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ABSTRACT

\S&A procedure is described for determining a decision rule for the
one-dimensional, two class recognition problem with unknown, nonpara-
metric, class-conditional density functions. A priori class proba-
bilities are known, and the densities are assumed to satisfy Lipschitz
conditions with known Lipschitz constant. The procedure is essentially
a histogrem approach where the partition for the histogram is changed
as directed by a performance measure. It is desirable to minimize
the difference between the probability of a recognition error when
using the decision rule and the minimum attainable probability of
recognition error. For a fixed partition conditions are stated that
assure achievement of a specified confidence that this difference is
below a specified constant. The variable partition procedure operates
with limited storage and allows, but does not assure, attainment of
the specified confidence. Computer simulated results are given that
experimenully_illustmte attainment of the desired confidence for
the problems considered. A technique is suggested for extending the
procedure to mltidimensions. This technique converts the multidimen-
sional problem to & one-dimensional problem. It operates by mapping
sets in & multidimensional domein one-to-one onto sets in a one-

dimensional domain., Computer simulated results are presented. &

o M s e b
R R
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CHAPTER I
INTRODUCTION

1.1 The Problem

One of the problems in computerized recognition is that of
assigning a vector observation to one of several classes. Applica-
tions include the recognition of properties of waveforms or pictures
which are represented by vectors. The total recognition problem
should include the following operations:

A) Select sensors for the problem and represent the sensor outputs
for each waveform, picture, or etc. by an f~-dimensional vector. This
operation involves expert problem knowledge.

B) Represent the f-dimensional vector with a vector in a {~dimen-
sional space (£ < £) called the observation space and denoted V‘
This is accomplished using a data-dependent, dimensionality reducing
mapping. Denote with x a t~dimensional vector in V“.

C) Recognize the t-dimensional vector by assigning it to one of
ssveral classes using a classification procedure conditioned on

previously processed observation vectors called training observations.
Examples of applications include automatic sonar and radar detec-

‘tion and classification, medical diagnosis including electrocardiograms

and electroencephalograms, aerial photography processing for earth

resource studies, and quality control.
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This report is concerned with c¢); thus, the problem begins with
a set Yn of n, £-dimensional vector training observations (often
called patterns [1]) in a f~-dimensional observation space denoted Vl.
Using the set Yn together with available a priori knowledge, an
observation x is assigned by the classification procedure to one of
several classes.

The assumptions and constraints specifying the particular classi-
fication problem considered in this report are:

1) A vector observation x is to be assigned to one of two classes,

denoted w, and W, e The a priori probabilities P1 and P2 that g

i
belongs respectively to w. or w, are known.

1

2) The observation space is 1-dimensional (Chapter V describes a
method for extending the results to £-dimensions).

3) The training observations are supervised; that is, the correct
classification of each observation in Yn is known. The number of
training observations belonging to wj is nJ with n + n, = n.

4) Training observations belonging to wj are each independently
and identically distributed according to an unknown class=-conditional
density function fJ defined over the observation space. Class w,
observations are independent of class w, observations. fJ is pot
assumed to be parametric; it cannot necessarily be characterized by
a finite number of parameters. It is assumed that fj(x) is zero for

x outside a known bounded domain #. Without loss of generality

p=(x:0<xg1) (1.1)
In addition, it is assumed that fJ satisfies a Lipschitz condition
T TR TN R R S R T, ram :
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|fj(x) - rj(y)i < lex -yl , xye# (1.2)

with Lipschitz constant L 3 known a priori.
5) The amount of computer storage is limited.

The result of training (processing the training observations)
is the specification of a decision rule d defined on § and taking
on the values 1 or 2. The rule d divides # into two sets identified
by their assigned classes. An observation at x is assigned to class
w a(x)* The choice of d minimizing the probability of a classification
error is a minimum risk procedure. Details of such procedures are
found in references [ 2,3,20 ]. The probability Pr(eld) of classifi-

cation error when using d is given by

Pr(eld) = foPa(x)fa-(x)(x) dx (1.3)

where d(x) indentifies the class pot assigned by d t~ an observation
at x. An optimum decision rule d0 is defined as one that minimizes
Pr(e|d). If j is considered to be the argument of PJrJ(x), then do(x)

is given for each x in 9 by

do(x) = Arg [J'l 2 J J(xﬂ (1.4)

The corresponding minimum probability of error is

pr(ela,) = [ [ /2] , Pyty(x)] x (1.5)

Figure la illustrates a decision rule d for a particular example.

-
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The cross~hatched area represents the corresponding probability of
error, Pr(€|d). Similarly Figure 1b illustrates d, and Pr(€|d ).

Figure lc illustrates the excess of Pr(&|d) over Pr(?,ldo).

1.2 The Goal
An optimum decision rule d, is defined in terms of the class-

conditional density functionst f ° For the problem being considered
these d.f.'s are unknown; however, they can be estimated and the

estimates P, substituted into (1.4) in place of f 5 The result is

b
a decision rule d that is an estimate for the decision rule do. The

overall objective is to satisfy
PriPr(&|d) ~ Pr(&ldo) < a]>8 (1.6)

for prespecified constants @ and B in the interval M0,1]. In words,
the goal is to achieve a specified confidence that the excess of

Pr(eld) over Pr(eldo) is less than a specified constant.

1.3 Literature Survey

The previously described problem of obtaining a decision rale
constrained by limited storage and with a goal given by (1.6) has
apparently received no previous attention. The closest results are
probably due to Pu and Henrichon [4] who find constants o’ and B

so that

Pr{Pr(eld) ca’]l 28 (1.7)

+Hereafter the phrase class-conditional is dro , and fJ is referred
to as a density function (abbreviated to d.f.).




is satisfied. This condition provides a statement about the size of
Pr(&|d) whereas condition (1.6) for the current problem is concerned
with the size of Pr(&|d) relative to Pr(eldo). For the special case
when Pr(eldo) is known or is known to be negligibly small with
respect to &, (1.6) and (1.7) are equivalent. Otherwise (1.6) offers
the advantage of providing information concerning the amount of
improvement in performance obtainable by processing additional train-
ing observations. Fu and Henrichon's procedure operates on all the
training observations essentially simultaneously and requires
increasing computer storage as the number of training observations
increases; thus it is not applicable with the current storage con-
straint.

The missing link in a straight-forward application of (1.4), to
obtain d, is the method of obtaining the estimate d.f.'s f 3 from the
nJ class "’j training observations., The limited storage constraint
complicates this estimation.

Abramson and Braverman [5], and Keehn [6] consider estimates of

the form

3=y (1.8)
where 'J is a member of the family of Gaussian d.f.'s. They estimate
parameters (mean vectors [5], mean vectors and covariance matrix l67)
characterizing 'J' With {‘31}121 a complete orthonormal set for the

unknown fj’ Aizermar,, Braverman, and Rozonoer [ 7] obtain estimated

parameters éji in

R
- T8
fy= 2 Cyty (1.9)

1=1




and show that ?J(x) convergss in probability to f J(;) for each x in
the domain® 9. Tsypkin [8) also uses an orthonormal set [031]121
to get an estimate of the form (1.9), but he does not assume it to

be complete for f Tsypkin obtains estimates c 34 with the goal to

J.
minimize the Integral Square Error (ISE),

1sE = [, - ?J(zs))2 o

Kashyap and Blaydon [9] assume only that ['Ji}iﬁl are linearly
independent functions. With an estimate ?J of the form (1.9), they
consider minimiging both the ISE and the Mean Square Error (MSE),

& 2
wE = (1, - },@) £, &

For the 1-dimensional case Rosenblatt [10) considers an estimate
of the form (1.9) for fd(x) where R = ny and 'Ji is a function obtained

from the 1*P class @, cbeervation Xyq+

3
&
?J - S 51'31 (1.10)
1= J
Parzen 117 shows that if
- x
'31(") = ;:— K —o-u') (1.11)
3 ™

where

+In this section on d.f. estimation, § can be multidimensional unless
otherwise stated.

TR T T e
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{on ] and the function K satisfy certain conditions, then
h)

2
1im & - s ]
n+e © _(IJ(X) i i 7 o

J

for each x in the domain at which fj is continuous. Because of the
form (1.10), this estimate has increasing complexity as n, increases.
References [12,13,14,157 also deal with this type of d.f. estimation.

The well known histogram technique for estimating d.f.'s defines
the functions {¢ 31}151 as the set of indicator functions on the

regions of a R-region partition of #. For the ith region,
th
‘Ji(x) =1, X in the 1" region
= (0, otherwise

}j is given by (1.9). This is a special case of the problem considered
in references [7,8,9].

The nearest neighbor decision rule or rather the more general K-
nearest neighbor decision rule [16) assigns an unclassified observation
to the class most heavily represented among its K nearest training
observations. This rule has been shown [17,18) to have similarities
with a decision rule resulting from using density function estimates
in (1.4). It has been shown [16) that the nearest neighbor rule

results in an asymptotic (n‘1 + =) probability of error that is




less than twice the minimum attainable. Processing requires storage
for all training obaervationsr thus these results cannot be used
when one operates with a storage constraint. Hart 719) has sugge.ted
an interesting storage reducing modification of the nearest neighbor
rule which he calls the condensed nearest neighbor (CNN) rule. The
CNN rule discards a set of training observations from the original
set. The discarded set consists of training observations that, if
treated as unclassified observations, are classified correctly by
the nearest neighbor rule when used with the training observations
retained. The storage requirement is reduced, and the criterion for
discarding a training observation is based on the capability of the
retained observations to make decisions. Supporting theory for the
CNN rule has not yet been published.

The Gaussian assumption in Abramson and Braverman's work is too
restrictive for the problem outlined in Section 1.1. The work of
Aizerman, Braverman, and Rozonoer, Tsypkin, and Kashyap and Blaydon,
along with the histogram approach is either too restrictive (small &)
or requires too much storage (large R).

Unsupervised estimation 20,21,22,23,24,25] allows the estimate
of (1.9) to be more general by providing a way to estimate parameters
ciaracterizing each 'ji in {'Ji}izl as well as the weighting coeffi=-
cients.

Another approach [26,27,28] that adapts the jS's to the data is
based on distribution free tolerance regions. Instead of defining a

partition of # beforehand as in the histogram approach, a procedure
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is given for defining the partition in terms of the training obser—
vations; then the distribution free techniques described in references
[2,29] can be used.

Sebestyen 30,317 considers a method that is similar to the
Parzen technique but uses limited storage. Training observations in
close proximity with one another in 9 are lumped into an average
observation. Sebestyen's estimate d.f. is in the form (1.9) where
in is a Gaussian d.f. having mean at the it‘h average observation
and variance related to the size of the region in which observations
contribute to the average. ?: 1 is the relative frequency of obser-
vations in the region. The procedure does not have the properties
that Parzen used in his convergence proof.

Specht [32] reduces the storage required in a utilization of the
Parzen approach by gxpanding estimates in the form (1.10) into a
Taylor series about a selected point in # and then retaining only
the low order terms. The resulting truncated Taylor series is
accurate only near the point of expansion. To obtain accuracy over
the whole domain, the expansion should be carried out at each of
sufficiently many points in the domain. A different set of coeffi-
cients must be stored for each expansionj thus the storage required
would increase in proportion to the number of expansion points used.

When estimating d.f.'s, one must use care to choose a suitable
estimation criterion. This is especially true if one is faced with
the problem of estimating while being conetrained with limited storage.

RS
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If the d.f.'s cannot be characterized by a number of parameters that
will fit into the limited storage, then some information rust be
discardad. In this case, the criterion should not require accurate
estimation where it is not needed because such accuracy is obtained
at the expense of accuracy where it is needed. When the goal of
the estimation is for the estimate d.f.'s to make good decisions if
substituted for the actual d.f.'s in (1.4), it is reasonable that
some measure of the quality of these decisions should be used as the
estimation criterion. Since (1.4) involves a d.f. for each class,
the estimation of one function should involve interaction with the
estimation of the other function. With the exception of the K-nearest
neighbor rule, the above d.f. estimation procedures do not have this
property.

For other work related to computerized recognition, the reader
is referred to the survey articles by Nagy [33], and Ho and Agrawala

[34] which contain extensive lists of references.

. Th p \
The d.f. estimation used in this report is essentially a histo-
gram approach but with the partition periodically adapted to improve
a measure of performance. Enough storage is assumed available to
handle parameters associated with each interval in the partition.
The supposition is that a number R of intervals too restrictive in
the ordinary histogram approach may be adequate with the adaptive
capability. This idea is suggested by the fact that a R-interval

histogram d.f. estimation procedure is capable of giving an optimum

P R
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decision rule provided the problem has fewer than R decision thresholds.
Figure 2 illustrates a one threshold example optimally solved with a
two interval histogram estimation of fl and f2.

The framework or model within w'ich the classification procedure
operates is now described. Consider a partition I of the domain #
into R intervals. Label these intervals JI(I), JI(Z),...,JI(R) and
the interval widths wI(1), wI(z),...,wI(a). Define the probabilities
P51, U’I*J(z),...,p‘l’J(n), 3=1,2, by

pnIrJ(i) af fj(x) dx 1= 1,0e0,R (1.12)

35(4)
3=14

Although the P#*'s are unknown, any a priori knowledge concerning
them is represented by the notation A. The set consisting of the
first n training observations is denoted Yn. Through the use of A
and Yn, the classification procedure obtains estimates ?j conditioned
on I,A, and Yn. In the remainder of this report, the partition I,
the a priori knowledge A, and the training observations Yn will be
understood from the text and are omitted from the notation.

Given a partition, the estimate for fJ is

}3’ZW

i=1

r:&

(1)

~

where ¢, is the indicator function for the 1'" interval. P 48
is the expected value of a distribution on Pj(i) which is a random
variable describing the current uncertainty of F’;(i). The a priori

knowledge A, or in its absence the first few training observations,
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are used to assign this distribution initially. It is updated with
subsequent training observations through the use of Bayes Rule. By
ad justing the variance of the initial distribution, its effect on
the result can be made large or small as desired.

When the resulting estimates are used in place of fl and f2 to
obtain decision rule d, there can be no finer resolution of decision
thresholds than the boundaries of the intervals comprising the parti-
tion. For this reason the capability of altering the partition is
included in the model.

If the number R of intervals in the partition is greater than or
equal to the number of decision thresholds plus one, then the model
is capable of giving an optimum decision rule. An optimum decision
rule is attained when all thresholds coincide with interval boundaries
and when each interval is classified correctly through use of the
estimate functions.

A general description of the approach used to satisfy condition
(1.6) is now presented. The discussion follows the system flow
diagram® of Figure 3.

a) Initialization

Initially, a partition and a distribution on each Pd(i) is assigned.

This assignment is based on a priori knowledge about P;(i).
b) Updating

A set of supervised training observations is used to update

the distribution on each PJ(i) through use of Bayes Rule.

+This flow diagram corresponds to an actual implementation, the results
of which are presented in Chapter 1V.

. T T . " P v magn ———— S——
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¢) Classification

The constants @ and 1 -8 are allocated to the intervals and a
set of R conditions, one for each interval, similar to condition (1.6)
for the whole domain, is developed. These interval conditions taken
together are sufficient for (1.6). The interval condition for each
interval is checked independently of the others. A record is made
of any interval whose interval condition is satisfied and of the
class assigned to that interval; (such an interval is said to be
classified). If all intervals are classified then processing is
stopped with the statement that condition (1.6) is satisfied. Other-
wise processing continues.

d) Adjust the Partition

The classification rate of an interval is defined as the total
probability in the interval divided by the number of training obser-
vations required to classify it. The unclassified intervals are
ranked in a priority table according to estimates of the maximum
possible classification rates for the intervals. The maximization
is with respect to intem; width. The partition is adjusted by
considering the intervals one at a time in the order that they appear
in the priority table. An interval is either split into two intervals,
combined with one of its adjacent intervals, or left unchanged accord-
ing to a rule based on a measure of performance and the storage con-
straint. After partition adjustment, a priori knowledge is reassigned
to the intervals. The process repeats as often as is necessary according

to the flow diagram of Figure 3.

R Pt 1,
Piga g WEORTRER' |
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FORM INITIAL PARTITION
IMPOSE INITIAL DISTRIBUTION
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OBSERVE A SET OF
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ATTEMPT TO CLASSIFY
EACH INTERVAL

GOAL ATTAINED?

ESTIMATE OPTIMUM INTERVAL
WIDTH AND CLASSIFICATION RATE
FOR EACH INTERVAL
FORM INTERVAL PRIORITY TABLE

r

ADJUST THE PARTITION
USING THE PRIORITY TABLE

Figure 3. System Flow Diagram
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1.5 Report Organization

Chapter II contains the details of the approach for a fixed
partition. The initialization and updating of the distributions on
the Pj(i)'a is discussed. The use of these distributions to obtain
estimate d.f.'s and the subsequent use of the estimates to obta a a
decision rule is described. Next, a set of interval conditions that
is sufficient for condition (1.6) is derived.

Chapter 1II describes an ad hoc approach for altering the parti-
tion in order to arrive at the goal with limited storage and with
fewer training observations.

Chapter IV contains computer similated results. Experimental
studies are included on the effects of tradeoffs between o and B of
condition (1.6) and the total number of training observations
required for satisfying it. Also studied are the effects of altering
the Lipschitz constants, the number of intervals, and the number of
training observations observed between times of making computations.

Chapter V contains suggestions for extending the approach to
the miltidimensional case via a technique that transforms the :mlti-
dimensional problem into a l-dimensional one. Possible uses {or the
mapping other than computerized recognition are discussed.

Chapter VI summarizes the results, their possible engineering
application, and suggests ways in which they might be improved

and ex'anded.
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CHAPTER II1
SOLUTION FOR A FIXED PARTITION

2.1 Introduction

This chapter contains a description of the technique employed
for a fixed partition I of the domain. Estimation of density func-
tions and a decision rule are discussed. The difference between the
probability of error using the estimated d.f.'s and that using the
actual d.f.'s is expanded into a sum of difference probabilities
where each difference probability corresponds to an interval in the
partition. The objective is to achieve a specified confidence that
the sum is less than a specified constant. A method that operates
by considering each interval independently is developed for checking

whether the confidence is attained.

2.2 Density Function Egtimates

A piecewise constant estimate of the Jth class=-conditional d.f.

is

R -~
2 - Pi(1)
tJ i+ ﬁ'i (2.1)

Py
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The random vector*’!:l= (Py(1), Py(2), ..oy PJ(R))t has the

R-1 variate Dirichlet density function

(e )
e Ly
R P.(i
=r(y m)m i , 0gP(i) <1
oo =1 I"(mj(i))
R
2 Py1) =1
i=1
=0 , Otherwise
(2.2)

assuming an a priori Dirichlet density function on fl and subsequent
training observations where :h = (mj(l), ma(z), “aoy mJ(R))t. Each
mj(i) is obtained from training obsarvations and a priori knowledge
about P J(i) Bs. Pj(i) has the beta (univariate Dirichlet) density

function,

8(P (1) vy, (1), vy,(1)

LA ety
J1 J2

0 sPJ(i) <1

=0 s, otherwise
(2.3)
where

+ indicates transpose.




vn(i) - mj(i)

vyo(1) = 2 my(k) (2.4)

30

The mean and variance of Pj(i.) are

& vjl(i)
E (1) = E[P (1)|v (i). ij(i)] s le(i) + yjz(i)

L A A
Var,(i) = E [(nj(l) - hj(i)) 14, (1), vy5(8)

_Ei(i)rl -E;(1)]

- V31(1) +y32(i) = (2.5)

If 6j(i) = E,(1), then

.. (1)
g V@ +v32(i)1ﬂi)

The components of 21 may not be consistent with a priori know-
ledge of the expected value and variance for each Pj(i)‘ For this
reason and because each interval is to be considered independently,
the Dirichlet d.f. is abandoned in favor of an independent beta d.f.

on each PJ(i). Then, it is consistent to constrain the y's as follows:




vy, (1) = 8y, (1) * v (1)
¥yo(d) = 8y5(1) * v, (1) (2.6)

where the s's and v's account respectively for a priori knowledge and
training observations. The ability to use a priori knowledge is
important for the partition changing technique developed in Chapter III.
An "a priori d.f." on Pj(i) is converted to an "a posteriori d.f." by
using a Bayes iteration:

82, (Dlv,, (1), v,,(1))

~Pr{vyy (1), vp (1) [Py(), 53, (1), 85, @)8(Ry(3) [, (1), 8,,(4))

1
'TO Numerator dOJ(i)

(2.7)
The iteration includes the information that out of
nJ = vjl(i) + v32(i) (2.8)
training observations from the jbh class, vjl(i) are in, and vjz(i)
are out of the 1th interval.

Appendix A considers approaches for specifying the s's that
characterize the a priori d.f. on Pj(i). From (2.6), it is seen
that enough training observations will eventually cause the effects
of the s's to be negligible (provided each interval probability is

greater than zero).
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2.3 The Decision Rule
An estimate of the minimum probability of error decision rule is

d(x) = Arg[ 3:),(2 PJ?J(x)j, xed (2.9)

The difference between the probability of error when using d and the

probability of error when using an optimum decision rule do is

1=

Pr(e|d) -Pr(r,lao) = [Pr(e]i,d)Pr(ild) - Pr(eh,do)Pr(ildoﬂ
1

L

where Pr(£|i,d) is the probability that d errors in classifying an
observation in the ith interval. The probability that an observation

is in the 1P interval is Pr(i) and is independent of d. Thus,

W(1,d,d )

Ni~J=

Pr(2ld) - Px-(p,ldo) =
i=1

where

Q(i,d,do) = Pr(eli,d) - Pr(i’.li,do)]Pr(i)

The next section is devoted to obtaining a sufficient condition
for the goal

PriPr(eld) - Pr(eld ) < o128

Then, computational techniques are developed for checking if this

sufficient condition is satisfied for a given partition.
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2, u t _Congdi

The following proposition gives a set of interval conditions
(one for each interval in the partition) such that satisfaction of
all of them is sufficient for Condition (1.6).
Proposition 1

Given:

a) Constants o and B such that

IA
-

0O<a

PLES!

b) Constants e(i) > O and 7(1) 2 0, i=1, ..., R, such that

R

Z a(i) = o
i |

R

Z (i) =1-8
op

Then the set of interval conditions

Pr{Q(1,d,d ) > a(1)] < 7(4) s 3% 0n, R {8100

implies

Pr{Pr(e|d) - Pr(eld ) <ol 28
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Proof
The set of conditions (2.10) implies that

R
Z Px{Q(i,d,do) > a(i)] <

J=1

(1)

1=

(¥
Il
—

It follows that
R

R
ey (daay) > a(1))] < 12 r(1)
=1

From de Morgan's laws

R R C
Pr [121 (Q(i,d,do) > a(i))] = Pp [{121<Q(i,d,do) < a(i))}

where the superscript "C" indicates complementation.

Then

R
R
prl 0 (W1,d,0) o) J21- ) #(1) =8
- i

which implies that

R R
X
e[ )] alide) s ) ai) 28
| i=

The conclusion follows.

1

-
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2.5 Classification P for the itM
Consider just the ith interval.
Define
P.pP.(1)
Uj(i) o i MEA
The d.f. on Uj(i) is
W(i)U,(1)
9#(U (1) v, (1), vy, (1)) = F e———,,—;L— Vi (1) vy,(4))
(2.11)
Define
Do Gl v51(1)
uy(1) = EU,(1) = Gy v, (D + vjz(i)
y,(4) e

Py (2
oi(i) = Var UJ(i) = (ﬁ(%;) . ; ;
(V51 3) #5502 (vy (5) +,,(1) +1)

corresponds to the class
a(i) = Arg [J:sz uJ(i)] : chosen by d in the ith
’ interval.

corresponds to the class not chosen by d

b(1) : { 'the 1th interval

(2.12)

To avoid redundant notation a(i) and b(i) are denoted a and b when the

ith interval is understood.
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The objective is to find a region V(i) in the (Ua(i)’ Ub(i))

plane containing all points for which
Q(4, 4, 4)) > a(i)

is possible. Then the probability Pr’V(i)) is an upper bound for the

probability

Pr [Q(i, d, do) > a(i)]

Pr(V(i)) is obtained by integrating the d.f.* on (Ua(i), Ub(i)> over

points in V(i).

Pr rQ(i, d, do) > a(i)] < Pr(V(i)?

= (U (1) ]y, (1), %400 Ja%(U, (1) [, (1), ¥y (1) JAU, (1)auy (3)
v(i)

The 1*" interval condition is satisfied if
Pr\V(i)/ < 71(i) (2.13)

The region of integration V(i) is obtained as the intersection
of two regions‘vl(i) andlvz(i), each containing all points in the
(u,(1), U,(1), plane for which (Q(i, d, d) > a(1)) is possible.

Define the events

#he 4.f. on U (1), U (1)) is the product of d.f.'s defined by (2.11)
on U‘(i) and Ub(i) separately because those d.f.'s are obtained from
independent samples.

—— e e
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]

v.(4) = (Q4, 4, 4 ) > o)

it

v (1) = (a4, 4, 4.) > a(1))

Because of the possible variation of the density functions fl and f2
about their averages in the ith interval, it is not possible in
general to specify V(i) and V,(i) as regions in the (Ua(i), U, (1),
plane. However, the following proposition gives regions'vl(i) and
Vz(i) that contain Vl(i) and V2(i) respectively. Note thats
V,(i) © V (1) and thus V,(1) <V (1). Careful examination shows that
V,(1) may contain points for which it is known that Q(i, d, d) = o.
Elimination of these points from the region of integration yields a
smeller upper bound. Intersection of‘vz(i) uith‘vl(i) to obtain V(i)
accomplishes the elimination of these points. Figure 4 illustrates
with Venn diagrams the set relations involved.

The proof of the proposition uses an easily proved statement
relating the range of variation of a density function f in an interval

J to its average over the interval and an assumed Lipschitz condition.

Statement
If 1) Interval J has width W

2) Density function f satisfies
If(x) - f(y)' -4 L'x = Y' ’ X,yed
3)?=%%ﬂnu

*Notation V2(1) c Vl(i) allows V2(1) = Vl(i).
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(a) The Events Vl(:l) and Vz(i).
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(b) The Event V().

Figure 4. Set Relations Among V,(1), vz(i),'fri(z),’frz(i) and V(1)
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then
::: f(x) < T+ 2&
M ) 2 T - ki (2.14)
and if
Fol
then

M () < (2aF)?

:f; f(x) >0 (2.15)

Proposition 2#

Given the definitions
'r_J - PJ/W W)

Cy=PLW2 , §=1,2

p = a(i)/w

8 =C if Uy > C

b b

. [(t.cbub)é - U] if U < Cy

#Because the 1t'h interval is understood, the "i" is dropped from the
notation when confusion does not result.
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Then

1) A rerion ‘Vl containing V1 in the (Ua.’ Ub) plane is:

v1 = (ub > Ua - Ca. -8) (2.16)

2) A region 72 containing V, in the (Ua’ Ub) plane is:
e _ Min 45
W~ (s s=1,2 MMax (0, Uy - ¢,)] > o) (2.17)
where it is understood that the definition of T’l and ..‘.;2 includes

intersection with

Part 1

V1 = (Paf‘(x) < beb(x) for some ch)

Min Max
> (Pa xed fa(x) o I;b xed fb(x))

From (2.14) and (2.15)

Min

(¥
T &
xed fa(X) 2 fa Pa

Max
xe 9

'\'Jlo

f,(x) < £, + 1

——————— R . —— " _*:x.—w---“. - - -y - - < ——
g % M :

P P » - - e T RTNS
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Then
- - = >y -c -8 =V
vl c (Pafa Ca < beb +8) (Ub a a ) i
Part 2
VZ s (Q(i’ ds\do) > a(i))
-
- (E‘f,u [Pr(s.li,d) - Pr(eli,a,)] > o)
Note that
Pe WU
SN 7 S i
pr(eli, d) > Pr(i)
-
L T
hi o |

Pr(e[1,d ) can be expanded as

Pr(e|i,d ) -J‘J pr(e|i, x, d )f(x[1, d )dx

(P,f.(x)]
e I JE}nZ f(x + flxli)ax
J »

Note that
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Min [Mi 1
3—12“’”"”-312 YR B NCH

By (2.14) and (2.15)

Min
xes [Pyfs007 2 Max (0, U, - Cy)

such that

Pr(eli d)>3_12!-Mlx(0 Uy ﬂf%)-dx

= Min Max (o, U

Pe(i) 3™1,2¢ )

(Rga

Then

h'-&u [Pr(eli,a) - Pr(eli,do)] gy - j"1 2 [Max (0O,U, =C )]

J

and thus V2 c V2 .

Figure 5 illustrates the region.‘; while Figure 6 illustrates

!
two cases that result for 72 depending on the relative sizes of p
and Cb. The region V over which the density function on

(U, U) is to be integrated is obtained as the intersection of V ; ‘m{\;y

v=(u,>U -C, -8 )n\’ubod,,"}’,‘ztmx (0, uj-cj)]n)

(2.18)
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Figure 5. The Event Vl
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Figure 7 illustrates V for each of the two cases, p < Cb and
p 2C,. Note that if p 2 C,, then V =T,. The transition from

p > Cb to p < C,_ is not smooth with respect to the region V,

b
Figure 8 illustrates the increment AV included into V when

p =Cy is changed from slightly positive to slightly negative.

Note 1

Given
1) Scaled beta density functions B* (Uj'vjl' ij) on
Uj’ j = 1,2, according to (2.11) where T and vy,

are positive integers.
r(YJ] )F(ij)

2) Definition Be(vy;, ¥y,) = F(vsy +v5,)

An upper bound for
Pr{Q(1,d,d) > a(1)]

#* #*

is obtained by integrating the d.f. B (U‘,Yal, Y‘z)ﬂ (Ub'ybl’ sz)
over the region V(i) and hence over any region containing V(i) in
the (Ua’ Ub) plane. By inspection of Fipgure 7 and by definition of

p¥*,
Pr(v(i))s (1)
"o SRS
LR oo mbTPU Ly MU \
=f° Py ’( P, Y1 Vbz) Yy P, g \P_ [Yar’ Ya2,W, Y,
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where
q'=o-C‘l 1fp?_cb

=-c‘-c :Li‘p<cb

b

When the y's are integers, Appendix B carries out the integration

with the result: .,2,»
Yal‘"j

Fas
e
-]l -
T(1) = Be™ (v, Ypo)Be  (vyys v,) 2 (® ) ("jﬁ)

o4
A
+ -1 r“y\ n
Yal JY‘I" ; y.l-fj-v Yo2 sz‘k 4 ..\T":/ -(g? J
TN T (e R
WD v b k=0 k bl
Y, o=~1 e
+1-B" vy, V) T ( bi J-1* G'%T;T vt
k=0

where

The computations for T(1) are time consuming and subject to accumm-
lated error. A simplifying approximation is to approximate the d.f.'s
on the Uj'a with Gaussian d.f.'s having the same means and variances,
This approximation is suggested by the fact that as its parameters get
large while maintaining constant retio, a beta d.f. converges pointwise
to the Gaussian d.f. having the same mean and variance [36,37].
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Note 2
Given
(1) Gaussian density functions
Usg =g, 2
-1 (-
— J
J2n o P

on Uy, § = 1,2.

(2) The U, intercept €, and the slope %, of a straight line

Uy =8, +§,U, supporting the region V(i) in the (U_, U,) plane.

An upper bound A(i) for
Pr [Q(i, d, d ) > a(i)j
is obtained by integrating the d.f.
g(U, s o2)a(U, Juy, o2)
over the half-plane supported by
U = 81 T80, ¢

Thus

pr(v(1)) < A1) = [f 8(Uy w0 DU, |y 9. 2)aU U,
Up>€, +850,

Appendix C carries out the integretion with the result:
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(2.20)

where
x -k
$(x) = f

1
—a
-0 /2n

dy -® < X<®»

Because of its simplicity, A(i) of (2.20) is a more practical

result than T(i) of (2.19). In the remainder of this report A(i) is

h

used in place of T(i),and the it interval condition is satisfied

(approximately) if
A(d) < v (1) (2.21)

The 1*" interval is said to be classified if (2.21) holds; the whole
domain is said to be classified if (2.21) holds for each interval.
Because A(i) is obtained as the integral over a region of integration
that contains the one used for T(i), the approximation A(i) for T(i)
tends to be conservative. Appendix E contains comparisons of A(i) and
T(i) for some special cases in which the regions of integration are
identical. Good agreement is observed.

A is a function of the supporting line Ub = gl + §2Ua. The problem
of minimizing A with respect to the parameters ‘1 and § P is now consid-
ered, This minimization is subject to the constraint that the line
Up = €; +§,U, supports the region V(i). If the mean (u,, u)) is inV(i),
A is given the value 1, and no minimization is attempted. In the follow-
ing minimization, it is assumed that (u‘, “b) is not inV(i). Because ¢
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is monotonically increasing in its argument, minimization of A is

accomplished by minimizing the argument of ¢.

QCSQ 1

>
o 2C,

From Figure 7b, it is clear that only lines through the point
(Ua’ Ub) = (C‘, p) need be considered. For such lines the Ub
intercept tl can be written in terms of the slope :2 as
€, =F = C82
A straight-forward minimization of the argument of ¢ in (2.20) with
respect to ¢ 2 subject to the constraint that g2 is in the range
[0,17 leads to the value of A(i) computed according to the flow

diagrem of Figure 9. The requirement §, in [0,1] ensures that the

line supports V(i).

Case 2

p<Cb

From Figure 7a, it is determined that A(1i) is minimized for & line
through the point (U., Ub) = (Ca * Z/DC—b , p) or for a line tangent
to the quadratic portion of the boundary curve to V(i). Minimization
of A(1) with respect to lines through (Ca + Zﬁq) , p) is accomplished
similarly to the minimization for Case 1 except that {1 is given in

terms of !2 by
g€, =0 = (C, +2hC)e,

with , constreined to the range (o, Jo 7cb] Minimization of A(i) with
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respect to tangent lines to the quadratic boundary of W(i) requires

——

#
an iterative process described in Appendix D. The defining parameter
is the Ua coordinate Aa for the point of tangency. Given the value
\a, one can obtain gl and §2 from
A =C
g == —ﬂ-—-——-—i
2 2,
2 2
A, -C
g [ (—ﬁ-—.—-‘)—
1 th
+ 2/kC. 1
The constraint that Xa is in the range rCa zloCb 5 Ca +2C, ]
. ensures that the tangent line supportsV(i). The overall procedure

leads to a value for A(i) computed according to the flow diagram of

_——

Figure 10.

2,6 Conditions for Domain Classification

It is of interest to know conditions for which the whole domain

can be classified.

Proposition 3
Let Wy be the total width of the domain, Restrict » and B by

O<a<l
0Ogp<l1

Allocate o and 1 - B to the intervals according to
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a(1) = Wik,
%

Rl tEE)

and define p by

i3y . g

PTG T
Let an R-interval partition of the domain be given with each interval

width W(i), satisfying

0< W(i) < o

wheret
W,
2p T
Naax < Mo m(PL) ’2(1-37’”’1‘
s P Sl
Let nJ training observations from Class 'j’ J =1,2, be used to form
a decision rule d as discussed previously in this chapter.
Then:
— s
2 2 _W(i) Max N
ok 5( Min 20(1)(p - %3 3=1,2 (P,Ly,
\n.+2  n_+ L S
1 2 ’ ) ]
- (%Tu(l-s))
(2.22)
f
< - i >C
Wnax o N B sl S
=1,2 "7
weL A pae ‘~h~r“_;______._.-,_fl._”.-\$?,_5”, e e e i g
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implies
Mi)er{s) , 1=1.2,...,8

the requirement for classification of the domain.
Proof

Consider the 1*" interval. By hypothesis, the case p > C, of
the previous analysis applies., The event V(i) for that case is
illustrated by the cross-hatched region of Figure 11. Each point

(U‘. Ub) in the region defining the event V(i) satisfies

U, > U, +o = C, (2.23)

b

The line given by

Ub==U.+D -C.

supports the region V(i) and is one of those considered for the best

such support in the computation of A(i). If l\l(i) is the integral of

the approximating joint Gaussian d.f. over the half plane defined by

(2.23), then
A(1) 51\1(1)
From (2-21)’ “'1118 ‘1 -ee c‘ and gz - 1’

-p +C_ = +
A (1‘ & ’r [ 2 H‘ “‘ bl
1 # ~ 2 2 ; -~
(0g + o)

Thus, satisfaction of
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-p +C_ =y thq

"
' ———-——5——9“ a < 7(1)
- (Jf +02) - b

b

assures classification of the it‘h interval. Equivalently, because

#(x) is monotonically increasing in x, one can write

e e O g

—————';—— e () (2.24)
(o +g )

where 4™ 14 the inverse of . Note that

Max
1,2% 2%
and
Ug 2 Hy
Then
oLl TN i et
.y <® Lr(1)]

02 +02)*

implies (2.24). By hypothesis T(i) < 4 so that # "1[r(1)] < O.
Rearranging gives P o, is a permutation of oys 02)

(af + cg)é _J:l‘-z_i (2.25)
T(i)J
From (2.12)
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(ﬁ) ) (-

S

(\r'jl *Yt 1)

But the product of two numbers that sum to 1 is bounded by #. Thus

yE

i3 1 %
<
s \2w(1)) (”31 Y T U (2w 0/ Tny =

02
J

with this bound on c 3 the inequality

e 7 b (ee+ 0y
Z0(1) \n + 2 g n, + > e ()]

implies (2.25). Appropriate substitutions give

/ r % \b 2(1)(p - ML X (P.L,))
\n +2+n+2) % = | wﬁg g
1 2 -7t ' (1-9)]

(2.26)

Thus (2.22) implies that
AMi)<t(i) , 1i=1,..., R

It is interesting that one can specify - before taking any
treining observations - a satisfactory partition and the number of
treining observations that assure classification of the whole domain.

Consider, for example, the special case in which:

™
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P1=P2=§

L1=L2=L

HTSI

o« = 0,1
8 =0.9

-

Then (2,22) simplifies to

-] 2
3

where W mist satisfy 0 < W< 2% . The smallest n , that satisfies
this inequality is plotted in Figure 12 as a function of W for each
of several L values.

Several observations concerning Proposition 3 can be made.

1) The numbers n, and n, required for satisfaction of (2.22)
are generally very large. This is to be expected because the propo-
sition states a result that does not use the values le’ 732.
Regardless of these values the result is applicable. Suppose that
treining observations and hence Yy 1 Y IPL are available for the it‘h
interval; hence e and by, can be determined for the interval,




- sl -
6
107 ¢
\UL-5
L=5
100 |
\ L=3
\‘\
nl,nz L=2
10 ¢
mi—
L=1
L=0.4
103 $ +
0 0.1 0.2
W
Figure 12, Training Observations Required Versus Interval Width
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Suppose further that vy and by remain constant as ny, Ny, and W
are varied. If P, =P, =3, L, =L, =5, «a=0.1, 8=0.9, and

= Ny, then the minimum n, required to classify the interval is

ny 3
plotted in Fipure 13 for several Bar By values. Note that nJ is

much smaller when the parameters le’ YJZ can be used. The next
chapter assumes vy and W, are constant over ny, Ny, and W, so that
estimates of the number of training observations required to classify
the interval can be obtained. Adjustment in interval width is made
based on these estimates.

2) Maximization of the right side of (2.22) with respect to
the interval widths allows widths to be chosen that correspond to the
smallest values ny and n, that satisfy (2.22) . Such "best" interval
widths correspond to a "best" number of intervals. Hughes [26], using
a mean recognition accuracy criterion, also arrives at a "best" nusber
of intervals.

3) By requiring the interval widths to be less than or equal to
wMax’ a minimum is placed on the number of intervals. Tt is possible
that this minimum conflicts with the assumed storage constraint.

Also of interest is the rate at which the quantity

-p +CL-u. +uh . "o

2. 2\
(oa+ab)

changes with n, where




™

-SL-

= 4 0 Wi +ub

(oi+a§)£

I's}
Il

- e

(), a(om)]

na:+2 nb+2

Assuming that oo My are constant with n, that

=]
)
|

Pan>>2

an>>2

o
i

and that

5 >> ua
W

P
o >
- “o

the rate of change in #(Q) is given by

-
2 4(Q) B e‘éc"

Rate = dn = 2/on /'-r-T_

where C is a constant given by

o= ) (-4 6y =uy e, )

TR g TR

e - -




-55_

This chapter has discussed the classification procedure for a

[ Y
fixed R-interval partition of the domain., In Chapter III an ad hoc

approach for adjusting the partition is described. The objective is

to classify the whole domain with as few training observations as

.

possible,
L 2
. N T
,i’l“( . - =
S —— e e ———

- £0 =
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CHAPTER III
ALTERING THE PARTITION

3.1 _Introduction
The classification procedure of Chapter II operates with

a given partition. Generally, the partition can be adjusted
to decrease the number of training observations required for
classification of the whole domain. A desirable adjustment
procedure would be one that minimized this number.

A hill climbing technique could be used to minimize an
estimate of the number of training observations required for
domain classification. Similarly, hill climbing techniques
could be used to maximize an estimate of the divergence [52],
an estimate of the information contained in an observation
about its unknown class [39], or any other global measure of
the separation of density functions. The hill climbing technique
using the first criterion mentioned generally requires many
intervals, while using the other criteria, it has not been shown
to achieve satisfaction of condition 1.6.

This chapter describes an ad hoc partition adjustment
procedure that operates by sequentially adjusting the widths
of unclassified intervals in the order that they appear in a
table called the priority table. The width of an interval under

i
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consideration is adjusted to increase an estimate r of the inter-

val's "classification rate";

ET
il
So o

where P is an estimate of the mixture probability in the interval
(p = Pl 51 + P2 ﬁé) and n is an estimate of the number of training
observations required to classify the interval*. The estimated
rate T is a reasonable performance measure in that it increases
with p and decreases with n. A possible disadvantage is that
it is local (applies to cne interval) as opposed to being global
(applies to all intervals); i.e. partition adjustment using a
global measure may result in a smaller estimated number of
training observations required for classification. Application
of a global technique would need to constrain the partition
so that it allows classification of the intervals.

With suitable approximations (tc be listed) p, n, and thus
T can be written as functions of the interval width W' (in this
chapter notation with a prime refers to variable quantities,
whereas unprimed notation refers to observed quantities).
F(W’) can be maximized with respect to W’'; the resulting maximum
is denoted ;M’

denoted ﬁH' The intervals are listed in the priority table

in order of decreasing ?H values.

and the interval width giving this maximum is

f'I‘he notation omits reference to a particular interval.

T -

ARG R
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The following items constrain the adjustment procedure:

1) A change in the size of an interval influences the
sizes and or number of other intervals. A change of
an interval's size is not allowed if it affects an
interval preceding it in the priority table.

2) Rules are stated that determine if an interval adjustment
is made. An interval is adjusted either by splitting
it into two intervals or by combining it with an
adjacent interval. These types of adjustments allow
for a reasonable amount of change at each adjustment
stage and for larger changes over several adjustment
stages.

3) No more than R intervals are allowed in the partition
at any one time.

L) After a partition adjustment, the beta distributiona*

on the P's are reinitialized.

3.2 Rate Estimates
The estimate F(W’') is obtained by first obtaining p(W’)

and #(W’'). The following simplifying approximations are useful.
The quality of these approximations affects only the partition
adjustment procedure and not classification based on a given

partition.

fNot.o that even though Gaussian approximations are used for

computations, all updating and reinitialization is done with
beta distributions.

>

B e N e A R~ e YT
Y = m'—fﬁ&?"’: i L Y ? 5‘3\.’5:«1;#@—:4 Gy
. - — - - e o " T . :
g w R - - .
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i
I

-
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P Y P Y n!
e . 1 v 1 . \
‘v‘:'i W ( )
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J nJ+1 nj+1 ny
P Y
~ b T
='ﬁ1’ (n F1/ My
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of \
2’ “1\w 41) o n (7 - vy)
3 (n 2) n3+2
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=
-

QQN
n
8
it
}f

1'Y 1 is the number of training observations in the interval from the
}’, Jth class. It is a-sumed that nj + 1 = nj.

M’I‘he number of traininy observations from the 2 classes are assumed
proportional to the a priori class probabilities.

f‘"'Numbcu- of training observations in the interval is assumed small
compared with the tot..l number rrom the jt'h class. Also sub~-
sequently assumed is nJ +2= nJ

e e " ) R NP
r——m e r...,,y_... e e i gt S —
P 4'«% £ i ™y ?




E' With these approximations, p(W’) is easily computed as
- , o /
BW) = Wiln, + ) (3.1)

Let @ and (1 - B) be allocated to the intervals according to

(1) = LME)] (1 -8) (3.2)

Note that

ali) _ o

= p= o
w1W’.lT

is constant with W'(i). Computation of #(W'(i)) proceeds for
the ith interval by using the above approximations in the ith

interval condition

[-gl-':‘lgfub}ﬂ (3.3)

(e 2% + )?

for suitable values of %, and §, (i has been dropped from the
notation).

Taking the inverse gives

~6H =u 54
((o‘ L5

% el () (3.4)

¥ + b)

o ¥ - g Ao bl A " Ayl T
N - = : 4 i ) 4 i
w - e s ek S
2 ) we . s e 4.
a1 o : w5
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Using the variable quantities and the above approximations leads

to

"6 Tu Sty -1 /'
2 ¢ (=1 -8)
(-%#;;E (wy !5 + ubgs B (WT J )

n

or assuming that*
wl
ﬁ—(l-B)<}»
T

&ndff

o5 it

The inequality becomes

(w (- a)]

§1+u g, - ubJ

n

,><__§2 “'b)

The estimate n(W’) is taken as

(3.5)

L%y AR -

oty - (T

*This is a constraint on W’.

??Assumoa (“a’“b) is below the supporting line for V(i) in the

(Va,%) plane.

e . e g —
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where gl,g? have been included in the notation to indicate dependence
on these quantities., From (3.1) and (3.5)

’
(u‘+ub) W(§1+u|§2 ) 12

|

(8, & + ) |- 0'1(:‘,—T a-8)

F(W',e,,8) =

wl
;‘;(1'8)<$

if (3.6)
gld""‘ag.?-“'b>o

To obtain FM’ the quantity i"(w',gl,;z) should be maximized over

all values £ ,& for a line = + €, U that supports the
;1 2 a

Y%
region V(i) and over all interval widths W'. For simplification
-~ ’ ’
r(w ,§1,§2) is maximized over W' for each of three sets of gl,gz
values, and then the maximum of these is chosen for i"M. It is
now assumed that

wl
o (1-8)<<}

1
Then for maximization of i‘-(w',gl,;z) with respect to W', the

’

quantity - ¢ l(!“‘-l‘. Q- B)) is considered to be approximately

constant.

case 1 (£,8) = (5,0), 0 > w,

’ 2
Wp -
#(w’,p,0) = (fl ML (p-w) |

/|2 o'l(ai a - s))J
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Thus #(W’,p,0) is maximum for W' as large as possible. To avoid

problems with poor approximation accuracy for large W', the value

ﬁn(p,O) is defined as the current w’idthf

QM(pyo) =W

and

?M(p,o) is defined by

u.b) w(p - “b) 2

-9 1(

The rules presented shortly for adjusting intervals encourage

fy(p,0) = (

combining an interval with another when W, > W which is true in

M=
this case.
Case 2 (%),8,) = (p-cC.,1), p2C)
or
) = - s1), W' <
(8,5, (” ) X Lb

w'[w' - :.:l__:g)] J__?’

.-1(ﬁ£f21‘3a>) J

f'(w,,p - Ca,l) =

"this 1s ad hoc and another value for Wy (p,0) could be used.




o i = 20
WM(p c,l) = L if 5L <PL'b

p+p -
20 40 20 ¢ By T ¥y

Pb I‘b Pb Lb Pa La

fy(p = C,,1) 1is obtained by substituting v‘zM(o - C,,1) for W' in
rw',p - Ca,l).
’

Case 3 (5,8, = ( -c; - C!;,l), p<Cp

or

g \ ’ 20
(5),8,) = (' !2_ (Py Ly + Py L)1), W' > v L

2 i e Py Ly + P L)
’ & 4
LEL 2(?L+Pbl.b>:K 2 )
#w’, -=c_ = C,1) = ‘_1‘ . 3
'(%r'(l-ﬂ)/
~ by — % a8 Lo W
w(-Cc =-cC,l) = S if < 2.
w( b PR+ L YL L "EL AR

f-M(- g Cb,l) is obtained by substituting “u(' e Cb,l) for

W' in #(W',=C_ - C,,1). The rate for Case 2 is at least as large
| g My
as that for Case 3 when 20 > A » thus obviating
Pb I'b Pa La + Pb Lb

the need to consider Case 3 in that event. x"" is set to the max-
imum of f'"(p,O), f'"(p - C.,l), and i"M(- G Cb,l) and ﬁH is the
corresponding interval width., Similar computations for each of

the intervals and a subsequent ranking according to i"" values

gives the priority table.

e
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3.3 Interval Operations
The unclassified intervals are considered sequentially in
the order that they appear in the priority table. Suppose that

ith interval of the priority table.

attention is centered on the
Operations assumed available to change its size are:

1) Do not alter the interval.

2) Split the interval into two equal intervals.

3) Combine the interval with an adjacent interval.

If v“JM > W, an attempt is made to combine the interval with
an adjacert interval; if W > vﬁM, an attempt is made to split
the interval into two equal intervals; otherwise, no interval
change is attempted. The constant v was arbitrarily chosen as
1.6 (values of v closer to one can cause too frequent interval
changing). Without a constant v > 1, an interval might never
be classified because of alternate splitting and combining from
one set of training observations to the next.

Combining

The following is a list of conditions that must be satisfied
before the ith interval is combined with an adjacent interval.

a) The adjacent interval is unclassified and appears in

a lower position of the priority table than the 1th
interval.

b) ﬁh 2 W for the adjacent interval as well as for the

th

1" interval.

o
o
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¢) The adjacent interval is tentatively classified to the
same class as the ith interval; that is, "a" and "b"
in (R and Hy for the adjacent interval are the same
as those for the ith interval.

d) The estimated "classification rate" for the combined
interval is greater than the sum of the rates for the
component intervals considered separately. Before the
combined interval rate can be obtained, parameters
characterizing the interval are computed by a procedure
discussed in the next section.

o) If both intervals adjacent to the i

interval satisfy
these conditions, then combining is performed with the
adjacent interval giving the largest improvement in
classification rate.

If combining takes place, then ﬁM for the combined interval
is taken as the average of the QM values for its component
intervals. The combined interval takes the place of the ith
interval in the priority table and is processed again in exactly
the same fashion. The adjacent interval that is combined is
removed from the priority table.
splitting

In order for the ith interval to be split, the total number
of intervals must be less than R, If not, then a search is made
for an adjacent pair of intervals that can first be combined.

The search is made in the following order.




ol
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START PARTITION
ADJUSTMENT

i=1

START TO PROCESS THE
ith INTERVAL IN THE
PRIORITY TABLE

ADJUST TABLES
OF PARAMETERS

L

i=i+l

Figure 14 .

}

TRY TO COMBINE
THE ith INTERVAL
WITH AN
ADJACENT INTERVAL

YES

TRY TO SPLIT
THE ith
INTERVAL

YES

ADJUST TABLES

OF PARAMETERS
T

END OF PRIORITY

NO

ADJUSTMENT

(END OF PARTITION

Flow Diagram of Partition Adjustment
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a) A pair of adjacent classified intervals, classified
to the same class, is sought and if found are combined
together. Otherwise,

b) A pair of unclassified adjacent intervals appearing in
positions lower than i in the priority table is sought
and if found they are combined together.

The ith interval is split if the total number of intervals
is less, or can be made less by Items a) and b), than R. In
that case the 1th interval is split and splitting is said to be
successful; otherwise, it is unsuccessful. If splitting is not
successful, then no additional interval changes are possible
at that stage, and the partition adjustment phase is terminated.

Any time an interval is adjusted, the parameters character-
izing it are computed from the technique discussed in the next
section. In addition, tables containing the characterizing
parameters are adjusted. At the conclusion of adjusting the
1*? interval in the priority table, the (i + 1)5% interval is
considered unless the end of the priority table has been reached
or the ith interval cannot be split—in either case the partition
adjustment process is terminated. Figure 14 summarizes the

partition adjustment procedure.

3.4 Estimation of Parameters After a Partition Adjustment

Before the partition adjustment, a beta d.f. on each of
the P's is known. After the partition adjustment, d.f.'s for

those P's in un-altered intervals are the same as before the
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adjustment. For an altered interval, however, a record of the
number of training observations in the interval from each class
is unavailable. This section deriyes characterizing parameters
for beta d.f.'s on the P's after a partition adjustment, in
terms of the expected values and variances of the P's in con-

tributing intervals before the adjustment.

Interval Combining -

th

Suppose that the 1*M and (1 + 1)®% intervals are combined.

Consider just the jth class and let i and (i + 1) denote the

th )st

1" " and (1 +1 intervals respectively with no interval

notation indicatine the combined interval. Thus,

P=pP>H) + P +1)
P = BP(1) + BP(1 + 1)

An upper bound on the variance of P is

Var @ = Var @(1) + Var (1 + 1) + 2(Var @(i)var P(i + 1))é

because for any random variables X and Y

n

Var(X + Y) = E(X + Y)° - F(X + Y)

Var X + Var Y + 2[;—5&'——-‘5 E"EY.:](Var X Var )2
Var X Var Y)

Var X + Var Y + 2(Var X Var Y)é

IA

™e characterizing parameters of the beta d.f. on P for the

wbined interval are obtained from Equations (A.4) in Appendix A.
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Interval Splitting
Again only the Jth class probabilities are considered with
no notational mention of it. Suppose that an interval is split

h

into the 1*" and (1 + 1)® intervals. P is the rendom variable

for the interval probability before splitting; P(i) and (i + 1)

h od (14 1) teterval prob-

are random variables for the it
abilities after splitting. Because no information is available
about the variation across the interval before splitting, the
distributions on P(i) and P(1 + 1) after splitting should be

identical to each other; thus,

(1) = (3.7)

254
2

The allocation of the probability f is not necessarily uniform
across the interval. The worst case for this allocation is
governed by the Lipschitz constant L for the jth class—-conditional
d.f. Figure 15 illustrates a worst case allotment of P to the
interval. The worst case occurs when the actual d.f. f for the
Jth class has its maximum absolute slope L over the interval

ae shown in the figure. Then P(i) is given by
P(1) =S+ ¢ (3.8)

where € for such a worst case is given by
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Figurel5 . Variation of Probability in an Interval
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€e=@p®

_L (W2
=2 3
In general € can vary over the range
L (W2
lel s5 @)

A distribution governing the probability of occurrence of €
through the range defined is not known, but it can be assumed
symmetric about O, and independent of the distribution on R.
Because of the symmetry about O, the expected value of P(i)
given by (3.8) is consistent with (3.7). Because of the assumed

statistical independence of € and @ the variance of P(i) is
Var P(1) = 2 Var @ + Var €

A worst case is when 3 of the distribution of € is concentrated

at each of + X%)°. Then
var € = (532
and for a worst case (highest variance)
Var P(1) = 4 var P + 3(L()?)? (3.9)

The characterizing parameters of the beta d.f. on P(i) are obtained
by using BP(1) and Var (1) of (3.7) and (3.9) in Equations (A.4)
of Appendix A,
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CHAPTER IV

COMPUTER SIMUIATED RESULTS

4.l Introduction

This chapter contains results obtained by using an IBM 1130
computer system to generate and to process simulated data. The
simulated data is generated using standard pseudo-random number
generation techniques (see e.g. [40]). Processing follows the
flow diagram of Figure 3 in Chapter I. An interval of a given
R-interval partition of # is "classified" if condition (2.21)
of Chapter II is satisfied, The intervals of an initial R~
interval partition are defined using the first R = 1 training
observations by the technique described in Appendix A. The
partition is subsequently adjusted using the procedure of
Chapter III. The i'" interval, if not "classified" by satis-
faction of (2.21), can be "tentatively classified" to class w,
by using (2.12). Thus, even if all intervals are not classified,

tentative results are available until they are classified.

b2 Allocation of o and 1 - B to the Intervals
Experimentally, it was found that assignment of a(i) and

7(1) according to

i . P
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_ ()
a(i) = WT a
r(1) = %L (1 - p) (4.1)
T

is not economical in terms of the number n of training observations
required for domain classification. The assignment (4.1) is

equivalent to

a(i) = ﬂg‘a*
Wp

(1) =94 o - gy
Wp

(4.2)

3
where o and (1 - B)* are the portions of a and (1 -~ B) that have not

been used for the classified intervals, and w; is the cumulative

length of the unclassified intervals. A significant reduction in

n was experimentally observed with modification of (4.2),

a() = u (p) WL *
T
v(1) = u, ¥ 3 - )
w'I'

(4.3)

where u, (13“) depends on an estimate ﬁu of the probability? in
all unclassified intervals by the relation

t

?n“tia ttlte sum of estimates of mixture probabilities in unclassified
ervals.
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t
uy (‘3\1) o a -~ tl)(l - ;‘)u)

and u, is constant. Uy, tl’ and t2 are experimentally chosen

constants; the experimental examples subsequently described use

u, = 0.5
t, = 0.02
t, = 0,05/

The modification allots larger portions of a and (1 - B) to the
last regions classified, causing them to be classified with less
difficulty. The observed decrease in n is attributed to this

fact.

L3 Study of a Particular Problem

Let fl and f2 be truncated Gaussian d.f.'s given by

| (L'_O_-.l.t>2

fl (x) = K, e 0.1 , 0<x<1
=0 , otherwise
-3 (5508)°
f2 (x) = K, e y0<xwl
=0 , otherwise (4.4)

where Kl and Ké are normalization constants included so that

fl and f2 integrate to 1, and let the problem parameters be

S A
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R=9 (4.5)

Before presenting results for R = 9, a graphiczal illustration
of the partition changes for R = 5 is presented in Figure 16
for one experiment. In Figure 16, a single horizontal line
indicates the corresponding interval is tentatively classified;
a double horizontal line indicates the interval is classified.
The lines being above or below the axis indicate Class w or
Class w, respectively. The result after 554 training observations
is a classified domain with decision threshold at 0.50197 and
error probability of 0.15870. This compares with an optimum
threshold at 0.50000 and error probability of 0.15866.

For a comparison with well known parametric techniques
(see e.g. [5]), assume it is known that f, and f, are Gaussian
with standard deviation 0.1. Then the only unknown parameters

are the means. It is easily shown that only four observations

(two from each class) need be taken to satisfy the condition

Pr(Pr(e|d) - Pr(cldo) £0.1]) 20.9

if the d.f.'s are given by (4.4). The additional a priori knowl-
edge drastically reduces the number of training observations

required.
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Number of Interval Boundaries
e T i
Sb
o 1 . =
154
204
354
A S —
Lk F 1‘ L o
o F =
554 ;C f
f
0 0.50197 1
Pr(% |d) = 0.15870 Pr(e[d ) = 0.15866
Pigure 16, Example of Partition Changing
AR 7 T




-78-

For comparison with a commonly used nonparametric technique,
experiments were performed using a nearest neighbor classification
technique. Each x in # is assigned to the class represented
by the nearest member in a set of n = n1 + n, training observations
(nJ from Class y , My = n2). Using the d.f.'s of (4.4), 100
experiments were performed for each of several n values. For
each experiment n observations were taken, the nearest neighbor
decision rule was obtained, and Pr(2|d) computed. An estimate
of the confidence that Pr(eld) - Pr(e!do) < a was obtained
by dividing the number of experiments for which Pr(&ld) - Pr(&‘do)
< o by 100, The curves in Figure 17 illustrate n.j versus o
for 8 = 0.1, 0.2, 0.5, 0.8, 0.9, For confidence 8 = 0.9 that
Pr(eld) -Pr(eldo) <o = 0,1, Figure 17 shows that slightly
more than 100 training observations are required. Figure 17
also shows that for o somewhat less than 0.1, say a = 0,05,
the confidence 3 = 0.9 would never be attained from the nearest
neighbor rule. This is in agreement with the work of Fix

and Hodges 55] who show that

Pr(eld) =—» 0,225

n, o o

J

or

pr(eld) - Pr(6|do) - 0,225 -~ 0,159 = 0,066
n,= ®

J

when the nearest neighbor procedure is used on this problem,

*Fix and Hodges also show that for the K nearest neighbor rule, the
asymptotic difference Pr(eld) - Pr(C‘do) decreases to zero as K =+ o ,

e
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Figure 17. Tradeoffs Among n, @, and 89, (Nearest Neighbor Classification)




The rest of this section is concerned with the problem defined

by (4L.4) and (4.5) unless stated otherwise.

4.3.1 Effect of a and B

In Figure 18 Pr(&‘d) is plotted versus o at the procedure's
termination for several B values. The solid lines are averages over five
experiments; the broken line is the maximum over five experiments
for each B value and over all B values. The result should remain
below the line Pr(&|d) = 0.15866 + a with confidence at least
B. For this problem the procedure appears very conservative
because in ncae of the experiments did Pr(&|d) closely approach the
line Pr(€|d) = 0.15866 + a. A conservative procedure can be
undesirable because the number n of training observations for
domain classification may be larger than the number required
with a less conservative procedure.

In Figure 19 an average value of n for five experiments

is plotted versus o with B as a parameter,

4.3.2 Effect of Assumed Lipschitz Constants
The value 25 is nearly the smallest Lipschitz constant

L, = L, = L that applies to the functions £, of (4.4). Decreasing

J
L below 25 can cause a decrease in n; however, an assumption

of the problem is then violated. Nevertheless, it is interesting
that for the problem of (4.4) and (4.5), reduction of L causes

a reduction of n without causing Pr(€|d) to exceed an acceptable

limit (Pr(&ld ) + ).

SR
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In Figure 20 the maximum of Pr(&|d) over 5 experiments is plotted
versus o for several values of L, Only for L=1 and L = 2
did Pr(€|d) exceed 0.15866 + a, and even for these cases, Pr(€|d)
for only one of the five experiments exceeded that value for a given a.
In Figure 21, average values of n for five experiments corresponding
with the examples in Figure 20 are plotted versus o with L as a para-
meter., The results in Figure 21 show that a priori knowledge
of the smallest applicable values for the Lipschitz constants
is helpful in reducing n. For the problem considered it can be
concluded from Figure 20 that violation of the smallest applicable
Lipschitz constants by a factor as large as ten may not prevent
domain classification such that condition (1.6) is satisfied.

A reason for the good experimental results even with Lipschitz
constants that are smaller than the minimum applicable values

is that the maximum slope of f, occurs in just small parts of

J
the domain, This suggests that a priori knowledge consisting

of the maximum absolute value of the slope of f J(x) at each x€d
could be used to make the approach less conservative, Such

a priori knowledge could be used to define "local" Lipschitz
constants, different constants applicable for different intervals.
Also suggested is the possibllity of adaptively altering the
constants for each interval based on current results; adaptation
could occur with an operator interacting with a histogram display
or automatically by an estimation procedure. Such a display

or estimation procedure may require local storage of samples in

order to obtain an estimate of the local rate of change of the density.
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Figure 21, Tredeoffs Among n, &, and L
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L.3.3 Effect of Signal to Noise Ratio

A commonly used measure of the separability of fl and fz

when they are Gausahn? is the signal-noise ratio, S:N, which

can be defined by

Mean., = Mean 2

w4 ..
Standard Deviation/

S:N‘(

In Figure 22, n averaged over five experiments is plotted versus

L for S:N = 1,2, and 4.

4.3.4 Effect of the Number of Intervals

In Figure 23 n averaged over five experiments is plotted
versus R for @ = 0.1 and a = 0,2, Not shown in Figure 23 is
average n for R = 4 because the processing failed to terminate
for some experiments. This failure to terminate is caused
by lack of availability of a sufficient number of inter=
vals for adjusting unclassifiable interval sizes into classifiable
sizes, In the present example failure with partitions having
four intervals occurs when one interval at each end of the domain
is classified leaving two adjacent intervals in the middle.
It is possible that neither of these intervals in the middle
can be classified. The partition adjustment operations do not
allow a shift of their common boundary other than through a
combine operation and them a split operation. Such a pair of

tﬂm the d.f.'s are not Geussian, this definition loses much of

its appeal.
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operations may not occur because of the conditions of Section 3.3
for combining. Even if it does occur, the resulting intervals
may not be classifiable. Thus, for small R, interval operations
more general than the combining and splitting described in Section 3.3
might be helpful.

The increase in average n with an increase in R for large
R is explained by the worst case technique of Section 3.4
for reinitializing interval parameters after combining
intervals. The technique results in a loss of information;
hence, more training observations are required. Figure 23 shows
experimentally that the best R for this problem is about nine
or ten. R is not too critical as long as it is large enough.
If it is chosen too large, the procedure automatically reduces
the number of intervals actually used by combining some of

them together.

4.3.5 Effect of Frequency of Computations

Let M be the number of training observations used for updat ing
between classification attempts. In Figure2i » n averaged over
five experiments is plotted versus M for several o values. Some
increase in n is noted for small and for large M. Not plotted,
but perhaps as significant, is the fact that for large M processing

is faster because computations are performed less frequently.

bek Multd-Threshold Fxamples

To illustrate the procedure for multi-threshold problems,
including non Gaussian problems, results of five experiments for

each of two examples are illustrated in Figure 25 and 26 respectively,

e e i R ——




Example 1
- (5538
rl(x)-—-xle 0.1 , 0<x<1
=0 , otherwise
e 0.5)2
£,(x) =K, e Vet F Dxgel

=0 , otherwise

(Kl’ K, are normalization constants)

a=0,2
B =0.9

PJ = 0.5, §=1,2

L =25 1L,="7

R =13

Figure 25 shows the domain classification at termination, Pr(&|d),
and n for each of five experiments for Example 1. Also included
for comparison is the optimum domain classification and Pr(eldo).

Example 2

5 ,(z_-_p..z\z 2 é(z.;g.ﬁ\"

- 0.05 / 0.05 / 1

Kl Le + e J

f,(x) = ,0<x<1

=0 , otherwise

- W(E=0u  _yx-0,87
£,(x) = K, [e 9( o.os) % Q( °'°5)],o<x<1

=0 , otherwise
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ons m2 2 (Dl : mz ;
- T T 1
0.3868 0.6493
Pr(efd) = 0.34468
L =4 1 g L Y2 ]
r ! T ~
0.3821 0.6307
P(eld) = 0.34386
L 5 1 - L - 1
! 1 ¥ e
0.3438 0.6490
Pr(eld) = 0.34384
L 2 1 3 1 *2 |
- T T i
0.3683 0.6337
Pr(e|d) = 0.34192
1 - yl " ! 2 1
1 T 1 .
0.3180 0.6427
Pr(e]d) = 0.34973
Partition
w . w
— S
0 0.3653 0.6347 1
Pr(e ldo) = 0,34186
Figure 25. Results for a 2 Threshold Problem
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Figure 26, Results for a 3 Threshold Problem
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o= 0.1
B =0.9
PJ = 0.5, J =1,2

L1 =50, J=1,2

R =15

Figure 26 shows the results for Example 2. Note that for Example 2,

the d.f.'s fl and f2 cannot realistically be assumed Gaussian,
and thus a "non Gaussian'" approach, such as the current one,

should be used,

hal  Summary
Computer simulations verify for the problems considered that

processing according to the flow diagram of Figure 3, Chapter I
gives good results. An interval of a given R-interval partition
of ® is classified if condition (2.21) is satisfied,

Partition adjustments are made using the adjustment technique
of Chapter III., First a one threshold problem is studied as
problem parameters are varied., Of particular interest is that

the procedure appears too conservative; the assumed Lipschitz

constants can be reduced significantly below the minimum applicable

values. The effect for the example is to reduce the number n of
training observations required without increasing the probability
of error sbove an acceptable value. The following possible

modifications are suggested:

1) A priori knowledge consisting of the maximum absolute value

of the slope of fj(x) at each x€4 might be available.

Such knowledge could be used to define "local" Lipschitz
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F‘ constants for the intervals—different constants for
different intervals.

2) The Lipschitz constants for each interval could be
adaptively altered—either interactively by an operator
observing a histogram display or automatically by an
estimation procedure., Such an approach could lead to
a practical solution of the problem of obtaining the
a priori knowledge required in 1) above.

Tt is noted that a drastic decrease in the number of training

observations required can be obtained if a priori knowledge

appropriate to parametric procedures is available.




CHAPTER V
EXTENSION TO MULTIDIMENSIONS

2.1 Introduction

In the preceding chapters computerized recognition is restricted

to a 1-dimensional observation space. A mapping is now utilized to
extend the procedure to a L-dimensional (£ finite) observation space.
The observation vector x is in a bounded domain # of an f-dimensional

vector space V‘ where

ﬂ:{‘z(xl’...’xz) :OSXJ<1’ jgl,.-.,t} (5-1)

Density functions fj’ J=1,2, defined on # are assumed

to satisfy Lipschitz conditions,

£, - £, <Ly llg-gll », 3=12 (5.2)

for the norm

L 3
2
lix !ﬂ'(z (x, -"1))'
i=1
In the previous chapters, a procedure is developed for adjusting a
partition of a 1-dimensional observation space. In the current
chapter, an appropriately defined one-to-one mapping is utilized to

achieve a correspondence between sets in a partition of # and sets

TSRS ek




in a partition of an interval of the real line. The mapping is
defined such that the previously developed partition adjustment
technique on the real line can be used to adjust the corresponding
partition of 8. Alternatively, the mapping can be viewed as con-
verting the f-dimensional problem to a 1-dimensional one.

There has been recent interest in transforming data vectors in
Vz to vectors in V‘l, L’ < 4. One such transformation is used to
display clusters of {-dimensional data vectors in V", especially
for the case £’ =2 (a human operator then can view them for data
analysis). Another type of transformation is a one-to-one map of
regions in Vz to intervals in V‘c'. The former type of transformation
is discussed in Section 5.6; in its present form, it is not appli-
cable to the partition adjustment problem although it may be possible
to modify the transformation. The latter type of transformation
which will be used for adjusting the partition is discussed in

Section 5.3.

A ch
The approach used to convert the L-dimensional partition adjust-
ment problem to a 1-dimensional problem involves the following six
steps:

1) Each dimension of the domain # in Vl is partitioned into bK
intervals where b, a positive integer, is the base for some of the
arithmetic computations that follow. The positive integer K deter-
mines the number of intervals in the partition and is called the

complexity. The resulting bK‘e regions in Vl' are referred to as
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elementary regions.
2) Similarly, the interval

R={y:0gy<1}

of the real line is partitioned into bu

elementary intervals.

(5.3)

intervals referred tc as

3) A one-to-one transformation is defined which maps the elemen-

tary regions onto the elementary intervals.

In this manner, a par-

titioned L-dimensional domain is mapped to a partitioned 1-dimensional

domain, Data vectors falling in a Z-dimensional elementary region

also fall in its corresponding 1-dimensional elementary interval.

4) Approximate functions h1 and h, are defined for f

2

and f2 such

that hj’ J=1,2, is constant over each of the elementary regions in

#. The constant hj on any particular region is taken to be the

average of f j over that region. Because 1‘1 and f

satisfy (5.2),

the partitioning can be made fine enough so that for practical pur-

poses hj is equivalent to f,, j=1,2.

J’

5) g 52 a piecewise constant function, 1s defined on the real line

such that 83 and hJ

are equal over corresponding elementary region -

elementary interval pairs. The interior content or t-dimensional

volume of each elementary region given by

£
Volume = (fi)

- b

bl(l.

(5.4)

S ——
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is equivalent numerically to the width of each elementary interval.*
Thus, function g 3 integrates to 1 if h 3 does. Data vectors falling
in the f-dimensional observation space have the d.f. fJ or practically
speaking hj’ These data vectors also fall on the real line where,
practically speaking, they have the d.f. gj.

6) Lipschitz conditions introducing a priori knowledge about the
d.f.'s were utilized in the l-dimensional recognition procedure consid=-
ered in previous chapters. At the beginning of this chapter, (5.2)
defines Lipschitz conditions assumed satisfied by the functions
f 5 j=1,2, on the L=dimensional domain. The following concerns the
problem of utiliging the a priori knowledge contained in these con=-
ditions in such a way that the l1-dimensional procedure may be employed
with the current Z-dimensional problem. This involves obtaining con-

stants L. ® to be used in defining constraints on g M

J
Igj(x’) - gj(y')l < Lj*lx'- vl

for x’ #y’ where x’ and y’ are mid-points
of any 2 elementary intervals in Q. (5.5)

Equation (5.5) can be thought of as a "pseudo-Lipschitz" condition
on the function g 3° The procedure for obtaining L J* requires that
the transformation discussed in Item 3. above relates each pair of
adjacent elementary intervals in @ with a pair of adjacent elementary

regions in §. Then, the maximum change in g 3 from any elementary

*The partitioning is assumed to be such that all elementary intervals
are the same size and all elementary reg ons are the same size and
shape.
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interval to an adjacent elementary interval occurs when the function fj
changes at its maximum rete in the direction of the line joining the
mid-points of the corresponding adjacent elementary regions (see

Figure 27 ). The change in 8 is bounded by the relation:
lag(x) - g5(v)| < Ll - xl (5.6)
where x and y are the mid-points of the adjacent elementary regions that

correspond to the adjacent elementary intervals whose mid-points are x’

and y’. Using (5.5) gives LJ* in terms of LJ:

K

fai il sk R a0

Ly* =Ly TF =y =Ly 3 = Lyb (5.7)
bKl

Recall that the functions 8j are, for practical purposes, d.f.'s
governing the l-dimensional mapped observations. Treating the constants
LJ* as Lipschitz constants for functions 83’ one can use the l-dimensional
recognition procedure developed in previous chapters. It operates on the
mapped training observations to obtain a solution in ®. The solution
consists of a partition of @ with each interval assigned to one class or
the other. The (-dimensional solution can be obtained by assigning cach
elementary region in # to the class assigned to its corresponding elemen-
tary interval in R.

One could avoid the conversion in (5.7) above by treating the l-dimen-
sional mapped training observations as though they were the original data
and assuming Lipschitz conditions on d.f.'s for this data. Such assumed
Lipschitz conditions are open to question, but, inpractice, so are the

ones given by (5.2) on the original functions.
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The transformation to be discussed in Section 5.3 does not depend
on the data; transformations that are data dependent could profitably
be used. For example the correspondence between elementary regions and
elementary intervals could be defined to minimize increments in the
estimated d.f.'s between adjacent elemer;ury intervals.

Additional improvement could be attained by subdividing the obser-
vation space by a clustering 23, 56] or other technique to isclate
modes of the d.f.'s. Each subdivision can then be treated as the domain

of a separate problem for subsequent partitioning and mapping to the

real line.

Mapping to One nsio
This section describes mappings that map elementary regions in 0

one-to-one onto elementary intervals in ®R. First, the elementary regions
and elementary intervals are defined more clearly.

The f-dimensional elementary region Se i (b,K,2) is
2

1’32: eeey
defined by
e e+l
S sz\={x:-‘1<x<-'L— _t O S
RSV T G e e MR . )

={5 e 5beJ <etl, j=1,2, ..., z}
(5.8)

A1l bK" elementary regions are defined by allowing each of the sub-

scripts ey j=1, +u., 2, in (5.8) to take on each of the values

WA ey W ety B (b,K,2) is the set of all x in 9
°1’.2. ssey "

that become identical if each of its L components is expressed in

the base b number system and truncated to K digits.

Similarly the elementary interval S.(b,lu) is defined by

e T

AR Nt
— e Gaars - Lo ———— R

h o P TV ety z e
Y. s R P o B
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5,(0,K2) = {y : 37 <y < :‘:K‘}

)

-{y:egbxy<e+1} (5.9)

All bxt elementary intervals are defined by allowing the subscript

e in (5.9) to take on each of the values 0,1,2, ..., oot

-1. S‘(b,Kl)
is the set of all y in R that become identical if expressed in the
base b number system and truncated to K/ digits.

Both the elementary regions and the elementary intervals are
uniquely identified by their subscripts. Hence the mappings can be

defined via the subscripts.

5.3.1 The Dovetail Mapping
Consider mapping the arbitrary elementary region

(b,K,t) to an elementary interval in R. The base b
01,02, seey .‘

representation of the subscript eJ, =1, ..., ¢, 1s

.j - 0'31032 * o GJK

K-1

b +a ° o+a b (5'10)

e 32 3K

m.r. “ch 031,1-1’ ey K, i. one ot th. 'dn.' 0’1, ecey b‘lo
The Dovetail Mapping defines the corresponding subscript e by

- ey Ve
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ceee ¥

e - 011021 LN ] 0'1012022 t2 L R alxazx L atx

K? -2 0

Kt-1
+ b + oo (5.11)

= oy,b

This mapping has been used in integration theory (see e.g. Wiener
(41)). It is called the Dovetail Mapping because it interleaves or
dovetails the digits of the ej's to get e.

Example Figure 28 illustrates an example with b=3, K=2, and f=2.
The ordering imposed on the elementary regions in £ through the
Dovetail Mapping by the natural ordering of the elementary intervals
in R is 1llustrated with an ordering path. The dotted line portions
of the ordering path denote discontinuities in the path. Several
corresponding elementary regions in 0 and elementary intervals in

R have been labeled with corresponding letters in the Figure.

5.3.2 The Column Mapping

A problem with the Dovetail Mapping is the discontimuous way
in which it orders the elementary regions in # by the natural order-~
ing of elementary intervals in R, For example, in Figure 28, adja-
cent elementary intervals Fl and G1 in R correspond to the widely
separated elementary regions F2 and 02 in &, Because of the discon-
tinuities, (5.7) cannot be used to obtain constants LJ* for pseudo-
Lipschitz conditions on gJ.

It is possible to modify the Dovetail Mapping to remove the

discontinuities in its ordering path. By inverting the ordering of

the elementary regions in suitably defined regions of §, the mapping
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illustrated geometrically by Figure 28, for example, can be converted
to the mapping illustrated by Figure 29. Note that the ordering
path in Figure 29 is continuous which implies that each pair of
adjacent elementary intervals in R corresponds to a pair of adja-
cent elementary regions in #. The mapping illustrated in Figure 29
is an example of what is called here a "Column Mapping". Whereas

b for the Dovetail Mapping can be any positive integer, it is
restricted to be an odd positive integer for the Column Mapping.
Again (5.10) is used to represent the subscripts e‘1 for the elemen-
tary region S t(b,K, ). The Column Mapping is defined

01 ’ 02 ’ ®ooe ’ e
algebraically by writing,

8

e - 911621 L 8‘1612822 L ] 8’2 LR PIK 2K L azK (5.12)

Each 8,, is either equal to o ,, or b~1-c,,. Which it is depends

B i BB

on whether or not an ordering inversion as mentioned above is
required for the region defined by those digits in (5.11) that are
more significant than o 54°
order inversion should be made is now given.

A method for determining whether an

Define
) i-1 j-1

Qs = Z 7, B Z oy * z oy (5.13)
m=0 =1 n=0

where 001 = °'10 =ong = 0

jS is the sum of all a's in the following blocked in portions of
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base b representations of the e,'s:

J

11 “«e li LN ]

‘1 see o’i O OV'K

Then, is obtained from:

331

331""31 it QJi is even

54 if jS is odd (5.14)

The Column Mapping defines an ordering path that orders the
elementary regions in # in exactly the same way as a curve in the
sequence of curves defined by Moore [/2], who shows for the 2-dimen-
sional case that the limit curve is a space-filling curve (Peano [431).
Example Figure 29 illustrates the Column Mapping for b=3, K=2,
£=2. It shows the ordering path and pairs of corresponding sets
(labeled with corresponding letters). By unbending the ordering
path and carrying along with it the elementary regions in # through
which it passes, the elementary regions are strung out in a line or

column, hence the name Column Mapping.

————y et P
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The fact that a Columm Mapping ordering path is continuous ensures
that there is an adjacent pair of elementary regions in # corresponding
to each adjacent pair of elementary intervals in R. The term "quasi-
continuous"#* is adopted to describe this property of the mapping
(actually a property of the inverse mapping). It is this property that

was required in order to convert the Lipschitz constants by using (5.7).

5.3.3 Other Mappings with the Quasi-Continuity Property
Other mappings having the quasi=-continuity property can be
defined, For example, the elementary regions can be ordered according

to a curve in a sequence of curves giving the Hilbert realization [45])

of a space filling curve. Figure 30 illustrates an ordering path
that could result., In a recent paper [53] Butz has defined the Hilbert
Curve Mapping algebraically for 4 dimensions.

Starting with the Column Mapping, the dimensions can be ordered
differently in different regions giving, for example, the mapping
illustrated by Figure 31. For later reference, the mapping of Figure 31

is called a "modified Column Mapping."

5.3.4 A Mapping Criterion

Several mappings have been discussed. Of these, the Dovetail
Mapping does not have the quasi-continuity property and is not con-
sidered further. A criterion is now suggested for use in determining
which of the mappings with the quasi-continuity property is most

appropriate,

"Butz (44 uses the term "quasi-continuous" in a similar context.
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The 1-dimensional partition adjustment technique of Chapter IV
automatically combines contiguous groups of elementary intervals in
R together. Because of the quasi-continuity property of the mappings
now considered, the corresponding elementary regions in #, when com=
bined, form a region that is contiguous, The d.f.'s f1 and r2
are approximated by constants over each such combined region. One
would expect these constant approximations to be the most accurate
when each possible combined region is tightly knit together. Then,
a reasonable approach is tc seek the mapping that minimizes the

maximum value of the ratio

(Hudmm length of the combined {~dimensional region %
in any coordinate direction.

=

L~dimensional volume of the combined z-dimnaioml)
region.

(5.15)
for any possible combined, L-dimensional region. For the Column

Mapping, 0 satisfies
Qg ()t-! (5.16)

indicating for a given dimensionality £, that Q is independent of

K, but that the base b should be chosen as small as possible. The
smallest nontrivial odd base is 3 (recall that, for the Column
Mapping, b must be odd). For this reason only base 3 is considered
further for use with the Columm Mapping. With b=3 and £=2 in (5.16),
(iis bounded by 6. The worst case for the Hilbert Curve Mapping of
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Figure 30 would be the case in which four elementary regions in a line
are combined. Q from (5.15) is then bounded by 4, Similarly, Q for
the Modified Column Mapping of Figure 31 is bounded by the value 5.4.
The examples discussed later in this chapter all use the Column Mapping.
However, it is apparent that, based on the ratio Q, the Hilbert

Curve Mapping and the Modified Column Mapping merit further study.

2.4 Computer Simulated Results
To demonstrate the extension to multidimensions, several two-

dimensional examples using the Columm Mapping are presented. The
mapping parameters for each example are b = 3, K =3, and £ = 2,

giving the ordering path illustrated in Figure32 ,

5.4.1 Fxamples
The examples all use class-conditional d.f.'s that are either

Gaussian or linear combinations of Gaussian d.f.'s. Though the procedure
does pot require Gaussian data, such data is easy to generate on the
computer and, with linear combinations of Gaussian d.f.'s, is felt te
represent, as well as any data, the type of problems to be handled.
Table 1 1lists the weighting coefficients, means and covariance matrices
used for the components of the linear combination in each example. Any
observation falling outside the domain # is rejected and a new one
obtained. This truncation effect is minimal for the examples because
of the placement of the component d.f.'s well within the boundaries of
#. A priori probabilities are assumed to be 0.5. The goal is

to satisfy condition (1.6) with @ = 0,1 and B = 0,9, Figures 33
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Table 1. Definition of Examples
Example T Class wn Class %
[Weight ind Covariance eightinﬂ' Covariance
Coef's | Means| Matrices Coef's | Means| jgtrjcee
1 1.0 0.35 0.01 0 1.0 0.65 0.01 6]
0.50 0 0.01 0.50 0 0.01
2 1.0 0.50 0.01 0] 1.0 0.50 | 0.01 0
0.35 0 0.01 0.65 0 0,01
3 1.0 0.394] 0.01 © 1.0 0.606f 0,01 O
0.394 0 0.01 0.606 0 0.01
L 1.8 0.394] 0.01 0] 1.0 0.606| 0.01 0
0.606 0 0,01 0.394 0 0.0
5 1.0 0.50 0.01 0 1.0 0.50 0.04 0
0.50 0 0.1 0.50 0 0.04
6 1.0 0.50 0.0025 O 1.0 0.50 0.04 0
0.50 0 0,0025 0.50 0 0.04
7 Mode 1 0.20 | 0.0025 O Mode 1 0.40 | 0.0025 O
0.5 0.50 0 0,0025 0.5 0.50 0 0.0025
Mode 2 | 0.60 0.0025 O Mode 2 | 0.80 | 0.0025 O
05 0.50 0 0.,0025] 0.5 0.50 0 0.0025
8 Mode 1 0.50 0.0025 0O Mode 1 0.50 0.0025 O
0.5 0.20 0 0.,0025 0.5 0.40 0 0.0025
Mode 2 | 0.50 | 0.0025 O Mode 2 | 0,50 | ©.0025 O
0.5 0.60 0 0,0025 0.5 0.80 0 0.0025
9 Mode 1 | 0.35 | 0.01 O Mode 1 | 0.35 | 0.01 ¢
0.5 0.35 0 0,01 0.5 0.65 0 0,01
Mode 2 | 0.65 0.01 0 Mode 2 | 0.65 0.01 0
0.5 0.65 0 0.01 0.5 0.35 0 0.01
10 Mode 1 0.25 0.01 0 Mode 1 0.25 0.01 0]
0.5 0.25 0 0,01 0.5 0.75 0 0.01
Mode 2 | 0.75 0.01 0 Mode 2 | 0.75 0.01 0
0.5 0.75 0 0,01 0.5 0.25 0 0,01
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through 42 illustrate the resulting assignments of regions to

the two classes. A circle with radius one standard deviation is
drawn about the center of each component to facilitate visualization
of the results,

Figures 33 through 36 for Examples 1 through 4 show that
the procedure succeeds for different arrangements of the class-
conditional d.f.'s., Separation of the means in each case is three
times the standard deviation. Figures37 and 38 for Examples 5
and 6 illustrate the capability of the procedure to separate the
space based solely on the dispersion of the distributions,

Figures 39 through 42 for Fxamples 7 through 10 portray some
bimodal results for cases in which regions asaigned to the two
classes are interleaved,

Similar to the one-dimensional case, it is found that signif-
icantly fewer training observations are required when smaller
Lipschitz constants are used. For the examples illustrated, the
constants L; are approximately one-tenth the values computed by
(5.7) from the smallest applicable Lipschitz constants for the
d.f.'s, The ~ffeet on the boundary of using the smaller constants
is not serious for these examples. However, it must be noted
that an assumption of the problem is violated, and attainment
of the goal is not verified. With large constants L., the solution
is generally obtained only after very many training observations;
however, it is observed that tentative classification of the
domain usually settles down quickly to a reasonable result.

Thus, another way to make the procedure more nearly practical is to
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Figure 37. Mample 5
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use the tentative results when results are needed but to allow
the system to continually process additional incoming training
observations until the final solution is obtained. If large
enough constants L; have been used, then the final result can
be trusted.

for these examples, the procedure terminates after approx-
imately 1000 training observations. The maximum number of inter-
vals allowed is 15 for the unimodal d.f. problems and 20 for those

with bimodal d.f.'s.

5.4.2 Computational Aspects

As the complexity of the problem increases, that is, as the
K¢ product increases, some computational problems appear. For
example, the IBM 1130 computer system used for the examples
maintains accuracy to about five significant decimal digits. So
long as the real number representation of an interval boundary*
needs no more than five decimal digits accuracy, the ordinary
arithmetic operations and storage techniques provided with the
computer system can be employed. Five decimal digits ccrresponds
roughly to ten ternary digits; thus, if a mapping using base 3
is employed, the KL product is limited to about ten with ordinary
operations of the IBM 1130 system. This corresponds at one
extreme to a ten-dimensional problem with each dimension parti-

tioned into three intervals, and at the other extreme, to a

*An interval boundary is identified by the elementary interval
immediately to its right.
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two-dimensional problem with each dimension partitioned into 243
intervals. For either case (or any intermediate case) an inter-
val boundary (corresponding to a mapped region boundary) can be
stored as an ordinary real number.

when K£ > 10, other techniques must be employed. One approach
is to employ a computer system with more storage in each computer
word; however, at some critical K. product for a given base b,
the problem reappears. Another approach is to nrovide for the
storage of each boundary in several words of storage. Such
extended precis‘on requires programs to handle the arithmetic
operations involved. Increased computer time as well as increased
storage (for the multiword interval boundaries) results. For
the examples handled in this report, one word per boundary is
used. All variables and the entire program are contained in
the 16000, 16-bit word, main storage of the IBM 1130 computer
system. Processing time for each of the two-dimensional examples

is approximately five minutes.

5.5 Qther Uses for the Mappings

This section briefly discusses other uses for the mappings

described in Section 5.3.

5.5.1 Display of Real-Valued Functions

A real=valued function of more than one real variable is
difficult to observe. The two-dimensional display surfaces
generally used have the capability of displaying such a function
defined on no more than one variable. When the domain is greater
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than one-dimensional, various projections and sectional views

can be used to gain a perspective of the function. Another
approach is to first map the multidimensional domain to one
dimension via one of the mappings described in Section 5.3. Then
the function's one-dimensional equivalent can be displayed on a
two~dimensional surface [46]. Figure 43 illustrates the resulting

display for a bivariate Gaussian d.f. given by

< g B x, = 0.5.24
fw = —L—em{-4 ; (Foz5) ]

i=1

where the mapping used is the Column Mapping with b = 3, K = 3,
and £ = 2,

Unless one is accustomed to observing bivariate Gaussian
d.f.'s in the form displayed by Figure 43, the function represented
there probably is unrecognizable as a transformed Gaussian d.f.
For purposes of recognizing functions, the display has little
value, It is for purposes of comparing functions that such a
display can profitably be used. One application is to display
the difference of two d.f.'s in order to get an idea of what has
been called the "separability" of the two functions. Two d.f.'s
are highly separable if the d.f. generating an observation can
be identified from the observation's location in # with small

probability of error.
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5.5.2 Parameter Sensitivity Studies

A display such as described in 5.5.1 can be used for parameter
sensitivity studies. Suppose a system has a real-valued function
output depending on M real variables @ys Upyeees@y, as illustrated

in Figure 44.

System ——-’f(xl,xz,...,x‘)

j

-

.-.GM

Figure 4L. Study of a System's Input Parameters

Suppose that a known setting of these parameters produces a
desired function f(°¢,*,...,*). A problem is to adjust for a
cheaper set of parameters without significantly degrading the
function, The difference between the desired output and the
output with adjusted parameters can be continually monitored
as the parameters are adjusted. Such a use might not require
the resolution of the difference function to be very large.

In that case the result might be mapped back up to two dimensions
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via the inverse* of a mapping with the "quasi-continuity" property,

and the difference function displayed as intensity modulation.

The use of a color display can further enhance the usefulness
of the mappings if quick interaction from the operator is desired.
For example, while intensity is used to portray the difference
function, color can be used to identify the region in & corre-
sponding to any point on the display. Although this information
is already available from the location of the point on the
display, color enables its determination to be made more quickly.
If particular regions in # are of interest, different colors can
be reserved for use at their corresponding display points.

For another example consider the problem of representation
of a d.f. as a linear combination of Gaussian d.f.'s. Suppose
that an acceptable representation (perhaps from a histogram or
some other estimation procedure) has been obtained, but that
the number of paramete:s used is impracticably large. The
difference between the acceptable representation and the linear
combination of Gaussian d.f.'s can be mapped to the real line.

A viewer controlling the parameters describing the linear repre-
sentation can interact with the displayed result to find a set
of parameters giving suitable agreement between the two repre-
sentations. The representation problem jJust described also

occurs in unsupervised estimation problems.

#The same formula for the inverse can be used as for the mapping
itself. That is, the B's derived from the a's per (5.13) and
(5.14) can be themselves processed by (5.13) and (5.14) as if
they were the a's to get y's., The resulting Y's are the original
a's,
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5.5.3 Data Reduction

Many data reduction schemes operate on real-valued functions
of one real variable. They use techniques to reduce the redundancy
in the function so that it can be represented with as few parameters
as possible, The case in which the domain is multidimensional
can be handled by mapping the domain to one dimension. For
example, the television camera with its raster scan reduces a
function of intensity on two dimensions to a function on one
dimension*, Because each line in the raster traverses from
one side of the picture to the other, the function cannot gen-
erally be well approximated by a constant for the length of the
line. However, if the line were tc wander around in a more or
less tightly knit region such that the same area of the picture
is covered, it is reasonable to assume that fewer changes in
intensity will be encountered and hence a better chance for a
satisfactory constant approximation exists. Using the same
argument throughout the space leads to the conclusion t.hat a
mapping such as the Colurm Mapping can give a function of one
variable that is generally characterizable with fewer parameters
(at least when using a piecewise constant representation) than
the ordinary raster scan type mapping. Her.ce, such mappings can
be considered for use with data reduction schemes. Abend, Harley,

#Note that the conventional television raster scan is, except for
the interleaving feature, a special case of the Dovetail Mapping
of Section 5.3.1.
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and Kanal [47) have considered the Hilbert Curve Mapping to
account for spatial dependencies of random variables along the
ordering path.

For purposes of data reduction, it may be advantageous to
alter the mappings in a way that depends on the data; that is,
to make the mappings interactive with the data. For example,
instead of modifying the Column Mapping of Figure 29, by re-
ordering the dimensions in different regions to obtain Figure 31,
the ordering of the dimensions in a region could be made to depend
on the function in that region. For the two—-dimensional case
(pictures), hoth orderings of the dﬁenaiona can be considered,
and the one best satisfying some criterion, e.g. smoothness of
the function along the resulting ordering path, can be chosen

for the mapping.

5.5.4 Scanning for Regions with Specified Function Values
Butz (4L4] considers what he calls a "Finite Peano Mapping"
which is essentially the inverse to the Coiumn Mapping for
base 3. From knowledge of properties of a function f defined
on the domain #, he searches for regions satisfying f(x) < O.
Butz derives numerical bounds describing the quasi-continuity
of the mapping. Then, from properties assumed satisfied by
function f, an "implicitly exhaustive search" procedure can
be used to find regions in # for which f(x) < 0. Butz calls
the search implicitly exhaustive because every point is accounted
for without making computations at every point.

TR
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2.6 Other Extensions to Multidimensions

A1l the described mappings map regions in # one-to-one onto
intervals in R. Such mappings provide a way to extend the
recognition techniques of previous chapters to multidimensions.
In addition, they have other uses as discussed in Section 5.5.

Other mappings with the general purpose of reducing the
dimensionality of data vectors have been defined in the litera-
ture. When the dimensionality is reduced to one, it is reasonable
to consider these mappings as the means to extend the current
work to multidimensions.

Mappings that operate only on the observations have been
considered by Shepard and Carroll [48]. They map the set of n,
t-dimensional observations {xi}izl to a set of n, £'-dimensional

n

observations {x,}. . where L’ < L. They strive to obtain this
% 4=

mapping so that an index

(=%
N

St

L 3%
va A jc (5.17)

il et
e

that measures continuity inversely is minimized. In (5.17) dy 3
and Dij are distances between the ith and jth observations as

measured in the f-dimensional and the L’~dimensional spaces

respectively. That is
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4y = £ Oy = e
=1
Sy "
Dis™ 4 (g = o) (5.18)
E=)
where ng is the gth component of observation L™ (yu,...,y“)

th
and X is the £ component of observation x, = (xu,...,x“:).
In (5.17), Wy given by

W e (5.19)

p!
13 Dij

is included to weigh the effect of the relation between the 1”'

and Jt’h observations less as the mapped distance between them

is increased. The denominator C given by

]2 (5.20)

0% W Wl A
SALL L A
i3 1
is included for normalization purposes. Without it, k could be

made as small as desired by making each D,, large. References

i3
[49,50) also consider mappings of this type.
Another mapping that maps only the observations is the
"Chain Mapping" [23]. The Chain Mapping considers the obser-
vations sequentially--the next member in the sequence is the

nearest neighbor to the current observation. An observation

VR R L et i o W :
o oS s Y '*.ka,“e*ﬂmw%‘;&
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is mapped from Vt to the real line such that the distance to the
previous member in the sequence is preserved.

An important use for mappings that operate only on the
observations is to reduce their dimensionality so that they
can be displayed. If preserved by the mapping, clustering
information and other relations among the data can be learned
visually from the display. Because of the inability to observe
the data in the original multidimensional space, these relations
could go unnoticed without the mapping. Applications include
problems in radar and sonar. For example, signals from targets
can be converted to f-dimensional vectors, mapped to lower
dimensional vectors, and observed. If the mapping has preserved
cluster relationships, it may be possible to separate the data
into two groups, WNaming one group warheads and the other decoys
could occur with additional information such as knowledge of
the ratio of warheads to decoys.

A disadvantage of such mappings for the current work is
the fact that they map only the observations and do not treat
the rest of the space. The mapping of additional observations
is handled by reprocessing the whole set with the additional
ones appended. A way to avoid this problem would be to process
Just once an appropriate sized subset of the observations.
The mapping at other points in the space could be defined by
using an interpolation procedure. For example, a vector could
ve mapped to the real line so that the ratic of distances from

the vector to its two nearest neighbors in the L= dimensional

Ly
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space is preserved and so that the mapped vector lies between
the mapped nearest neighbors. The approach can be used for
the current work but requires assumed Lipschitz conditions on
d.f.'s for the mapped observations.

Another mapping that can be used is one proposed by Patrick
and Fischer [51). It is a linear transformation from the f-
dimensional to the L’~dimensional space. The transformation
is chosen to maximize a measure of separability between an
estimated d.f. on transformed Class w observations and an
estimated d.f. on transformed Class w, observations. The d.f.
estimates are of the Parzen [11] type, The measure of separa-
bility between these estimates is defined to be the square root
of the integral of their difference squared. This mapping
resembles the mapping proposed by Shepard and Carroll provided
their mapping is first extended to the whole domain via
an interpolation procedure. Both approaches depend only on the
original training observations. Important differences are that
Patrick and Fischer's mapping is linecar and maximizes a measure
of ssparability, whereas Shepard and Carroll's mapping is non-~

linear ard minimizes an index that measures continuity inversely.
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CHAPTER VI

CONCLUSIONS

6.1 Summary of Results
A procedure is described for determining a decision rule d for

the 1-dimensional, 2 class, nonparametric, recognition problem

with unknown class-conditional density functions. A priori

probabilities are known, and the density functions are assumed

to satisfy Lipschitz conditions with known Lipschitz constants,

The procedure allows the achievement of a specified confidence

that the probability of a recognition error when using d is within

a specified constant of the minimum attainable probability of

recognition error. A fixed storage constraint is imposed.
Histogram estimates of the unknown density functions using

a R-interval partition of the domain are obtained from a sequence

of training observations. These estimates are used to define

the decision rule d. The specified confidence is achieved by

achieving a similar confidence for each interval in the partition.

During training, the partition (always restricted to R intervals

or less) is altered in an effort to improve a measure of performance.

Histogram estimation of the density functions procedes based on the

new partition but makes use of information obtained while using the

old one., A proposition presents requirements to achieve a specified
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confidence for a fixed partition; however, there are no theoretical
results showing achievement of the confidence when the partition
is adjusted. Experimental results for several one-dimensional
examples are presented that demonstrate achievement of the desired
confidence when the partition is adjusted with R selected somewhat
larger than the number of decision thresholds. These experimental
results use training observations from densities that are linear
combinations of Gaussian densities. The results indicate that
Lipschitz constants smaller than the minimum applicable values
give improved performance (a decrease in the number of training
observations required without increasing the probability of error
above acceptable limits). The explanation is that the density
functions of the examples satisfy Lipschitz conditions with smaller
constants in scme intervals than in others. This suggests the
possibility of supplying different Lipschitz constants for different
intervals, perhaps through an operator interacting with a histogram
display or automatically by an estimation technique. The recognition
results would then be based on assumptions of the density functionsg
satisfying "local" Lipschitz conditions with the supplied constants.
Extension of the procedure to $~dimensional observation vectors
is achieved using a transformation; this transformation maps elemen-
tary regions in a partition of the f/-dimensional observation space
one~to-one onto elementary intervals in a partition of a one-
dimensional domain., Onee=dimensional mapped versions of the £-

dimensional training observations are then used in the one-dimensional

procedure,
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The recognition procedure may have engineering application to
problems for which storage is limited but many training observations
are available. One possible example is a recognition system built
for long life space vehicles which are weight and hemce storage

limited.

£.2 Extenaions
Assumed Lipschitz conditions on the density functions fJ allow

bands of uncertainty to be placed about the averages of the functions
in each interval. The bands are statistically described by distrib-
utions on the averages where the distributions ar¢ obtained from
training observations. The classification procedure of Chapter II
uses these statistically described bands.

Statistically described bands of uncertainty can be obtained
using a priori knowledge other than Lipschitz conditions on the
density functions. For example, one could directly assume bands of
uncertainty about the averages in each interval. More generally,

one could assume bands of uncertainty about the approximation

m
7, - Z Cyp %
t=1

in an interval involving more terms than just the average of fj‘
The functions *t for simplicity would be orthonormal. The bands
of uncertainty would be described statistically by distributions on
the parameters [Cjti where the distributions are obtained from the

training observations.




A priori knowledge consisting of bounds SJ on the variation of
the d.f.'s has been considered. The variation is intuitively appealing
because it provides a measure of the absolute value of the derivative
averaged over the domain. In addition such knowledge allows for discon-
tinuous d.f.'s. Instead of computing the band of uncertainty by
'?j - fJ(x)l < ij/2 for an interval, the band can be computed by
IFJ - fj(x)l < 8y. For example, d.f.'s used in the experimental work
of Chapter IV have maximum derivatives equal to 25 but variation equal
to 8. However, the band of uncertainty computed from the variation
does not decrease with interval width as required for the classifi-
cation of some intervals. Thus the procedure could not in general
use bounds on the variation of fj for classification of all intervals.
Such bounds could profitably be used in those intervals for which it
is known that £, < ij/z.

The recognition procedure is extended to £ dimensions via a
transformation that essentially converts the t-dimensional problem
into a one~dimensional problem. The trensformation approach is
desirable because

1) The one-dimensional techniques can be used.

2) A partition of the f-dimensional domain can be altered by
altering the corresponding partition of a one-dimensional
domain,

3) The bookkeeping operation involved in storing the partition
is simplified by storing the equivalent one-dimensional

partition.
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" Disadvantages of the approach for handling the £-dimensional problem
and suggestions for their relief are

a) A partition of the f-dimensional domain has definite
restrictions imposed by the transformation. It is desirable
that the transformation tends to form partitions with
tightly knit regions. The Hilbert Curve Mapping illustrated
in Chapter V for two dimensions is better in this regard
than the transformation used. The implementation of the
Hilbert Curve Mapping should thus give improved results.

b) The act of transforming the problem to one dimension
causes neighborhood information between neighboring obser-
vations in £ dimensions to be lost. The effect is that
more training observations are required than if the
solution were carried out solely in ¢t dimensions. A way
to decrease this effect is to account for the neighborhood
information before performing the transformation. For
example, a cluster of observations could be placed about
each training observation. Their mapped equivalents in
one dimension, if treated as mapped treining observations
carry the neighborhood information with them. This
operation can be interpreted as smoothing the data before
mapping. Another solution is to carry out the entire
analysis in £ dimension; this involves developing £-
dimensional procedures for use with regions in a partition
of the t-dimensional domain. Techniques for a L=dimensional
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region would be similar to the techniques for a one-
dimensional interval except that interval width would be
replaced with maximum distance across the region. The
required storage and partition adjustment would be the
primary difficulties.

Experimental results in Chapter IV indicate that for a one-
dimensional Gaussian example, the nonparametric procedure can require
over one hundred times as many observations as the optimum Gaussian
procedure to achieve equal performance. The reason is that the
nonparametric procedure does not utilize the a priori knowledge that
the density function is Gaussian. This can be an advantage when the
density function is not Gaussian; on the other hand it is desirable
to have provision for using a priori knowledge should it be available.

Gaussian approximations were used for the beta densities to
simplify the integration over a region V in the (Ua’ Ub) plane. For
small n & numerical or a Monte Carlo integration method could be used.
The latter method can be accomplished by generating ordered pairs of
observations from statistically independent beta distributions. The
first coordinate is generated according to 9%(U, h’al’vaz) and the
second according to B*(Ubl Yp1 ,sz). The relative frequency with
which the result (Ua' Ub) occurs in V is an estimate for Pr(V). The

P

coordinate U, is easily generated by setting Uj padl with PJ

J

generated according to ’("3"’31- YJ2)' PJ is taken as the (le)th

smallest outcome from a sequence of Yy j +y Ly 1 observations of
1 2

a uniform distribution on the interval M0,1]. This approach is
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impractical for large nJ = vj + v‘j - 1 because of the large number
1 2

of uniformly distributed observations required.

This report discusses the two class recognition problem.
Generalization of the procedure to multiclasses has not been accom=
plished. One way to deal with the multiclass problem using the two
class procedure is to lump classes into two disjoint groups. The
group chosen can be split into two disjoint groups, etc., so that

finally the chosen group consists of just one class.
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APPENDIX A

The object of this appendix is to discuss methods for specifying

the characterizing parameters in a beta d.f. on Pj(i)

£(P (1) sy (1),84,(1))

Floy (@) + 3, (W) sy(8) -1 (1) -1

sJ2 3
dicRanoma A e

(A.1)

such that a priori knowledge about Pj(i) is accounted for. F}(i)
represents uncertainty in Fg(i), the probability of an observation
from class w, falling in the 1*" interval of a given R-interval
partition of [0,1].

First, consider the case where no a priori knowledge is available.
The characterizing parameters, 531(1)’ sjz(i), can be chosen as

sjl(i) =]

332(1) =R -1 (A.2)

8's so chosen are consistent with s's replacing y's specified by
Fquations (2.4), provided the Pj(i)'s are described jointly by

the R = 1 variate Dirichlet d.f. having 1l's for parameters. Then,
each allowed set of Pj(i)'a is equally likely, a condition sometimes

said to correspond to no a priori knowledge. Another method of

— | —r
e

R
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definine the s's without benefit of a priori knowledge on lhe
Pj(i)'s is to use the first R = 1 training observations to specify
the initial partition. sjl(i) is chosen as the ratic of the "\
interval width to the width of the smallest interval containing
the ith interval but having boundaries defined by observations

from class wJ. For these computations, observations from both
classes are assumed to exist at the end points O and 1. The
parameter tj is specified to be the number of class wj observations
from the first R - 1 training observations.

Then 532(1) is given by

332(1) = tj +1 - sjl(i) (A.3)

The maximum value for sjl(i) is one. In practice sjl(i) is guaranteed
nositive by discarding for interval forming purposes training
observations that cause ties,

If a priori knowledge is available in the form of "a priori
training observations” [35], (fictitious observations that might
be obtained based on what is known about the Pj(i)'s), their
numbers can be added to the appropriate s's,

Now suppose that a priori knowledge consists of the expected
value EJ(i) and variance Varj(i) for each Pj(i). Such knowledge
can be included by solving Equation (2.5) for le(i) and ij(i)

(in this case ’Jl(i) and ’jz(i))'
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B, - B 1)

531(1) = Ej(i)L Varj(i) -1
E.(1)Q1 - E (1))
pl ghtl) o
s4p(1) = (1 = B,())] Tar (D 1] (A.4)
The resulting relations among Ej(i), Varj(i), sjl(i)’ and tJ are

illustrated by Figure 45. tJ is related to sjl(i) and 332(1) by
(A.3). Requirements on the a priori values for Ej(i) and Varj(i)

are

0 < Ej(i) <1

E,()Q - E,(1))
Var,(ir >2 (A.S)

These requirements ensure that 1:‘1 is non-negative (¢, can be

J
interpreted as a number of a priori training observations), and

that sjl(i) and 332(1) are positive (a requirement for parameters

characterizing any beta d.f.).
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EJ(i)

Figure 45. Relations Among Ej(i)' VnrJ(i), ’Jl(i)’ and t.J
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APP:NDIX B
The quantitv
T =
T
A“) : 0 -
Hie ' .UE . y //4 _7
ff\ Ab B(\A“ 'Ybl’sz)Jo A. 9\\ A. lY.l.Y.z)dU.dUb (L.l)

is evaluated in this apvendix. In (3.1),

r, = Min [Ub-q, A.] (2.2)
Aa, Ab, and o are finite, positive, real constants, qa ic a real con-
stant satisfving q < o, and Yo1* Yp2! Yar! and Yqo aT finite »osi-

tive integer constunts. B(zlal,az) is defined by:

3(zlay,m,) = Bo")‘(u1 "0, )27} (127 )22
1 0< 2 <1
= 0
otherwise (5.3)
where
() r(,)
Be(ay,a,) = (B.b)

ro, +a,)

The limits of integration in (:.1l) define the region of the (U., Ub)

plane illustrated in Figure 46.
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[ “a

1= |+ 2 € Yarr¥az )%

B(x IYal’*aZ )ax

T ,‘A 1

r /A Ya2'l

1 0N gl
ol 2T PU R

« =0

: -1
= Be"l(yalw‘z)zY.Z (Yag-l) (-1)3
j=0

Substituting 7 into (2.1) gives:
T =

A.b

1

e

(ry /A‘) "

i (Yg1+3

T can be written as the sum:

T=T1§T2

Y.1=~
Be"l(yal,‘y‘2 )x al "(1x)

/Aa )Yal i

(B.5)

<132-1) 1)} »3 ax

Y.o-1
e S;i Y2 r ) 443
j' Y B(Ab !7b1'7b2) [Be'l(ydy.z) e ( ; )(-1)

(B.?7)

(2.8)
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with 'I‘1 and T2 riven by:

T, =
1
Yool
¢ E*

Yy .
J oo }A; B (Ab |Yb1’Yb2) B°-1(Ya1"’;2); (

()

Ld +

(Yal"'j )

b
e Iy %:b B(%'vbl.vbz ) du,

(o}

where
Hin[:Max(A‘o- Q, 0), A'b]

et y = %— « Then T1 and Tz become:

r 1 o3 " Yoo1
J , Be (% w,) Be (Yal’Yaz)Z (:2‘

Ya2'1 5
j )(-l)'

Yal"‘1

B

) (_l)ky‘( + Ybl-l

Y, -1 v 4 /y- q )Yal* J
& ( Yoot )l (M ” S 5:
f‘:o\ 3 ) (Au ) (Yal"' 3) s
T, = 1 gl
P a2 ()ar fewt o

(8.9)

(2.10)

(=.11)
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The expansion
Yt Yt +3 Y, H
G-8" - T (R 0.12
v=0

can be used in (B.1l), the integration performed, and T, and T,
summed. The result is:

Yaz.l ( ) o.l+j

T=Be-l(Ybl,sz)Be.l(Yal’Yaz) Z \ >(' v G (v, +3)

S s e [fs )Mbl‘”' _L\kwbl ]
.o Mty g e g A e PN RS
(YT el
v=0 k=0
%ol ik,
5 -
+1=Be (v %) [ (bﬁ )= 1)"1-‘2—;17— (2.13)
k=0

where y 1is obtained from (B.10).
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APPENDIX C

Evaluate the integral

t‘lUa dUb

{c.1)

(c.2)

(c.3)
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or

ks =5 Ty St
: .( (oi-i»?é)ﬁ

) (c.4)

2
where #(x) = Jpx /—l- e.é Y ay
- 2“

MR wsye
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APPENDIX D

This appendix presents a numerical procedure for the min-
imization of A,

A=48(-Q) (p.1)

2
'(x)uft —l-e-éy dy, = ®» <x <=

/on

4y Q &, tu =)
((a, 5, + )

a

1 2 2
9 %
& =30 (4 = C)

with respect to ).‘. The constants Har Mo aa, O Ca, and Cb
are all positive. In addition, it is known that

(s, -c)?
5 o uey

by > C, (D.2)

Because #(- Q) is strictly decreasing in Q, A is minimiszed by

maximizing Q. Q can be written in terms of A‘ as:

it R

S
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LC (X C)+ b(k -Ca)-“b

Q= ~ ey (D.3)
[(53: e 20"+ °bJ!

Set the derivative of Q with respect to Xa to zero.

2 2'1£§ A N
{L\Ec_ (g - Ca)> + %] ( azcb ")

2
_r=1 B i W SlE 2
LhC ()’ Ca) & ZCb ()‘a Ca) “'bJL(ZCb ()‘a Ca.)/ L %

2

[ e r/° 21
; (E%; ()‘a 4 Ca)} L\i’%; ()‘a 5 Ca)) 2 ab.;' 3

or
r% \? % . 2Y% )'g
() @ =)+ {5
il s B TR, .
- 0y =0 )(5E) (g (- + 26 4y =Gy ] =0

Collecting powers of (Xa - Ca) rives:

(g - C, )3 2, f 3 20, ﬁz
th % (A‘ & ca)["'b i 02 J % (“a 3 Ca) - .
a a

(D.4)

(D.4) is a cubic in (x. - Ca) and is difficult to solve analytically.
However, the desired root may be obtained by using the following
numerical technique. Define g(k‘) to be the left side of (D.4),

and rearrange to get

2
J




-

(A -c )2 2¢. o2
(X L (k v Ca)[_ﬁl-&% = “b] i —-:2—12 ()‘a i Ma)
2 (n.5)
Note from (D.2) that
2
%
g(c,) = 2c, 3 (c, =) <0
a
2C c
g(Ca+2/ubC) (c +2/ u/<o
(u =g )? =
s(ua) (u -C)L i<, ~ by | >0
g(ka) > 0, for )‘a > by (D.6)

Conditions (D.4) together with the fact that the inflection point
for g is at A, = C,» guarantee a unique root of g().a) in the
interval (C + afub_", by ). Further, no root of g().a) exists
for A > Mg Or for A in the interval (Ca’ c, + Q/TbTb |
Physical considerations of the problem show that the root sought
corresponds to a relative minimum for A.

Let A‘(t) be the root obtained at the t'" stage of a Newton's

iterative procedure. Then Aa(t. + 1) is obtained from Aa(t) by:

g _(t))

At +1) =2 (t) - eq(m (D.7)

The initial value is chosen as
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ka(O) =W, (D.8)
The process is stopped when
A (k) =a(t+1)
l-i 2 — ‘ < 0.001 (D.9)
b

and the solution is taken to be:

"a = Aa(t + 1) (D.10)
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APPENDIX E

In this appendix an experimental comparison is made of the

quantities T and A given by

U
. phy oF
-t =pf2 = g(-2 .
g 8= 'Ybl’ Yb2>.|0 £ 8(R|Vars Ya2)oU, U, (E.2)
and
/Ub - 2 Ua e Y
o eea S e
o, s b . 7
A e A & b : 1 . a
J- o V20 ob ‘l.. ,/31? Ob
(E.2)
for some particular values of the parameters Yal’ Ya2’ Ybl’ and
Yoo In (E.2) the values Wys By 9,5 and o, are given in terms of
Y&l’ Ya2’ Vbl’ sz) a'nd A by
S A(_”u.___
a Yo * Y
al a2
Y
bl \
= A
%o (Ybl ¥ be/
oa = A( —Q-J-a_; 1 v )é
W * Yol LY # v g +2)
Yy ¥, 4
“ bl 'b2
o = A( 5 ) (E.3)

2
(o1 *+ ¥52)" (Y + Yy + 1)

| N —
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The function B is defined by Equation (2.3). The region of
integration for T is the cross-hatched region of (Ua,Ub)-plane

illustrated in Figure A7.

wC:'

Figure 47. Region of Integration

For A, the region is the whole half plane above the line U a'
Since the product B(A lvbl’YbZ)S(A.|Y l’YnZ) is zero for all
pairs (Ua’Ub) outside the cross-hatched region and above the
line Ub = Ua’ the region of integration for T may be considered
the same as that for A, Note that (E.2) is obtained from (E.1l)
by replacing the beta d.f.'s with Gaussian d.f.'s having the

same means and variances. Figure A48shows the beta d.f. B(x|Np,Nq)
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_— #(x|100, 200)

/\ 8(x|10, 20)

0.0

0.0

0.2 0.4 0.6 0.8 1.0

Figure 48. Sequence of Beta d.f.'s
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for p=1, q = 2, and three values of N; N = 1, 10, 100, It
illustrates the convergence of a sequence of beta d.f.'s to a
Gaussian d.f. as the parameters get large while maintaining con-
stant ratio. This fact is proven in References [36,37].

Replacing p and q with O, . with U, and Aa’ Ab’ and r,

b’
with A, the result given by (B.13) can be used to evaluate (E.1)

Y .-l
a2 Y
T=Be (vbl,vbz)Be (Yg12Ya0) Z (“§ )( 1) (v 3
3=0
Yp2 L
e b2~ k 1 iy
Sy 4 ( )( 1) (k+Y Y. +3/
b b1 ¥ Ya1
Yoo 1
*1-87 (v, ) ( )( D" (=)
— bl
or
Yaz-l £da
- N
J=0
Be(v,, + V., + J,v..)
. (- l)J _Ql QL g. E.
4% 3 (E.4)
where the identity
v2-1
-1
Be ™ (v,,¥,) ( = Yl (k”} 1 (E.5)

)
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resulting from the beta density function integrating to one has

been used,

From Appendix C, A is given by

r o 3—a)

2
at %)
where
i SRS
.(x)-‘-J me dy, ~® < x < @
Let
B, = W
Q= —-‘———; E.6)
(ai + og) (
From (E.3), Q becomes |
Yal S L. T |
Q. Yar* Yoo Yo1 * Yo .
Y., ¥ Y, . Y
AR R« o
(v., + )2( + +1)+ 23:1b2 .|
al T Ya2! g1 * Yo (o1 *+ %2)® (3 + ¥py + 1) i

So that yal/v a2 and Y,,/Y,, are constant, let Ya1

(E.7)

Yot Yyye wee

Yo be written in terms of the constants Pa» s Py Qs and the

variable N as follows:
Ynl 5 Npa
vm?. # Nqa
Yo1 = Nm,
Yo2 = Ng,

(E.8)




N
W o

- 171 =

T and A = #(- Q) are computed for three different examples.

Example 1
pa‘-‘l) qa=9
pbxl’ qb=9
N=l’2’.l.,10
Example 2
pa'=2, qa=8
pbcl’ qb:=9
N=1,2,...,10
Example 3
pa=31 ql.=7
- 35 q, = 9

N =12 ..6,10
The locations of the means in the (Ua’Ub) plane of the distributions

for these three examples are shown in Figure 49.

Example 1
Fxample 2
/’ Example 3
Al 6-0-0
10 F3 s
A 2A A A Uy
1010 10

Figure 49. Distribution Means for Examples
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The resulting T and A are plotted in Figure 50 as functions of
N. The circles represent values for T while the triangles represent
values for A, These computations were made with Purdue University's
CDC A500 digital computer using single precision. No special
computational tricks were employed other than the performing of
all possible factorial cancellation in the expression for T.
Several pertinent facts are worth noting.
1) For these examples, close agreement between T and A
for all except the higher values of N is observed.
2) Llack of agreement between T and A for large N is due
to computer inaccuracies resulting from accumulated
error in the many arithmetic operations necessary to
compute T.
3) Computational time for T is approximately 13 minutes for
each of the three examples. Computational time for A
is relatively negligible.
L) For T, accuracy decreases and computational time increases

as N increases. For A, no change in computational

accuracy and time required occurs for increasing N.
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Figure 50, Comparison of T and A
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