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ABSTRACT

We consider the problem of estimatin% a cpvariance matrix in the
standard multivariate normal situationA ¥ Toss function is one
obtained naturally from the problem of estimating several normal mean
vectors in an empirical Bayes situation. Estimators which dominate any
constant multiple of the sample covariance matrix are presented. These
estimators work by shrinking the sample eigenvalues toward a central

value, in much the same way as the James-Stein estimator for a mean

vector shrinks the maximum likelihood estimators toward a common value.

T

Key words and phrases. Multivariate empirical Bayes, Stein's estimator,
minimax estimation, mean of a multivariate normal distribution, estimating a
covariance matrix, James-Stein estimator, simultaneous estimation, combining
estimates.
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MULTIVARIATE EMPIRICAL BAYES AND ESTIMATION OF COVARIANCE MATRICES

1. INTRODUCTION AND SUMMARY

The problem of finding multivariate empirical Bayes estimators
reduces under certain circumstances [1l] to one of estimating the
inverse of an unknown covariance matrix . from an observed pxp co-
variance matrix S having tihe Wishart distribution with k degrees of

freedom and mean ki
(1.1) i e Wp(§, k)

using the loss function

trkg-l-_§_l)%§J

(1.2) L 5 & 93 8) = =
ktr(E )
We assume throughout that_é-l exists, and that k > p + 1. The usual

estimator of g_l is the best multiple of_§‘l, which for this loss

function is

1

1.3 £ - e-p-ns7t.

The estimator (1.3) is the best unbiased estimator of 5-1 and is minimax
with constant risk (p+l)/k. We used (1.3) in [1] to derive a multi-

variate empirical Bayes estimator, a generalization of the James~Stein

estimator [3], for cases p > 2.

*

Dr. Efron is a consultant to The Rand Corporation and is a Pro-
fessor in the Department of Statistics, Stanford University. Dr. Morris
is on the staff of The Rand Corporation.
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In the first main theorem we show that a uniformly better

estimator than (1.3) if p > 2 is

2
e RONC R (p_+p-2)
(1.4) £ = Gep-DS 4 gL

A -

Note that_io increases (1.3) by an amount proportional to the estimator

s=1 - k=2
ol o S E

: . ¥ g r ool e 0
which is the best unbiased estimator of = when'e is known to be pro-
portional to the identity matrix. The risk functions of these estimators

and their mixtures,

il =1 =1
(1.6) L, = (1—a)é0 + qgl

Oiian = il g
which are also of interest, are considered in Secs. 3, 5.

We show in the other main theorem, Sec. 4, that the empirical Bayes
estimators derived from (1.6) are minimax, all dominating the maximum
likelihood estimator X of a pxk matrix of means v for fixed 8. The
case @ = 1 corresponds to the James-Stein estimator applied to all pk
values ei. simultaneously while the new estimator with @ = 0 uniformly

improves the multivariate empirical Bayes estimator of [1].
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2. THE RELATIONSHIP BETWEEN MULTIVARIATE EMPIRICAL BAYES ESTIMATION

AND ESTIMATING THE _ INVERSE OF A COVARIANCE MATRIX

Given k independent p-dimensional normal column vectors,

X

\'l, ""_ékg w1."hx

X4 having conditional mean vector ei and the identity

covariance matrix I,

ind - s -
(2.1) 51-91 = Np(gi, l) L= Y,y wvay E %

! and given that the unknown parameter vectors gi are an independent i
sample from a multivariate normal distribution with mean zero and |

covariance matrix A

ind

f (2.2) Qi = Np(Q, A) =
r “
§
then the multivariate Baves estimator of 91 with respect to squared
error loss is
€23 o) = £ i =1 k
«3) gy (= )51 dr= s
where we have defined ‘
!
!
(2.4) Z=1+4. ?

In the empirical Bayes situation A and 4 are unknown,
so the Baves estimator (1.3) cannot be computed. The matrix . may
be estimated, however, since (2.1) and (2.2) give the marginal distri-~

bution

(2.5) X, ~ N0, )
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to X,. A complete sufficient statistic for estimating Z is § = X X'

having the Wishart distribution (1.1), with X being the pxk matrix

QGhys vo0s B

1f we estimate the pxk matrix @ = (gl, ...,_Qk) with normalized

squared error loss function

~ 5 L ole -P = e 2
(2.6) L, 8) = Sp T 50 - 850)
by a rule similar to (2.3), of the form
~ o ,._1
2.7 8=Q@-Z7)X

with_g-l depending only on S, then the risk R of (2.7), which is
computed by averaging (2.6) over both distributions (2.1) and (2.2),

may be written
* * - (ot
(2.8) =R+ @ - rHug?, £ ).

Here R0 = 1 is the risk of the maximum likelihood estimator 5 = X with

—_—

T * 5
z : =0, R =1-r¢cr@ 1)/p is the risk of the Bayes estimator (2.3)

with &

—

= Efl known, and L(E_l, i-l;_g) is the loss function (1.2).
The proof of (2.8) follows easily by averaging 4 first over its con-

ditional distribution
-1 -1
(2.9) ﬁilﬁi“"p((}- ZX,1-27),

as shown in [1, Lemma 1].
The problem of evaluating multivariate empirical Bayes estimators
in this situation reduces to evaluating estimators of the inverse of an

*
unknown covariance martix Z because RO and R are unaffected by the

2 Ry e r‘.—,
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3 =1
particular estimator 2.; under consideration and because the risk

EL(E-I, é-l; ,§,) » called the "relative savings loss” in [1], only involves

PR BR e 2SE  P I

an expectation over S having the Wishart distribution (1.1).




3. AN ESTIMATOR OF THE COVARIANCE MATRIX‘E WHICH DOMINATES ANY
MULTIPLE OF S

Assume the distribution (1.1) and the loss function (1.2). We
1

IRPPRRSIE | T30 e L i) S

T
ST

consider estimators of the form (1.6). Denote w = tr(é—l)/p and let

P
2
~

. SR el
C3.1) g E tt(§)

We will show in Sec. 5 that 0 < ¢ < 1 for all = and also that

W AT e e

e

(3.2) P R

-
e |

In the special case » = ol, the maximum value ¢ = 1 is attaired. Denote

&= (p2+p-2)/(pk-2) so 0 <c<1land 0<c <1 if both p>1and k >p + 1.

t

- =il

; Theorem 1. The risk of Z is
——€OLEe t e

g =mat, 7
(04 ~ ~Q

(3.3) el .
= Eil-+ L~ = Rgig(c+a-ca)2¢.

In particular,’g0 is minimax, having risk

- EEL _ PRS2 2
(3.4) R, . pk C %

which is uniformly smaller than the risk (p+l)/k of the best multiple of
st ep-ns7h

Proof. We compute the risk of

=1 1

LMD

(3.5) = q§- + bI/tr(s)

from (1.2) as ,g

RT3 S



1 5 1.2
o E tr(aS ~ + bl/tr(8) ~E ")'S
32 -1 2ab 1 2a
Tow PFE ) ER® Tk
=1
2 tr(Z °S)
b 1 2b ~ < 1 Lo
+ — LS s -
pkw " tr(S) pkw 5 tr(S) pkw Etr(z °S)

2 2
a % 2ab 2a b

2b
-—t — - vy 1)
k(k-p-1) = k(pk-2) ¥ ~k = pk(pk-2) ? T pk ¢

(3.6) = + 1

where we have used (3.1), (3.2) and E(k—p—l)__S__l ='£—l. The minimizing

B
value of b is obtained by differentiating (3.6) and is b = pk-2-ap
®
which is independent of the unknown parameters. Inserting b into (3.6)

and simplifying gives

(3.7) o B, Gep-l-a)®  (pk-2-ap)®
: kK k(k-p-1) pk(pk-2)

Reparameterizing with a = (k-p-1)(l-w) and substituting this value into
(3.7) yields (3.3). Assertion (3.4) follows by setting o = 0 in (3.3).
l'he proof is complete.

Discussion. If ¢ is known, RY is minimized at
1 ytme e ecasy o
*
(3.8) a = cop/[1-ptcp]

which increases monotonically from 0 to 1 as ¢ increases from 0 to 1.

Then the risk is

* 2 *  ptl
: = =+ (I ‘
(3.9) Ro» =y Pk (1= ) K
The case ¢ = 1 {é proportional to the identity) o =1 vields the rule

(L.5) as an estimate. More generally, if a prior distribution on I is

SR, 7 — e g U R A PO TN i el S S



S TSI LSRR

given, then the rule of the form (3.5) that minimizes the average risk

takes the form (1.6) with

*k

(3.10) a = cEgp/[1-EgptcEgp],

which depends only on the a priori mean Ep of ¢. Ra** then is given by
* Kk

(3.9) with ¢ replaced by « . These facts are proven by averaging

(3.3) over the prior distribution, and then by differentiating (3.3),

perhaps most easily in the form

+1 | pk-2 2 2
(3.11) ¥ i P—ﬁ(- [(1-c)a“~ (cta-ca) “Eg] .

The minimal complete subclass of the class of all rules of the
form (3.5) with = < a, b < » is the class of rules’é; (1.6) with
0 <ao<1l. Thus a = (k-p-1)(1-w) and b = (pk-2) (cto-ca) from the proof
of Theorem 1. To show that the rules é;l with 0 < o < 1 are a complete
class, we note for any fixed ¢ that Ra is strictly convex with minimizer
a* satisfying 0O f.a* < 1. Therefore, the risk of any rule with a ¢ [0, 1]
may be decreased for all ¢ by using the nearest value in [0, 1] to «.
These rules are minimal complete since the minimizing a* (3.8) is an
invertible function of .

There are mary minimax estimators (rules with risk not exceeding
(p+1)/k) in the class (3.5). The best such estimator is'g-l because

0
the minimax estimators must have a = k-p-1 to perform well at ¢ = 0,

and then b = p2+p-2 is the best choice for b.
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4. USING THE COVARIANCE ESTIMATORS IN A SIMULTANEQUS ESTIMATION PROBLEM

In the context of Sec. 2, we are suggesting estimators of the pxk

matrix'g of the form

ok a—1

(4.1) 8. =41 ~2 %

with_gl given by (1.6). With respect to the squared error loss function
(2.6), the risk of_§ is computed by averaging over both X and & distri-

buted as (2.1), (2.2), and as a function of « is

(4.2) EL(@, 8 ) =1 - +uR

0
~
which derives from (2.8) and (3.3) with w = tr(é_l)/p. Since we may

also write
=1
(4.3) w = (k-p-1)Etr(S ") /p
and use (3.1) to provide an expression for uwep, (4.3) may be written as

~ - 2 -
(4.4) Be@, 8 = 1 - LB aoyEer(s™

2
_ {pk=2) e o
Pk (cta-ca) E tr(_§)

Both sides of (4.4) involve first an expectation Ee over the distribution

-~

(2.1) of X given 8, this expectation being a function of A = 66' only,

followed by an expectation EA

~

over the distribution (2.2) of 0 for fixed

A. Since the family of distributions of A is complete for A, (4.4) holds

even when the EA expectation is removed, proving the following theorem.

~
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Theorem 2. As a function of § the rule_éa of (4.1) has risk

2
(4.5) Bgt@, 8 = 1 - LBl aodyp ersh

2
(pk=2) 2 1
- +or~ e
= (c cw) Fﬁ (@) -
Each estimator § s 0 < o <1 is therefore u minimax es‘imator of 6 for the
squared error loss function (2.6) and has risk (4.5) uniformly lower than

the unit risk of the maximum likelihood estimator’E = X. Expression (4.5)

provides an unbiased estimate of the risk of Ea'
The James-Stein estimator is the rule o = 1 with risk

2
_ (pke2) 1
(4.6) 1 e 0 tr(é)

The particular rule with o = Q,

2
6 = -1 _ ptp-2
(4.7) 8= (@ - (kp-1)$ e D%

is the best in the class as 1T = trggg') - © agnd improves the risk

8
-~
1-(e-p-1) *Egtr (8™ ) /pk of B = (I - (k-p-1)S"1)X by the amount

2 2
(p~+p=2) 1
(4.8) Sl ey

The improvement (4.8) is largest at 8 = 0 where it is (p2+p—2)2/pk(pk—2),
Bounds on the last term of (4.5), (4.6), and (4.8) may be computed for

any 6 from the fact that

-

1 pk-2_ _ _1
Ve) 17 (pk-2) = %o tr(s) = T#r/pk °

o o A0, I A T S Y SN ST AR
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Only assertion (4.9) needs proof. Since trg§) has a non-

1
central chi-square distribution with mean pk+r, tr(S) ~ ng(T), 1t

can be written as a Poisson mixture of central chi~squares as in [5],

2
say tr(S) — ka+2J, J ~ Poisson with mean T/2. Letting E_ indicate i

AR S ke L el

T

expectation with respect to the Poisson distribution,

TR

e & i e
S0 B w® = B pe2i2 -

and the left-hand side of (4.9) is obtained from Jensen's inequality.

To obtain the right-hand inequality, write ET 1/(pk+2J-2) as

e 2@yl g4
It pk+2j-2

T

pk-2 ]

I M8

j=0

and notice that this can also be expressed as [1 - TET 1/ (pk+2J) 1/ (pk-2).

Jensen's inequality E 1/(pk+2J) > 1/(pk+r) gives the result.

T LT P A TR
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j 5. RISK FUNCTIONS AND THE FUNCTION ¢p
We will now give a more explicit evaluation of the function g which
appears in the risk formula (3.3). Let Wl, s Wp be independent xlz(
'; random variables and l'i = wi/mj. Let ol, ey cp be the eigenvalues of
- Zoe=e@hp = X(1/0,)/p and define
! eyl P -1
] (5.1 = — B(Z: g .U, -
3 { J i L ( J=1 j J) {
-
: The value (5.1) agrees with (3.2) because orthogonal invariance permits
« &
k. ‘ the assumption _{. diagonal with elements 01, S cp and then (3.2) with
; i 1
wi = Sii/oi reduces to = E(Zwi/faiwi), being (5.1). Because ij is
independent of (Ul, Seety Up),
&t ) ol L . pple2
I\ w (Z'ini) W
i s pk-2 _ 1 pk-2
(5.2) s By e -wEtr()
b I ~
4 establishing the equivalence of (5.1) and (3.1). Note 0 < ¢ < 1 since
p - 1
i < M i = - = . |
b |} /%0, < 2 U,/ and EX U /oy = Z1l/o; =w |
t Define E
: JJ (5.3) p = pluwtr(X)

5

st

-

as the squared cosine of the angle between and ;2_.—5, so 0 <p < 1.

-~

s Jensen's inequality applied to (5.1) shows @ 2 p. We have bounds
P j
a¥
b (5.4) p<o<min (1, =22 )
el =7 kp-2p

8

since letting m, o= 01/'2.)0j in (5.1) gives

»s

e g R SR

o

- -
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€5.5) — = < L —.
o, U 2o, ZniU. Zoi Ui

Taking expectations of (5.5) and using E l/Ui = (kp-2)/(k-2) for all

i proves (5.4). The bounds (5.4) become tight as k increases and

for any p

(5.6) lim P =P -
ko

The index henceforth will be used to indicate the dependence of ¢ on
k. The values Py and p are unity only when £ = oI, i.e., only when
all oi are equal, and the lower bound of (5.4) is the better approximation
when the o, are nearly equal. Dispersed oy cause @ and p both to approach
zero with the upper bound of (5.4) being attained asymptotically if at
least one o, is finite and one o, approaches infinity.

In the special case p = 2, Py depends on & only through the ratio
A= 02/0l of the largest to the smallest eigenvalue. Then values of Py

are generated recursively for A # 1 by

9y = 2/A/041) = Vg, 9, = 2 log()/ A *-1)

(5.7)

-©
=
[
”
N
N
~~
=
4
g
N
-
5
oj-
-
|
©
~~
'—I
a4
a
N
N
Y,
w

Obviously P = 1 if A = 1. We omit the proof of (5.7) to save space.
The limiting value of P as k= o ig p = 4%/(1+k)2.
The function P is plotted in Figure 1 for the case p = 2, k = 6

together with the four risks, from (3.6),




1

=,

1.000

.625

DO
N—= .500

< e e S SR S | o eyl

2 i 8 B B & 1y 2% (log scale)

Fig. 1 — A plot of ¢ and the risks (relative savings losses)
Ro ,R25 ,Rs ,Ry of (3.6) against the ratio of the largest
to the smallest eigenvalue for the case p=2, k=6




;ﬁ -15-

2 2 2
(5.8) W& S5+ JSg - IG (1 + 1.5a) P

for « = 0, .25, .50, 1. Figure 1 illustrates that « = 0 is best if

et e e it S e e e et

] ¢ =0 and « = 1 is best if ¢ = 1 as confirmed by (3.8), while inter-
mediate values like « = .25 and o = .5 are effective compromises if
the extremes ¢ = 0 or ¢ = 1 are not especially likely. It is tempting
to estimate ¢, say by a function C/[trgg_l)trgé)], C close to
p(pk-2)/(k-p-1), and to use this to determine an estimated value o
e o4 from (3.8). In the situation of Figure 1, for example, the hope would

be to produce a rule with risk function close to the lower envelope of

the risk functions graphed. Our calculations for the case p = 2 show that

the suggested rule works fairly well, provided @ is forced to be less than

o unity, and that smaller values of C could be better. But no clear guidelines

-

for the use of such "adaptive' rules are available at this time.
The improvement of the rule o = 0 over the best multiple of §~l

is measured by the distance between the R, curve and the horizontal

0

line R = .5 ir Figure 1. This is a 27 percent improvement in risk at

A = 1; larger improvements can occur in cases with k large and p near k. fﬁ

3
;-

For any p, k,igl has lower risk than‘EI1 provided ¢ < 1/(1+c).

T
o

This holds for p = 2, k = 6 provided 45-2.1.90. Note that Ji‘is the

.
.

LI P 5’ u

ratio of the standard deviations of the major and the minor principal

)

components defined by the two rows of X.

L g
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o Ats R BRGIIETP TR R



et AT s il b~ ce el

=

1

6. THE RESTRICTION £ =~ < I

We knowE-1 < I since Z = I 4 A with A nonnegative definite, but

~

-~

the estimators‘é;l of (1.6) do not obey this inequality. This undesirable
feature may be overcome as follows. Diagonalize‘ggl = Ftéz with I' a pxp

orthogonal matrix and the diagonal matrix of eigenvalues 6 A

=1

i
= F'A*F with 6* = min(l, 6.), 1 =1

et el i ] : /79 s ""p

%o

5 1

~o

S

_~

4rm-(>

preferred estimate is i
since this estimate satisfies the restriction < I. The loss function

(1.2) is either unchanged or reduced for every S, £ by this modification,

X
(6.1) LE s 8

for all S.
*-1
The improved estimator_§u has risk uniformly lower than %y of
(3.3) because of (6.1). In the simultaneous estimation context of Sec. 4,

the estimator

(6.2) §q = (I-2 )X

therefore has risk as a function of A, EAEeL(Q,'gu), strictly lower than
(4.4). The risk as a function of 8, EG£Z§:_§Q), is likely to be lower
than (4.5) for all §, and is known to ;; for p = 1. This conjecture

is not proved for p > 2 however because the completeness argument

*
used to establish (4.5) does not apply with_ga (there is no convenient

expression for its risk as a function of A).

The proof of (6.1) notes the convexity of the set of matrices

1

0 §”§- < I, the fact that the loss function L is a metric derived




from an Euclidean inner product, and that in this metric.§;1 is the | 4
-1
closest matrix in the convex set t°-§a . The precise argument is

given in [1, Sec. 6].
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7. DISCUSSION

~

The fact that :_1 dominates the best fully invariant estimator
0 .
=} = 1
(k~p-1)S ~ of & for our not fully invariant loss function suggests 3

PO a8 I

that shrinking the best multiple of S toward the identity matrix may
be effective in more general situations of estimating a covariance matrix. ‘
All of the estimators of & in this paper are orthogonally invariant, of

the form
E ] (7.1) £(8) = I'sC

with_E the matrix of eigenvectors of §, say S =‘£'DF, D diagonal, and
. lé a diagonal matrix whose entries are functions of the eigenvalues '

Dof S, 5 =3(D). Explicitly, the best linear multiple of S, »(S) = S/(k-p-1),

F =
% estimates the i-th eigenvalue of « by 51 = di/(k'P-l), while
E -§O = ((k-p-l{§-l + (p2+p-2)5/tr(§))_l uses
i 1
(7.2) 59 . e
i 2 d i
o ity 2
k-p-1 Ldj

so improves on O9; by shrinking all the estimated eigenvalues toward

zero, the larger eigenvalues being shrunk proportionately more than the
smaller. This is reminiscent of the James-Stein estimator of k means
[3], and the basic phenomenon seems to be the same: the eigenvalues of
S, considered as an ensemble of p numbers, are distorted in a systematic
nonlinear way from the eigenvalues of . A universally improved estimator
is obtained by undoing this distortion.

For the general problem of estimating a covariance matrix, it would

be more satisfying to show that estimators of the form

i A T 0 SR T ARy AT N RS
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(7.3) = (as™h + bI/er(s) ™

dominate the best fully invariant estimator of L when the loss function

is also fully invariant, but the computations are difficult for such

loss functions. The loss function used here leads to nicely computable
risk expressions for rules of the form (7.3), permitting a comparison of
their operating characteristics, and more importantly showing.where the
additional information lies for improving the best fully invariant esti-
mator. It also has the virtue of arising naturally from the squared error
estimation problem for 3.

In Section 5 of [3], Stein considered an example with a fully
invariant loss function and found a constant-risk estimator (invariant
under the lower triangular group of matrices, but not orthogonally
invariant) which is uniformly better than the best fully invariant

estimator. The expected value of his estimator, like Z_  here, is always

0
closer to 2 than the mean of the best fully invariant estimator. He has
recently made further progress on the problem of covariance cstimation by
using a method for finding unbiased estimators of the risk function [7].

In the empirical Bayes and the simultaneous estimation of means
situations the loss function L is natural, as the derivation in Sec. 2
shows, and the simple estimators °f,9 (2.7) based on the form (7.3) have
computable risks. This simplicity also leads to risk expressions as a
function of § (Theorem 2) and yields unbiased estimates of the risk. These
estimators may be criticized for being inadmissible since they ignore
the rest:rict:ion“}.:'-1 < I. The rules of Sec. 6 may be nearly admissible

though, at least in the case p = 1 they reduce to the James-Stein positive-

part estimator for which no uniform improvement has ever been offered.
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Orthogonally invariant estimators of ¢ take the form (2.7) with
; as in (7.1), and are not necessarily of the form (7.3). One approach
to finding alternatives to (7.3) was suggested at the end of Sec. 5.
Stein {7] offers another method by producing unbiased estimates of the
risk of arbitrary orthogonally invariant rules. Other rules having this
orthogonality property are offered by Gollob [2] and Mandel [4]. Their

estimates of @ correspond to using (7.1) in (2.7) where 1/8i =l A d.

~1

{1y

fails to pass a significance test and otherwise is zero, forcing 0 <
When p = 1 their rule is equivalent to estimation following a preliminary
test that [g“ = 0, a procedure that is known not to be minimax and to be

uniformly dominated by some positive-part version of the James-Stein

estimator [6].
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