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ABSTRACT

A procedure is described for determining a dec ision rule for the

one—d imensional, two class recognition problem with unknown , nonpara—

metric , class—conditional density functions. A priori class proba-

bilities are known, and the densities are assumed to satisfy Lipschitz

conditions with known Lipschitz constant. The procedure is essentially

a. histogram approach where the partition for the histogram is changed

as directed by a perforn*nce measure. It is desirable to minimize

the difference between the probability of a recognition error when

using the decision rule and the minimum attainable probability of

recognition error. For a fixed partition conditions are stated that

assure achievement of a specified confidence that this difference is

below a specified constant. The variable partition procedure operates

‘with limited stora ge and allows, but does not assure, atta ira~ent of

the specified confidence. Computer simulated results are given that

experimentally illust rate att ainment of the desired confidence for

the problems cons idered . A technique is suggested for ext ending the

procedure to raal tidimeneions. This technique convert s the u~ ltidimen—

sional probl em to a one-dimen siona l problem. It operates by mepping

sets in a multidime nsional domsin one—to—one onto sets in a one-

d imensional doemin. Computer si”~~&ted results are presented.

__
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CHAPTER I

INT1~ DUCTION

1.1 The Problem

One of the problems in computerized recognition is that of

assigning a vector observation to one of several classes. Applica—

tione include the recognition of properties of waveforms or pictures

which are represented by vectors • The total recognition problem

ehould include the following operations:

A) Select sensors for the problem and represent the sensor outputs

for each waveform, pictu re , or etc. by an C-dimensional vector. This

oper ation involves expert problem knowledge .

B) Represent the C-dimensional vector with a vector in a t-dimen—

siona]. space (L <~~) called the observation space and denoted V~ .

This is accomplished using a data-de pendent , dimensiona lit~ reducing

mapping. Deflate with ~ a £-dimensional vector in V~ .

C) Recognize the A-dimensional vector by assigning it to one of

several classes using a classification procedure conditioned on

previously processed observation vectors called training observations .

Examples of applications include automatic sonar and radar det ec—

tion and classification , medical diagno sis including electr cardiograms

and electroence phalograms , aerial photography processing for earth

resource studies, and quality control.

-
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This report is concerned with c ) ;  thus , the problem begins with

a set of n, A—d imensiona l vector training observations (often

called patterns ru ) in a A—d imensional observation space denoted V~ .

Using the set Y1~ together with avai lable a priori knowledge , an

observation ~ is assigned by the classification procedure to one of

several classes.

The assumptions and constraints specifying the particular classi-

fication problem considered in this report are :

1) A vector observation ~ is to be assigned to one of two classes ,

denoted and w2. The a priori probabilities P1 and P2 that ~
belongs respectively to or are known.

2) The observation space is 1—dimensional (Chapter V describes a

method for extending the results to A—d imensions).

3) The training observations are supervised ; that is, the correct

classificat ion of each observation in Y is known. The number of

training observations belonging to is flj with n~ + n2 n.

4) Training observations belonging to are each independ ently

and identically distributed accord ing to ~n unknown class—conditiona l

density function f~ defined over the observation space. Class

observations are independent of c].asa observations. f~ is ~~~

assumed to be parametric ; it cannot necessarily be characterized by

a finite number of parameters. It is assumed that f~(x) is zero for

x outside a known bounded domain ~~. Without loss of generality

~~ 

fx : 0 ~ x ~ i)  (1. 1)

In addition , it is assumed that f~ satisfies a Lipechits condition

_ _ _  ______ 
~~~~~~~~~~~~~~~~~ 
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If~(x) — f~(y)~ ~~~ L~~x — yI , x, y s .~ (1.2)

with Lipschit z constant L~ known a priori.

5) The amount of computer storage is limited.

The result of training (processing the training observations )

is the specification of a decision rule d defined on ~ and taking

on the values 1 or 2. The rule d divides ~ into two sets identified

by their assigned classes. An observation at x is assigned to claes

md (X) . The choice of d minimizing the probability of a classificat ion

error is a minimum risk procedure . Details of such procedures are

found in references r 2 ,3,20 3. The probability Pr(e!d) of classifi-

cation error when using d is given by

Pr(~~d) f~
P
~(~)

f
~(X)

(x) dx (1.3)

where a(x) identifies the class ~~~ assigned by d t’~ an observation

at x. An optimum decision rule d0 is defined as one that minimizee

Pr(~ jd). If .1 is considered to be the argument of P~r~(x)~ then d (x)

is given for each x in ~ by

d0(x) Arg E~-1,2 P~fj(x)J (1.4)

The corresponding minimum probability of error Is

Pr(~ Id0) J’~ ~ j~~i ,2 P~fj(x)J dx (1.5)

Figure la illustrates a decision rule d for a particular example.

4
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The cross—hatched area represent s the corresponding probability of

error, Pr(~~Jd ) .  Similarly Figure lb illust rates d0 and Pr(~~ d0).

Figure ic illustrates the excess of Pr(~~ d) over Pr(~~Jd ).

1.2 The Goal

An optimum decision rule d0 is defined in tense of t he class—

conditional density functions+ f~ . For the problem being considered

these d.f .  ‘s are unknown ; however, they can be estimated and the

estimates substituted into (1.4) in place of f~ . The result is

a decision rule d that is an estimate for the decision rule d0. The

overall objective is to sati sfy

Prr Pr(~~d) — Pr (eJd 0) ~ (1.6)

for prespecif ted constants 0’ and ~ in the interval ro,i]. In words ,

the goal. is to achieve a specified confidence that the excess of

Pr(~ fd) over Pr(~ fd0) is less than a specified constant .

1.3 Literature Survey

The previously described problem of obtaining a decision rile

constrained by limited storage and with a goal. given by (1.6) has

apparently received no previous attention . The cloeest results are

probably due to Pu and Henrl.chon f 41 who find constants o” and ~
so that

Prf Pr(e ld) ~ ~ R (1.7)

+}Iereafte r the phrase class—conditional ii dropped, and f~ is referred
to as a density function (abbrev iated to d . f . ) .

- ~~~-. ~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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is satisfied . This condition provides a state ment about t~’e size of

Pr(~~f d )  whereas condition (1.6) for the current problem i~ concer~ed

with the size of Pr( ej d) relative to Pr( eJ d 0) .  For the special case

when Pr(e ~d0) Is known or is known to be negligibly small with

respect to ~~, ( i .6)  and (1.7) are equivalent . Otherwise (1.6) offers

the advantage of providing information concerning the amount of

improvement in performance obtainable by processing additional train-

ing observat ions . Fu and Renrichon ’s procedure operates on all the

training observations essentially simultaneou sly and requires

inc reasing computer stora ge as the number of traini ng observation s

increases; thus it is not applicable with the current storage con-

strain t .

The missing link in a st raight—forward application of (1 .4) ,  to

obtain d , is the method of obtaining the estimate d.f . ’s from the

flj class wj training observations. The limited storage constraint

complicates thi s est imation.

Abrams on and Braver man [51, and Keehn [61 consider estimates of

the form

(1.8)

where is a member of the family of Gaussian d.f .  ‘s. They estimate

parameters (mean vectors [5~ , mean vectors and covariance matrix r61 )

characterizing *~~~. With a complete orthonormal set for the

unknown ~~ Aize~~~r., Bravermen, and Rozonoer r71 obtain estimated

parameters in
R

C~~s (1.9)

_ _ _ _ _  _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



— 7 —

and show that t~(~) converges in probability to f~(i) for each ~ in

the domain4 
~~~. Tsypkin [8! also uses an orthonozmal set

to get an estimate of the form (1.9) , but he does not assume it t

be complete for f~. Tsypkin obtains estimates C~1 with the goal to

minimize the Integral Square Error (ISE),

ISE — ~ra(f j (~ — 
~~~~~

)
2 ~~

Kishyap and Bla~’don [9) assume only tha t are linearly

independent functions • Wit h an estimate f~ of the form (1.9), they

consider minimizing both the ISE and the Mean Squa re Error ()~ E),

2
IIISE _ r ~(f~~) - ?~(~)) f~(~ ) d~

For the 1-dimensional case Rosenblatt t10! considers an estimate

of the form (1.9) for f~(x) where R flj and ii a function obtained

from the 1th class observation Xjj •

nj

~ ~~~‘ji 
(1.10)

i—i j

Parien ru~ shows that if

t j j(x) — 
~~~~~~~~ 

K(~ , 
X
ii) (1.11)

flj  flj

where

+In thi s section on d.f. estimation, ~ can be imiltidimensional unless
otherwise stated.

‘ P  
-;- •

~ ~~~~~~~ — 
-

~~

I — —~ ~v.-_ — - -c_ —

I ~~~ - -~ - ---- __ - _______
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IC~ 3 and the function K sat isfy certain conditions , then
.1

E I(f~(x) — ?j (x)~~~ -4 0

for each x in the domain at which f~ is continuous . Because of the

form (i .io) ,  this estimate has increasing complexity as n increases.

hefer ences [12 ,13, 14 , 151 also deal with this type of d . f .  estimation .

The well, known histogram technique for estimating d.f. ‘s defines

the function s as the set of indicator function s on the

regions of a R—region partition of ~. For the I region ,

1, ~ in the 1th region

= 0, otherwise

f~ is given by (1.9) .  This is a special case of the problem considered

in references [7, 8,9).

The nearest neighbo r decision rule or rather the more general I~—

nearest neighbor decision rule t 16) assigns an unclaeaified observation

to the class most heavily rspresentsd among its K nearest training

observations • This rule has b . n  ehoim U 17, 1 8~) to have s~~1 I-an tics

with a decision rule resulting from using density function estimates

in (1.4) .  It has been shown p161 that the nearest neighbo r rule

results in an &3ymptottc (flj -i.) probability of error that is

— — -_— t—--—-——-—————.—-- .._.___.___ - ——————---——--
~~~ -- ;,_• 

——— -—--—— .—‘-—. — ‘ .
~~~

- —. — ~-— —.——‘
~ 
—

~~~~~~~‘—-—
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less than twice the minimum attainable. Processing required’ st~ ra~e

fo r all training observations1; thus these results cannot be ise~

when one operates with a storage constraint . hart ~19] has sugge .,ted

an interesting storage reduc ing modificat ion of the nearest neighbo r

rule which he calls the condensed nearest neighbor ( CNN ) rul . The

C~N rule discard s a set of training observati ons from the original

set. The discarded set consist s of training observations that , if

treated as unclassified observations, are classified correctly by

the nearest neighbor rule when used with the training observations

retained . The storage requirement is reduced , and th e c r iterion for

discarding a tra ining observation is based on the capability of the

retained observat ions to make decisions . Supporting theory for the

CNN rule has not yet been published .

The Gaussian assumption in Abramson and Braverman ’s work is too

rest rictive for the problem outlined in Section 1.1. The work of

Aizerma n , Braverman , and Rozonoer, Tsypkin , and Kashyap and Bla.~rdon ,

along with the hiet~gram approach is either too rest rictive ( small i~)

or requires t~o much storage (large R ) .

Unsupervised est imation r20,21,22,23,24,25] allows the estimate

of (1.9) to be more general by providing a ~~y to estimate parameterr

c’~~racterizing each in as well as the weighting coeffi—

ci. ent s.

Anothe r approac h “26,27,28) that adapt s the $~~~‘s to the data is

bas~d on distribution free toleranc e regions . Instead of definin g a

partition of I) before ha nd as in the histogram approac h , a procedure

— —

I ~~~~~~~~~~~~~~~ —--- -~~~~~~ - - --~~
— .
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is given for defining the partition in terms of the training obser-

vations ; then the distribution free techniques described in references

12 ,291 can be used .

Sebeatyen r3o,31~ considers a method that is similar to the

Parzen techni que but uses limited storage. Training obse rvations in

close proximity with one another in ~) are lumped into an average

observation. Sebe styen ’s est imat e d . f .  is in the form (1.9) whe re

is a Gaussian d.f.  having mean at the ith average observation

and variance related to the size of the region in which observations

cont ribute to the average. is the relative frequency of obser-

vations in the region. The procedure does not have the properties

that Parzen used in his convergence proof.

Specht 132) reduces the storage requi red in a ut ilization of the

Parzen approach by ~~panding estimates in the form (i . io) into a

Taylor series about a selected point in ~ and then retaining only

the low order terms . The resulting truncated Taylor series is

accurate only near the point of expansion. To obtain accuracy over

the whole domain , the expansion should be carried out at each of

sufficiently many point s in the domain. A different set of coeffi-

cient s must be stored for each expansion; thus the storage required

would increase in proportion to the nuther of expansion points used .

When estimating d.f . ’ s, one must use care to choose a suitable

estimation criterion. This is especially true if one is faced with

the problem of estimating while being constrained with limited storage.

‘
~~~~~~

-
~~~~~~~

- — --——



— 11 —

If the d . f .  ‘s cannot be characterized by a numbe r of parameters tha t

will fit into the limited storage , then some information must be

discardsd. In this case, the criterion should not require accurat e

estimation where it is not needed because such accuracy is obtained

at the expense of accuracy where it is needed. When the goal of

the estimation is for the estimate d.f.’s to make good decisions if

substituted for the actual d.f.’s in (1.4), it is reasonable that

some measure of the quality of these decisions should be used as the

estimation criterion. Since (1.4) involves a d.f. for each class ,

the estimation of one function should involve interaction with the

estimation of the other function. With the exception of the K-nearest

neighbor rule, the above d.f. estimation procedures do not have this

property.

For other work related to computerized recognition, the read er

is referred to the survey artic les by Nagy [33], and Ho and Agrawala

[34 1 which contain extensive lists of references.

L.4 The A~proach

The d.f. estimation used in this report is essentially a histo-

gram approach but with the partition periodically ada pted to improv e

a measure of oerformance. Enough storage is assumed available t o

handle parameters associated with each interval in the partition .

The supposition is that a number R of intervals too restrictive in

the ordinary histogram approach may be adeq uate with the adap t ive

capability. This idea is suggested by the fact that a R—int erval

histogram d.f. estimation procedure is capable of giving an optimum

1 .
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decision rule provided t he problem has fewer than R decision thresholds.

Figure 2 illustrates a one threshold example optimally solved with a

two interval histogram estimation of f1 and f 2.

The framework or model within ~‘tch the classification procedure

operates is now described . Consider a ~art ition I of the domain £

into R intervals . Label these intervals J1(i), .~1(2), . . . ,J1(R) and

the interval widths w1(i), W1(2),...,W1
(R). Define the probabilities

~~~~~~ ~~~~~~~~~~~~~~~~ j  1,2, by

P~ (1) A f  f (x) dx I = 1,...,R (1.12)
i .91(i)

j 1 ,2

Alt hough the P*’e are unknown, any a priori knowledge concerning

them is represented by the notation A. The set consisting of the

first n training observations is denoted Tn • Through the use of A

and Y~, the classification procedure obtains estimates conditioned

on I,A , and Y,~. In the remainder of this report, the part ition I,

the a priori knowledge A , and the training observat ions will be

understood from the text and are omitted from the notation .

Given a partition, the estimate for f~ is

= j~j5 ~~~~, 
j  = 1,2 (i . i3 )

imi

where $~, is the indicator function for the ith interval.

is the expected value of a dist ribution on which is a random

vari able describing the current uncertainty of Th. a priori

knowledge A , or in its absence the first few training observations ,

— :

~

: _ _  - -. .
~~~

.,,.—.
~

----. — ———— ~~~
—- ---- - --—--- - •
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are used to assign this distribution initially. It is updated with

subsequent training observations through the use of ~~yes Rule. By

adj ustitig the va riance of the initial distribution , its effect on

the result can be made large or small as desired .

When the resulting estimates are used in place of f 1 and f 2 to

obtain dec ision rule d , there can be no finer resolution of decision

th resholds than the boundaries of the intervals c omprising the parti-

tion. For this reason the capability of altering the partition is

included in the model.

If the number R of intervals in the partition is greater than or

equal to the number of decision thresholds plus one , then the model

is capable of giving an optimum decision rule. An opt imum decision

rule is attained when all thresholds coincide with interval boundaries

and when each interval is classified correctl y through use of the

estimate functions.

A general description of the approach used to satisfy condition

(1.6) is now presented . The discussion follows the system flow

diagram~ of Figure 3.

a) Init ializat ion

Init ially , a partition and a dist ribution on each P~(i) is assigned .

This assignment is ba sed on a priori knowledge about P~( i ).

b) Updating

A set of supervised trainin g observations is used to updat e

t h e  distribution on each P~(i) through use of Bayes Rule.

~This flow diagram correspond s to an actual implementation , the results
of which are prea ent~id in Chapter IV.

-
~~~~~~~ 

- , .  ________ --‘ -

‘I- . ~~ -.
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c) Classification

The constants ~ and 1 - B are allocat ed to the intervals and a

set of R conditions , one for each interval, si,tl lar to condition (1.6)

for the whole domain, is developed. These interval condition . taken

together are sufficient for ( 1.6) .  The interval condition for each

interval is checked independently of the others. A record is made

of any interval whose interval condition is satisfied and of the

class assigned to that interval; (such an interval is said to be

classified). If all intervals are classified then processing is

stopped with the stat ement that condition (1.6) is satisfied . Other-

wise processing continues .

d) Adjust the Partition

The classification rate of an interval is defined as the total

pro~*bility in the interval divided by the numbe r of training obser-

vations required to classify it. The unclassified interva ls are

ranked in a priority table accord ing to estimates of the maxinnim

possible classification rates for the intervals . The maximization

is with respect to interval width. The partition is adjusted by

considering the intervals one at a time in the order that t hey appear

in the priority table. An interval is either split into two inter vals,

combined with one of its adjacent intervals , or left unchanged accord-

ing to a rule based on a measure of perfotmence and the storage con-

stra int . After partition adjustment , a priori knowledge is reassigned

to the int ervals. The process repeat s as often as is necessary accord ing

to the flow diagram of Figure 3.

—I- 

~~~~~ 

-

~~~~~; 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

— -- -
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(~TA~)
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FORM INTERVAL PRIORITY TABLE

1
ADJUST THE PARTITION

USING THE PRIORITY TALEH L~
Figure 3. System Flow Diagram
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1 • 5 Report Qria.n.iiation

Chapter II contains the deta ils of the appro ach for a fixed

partition . The initialization and updating of the distributions on

the ~~( i ) ’ s is discussed . The use of these dist ri buti ons to obtain

estimate d.f . ’s and the subsequent use of the estimates to obta .~ a

decision rule i. desc ribed . Next , a set of interval conditions tha t

is sufficient for condition (i .6)  is derived .

Chapter III deecribes an ad hoc approach for altering the parti-

tion in order to arri ve at the goal with limited storage and with

fewer training observations.

Cha pter IV conta ins computer ef ~ il&ted results. Experimental

studies are included on the effects of tradeof fs between ~ and 0 of

condition (1.6) and the tot*i. number of training observations

required for satisfying it. Also studied are the effects of alter ing

the Lipechitz constant., the number of intervals, and the number of

t raining obs.rvat ione observed between time s of making computations.

Chapter V contains suggestions for extending the approach to

the multidimensional case via a technique that trans for~a. the :malti—

dimensional problem into a 1-d imensional one. Possible uses for the

mapping other than computerized recognition are discussed.

Chap ter VI su~~~rizes the results, their possible engineering

application , and suggests weys in which th.y might be improved

and er’- ended.

I -, 

_______________ 
____________ 

___________
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CHAPTER II

SOLUTION FOR A FIXED PARTITION

2.]. Intro~uction

This chapter contains a description of the techni que employed

for a fixed partition I of the doma in. Estimation of density func-

tions and a decision rule are discussed . The differe nc e bet~~en the

probability of error using the est imated d.f . ’s and that using the

actual d . f . ’s Is expanded into a sum of difference prob& iities

where each differenc e probabilit y correspond s to an interval in the

partition . The objecti ve is to achieve a spec ified confidenc e t hat

the sum is less than a specified constant . A method that operates

by considering each interval indep endentl y is developed for checking

whether the confidence is atta ined .

2.2 DensIty Function Eatimate~
A piecewise constant est imate of the ~th class—coriciitional d . f .

is

!~ ~~(i)
._.. w(i) i (2.1)
i~1

~~~~~~~~~~~~~~~~ _~~~~~4~~c—~~~~; 
-

~~~~~~~~~~

-I’-—. 
- -~ ;: ~~T~

•” 
~
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The random vector ~ ~~ (~~ ( i) ~ P~(2)~ ..., P~(R)) t has the

R — 1 variate Diri chiet densit y function

f(P Tm )
jJ. in (i)-1

R R
= r(~~ m~(i))

1
Fi 

~r(m~ i)) 
‘ 

R 

~~(i) ~~ . 1

~~~

‘ p~(i)  = 1

= 0 , otherwise

(2.2)

assuming an a priori Dirichlet densit y function on and subsequent

training observations where = (m~(1)~ m~(2)~ ...~ mj (R) ) t . Each

m~(i)  is obtained from training observations and a priori knowledge

about ~~(i) ~351. c~~(i) has the bet a (univariate Dirichiet ) densit y

function,

o(”~(1)fv~.U)~ V~2(i))

~~~ (i)+y~2(i)) y 
~
(i)—1 ~y (i)—i

(i _
~~~(t ) )  j2

— o  , otherwi se

(2.3)

where

+t indiostes t r*nspos..

• 1  4
_ p _~_~d~~. 

— ———-——- — —
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= mj ( i )

~ m~(k) (2 .4)
k7~I

The mean and variance of ~~~~ are

E~(i) = Ef c’~( i)fv ~1(i). ~‘~2(i) 1 
~~~~ 

+ v~2(i)

Var~( i )  = E [(~~(i) - E1
(i))2 I~ 11

(i),  v~2(i)

E ( i)r l  — E  ( i))
(2 . 5)

If ~~(i) = E~(i)~ then

- 

R y ( i )
- 

Z 1~~1( i ) + v~2(i) 1w(i) 1

The component s of may not be consistent with a priori know—

ledge of the expected value and variance for each ~~( i ).  For this

reason and because each interval is to be consid ered independently,

( the Dirich].et d • f • is abandoned in favor of an independent beta d . f .

on each ~‘j(i). Then, it is consistent to constrain the v ’~ as follows :

ii, 

_ _ _ _  

____________ I— — 
~~~~~~~~~~ ~~~ 

~ i__ 
——

— —
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= s~1(i) + v~1(i)

— s~2(i) + v~2(i)  (2.6)

where the a ’s and v ’s account resp ectively for a priori knowledge and

training observations • The ability to use a priori knowledge i.

important for the part it ion changing technique developed in Chapter III.

An “a priori d.f.” on P~(i) is converted to an “a posteriori d .f . ” by

using a 8ayes iteration:

~(c’~(i)h ’~1(i~ ~~2(i))

Pr(vji(i),vj2(i)1P 1(i),sjj(i),ej 2(i))0(Pj(i)ts ii (i),s12
(i))

1

f Numerator d~’ (i)
0 j

( 2 . 7 )

The iteration includes the informa tion that out of

flj Vj~(i)  + v~2(t )  (2.8)

training observations from the class, v~1(i)  are in, and

are out of the it)
~ Interva l .

Appendix A considers approaches for specifying the s ’ s that

characterize the a priori d.f.  on r’~(i). From (2.6), it is seen

that enough training observations will eventually cause the effects

of the s ’s to be negligibl e ( provided each inte rval probability i.

greater than zero).

I

LI: _ 
_ _ _ _  

_ _

——  
- - - ..~~ _ -

- - - - T~ ~~~~~~~~~~~~~~~~~~~~~ 
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2.3 The Decieion Rule

An estimate of the minimum probability of error decision rule i~

d(x) = Arg [ j~1,2 P~?j (x)~~ xs~ ( 2 . 9 )

The difference between the pro bability of er ro r when using d and the

probabilit y of error when using an optimum decision rule d is

R

P~~~~d ) — P r ( P~f d 0) [Pr(~~ i,d)P r( i~d ) _ P r ( t f i ,d 0)Pr( i I d 0)]
1=1

where Pr(~~i,d) is the probability that d errors in classifying an

observation in the ~
th interval. The probability t hat an observation

Is in the ~th interval is Pr (i) and is independent of d. Thu s,

R

Pr( P~t d )  — Pr(~~Jd 0) Q(i,d,d0
)

j~r 1

where

Q(i ,d ,d0) rPr( PI i ,d) — Pr (P I i ,d0)lPr(i)

The next section is devot ed to obtaining a sufficient conditi on

for the goal

Prr Pr( ~~T d ) — Pr(~~d 0) ~ S

Then , computational techni ques are developed for checking if this

sufficient condition is satisfied for a given partition.

— - 

—.- 
_ .____JIw~ ~~.—- — — ----- “ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2.4 A Sufficient Cond~ition

The following proposition gives a set of interval conditions

( one for each interval in the partition) such that satisfaction of

all of t hem is suf ficient for Condition (1.6).

Prooopjtjp n 1

Given :

a) Constant s o’ and $ such that

o ~~ ~ 1

0 .~_ $ ~~1

b) Constants ~(i)  > 0  and i(i) ~ 0, i 1 , .. ., R, such that

~(i) =

i~ 1 
~(i)  = 1 -

Then the set of interval conditions

PrCQ( I ,d ,d 0) ) ~‘(ifl < r (i)  , i i , . . . ,  R (2.10)

implies

Prt Pr(~~I d) — Pr(~~l d )  ~

H: 
_ _ _  

_ _ _

- 

- 

____  

~~~~~~~~~~~~ ~~~~ 
-‘ — — —
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Proof

The set of condit i ons (2.10) implies that.

~ 

P~~Q(i ,d ,d 0) > ~( i ) 1 < ~( i )

It follows that

Pr 
[~~~~

.I (Q( i,d ,d0) ~ ~ ( i) )~ 
~ 

~(i)

From de Morgan ’s laws

Pr [u  (Q( i,d,d0) > ~v(i))] Pr [1~~~(Q(i,d,d) <~~(~~)
)~~~

whe re the superscript “ C” indica tes complementation.

Then

Pr r f l  (c(i,d,d0) ~~ (i)) J >  1 - ~(i)  - B
i i  i=1

which implies that

Pr [ ~ Q(i,d,d0) ~ ~ ~(i)
1 
~

i=1 i=1

The conclusion follows .

I

~~~~~~~ _:~~~~~~~~~~ ~~~~~ ___ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

Is -. 

— 
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2.5 Classification Procedure for the ~th ~~terval
th

Consider just the I interval.

Define

P p (i)
j  

- 

w(i)

The d .f .  on U~ (i)  is

W(i)U j (i)
s*CTJj ( i ) 1 vj 1(i) , Vj2(i)) = 

~
If

~~

’1 s( 
~ 

‘,‘~~(1), ~v~2(i))

(2.11)

Define

Pj ~j1(i)
= Eu~(i) ~~~~ ~~~~~ 

÷

P 2 Vj 1(i) vj2(i)
cy~(i) 

= Var u~(i) = (
~th~

) • 
2

~v~1(i)  +v~2(i)) (~j l~~ ~
‘j2~
’
~ ~

corresponds to the class
a(i ) = Arg [j=1 2 ~~ (i)J : chosen by d in the jth

‘ interval.

b1i) • COlTeSpOfld s to the class not chosen by d
in the jth interval

(2.12)

To avoid redundant notation a(i) and b(i) are denot ed a and b when the

~th interval I. understood •

i~
.

.—
~
- --- - -

~
-

~ 
- 
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-
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The objective is to find a region V(i)  in the (Ua (i )
~ Ub (i))

plane containing all points for which

Q(i , d , c i )  > ~(i)

is possible . Then the probability Pr(V(i)) Is an upper bound for the

probability

Pr [Q(i , d , c i )  >

Pr(V(i)) is obtained by integrating the d . f . * on (Ua(i~~ ub
(i) over

points in V( i ) .

r
Pr Q(i , ci , d) > ~ (i)~ < Pr~V(i)

= j ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
v( I )

The 1th interval condition is satisfied if

Pr~V( i)
1 

< 1(1) (2.13)

The region of integration v(i) is obtained as the intersecti on

of two regions V 1(i) and 112( i) ,  each containing all points in the

(u~(i) , Ub(i) 1 plane for which ~Q(i , d , d0) > ~(i)) is possible.

Define the events

~~he d. f .  on ~Ua(i)~ Ub(i)) is the product of d .f.’s defined by (2.11)

on Ua( i )  and Ub(i) separately because those d . f . ’s are obtained from
independent samples .

— -— - -~~~~~~~~~ ——~~~ - — . -—~~~ ~- - -~

~~~Tr — — —
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.4
v1(i)  = ~Q(i , d , d0) > o)

v2(i) = (Q(i , d , d0 ) >

Because of the possible variation of the density functions f 1 and f 2
about their averages in the 1th interval, it is not possible in

general to specify v1(i) and v2(i) as regions in the (U a(i)j Ub (i) I
plane . H owever , the following proposition gives regions ~~1(i)  and

that contain v1(i) and V2(1) respectively. Note that *

V2(i)  C. V1(i) and thus V2(i) C. V1( i ) .  Careful examination shows that

v2(i) mey contain points for which it Is known that Q(i , d , d0) = 0.

Elimination of these point s from the region of integration yields a

smeller uppe r bound . Intersection of V2(i) with~~1(i) to obtain V( i)

accomplishes the elimination of these point s . Figure 4 illustrates

with Venn diagrams the set relations involved .

The proof of the prop osition uses an easily proved state ment

relating the range of va riation of a density function f in an interval

J to its average over the interval and an assumed Lipechit z condition .

Statement

If 1) Int erval J has width W

2) Density function f satisfies

f(x) — f(y)~ ~~ L~x - y~ , x ,ys J

3) ~x~~J’ f(x) dx
J

lotation V2(i) c V 1(i) allows V2(i) V 1( i ).

- ,~~
._ 

~
- . ‘,

.. ._
_____________
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~ ~ a

(a) The Events v1(i) and V2(i) .

Ub

w

VU)

~~~ a

(b) The Event V(i) . w

Figi~r. 4. Set Relations Among v1(i), V2(i),~~1(i),~~2(i) and V(i)
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.4 then

~~ 
f(x) <~~~ 

+

(2.14)

and if

<
LW
2

then

~~~~ f(x) < (2W1J)~

~~ f(x) ?~. 
0 (.15)

Proposition 2*

Given the defini tions

f~~~~pj/W , j = 1 ,2

c~ P~L~W/2 , j = 1,2

• —
if Ub~~. Cb

— Ub) if Ub < Cb

•Because the 1th interval is understood, the “I ” is dropped from the
notation when confusion does not result .

- - 
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—
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Then

1) A ‘~~ion~~1 containing V 1 in the (U , tJ b ) plane is:

~ 1 b > U
a

_ C
a 6) (2.16)

and

2) A region~~2 containing V2 in the (U gh Ub ) plane is:

V2 = CUb — j 1,2 rM~ (o, U1 
— C

1
)] (2.17)

where it is understood that the definition of V1 and includes

intersection with

(o < U < ~ a ) n (o < U < ~~)

f~roof

Part 1

= (Pgf (x) < Pbfb(x) for some

~ ~ ~~~ < xsJ ~b~~~)

From (2.14) and (2.15)

I;

• 

~~~~~~~~~~~~~~~~~ 
- 

- - ____________ _________

Is ... - - - - - - - - -- -
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Then

V
1 
c 

~~a~a 
— Ca < 

~b~b 
+ = (ub > Ua 

- C~ — 6) = V ~

Part 2

= (Q(i , d , d0) )

= (Pr(fl rPr(p~i,d) — Pr (~~ i,d0 ) 1 
)

Not e that

PP W~J~
Pr(~~i, d) 

~~~ b 
Pr(i)

j=l

Pr(eji ,d0) can be expanded as

Pr(~~i,d0) — f Pr(~~i, x, d0)f(x(i, d0)dx

f•U~f l __•j~ ) f(xt i) dx
v~~~ j 1,2 f~x)

Not e that

- - -  

~~~~~~~~~~~~~~~~~ 

-
~~

!-
~~~~~ ~~~~~~~~
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~
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Mm Mm rMin
j 1 ,2 ~~~~~~ ~ j 1 ,2 Lxs.9 P~f

3
(x) _

By (2. 14 ) and (2.15)

M rp
3
f

3
(x) 1 ~ (0 , U

i 
— C

1
)

such that

Pr(di, d ) ~~~ ~~~~ ~~~~~~~~~~ (0, U — C )
~ 

‘

° ‘~ ‘ ‘~ ~~~~~~‘ ‘) f( x )

—

W Min~~~ -,

Pr ( i ) j 1 , 2 L~~~
X (o, U1 

— C
3

)

Then

Pr (i) rpr( e-’i ,d) — Pr(~~i,d0)] 
~ 

— 
j 1,2 U Max (o , u 1 — C3)]

and thus V2 C V 2
Figure 5 illust rates the region V 1 while Figure 6 illustr ate&

two cases that result for V 2 depending on the relative sizes f ~

and Cb . The region V over which the density function on

(Ui, Ub ) is to be integrated is obtained as the inters ection of 
~~ 

and~~2 .

v (ub > Ug — C~ — 6 ) fl 
~~b J 1 ,2~~~~ 

(a , u~ —

(2.18)

1’’ 
__________ 

_____ 

_______________________________

- i , ~~~~~~~~~~~~~~~
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Ub

~~~
C
~~~

Cb

.2.. 1 , 
p0 C + C  C +2Ca a b a b w

Figure 5. The Event V
1

-• .~ . 
- - . 

. • ...
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U
b

‘ ‘ / 1

C b ~~a 
- ‘

a

(a ) ~~~~~

0 ;  

U
b

= U +  

U
s

(b) 0~~ . Cb

Fi~~re 6. The Event v2

_______________________________________________ — •~0O~_~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~ -~~ - — - -
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Cb
/IAJ//)

I’ •I~~~ U
g

0 c C + C b Ca 4 2 C b P
a 

C~~~2 (PC b )
~ 

W

(a ) o~~~C b
Ub

-

(b) •~~ Cb

FIgure 7. The Event V
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Ub

/ 

Uo c5 C + C b C + 2 C b
w

Figure 8. The Set 6V
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Figu re 7 illustrates V for each of the two cases , • < C~, and

0 ‘ Ci,. Note that if ~ ~ Cb, then V = The t ransition from

p 
~ 

C~, to p < Cb is not smooth with resp ect to the region V .

Figure 8 illustrates the increment LV included into V when

• — Cb is changed from slightly positive to slightly negative.

Note i.

Given

i)  Scaled beta density functions 0* (u 1~
y~1, ‘~

‘j2) ~~

U3, j 1,2, according to (2.11) where and

are positive integers .
r(~y )r(y )

2) Definition 
~~~~~~~~~~~~~~~~ ~l2~ r( ÷ )1 2

An upper bound for

Pr E Q( i ,d ,d )  >

is obtained by integrating the d.f. 8*(U5fv51, ~~2)8 *(u b f v b1, ~‘b2~
over the region V (i) and hence over any region containing V(i) in

the (U5, U) 
plane. By inspection of Figure 7 and by definition of

r

P r (V(i))~~ T(i)

P ~- P

= 
~~ ~~ I vbl~ ~‘b2) ~~~~~~~ 

~~ 
~~ 

~~~~~ j’
~
’a1’ ~a2>!~ad~b

Is.. - 

-. 

•

— 

_ + _ ~~ 

0
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wh3re

q = ~ •~ C~ i f p > C b

~~— C  — C  if p <Ca b b

When the y’s are integers , Appendix B carr ies out the integration

with the result :

P
1 ( ...i ) i(...~)

T(i) = B ’(
~ bl, v~2~~e (~~j, ~

‘a2~ Z (
‘

~~~ 
) (y 1+j) 

—

~~ ~~
‘b1~~ 

k4~~1+v
al 

~~~~~~~~~~~~ 
~~ (~ 2~’~~~k ~ Pb~

d — (
~

•, 3
L~~ v ~.

2 —)
+ 1 — B5~~~~b1, ~

‘b2~ 
~~ (bf )(_ i )k 

(k + 
~‘b1~ 

(2.19)

where

= Mm r r.iax (~ + q, 0), ~~

The ccm~*itatione for T(i) are time consuming ar~ subjec t to accunu-

lated error. A simplifying approxi mation is to apprn.vi~~ te the d.f. ‘s
on the U

1 ’s with Gau ssian d. f. ’s having the same means and variance s .
This approximation is suggested by the fact that as its parameters get

large while maintaining constant ratio, a beta d .f .  converges pointwise

to the Gaussian d.t. having the same mean and variance 136 ,37) .

-+ :!~~~ ~~:
‘ -
~~~ ~~~~~~~~~~~~~~~~ 

- -
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Note 2

Given

(1) Gaussian density functions

— (
Ui ~I~~

)
2

g(U
3

tt~3, ~~
) ~~~~~ 

a
1 

e , — . < x < •

on U1, j = 1,2.

(2) The Ub intercept ~~ 
and the slope 

~2 of a straight line

Ub ~ 1 
+ ~ 2~a supporting the region ‘1(i) in the (U5, Ub) plane .

An upper bound A (i )  for

Pr [Q( i, d , d0) >

is obtained by integrating the d.f.

2 2
g(U~ tu~, ~~~~~~~~~~ CY

b
)

over th. hal f -plane supported by

Ub 
= 

~1 ~ ~2~a

Thus

Pr(V(i)) ~~A(i) = j ’f
Ub~

IC l +C 2Ua

Appendix C carri es out the integration with the result :

l + ~i
_ _  

—
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r ~~~ ~~~ ~2 
~~~~

AU ) = S U I (2.20)

~~~a~2 ) 2 
+ ( 7~~~ )~

where

x
— e dy

~~
_ . 

~~~
‘I

Because of its simplicity , A ( i )  of (2.20 ) is a more practical

result than T(i) of (2.19) .  In the remainder of thi a report A(i )  is

used in place of T(i),and the ~th 
interval condition is sati8fied

(approximately) if

A (i )  < r(i) (2.21)

The ~th interval is said to be classified if (2.21) holds ; the whole

domain is said to be classified if (2.21) holds for each interval.

Because A (i) Is obtained as the integral over a region of integration

that contains the one used for T(i), the approximation A (i) for T(1)

tends to be conservative. Appendix B contain s comparisons of A ( i )  and

T(I) for some special cases in which the regions of integration are

identical . Good agreement is observed .

~ is a function of the support ing line Ub = 
~ 

+ ~ The problem

of minimizing A with respect to t h e  parameters 
~ 

and 
~ 2 is now consid-

ered . This minimization is subject to the constraint that the line

Ub ~ 
+ C2Ua supports the region V(i) . If the ~~~~ ~~~~ ~~~ 

is in V(i) ,

A is giv.n the value 1, and no minimization is attempted. In the follow—

Ing minimization, it is assumed that (ie~~ ~~~ 
is not in v(i). Because •

_ _ _ _ _ _ _ _  _ _ _ _  

_ _ _ _ _  

_ _ _ _ _ _ _ _ _

+ ~~
- -

~ 
_______  

— + - - +

- 
-
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is monotonically increasing in its argument , minimization of A is

accomplished by minimizing the argument of I.

Case 1

P )‘

From Figure 7b, it is clear that only lines through the point

(U5, Ub) = (c5, p )  need be considered . For such lines the Ub

intercept ‘
~~ 

can be written in terms of the slope 
~2

= 0 —

A str aight —fori m rd minimi zation of the argument of 0 in (2.20) with

respect to 
~2 

subject to the constraint that 
~2 

is in the range

[0,11 leads to the value of A(i) computed according to the flow

diagram of Figure 9. The requirement 
~ 2 

in [0,1) ensures that the

line supports V(i).

P < Cb

From Figure 7a , it is determined that A (i) is minimized for a line

through the point (U5, U) (Ca + z4~ç , p )  or for a line tangent

to the quadratic portion of the boundary curve to V(i) . Minimization

of A(i)  with respect to lines through (C a + 24ç) , •)  is accomplished

similarly to the minimi zation for Case 1 except that ~ is given in

terms of 
~2 

by

• — (C5 +

with constrained to th. range [0, 47~~~I .  Minimization of A(i) with

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~—~~~~ ---- — ~~~~~~~~~~~~~~~~~ + -. _______
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START

YES NO

~b ~

NO YES
b a ~~~~~~

C

NO
2 

________

1

NO

L~II=iJ

+
A 1 i L(~5c 2 ~~~~

STOP

Figure 9 • Flow Diagram, 0 ~ 
Cb.

~~~ 
_

_ _  

_  

- 

~~~~~
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START

NO NO ~~~~~~~~~~ YES YES
E~~~~b~~~~> < ~ b~ 

C~~~~~~~~~~~~~~~u~~~ Ua~~~~~~~~~~~~

I NO

NO

~ ~c ÷a4 YES 
_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _

o NO

OBTAIN X <C +2~~ 
NO

YES ~a a a  o

~~~ 
_________

~27  \ ~ ‘b ) NO 
~

NO 
~ 2 = ~~~ (A5- Ca) 

_____ _____

g2 :~ YES 
C2 

=~i~~~ 
~l ~~~~ 

(A~ -C~) 

1
~~~~~~~~~

: 

~~~~~

STOP

Figure 10 • Flow Diagram, •

_ _  __ -- - _ _ _  

~~~ +0+ ”~ + + ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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respect to tangent lines to the quadratic boundary of V(i) requires

an iterative process descri bed in Appendix D. The defining parameter

is the U5 coord inate for the point of tangency. Given the value

~~~, one can obtain and

~ — c
= a 

~~ L

2Cb

= 
(x~~-)~~~

— 4C~

The constraint that is in the range IC + 2 / oCb ~ Ca + 2Cb
l

ensures that the tangent line suppo rt s V(i). The overall procedure

leads to a value for /t(i) computed according to the flow diagram of

Figure 10.

2.6 Conditions for Domain Classification

It is of interest to know conditions for which the whole domain

can be classified.

ProDosition 3

Let ~e the total width of the domain. Restrict~~ and 8 by

+ 0~~ $ < 1

Allocate ~ and 1 — 8 to the intervals according to

_ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_____________________ _________________ — - 

~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~ 0~~~~~ 

- 

+

+ +
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= 1cr

= ~L 1 (1 — 5 )

and define o by

= ‘~.W. =• W(i) ~~

Let an R—interval partition of the domain be given with each interval

width W(i), sat isfying

o<w(i)~~ w~~

whe ret

< 
~~~~~~~ r 

2 

(~ L 
) ‘ 2( 1~~ ~~ 

‘

L~~~
” 2 ~ 

J

Let flj training observations from Class .
~
, j = 1,2, be used to form

a decision rule d as discussed previously in this chapter.

Then :

(~~~~ + ~~~~~ < 
Mm r2~ 1)(0 — 1.2 (P1L1))

~n1+2 n2+ i~1,...,R 

[ 
— •

_] (W1~ (1 —8 ))

(2.22)
t

t 

WMaX < 
~~~~~P L )  

ilnpl i e e O > C b
j..~1,2~~~jj

• ‘a -
~ --~~ - — 

•+-. - -
~ ~~~~~~~~~~~ 

— ____________ 
—,- 

:~~~~~~~~
— 

~~

- -

~~~
—-- - -

— Is.. - — -
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implies

A ( i)  < i(i) , I

the requirement for classification of the domain.

Consider the ~th interval. By hypothesis, the case p Cb of

the previous analysis applies . The event v(i)  for that case is

illustrated by the cross—hatched reg ion of Figure 11. Each point

(U5, U) in the region defining the event V(i)  satisfies

Ub~~~Ua + D - C 5 (2. 23)

The line given by

Ub~~~U a + o  — C 5

supports the region V(i )  and is one of those considered for the best

such support in the computation of A( i ) .  If A 1(i) is the integral of

the approximating joint Gaussian d.f.  over the half plane defined by

(2. 23), then

A(i) ~ A~ (i)

From (2.21), using t 1 •— C5 and 
~ 2 — 1,

A 1(i~ — ~: 
~~+C4 

2~~(
~ 

+ a)

Thus, satisfact ion of

-

Is.. - _ _ _
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v( I)

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

us

Figure 11. The Evsnt v(i)

~~~ 
r 

+ - ~~-+ +i I s . .  
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.- — O  + C  _ i
~ +~~~

2 2~~ 
b <~~(~ )

~ +

assures classification of the 1th interval. Equivalently, because

0 (x) is monotonically increasing in x, one can write

r 0 + C  —
~~~ 

+ 14b~ 1
2 

a 
2 ~ — 

< [~ ( i)) (2 .24)
+ (7) 

-

where 0~
1 is the inverse of 0 • Note that

Max 
~j=1,2 j —  a

and

14~~ 
~~

Then

Max0 + j 1 2 C
1

implies (2.24). By hypothesis~~(i) < so that 0 4[r(i)) < 0.

Rearranging gives (c;~ , a b is a permuta tion of a1, a 2 )

Max+ 

(,
~ + 

— + 1 1 .2 C~ 
(2.2 5)

From (2.12)

-t

+ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  —~~~~~~~~
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2 
(4.

~
)
2 

~~ (i -

~~it the product of two numbers that sum to 1 is bounded by ~. Thus

2 (P~j \
2 ( 1 ~~~ (

Pj \2 1

~ ~ w(i) 1 ~%V j~ + 

~
‘j2 +~id — 

~2W(i)l (fl
j 

+ 2)

with this bound on the inequality

1 ( 
~~~~~ + — < 

(— + i=L2 c~)
2w(i) ¼n 1 + 2 n~ + 21

implies (2.25). Appropriate substitutions give

+ 
P~ 

2:~~ 

2w(i)~p — 2 — 1 ,2 (P~L1))
+ 2 n2 + 

— ~ 
—1 (1 — )]

(2.26 )

Thus (2.22) implies that

A(i) < ‘~(i) , I — 1,..., R

It is interesting that one can specify - before taking any
+ training observ ations — a satisfacto ry partition and the number of

tra ining observ at ions tha t assu re classification of the whole d~~~in.

Consider , for example, the special case in which: 

________________ 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- ~~~~~~~~~~~~ - + 

Is.. - 
-- _ _ _ _ _  

~~~~~ 
-,
~~
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—

= L2 
= L

WT 1

= 0.1

= 0.9

w(i) = W, i = 1,..., R

n1 —

Then (2.22) simplifies to

, j 1 ,2

where W raist satisfy 0 c W < • The smallest flj that satisfies

this inequality is plotted in Figure 12 a. a function of W for each

of several L values .

Several observations concerning Proposition 3 can be made.

1) The numbers n1 and n2 required for satisfaction of (2.22 )

are genera lly very large. This is to be expected because the propo—

sition states a result that does not use the values 
~~~~~~ ~~~~

R.gardl.ee of these values the result is applicable . Suppos. that

training observations and hence y~~ , y~~, are available for the ~th

interval; hence ia and can be determined for the interv al .

_____________  

_________________________________________ ___________• ~
• 

— — ~~-- -~ + . - - ,  — 
~~~~~~~0~+_ - ~

__
~ ~~~~~~~~~~~~~~~~~~

1~~~~~~~ 
- - — — ----

~ 

-•--_ — - — -- -v-~•--’ ~~~~~~~~~~~~~~~~~~~~~~~~~~

_

~~~~~~
—---_ - -—

- _ _ _ __:_ . - _ 7 _ 0
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io6 
a

= 9

L — 5

10~

+ L = 3

nl,n2 L = 2

Id+ = 1

- - L — 0.4

10’
I 0 0.1 0.2

I 
~~ re 12. Trein~~ ~~se~~~tions ~~~~ired Vsreu I~~s~~ l ~~dth
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/ /
1.0

~\ \ ~~~~~~~~~~~~~~a 
1.1 /

14b~~
1.0 /

n l, n2

1.2

10~ 
14
b
= 1.0

14a 1.3
I~I
b~~~ l.O

-
~~~~~~

I —

0.0 0.1 0.2

Figure 13. n1, n2 Versus ~ ~ a’ % Knois~, ~~~ 5)
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suppose further that and r~nain constant as n1, n2, and W

are varied . If = P2 = ~~, L
1 

= L
2 

= 5, cr = 0.1, ~ = 0.9 , and

n1 
- n2, then the min imum fl j required to classify the interval is

plotted in Figure 13 for several 
~a’ ~b values . Not e that nj  is

much smaller when the parameters 
~~~~~~~ ~~2 can be used . The next

chapter assumes and are constant over n1, n2, and W , 50 that

estimates of the number of training observations required to classif y

the interval can be obtained. Adjustment in interval width is made

based on these estimates.

2) Maximization of the right side of (2. 22) with respect to

:‘ the inter val widths all ows widths to be chosen that correspond to the

smallest values n1 and n2 that satisfy (2.22) . Such “best ” int erva l

widths correspond to a “best ” number of intervals. Hughes r26 ) , using

a mean recogn it ion accurac y criterion , also arrives at a “best ” ni~nber

of intervals .

3) By requir ing the interval widths to be less than or equal to

a minimum is placed on the number of int ervals. It is possible

that this min imum conflicts with the assumed storage constraint .

Also of interest is the rate at which the quantity

—
~~~ +

A I ft ft I

2 2 1 =

L (c~ + a)

changes with n, where

I

- 

-

~~~ _ _
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— 0 + C~ - ~& 
~~~~

2 2~~
~ ~‘a 

+ ab ~

_ P + C a~
•• Iha +%

1~a(~~~ ’~a) 
+L r~~+ 2  %+ 2  J

Assuming that i~~, i&~ are constant with n, that

n = P  n > 2a a

and that

P_L >~~~~
w

>
~~ bw

the rate of change in • (Q) is given by

1 C 1
Rat e 

~~

where C Is a constant given by

c - ( ~~~~~~~~(- o + c -~~~+ % )

- 1 .  
_____  _____  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 
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This chapter has discussed the classification procedure for a
a’fixed Ft—interval partition of the domain. In Chapter III an ad hoc

approach for adjusting the partition is described. The objective is

to classify the whole domain with as few training observation s as

possible.

— :_ _ _~~~~~~~~~~ .—~~~~-~~--.~~ — j~~~ ----- -- _~~~~~~j~~~~~~~~~~~~;— -:-- - • 
-

Is..
‘—I--- - - +.~~~~~~~ T _ ~~ 

-

—
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CHAPTF~ III

ALT~~ThG THE PARTITION

~L1 Introduction

The c].aasification procedure of Chap ter II operates with

a given part ition. Generally, the partition can be adjusted

to decrease the number of training observat ions required for

classification of the whole domain. A desirable adjustment

procedure would be one that minimized this number.

A hill climbing technique could be used to minimize an

estimAte of the number of training observations required for

domain classification. Siml-1-arly, bill climbing techniques

could be used to maximi ze an est imate of the divergence [ 5 2] ,

an est imate of the infor mation contained in an observation

about it. unknown class [391, or any other global measure of

the separation of density functions. The bill climbing technique

using the first criterion mentioned generally requires many

intervals , while using the other criteria , it has not been shown

to achieve satisfaction of condit ion 1.6.

+ This chapter describes an ad hoc partition adjustment

procedure that operates by sequentially adjust ing the widths

of unclassified intervals in the order that they appear in a

table called the prio rity table. The width of an interval under

- 
- - 

- - - —— -—~~~~~~~~ r 
-

+ -:~ - - - - - 
~~~~~~~~~~~~~ -- - j

~~~~~~~~~~~~~~
-’ ‘+, - 

-
~+ 

~~~~~~~~~~~~~~~~
—

~~~~~
--

— Is..
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consideration is adjusted to incr ease an estimate ~ of the inter-

val ’s “classification rate”;

n

where ~ is an est imate of the mixture probability in the int erval

= P
1 + P2 

and i5 is an est imat e of the n umber of tra ining

observat ions required to classify the Interva lt . The est imated

rat e ~ is a reasonable performance measure in that it increases

wit h ~ and decreases with ~~. A possible disadvantage is that

it is local (applies to one interval) as opposed to being global

(applies to all intervals); i.e. partition adjustment using a

global measure may result in a qm~1 1 er estimated number of

training observations required for classification. A pplication

of a global technique would need to constrain the partition

so that it allows classification of the intervals.

With suitable approximat ions (to be listed) ~~, ~~, and thus

can be writt en as functions of the int erval width W’ (in this

chap ter notation with a prime refers to variable quant ities ,

whereas unprimed notation refers to observed quantities).

can be maximized with respect to W ’; the resulting maximum

is denoted and the interval width giving this maximum is

denot ed The int erval s are listed in the priority table

in order of decreasing rM values.

tThe notation omit s reference to a particular interval.

~i.. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The following items constrain the adjustment procedure :
*1

1) A change in the size of an interval influences the

sizes and or ruinber of other intervals. A change of

an interval ’s size is not allowed if it affects an

interval preceding it in the priority table.

2) Rules are stated that determine if an interval adjustment

is made. An interval i. adj~ ited either by splitting

it. into two intervals or by combining it with an

adjacent interval. These type. of adjustment. allow

for a reasonable amount of change at each adjustment

stage and for larger changes over several adjustment

stages.

3) No more than R Intervals are allowed in the partition

at any one time.

4) After a partition adjustment , the beta dist ributionst

on the P ’ s are reinitialized.

t2 Rate Estimates

The estimat e ~(w ’) is obtained by first obtaining ~(w ’)
and ~(w ’). The following simplifying approximations are useful .

The quality of these app roximations affects only the partition

adju stment procedure and not classification based on a given

partition.

tNot. that even though Gaussian approximations are used for
computations, all updat ing and r.init ializati izi is done with
beta distri but ions .

_ _ _  

_ _ _  

_ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _  

I
— — 

‘ -%_ - “ ~~
“

~ 
~~~~~~~~~~~~~ - - - -- - - - — -~~~~~~~~~ _~~~~~~.I . Is.. 
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A DDrOXimat ions

1)
•t 

~~~ ~

Then

= (n~~± 1) = 1) (
~•)

• I ~ii ‘ =W \n~~+ 1)  j

and

I/ P 1 ,\ f
F

1
2 ’ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~— 

Cn~~+ 2 )  — 

n~~+2

2) n~~=P~~n

3) t tt  ( ~4 — ) —

Then

—

5 W n ~ W n

is the number of training observations in the interval from the
tFie j th class. It is a- -- ~~d that nj + 1 flj.

~~~ number of trainini ~-3ervations f rom the 2 classes are assumed
proportional to the a priori class probabilities .

ttt p4fl~~~ of training observations in the interval is assumed small
compared with the total number from the jth class. Also sub-
sequently assumed is nj + 2 n~.

j  
~~+ 

t 

- -  
-.  ,-.

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
- —

-- - .- —
~~~~~~

-
~~~~~r~~~~~

--

Is.. . - .-
- ‘-
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With these approximations , ~(w ’) is easily comput ed as

= W ’(ii + %) (3.1)

Let ~ and (1 — B) be allocated to the intervals according to

T
S

i’(i) w (j) (1 — 3)  (3 .2 )
W
T

Note that

~~i) ~

is constant with w’(i). Computstion of ~(w’(i)) proceeds for

the 1th interval by using the above approximations in the 1th

interval condition

(3 .3)
L~

aa ~~) + %) J

for suitable values of 
~l 

and ~~ (I. has been dropped from the

notat ion).

Taking the inverse gives

< 0 ~1 (
~ ) (

~~~
)

— - 

- - ———-- - ~~~~~~~~~~~~~~~~~~~~~~~

~~~~~ Is.. - se: -, 
- -- - - -
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Usin g the variable quantities and the above approx imation s leads

to

.~
lfW ’

(l B)

(;; .4T) ~~ ~~a ~~ 
+ 

~~~~ 

<

for assuming that

~
— (1 - B) <~~
T

f tand

~1~~~~a~~2 % > 0

The inequality becomes

~‘a~~~~~~% 
_ , —l(~~~ ( l _ ~~) ) 2

n 
~~

The est imate R(w ’) is taken as

= (
~ ~~~~ 

B )) 2

1This is a constraint on
1
~Aasuines ~~~~~ is below the supp orting line for v(i) In the

(ITa,%) plane.

~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~
_____-— 

~~~~~~~~~~~~~~~~~~



— 6 2 —

where 
~~ 

have been included in the notat ion to indicat e dependence

on these quantities. Frost (3 .1) and (3.5)

~ 

+ %) w ’(~~ + ‘
p ~2 

- 1% ) 2

l’~ 2 
~~~ ~~ 

+ i~~
) — ,_1(~~ (1 - 8) )

(1 - 3) <~~W I,
if (3 .6)

-

To obtain 
~M’ the quant ity ~(w~~ 1,~~) should be maximized over

all values ~~ , ~~ for a line = + 
~2 

U~ that supports the

region V(i) and over all Interval widths W ’. For simplification

i. maximized over W ’ for each of three set s of

values, and then the max imum of these is chosen for It is

now assumed that

(1 - B) < <
T

Then for maximization of ? (w’, ç~, 
~~ 

with respect to W’, the

quant ity — (1 — 8)) is considered to be approximately

constant .

Case 1. ~~~~~ = (p,O), o > 
~~ 

• 2

~(W
’,p,O) 

~~ 
%)[ ~1(~~

-
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Thus ~(W ’,p ,O) is maximum for W ’ as large as possthle. To avoid

problems with poor approximation accuracy for large W ’, the value

W
M (p,O) 1. defined as the current width~

= W

and

rM(P,0) is defined by

A C  O ) _ 1 ’ ’a %\ I W (P— % )  ]2
rM 0, — 

~~ )[ _
1(j (i -

The rules presented shortly for adjust ing intervals encourage

combining an Interval with another when ~ W which is true In
this case .

~~~~ 
~~~~~~~~~~~ 

= (p — C~,l), o �
or

P L W’
= (

~ — a a — ,i), ~e 
~ Pb Lb

L ‘.\ P L IJ 2
— C ,l) = a

a

~Thts is ad hoc and another value for 
~M (p , O) could be used.

1~~~ 
_ _  

_ _ _ _ _ _  _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~ ~~---- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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Ø +~~ % ~~~~ % 2oWM(P 
— c

~
,l) = 

~
‘a ta 

~~ 
~a L 

~b Lb

~~~~~~~
— if CD 

____________— 

~b Lb ~b Lb — 

~a La

rM (O 
— Ca’l) is obtained by subst ituting WM (0 — Ca~

1) for W’ in

— Ca~l) •

Case 3 ~~~~~ 
= ( — C~ — c~,i), p < C~

or

= 2 ~~a La + “b Lb ),l), w’ > 

~b L b

~w’~w’ -~~p 
~~~ %~~~~

P L + P b~~)
2

— C — cb,l) = L — B))

c i ’  ~~~~~~~~ if 2o <b’ ‘ Pa La +Pb Lb ~b L b  
Pa L& + P b L b

TM( C
~ 

— Cb,1) i. obtained by substituting WM( Ca 
— cb,l) for

W ’ in ~(w’,— C~ — Cb, l).  The rate for Case 2 is at least as large
2 ~as that for Case 3 when 

~ ~ L + ~ 
, thu s obviating

b o a a b o
the need to consider Case 3 In that event . is set to the max—

imum of rM(,,o), rM (P — Ca~
l)
~ and ?M( C — Cb,l) and is the

corresponding Interval width . Similar computations for each of

the intervals and a subsequent ranking according to f’.1~ values 
—

gives the priority table.

~~~~~ 
_ _—

~~~~~~~~~~~~~~
,w
~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

- 
~~~~~~~~~~~~~~~~~~ -~c~ r~~~

—- 
~

-“—-
~~

—- -
~
— - - - - - -— —- —-~~-----—---—-——------ - -, _ .; -

~
_ -

~i ~~~ ~“ 
- - -
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3 3  Interval ODerations

The unclassified Intervals are considered sequentially In

the order that they appear in the priority table. Suppose that

attention is centered on the ith interval of the priority table.

Operations assumed available to change its size are:

1) Do not alter the interval.

2) Split the interval into two equal intervals.

3) Combine the interval with an adjacent Interval.

If 
~M ~ 

W, an attempt i. made to combine the interval with

an adjacert interval; if W ~ 
VWM, an attempt is made to split

the interval into two equal Intervals; otherwise, no Interval

change is attempted. The constant v ~~s arbit rarily chosen as

1.6 (values of v closer to one can cause too frequent Interval

changing). Without a constant v > 1, an Interval might never

be classified because of alternate splitting and combining from

one set of training observation ~t to the next .

Combining

The following is a list of condit ions that must be satisfied

before the ith interval is combined with an adjacent interval .

— a) The adjac ent Interval i. unclassified and appears in

a lower position of the prior ity table than the ~th

interval.

b) ~~ ~ W for the adjacent Interval as well as for the

ith interval.
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c) The adjacent int erval is tentat ively classified to the

same class as the ith interval; that is, “a” and “b”

in ~,& and for the adjacent Interval are the same

as those for the 1th interval.

d) The estimated “classification rate” for the combined

interval is greater than the sum of the rates for the

component intervals considered separately . Before the

combined interval rate can be obt ained , parameters

characterizing the interval are computed by a ?rocedure

discussed in the next section.

e) If both intervals adjacent to the 1th interval satisfy

these conditions, then combining is performed with the

adjacent Interval giving the largest improvement In

classification rate.

If combining takes place, then for the combined interval

is taken as the avera ge of the values for its component

intervals. The combined Interval takes the place of the 1th

interval In the priority table and is processed again in exactly

the same fashion . The adjacent interval that is combined is

removed from the priority table.

Snl itting

In order for the ith Interval to be split , the total number

of intervals must be lees than R. If not , then a search is made

for an adjacent pair of intervals that can first be combined.

The search ia made in the following order.

______  -
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START PARTITI ON
ADJ USTMENT

i=1

START TO PROCESS THE
~th INTERVAL IN THE

PRIORITY TABLE

W
M~ .W? 

NO

[ADJUST TABLES1 ~~ ~ 1 6 w ”10? PARA ERS]

NO

TRY TO COMBINE TRY TO SPLIT
THE jth INTERVAL THE ith

WITH AN INTERVAL
ADJACENT INTERVAL

SPLITTING NO
SUCCESSFUL?

COMBINING
UCCESSFIJL?

YES
ADJUST TABLES

NO OF PARAMETERS

Figure 14. Flow Diagram of Partition Adjustment
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a) A pair of adjacent classified intervals, classified

to the same class , is sought and if found are combined

together. Otherwise ,

b) A pair of unclassified adjacent intervals appearing in

positions lower than I in the priority table is sought

and if found they are combined together.

The 1th Interval is split if the total number of intervals

is lees , or can be made less by Items a) and b), than R. In

that case the 1th interval is split and splitting is said to be

successful; otherwise , it is unsu ccessful. If splitting is not

successful, then no additional interval changes are possible

at that stage, and the partition adjustment phase is terminated.

Any time an interval is adjusted, the parameters character-

izing it are computed from the technique discussed in the next

section. In addition , tables containing the characterizing

parameters are adjusted. At the conclusion of adjusting the

ith interval in the priority table, the (i + 1) st interval is

considered unless the end of the prIority table has been reached

or the ith interval cannot be split—in either case the partition

adjustment process is terminated . Figure 14 swmnarizes the

part it ion adjustment procedure.

1.k Estimation of Parameters After a. Partition Adluetment

Before the partition adjustment, a beta d.f. on each of

the P’s is Imoim. After the partition adjustment , d.f.’s for

those P’s in un—altered intervals are the same as before the

3-
— I ‘ IL ____ ___________ 

- —-—
- 

-
~~~~~~~~~

----
~~~~~~~

-- -
~~~~

-
~~~~
-

~~~~~~~~~~~~~
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- - I - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ----- — - - 
. 

-~



- - -  
.

- ______ 
-

- —
- i-- - - - ~ -

-I’.--

— 69 —

adjustment . For an altered Interval, however , a record of the

number of tra ining observations in the interval frost each class

is unavailable. This section derives characterizing parameters

for beta d .f . ’s on the P’ s after a partition adjustment , in

terms of the expected values and variances of the P’ s in con-

tribut ing intervals before the adjustment .

Interval CombIning

Suppose that the ~t)’~ and ( i +  1)st interval s are combined .

Consider just the ~th class and let I and (I + 1) denote the

arid (i + 1)st intervals respectively with no interval

notat ion indicatin~ the combined interval. Thus,

P = P(i) + P(i + 1)

= EP(i) + ~ ‘( i + 1)

An upper bound on the variance of P is

Var P = Var P(i) + Var P(i + 1) + 2(Var P(i)Var P(i + l) )~

because for any random variabli,s X and Y

Var(X + Y) = E(X + Y)2 — + Y)

= V a r X + V a r Y + 2 L  ~~~~~~~~~~~~~~~ ](Var X Var Y)~(Var X Var

Var X +  Var V + 2 (Var V Var

. ch~ract.rtsing parameters of the beta d .f .  on P for the

-~~~tn.d tht.rval are obtained frost Equation s (A.4 ) in Appendix A.

____________  ----
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Interval Solittina

Again only the ~th class probabilities are considered with

no notat ional mention of it. Suppose that an int erval is split

into the 1th and (i + 1) st intervals. P is the random variable

for the interval probability before spl itting; P(i) and P (i + 1)
.th stare random variables for the 1 and (i + 1) interval prob-

abilities after splitting. Because no information is available

about the variation across the interval before splitting, the

distributions on P(i) and P(i + i) after splitting should be

identical to each other; thus ,

= (3.7)

The allocation of the probability P is not necessarily uniform

across the interval. The worst case for this allocation Is

governed by the Lipschitz constant L for the ~th 
class—conditional

d.f. Figure 15 illustrates a worst case allotment of P to the

interval . The worst case occurs when the actual d. f. f for the

~th class has its maximum absolute slope L over the interval

as shown in the f igure . Then P(i) is given by

P(i) = + E (3.8)

where E for such a worst case is given by

- - — 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — — ----- -—--- — —.- -

- 
-
.- 

_ _ _
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Figure 15 • Variation of Probability in sn Interval
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E = (L ~)(~)

L W 2
2

In general E can vary over the range

L ,~~2
1 E 1 

~ 2 ‘2’

A distribution governing the probability of occurrence of E

through the range defined is not known, but it can be assumed

syninetr ic about 0, and independ ent of the distribution on P.

Because of the syninetry about 0, the expected value of P(i)
I. 

given by (3.8) is consistent with (3.7). Because of the assumed

stat istical independence of E and P the variance of (‘(I) is

Var P(i) = ~ Var P + Var E

A worst case is when ~ of the dist ribution of E i8 concent rated

at each of * J~(
W)2 Then

,L,W 2 2Var E ~~~~ )

and for a worst case (highest variance)

Var P(j ) — ~ Var P + ~(L(~)
2)2 ~~~~

The characterizing parameters of the beta d.f .  on P (i) are obtained

by using kP(i) and Var P(i) of (3.7) and (3.9) in Equatio ns (A .4)

of Appendix A.

‘ I

_ _ _  
_ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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cHAF~rE~ IV

COMPUTER SIMIJLATED R~~ULTS

/~..l Introduction

This chapter contains results obtained by using an IBM 1130

computer syst em to generat e and to process simulated data. The

simulat ed data is generated using standard pseudo—random number

generation techniques (see e.g. (40]). Processing follows the

flow diagram of Figure 3 in Chapter I. An interval of a given

R—interval partition of ~ is “classified” if condit ion (2.21)

of Chapter II is satisfied. The intervals of an initial R—

interval partition are defined using the first R — 1 training

observation s by the techni que described in Appendix A. The

oart ition is subsequent ly adjusted using the procedure of

Chapter III. The 1th interval, if not “classified” by satis-

faction of (2.21), can be “tentatively classified” to class

by using (2 .12). Thus, even if all intervals are not classified,

t entat ive result s are ava ilable unt il they are classified.

k.2 Allocation of ~ and 1 - B to the Intervals

Experimentally, it was found that assignment of ~(i) and

i (i) according to

_________  

_________- - 
-

____  - ________________________ _ _ _ _ _ _
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= 
~~~

•
~~~

- (1 — B) (4.1)

is not economical in t ense of the number n of training observations

required for domain classification. The assignment (4.1) is

equivalent to

~ (i) =

= ~fLI . (1 — B)* (4.2)
WT

where c~ and (1 — B)*  are the port ions of ~ and (1 — B) that have not

been used for the classified intervals, and is the cumulat ive

length of the unclassified interv als. A significant reduct ion in

was experim entally observed with modificat ion of (4 .2 ) ,

~(i) = u1 ~~~ 
~~~~~~~ 

*

WT
— r (i) = U

2 —Y (1 — B) * 
(4.3)

WT

where ill ~~~ 
depends on an estimate of the probability t in

all unclassified int ervals by the relation

is the sum of estimates of mixture probabilities in unclassified
i~terva1s.

- ___________________

— 

— -—---

~~~ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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t
u1 (~~~~) 

= t1 + (1 — t1)(l 
— 

~ 
2

and u2 is constant . u2, t1, and t2 are experimentally ch,~~ ri

constant.; the experimental examples subsequently described use

= 0.5

0.02

t2 = 0.05/cr

The modification allot s larger portions of cr and (1 — B) to the

last regions classified , causing them to be classified with less

diff iculty. The observed decrease in n is attributed to this
- 

- fact .

1.3 Study- of a Particular Problem 
-

Let f1 and f 2 be t runcated Gaussian d.f.’s given by

— (X — O~~
)
2

f1 (x) K1 e , 0 < x < l

= 0 , otherwise

— ( x — 0 ~6)
2

, 0 < x < 1

= 0 , otherwise (4.4)

where K1 and K2 are normalization constants included so that

f1 and f
2 integrate to 1, and let the problem parameters be

‘ S

_ _ _ _ _  - 

~~~~~~~~~~~~~ 

, _
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= 0.5, j = 1,2

= 25 , j = 1,2

R = 9  (4.5)

Before present ing results for R = 9, a graphical illustration

of the partition changes for R = 5 is presented in Figure 16

for one experiment . In Figure 16, a single horizontal line

indicates the corresponding interval is tentat ively classified;

a double horizontal line indicates the interval is classified .

The lines being above or below the axis indicate Class or

Class cs2 respectively. The result after 554 training observations

is a classified domain with decision threshold at 0.50197 and

error probability of 0.15870. This compares with an opt imum

threshold at 0.50000 arid error probability of 0.15866.

For a comparison with well known parametric techniques

(see e.g. [5)) , asetane it is known that f1 and f2 are Gaussi an

with standard deviation 0.1. Then the only unknown parameters

are the means. It is easily shown that only four observations

(two from each class) need be taken to satisfy the condition

PrtPr(eld) — Pr(e I d0) � 0.1) � 0.9

if the d. f. ’ s are given by (4.4) . The additional a priori knowl-

edge drastically reduces the number of training observat ion.

required .

I ~ _____________

~1 

-: T~~
- 

-

T~1~~~ -
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4
Nu~~er of Interval Boundaries
0bservati~~~~~~~~~~~~~ _—7, 

~ \ ~~~~~~~~~~~~~~~~~~~~~~~~

5 4 1  H 1  I I
104 

~~ H I

I I I I

I I I

- -

I 
“~~~ l i t  I I

I 
504 -lii i I

I ILI I I
t

0 0.50197 1

Pr(~ 1d) — 0,15870 Pr(efd0) — 0.15066

Figure 16. &~~aple of Partition C)*nging
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For comparison with a commonly used nonparametric technique,

experiments were performed using a nearest neighbor classification

technique . Each x in £ is assigned to the class represented

by the nearest member in a set of n = n1 + n2 training observations

(fl j from Class , n1 = n2). Using the d.f.’s of (4.4), 100

exper iment s were performed for each of several n values. For

each experiment n observation s were taken , the nearest neighbor

decision rule was obtained, and Pr(eld) computed. An estimate

of the confidence that Pr (eld ) — Pr (e!d0) < c r  was obtained

by dividing the number of experiments for which Pr(~~t d) — Pr(&!d0)

<cr by 100. The curves in Figure 17 illustrate fl j  versus cr

for q = 0.1, 0.2, 0.5, 0.8, 0.9. For confidence ~ 0.9 that

Pr(~ ld) —Pr( eId 0) < c r  = 0.1, Figure 17 shows that 9light ly

more than 100 trainin g observations are required. Figure 17

also shows that for o’ somewhat less than 0.1, say a’ = 0.05 ,

the confidence q = 0 9  would never be attained from the nearest

neighbor rule. This is in agreement with the work of Fix

and Hodges r55J who show that

Pr(etd) —~~~ 0.225
nj~~

or

Pr(e~d) — Pr(~~Id 0) ~~~~~~ 0.225 — 0.159 = 0.066t fl j~~~~
when th e nearest neighbor procedure is used on ~.his problem.*

*Fix and Hodges also show that for the K nearest neighbor rule, the
asymptotic difference Pr(~~d) — Pr(eId0) decreases to zero as K -.~

- - 
~~~

- -
~~~~~~ -- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~ s -- ~ 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

~~~ 
- 

~~~~~~~~~ —-~~~~~ 
- -~~ 

-
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II
100

n

10

~ 0. 1 0.2 I 0.5 0.8 0.9

1 I I I I
001 0.C2 0.04 0.066 0.10 0.20 0.40

a’

Figure 17. Tradeoffs A~~ng n a’, and ~~, (Nearest Neighbor Classification )

I
’

____________ 
______________ — 

_________ — - - -- ———— -------- ._
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The rest of this section is concer ned with the problem defin ed

by (4.4) and (4.5) unless stated otherwise.

4.3.1 Effect of a’ and B

In Figure 18 P r (e~d) is plotted versus a’ at the procedure ’s

termination for several B values. The solid lines are averages over f ive

experiments; the broken line is the maximum over five exper iment s

for each B value and over all B values. The result should rema in

below the line Pr(e ld) = 0.15866 + a’ with confidence at least

B. For this problem the procedure appears very conservative

because in nc~e of the experiments did Pr(eld) closely appro ach the

line Pr(e~d) = 0.15866 + a’. A conservat ive pr~~edure can be

undesirable because the number n of training observ ation s for

domain classification may be larger than the numbe r required

with a less conservat ive procedure .

In Figure 19 an avera ge value of n for five experiment s

is plotted versus a’ with B as a parameter .

4.3.2 Effect of Assumed Lipschit z Constant s

The value 25 is nearly the smallest Lipechit z constant

= L that applies to the function s f~ of (4.4).  Decreasing

L below 25 can cause a decrease in n; however , an assumption

of the problem i. then violated . Nevertheless , it i. interest ing

that for the problem of (4.4) and (4.5) ,  reduction of L causes

a reduction of n without causin g Pr(eld) to exceed an acceptable

limit (Pr(eld ) + a’).

— ———- - -
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In Figure 20 the maximum of Pr(f.~d) over 5 experiments is plotted

versus ~ for several values of L. (sly for L 1 and L = 2

did Pr(e~d) exceed o.15866 + ~~, and even for these cases , Pr(eld)

for only one of the five experiments exceeded that value for a given ~~~.

In Figure 21, average values of n for five experiment s corresponding

with the examples in Figure Z) are plotted versus ~ with L as a para-

meter. The results in Figure 21 show that a priori 1a%owledge

of the smallest applicable values for the Lipschitz const ant s

is helpful In reducing n. For the probism considered it can be

concluded from Figure 20 that violation of the smallest applicable

Lipschitz constants by a factor as large as ten may not prevent

domain classification such that condition (1.6) 15 satisfied.

A reason for the good experimental results even with Lipschitz

constants that are smaller than the minimum applicable values

is that the maxim~mt elope of f~ occurs in just small part s of

the domain. This suggests that a priori Iciowledge consisting

of the maximum absolute value of the slope of ij(x) at each xE4~
could be used to make the approach less conservative. Such

a priori ~mowledge could be used to define “local” Lipschitz

constants, different constants applicable for different intervals.

Also suggested is the possibility of adapt ively altering the

constants for each interval based on current results; adaptation

could occur with an operator interact ing with a histogram display

or automatically by an est imation procedure . Such a display

or est imation procedure may require local storage of samples in

order to obtain an est imate of the local rate of change of the density.

- —

_ _ _ _ _ _ _ _  — ~~~~~~~
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4.3.3 Effect of ~3ignal to Noise Rat io

A t omaonly used measure of the separability of f1 and

when they are Gauseiant is the signal-noise ratio, S:N, which

can be defined by

/ Mean — Mean1 2
\Standard Deviat ion

In Figure 22 , n averaged over five experiments is plotted versus

L for S :N — 1,2 , and 4.

4.3.4 Effect of the Number of Intervals

In Figure 23 n aver aged over five experiments is plotted

versus R for ~ = 0.1 and ~ = 0.2. Not shoiai in Figure 23 is

aver age n for R — 4 because the processing failed to terminate

for some experiment s. This failure to terminat e is caused

by lack of ava ilabil ity of a sufficient number of Inter

vale for adju sting unclassifiable int erval sizes into classifiable

sizes. In the present example failure with parti t ions having

four intervaie occurs when one interval at each end of the domain

is classified leaving two adjacent intervals in the middle.

It i~ possible that neither of these Inte rvals in the middle

can be classified. The partition adjustment operat ions do not

allow a shift of their common bound ary other than through a

costhine operat ion and tb.on a split operatton . Such a pair of

the d.f .  ‘ a are not Gaussian, this definiti on loses much of
it. appeal.
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operations nay not occur because of the condit ions of Section 33
for combining. Even if it does occur , the result ing intervals

may not be classifiable. Thus, for small R , interval operations
more general than the combining and splitt ing described in Section 3.3
might be helpful .

The Increase in average n with an increase In R f  or large
R is explained by the worst case techn ique of Section 3.4
for reinitiali zing inter val parameters after combining
Inter vals. The techn ique re sult s in a. loss of Information ;

hence , more training observation s are required . Figure 23 shows

experimentally that the best R for th is problem is about nine

or ten . R is not too crit ical as long as it is large enough .
If it is chosen too large , the procedure aut omat ically reduces

the number of interv als actually used by combining some of

them togethe r.

4.3.5 Effect of Frequency of Computations

Let K be the number of training observations used for updat ing
between classification attempts. In Figure 24 , n averaged over

five experiments is plotted versu s M for several ~ values. Some

increase in n is not ed for small and for large M. Not plotted ,
but perhaps as significant , is the fact that for large 14 processing

is faster because comput ation s are performed less freq uent ly.

~.L )~ilti-Thre~ho1d Examnias

To illustrate the procedure for multi—threshold problems,
including non Gaussian problems, results of five experiments for
each of two examples are illustrated in Figure 25 and 26 respect ively .

— . - ---~ .—~ -

- S
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1

- 
— 05)

2

f1( x ) = K . 1 e ~\ 0.1 , 0 < x < l

= 0 , otherwise

— AIX_— 0.5)
2

f
2 ( x ) = K 2 e ~\ 0.2 , 0 < x < l

= 0  , otherwise

(K 1, K2 are normalization constants)

= 0.2

= 0.5 , j = 1,2

L~~— 2 5 , L2 7

R = 13

Figure 25 shows the domain classification at termination, Pr(eld),

and n for each of five experiments for ~ ample 1. Also Included

for comparison is the opt imum doma in classification and Pr(~~d0).

Example 2

— 
— 

J x — _0.2~
2 

— Jx — 0.6\ 2

f1(x) = K.1 [e ~~‘. 0.05 ~ + e 
2\ 0.05 ‘~ ], ~ < x  < i

= , othe rwise

— 
— p~~)

2 
— 

— 0.8)
2

f2(x) = K2 [e 0.05 
+ e 0.05 ], 0 C X  < 1

= 0 , otherwise
£
t

S q — ——— - - 

S 
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Number of
Observations 

~2 , “2
712 1 I I

0.3868 0.6493
Pr(~~d) = 0.34468

I ~l
1212 I I I

0.3821 0.6307
P(e fd)  0.34386

“1 “2
1112 I I I

0.3438 0.6490
Pr(P ld) 0.343 84

“2
2412 r I

0.3683 0.6337
Pr(t~d ) = 0.34192

“2 “1 “2
1412 I

0.3180 0.6427
Pr(8~d) — 0.34973

Optimum Partition

I “1 “2

0 0.3653 0.6347

Pr(g I d )  = 0.34186

Figure 25. Results for a 2 Thres hold Problem
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Number of
Observations

I “1 i “2 I ‘~1 i “2
1314 1  I

0.302k 0.4972 0.7128
Pr(~~d ) — 0.03609

“1 ~ “2 “1 ~ 
“2

714 I T I I
0.3260 0.5076 0.7015

Pr(~~Id) 0.04232

“1 i “2 “1 I “2
814 F I I

0.2038 0.4919 0.6908
Pr(e~d) 0.03866

“1 “‘2 “‘1 “2
1514 F I I

0.3047 0.5025 0.7197
Pr(e~d) = 0.03874

“1 “2 “1 “2714~~ I I
0.3027 0.4985 0.7064

Pr(*’ d) — 0.03471

Optimum Partition

I “1 ~~ “1 ~2

0 0.3000 0.5000 0.7000
Pr(~~d0) — 0.03413

Figure 26. Results for a 3 Threshold Problem
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8 0.9
= 0.5 , j  = 1,2

L 1 
= 50, j = 1,2

R — 15

Figu re 26 shows the result s for F~~.mp1e 2. Note that for Example 2,

the d.f.’s f 1 and f2 cannot realistically be assumed Gaussian ,

and thus a “non Gaussian” approach, such as the current one ,

shoul d be used .

~~ S~~~aiv

Computer simulations verify for the problem5 considered that

processing according to the flow diagram of Figure 3, Chapter I

gives good results. An interval of a given R—5.nterval part ition

of ~ is classified if condition (2.21) is satisfied~
Part ition adjustments are made using the adjustment technique

of Chapter III. First a one threshold problem is studied as

problem parameters are varied . Of particular interest is that

the procedure appears too conservative ; the assumed Lipschitz

constant s can be reduced stgnificant ly below the inin iimam applicable

values. The effect for the example is to reduce the number n of

training observations required without increasing the probability

of error above an acceptable value. The following possible

m dificat iona are suggested:

1) A priori knowledge consisting of the maximum absolute value

of the elope of f 1(x) at each xE4~ might be available.

Suct~ knowledge could be used to define “local” Lipschitz

~ 
I, 
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constants for the intervals—different constant s for

different intervals.

2) The Lipschitz constants for each interval could be

adaptively altered—either interactively by an operator

observing a histogram display or automatically by an

estimation procedure. Such an approach could lead to

a practical solution of the problem of obtaining the

a priori knowledge required in 1) above.

It is noted that a drastic decrease in the number of training

observat ions required can be obtained if a priori knowledge

appropriat e to parametric procedures is available.

~l

,

, 
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CHAPTER V

EXTENSION TO MUL TIDIMEN SIONS

~I.1• Introduction

In the preceding chapters computerized recognition Is restricted

to a 1-dimsnaional observation space. A mapping is now utilized to

extend th. procedur. to a L—d iinensional CL finite) observation space.

The observation vector ~ is in a bounded domain S) of an L-dimeneional

vector space Vt wt~ere

= {~ 
(x1, . .. , x1) : 0 ~~~X

j 
< 1, i i , . .. , t} (5.1)

Density functions ~~ j 1,2, defined on £ are assumed

to satisfy Lipsehit s conditions ,

— f~(~) t  ~~ L~ f~~~ 
— , j 1,2 (5 .2)

for the norm

I~~~~~~ - z O- Q  (x~~~~Y~)2)
1
.

i—i

In the previous chapters , a procedure is developed for adjusti ng a

partition of a 1-dimensional observat ion space. In the current

chapter , an appropriately defined one—to-one mapping is utilized to

achieve a corres pondence bet ween aete in a partition of £ and sets

1~
________________ 

__________ 

____________ 
_________ 

______________________________ 

I
_
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in a partition of an interval of the real line. The mapping is

defined such that the previously developed partition adjustment

technique on the real line can be used to adjust the corresponding

partition of ~. Alternatively, the mapping can be viewed as con-

verting the L—dimensional probl em to a 1—dimensional one .

There has been recent interest in tra nsforming data vectors in

to vectors in Vt , L ’ < t. One such transfor mation is used to

display clusters of 1-dimensional data vectors in Vt , especially

for the case 1’ 2 (a human operator then can view them for data

analysi s). Anot her type of tr ansfor mation is a one—to—one map of

regions in V~ to intervals in Vt ’. The former type of transfor mation

is discussed in Section 5.6;  in its present form, it is not appli-

cable to the partition adjustment problem although it may be possible

to n~dify the transformation. The latter type of transformation

which will, be used for adjusting th e partition is discussed in

Sect ion 5.3.

5~2 The

The approach used to convert the 1—dimensional. partition adjust-

ment problem to a 1-dimensional probl em involves the following six

steps :

1) Each dimension of th e domain £ in Vt Is partitioned into bK

intervals where b, a positive integer , is the base for some of the

arith metic compatations that follow. The positive integer K deter—

mines the number of intervals in the partition and is called the

complexity . The resulting b~~ regions In Vt are referred to as

- .  - --

~~~~~~~~~~ ~( .~~~ ~
— 5- - — -.—- _ _ ~~~~j~~~~~~~~ 2~~~~* ~ --

— S -~~- ‘S



—5--

— 9 8 --

elementary regions .

2) Similarly, the interval

~~= f y : O ~~~y < i )

of the real line is partitioned into b~~ intervals referred to as

elementa ry intervals .

3) A one-to—one transfor mation is defined which maps the elemen-

tary regions onto the elementary intervals. In this manne r , a par-

titioned 1-dimensional domain is mapped to a partitioned 1-dimensional

domain. Data vectors falling in a L-dimensiona1 elementa ry region

also fail in its corresponding 1-dimensional elementa ry interval .

4) Approximate functions h1 and h2 are defined for f1 and f 2 such

that ~~~ j~~1 ,2, is constant over each of the elementary regions in

~. The constant h~ on any particular region Is taken to be the

average of f~ over that region . Because f 1 and f 2 satisfy (5.2 ) ,

the partitioning can be made fine enough so that for practical par—

poses h~ is equivalent to ~~~ j 1 ,2.

5) g~, a piecewise constant function , i~ defined on the real line

such that gj and h~ are equal over corresponding elementary region -

elementary interval pairs . The interior content or 1-dimensional

volume of each elementary region given by

1Volume (-j)
b

( 5.4)
b

—~~~~ ~~~~~~~~~~~~ S-~~~~ - - - -~~ -~~~~_____________
___ _ _ _ _  _ _ _ _ _  

—S 

— 
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15 equivalent numerically to the width of each elementary interval.*

Thus, function gj  integrates to 1 If h~ does. Data vectors falling

in the 1-dimenelonal observation space have the d.f.  f~ or practically

speaking h~. These data vectors also fall on the real line where,

practically speaking, they have the d.f .  ~j .

6) Lipschit z conditions introducing a priori knowledge about the

d.f . ‘s were utilized in the 1—dimensional recognition procedure consid-

ered in previous chapters . At the beginning of this chapter , (5 .2)

defines Lipschitz conditions assumed satisfied by the functions

j = 1,2, on the 1—dimensional domain. The following concerns the

problem of utilizing the a priori knowledge contained in these con-

ditions in such a way that the 1.-dimensional procedure may be employed

with the current 1-dimensional problem. This involves obtaining con-

stants L~* to be used in defining constraints on aj .

l~ j (x ’) — g
1
(y’)~ ~ L~~~x ’— y ’~

for x’ ~ y ’ where x ’ and y ’ are mid-points
of any 2 elementary intervals in ~. ( 5 . 5 )

EquatIon (5.5) can be thought of as a “pseudo—Lipschitz ” condition

on the function g
~• The procedure for obtaining L~* requires that

the transformation discussed in It~em 3. above relates each pair of

adjacent elementary intervals in ~ ‘with a pair of adjacent elementary

regions in £. Then , the maximum change in gj  from any elementary

5The partItioning is assumed to be such that all. elementary intervals
are the same size and all elementary re, one are the same size and
shape.

‘I
,

-‘- —-5—— - S --_
~ _i55_
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interval to an adjacent elementa ry interval occurs when the function f ~
changes at its maxinuim rate in the direction of the line joining the

mid-points of the corresponding adjacent elementary regions ( see

Figure 27).  The change in gj  Is bounded b~’ the relation :

I~j (x ’) — gj (y ’)I ~ — (5.6)

whe re ~ and ~ are the mid—points of the adjacent elementary regions that

correspond to the adjacent elementary intervals whose mid—points are

and y ’. Using (5.5) gives L~* in terms of

L~* = L ~ ~~:~~~{= L j  
b 

~~L~bK~~~
_
~~

) (5.7)

Recall that the functions ~j  are , for practical purposes , d. f . ’s

governing the 1-dimensional ma pped observations. Treating the constants

as Lipschit z constant s for functions gj , one can use the 1-d imens 4 onal

recognition procedure developed in previous chapters. It operates on the

mapped training observations to obtain a solution in ~. The solution

consists of a partition of ~ with each interval assigned to one class or

the other. The t -dimensiona]. solution can be obtained by assigning r~:ich

elementary region in £ to the class assigned to its correspond ing elemen-

tary interval in 1.

One could avoid the conversion in (5.7) above by treating the 1—d imen-

sional mapped training observations as though they were the original data

and assuming Lipschit z conditions on d.f. ’s for this data. Such assumed

Lipechitz conditions are open to question, but , inpractica , so ar e the

ones given by (5 .2)  on the origtnal functions.

I
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~~ h~

f~

/

h~(&f

/
/

/ _p4
’ /

p 1 ’

bK

Direction of ~~xiimim Change in

gj(x ’) 

/ 

~~~~ f g ~(x’ ) ~~j (7 ’) l ~~I h j (& .-h~(z)t

7’ x ’

Figure 27. The F~mctions f~ , ~~~ and
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The transformation to be discussed in Section 5.3 does not depend

on the data ; transformations that are data dependent could profitably

be used . For example the correspondence between elementary regions and

elementary intervals could be defined to minimize increments in the

estimated d.f. t s between adjacent elementary intervals.

Additional improvement could be attained by subdividing the obser-

vation space by a clustering r23, 56] or other technique to isolate

modes of the d.f . ’s. Each subdivision can then be t reated as the dor*in

of a separate problem for subsequent partitioning and mapping to the

real line.

5,3 ~~pping~ to One Dimensj~~
This section describes mappings that map elementary regions in ~

one—to—one onto elementary intervals in ~%. First , the elementary regions

and elementary intervals are defined more clearly.

The 1—d imensional elementary region s e e (b ,K ,L) ise1~ 2’ ~~~~ £
defined by

e 4 +1
S (b ,K ,L) 4~x : ~‘~~ x <~~~~~~~- , j 1 ,2, ..., tie1,e2, ..., e1 b b’~

- 

= : ej  < bKx~ < e~+1~ j  1,2, ...,

(5. 8)

All b~~ elementary regions are defined by allowing each of the sub-

scripts ej~ j — ] , ..., 1, in (5.8) to take on each of the values

0,1,2, ..., bK 
— 1. 5e e e (b ,K ,L )  is the set of all ~ in ~1, 2’ ~

that become identical if each of its L component. is expressed in

the base b number system and tru ncated to K digits.

Similarly the elementa ry interval 81(b ,IU) is d.tin.d by

- 
-

~~ :1’~~~ .i ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

• 

~~ S~~_ — ——-5 — 

— ——
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S5(b,KI.) — : ~ y

— { y : e~~~bIUy < e + i J  (5.9)

All b~
t elementary intervals are defined by allowing the subscript

e in (5.9) to take on each of the values 0,1,2, ..., b~~—l. S5(b ,K I )

is the ..t of aU y in R that become identical if expressed In the

base b n~~~er system and tr ~mcated to K~ digits.

Both the alimentary regions and the elementary Interv als are

uniquely identified by their subscripts. Hence the mappings can be

defined via the subscri pts.

5.3. 1 The Dovetail Mapping

Consider mapping the arbitrary e]e.sntar y region

S (b ,K , 1) to an elementary Interval In ~~. The base be1,e2, ..., e~
representation of th. subscript e~, j 1 , ..., 1, is

j — °jl°’j2 • 
~jK

— o31bK~~~ + crj2bK 2  
+ . . . + QI~~b (5.10)

where each ,1, i 1 , ..., ~ , is one of the vain.. 0,1, ..., b — i.

The Dovetail Mapping define. the correspondIng subscript a by

-— - - 
“ ‘ 

~~~~~~~~~~~~~~~~~~ - —-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘

- ______
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e ‘~
‘11~21 ° t1~12°’22 ‘“ ‘~‘ e2 ~~~~~~ 

°‘1K°’2K ~~
“ °‘tK

K~ — 1 K l— 2  0
= v11b + ,21b + o~tKb (5.11)

This mapping has been used in integrat ion theory (see e.g. Wiener

t4.li) . It is called the Dovetail Mapping because it Interleaves or

dovetails the digits of the ej
i s to get a.

~rample Figure 28 illust rates an example with b 3 ,  K 2 , and 1 2 .

The ordering imposed on the elementary regions in I~ through the

Dovetail Mapping by the natural order ing of the elementa ry intervals

in Q is illustrated with an ordering path. The dotted line portions

of the order ing path denote discont inuities in the path. Several

corresponding elementary regions lit ~ and elementa ry Interval s In

~ have been labeled with corresponding letters in the Figure.

5.3.2 The Col~~~i Mapping

A problem with the Dovetail Mapping i. the discont inuous way

in which it orders the elementary regions in I by the natural order-

ing of elementary intervals in ~~. For example , in Figure 28, adja-

cent elementary intervals F 1 and 
~1 In ~ correspond to the widely

separated elementa ry regions F2 and 02 in I. Because of the discon-

tinuiti es, (5.7) cannot be used to obtain constants L~* for pseudo—

Lipechit . conditions on Sj .

It I. possible to modify the Dovetail Mapping to remove the

discont inuit ies in its ordering path. By invert ing th. ordering of

the •lemsntary regions in suitab ly defined regions of ~~, the mapp ing

—- --..- -_~~~~~~=~~~~~~~~~~~~~ ~ 2~ — -
~~ 

- _ _ _ _

I~~~ d4m.
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x2

1
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x2

1

:::i~:tt:i~I:I

o~~~
2 2

~~~~~~~~~~~~~~~~~~~~~~~~~~~ , 
~~~,

A1 C 1 B1 D1 E 1 F 1 H 1 G~ I~

~~~ i(uIitII,IiiiiIu
~
i1iIIt,I,II$II,tI

~
II .11,1

Figure 29. Col*mm Mapping for b 3, k 2, and £ = 2
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illust rat ed geometrically by Figure 28, for example , can be converted

to the mapping illust rat ed by Figure 29. Note that the ordering

path in Figure 29 is cont inuous which implies that each pair of

adjacent elementary intervals in R corresponds to a pair of adja-

cent elementa ry region s in I. The mapping illustrated in Figure 29

is an e’~ample of what is called here a “Columo Mapping” . Whe reas

b for the Dovetail Mapping can be any positive integer , it is

restricted to be an odd positive integer for the Colunsi Mapping.

Again (5.10) is used to represent the subscripts ej for the elemen-

ta ry region S (b ,K , ~). The Colusm Mapping is definede1, e2, ..., e1
algebraically by writ ing,

e — ... B~181~B~2 ~I2 ~~~ ~
‘1K 82K ~~~ 

(5.12)

Each is either equal to o~~ or b — 1 
~~~~~~~~~ 

Which it is depend s

on whether or not an ordering inversi on as mentioned above is

required for the region defined by those digit s in (5.11) that are

more significant than c~~~. A method for determining whether an

order inversion should be made is now given .

Def ine

i—i t i—i i— i
~~~~~~~~ 

~~~~nm ~~~~~~~~~~~~~~~~ 
(5.13)

~~O n~1 n~~ fl~~~

is the sum of al]. a ’s in the following blocked in portions of

I

; - - - — . — — - -- — . — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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base b represent ations of the ej ’ s:

e
1 

= ...

ej  °‘.ji ... °jK

= L~11 ~ ...Then , 
~~i 

is obtained from:

— a’~~ if Qjj is even

= b — 1 — a ’ ~~ it is odd (5.14)

The Column Mapping defines an ordering path that orders the

elementa ry regions in ~ in exactly the same way as a curve in the

sequenc e of curves defined by Moor e r~ 2), who shows for the 2-dimen-

sional case that the limit curve is a space—filling curve (Peano [4j J ) .

~~~~~~~ Figu re 29 illustrates the Column Mapping for b 3, K = 2,

L 2. It shows the ordering path and pairs of corresponding sets

( labeled with corres ponding letters). By unbending the orderi ng

path and car rying along with it the elementary regions in I throug h

which it passes, the elementary regions are strun g out in a line or

column , hence the name Column Mapping .

I
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The fact that a Column Mapping ordering path is continuous ensures

that there is an adjacent pair of elementary regions in I corresponding

to each adjacent pair of elementary intervals in K. The term “quasi—

continuous”* is adopted to describe this property of the mapping

(actually a property of the inverse mappiflg). It is this property that

was required in order to convert, the Lipschitz con stant s by using (5.7).

5.3.3 Other Mappings with the Quasi-continuity Property

Other mappings having the quasi—c ont inuity property can be

defined. For example, the elementary regions can be ordered according

to a curve in a sequence of curves giving the HUbert realization [45)

of a space filling curve. Figure 30 illustrates an ordering path

that could result. fri a recent paper [53 ) Butz has defined the HUbert

Curve Ma pping algebraically for L dimensions.

Start ing with the Column Ma pping, the dimensions can be ordered

differently in different regions giving , for example, the nappini~
illustrated by Figure 31. For later reference, the mapping of Figure 31

is called a “modified Column Mapping.”

5.3.4 A Mapping Criterion

Several mappings have been discussed. Of these , the Dovetail

Mapping does not have the quasi—continuity property and is not con-

sidered further. A criterion is now suggest ed for use in determining

which of the mapp ings with the quasi—c ontinu ity propert y is most

appropriate.

*But z [44 ] uses the term ~quasi—c ont inuou s” in a similar context .

_ _ _ _ _ _ _ _  

~~~~~~~~~~~~~ ~-r~~~~~~~~~~~~
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x2
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Figure 30. HUbert Curve Mapping
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The 1-dimensional partition adjust ment technique of Cha pter IV

automatically combines contiguous groups of elementary intervals in

K together. Because of the quasi—continuity property of the mappings

now considered , the corresponding elementary regions in I, when com-

bined , form a region t hat is cont iguous . The d.f . ’e f1 and f
2

are approximated by constants over each such combined region. One

would expect these constant approxi mations to be the m ost accurate

when each possible combined region is tight ly knit together. Then ,

a reasonable approach is to seek the mapping that minimizes the

maximwn value of the ratio

f Maxiaim length of the combined 1-dimensional region~~
~, in any coordinate direction. J0 = —
f l-dimension..]. volume of the combined 1-dimensiona l
~ region.

(5.15)

for any poasible combined , 1-dimensional region. For the Column
Mapping, 0 satisfies

(5.16)

indicating for a given dimensionality 1, that 0 is independent of

K , but that the base b should be chosen as small as possible. The

s flest nontrivial odd base is 3 ( recall. t hat , for the Column

Mapping , b mast be odd). For th is reason only base 3 is consider ed

furthe r for use with the Column Mapp ing. With b 3  and 1 2  in (5 .16) ,
Oie  bounded by 6. The worst case for the Hu bert Curve Mapping of

---c ~~~~~~~~~~ —~~~- -. 
.

~~
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Figure 30 would be the case in which four elementary regions in a lin e

are combIned . 0 fr om (5.15) is then bounded by ~~ Similarly , 0 for

the Modified Column Mapping of Figure 31 is bounded by the value 5.4.

The examples discussed later in this chapter all use the Column Mapping.

However , it is apparent that , based on the rat io 0, the Hu bert

Cu rve Mapping and the Modified Coltmm Mapping merit further study.

5~.L, Cc~ nuter S1mtllkted Results

To demonst rat e the ext ension to nnalt idimensions, several two—

dimensional examples using the Column Ma pping are presented . The

mapping parameters f~r each example are b = 3, K = 3, and £ = 2 ,

giving the ordering path illust rat ed in Figure 32

5.4.1 ~~~mples

The examples all use class—conditional d.f. ‘a that are either

Gaussian or linear combination s of Gaussian d.f . ’s. Though the procedure

does ~~~~~~~ require Gaussi an data , suc h data is easy to generate on the

computer and , with linear combinations of Gaussian d .f . ’s, is felt to

represent , as well as any data , the type of problems to be bandied,

Table 1 lists the weighting coefficient s, means and covariance matrices

used for the component s of the linear combinat ion in each example. Any

observation falling outside the domain I is rejected and a new one

obtained. This t runcation effect is minimal for the examples becau se

of the placement of the component d f .  ‘ a well within the bo~~idar ies of

I. A priori probab ilities are assumed to be 0.5. The goal is

to satisfy condition (1.6) wit h a’ 0.1 and B — 0.9. Figures 33

‘i I

— 
— 
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Figure 32. Ordering Path for Examples

I:
_ _ _  _  

_ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ • 

-

~~~~~~~~

—

~~

---

~~~~~

- .—-—-

~~~~~~~~~~~~~~~~~~

-- . - ,  - -.-

I ~~~_ - . - . - - — - . .‘. - ..- -



— 115 —

Table 1. Definition of Examples

~xample 
C1ass~~~ ______ Class ‘~2Jeightint Covariance leightin Covariance

Coef~~ leans Matrices Coef’s Means Matrices

1 1.0 0.35 0.01 0 1.0 0.65 0.01 0
0.50 0 0.01 0.50 0 0.01

2 1.0 0.50 0.01 0 1.0 0.~~i 0.01 0
0.35 0 0.01 0.65 0 0.01

3 1.0 0.394 0.01 0 1.0 0.606 0.01 0
0.394 0 0.01 0.606 0 0.01

4 1.0 0.394 0.01 0 1.0 0.606 0.01 0
0.606 0 0.01 0.394 0 0.01

5 1.0 0.50 0.01 0 1.0 0.50 0.04 0
0.50 0 0.01 0.50 o 0.04

6 1.0 0.50 0.0025 0 1.0 0.50 0.04 0
0.50 0 0.0025 0.50 0 0.04

7 Mode 1 0.20 0.0025 0 Mode 1 0.40 0.0025 0
0.5 0.50 0 0.0025 0.5 0.50 0 0.0025

Mode 2 0.60 0.0025 0 Mode 2 0.80 0.0025 0
0.5 0.50 0 0.0025 0.5 0.50 0 0.0025

8 Mode 1 0.50 0.0025 0 Mode 1 0.50 0.0025 0
0.5 0.20 0 0 .0025 0.5 0.40 0 0.0025

Mode 2 0.50 0.0025 0 Mode 2 0.50 0.0025 0
0.5 0.60 0 0.0025 0.5 0.80 0 0.0025

9 Mode 1 0.35 0.01 0 Mode 1 0.35 0.01 0
0.5 0.35 0 0.01 0.5 0.65 0 0.01

Mode 2 0.65 0.01 0 Mode 2 0.65 0.01 0
0.5 0.65 0 0.01 0.5 0.35 0 0.01

10 Mode 1 0.25 0.01 0 Mode 1 0.25 0.01 0
0.5 0.25 0 0.01 0.5 0.75 0 0.01

Mode 2 0.75 0.01 0 Mode 2 0.75 0.01 0
0.5 0.75 0 0.01 0.5 0.25 0 0.01

____________ 

_______________________________
_______________ ________________ _____________ 

I
± :~~ _ _ _  ~~~~~~~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _  _ _

I ~~~~. 
-
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through 42 illust rate the resulting assignments of regions to

the two classes . A circle with radius one standard deviation is

drawn about the center of each component to facilit at e visualization

of the result s.

Figures 33 thr ough 36 for Examples 1 through 4 show that

the procedure succeeds for differ ent arrangement s of the class—

conditional d .f .  .. Separation of the means in each case is three

t imes the standa rd deviat ion. Figures 37 and 38 for Examples 5

and 6 illustrat e the capability of the procedure to separate the

space based solely on the dispe rsion of the distribut ions.

Figures 39 through 42 for Examples 7 through 10 portray some

bimodal results for cases in which regions assigned to the two

classes are interleaved .

Similar to the one-dimensional case , it is found that signif-

icantly fewer training observations are required when smaller

Lipschit s constants are used. For the examples illustrated, the

constant s L~ are approximately one-tenth the values computed by

(5.7) from the smallest applicable Lipschit z constants for the

d. f • ‘a . The ~f feet on the bo’.mdary of using the smaller constant s

is not. serious for these examples. However , it must be noted

that an assumpt ion of the problem is violated , and attainment

of the goal is not verified. With large constant s L , the solution

is generally obtained only after very many training observations;

however, it is observed that tentat ive classificat ion of the

domain usually settles down quickl y to a reasonable result .

Thus , another ~~y to make the procedure more nearly practical is to

P - ~~~~~~~~~~~~ 
~~~~~ - -
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Figure 33. Example 1 
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2

0 ~~ xl

Figure 34. Example 2

- 
I ~~~~~~~~~~~~~~~~~~ 

- - --- - - --- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~ 
----- -.----- ~

--- --.- - - — 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
- .  -

I - - -



— 119 —

x2
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1

Figure 35 . Example 3
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Figure 36. Eicample 4
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Figure 37. Example 5
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Figure 38. Example 6
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Figure 39. Example 7
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Figure 40 . Ex~mple 8

- 

_ _ _  _ _ _ _ _  

-—- ~~~

5

~~~~:_

S — -~~-~



— 125 —

1

- - 0 
~~~~~ 

xl

Figure 41. Example 9
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Figure 42.  Example 10
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use the tentative result s when results are needed but to allow

the system to continually process additional incoming training

observations ~mtil the f inal solution is obtain ed . If large

enough constants have been used , then the final result can

be trusted.

ror these examples , the procedure terminates after approx-

imately 1000 tra ining observations. The maximum number of inter-

vals allowed is 15 for the unimodal d .f .  problems and 20 for those

with bimodal d.f. ’ s.

5.4.2 Comput ation al Aspects

As the complexity of the problem increases , that is , as the

PCi product Increases , same computat ional problems appear. For

example, the IBM 1130 computer system used for the examples

maintains accuracy to about five significant decimal digits. So

long as the real number representation of an interval boi.mdary’

needs no more than five decimal digits accuracy , the ordinary

arit )’m~etic operations and storage techniques provided with the

computer system can be employed. Five decimal digit s corresponds

roughly to ten ternary digits; thus , if a mapping using base 3

is employ-ed , the PCi product is limited to about ten with ordinary

operations of the IBM 1130 system . This corresponds at one

extreme to a ten-dimensional problem with each dimension part i—

tioned into three intervals, and at the other extre me, to a

*An interval bounda ry is identified by the elementa ry interval
imeediately to its right .
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two-dimensional problem with each dimension partit ioned into 243

intervals. For either case (or any intermed iat e case ) an inter-

val boundary (corresponding to a mapped region boundary ) can be

stored as an ordinary real number.

When PCI > 10, other techmiqu.s must be employed . (~ e approach

is to ploy a computer sy st em with more st orage in egch computer

word; however , at some critical PCI product for a given base b ,

the problem reappears. Another approach i. to nrovide for the

storage of each bounda ry in Jevera] words of st orage. Such

ext ended prec 13 ~on req uires pro grams to handl. the arithmetic

operations involved . Increased computer t ime as well as increased

storage (for the mult iword interval boundaries ) results . For

the examples handled In this re port, one word per boundary is

used . All variables and the entire program are contain ed in

the 16000 , 16-bit word , main stor age of the IBM 1130 computer

system. Processing t ime for each of the two-dimensional examples

is approximately five minutes.

S - S Other lass for the I~ nnin~s

This section briefly discusses other uses for the mapp ings

described in Sect ion 5.3.

5.5.1 Display of Real—Valued Functions

A real—valued function of more than one real variable is

difficult to observe . The two-dimensional display surfaces

generally used have the capab ility of displaying such a function

defined on no more than one var iable . When the domain i. greater

___________ 

________________ 

___________________

~~ 
~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~ 
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than one—d imensional, various projections and sectional views

can be used to gain a perspect ive of the function . Another

approach is to first map the mult idimensional domain to one

dimension via one of the mapp ings described in Section 5.3.  Then

the function ’ s one—d imensional equivalent can be displayed on a

two—d imensional surface [461. Figure 43 illustrates the result ing

display for a bivariat e Gaussian d. 1.  given by

x — 0 . 5 ~2~
2fl(O .25) 2 exp~- 

~ 

( ~o.25 
j

where the mapping used is the Column Mapping with b 3, K = 3,

and I = 2.

Unless one is accustomed to observing bivariat e Gaussian

d. f .  ‘ s in the form displayed by Figure 43, the function represented

there probably is unreco gnizable as a t ransformed Gaussian d. f.

For purposes of recognizing functions, the display has little

value . It is for purposes of comparing function s that such a

display can profitably be used . (~~e application is to display

the difference of two d. f . ’s in order to get an idea of what has

been called the “ separab ility” of the two functions. Two d f .  ‘ s

are highly separable if the d.f. generating an observation can

be identified from the observation ’ s location in ~ with small

.~ probability of error.
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2.7 
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Figure 43. A Mapped Bivarlate Gaussian Density Function
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5 .5 .2  Parameter Sensit ivity Studies

A display such as described in 5.5.1 can be used for parameter

sensit ivit y st udies . Suppose a system has a real-valued function

output depending on M real variables c~~, ~2 ’• •  ~~M as illust rated

in Figure 44.

f(x1,x2, . . . ,x1)

~l ~2”~~ M

Figure 44. Study of ~ . Syst em’ s Input Parameters

Suppose that a imown sett ing of these parameters produces a

desired function f ( - , , . . . , ) .  A problem is to adjust for a

cheaper set of parameters without significantly degrading the

function . The difference between the desired output and the

output with adjust ed parameters can be continually monitored

as the parameters are adjusted . Such a use might not requiro

the resolution of the difference function to be very large.

In that case the result might be mapped back up to two dimensions

I ________________________________________________
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via the inverae* of a mapping with the “ quasi—continuity ” prop erty,

and the differenc e funct ion displayed as inten sity modulation.

The use of a color display can further enhance the usefulness

of the mappings if quick interacti on from the operator is desired .

For example , whil e Intensity i. used to portray the difference

function , color can be used to identify the region in £ corre—

sponding to any point on the display . Although this information

is already available from the location of the point on the

display , color enables its determination to be made more quickly

If part icular regions In ~ are of interest , different colors can

be reserved for use at their corresponding display points.

For another example consider the problem of representation

of a d.f.  as a linear combination of Gaussian d.f . ’ s. Supp ose

that an acceptable representation (perhaps from a histogram or

some other estimation procedure) has been obtained , but that

the number of parametei 3 used is impracticably large. The

difference between the acceptable represent at ion and the linear

cou~~1.nat ion of Gaussian d • f. ‘3 Cifl be mapped to the real line.

A viewer controlling the parameters describing the linear repre-

sentation can interact with the display ed result to find a set

of parameter. giving sutt a~le agreement between the two repre-

sent at ions. The representation problem just described also

occurs In unsupervised estimation problems.

The same formula for th . inver se can be used as for the mappi ng
itself . That is , the ~ ‘s derived from the &s per (5.13) and
(5.14) can be them selves processed by (5.13 ) and (5.14) as if
they were the ~ ‘s to get ‘f’s. The resulting y’ s are the original
~~‘ S.
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5.5.3 Data Reduction

Many data reduction schemes operate on real—valued function s

of one real variable. They use techniques to reduce the redundancy

in the function so that it can be represented with as few parameters

as possible. The case in which the domain is mult idimensional

can be handled by mapping the domain to one dimension. For

example, the television camera with its raster scan reduces a

function of intensity on two dimensions to a function on one

d imensiona. Because each line In the rast er traverses from

one side of the picture to the other, the function cannot gen-

erally be well approximated by a constant for the length of the

line. However, if the line were to wander around in a more or

less tightly Ia~iit region such that the same area of the picture

is covered , it is reasonable to assume that f ewer charges in

intensity will be encountered and hence a better chance for a

satisfactory constant approximation exists. Using the same

argument throughout the space leads to the conclusion that a

mapping such as the Colui~m Mapp ing can give a function of one

var iable that is generally characterizable with fewer para meters

(at least when using a piecewise constant representation ) than

the ordinary raster scan type mapping. Hm..~e , such .ppings can

be considered for use with data reduction schemes. Abend , Harl ey,

~‘Note t hat the convent ional television raster scan is, except for
the interleav ing feat ure , a special case of the Dovetail Mapping
of Section 5.3.1.
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arid Kanal 147) have considered the Hilbe rt Curve Mapping to

account for spat ial dependencies of random variables along the

orderinp path.

For purposes of data reduction , it may be advantageous to

alter the mapping s in a way that depends on the data ; that is,

to make the mappings interactive with the dat a. For example ,

instead of modifying the Colu~mi Mapping of Figure 29 , by re-

orderin g the dimensions in different regions to obtain Figure 31 ,

the ordering of the dimensions in a region could be made to depend

on the function in that region. For the two—dimensional, case

(pictures), both orderings of the dimensions can be considered,

and the one best satisfying some criterion , e.g. smoothness of

the funct ion along the resulting ordering path, can be chosen

for the mapping .

5.5.4 Scann ing for Regions with Specified Function Values

But z (44 ) considers what he calls a “Finit e Peano Mapping”

which is essentially the inverse to the Col~mei Mapping for

base 3. From knowledge of properties of a function f defined

on the domain 1, he searches for regions s&tisfying f (s) � 0.

But s derive s numerical bound s describing the quasi-continuity

of the mapping. Then, fromi prope rties assumed satisfied by

function f , an “ implicit ly exhaustive search ” procedure can

be used to find regions in ~ for which f(& ~ 0. But s calls

the search impl icitly exhaustive because every point is account ed

for without making computations at every point .
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5~6 Other Extensions to Mu1tid~linensiona

A U the described mappings m a p  regions in ~ one~to_one onto

intervals in ft. Such mappings provide a way to extend the

recognition techniques of previous chapters to mult idimensions.

In addition, they have other uses as discussed in Section 5.5.

Other mappings wi th the general purpose of reducing the

dimensionality of dat a vectors have been defined in the litera-

ture . When 4he dimensiona lity is reduced to one , it is reasonable

to consider these mapp ings as the means to ext end the current

work to mult id imensions.

Mappings that operat e only on the observatio ns have been

considered by Shepard and Carroll [4~1. They map the set of n ,

L-d imensional observation s to a set of n , L ’—dimensional

observation s where t ’ 
< L. They st rive to obtain this

mapping so that an index

2
~~

, 

~ •1w/~ L 2 ij
k~~~~ (5.17)

that measures cont inuity inverse ly is minimized , In (5.17) dii
and Dii are distances between the and 1

th observ ations as

measured in the £—dimensional and the L ’-dimeneional spaces

respectively. That is

_ _ _ _ _ _ _ _

_ _ _ _ _  
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L
= 7 ~~ —

L (x~~ — (5.18)

whe re is the ~th component of observation (yj1~~.. . ,y~~ )

and is the çth component of observat ion = (xj l,...,x j L~
) .

In (5.17), W1~ given by

= -4- (5.19 )
~

is included to weigh the effect of the re lation between the 1th

and 1
t h obser vations less as the mapped distance between them

is increased. The denominator C given by

rr r’
C L L  L ~—J (5 .20)

~ ~

is included f o r  normalization purp~see . Without it , k could be

made as small as desired by making itch D11 large. References

[49 ,501 also consider mappings of this type.

Anoth .r ma~ping that maps only the observation s is the

“Chain Mapp ing” [23]. The Chain Mapping considers the obser—

vat ions sequent ially—the next member in the sequence is the

nearest neighbor to the current observ ation. An observ at ion

*

~ 
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is mapped from V t to the real line such that the distance to the

previous member in the sequence is preserved .

An important use for mappings that operat e only on the

observations is to reduce their d imnensiona lity so that they

can be displayed . If preserved by the mapping, clustering

information and oth er relations among the data can be learned

visually from the display . Because of the inability to observe

the data in the original mult idimensional space , these relations

could go unnoticed without the m app ing. Applications includ e

problems in radar and sonar. For example, signals from targets

can be converted to i—dimen sional vectors , mapped to lower

dimensional vectors , and observed. If the mapping has preserved

cluster relationships, it may be possible to separate the data

into two groups. Naming one group ~~rheads and the other decoys

could occur with addit ional information such as knowledge of

the rat io of warheads to decoys.

A disadvantage of such mappings for the current work is

the fact that they map only the observations and do not t reat

the rest of the space. The mapping of additional observations

is handled by reprocessing the whole set with the add itional

ones appended . A way to avoid this problems would be to process

just once an appropriat e sized subset of the observations.

The mapping at other points in the space could be defined by

using an interpolation proc edure. For example , a vector could

oe mapped to the real line so that the rat io of distances from

the vector to its two nearest neighbors in the 1— dimensional

— 
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space is preserved and so that the mapped vector lies between

the mapped nearest neighbors. Th. approach can be used for

the current work but requires assumed Lipschit z condit ions on

d.f. ’s for the mapped observat ions.

Another mapping that can be used is one proposed by Patrick

and Fischer [51]. It is a linear t ransformat ion from the t—

dimensional to the i’—dimensional space. The t ransfo rmation

is chosen to maximize a measure of separ abilit y between an

est imated d .f .  on transformed Class m.~ observations and an

est imated d.f. on transformed Class observations. The d.f .

estimates are of the Parza ri CU] type. The measure of separa-

bility between these estimate s is defined to be the square root

of the integral of their difference squared . This mapping

resembles the mapping proposed by Shepard and Carroll provided

their mapping is first extended to the whole domain via

an interpolation procedure . Both approaches depend only on the

original training observations. Important differences are that

Patrick and Fischer ’s mapping is linear and maximizes a measure

of se arebility , wherea s Shepard and Carroll ’s mapping is non-

linear ai.~d minimizes an index that measures continuity inverse ly.

~~. 
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CHAPTER VI

CONCLUSIONS

(~ l Sununarv of Results

A procedure is described for dete rmin ing a decision rule d for

the 1-dimensional , 2 class , nonparametric , recognition problem

wit h unknown class—conditional density functions. A priori

probabilit ies are known , and the density functions are assumed

to satisfy Lipschit z conditions with known Lipschit z constants.

The procedure allows the achievement of a specified con f idence

that the probability of a recogn ition error when using d is within

a specified con stant of the minimum attainable probability of

recognition ~rror. A fixed storage constraint is imposed.

Histogram est imates of the un kn own density function s using

a R—interval partit ion of the domain are obtained from a sequenc~
of tra ining observations. These estimates are used to define

the decision rule d. The specified confidence is achieved by

achiev ing a similar confidence for each interval in the partition.

During training , the partition (always restrict ed to R intervals

or less) is altered in an effort to improve a measure of perfor mance.

Histogram estimation of the density function s procedes based on the

new pa rt it ion but makes use of information obtained while using the

old one. A propo sition presents requirements to achieve a specified

_
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confidence for a fixed part it~on; however , there are no theoretical

results showing achievement of the confidence when the partit ion

is adjusted . Experimental results for several one-dimen siona l

examples are presented that demonstrate achievement of the desired

confidence when the partition is adjusted with R select ed somewhat

larger than the number of decision thresholds. These exper imental

result s use training observations from densities that are linear

combinations of Gaussian densit ies. The results indicate that

Lipschit z constant s smaller than the minimum applicable value s

give improved performance (a decrease in the number of training

observat ions required without increa sing the probabilit y of error

above acceptable limits). The explanation is that the density

funct ions of the example s satisfy Lipschit z condition s with ~~~Uer

constants in scene intervals than in others . This suggest s the

possibilit y of supplying different Lipschit z constant s for different

intervals , perhaps through an operator interact ing with a histogr am

display or aut omat ically by an est imat ion techniq ue. The recognition

result s would then be based on assumpt ions of the densit y function 3

satisfy ing “local” Lipschit z cond itions with the supplied constants.

Extension of the procedure to fr’dimeneional observation vecto rs

is achieved using a t ransformation; this trans format ion maps elemen-

tary regions in a partit ion of the i-dimensional observation space

one—to-one onto elementary intervals in a partition of a one—

dimensional domain. Oneudimensional mapped versions of the £—

dimensional training observations are then used in the one-dimensicea].

procedure.

-
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The recognition procedure may have engineering application to

problems for which storage is limited but many training observat ions

a re available. One possible example is a recognition system built

for long life space vehicles which are weight and hence storage

limited .

6.2 Extensions

Assumed Llpschitz conditions on the density function s f~ allow

bands of uncertainty to be placed about the averages of the function s

in each interval . The bands ar e statistically described by distr ib-

utions on the avera ges where the distributions ar ~ obtained from

training observations. The classification procedure of Chapter II

uses these stat istically described bands.

Statistically described bands of uncertainty can be obtained

using a priori knowledge other than Lipschit z conditions on the

density funct ions. For example, one could directly assu~~ bands of

uncertainty about the averages In each interval. More generally,

one could assume bands of uncertainty about the approximation

rj  = 
~~~~

t=1

in an interval involving more terms than just the average of f~ .

The functions f or simplicity would be orthonormal. The bands

of uncertainty would be described statistically by distributions on

the parameters (C~) where the distributions are obtained tr ain the

trainin g observations.

_________________________________ - - -
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A priori knowledge consisting of bounds on the variation of

t he d . f . ’ s has been considered . The variation is intuiti vely appealing

because it provides a measure of the absolute value of the der ivative

averaged over the domain. In addition suc h knowledge allows for discon-

tinu ous d . f . ’s . Instead of comput ing the band of uncerta int y by

— f~(x)~ < L ~W/2 for an int erval , the band can be computed by

— f~(x) f  ~~~~~ For example , d.f . ’s used in the experimental work

of Chapter IV have maxinaim derivative s equal to 25 but variation equal

to 8. However, the band of uncerta inty computed from the variation

does not decre ase with interva l width as required for the classifi-

cation of some interv als. Thu s the procedure could not in general

use bounds on the variation of f~ for classification of all int ervals.

Such bounds could profitably be used in those intervals for which it

is known that 
~ 

< L ~W/2 .

The recognition ir ocedure is extended to t dimensions via a

transformation that essent ially converts the i-dimensional problem

into a one-dimensional problem. The transformation approach is

des irable because

1) The one-d imensional techniques can be used.

2) A partition of the i—d imensional domain can be altered by

altering the corresponding partition of a one—d imensiona l

domain.

3) The bookkeeping operation involved in storing the pa rtition

is simplified by storing the equivalent one-dimensional

partition .

*
5- 
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Disadva ntages of the approach for handling the i-dimensional problem

and suggestions for their relief are

a) A partition of the i—d imensional doma in has definite

restrictions imposed by tne transformation . It is desirable

that the transfor mation tend s to form pa rtitions with

tightly knit regions. The Hu bert Curve Mapping illustrated

in Chapter V for two dimensions is better in this regard

than the t ransformation used . The implementation of the

Hu be rt Curv e Mapping should thus give improved results.

b) The act of transforming the problem to one dimension

causes neighborhood information between neighboring obser-

vat ions in ~ dimensions to be lost. The effect is that

n~ re training observations are required than if the

solution were carried out solely in t dimensions. A 
~~
y

to decrease this effec t is to account for the neighborho od

infor mat ion befo re performing the transformation . For

example, a cluster of observations could be placed about

each training observation . Their mapped equivalent s in

one dimension , if treated as mapped training observat ions

carry the neighborhood information with them. This

operation can be interpreted as smoothing the data before

mapping . Anothe r solution is to carry out the entire

analysis in .1 dimension ; this involves developing 1—

dimensional procedures for use with region s in a partition

of the i—dimensional domain. Techniques for a i—dimensional

i f , 
_ _ _ _ _ _ _ _ _ _  
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region would be similar to the techniq ues for a one—

dimensional interval except that interval width would be

replaced with maximwn distance across the region. The

required storage and partition adjustment would be the

primary difficulties.

Experimental results in Chap ter IV indicate that for a one—

dimensional Gau ssian example , the nonpa rametric procedure can require

ove r one hund red times as many observations as the optimum Gaussian

procedure to achieve equal performance. The reason is that the

nonparametric procedure does not utilize the a priori knowledge that

the densit y function is Gaussian. This can be an advantage when the

density function is not Gaussian ; on the other hand it is desirable

to have provision for using a priori knowledge should it be available.

Gaussian approximations were used for the beta densities to

simpl ify the integration over a region V in the (U a~ Ub ) plane. For

small n a numerical or a Mont e Carlo integration method could be used .

The latter method can be accomplished by generating ordered pairs of

observations from statistically independent beta distributions. The

first coordinate is generated accord ing to ,*(U~ ~~~~~~~~ and the

second according to ~*(Ubj y b1,yb2). The relative frequency with

which the result (U , Ub) occurs in V is an estimate for Pr(V). The

coordinate U~ is easily generat ed by setting U~ ~~~~~~~ with

generated according to 3(P ~J v~1~ v~~~2
). 

~~~ 

is taken as the (Y~1)th

smallest outcome from a sequenc e of ‘y + ‘~ — 1 observat Ions of
~‘i ~2

a uniform distri bution on the Interval ro ,1). This approach is

— 
— - -
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impractical for large n = v + v .  — 1. because of the large number
~ ‘~1 ~2

of uniformly distributed observations required.

This report discusses the two class recognition problem.

Generalization of the procedure to multiclasses has not been accom-

plished . One ~~y to deal with the iuulticlass problem using the two

class procedure is to lump classes into two disjoint groups . The

group chosen can be split into two disjoint groups , etc., so t hat

finally the chosen group consists of just one class.

-5,
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APP~24DIX A

The object of this appendix is to discuss methods for specifying

the characterizing parameters in a beta d . f .  on P~(i)

f(P~(i) I s~1(i)~s~2(i))

r(s Ci) + (i))  s (i) — ]. S (i) — 1
— !‘(5~1(i) )r(~~2 (i)) j  j

(A .1)

such that a priori knowledge about P~(i) is account ed for. e~(i)
represent s uncertainty in P (i), the probability of an observat ion

f rom class falling in the ~th interval of a given Ft—interval

partition of (0,11.

First, consider the case where no a priori knowledge is available.

The characterizing parameters , ~~1(i)~ ~~2 (i)~ can be chosen as

1

s~2 (i) Ft — 1 (A . 2)

s’s so chosen are consistent with s’s replacing y’s specified by

Equations (2. i~), nrovided the P~(i ) ’ s are described joint ly by

the Ft — 1 variate Dirichiet d.f. having l’s for pa rameters. Th.sn ,

each allowed set of P~(i) ’ e is equall y likely, a condition sometimes

said to correspond to no a priori knowledge. Another method of
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definin g the s ’ a without benefit of a priori knowledge on the

P.(i)’s is to use the first Ft — 1 train ing observations to specify

the initial partition. s~1(i) is chosen as the ratio of the ith

interval width to the width of the smallest interval containing

the ith interval but having boundaries defined by observations

from class w~. For these computations, observations from both

classes are assumed to exist at the end point s 0 and 1. The

parameter t~ is specified to be the number of class Wj  observations

from the first Ft — 1 training observations.

Then s~2(i) is given by

= t~ + 1 — s~~ (i) (A .3)

The maximuni value for a~1(i) is one. In practice a~1(i) is guaranteed

nositive by discarding for interval forming purposes training

observations t hat cause ties.

If a priori knowledge is available in the form of “ a priori

trainin g observations” [35) , (fictitious observations that might

be obtained based on what is known about the P~(i) ’ s) . their

numbers can be added to the appropriat e s ’s.

Now suppose that a priori kn owledge consists of the expected

value E~(i) and variance Var~(i) for each P~(i) .  Such knowledge

can be included by solving Equation (2.5) for v~1(i) and v~2 (i)

(in this case s~1(i) and
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— E~(i) ) ~s~1(i) = Ej (i)L Var~(i) —

E ( i ) ( l — E ( i ) )  ,
= (1 — E~(i)) [ Var ~ (i) (A .4)

The result ing relations among E~(i)~ Var ~ (i)~ a~1(i)~ and t ,~ are

illust rat ed by Figure 45. t~ is related to s~1(i) and 5j2
(i) by

(A .3) .  Requirement s on the a priori value s for E~(i) and Varj(i)

are

0 < E~(i) < 1

E ( i)(1 — E (i))
Var .~(i) ~ 2 (A . 5 )

These requirements ensure that t~ is non-i~egative (t~ can be

Interpret ed as a number of a priori training observations), and

that s~~ (i) and sj2 (i) are positive (a requirement for parameters

characterizing any beta d . f . ) .
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(i) , Var

1
(i) ,  s11(i), and t~
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APP~24DIX B

The quantity

T~~
r
0

J ~ I Y I Y~~~~~)$ ~~~~ ~ ~.i Ya11Ya2)~~ adt1b (~ .i)

is evaluated in thi s a~~endix. In (3.1),

r 0 = Mm LU~_q, A51 ( -~.~~
)

.5 
- 

A
,~ , ~~. . ,  and 0 are finite , positive, real constants , a i~ a real con—

stint satisfvin ~ q ~ o, and 
~b1’ ~

‘b2’ ~
‘aY ’ and are fin~.te ~o~i-

tive integer constants. B (z!a1,a~) is defined by:

= ~~~~~~~~~~~~~~~~~~~~~

if 0 ~ . z ~~. 1

= 0

— other wise (~ .3)

where
r (~ ) r ( ~ )

Be (a11~~~) 
.~~ ~)_ 2 (B.Z~)

The limits of integration in (~.i) defin, the region of the (Ui, Ub )

plane illustrated in Figure 46.

I -
~~~

_ ~~~-:~~~ 
_ _

.5 - —— --5- - —
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q Aa 

Ub = q + U ~

Figure 46. Region of Integr ation
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Define:

= I Y~~11Ya~~)~~~~a 
(8.5)

U
Let x = 

f~

. Then :
a

r /A
~ =

~ o
° ~ B (x1y 1,y 2)dx

r A
‘, a 

Be
_]

(yal,ya2 )X~~~~~(l_X ) &2 c1~t

r A

Be
_ 1(yal,;2)S 

a 
~~~~~~~ (Y &2

_l

) 
(-i) ’~ ~~

tç—Ya2
~~
(y .-i\ (r /A )~

‘al~ ’~
Be (1’al’Ta2~L 

a2 
~ 

(_ 1) J (.:.6)

Substituting ‘~ into (:t.1) ~ive~:

T =

~~~~ 
Tb1~?b2) [Be 1

(?a1
ya2~~~~~(~~

2 1)
~~1)

1

y
(r0 /A ~ 

al 1
~ l a 

- -—— j dU~, (B.?)

T can be ‘wr itten as the sum:

T = T 1+ T 2 
(:‘ •S)

I-

’

— 
- - --.5—-- — -  

—

- -  
‘ --~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~

.

— I 
—4 

~ ~~~~~~ .~~~~ __________________________
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‘with and T2 s~iven by:

1

~I 0 

~ 
1U 15- ‘\ -1 ~~ 

( ~‘a2~~\ -

~~~ 
~~~~~~~~~~~ ~Ya1’~’a2)

f~ ~ ~

. 

(U
~ _ o)

Y&] +1

t A
b Ub

~ J y ~~ 8(~~~ k’bl ”P’b2 ) dU~ (8.9)

~horo

= Min[Max(A + q, o), A
b] (~ .lo)

Let y . Then T1 and become:

v

$ ~~b
8,_ 1~~~ 

~b2~ 
Be~~ (y~i,~~2 ) ~~ (;~

_
~) (1)k 7k ~bl~~o A b

y -1 q

• 
~~~ 

( Y~~-l)~~~~j  ( A b ~ a1~ ~~~~ ç)
a 

~ ‘al~ ~~

1 1\ k$ Be (y~1,y~2 ) ~~ 
~ b~ ) _ i  k + 

~‘bl~~ ~~~‘ (9.11)
b lAb k~0

- 
-
~~~~~~~~~~-~ : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .5

.5 - - -  - - -~~~~~~~
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The expansion

+ 
Y + i

(~ - ia.) — 
~ 

( a]. 
)~v(~~ )

’1al (B .12)

can be used in (B.11), the Integration performed , and and

stmmted . The recult is:

~ ~q +5
‘
~ 

—1 al

T — 
~~~~~~~~~~~~~~~~~~~~~~~~ ~ 

(V~f
1

) 1)i 
~~~~~a

k4-y +v
‘~ +1 —1 ri ’7 \ bl , 

~ 
bi ,a i d  y , +j—v ‘b2

(~al ~‘\j’ q\ ~ (~b2 1\ ~1c ~ (k-s-~~~÷y
I _ p  bi

kf ~y —l
—i 

b2 
~ ~~ ~Ab

)
+ 1 — 8, ( y y )  L ( b2 )(~- 1) k 

0
~~ ’bl~ 

(8.13)

‘where y is obtained from (B.10).

j

S.

-

‘ -V)~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .5 
-

~~~~ 
_ _

_ _ _ _  -.5 .5- ‘.5— 
~
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~~~ 
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APP~74DIX C

Evaluate the integral

~~~~~
,

~~‘% a  / ~~~~1 a 
• 

1 — e  “ dU dUA —  i i  — e a b
Ub>~l+~~Ua a b (c . l )

Let

0b 1
U - ~~~ 

+ 
Ca~2 

(
Ub.•%)

Ia 
— 

(a~~~~~)~ ~ 
C
~a 

) (
~~~~

)
~ 

°b

— a~~~ 
+ (Ub••.%) (C 2)7b = 

(a +a~I~)~ ~
‘ 

~a 
~ (a~~~~~)~ ‘

Then

2
A — -‘i’. e~~ 

7a 
• ...L. ~~~ 

7b dy ~~~ 
(c.3)

a 

.5 - —~~~~~ .5— — ———- -5-- ’ — - - - - .5—.5-——-- 
-.5 ~~= .5_____________•__

~~
______ —5--—--— — 

~~~~~ ~
— —

~ ~~~~ 
— — — 

- — _s+__ .5 - - - - .5
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or

¼ (o~~+ a 2~~~)~ I

where~~ ( x ) =j
X 

~~-e~~~~~dy-.

I

_ _ 
_____
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APP~}IDIX D

This appe rit ix present s a numerical procedure for the min-

imization of A,

A = I(— Q) (D .l)

O (x) j~~~~~~~e~~~
7 dy , _ c x < o .

- C )
~2 2 C b a a

with respect to The constant s ~~ %‘ 0a’ 0b’ C~~ and Cb
are all posit ive. In addition, it is known that .5

2
— c~)% <  4Cb

> c~ ( D . 2 )

Because O(— Q) is strictly decreasing in Q, A is minimized by

maximizing Q. Q can be written in terms of 
~a 

as:

_ _ _  
‘~

_ _ _ _ _ _ _ _  -.5- - -- —5- - - - .5
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Q = b
0 2

b (D .3)

[(t) 
~~ 

- Ca
2 

+

Set the derivat ive of Q with respect to to zero.

= 

~~~~~~ ~~a 
— C ) )  +

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +a~j

• (
a

)
2 (~ - c )

,
yf(~~

_ 
a - Ce)) + = 0

or

[(~~~
)

2 

~~a — C ) 2 
+ %IX 2cb )

— 

~‘a — C ) ( ~~ —) [j i (k~ — c~) + 
~ ~‘a — Ca ) — =

Collecting powers of ()
~~ 

— Ca ) gives:

(~ — C ) 3 2C 2C
_________ — 

~‘a 
— C )[% — 

~~ 
] — 

~ a 
— C )  ~~~ = 0

(D.4)

(D.4) is a cubic in — Ca ) and is difficult to solve analytically.

However, the desired root may be obtained by using th e following 
.5

numerical technique. Define g(X~) to be the left side of (0.4) ,

and rear ra nge to get

1 ’  

_______ 

___________

_____  
-

_ _ _ _  

I 
- _ _ _ _ _ _ _ _ _ _ _ _ _
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(A — c ) 2 2C
~~~~ = 

~‘a - C
a)[ 

a a  - + 
~2 

b 
~‘a 

-

a (n.5)

Not e from (0 .2) that

2
g(C~~) = 

~~ 
(C — 

~~~ 
< 0

+ 2~% 
C
b) 

= 
2C
b

a
~ (c + 2~% Cb - ~a) < 0

r ( ~’ 
c )

= 

~a — Ca)L — > 0

> 0, for A > 
~a (0 .6)

Conditions (0.6) together with the fact that the inflection point
for g is at A C , guarantee a unique root of g(A ) in the

int erval (Ca + Wi~ Cb, Ih
~~

) . Further , no root of g(A~) exist s
for A > 

~a 
or for A In the interval (Ca t C + 

~~~

Physical considerations of the problem show that the root sought

corresponds to a relative minimum for A.

Let A (t ) be the root obtained at the t th stage of a Newton ’ 8
it erative procedure. Then A

a(t + 1) is obtained from A
~
(t) by:

g(A ( t))
A ( t  + 1) Aa (t) — g ’(~~ (t)) (D.7)

The init ial, value is chosen as

~~~~~~~~ _ _  

-- 
-
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= (D.8)

The process is stopped when

IA (t) — A (t + 1)1a a 
~~~~~~~~~~ (D.9)

b

and the solution is taken to be:

A = Aa (t + 1) (D.lo )

.5

--  
.5 - - 

~~~~~~~~~~~~~~~~~~~~~~~ 
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-
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APPE)IDIX E

In this appendix an experimental comparison is made of the

quant ities T and A given by

U
T = j 

~ ~(~~ I’~bl’ ‘~‘b2)J 0 
~ 

~
(
~I’~’ai’ Y~~)dU dUb ~~~1)

and

— ~ç s ,~2 
— ~(Ua_—

1 ~ % I ~. b  1 “ 0a ‘~

dU dUb
(E .2)

for some particular values of the parameters Vale ~
‘a2’ ~

‘bl’ and

~b2 • In (E.2) the values 
~~~~~

, %‘ ~~ and are given in terms of

‘
~
‘al ’ ‘

~
‘a2’ ‘

~
‘b1’ ?b2~ 

and A by

/ val
= A¼

~Yai + ~
‘a2

I ‘
~bl ‘~= A’

~~ ‘
~
‘bl +

~ =A ( ~
‘al

a 
~~a1 + ~~~) 2 

~ ‘al + 
~a2 + 1)

+ 

~b2~~~~ b1~~ 
Vb2 + )

) 
(E.3)

‘I

- 

I 
-

~~~~~~~ 
~~~ 

5-,—

- — — — - —-;_
,~~~~ ~

:-;
~~~~ 

— — — ——
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The function B is defined by Equation (2.3) . The region of

Integration for T is the cross—hatched region of (Ua,Ub
)_plane

illustrated in Figure 47.

Ub

~

0

:

~~~~~~~~~

Ub = U a

A

Figure 47. Region of Integrat ion

For A , the region is the whole half plane above the line Ub = TJa ø

Since the product ~~~~~~~~~~~~~~~~~~~~~~~~~ is zero for all

pairs (Ua~Ub) outside the cross—hatched region and above the

line Ub = Ua I the region of integration for T may be considered

the same as that for A. Note that (E.2) is obtained from (E.1)

by replacing the beta d .f . ’s with Gaussian d.f.’s having the

same means and variances. Figure 48shows the beta d.f. B(xI Np, Nq)

.5 _ 7r~,e w -vw- -
- ____  _____ - T~~ _”r - -
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15.0

12.0 -

9.0 Ø (x f 100, 200)

7

•
.5 

6.o

$(x~10, 20)

3.0
e(x ( 1,2)

0.0 ’ I

0.0 0.2 0.4 0.6 0.8 1.0

- 

x
- 

Figure 48. Sequence of Beta d.f.’s
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fo r p = 1., q 2 , and three values of N; N = 1, 10, 100. It

illustrates the convergence of a sequence of beta d.f. ’s to a

Gaussian d f .  as the parameters get large while maintaining con-

stant ratl•). This fact is proven in References [36 ,37].
Replacing p and q with 0, r0 with Ub, and Aa~ Ab, and

with A , the result given by (B.13) can be used to evaluate (E.l)

Va2~
l 

—l
T = 8e~~ (V bl,Vb2)Be

’ 
~ a1~ hfa2) 

~ 

(
V~~ ) (— i)~

~‘b2 1
r- V i

k )

I _ c  a

—1 ~
— V~~~l 1+ 1 — Be (vbl,vb2 ) 1. ( k ) (— 1) k 

(k+vbl
)

or

—i —iT = Be b1 ,~
I
b2)~~ (Val~Va2) L ( j )

,~ 

Be(V~~ + + i~v ,2)

~~a1 + j ) — — (E .4)

whe re the identity

—l ¶ ~‘2 1 k 
______Be (v

1
1v

2
) L ( k ) —  1) (k -

~ v
1
) 

= 1 (i~.5)

.5 

5--.-

:  

. 

~~~~~~~~~~~~~~ 
1~
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resulting from the beta density function integrating to one has

been used.

From A ppendix C , A is given by

/ % -A = 
~~~~ +

where

•(x) j  e ~~~

‘ dy, - < x  <~~~

Let

+

From (E.3), Q becomes

. Yai — _________

— 
Vp~~+ V ~~ 

~b1~~~ b2— 

r 
‘ia]. ‘f~~ 

+ 
‘
~bl ‘

~b2
+ 

~~~~~~~~~ 
Va1 + V~2 + 1) (vbl + 

~b2~ 
(vbl + 

~b2 + 1))

(5.7)

So t hat Vai/Va2 and ‘
~‘bl”~’b2 are constant , let ‘

~
‘ 1, 

~
‘a2’ ‘~

‘bl’ and

~b2 
be wr itten in terms of the constants p ,  q~, p~, ~~ and the

variable N as follows:

y Npai a

V Nqa2 a

~
‘b1 =

~b2 N% (E.8)

I

; ‘ il’~ ~~~~~~~~~ - 

-—.

~~

-—_____

~~~~~
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4 
T and A = ~(— Q) are computed for three different examples.

Exam ple 1

= 1, ~~ =

1, % =
N = 1,2 , . . . ,l0

Examole 2

p6 = 2, = 8

= 1, % =

N = 1,2,. . . ,10

Examole I

~a
= 3 ’ ~~~~~~~

N = 1,2 , . .., iO

The locations of the means in the (U6,Ub ) plane of the dist ributions

for these three examples are shown lit Figure 49 .

U
b

A _______

/

,

Example 1

/ Example 2

t ~ I Example 3
A
.
~~- —0-0-0
10 ,’!  I I

.5- A U
1010 10 a

Figure 49. D istribution Means for ~~~mp1es

~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i~
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The resulting T and A are plotted in Figure 50 as functions of

N. The circles represent values for T while the triangles represent

values for A . These computations were made with Purdue University ’s

CDC 6500 digital computer using single precision . No special

computational tricks were employed other than the performing of

all possible factorial cancellation in the expression for 1.

Several pertinent facts are worth noting.

1) For these examples, close agreement between T and A

for all except the higher values of N is observed.

2) Lack of agreement between T and A for large N is due

to computer Inaccuracies resulting from accumulated
.5 erro r in the many arithmetic operations necessa ry to

compute T.

3) Computational t ime for T is approximately 1~ minutes for

each of the three examples . Computational time for A

is relatively negligible .

4) For T , accuracy decreases and computational t ime Increases

as N increases. For A, no change in computational

accuracy and time required occur s for increasing N.
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4
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Figure 50. Ca~parisan o f ?  and A
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