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ABSTRACT

-

~ An emp irical deformation map for metallic glasses is introduced

and the two modes of deformation , homogeneous and inhomogeneous 

flow are reviewed. The microscopic mechanism for steady state

inhomogeneous flow is based on a dynamic equilibrium between s t ress-

driven creation and diffusional annihilation of structural disorder.  The

.1 formalism is developed using the free volume as the orde r parameter.

The boundary line between the homogeneous and inhomogeneous flow

regions on the deformation map is calculated. The s t ress-s t ra in

relation in inhomogeneous flow approaches ideally plastic behavior .
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1. INTRODUCTION: AN EMPIRICAL DEFORMATION MAP FOR

METALLIC GLASSES

The deformation map, developed by Ashb y and Frost for crystal-

line systems 1-3 is a convenient means of surveying the various modes

of plastic deformation of a material. To construct a map , each mode

of deformation is described by a steady state constitutive flow law:

= f(’r , T , structure)

where ~ is the shear s t rain rate , T the shear stress , T the temp-

e rature; hl s tructurel? represents all the relevant structural parameters

I of the material. The steady state condition implies that the structural

~r .~ parameters are uniquel y determ ine d by the external parameters stress

and temperature, and hence remain constant during the course of the

flow. An appropriate supe rposition of the flow mechanisms makes it

possible to draw constant “ contour s on a map with axes T and T

(usually normalized by the shear modulus 
~.j and the melting point TM,

r 
I respectively) ,  and to outl ine reg ions in which each of the various

mechanisms is dom inant .

Plotting experimental flow data ‘j(T , T) in the same coordinate

system results in an emp irical deformation map. A comparison of the

I calculated and empirical maps provides a test of the flow equations .

But even if no calculated map is available yet , an empirical map is

.1 . useful for  survey ing the data and outl ining the various flow mechanisms.

Therefore , the available flow data for  Pd-based metallic glasses are

presented on suc h an empirical map in  F ig .  1. Ideall y,  only data

obtained from samp les with ide ntical composition s hould be compared , 

~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I
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Pd BASED METALLIC GLASSES - 6.0 I
Ref I 

-

• ~ T9.5 Au4 Si 16,5 CHEN & GOLDSTEIN , 1911 (4)

10 — ° Pd80 Si~ NASUMOTO & NADOIN , 1911 (5) ~~~~~

‘ It~$2 Si18 IEANY El Al., 1912 (6) Iii I -
• Pd~~.5 CU6 Si 16.5 LEANY fT AL., 1912 (6) —6.0.~ ~ 

p
O Pd 80 Si20 NA DDIN & NASUMOT O, 1912 (fl 

—..~
‘ Pd~~ Ni 16 P~ CHEN El AL. , 1913 (8)

1 — 

• Pd~ .5 Cu6 Stg~~ PANPILLO & CHEN , 1913 (9 ) ~~~~~ p
* Pd 11,5 ~ 6 Si p

~,s CH(N & POLK , 1914 (10) -1.? 6T~~9

• Pd~~j Cu6 Si 16~5 PANPILLO, 1915 (F) ) I

~~ 
+ 

~ 74 AU~ Si~ CHOU & SPAEPEN , 1915 (12) I
I I I I I i f

100 200 300 400 500 600 Tg Tc 700
T(°K)

Empir ica l  de format ion  map f o r  Pd-based mçtallic glasses. The

~‘, 
‘ number at each data point is log ~ ( in  sec t ) .  Both s t ress  (a’ )

a n d  -~t r a i n  rate (~ ) a re  uniaxia l . The glass t rans ition temperature
(T g ) and the c ry s t a l l i z a t i o n  tempera ture  (T a ) are  for  Pd 80Si 20(Ref . 13) .

F i g u r e  1 

-

~~ - -~ 
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but the relative paucity of the data , togethe r with the large flexibility

in preparing amorphous metal alloy compositions make it necessary to

group the data togethe r according to their major constituent. With  one

exception , all the alloys represented in Fig. 1 contain 74-82 at % Pd

and 16. 5-20 at % Si. Their structural characteristics (dens ity, radial

distr ibution function , modulus , . ..)  and transformation parameters

(g lass transition tempe rature T g i crystal l izat ion temperature T ,

heat of crystallization) vary within acceptable limits , given the typical

• 
. 

accuracy of mechanical testing. Since all the data were obtained in

eithe r uniaxial tension or compression, the stress (a) and strain rate

/ (~ ) are plotted as such and have not been conve rted to the equivalent

shear quantities . Where possible , some approximate constant strain -

rate contours have been drawn in . The flow stresses obta ined from

creep tests , ‘ compression tests , ‘ ‘ and ultimate tens ile strength

measurements (the three highest temperature point s in Masumoto and

Maddin ’s tens ile tests 5) are probabl y close to the steady state values.
. 5-8 , 12In the othe r tens ile tests , howeve r , fracture intervenes before

steady state is reached . In these cases , the fracture stress has been - -

plotted , since it comes closest to the steady state value . Above T

‘~~3 +, (the liquidus temperature of the crystalline material with the same

composition- -not shown in Fig. 1) flow is measured by viscometric

methods . No measurements of this type ha ve been reported for Pd-

based glasses , but experience from othe r liquid metal alloys 14 
shows

that the viscosity in this temperature regime is usually around
-3 -210 Nm sec . —

Based on this emp irical information, it is now possible to show

an approximate p icture of what a calculated map should look like . Such

V

- . - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _
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a schematic map , with stress and temperature axes extended further

than in Fig. 1, is shown in Fig . 2 . The tempe rature reg ion between

T and T is unaccessible for mechanical measurements because
- C L
- crystallization i nte r venes , but it is possible to make a reasonable

extrapolation of the strain rate contours throug h this reg ion .

2 . THE FLOW MECHANISMS —

Inspection of the samples and fracture surfaces afte r testing shows

that there are two basic modes of deformation: homogeneous flow , where

I 
each volume element of the specimen contributes to the strain , and

-
• inhomogeneous flow , where the strain is localized in a few very thin

I shear bands.

a . Homogeneous Flow

As indicated on Fig. 2 , this mode of defo rmation occurs at low

stresses and hi gh temperatures. In this reg ime , the flow is close to

Newtonian viscous (i . e .,  “ cx T ) ,  as is clear from the spacing of the

strain rate contours on the map. In uniaxial tension, a specimen thins

uu~ .~ -- down uniformly during deformation. Fracture occurs afte r extensive

plastic flow , when some section of the specimen has narrowed down to

zero thickness . For convenience , the reg ion of homogeneous defo rma-

tion can be subdivided , admittedly somewhat arbitrari ly, in three parts ,

depe nding on the viscosity of the material.

H~ j (i) for T> T
t~ 

the mate rial has a vis cosity ~ ~ lO 3Nm 2sec.,

and ca n be characterized as T iflU id it Flow measureme nts must.4 . _
-- - -  

~~~
. 

~~~~
-- . —~~~~~~~ -- - ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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be performed by viscornetric methods . Since the viscosity

changes only slowly with temperature, 14 the strain rate

contours in this  reg ime are almost horizontal .

(ii) for T~~ Tg~ 
the material has, by definition of T

8
, a ~

- 
-
~

15 10 -2viscosity between 10 and 10 Nm sec . , and could be

called t viscous t ’ . In this regime, the viscosity, which is

measured in a creep test, falls very steeply with increasing

temperature. 
4, 15 Conseque ntl y, the strain rate contours are

almost vertical around T

(iii) for T < Tgi the material has a vi scosity ~ > 10~~ Nm
2
sec.

~ .1 and can be called T T solidlt From the limited number of creep

p tests ava ilable in th is regime , 7, 16 
it seems that the viscosity

does not chang e rapidly with temperature , which is reflected

on the map by the strain rate contours becoming more horizon- - -

tal. However, conclusions about flow in this reg ion must be

regarded with caution because of the lim ited number of experi-

ments available, and the la rgely unstiLdied i nflue nce of the

thermal and mechanical history of the material on the properties.

- - . : Some careful investigations of these effects are necessary.

b. Inhomogeneous Flow

This mode of defo rmation occurs at high stress levels (see Fig. 2).

In this regime , the stress is very strain rate insensitive (or, in other

words : the stress expone nt n = ~ log ’~j/~ log T is very large) , so

that the flow is almost ideally plastic. The flow stress for a g iven

strain rate , when normalized by the temperature dependent shear

- -V

-.

~~~~~~~~ L I~IJ - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ ~•J
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1 modulus (i. e. , T / ~L) ,  is almost consta nt with temperature, except at

low temperatures and near T
g~ 

On the deformation map, this results

- - 
in very closely spaced , almost horizontal strain rate contours.

• In inhornogeneous flow the strain is localized in a few very thin

shear bands. In ribbons pulled in tension these shear bands are planes ,

usually perpe ndicular to the thi n side of the ribbon and at a 450 
angle

• . . . 5,6, 17
with the tensile axis. Slip on these planes can be very extensive .

This weakens the specimen locally by decreasing the cross section ,

6 12
- until fi nally f racture  occurs alo the planes of those shear bands.

The f rac ture  surface exhibits a typical vein-like pattern , 6 , 12 , 18 which

~ 
j indicates that the mechanism of fracture is the Taylor instabil i ty.  18-20

The basic physical process underly ing this inhomogeneous flowp
phenomenon is a local softening of the material. This becomes clear

~‘ from a number of observations.

(i) localization of the flow in shear bands requires that there

is some structural change of the material inside the bands ,

such that they deform much faster there than in the rest  of
20

- the specLmen .

(ii) fracture in a tensile specimen occurs , as indicated ab~.we ,
tIt .~1. I 0along the plane of a shear band , which make s a 45 ang le with

t h e  te ns ile axis . Ordinarily,  one would expect fracture to

- .~. occur along the plane of maximum normal stress , i . e. , normal

to the tens ile axis . This means that if f racture occurs along

a shear plane with a smaller resolved normal stress , the

material along this plane must have been weakened by some

• shear-related structural change .

-: 
•.- t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1 ’  - -

~~~~~~~~~~~~ ~~~~~~~~~~~

-- -

~~~

-

~~~~~~~~~~

•

~~~~~~~~~~

-8-

( i i i )  the vein pattern on the f racture  surface is very  similar

to that obtained by the pulling apart of two solid surfaces

containing a thin viscous laye r between them. 8
, 21 , 22 This

observation is consiste!tt with ( i i ) :  the shear band consists

of a laye r of material  with a viscosity lowe r than that of the

rest  of the specimen, which weakens the plane against fracture

b y the Taylor instability mechanism.

(iv) differential  etching of the shear  bands after deformation23 ’ 24

indicates that there are chemical changes associated with flow.

This is to be expected if the shear-induced structural changes

do not completely relax out afte r removal of the load .
I t

3. THE GENERAL FLOW EQUATION

- • I The microscopic mechanism which governs both homogeneous

and inhomogeneous flow is illustrated by F ig. 3. It is as sumed that

macroscopic flow occurs as a result of a number of individual atomic
1’

jumps. In order for an atom to jump, it must have a nearest neighbor

environment as shown in Fig. 3, i. e. , next to it there must be a hole

~~ .~~~ larg e enough to accomodate its (appropriate hard-sphere equivalent)

atomic volume v*. It is reasonable to assume that the atomic positions

before and a fte r the jump are positions of relative stability, i . e. , local

~ I free energy minima . In order to make the atom jump , some activation
“ ‘-I

• 
energy of motion ~~G

m must be supplied . If rio external force is

- 
present , this is obtained from the rmal fluctuations; the number of

jumps across the activation bar r ie r  is the same in both directions ;

this is the basic microscopic mechanism for  d i f fus ion . When an

1.

4’

L .  ~~~~~~~~ 
. 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~- T1L-~~~~ ~~~~~~~~~~~~~~~~~~ ~~~
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exte r nal force , e .g . , a shear stress , is applied , the atomic jumps

are biased in the direction of the force;  the number of forward jumps

across  the activation bar rie r  is larger  than the number of backward

jumps ; this results in a net forward flux of atoms arid forms the basic

• mechanism for  flow . Qua ntitatively, this can be expressed as follows.

When all the atoms in a specimen, deformed in shear , make one jump

• each of length X (~~ 1 atomic diameter) in the direction of the shear ,

this would re sult in a macroscopic shear s t rain y ~ 1. If only a

fract ion of the atoms j ump , the shear strain rate is: ‘~ fract ion of

atom s that make forward jumps/second. Since only a fract ion of the

total number of atoms in the sample are potential jump sites , i . e.

have a large enough hole next to them as in Fig. 3 , this can be written
I

as

y = (fract ion of potential jump s ites) x (net number of fo rward jumps on
each of those sites per second)

(1)

The fraction of potential jum p sites is calculated in the free volume
25-27

- theory of Turnbull and Cohen. The f ree  volume of an atom is ,

~ intuitively, that part of its nearest neighbor cage in which the atom

can move around without an ene rgy change. In an amorphous system ,

the free volume is distributed statistically among all atoms . In Cohen

. and Turnbull ’s theory25 the probability p(v) dv of finding an atom

with a f ree  volume between v and v + dv is calculated to be:

~~~~ 
. 

p(v) dv .-~- exp (- ~11)  dv

‘ )_



— 1 1 —

where y is a geometrical factor between 1 and 1/2 , and V
f 

is the

average free volume of an atom .

In orde r for  an atom to be on a potential jump s ite , its f ree  volume

must be larger tha n v*, the effective hard-sphere size of the atom .
- 

Therefore , the total probability that an atom is on a potential jump

s ite is:

J _1 ex~~(.. .Y�~)dv  ex~~(~~~~~~) 
(2)

• It is also necessary to inc lude a factor ~.f , the fract ion of the sample

volume in which potential jump sites can be found . For example , in
L

homogeneous flow , whe re the total volum~~e contributes to flow , ~ f 1;
1p in inhomogeneous flow , where eve r ything happens in a few very thin

band s , t~f < <  1. Therefore ,

f rac t ion  of potential jump sites t~f e xp (_ y v */vf ) ( 3)

The net number of forward jumps per second on a potential jump site

is obtained from s imple rate theory (see Fi g. 3). The shear s t ress  T

exerts a force ~a on an atom , where a is the projected area of the
.1

atom onto the plane of shear . Whe n this atom makes a jum p of length A ,

..~~~ the work done is T aX .  Since >.. is roughly equal to an atomic

diamete r , the work done is T1~ where c� is the atomic volume. The

f r ee  energy of the atom afte r the jump is therefore decreased by

= rc�. The net numbe r of forward jumps per second can now be

:~~,.‘ • calculated as the difference between a forward flux ove r an activation

bar r ie r  E~Gm 
- E~G/2  and a backward flux ove r an activation bar r ie r

~ G
m 

+ t~G/ 2 . Assuming  an equal distribution of atoms over the two

It-. 
~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 
--
~~ I
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equilibrium positions g ives:

- net number of forward jump s per second per potential jump site

= u exp 
( 

m
~~ T~~/ 2 )  

- exp
(
~~~

Gm

k~~T~~12) (4)

where ~ is the freque ncy of atomic vibration (~~ Debye frequency).

• 
- Substituting (3) and (4) into (1) gives:

t T f e x P (_~~~~
.
~~

) 
2~ sinh

(~~~ T)
exP (_ 

~~~ 
(5)

-
~ This is the gene ral flow equation. In the case of homogeneous deforma-

~ 
j tion (Lu 1) at low stress levels (Tf2 ~~ ZkT) , this leads to Newton-

ian viscous behavior (2 sinh (T~~/2kT ) ~ T~~/kT ) ,  and an expression

for the viscosity can be derived:

1 7 kT I yyj~ \ I ~ Gm 
\

= ‘~~~ — 
k v  / exp

~ kT / ( 6 )

The diffusion coefficient in a three dimensional random walk

- 

• process is defined as D = -~ F where F and A are the jump

frequency and distance , respectively. An analysis , simila r to that

of the flow problem g ives:

- F = (probability that an atom is on a potential jump site)

x ( number of j umps an atom on this site makes per second )

or:

~~~~~~~~~ I F = exP (_ .
~~~~)u  exp (_

Lu
k~m)

I
- -~~~~— - - — -  ~~~~~~ ~~~~--- - -~~ . • . 7  • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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This gives for  the diffusion coefficient :

D ~~u exP (-~~~~~)
exP (- 

Li Gt m ) x 2 (8)

- 

It is worth noting that combining Equations ,~~ and (8) g ives

kTD~~~= 26(WX )

I 
which is , save for  a numerical factor of order 1, the Stokes-Einstein

V. equation.

L ) • 4 . THE SOFTENIN G MECHANISM IN INHOMOGENEOUS FLOW

As has been discussed in Section Zb , during i rihomogeneous flow , • 
-

the material in the shear bands undergoes some structural chang e that

leads to a local lowering of the viscosity.

Polk and Turnbull ’4 have proposed that this structural chang e is

the net result of two competing processes:  a shear-induced disorde ring

and a diffus ion controlled reordering process . This concept wifl be

exte nded here , by deriving a formal expression for the dynamic steady

state equilibrium between the two processes. The f ree  volume will be

chosen as the order parameter , since it makes the problem mathemati-

cally tractable. It should be kept in mind , however , that to the ext ent

that the f ree  volum e is equi valetit to other possible order parameters

( compositional, entropic , . . j,  the result should be quite generally valid.

In the free  volume formulation of the flow Equation (5 ) ,  the

structural pa rameter which governs the viscos ity is the average free

• I volume vf . There fo re , if there is to be a lowering of the viscosity in

the shear bands , the re must be an inc rease of the f ree  volume.

H
II

_

~

& 
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It is proposed that , at high stress levels , free volume can be

created by the mechanism shown on Fig. 4. At a sufficiently high

stress , an atom with hard-sphere volume v* can be squeezed into a

neighboring hole with a smaller volume v. Thi s makes the neig hbors

of the new position move out, and creates a certain amount of f ree

volume.

Competing with this is a relaxation process , which tends to

annihilate the extra free volume created and restore the system to its

i nitial structural state. The structural rearrangements necessary to

annihilate free volume consist of a series of diffusional jumps.

~ J 
In steady state a dynamic equilibrium is reached between the two

competing processes~ an equal amount of free volume is created by the

stress-driven process , as is annihilated by the diffusional process .

I’

a. Creat ion of Free Volume

The energy necessary  to squeeze an atom with volume v* int o a

I smaller hole of volume v (see Fig. 4) can be approximated by the

- elastic dis tor t ion energy required to squeeze a sphere with volume v*

~
• int o a spherical hole with volum e v in a matrix of the same material.

This has been calculated by Eshelb y:28

= ~~
(v*~~

v)
v

with 

2 l + u
• S 

~~~

If an atom makes the jump over the acti vation barr ier  in the direction ‘i

of shea r , its f r ee  e n e r g y  is decreased by the dr iv ing  term Tcl (see

.
~~~

- .
-• -~ —I--- .• .•. _ _ _ _  —
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Illustrat i on of the c rea t ion  of f r ee  volum e , b y squeezing an
atom of volume v* i nto a n e i g hb o r i n g  h ole of smaller volume v .

Figure 4.
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Section 3), but it is also inc reased by the elastic distortion energy

Lu Ge . The driving free energy  for 

:
~~~

a ti0n  of free volume is therefore:

Lu G = _ _ _ _ _

The volume v of the smallest hole that an atom can still be squeezedm

• into by a g iven stre ss is dete rmined by LuG = 0, or:

(v*_ v  )
2

TQ = 5 m (7)
V -~~~~~m

If T << S , this gives:

v ~m

The amount of f ree  volume created per second , Lu+ vf ,  can now be

calculated from s imple rate theory.

Conside r the amount of f ree volume created per second associated

with the squeezing open of holes w ith a volume between v and v + dv.

d(Lu + vf ) = (number of potential s i t e s )><  (net number of forw ard jumps on - •

each of those s ites per second)

x (amount of f ree  volume created
-~~~ . Hper jump )

The number of pote ntial s ites is equal to the total number of atoms (N)

multiplied by the probability that they have a neighbor ing hole with volume

• between v and v + dv. This factor is obtained from the ‘ree volume

theory (see Equation ( 2 ) ) .

So

number of potential sites N ~L exp (_ 

~
) dv (9) 

• - T I~~~ ~~~~
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The net number of forward j umps is calculated as the difference between

a fo rward and a backward flux , analogously to Equation (4), but with a

different LuG = - Lu Ge
. So:

net number of forward jumps per potential s ite per second

(10)

= u [ex~~
(_ LuGm - + LuGe/2) 

- exp (_ 
LuGm + rf�,’Z - Lu Gd ,Z

The amount of f ree  volume create d per jump is s imply the difference

between the volume of the atom and the volume of the hole :28

H) - . ( 11)

The total amount of free volume created per second is obtained by

integ rating all the elementary contributions d(Lu + vf
) ove r all the hole

sizes v , from V
m 

(the minimum that can be squeezed open) to v*

(above which no free volume is created). This , combined with Equa-

tions (9). (10), and ( 11) g ives:

~ 1 + 
v* 

+
L u v

f J d(A v
f
)

‘ -I V

— m

ult .~~~

= 

~rn

N
~~~ 

exP
(~~~~)u1e

xp
(~ 

LuGm - Tcu /2 + S(v *~~v)
2

/ 2 v)

4.

- exp (_ 
Lu Gm 

+ T~~ / Z -  S(v*~ v) Z
/ 2 v ) J ( * ) d

To s implif y the integration, the following assumption is made :

_ _ _ _  - 

T~~~~~S and v~~~~v* .

~ -~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ‘. ~~“ ‘ -  - ..,. . .._~~ • . J—.- - ---.—. - P r - --~~~ - - •

-18-

Therefore ,

~1. exp (- 
~

) 
~ 

exp (.. 2~~~
)V

f 
v: V

f 
V

f

v*~~ v) (v*~~ v)
~ sZv 2v*

This gives:

Lu~~vf 
= N o exp (- 

LuG
m ) 

~1- exp (
~ ~~

) {exP(~~~T) 
v*kT 

[1~~ exp

) 
+ exp (-. 

~i~T) 
v*kT - exp(~~~~

,i
~~~~

2)j~

In view of Equation (7) ,  which defines v , this reduces to the finalm
result:

Lu~~vf 
= 

~~~~~~ ~~~ [cosh(~~~~ ) 
- lj No exp (

~ 

LuG.tm

) 
exp (- i~~ ) 

(12)

b. A nnihilation of Free Volume

• The structural rearrangemetns, required for annihilation of extra

f ree  volume , consist  of a series of diffusive jumps . Let nD be the

1 - number of diffusive jumps necessary to annihilate a free volume equal

• to v*. It is expect ed that should be a small number , between 1

and 10.

Th is expectation is made plausible by the observation of a two-

dimensLnal  amorphous dynamic hard-sphere model. In two dimen-

a ions , an amorphous state of high density can only be obtained by using

• _ _ _  
_ _ _
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different size spher es. In contrast with a crystalline system , where a

vacancy is a stable ent ity after many diffusive jumps , in an amorphous

system an artificially created “vacancy” is annihilated after a small

• number of diffus ive jumps .

- Another useful analogy that can be made comes from Nabarro-

Herring creep in crystals . (This analogy must obviously be used with
-
~ cauticn , since amorphous systems are topolog ically quite different  from -

•

an assembly of microcrystals. )  In N . -H . creep, vacancies travel a - )

I distance on the order of the grain diameter , and are annihilated at the
~
. J

grain boundaries . In an amorphous system something similar can be
U
- ( imagined , but with a very small equivalent grain size. In crystalline

~r systems , vacanc ies can annihilate at the grai n boundaries because the re

the structural requirement of crystalline translational symmetry is

relaxed. In an amorphous system, this requirement does not exist at

all, and hence it is expected that “vacancies” or “extra free volume”

• can be annihilated in just a few diffusional j umps .

• 
• The amount of free volume annihilated per second is

Lu v~ = (free volume annihilated per jump) x (number of jumps per second )

I 
The amount of free volume annihilated per jump is , given the above

~: •~ definitions , v*/ niD. The number of jumps is NJ ’, where the jump

frequency J’ is g ive n by Equation (7) . The refore ,

L u v 1 = •~~
. No exp (- 

~~~
-) exp

(~ 
Lu Gtm) 

(13)

L •
~,

b ~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ . • — • 
________________ - 

-



--

-20-

c. Steady State

In stead y state, the amount of free volume created is equal to the

• amount of fr ee  volume annihilated:

+
A V f L u V

f

Or, from Equations (12) and (13):

2kT 

t
co5h (

~~4) 
- 11 

= (14)

Before the sample is loaded , the average free volume Vf 
is set by the

structure of the quenched metallic glass. At low stresses , the left hand

• term in (14) is smaller than V*/ riD, i . e.. , the extra free volu.rne create d

by the stress can easily be annihilated by the diffusion, and the ave rage

free volume stays at the initial value V f . As soon as 7 exceeds the

value for  which (14) is obeyed , however , more free volume is being

created than can be annihilated by diffusion; hence V
f 

will keep on

increasing until condition (14) is obeyed again. Or , in other wo rds :

the free volume V
f ~ S set by the stress T .

~‘ Formally, this can be seen by rewriting Equation (14):

= ~~ ~~~ ~cosh(~j~~ ) 
- 1] (15)

When this explicit expression for yv*/v f is substituted in the term

exp (- yv*/v f ) of the gene ral flow Equation (5) ,  a flow equation for

inihomogeneous flow is obtained.

‘,

- ~~~~~
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• 
~ 

5. DISCUSSION

The only unknow n parameter in the flow equations which prevent s

• us from constructing a complete calculated deformation map is LuGtm
.

• However , if it is assumed that t G tm , which may be a function of T

and T, is the same for both homogeneous and inhomogeneous flow ,

• it becomes possible to calculate the boundary between the regions in

which each of the mechanisn s dom inates . The boundary between the

two mechanism regions on the deformation map is a line T( T ) ,  where

(T , T)  
~~‘. (T ,T)  (16)homogeneous inhomogeneous

/ The only factors in the general flow Equation (5) tha t are differe nt from

p •, one mechanism to the othe r are L u f  and exp (- Yv*/v f ). So condition

- (16) becomes then

Lu f exp - ~LL... \ L u f . exp -
-~ h 

~ 
V
f / h  L 

~

or

•

~ 
j ( .~) = 

(
~~~* )  - Ln(~11!) (17)

— Since the free volume Vf is a structural parameter , and since all the

data in the vicinity of the mechanism boundary are obtained at tempera-

tures far  enough below Tg where the configuration can be cons ide red

frozen , (yv*/v f )h is a constant in the equation of the boundary line.

Using Equation (15) ,  which dete rm ines (v */v f ).~ Equation (17)  can

- . p  be rewrit ten as:

4kT a rcsinh  ( J
~~~).

l/2  
(18)

‘1
__________  - ‘~~~~ • -“—

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :—~~~~~ — -- -
~
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= 

~ F(~~~~
)h  Lu f . ]  v*~~ 2 (19)

- (18) is the equation of the mechanism boundary line on the deformation
I 

map. It contains only one adjustable parameter: o~. The other quantities

are known from experiment .

• The temperature depende nt shear modulus is:

- 

.

.• ~ (T) = ,.Lo (~ 
- (T - 300))

• where  is the shea r modulus at 300 K . T he values used her e are

• for  Pd 77 5 Cu 6 Si 16 ~:
‘p 

~ 2 30
= 3. 29 ~< 1O ’°Nm (from Chen et al.

and

2 . 6 x 104 K~~ (from Che n 31 )
~ 0 dT

The atomic volume is calculated from the dens ity measurements 32 on

Pd 85 5 Si 16 ~~ 
= 1. 4 6x  10 29m

3
. The quantity S =

¶ is calculated using a Poisson ’s ration o = 0. 4 , which is typical for

metallic glasses . 30

F igure  5 is an e nlarged port ion of the emp ir ica l  deformat ion  map

of Fig. 1, showing the boundary between the regions of homogeneous

I 
and inhomogeneous flow . The creep data at the bottom of the diagram

“ * 4 • , 7
~~

. .~~~ (Maddin and Masumoto , open squares) are obviousl y all in the homo-

geneous deformation reg ion . The t rans ition between inhomogeneous

and homogeneous flow, however , shows up in Masumoto and Maddin ’s

tensile data
5 (open ci rcles) .  The th ree data po ints at the h ighest

temperature (533 - 583 K) are ultimate tensile s t reng ths  obtained from

• • • • ~~~~~ •. , ____________ 
_ _



_ _ _ _ _ _ _ _ _

-23-

s t ress - s t ra in  curves which show very extensive plastic deformation

(several  percent)  before f racture . Therefore , these point s belong in

the region of homogeneous flow. The parameter ~ in Equation (13)

can now be adjusted such that the resulting boundary line passes between

these points and the rest of the tensile data ; for the line shown in

Fig. 5, ~ = 360.

It remains to be shown now that this is a physically realistic

number . Therefore , the quantities in (19) ,  the defini ng relation for  ~~~,

must be investigated.

As discussed in Section 3, for homogeneous flow L u fh ~~. For
L 

/ inhomogeneous flow L u f  is determined by the thickness of the softe ned

layer in the shear band. Since no direct measurements on this are

‘I , available , the thickness of this layer can only be esti mnu at ~ d , e . g. , from

the heig ht and s iz .~ of the little “tr ibutaries” in the f rac ture  surface
18 12vein-pattern. ‘ A laye r thickness of 500A seems to be a reasonable

estimate . If the sample length is 5 cm . and there are onl y a few shear

bands , Lu f
~ 

= io 6. This is , of course , only an estimate , but , fortun-

ately, the equation is quite ins ens itive to the exact value of Lu f . .
. 14

- . • 
Chen and Goldstein have measured

= 
3180

T - 5 1 5

in Pd 77 ~ 
Cu

6 Si 16. ~ 
fo~ homoger~~ous flow in the reg ion T T .

As mentioned above , in the region under consideration here Vf is

considered constant , due to conf igurational freezing at some tempera-

ture around T g~ For T = 600 , the viscosity of Pd 77 5 Cu6 Si 16 ~14 -2 4 . . .is 10 Nm sec; below this the system will be cons idered configur-

ationally f roze  n . The appropriate quantity to be used in Equation (19) •

~

I

-.

- •  • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . ~~
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L
E nlarged p o r t i o n  of the empir ica l  deformat ion  map for  Pd-based

‘,~ ~ i metallic glasses. The eq’iivalent shear stress (7) and shear
strain (‘j) have been calculated from the uniaxial values by the

- • ~~ von Mises criterion (7 ~ / 3 ;  ‘i = 3 
~ 

) . The strain rate
contours connect data points from the same reference . The shear

-~ modulus is from Refs . 30 and 31 . The heavy line is the boundary
• . LI between regions of homogeneous and inhomogeneous is calculated

from Eq. (18) .

Fi gure  5 . 
h
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is therefore :

I ~~~~ \ = 
3180 

~~ 4
\ v f /h 6 0 0 - 5 1 5

Substituting the values for 
~~~

, Lu f h~ Lu f ., and (
~yv*/v f )

h in (19)

• • leaves

j v*/1� 
= 0.26

• This  is a ph ys ically reasonable result . The equi valent hard-sphere

- 

.
• volume of a late trans ition metal as Pd probably takes up a large

fract ion of the atomic volume , say, v*/cl ~ . 8. This leaves 
~D ~

j which is consistent with the physical considerations of Section 4b , whe re

• it was argued that the number of diffusional jumps necessary to annihilate

a f ree volume equal to v* should be somewhere between 1 and 10.

It may be worth noting that the mechanism boundary on the deforma-

tion map has a positive slope , i . e. , w ith increasi ng temperature it is

necessary  to go to higher stresses to get inhomogeneous flow . Physically,

this is not unexpected, since the diffusional relaxation process become s

relatively more important at high temperatures.

At this stage , the s t ress  expone nt n = ~ log 

~

j /

~~ 

log T for the

‘~ two flow modes can also be calculated , if it is assumed that AG tm 
~

!~~~~~~~~~
-

independe nt of 7 . The results of this calculation are shown in Fig. 6.

- • .~~~ The stress exponent for homogeneous flow is n~~ 1, as it should be
L~ ~~

for Newtonian viscous flow . For inhomogeneous flow n~~ 50 , which

indicates that it approaches ideall y plastic behavior.

~~~~

• •
~ Finally, it should be emphasized that the present  mechanism

involve s monatomic systems, and does not exp licitly include any chemi-

cal effects . Howeve r , chemical o rder ing  is reflected partially in the

4

]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~i
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free  volume formulation, for example , if an eff ic ient  packing of atoms

of d i f fe ren t  s ize  (as Pd and Si)  requires  a non-random chemical

envi ronment  for  the two atoms . In this  case , creat ion of f r ee  volume

is equivale nt to creation of chemical disorder . On the othe r hand , the re

are probabl y some specific chemical e f fec ts , as the metal -metalloid

bonding , which should be included in Lu Gtm
. The d i f fe rences  in strength

found b y chang ing the metalloid compone nts in a metallic glass are

probabl y of this nature. Howeve r , it is also possible that an increased

di f fus iv i ty  of one type of metalloid to the other mi g ht lead to an increased

diffusiona] .  re laxation , and hence a hi gher s t rength. For example , the
33exceptionall y h ig h strength of Fe4 B glass mig ht conceivabl y be

caused b y the hi ghe r d i f fus iv i ty  of the small B-atom .
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