to reduce the variance

of the waiting time process and negative correlation causes an

increase.
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As a function of the approximately independent estimates
defined in 4.2.4, Figure 15 shows the ratios, %o(w)/%p(w), for
p=0.5 where the caret signifies that we are using sample esti-
mates. Recall that we regard each ratio as a Bernoulli trial
(greater than unity or less than unity) and under the null hy-
pothesis of homogeneity of the two spectra we take as a test
statistic the number of ratios which are less than unity. In
the figure, 22 of the 134 approximately independent ratios are
less than unity which is very strong evidence that the null hy-
pothesis is false; for other cases of p the number of ratios
less than unity are: =-0.25, 87; p=0.25, 43 and p=1.0, none.
Additionally we applied the test to %o.zs(m)/?o.so(m) and got
38 of the 134 approximately independent ratios less than unity.
We reject the implied null hypotheses in all cases and conclude
that the waiting time process as a function of p leads to dif-
ferent power spectra.

For interest's sake we investigated the system under study
for a different bivariate exponential distribution. Primarily
due to the ease with which the variates can be simulated, we
chose the bivariate exponential distribution of Marshall and
Olkin (1967). If the r.v.'s U, Vand W are independent exponen-
tials with parameters xl, Ay and 112, respectively, then the
bivariate r.v. (T, S), where T=min(U, W), S=min (V, W), has the
indicated distribution., It can be shown that T and S have means

1/(A1 + xlz) and 1/().2 + Alz), respectively, and the correlation

S

Bk
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between the two is xlz/(kl + Az + Alz). For the proper choice
of parameters then, we can generate a bivariate r.v. where
E[(T]=1, E[S]= v and the correlation is p.

Figure 16 shows comparative results for the Marshall and
Olkin model and the Wicksell-Kibble special case in (4.10).
Although not illustrated, we applied the homogeneity test to
the two sample spectra shown with the result that 65 of 134
approximately independent ratios (%W_K(m)/£4_o(w)) were less
than unity. The probability is approximately 0.37 of observing
65 or fewer ratios less than unity if the hypothesis fw_K(m) =
gd_o(w) is true so we fail to reject it. We expect similar re-

sults for other values of correlation and utilization to obtain.

4.4 Summary

We have extended the work of Paulson and Beswick (1973)
for the effect of dependent exponential service times on the
system performance of tandem queueing systems. We assumed that
each queue has a single server and the service discipline is
first-come first-served.

For the two stage queueing system we derived recursive
formulae for the total waiting time per customer at each queue
for the cases of zero, one, and infinite interstage storage.
Simulation results for the mean waiting time, under the assump-
tion of correlated service times, showed that the system's be-

havior is quite sensitive to departures from the traditional




95

assumption of mutually independent service times, especially

at higher utilization rates. For the case of infinite inter-
stage storage, mean waiting time is reduced by positive corre-
lation and increased by negative correlation. This change is
reversed, however, for zero interstage storage and depends on
the value of the utilization rate for the case where interstage
storage equals unity. By using spectral analysis and a non-
parametric test applied to the sample power spectra associated
with the simulated waiting times we showed that the effect is
statistically significant; in addition we showed that the vari-
ance of the waiting time process is reduced for positive corre-
lation.

We showed in a precise way how the two stage queueing sys-
tem with dependent service times and infinite interstage storage
is related to a single server system with interdependent arrival
and service processes; an interpretation by Conolly (1968) for a
special type of this latter interdependence is shown to be use-
ful in suggesting why the mean and variance of the waiting time
process are affected by correlated service times.

For correlation equal unity and infinite interstage storége,
results were shown for two through twenty-five stages in series;
these results provide an envelope within which system performance
will vary since for a fixed number of stages and utilization
correlation unity provides one extremum and correlation zero

provides another.
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Additionally, we studied single server, single stage
queueing systems wherein a customer's interarrival interval
and subsequent service times are governed by a bivariate ex-
ponerntial distribution. For the case of unlimited storage
capacity we showed that positive correlation leads to reduced
mean waiting times and negative correlation increases the mean
waiting times, both more so at higher utilizations. The results
were shown to be statistically significant. We also showed that
the variance of the waiting time process is reduced for positive
correlation and increased for negative correlation. Briefly we
investigated the effect of using the Marshall and Olkin (1967)

bivariate exponential distribution; results were similar.

R R DR




-
&

B G A e el e el e e Gaaed 0 AR NS I TR I I e e

PART 5
DISCUSSION AND CONCLUSIONS

Here we have investigated various bivariate non-normal
distributions and showed several areas to which they could be
applied. Of principal concern were bivariate negative binomial
and gamma distributions. In Part 2 we discussed numerous theor-
etical aspects and fitted the distributions to data, Part 3 il-
lustrated some bivariate approaches for analyzing aircraft op-
erations and maintenance data and lastly, Part 4 showed how
bivariate exponential distributions could be applied to queueing
systems with certain kinds of correlation. Summary results were
given in each part; next, we highlight these results and suggest
areas for future research.

One bnb distribution was obtained by convolving the Paulson-
Uppuluri (1972) bivariate geometric distribution which is de-
fined by a certain characteristic-functional equation. The dis-
tribution has six parameters and admits of positive or negative
correlation and linear or nonlinear regression functions. Shown
were the moments to order two and for special cases, the regres-
sion function, a recursive formula for the cell probabilities,

a methud of moments parameter estimation technique, the likeli-
hood equations, the differential-difference equations and for

maximum likelihood estimation, a necessary relationship for the
parameters. Certain analogous properties were shown for a dual

bivariate gamma distribution. For both of these distributions

97
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areas for future research include determining an infinitely
divisible representation for the full model (all six para-
meters) and developing parameter estimation techniques. Both
areas represent sizeable tasks.

We discussed another bnb distribution which resulted by
reducing a certain trivariate negative binomial distribution
with independent marginals. Moments to order two and the re-
gression function were provided. This distribution has mar-
ginals whose characteristic functions are of the form
[1+e(1-eit)]-vi, whereas the aforementioned distribution's
marginal characteristic functions are like [1+ei(1-eﬂﬁ]'%i-1,2.
Although not investigated here we suspect that bnb distribu-
tions which allow 6 and v to vary would have practical value.

That these bnb distributions should be useful was illus-
trated by analyzing sample data sets, some with negative corre-
lation and nonlinear regression.

Another 2ajor effort centered on forming bivariate r.v.'s
related to particular aircraft operations and maintenance prob-
lems. For a random sample we showed that the negative binomial
distribution could be used to adequately describe demands for
aircraft spare parts for single time periods (univariate) and
adjacent time periods (bivariate). An application for fly-away
kits was discussed. Additionally, we investigated aircraft
abort data for single six month periods and adjacent six month

periods and showed how the univariate and bivariate negative
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binomial distributions fitted the data. The P values assoc-
ijated with the xz goodness-of-fit test ranged between 0,01

and 0.85 with the average being about 0.36. With these abort
data we illustrated a possible way to examine the effect of a
noted event on an item's performance. Here we were interested
in the effect of overhaul on an aircraft's performance when
measured by aborts for six month periods. Basically the method
involved comparing two bivariate distributions, one defined for
r.v.'s on either side of the event (overhaul) and the other de-
fined for a similar r.v. not separated by the event. We used
the regression functions to compare the sample distributions.
For our data, aborts increased after overhaul but since our
analysis was limited in certain ways we were unable to conclude
that the rise was due to overhaul. We intend to investigate

this application more in the future.

The last part showed the effect of certain correlated r.v.'s

on the system performance of tandem and single stage queueing
systems. A bivariate exponential distribution was used. 1In
both cases we assumed that arrivals were according to a Poisson
process, the service discipline was first-come, first-served
and a single server was available.

For the two stage tandem queueing system we showed, via
simulation, that the mean waiting time is quite sensitive to
departures from the traditional assumption of mutually indepen-

dent service times, especially at higher utilizations. For
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the case of infinite interstage storage, mean waiting time

is reduced by positive correlation and increased by negative
correlation. This change is reversed, however, for zero inter-
stage storage and depends on the value of the utilization rate
for the case where interstage storage equals unity. A result
by Conolly (1968) was shown to be useful in explaining the
effect for the infinite interstage storage case.

For single stage queueing systems where a customer's
interarrival interval and subsequent‘service times are corre-
lated we showed that positive correlation reduces mean waiting
time and negative correlation increases mean waiting time.

The storage area was assumed to be infinite.

By using spectral analysis and a nonparametric test ap-
plied to the sample power spectra associated with certain sim-
ulated waiting times we showed the effect, in both cases, to

be statistically significant.
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APPENDIX A
A NEW MULTIVARIATE NEGATIVE BINOMIAL DISTRIBUTION

In this appendix we show Clark's (1972) derivation of a
new multivariate negative binomial distribution. The distri-
bution results by convolving a multivariate geometric distri-

bution.

The multivariate analogue of (2.13) is
¢(T) = Y(T)E[¢(TV)] (A.1)

where

T= (tl’ tz.t.-,tn),

n P; it,
W(T) = M (1+ 1-e Jy)1°!
A T:%;( e N

and V is the set of all n dimensional diagonal matrices of
zeroes and ones (2™ matrices in all). Here veV assumes a par-

ticular value with probability a,,
- VeV

v#0, Iwhere 0 is the zero matrix and I is the identity matrix.

)) a, = 1 and a, + 8 < : 18

Equation (A.1), which can be written as
o(T) = w(T) ] a 6(Tv), (A.2)
yev =
defines a multivariate geometric distribution.

It can be shown that

it
¢(0,...,0,t.,0,...,0) = [1+0 (1-e ™)]"1 (A.3)

where

! ]
i 1

—
h
|
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Pn =%

and v*ecV such that mth diagonal term is one (Zn'1 matrices
in all). Therefore the marginals are geometric and it fol-

lows that
E(Xm) « 0.
Var (Xm) = Bm(l*em), mel 25 iR (A.4)
In (A.2) if a! = 0 for v # 0, I we have
¢(T) = (T) (a+d¢(T)) (A.5)

where a is associated with a, and d with aj. Convoluting as in

(2.25) yields
6,(T) = [ap(T)]V[1-du(T)] ™
= [ MV I+ avm+H @ m i1 A6

and inverting gives the multivariate negative binomial dis-

tribution
gv(xl’XZ""’xn) = C[nFn-l(v+x1,v+x2,...,

n
VX 3V,V, .00 ,v5d .Hl (1-p;)) 1,

18
where
n v+x.-1 -
c= 1 () a-p ey’
j=1 J

e T P
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and nFn_l(al,...,an; bl""’bn-l;z) =
@ fa ).,..(@.): j
173 n’j z
1 + Z -r. (A.7)
j‘l —(bl)jo..(bn_ljj Jo

Clark concluded by showing that
E[Xm] . v
and
Var [Xm] = vem(1+em), m=1,2,...,n;

he also showed that the distribution is infinitely divisible.

B
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APPENDIX B
RECURSIVE FORMULA FOR WAITING TIMES

In this appendix we show how a set of recursive formulae
for the waiting times can be constructed for any number of
queues in series where interstage storage is unlimited.

Referring to the following diagram for c_ and cn+1's

n
queueing and service times at stages two and three (a continua-
tion of the diagram preceding equation (4.1) in the text), we

see that c +1's interarrival time at stage three is

n
(@ i (2)
Tn+1,2 wn +sn+1,2' it Tn+1,23wn
T =
n+l,3
> s (2)
Sn+1,2° L e
w(?) w(3)
”~ L e U SR N— Y
(2) (3)
CUSTOMER __| Wy 833 I IS e
n I o (2) (3)
! ' Wnel ¥as+1
1 - Y, s, A -
' U
!
CUSTOMER ' (2) (3)
Ch+l r-Tn+1,2_"wn*1 Sn"'l.z “n+1 S“*l’s
]
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Similar to equation (4.3) in the text, cn+1's waiting

time at the third stage is

: (3)
(3) Sn+1,3’ if Tn+1,33-wn

wn+1 " (3)
S if T <W A

{3):
L Ml TN WL WS L n+1,3%n

Comparing Tn+1,2 and Tn*1,3 we have, in general, for

cn+1's interarrival time at stage i, i=2,3,...,
w -1 . (i-1)
Th+1,i-17"n ey d-nv . A8 Tuuy 4 928
Tn+1,i i : (1)
Spel,i-1° if The1,i-1"a .

Similarly, comparing wn+1(1), Wn+1(2) and Wn+1(3) gives

a general recursive formula for cn+1's waiting time at stage

O T T N

: (1)
(i) sn+1,i, if Tn+1,iZ n
Whe1 " i
a ()

(i),
w T n+l,i 'n

el ik

n+l,i’

Thus, we can obtain the recursive formulae for any number

of queues in series.
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OBSERVED AND EXPECTED CELL FREQUENCIES

TABLE S. BNB(a,b,c,p,q,!) MODEL .
FOR BATES-NEYMAN DATA (1286 WORKERS).

DIGESTIVE DISEASE
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TABLE 8. BNB-TR(8,u,v;,v3) MODEL .
OBSERVED AND EXPECTED CELL FREQUENCIES
FOR BATES-NEYMAN DATA (1286 WORKERS).
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DIGESTIVE DISEASE
1Bi\mriate negative binomial distribution via a tri-
variate reduction - (2.57). ML estimates are:
§=2.8375,9,=0.1717,9,=0.3529,95=1.5115. There re-
sults x’=152.6 and P*0 for df=82.
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TABLE Il. BNB(a,b,c,p,q,1) MODEL'.
OBSERVED AND EXPECTED CELL FREQUENCIES
OF FLIGHT ABORTS FOR 109 AIRCRAFT.
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1

Paulson-Uppuluri bivariate geometric
distribution of (2.36). ML estimates
are: a=0, b=0.6820, c=0.3179, p=0.1655
a-0.3299. There results x2-10.2 and
P20.12 for df=6.
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TABLE 12. OBSERVED CELL FREQUENCIES OF TOTAL ABORTS
FOR 203 AIRCRAFT. NO INTERVENING OVERHAUL.
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TABLE I4. BNB(a,0,0,p,q,v) MODEL' .
OBSERVED AND EXPECTED CELL FREQUENCIES
OF TOTAL ABORTS FOR 203 AIRCRAFT,

NO INTERVENING OVERHAUL.
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TOTAL ABORTS FOR PERIOD | A,

ICIark's bivariate negative binomial distribution

of (2.26). ML estimates are: a=0.6795, p=0.6827,
4=0.6971, 0=1.7701. There results x>=46.1 and P=
0.65 for df=50.
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TABLE IS. OBSERVED CELL FREQUENCIES OF TOTAL ABORTS

FOR 387 A\RCRAFT.

¥

INTERVENING OVERHAUL.
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TABLE 17. BNB(a,0,0.p.q.1) MODEL'.
OBSERVED AND EXPECTED CELL FREQUENCIES
OF TOTAL ABORTS FOR 387 AIRCRAET.
INTERVENING OVERHAUL.
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TOTAL ABORTS FOR PERIOD 3 A,

1C1ark's,bivariate negative binomial distribution

of (2.26). ML estimates are: 5-0.7470, 580.7526,
4=0.7939, 9=1.7359. There results x°=107.0 and
P=0.12 for df=91.
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TABLE 18. OBSERVED CELL FREQUENCIES OF TOTAL ABORYS FOR
%28 A\RCRAFT. FIRST TWO PERIODS AFTER OVERHAUL.
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10




—————

b e

B A N e e el e el e e e e A I R O A e

FIGURE |.

REGRESSION FUNCTIONS ,ELY|xX],

FOR BATES-NEYMAN DATA

« —=DATA

(A) QNB(G,‘:‘-;P.Q D‘) “MLE

etrial,}

g %

€ (ylx]

elylx] ;

(d) 8N8 (a,0,0,p,¢, ) - MLE

elyln)

L o

X-DIGESTIVE DISEASE
Y-~RESPIRATORY DISEASE




e ) kel sl S S e

FIGURE 2. REGRESSION FUNCTIONS,E(A,,, 1a.],
FOR AIRCRAFT TOTAL ABORTS

t(‘i..\ﬁ;]
12

eC Aol

ECAsla,l

€ECAzla,]

T A A A A P

o 5 o IS 20
TOTAL ABORTS FOR PERIOD 4




00=b‘'D2'39v1S ANOD3S
1V 3WIL ONILIVM NY3W '€ 38N9Id

(SONVSNOHL NI)SH¥3IWOLSND

, 002 ool 0 , 002 0Ol o) u 002 00! 0
- ‘-
b AR S A | R el it | R T A |
8 % 7' ee2n=dern 1!
42 (6€v) 1:d(g02) 42 (€0'€)0=d(es1) 4z
w2w) 0=d(8€32) . W3LSAS :
(£8'9)1:0(p8°2) 1€ w3lsis £0=4(Q ¢ 90=1(0 ¢
l; q - v - c
(12'8) 0=d(s1I'®) hoe
swkm\fm m.OI\-AOV et S 4SS - 0
u u 7]
Vo Vi ' )2
(SONVSNOHL NI) SN3WOLSND
u Q08 O0E _0sz 002 00! 0
1 1 T T I 1 1

SERE i J.A\.

ren i=d(gry) — .4

4

49

6'0=2 (p) Jd.

48

W3LSAS

T WEE R W O mEw peeS et

(SAONVYSNOHL NI) SY3WOLSND

(SONVSNOHL NI) SY3WOLSND

130

ks -
Ay o

; -
s y‘«., ,,Y"




© ~ © o Q
A A A S _‘

[ o
1o
1=

T
e
1 o
o
R PR
4o
< : s 7 -
4 o
1 4Am =
- E j
4o
4 oy
4o (0o
.,."-,. i- 8
‘71 2 5 e i\v £ o
TR O e
" (0= LV W3LSAS NI 3WIL
NV3W) /(2 39VLS NI 3WIL NVIW) i
-
2 Y
|
srre 4™
¢ g " 4 e \\&‘_i
- o b @® ~
(0= 1V
W3LSAS NI 3WIL NV3W)/(W3LSAS NI 3WIL NV3W)

l' 131

FIGURE 4.RATIO OF MEAN WAITING TIMES, 2Q.q= ©2.
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