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THE ITERATIVE DETERMINATION OF MODEL
PARAMETERS BY NEWTON'S METHOD

Thke problem that we would like to solve is to determine numbers
Ay, @2, .05 Ay and 8,, Bz, ..., Oy so that, with regard to an ob-
servation e(t) and for unknown N , the equation

N

elt) =z a, s(t-8,) (1)

k=1
is satisfied,

Let us define

N

y(tsx) z X {t-xy+ ) - eft). (2)

K =1

In keeping with the spirit of Newton's method for finding the root of
a function of one variable, we are looking for a rectorial increment
6x such that

2N
yl{t;x+6) = y{tix) +z %’zc §x, + terms of higher order = 0.
K=l *
Thus we have an equation
2 %’%x bxy = -y(tix) (3)

K=1

from which to determine the incremental vector components 6x, .
At this point it is important to recall that both members of Equation 3
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are functions of t. In order to eliminate t and obtain 2N equation
in 2N unknowns we could, for example, choose 2N values of t,

ty, tz, ..., t;y and evaluate both members of Equation 3 at these

t values. In a real situation this procedure has the drawback that

the demands for accuracy placed on the values of y and its partial
derivatives at the special t points would be too great. In the presence
of noise (due to inaccuracies in measurement, in the model, round-off
errors, etc.) the above method of creating 2N equations in the 2N
unknowns should be rejected as being unstable,

Actually, however, this method is just one realization of a general
method of deriving 2ZN equations in 2N unknowns from Egnation 3.
The general method pestulates that 2N linear functionals be chosen
Y1s Y2 -+«s Y2y anc applied to both members of Equation 3. The
result is then

2N
2_ (axx) ox¢ = -y  (y). (0 =L2, ..., 2N). (4)

We now have a non-homogeneous linear system of equations in the

unknown &6x, (x = 1,2, ..., 2N) and this system has a unique solution
only if the matrix M with elements
. 3y
My = % (5)
A%y

is non-singular and the vector g with elements

“Y. (Y) (6)

does not vanish.

It is necessary to say a word about the notion of a linear functional
v. y associates with each member f of a class of functions a
number 4(f} in such a way that if f and g are any two functions in
the class, o and 8 are any two numbers, and that if the function
at + Bg also belongs to the class, then

viaf +Bg) = ay(f) +By(g)
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If the class of functions consists of all those which are square in-
tegrable over the real axis, then by the celebrated Riesz-Fischer
theorem™ every bounded functional y has the representation

o

(f) = {(x) h
y {f) ;Lx(x)y

——

(x) d:z,

where h‘y is a square integrable function corresponding to the linear

functional 4 and the bar denotes complex conjugate.

After this brief digression let us return to Equation 4 to see how
it can be used to apprcach a solution by iteration. Suppose at the «
step an approximate solution Z® has been calculated. To determine
the next, hopefully improved, approximant 2Z®, we set

™

6x' = Zn+1 A

and let
R
M =0t (a;ac—‘-’-) and (7)
L
gLR E"‘YL. (Y.)o (8)
Then
Mt ZR+1 Mkzﬂ_ga (9)

and if M® has an inverse, then
zh4+ = 2t - (M) T gt (10)
It can be shownt that if the initial guess Z° is sufficiently close

to a solution, then the sequence of approximants 2°,2%, Za, ... CcOn-
verges to the solution.

* Halmos, Paul P., Introduction to Hilbert Space, Chelsea
Publishing Company, New York, 1951, p 31,

t Stern, M. L., "Sufficient conditions for the convergence of Newton's
Method in complex Banach spaces', Proc, Amer, Math, Soc,, vol 3,
(1952) pp 858-863,
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it is apparent that one of the major problems with the method is
the selection of a good initial approximant Z°. Two methods have been
been devised to obtain approximate solutions for Equation 1. The

first will be called the Fourier method. Taking the Fourier transform
of both members of Equation 1, the result is

N

E(f) = z a, e 2™ ) gq), (11)

K=1

This expression is, however, valid only for those frequencies for
which S(f) and E(f) do nci vanish, that is, only for the frequencies
that lie in the common band in case s and consequently e are
bandlimited. If in Equation 11 we divide both members by S(f) and
then take the inverse Fourier transform of the result, we obtain

N .
dft) = za,( f 2By, (12)
K= n

where {} represents the pertinent band of frequencies.

If Q = lf—-“zv-s fs—\%-’,then

~

_ sin ww(t-Ax)
A =Y i (13)

K =1

and the values of A,, Az, ..., Ay can be estimated as the position
of the maxima of d(t). The values of a,, az, ..., ay are approx-

imated by the magnitudes of d(t) at the observed maxima. The limit
of resolution of this method is about 1/w, i.e., if Ai - Ai+ < 1lfw,

then the corresponding two maxima will have moved together so as to
yield only one maximum.,
.

If Q = lfl -‘—z—-wcsfs-wc-r—v!- .wc-% Lf<w, +
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then
_ - sin 7 (2w +w/2)(t-A, )-sin 7 (2w, -w/2){t-4,)
dt) = axl T . }(14)
K=1
or
N .
d(t) = zz a, cos 2w, (t-Ay) smﬂ’('t‘_"‘(z)‘t'm). (15)
X
K=1

Again the same method for estimating the A's and a's can be used.

If9='flw¢-—\%sfswc+-% ,
then

N
- 2Miw (t-Ag) singw(t-A,)
d(t) —z ag e " m)—"" (16)
=1

and the real part will again have maxima near the points t=4A and the
magnitudes of these maxima will be close to a,.

The second method, based on correlation, can also be used for obtain-
ing {irst estimates. Let us multiply both members of Equation 1 by
s(t-z) and integrate over all values of the variable t. We can then write

N

Ry ¢ (2) =z ac Rg,s (2-84), (17)
X =}
where
Re,q (2) = [ fle-z)glt)ar . (18)

If the A, are sufficieutly separated, i.e., by more than 1/w, then
the position of the maxima of K, ; (z) provides first estimates for
8,,482, ...Ay 2nd the magnitudes of the maxima divided by Ry, 4 (0)
provide estimates for a,, az, ..., ay.
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Having found first estimates of 4,,4z, ..., &y and a,, az, ...,
ay, we must now seek to improve them by iteration. The requirements
for a good iterative method are:

1. Improvement of resolution. If one maximum actually
corresponds to two separate components, the method should
be able to resolve the two components.

2. If some secondary maxima have been confounded with
primary maxima the iterative method should be capable of
eliminating them.

3. Finally, an improvement in accuracy in the evaluation
of Ay, ..., Ay should result from the application of the
method.

Once the initial estimates have been made we turn to Newton's
method for the.r improvement. To this end we must choose functionals

‘yl, coey Y2n-

Let

) dt

')‘i(f) = J; £(t) t(c-xiH

and

Yitn (f) =I £(t) {-xi s' (t'xi«m )} dt ,

where s' denotes the derivative of s, The matrix M!, defined by
Equation 7, takes the form

s

T A T L R T O

23

o

L poad s} PRI TR N A YA

AN B 00w et L5,

20 AL

"

B

-]
M, " =f s(t-x] ) slt-x, .{) at
w0 :
o«
M nx =f s{t-x} v} { -x} '(t-x 4\)} at
-0
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M = j {-x} s'{t-x§ 4l s{t-xp +4) dt

o

M tns k= f {-xg s'(t-xg 4n) }{ex] s'(t-x{ )} odt

-0

for L = 1,2, «o., N and K=1,2, ..., N.
I - usi g o notion of convolution or correlation we can write the
above ri..i.X .ements more conveniently as
L] - R R
MP, = Ry s (4w - X n)
R = R R R
ML+N,: = =Xy RS,S' (xg +n - X{ 4n)
R - " R - <t
M = % Rats O xb)
f - R R R R
MU tw xen = xfx? Ryt, st (Xg4n - x( +x)

for L = 1,2, ..., N and K = 1,2, ..., N.

But
R w
‘a"a'-r‘-"(” = - )r s'(t~-r) s(t)dt = -Rs',s {7)
)
and

g'(t-7) 8'(t) dt = Rgr stlr).

2 -]
d Rs,s (r) = I
-

¥
T

rn.zr o SR T

P




)

SRR RS

ST X

e
TUTAN R

67TMP-b64 9
Therefore,
Mt,'( = R?:S (T)
T o= (X% 4y =X 4y)
Mg = x Has |
(T o= (ke - X 4y)
3R
M = xp —23
e R T Y (19)
R R R agR 3
Mtnoken = X¢ X '—'a,_:?—i R Q
T = (Xepn “X4n)
for L = 1,2, ..., N X =1,2,..., NK = 1,2, ..., N
The vector g" whose components are given by Equation 8 takes
the form
-]
I
8= | e sttty at = Ry,e (4
-
(20)
©
R = t 1 = oR
Eitw e(t) { -x, s't-x! )] dt = x -3k
or o
- T=Xipn -

Equations 19 and 20 show that the only data that we require for the
application of Newton's method are the correlation functions Ry
and Ry .. If these are furnished by observation, numerical
differentiation will yield the remaining matrix and vector elements,

In the course of iteration it is necessary to update the matrix
M and the vector g at each step. This, however, is very easily
done since it involves no more than a table look up of the values »f
functions and their derivatives at new values of their arguments.

To test the ideas presented above by means of an example, the
choice was made of
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This choice is motivated not only by the desire to generate a test,

but also by the notion that upon transformation by the Fourier method
Equation 1 takes the form of Equa*tion 13 which is the same as that

of Equation 1 when the above choice is made. Therefore, with this

choice we can proceed to solve Equation 13 directly by Newton's
method.

To determine the matrix elements consider

. -]
J’ sin g (t-7) sinqt

R = dt
soa(7) witor) ot
-
-}
.—.J 2TUT vy |2 ar = 22T
L
-

where X(f) = 1for - 1/2<fs 1/2 and X(f) = 0 for |fl>1/2.

dRs,s _ g X508X - sinx

—a3 - —_ S
a,- X X=1r
2R 2

FReys . ™ [-Zx2 cos x + x(2-%°) sin x ] .
a1° x*

xX=11T

A program (listed in the Appendix) was written to carry the cal-
culations through numerically. Tests were performed on a weighted
sum of delayed and truncated replicas of six mt/wt. Then tests showed
that convergence, when it occurred, was rapid. We had numerical dif-
ficvlties in high dimensions because of the many matrix inversions
invclved. The program was, however, ai e to resolve two pulses that
were separated by 0.2, that is, by 0.2 of the normal resolution limit.

In order to facilitate decisions as to ihe best value of N, the mean
square difference between the function e and its approximant was
calculated and that solution was adopted as the final one which had a
number of components yielding the smallest mean square difference.

A porsible improvement might be had by evaluating the gradient
ofy, i.e., { ay/axk }, at some point other than the last approxiriant
to the zero, Work to realize this idea is going on at present and will
be reported subsequently,

&

5 @f%%&g :

j.:,;w;_!\\ oo




o

f—
i
I
!
i

< Smmaal

————— —
. - -

67TMP-64 1

CONCLUSION

A method for solving the functional equation

N
e(t) =Z a, s(t-A,)

X=1

is presented. The method adapts the idea of Newton's method to the
case at hand which differs from the classical situation in that the
functions whos~ zeroes are sought are themselves elements of a
function space. To illustrate the method a program was written
that demonstrated a marked improvement in resolution for pulses

of the form sin{mt) / (mt). One of the drawbacks of the methoc is that

initial guesses have to be close to the actual solution. Another
difficulty arises from the fact that since N is unknown, solution
must be attempted with various values of N.
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APPENDIX

1T-1 0318 SB MON 09/05/67

1 FILE K-R

10 DIM E(256)

20 DIM M(20,20),W(20,20),F(20,1),Q¢20,2),AC107,DC10)
25 READ T0,A0,B0,B

30 FOR 1I=1 TO TO\READ FILE J,ECI)\NEXT |
40 P1=3.1415927

60 FOR Sz31 TO 100MINPUT Ti.L2

70 T=2sTl

110 FOR I=1 TO TININPUT AC1),DCI)\NEXT |
120 FOR L1 =1 T0 L2

130 MAT M=ZER(T,T?

140 MAT W=ZER(T,T)

150 MAT Q=ZER(T, 1)

200 MAT F=ZER(T,»1)

210 FOR J=1 TO TI\FOR =1 TO TO

220 Al1=Pl®(A0%1-BO-D(J))

230 1F ABS(A1)<=.00000%1 THEN 270

240 F(J1)2FCJ 1)+E(])&SINCAL )/ (AL1*B)
250 F(T1+J,1)=F(T1+J,1)-ECI)*P15(A12COSCA1)-SINCAL) )/ CAL12)
260 G0 TO 280

870 F(Js1)xF(Jr1)+ECI /B

£860 NEXT 1

285 F(T14U05 1)=A(NI#F(TI+J0 1)

290 NEXT J

295 MAT F=in0)sF

300 FOR 1=1 TO0 T1

310 FOR J=t T0 T1

320 K=P1%(D(J)-D(1))

385 IF ABS(K)<=.00001 THEN 400

330 M1, JI=SINCK)/ (K*B)

340 M(TI+I,T1+J)=AC1)*ACII*(P1t2)2B2(24K+COS(KI+ ((K12)=2)&SINCK)I I/ (K13)

350 MCI,Ti+NI=PIsA(II*(KeCOS(KI~SINCK) )/ (Kt2)
380 GO 10 490

400 MC1,J)ni/B

A10 MCTI41,T1+J)SACI)SACJI*Be(P112)/3

420 M1, Tie=0

430 MLTI+1,0)=0

490 NEXT J\NEXT 1

495 FOR I=1 TO TIVFOR J=1 TO TI\M(14T1,J)=MCJ,Ti+])
496 NEXT J\NEXT 1

497 FOR 1=1 TO T\FCR J=1 TO T\IF ABS(M(1,J))>=10 E-\] THEN $00
498 M(1,JI=0\NEXT J\WNEXT 1

SO0 MAT W=INU(M)

S10 MAT QaVWsF

520 FOR J=t T0 Tt

$30 A(JI=QCJI,1)

S40 DCII=D(JI*Q(TI+I, 1)

$S0 NEXT J

S60 NEXT Lt

600 FOR I=] TO T}

430 PHINT 13AC13¥3DCD)

620 NEXT 1

630 NEXT S

700 DATA 100,¢1,5,1

9999 END
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