		-							
		H	1-24-6						
	And the second second		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	and the statement of			0	80. 18- 191	 - 1997 - 1997 - 1997
	카카				Ť.	<u>L</u>	The second secon	1	
						Transmission Transmission Provide State Provide	ÌT		2)
And State		N							
	END DATE FEILMED	1.1							

TRANSIENT RESPONSE OF A CANTILEVERED PLATE TO IMPACT USING HOLOGRAPHIC INTERFEROMETRY AND FINITE ELEMENT TECHNIQUES

PROPULSION BRANCH TURBINE ENGINE DIVISION

AUGUST 1976

AFAPL-TR-76-56

TECHNICAL REPORT AFAPL-TR-76-56 FINAL REPORT FOR PERIOD 1 JANUARY 1976 TO 1 AUGUST 1976

Approved for public release; distribution unlimited

AIR FORCE AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (ASD/OIP), and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

James C. Mr. Bain

DR. JAMES C. MACBAIN Project Engineer

FOR THE COMMANDER

GERSHON, Tech Area Manager

Fropulsion Branch Turbine Engine Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE - 15 OCTOBER 76 - 100

DEDODT DOCUMENTATI	Data Entered)	READ INSTRUCTIONS
1. REPORT NUMBER	2. GOVT ACCESSION N	BEFORE COMPLETING FORM 10. 3. RECIPIENT'S CATALOG NUMBER
(14) AFAPL-TR-76-56		
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERE
Transient Response of a Cantile	evered Plate to	Final Report
Impact Using Holographic Intern	erometry	1 January 76 - 1 August 76
and Finite Element Techniques		. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(+) 10 James C. MacBain		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADD	RESS	10. PROGRAM ELEMENT, PROJECT, TASK
Air Force Aero Propulsion Labor	atory	
Wright-Patterson AFB, Ohio 454	133	646100 <u>306612</u> 3066 <u>30661231</u>
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Air Force Aero Propulsion Labor	atory (]	Aug 76
Wright-Patterson AFB, Ohio 454	33	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(11 dl	fferent from Controlling Office) 15. SECURITY CLASS. (of this oport)
		Unclassified
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di '7. DISTRIBUTION STATEMENT (of the ebetrect en	stribution Unlimit	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE ced
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di ^{17.} DISTRIBUTION STATEMENT (of the abstract en	stribution Unlimit	15e. DECLASSIFICATION/DOWNGRADING SCHEDULE
 DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di ¹⁷. DISTRIBUTION STATEMENT (of the ebstrect on 18. SUPPLEMENTARY NOTES 	stribution Unlimit	15e. DECLASSIFICATION/DOWNGRADING SCHEDULE ced
 DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di T. DISTRIBUTION STATEMENT (of the abstract en SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES 	stribution Unlimit tered in Block 20, if different	15e. DECLASSIFICATION/DOWNGRADING SCHEDULE (rom Report)
 DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di '7. DISTRIBUTION STATEMENT (of the abstract on 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessaria) 1. Transient Response 5. 	stribution Unlimit tered in Block 20, if different ary and identify by block numb Cantilevered Plate	ISe. DECLASSIFICATION/DOWNGRADING SCHEDULE (rom Report)
 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di ^{17.} DISTRIBUTION STATEMENT (of the abstract en ^{18.} SUPPLEMENTARY NOTES ^{19.} KEY WORDS (Continue on reverse side if necessor 1. Transient Response 5. 2. Impact 5. 	erred in Block 20, if different nerred in Block 20, if different ary end identify by block numb Cantilevered Plate	ISe. DECLASSIFICATION/DOWNGRADING SCHEDULE (rom Report)
 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di ^{17.} DISTRIBUTION STATEMENT (of the ebstrect en ^{18.} SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary) 19. KEY WORDS (Continue on reverse eide if necessary) 19. KEY WORDS (Continue on reverse eide if necessary) 19. KEY WORDS (Continue on reverse eide if necessary) 19. KEY WORDS (Continue on reverse eide if necessary) 19. KEY WORDS (Continue on reverse eide if necessary) 19. KEY WORDS (Continue on reverse eide if necessary) 10. Transient Response 5. 2. Impact 3. Finite Element Analysis 4. Holography 	stribution Unlimit tered in Block 20, if different ary and identify by block numb Cantilevered Plate	15e. DECLASSIFICATION/DOWNGRADING SCHEDULE (tran Report)
 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di *7. DISTRIBUTION STATEMENT (of the abstract on *7. DISTRIBUTION STATEMENT (of the abstract on ************************************	stribution Unlimit tered in Block 20, if different ary and identify by block numb Cantilevered Plate	15e. DECLASSIFICATION/DOWNGRADING SCHEDULE (rom Report)
 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di ^{17.} DISTRIBUTION STATEMENT (of the abstract en ^{18.} SUPPLEMENTARY NOTES ^{19.} KEY WORDS (Continue on reverse side if necessand) 1. Transient Response 5. 2. Impact 3. Finite Element Analysis 4. Holography ^{20.} ABSTRACT (Continue on reverse side if necessand) tory (TSRL) on the transient straight of the subject of the s	stribution Unlimit tered in Block 20, if different ary and identify by block numb Cantilevered Plate out at AFAPL's Tur cuctural response of by a ballionia	<pre> 15. DECLASSIFICATION/DOWNGRADING SCHEDULE from Report) er) er) bo Structures Research Labora of an isotropic cantilevered modulum The process</pre>
 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di *7. DISTRIBUTION STATEMENT (of the abstract en *18. SUPPLEMENTARY NOTES *19. KEY WORDS (Continue on reverse eide if necessaries end end of the abstract (Continue on reverse end end of the end of the abstract (Continue on reverse end end of the end of the	tered in Block 20, if different tered in Block 20, if different ary and identify by block numb Cantilevered Plate out at AFAPL's Tur cuctural response of by a ballistic per fort. The experime	<pre>ise. DECLASSIFICATION/DOWNGRADING SCHEDULE from Report) er() er() er() er() er() er() er() er(</pre>
 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di ^{17.} DISTRIBUTION STATEMENT (of the abstract en ^{18.} SUPPLEMENTARY NOTES ^{18.} SUPPLEMENTARY NOTES ^{19.} KEY WORDS (Continue on reverse side if necessary 1. Transient Response 5. 2. Impact 3. Finite Element Analysis 4. Holography ^{20.} ABSTRACT (Continue on reverse side if necessary This report covers work carried tory (TSRL) on the transient str plate subjected to normal impact bined experimental/analytical ef ruby laser to obtain holographic 	stribution Unlimit tered in Block 20, if different ary and identify by block numb Cantilevered Plate out at AFAPL's Tur cuctural response of by a ballistic pe fort. The experime interferograms of	<pre>ise. DECLASSIFICATION/DOWNGRADING SCHEDULE red ren rer sched schedule schedul</pre>
 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di ^{17.} DISTRIBUTION STATEMENT (of the abstract en ^{18.} SUPPLEMENTARY NOTES ^{19.} KEY WORDS (Continue on reverse side if necessary) 1. Transient Response 5. 2. Impact 3. Finite Element Analysis 4. Holography ^{20.} ABSTRACT (Continue on reverse side if necessary) to yet and the transient str plate subjected to normal impact bined experimental/analytical ef ruby laser to obtain holographic following impact. The analytical modelling the plate using finite response to impact using the gen 	tered in Block 20, if different tered in Block 20, if different ary and identify by block numb Cantilevered Plate out at AFAPL's Tur cuctural response of by a ballistic per fort. The experime interferograms of portion of the wo e element technique teral purpose finit	<pre>ise. DECLASSIFICATION/DOWNGRADING SCHEDULE from Report) er/ er/ er/ er/ er/ er/ er/ er/ er/ er</pre>
 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di *7. DISTRIBUTION STATEMENT (of the abstract en *7. DISTRIBUTION STATEMENT (of the abstract en *8. SUPPLEMENTARY NOTES *18. SUPPLEMENTARY NOTES *19. KEY WORDS (Continue on reverse side if necession) *19. KEY WORDS (Continue on reverse side if necession) *19. KEY WORDS (Continue on reverse side if necession) *19. KEY WORDS (Continue on reverse side if necession) *19. KEY WORDS (Continue on reverse side if necession) *19. KEY WORDS (Continue on reverse side if necession) *19. KEY WORDS (Continue on reverse side if necession) *20. ABSTRACT (Continue on reverse side if necession) *20. ABSTRACT (Continue on reverse side if necession) *20. ABSTRACT (Continue on reverse side if necession) *21. Transient Response 5. *22. Impact *23. Finite Element Analysis *4. Holography *20. ABSTRACT (Continue on reverse side if necession) *20. ABSTRACT (Continue on reverse side if necession) *21. The subjected to normal impact bined experimental/analytical ef *22. This report to obtain holographic following impact. The analytical ef *23. The plate using finite response to impact using the gen *24. JAN 73. 1473 EDITION OF 1 NOV 65 IS CONTRACT (Continue on the transient stransient stransient	tered in Block 20, if different tered in Block 20, if different ary and identify by block numbe Cantilevered Plate out at AFAPL's Tur cuctural response of by a ballistic per fort. The experime interferograms of portion of the wo element technique teral purpose finit	<pre>ise. DECLASSIFICATION/DOWNGRADING SCHEDULE from Report) er() er() er() er() er() er() er() er</pre>
 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Di ^{17.} DISTRIBUTION STATEMENT (of the abstract en ^{17.} DISTRIBUTION STATEMENT (of the abstract en ^{18.} SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessaries 1. Transient Response 5. 2. Impact 3. Finite Element Analysis 4. Holography 20. ABSTRACT (Continue on reverse side if necessaries tory (TSRL) on the transient str plate subjected to normal impact bined experimental/analytical ef ruby laser to obtain holographic following impact. The analytical modelling the plate using finite response to impact using the gen DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS C 	tered in Block 20, if different tered in Block 20, if different ary and identify by block numb Cantilevered Plate out at AFAPL's Tur cuctural response of by a ballistic per fort. The experime interferograms of portion of the wo element technique teral purpose finit	<pre>ise. DECLASSIFICATION/DOWNGRADING SCHEDULE red red ren rer) ren scole sco</pre>

The set of the

FOREWORD

This report covers work carried out at AFAPL's Turbo Structures Research Laboratory (TSRL) on the transient structural response of an isotropic cantilevered plate subjected to normal impact by a ballistic pendulum. The effort was intended as a vehicle for evaluating the methods of pulsed laser holography and finite element analysis as they relate to the study of transient structural dynamics. This is an area which bears directly on the problem of foreign object damage to turbine engine components.

The program was a combined expermental/analytical effort. The experimental portion utilized a pulsed ruby laser to obtain holographic interferograms of the plate's deformation following impact. The analytical portion of the work consisted of mathematically modelling the plate using finite element techniques and studying the model's response to impact using the general purpose finite element program, NASTRAN.

The work was performed in the Turbine Engine Division of the Air Force Aero Propulsion Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio under Project 3066, Task 12, and Work Unit 21. The effort was conducted by Dr. James C. MacBain of the Propulsion Branch.

The author is indebted to Mr. Bruce Tavner for his very competent technical assistance in the laboratory and to Miss Helen Davis for typing the manuscript.

NTIS	
DDC	White Section
UNANHOUNCED	Butt Section
JUSTIFICATION	
84	
DISTRIBUT	
Discourse AVA	ILABILITY COOL
Dist. AVAIL.	and the occurs
1	OF SPLCIAL
11	
	1 1
H	/ /

PRECEDING PAGE BLANK NOT FILMED

AFAPL-TR-76-56

and the second

27

4

-

A BAR STOR

100000

TABLE OF CONTENTS

SECTION		PAGE
Ι.	INTRODUCTION	1
11.	SUMMARY OF RESULTS	3
111.	EXPERIMENTAL SET UP AND PROCEDURE	5
	3.1 Physical Configuration	•5
	3.2 Electronic Timing Circuity for Firing Laser	8
	3.3 Hologram Processing	12
IV.	EXPERIMENTAL DATA REDUCTION AND RESULTS	15
٧.	FINITE ELEMENT ANALYSIS AND RESULTS	37
	5.1 Finite Element Model	37
	5.2 Results of the Finite Element Analysis	41
VI.	DISCUSSION AND CONCLUSION	48
	REFERENCES	50
	APPENDIX - NASTRAN PROGRAM LISTING	51

v

1. 44

.

in it is

a faith

LIST OF ILLUSTRATIONS

FIGURE		PAGE
3.1	Cantilever Plate and Pendulum Geometry	6
3.2	Experimental Set Up for Making Holographic Interferograms	7
3.3	Timing Sequence for Pulsed Ruby Laser	10
3.4	Impact/Laser Timing Sequence	11
3.5	Electronic Circuitry for Making a Double Exposure Hologram	13
4.1	Double Exposure Holograms of Cantilever Plate (2, 4, and 6µs)	16
4.2	Double Exposure Holograms of Cantilever Plate (9, 10, and 11µs)	17
4.3	Double Exposure Holograms of Cantilever Plate (12 and 13µs)	18
4.4	Double Exposure Holograms of Cantilever Plate (16, 18, and 24µs)	19
4.5	Double Exposure Hologram of Cantilever Plate $(28, 30, \text{ and } 33 \mu s)$	20
4.6	Pressure Transducer Output at Impact Point vs. Time (Tests 1 and 2)	22
4.7	Pressure Transducer Output at Impact Point vs. Time (Tests 3 and 4)	23
4.8	Flexural Wave Position vs. Time after Impact	24
4.9	Vector Diagram for Normal Displacement Computation	27
4.10	Normal Displacement, $\delta_{\rm N}^{},$ vs. Distance from Impact Point, Y, at T = 4 μs	29
4.11	Normal Displacement, $\delta_{N}^{},$ vs. Distance from Impact Point, Y, at T = $6\mu s$	30
4.12	Normal Displacement, $\delta_{N}^{},$ vs. Distance from Impact Point, Y, at T = $12 \mu s$	31
4.13	Normal Displacement, $\delta_{\mbox{N}}$, vs. Distance from Impact Point, Y, at T = $18 \mu s$	32

vi

Contraction of the local division of the loc

and a set of the

The second second second

.

Sec. And

* *

the start in

tin

Bart Street

in the second

Alter .

Mage 1

. .

LIST OF ILLUSTRATIONS (CONT'D)

FIGURE		PAGE
4.14	Normal Displacement Along Plate Free Edge at T = $24\mu s$	35
4.15	Enlarged View of Impacted Plate at T = $24\mu s$ Showing Numbered Fringes	36
5.1	Finite Element Mesh of Cantilever Plate	38
5.2	Impact Point Displacement vs. Time	42
5.3	NASTRAN Contour Plot of Normal Displacement at T = $6\mu s$ and T = $8\mu s$	45
5.4	NASTRAN Contour Plot of Normal Displacement at T = $12 \mu s$ and T = $18 \mu s$	46
5.5	NASTRAN Contour Plot of Normal Displacement at $T = 24\mu s$ and $T = 30\mu s$	47

a

SECTION I

INTRODUCTION

Foreign object damage in both military and civilian turbine engines is a seldom but serious problem both in terms of cost and safety. For example, the Air Force Inspection and Safety Center states that 2816 birdstrikes have been reported Air Force-wide between 1966 and 1973. These birdstrikes resulted in a loss of 7 lives, 14 aircraft, and a cost to the Air Force of \$74 million dollars. These figures serve to underline the fact that there is a definite need for both basic and applied research in the area of impacttolerant turbine engine blading. More sophisticated design tools and impact theories are required. In this vein, this report covers work carried out at AFAPL's Turbo Structures Research Laboratory (TSRL) on the transient structural response of an isotropic cantilevered plate subjected to normal impact by a ballistic pendulum. The program was a combined experimental/analytical effort. The experimental portion utilized a pulsed ruby laser to obtain holographic interferograms of the plate's deformation following impact. The analytical portion of the work consisted of mathematically modelling the plate using finite element techniques and studying the model's response to impact using the general purpose finite element program, NASTRAN.

The specific aims of this research effort were threefold. First, the advantages and disadvantages of using pulsed laser holography for transient structural analysis were studied. Second, it was intended

.

A AL

**

and it

S. two

State of the second

to use the experimental pulsed holography results as a verification of results obtained analytically using the computer program, NASTRAN. Finally, the research effort served to provide knowledge of and experience with pulsed laser holography - information that will be useful in future TSRL research efforts.

A BOOK AND

SECTION II SUMMARY OF RESULTS

An aluminum cantilevered plate measuring 3"x7"x.1875" was struck with a ballistic pendulum consisting of a .65" diameter steel ball attached to a wire on a pivot. The resulting plate response was measured for a specified time after impact by double exposure holographic interferometry using a pulsed ruby laser. The plate's normal displacement was experimentally determined for times after impact ranging from 2 to 33μ s. Photographs of the double exposure holograms from these tests are shown in Figures 4.1-4.5. The normal displacement based on four of the test runs (times after impact of 4, 6, 12, and 18μ s) is shown as a function of plate geometry in Figures 4.10-4.13.

The flexural wave velocity was computed from the holographic interferograms by plotting the plate wave position versus time after impact and was found to be $C_f = .102 \text{ in/}\mu \text{s}$. This is in good agreement with the theoretical Rayleigh surface wave velocity of .112 in/ μs - a difference of 8.5%.

A parallel numerical study was conducted using the finite element computer program NASTRAN to compute the cantilevered plate's transient response. The results were in good agreement with the experimental findings. The plate's normal displacement based on finite element analysis is shown plotted in Figures 4.10-4.13 as a function of plate geometry (dashed lines). Contour plots of the plate's normal displacement for different times after impact were also generated by NASTRAN and are shown in Figures 5.3-5.5.

1

- 1

12 43 W

and a strend

TO THE WORK

The study demonstrated the feasibility and utility of using pulsed laser holography to study transient structural response. In addition, it provided increased confidence and experience in the use of NASTRAN's transient analysis capability.

SECTION III

EXPERIMENTAL SET UP AND PROCEDURE

3.1 Physical Configuration

The test piece for the experimental portion of the impact analysis program was a 6061-T6 aluminum plate measuring 12" in length, 3" in width, and 3/16" thick. The plate was fixed between two steel blocks having a total weight of 33 lbf such that it was cantilevered and had a free length of 7". The weight of the cantilevered portion of the plate was .394 lbf. The plate and jig are shown in Figure 3.1.

The plate was impacted normally by a steel ball weighing .043 lbf at a point lying on its long axis and located 3" above its fixed end as shown in Figure 3.1. The ball was soldered to a thin wire that in turn was fixed to a pivot located a distance above the impact point forming what is known as a ballistic pendulum. The impact sequence was initiated by suspending the steel ball from an electromagnet which was then switched off allowing the ball to swing down and strike the plate. Just prior to impact, the ball interrupted a continuous wave laser beam passing behind the plate (see Figure 3.2) causing a photo diode to transmit a lOV signal that initiated the pulsed laser firing sequence. The timing and electronics involved in the pulsed laser firing sequence will be addressed in more detail in a later section.

The optical set up for making the hologram is also shown in Figure 3.2. The placement of the optics is typical of that used to make transmission holograms with an off-axis holographic set up, and the reader is referred

and with a

and the second sec

.

Figure 3.1 - Cantilever Plate and Pendulum Geometry

1

A state Sale to

and the second

L'IN PLAN

Figure 3.2 - Experimental Set-up for Making Holographic Interferograms

to Reference 1 for details. The holograms were made using a pulsed ruby laser (Apollo Model 22HD). The laser puts out 2.5 joules/pulse, 20-50ns in width, which necessitates the use of dielectric mirrors and doubly concaved lenses (F.L. = -40mm) when working with the unexpanded laser beam. While TSRL's pulse ruby laser is capable of rapid double pulsing down to pulse separations of lµs, this was not done in the present experiment. Because of timing constraints placed on the ruby laser (see Section 3.2), the holographic interferograms were made by first exposing the photographic plate to a single manually initiated laser pulse prior to impact and then again exposing the photographic plate some time, Δt , after impact. This second exposure was also done in the single pulse mode but in this case was triggered automatically. This will be discussed in greater detail in the next section.

3.2 Electronic Timing Circuitry for Firing Laser

When the ballistic pendulum impacts the cantilever plate, flexural waves spread out from the impact point at a velocity approaching the shear wave velocity, $C_s = \frac{G}{\rho}$, of the material (Ref. 2). For 6061-T6 aluminum, the flexural waves will have a phase velocity approaching .114 in/µs. This means that when the plate is impacted, the resulting flexural waves will only take about 16µs to travel the 1.5 inches to the free sides of plate. Now, one of the objectives of the present study was to analyze the plate deformation just after impact, i.e., at times after impact <u>prior</u> to significant wave reflection off the plate's boundaries. For acceptable results, this places an upper

bound on the time for firing the second laser pulse of about 30μ s (wave reflection will occur off the closest free edges of the plate at t = 16µs). This in turn places some constraints on the firing sequence for the ruby laser since, as shown in Figure 3.3, the ruby laser can fire only after 200µs have elapsed - the amount of time necessary for the flash lamps to energize. This is true for either the single pulse, as in the present case, or the double pulse mode of operation. Hence, in order for the laser to lase automatically at some time after impact in the 0-30µs range, it would have to be triggered (signal sent to Master Sync) at some time prior to impact. This was done using a timing delay oscilloscope (Tektronix 535) as follows.

Prior to making the double exposure hologram, the time that it took the ball to go from the trigger laser beam to the plate was measured by an electronic counter. This is shown as T_{AC} in Figure 3.4. This distance traversed by the ball in going from A to C was approximately 1 inch and T_{AC} was typically in the .02 second range (20,000µs). Upon specifying the time after plate impact to be observed, T_{IMPT} , and utilizing the fact that Pulse #2 of the laser fires at 1000µs into the firing sequence, the delay time, T_{AB} , was determined from the relationship:

$$T_{AB} = T_{AC} + T_{IMPT} - 1000 \mu s$$
 (3.1)

The delay oscilloscope was then set so that a signal was sent to trigger the ruby laser after a delay of T_{AB} seconds. The Pockels cell voltage for Pulse #1 of the ruby laser was set to zero, thus eliminating Pulse #1 from the firing sequence.

and the second second

11

Figure 3.4 - Impact/Laser Timing Sequence

With the steps mentioned above carried out, the actual impact test was run. First, the magnet was energized and the pendulum attached to it. The first exposure of the stationary cantilever plate was then made by manually firing the ruby laser (Pulse #2, only). The ruby laser then was energized again, the magnet was switched off, allowing the ballistic pendulum to swing down, interrupt the trigger laser beam (point A), initiate the ruby laser firing sequence (point B), and impact the plate (point C). At T_{TMPT} seconds after initial contact between the ball and plate, Pulse #2 of the ruby laser fired, exposing the photographic plate for the second time. During this impact sequence, the time T_{AC} was again measured as it varied somewhat between tests. Knowing the value of TAC for the actual test, the actual value of the time after impact, T_{IMPT} could be computed from equation (3.1). A schematic of the electronics used in the experiment is shown in Figure 3.5. A switch was put in the electronic counter portion of the circuit (located at bottom of Figure 3.5) in order to facilitate quick monitoring of the present scope delay time, TAB, or the time it took the ball to go from the trigger laser to the plate, T_{AC} .

3.3 Hologram Processing

21

The photographic plates used in the experiment were 4"x5" Agfa-Gevaert 10E75. The photo cell and storage oscilloscope shown behind the hologram in Figure 3.5 were used to measure the reference to object beam ratio and pulse amplitude of the holographic set up. The beam ratio for the tests was approximately 2 to 1 (reference beam to object beam). The combination of photo cell and storage oscilloscope could only give

12

and hands and marker and in the Line

War and a start

With what is a sure

.....

Figure 3.5 - Electronic Circuitry for Making a Double Exposure Hologram

1

Section ...

relative light intensity measurements, i.e., the amplitude of the reference beam relative to the object beam or the relative amplitude between the first and second plate exposures. This sufficed, however, for the present experiment. With the photo cell placed 1" behind the hologram plate holder, "acceptable" holograms resulted for oscilloscope readings of .4 volts and .6 volts with and without a photographic plate in the holder, respectively. The resulting holograms tended to be dark but this was corrected by bleaching the developed photographic plates. The developing process was carried out as follows:

1. 4 minutes in Kodak D-19 developer;

- 2. 30 seconds in stop bath;
- 3. 3 minutes in fixer;
- 4. Dry with blow dryer;

Bleach in Potasium Ferricynanide (15g of K₃Fe(CN)₆ in 1000 ml distilled water) - agitate until plate becomes milky white, approximately 1 minute.

27

SECTION IV

EXPERIMENTAL DATA REDUCTION AND RESULTS

Figures 4.1 through 4.5 show the cantilevered plate's response for times after impact ranging from 2µs to 33µs. For the sake of increased fringe clarity, the photographs taken of the holograms show the immediate area of impact. Recall that the impact point lies on the vertical axis of the plate and 3 inches above the clamped base. The numbers in parentheses refer to the raw data numbering system used to denote each test run. The 6061-T6 aluminum plate was painted with a flat white paint and a grid having 1" by .5" increments was scribed on it. In addition, 1/8" increments were scribed on the plate centerline from the impact point to 1" below it.

Referring to Figures 4.1 through 4.5, the fringes concentrically located around the impact point (ball impacting from rear) represent loci of constant displacement on the plate. The fringes are a contour map of the flexural waves caused by the impact. They travel outward with time until they reach the free edge of the plate at about $T=12\mu$ s and are reflected. It is evident from the photographs that either the timing measurements are in error by as much as $\pm 2\mu$ s or that there was some scatter in the magnitude and duration of the impulse load imparted to the plate by the steel ball pendulum. The latter reason is thought to be the case because of a permanent magnetic field that

was induced in the electromagnet used to release the steel ball. The permanent magnetic field varied somewhat throughout the duration of the impact tests. The magnetic force field would have the effect of slowing up the ball's release and, consequently, decreasing its impact force. This fact is corroborated by Figures 4.6 and 4.7 where the force time profile is seen for four successive ball impacts on a pressure transducer (Piezotronics, PCB 118A-B, 2µs rise time) temporarily imbedded in the plate at the impact point. The pressure amplitude (proportional to force) in test 1 is 20% less than the tests 2 through 4. While future work in this area should strive for a more repeatable loading system, the present data scatter was found to be acceptable within the scope of the present research effort. The load profile shown in Figures 4.6 and 4.7 was also utilized to determine the loading input for the finite element analysis (Section 5.1).

The fringe pattern position and the corresponding times after impact in Figures 4.1-4.5 can be used to compute the velocity of the flexural waves in the plate. Using the outermost visible fringe for times after impact ranging from 2μ s to 13μ s, one can get a plot of wave position as a function of time. The slope of this curve will be the flexural wave velocity. Using the fringe pattern positions and corresponding times in Figures 4.1 through 4.3, the curve shown in Figure 4.8 was generated. Because of the aforementioned scatter due to load repeatability, a linear least squares routine was used to generate the curve through the data points. The slope of the curve gives the flexural wave velocity as $C_f = .1024$ in/µs.

and the second second second second second

1

Fr

and the Loss of

and a second second

Set of the set

Figure 4.7 - Pressure Transducer Output at Impact Point Vs Time (Tests 3 and 4)

and the second

. .

and the second and the

Wand in new 2 2 1

100 10000

Figure 4.8 - Flexural Wave Position As a Function of Time After Impact

where

authority in Property

It is of interest to compare the experimental value of the flexural wave velocity to that obtained using the three-dimensional equations of elasticity (Ref. 2, 3, and 4). According to classical plate theory, the flexural wave velocity in an infinite plate approaches that of a Rayleigh surface wave when the wavelength, λ , becomes small compared with the plate thickness, h. In the case of the present impact tests, the steel ball made contact with the plate over a circular area of less than .03125 inches in diameter. Now, the wavelength, λ , is a function of the pulse shape and plate contact area, and if the pulse loading is broken into its Fourier components, the largest component's wavelength will be on the order of twice the diameter of the contact area. Hence, the smallest value of h/λ for the plate with h = .1875 is h/λ = 3. All other values of h/λ for the higher Fourier components will be greater than this value. For values of $h/\lambda > 3$, the flexural wave velocity in a plate closely approximates that of a Rayleigh surface wave and can be obtained from the expression (Ref. 4).

$$C_{f} = .932 C_{s} \qquad (v = 1/3) \qquad (4.1)$$

$$C_{s} = \sqrt{\frac{G}{\rho}} = \sqrt{\frac{E}{2(1+v)\rho}} \qquad \text{is the shear wave velocity.}$$

For the test plate; $E = 1 \times 10^7$ psi, v = .3, and $\rho = 2.587 \times 10^{-4}$ lbm. Placing these values into equation (4.1) yields a value of $C_f = .112$ in/µs. This is within + 8.5% of the experimental value.

- 424 - 45. T

interest in Planua & in

The magnitude of the plate's displacement can be obtained from the fringe photographs using the expression (Ref. 5 and 6):

$$\delta \cdot (\vec{n}_{0} + \vec{n}_{v}) = \frac{(2N\mp1)\lambda}{2}, \text{ for } N = \pm 1, \pm 2, \pm 3 \ldots$$
 (4.2)

where $\overline{\delta}$ - displacement vector

- \vec{n}_{o} unit vector in direction from object to illumination source (object beam)
- \vec{n}_v unit vector in direction from viewer (through hologram) to object
- λ wavelength of laser used to make the hologram
- N fringe order

The vectors given by equation (4.2) are shown in the context of the present experimental geometry in Figure 4.9.

Carrying out the dot product in equation (4.2) yields:

$$|\vec{\delta}||\vec{n}_{0} + \vec{n}_{V}|\cos(\vec{n}_{0}, \vec{n}_{V}) = (2N \mp 1)\lambda$$
(4.3)

letting $|\vec{\delta}| \equiv \delta$ and using Figure 4.9 gives

$$|\vec{n}_{0} + \vec{n}_{v}| = |1.975 \vec{i} + .222 \vec{j}| = 1.987$$
 (4.4)

$$\cos{(n_o, n_v)} = .975$$
 (4.5)

1

and a construction

Hence, the displacement, $\delta,$ in the direction that bisects \vec{n}_{0} and \vec{n}_{v} is:

$$\delta = \frac{(2N \mp 1)\lambda}{(2)(.975)(1.987)} = \frac{(2N \mp 1)\lambda}{3.874}$$
(4.6)

The displacement normal (perpendicular) to the plate surface differs from that given in equation (4.5) by only $\cos\left(\frac{\dot{n}}{o}, \frac{\dot{n}}{v}\right) = .994$.

Dividing equation (4.6) by .994 gives

$$\delta_n = \frac{(2N \mp 1)\lambda}{3.853}$$
, for N = ±1, ±2, ±3 ... (4.7)

Equation (4.7) will be used below to compute the values of the plate's normal displacement.

Figures 4.10-4.13 show the plate displacement as a function of the distance from the impact point along a line from the impact point to the free edge of the plate (Section A-A in the figures) for times after impact of 4, 6, 12, and 18μ s. Also shown in these figures are the normal displacement curves based on finite element analysis which will be discussed in Section V.

Polaroid type 55 P/N film was used to photograph the double exposure holograms using a 4"x5" format view camera with a Polaroid film holder. Polaroid 55 P/N film produces both a positive and negative print. The negative print was placed in a standard photographic enlarger such that the enlarged view of the displacement fringes could be used to more accurately determine the corresponding displacement. Using the enlarger, fringes as high as N=70 could be

.

1

Conceptions.

**

Figure 4.13 - Normal Displacement, $\delta_n^{},$ Vs Distance From Point, Y, at T=18µs

observed. (Note that this technique could be conveniently expanded to include a digital X-Y plotting table as the projecting surface for the enlarger.)

In contrast to time-average holography where the white fringe denoting zero displacement is the most intense and stands out clearly. the fringe representing zero displacement in double exposure holography is of the same intensity as its neighboring higher order fringes. Hence, in order to get a quantitative plot of the displacement based on a single hologram, some a priori information on the plate's displacement response is necessary. Referring to Figures 4.1, 4.2, and 4.3, the maximum plate displacement occurs at the impact point and decreases in magnitude as one travels outward from it. Since the flexural displacement is a wave, the positive displacement at the impact point will be followed by a smaller negative one at some distance from the impact point and then, as one travels further away from the impact center, a return to the undeformed, zero displacement, portion of the plate. The peak negative displacement manifests itself by a widening of the fringes where the slope of the negative displacement goes to zero. This can be seen in Figure 4.3 in the $12\mu s$ (107) photograph. Using this type of reasoning the plate's normal displacement could be plotted. While this approach was found to be sufficient for the simple deformation pattern that the plate experienced, more complex displacements would necessitate more sophisticated approaches such as multiple double exposure holograms. As an aside, another approach that could be used to determine the zero displacement fringe would be to use an optical bench telescope

to scan across the image of the hologram. By scanning along a horizontal line passing through the impact point, the concentrically located fringes will appear to converge toward one of the circular fringes. In other words, the impact point will appear to be a fringe "source" with fringes traveling toward the one stationary circular fringe. Fringes located outside the stationary circular fringe will appear to travel in the direction of the impact point and the stationary circular fringe. The stationary fringe is a loci of zero displacement and by viewing the convergence (traveling) characteristics of the adjacent fringes, it can be located.

Figure 4.14 shows a plot of the plate's normal displacement along its free edge (Section B-B) at T=24µs after impact. The displacement curve is based on the third fringe photograph shown in Figure 4.14 and shown enlarged in Figure 4.15. The fringes are numbered in Figure 4.15. Along the free edge, the undeformed plate was used as the zero reference point. In addition, fringes that curved from one point on the free edge to another provided a convenient indicator of points of equal displacement on the opposite sides of a hill or a valley.

A characteristic the second

12.12

Figure 4.14 - Normal Displacement Along Plate Free Edge at T=24µs

in a same time of the strate in the time of

all a state

1

Figure 4.15 - Enlarged View of Impacted Plate at T=24 μs Showing Numbered Fringes

SECTION V

FINITE ELEMENT ANALYSIS AND RESULTS

5.1 Finite Element Model

The numerical portion of the study was based on a finite element analysis of the cantilever plate using the general purpose finite element computer program, NASTRAN (Navy Nastran, Level 15.2.0). The model geometry and orientation for the cantilever plate is shown in Figure 5.1. The mesh consists of 304 nodes that connect the 165 quadrilateral plate elements (CQUAD2). The nodes at the base of the plate were fixed against both translation and rotation to simulate the cantilever condition. Because the impact load acts symmetrically with respect to the long axis of the plate, only half the plate was modelled with the nodes along the plate's axis of symmetry being fixed against asymmetrical motions, namely, translation in the Y direction and rotation about the X axis. These assumptions yield a finite element model having 957 degrees of freedom. Note that a refined mesh was used in the area about the impact point (shown by arrow). The plate response was essentially the same whether or not the refined mesh was used (thus demonstrating convergence) but better contour plots resulted when the finer mesh was used.

The transient analysis module of NASTRAN, Rigid Format 9, was used to carry out the analysis. When using the transient analysis module one can elect to use either a modal superposition technique or a direct integration of the nodal displacements. The latter

a manda descrite and a

100

a section of the

Figure 5.1 - Finite Element Mesh of Cantilever Plate

technique of direct integration was adopted for this study because it would have taken a prohibitive number of normal modes and frequencies to effectively model the plate response for an impact load that had a duration of 55 μ s. A good rule of thumb when using the modal superposition method is that both the integration step size and the period of the highest normal mode should be, at most, onetenth the size of the force duration. For the present study, this would have required the highest mode of vibration to have a period of about 5 μ s, i.e., a natural frequency of 2x10⁵ Hz. This fact, coupled with the additional fact that the direct integration technique is inherently more accurate since it handles all degrees of freedom, lead to its choice as the solution technique.

The transient analysis module of NASTRAN accepts the forcing function in tabular form where the load amplitude and direction versus time are input for each node in the area of the load. For the present study, a single load in the normal (Z) direction was input as a function of time at the node designated by the arrow in Figure 5.1 (node number 171). The load profile was assumed to be the shape of a half sine wave (see Figures 4.6 and 4.7) having a duration of 55 μ s. By measuring the height of the ballistic pendulum at its release point and at its maximum rebound position from the plate, the amplitude of the half sine load can be obtained by equating the maximum kinetic energy to the maximum potential energy of the pendulum. For a pendulum of mass, m, being released at height, h₁, and rebounding to a height of h₂, equating the maximum potential and kinetic energies

for

yields a change in velocity of:

$$V_1 - V_2 = \sqrt{2g} (\sqrt{h_1} - \sqrt{h_2})$$
 (5.1)

where g is the acceleration of gravity.

The impulse of the force, F(t), acting

a time, T, is

$$I = \int_{0}^{T} F(t)dt = m (V_1 - V_2). \quad (5.2)$$

For a force having a half sine wave profile,

$$F(t) = A \sin\left(\frac{\pi t}{T}\right)$$
(5.3)

where A is the force amplitude.

Utilizing equations (5.1) and (5.3) in equation (5.2) yields

$$I = \int_{0}^{T} A \sin \frac{\pi t}{T} dt = m \sqrt{2g} (\sqrt{h_1} - \sqrt{h_2})$$
 (5.4)

Carrying out the integration and solving for

the amplitude gives:

$$A = \frac{\pi m \sqrt{2g} (\sqrt{h_1} - \sqrt{h_2})}{2T}$$
(5.5)

The mass of the steel ball was 1.335×10^{-3} slugs. From Figure 3.1, it is seen that $h_1 = 9.75$ ". The rebound height was measured by taking a photograph of the ball's trajectory while illuminating it with a high frequency strobe light. The height, h_2 , was found to be .263". Placing these values into equation (5.5)

the water in the

yields an amplitude of A = 230 lbf. Hence, the force on the plate is

$$F(t) = 230 \operatorname{Sin} \left(\frac{\pi t}{55 \mu s} \right)$$
(5.6)

Equation (5.6) was used in tabular form in NASTRAN. (This is done using the "DAREA" and "TABLED1 75" bulk data cards in NASTRAN as shown in the Appendix).

5.2 Results of the Finite Element Analysis

Using the finite element mesh, boundary conditions, and impact load profile described above, NASTRAN computed the plate displacement for specified times after impact. The output was in the form of displacements at specified nodes plus contour plots of the displacement for the entire plate. The normal plate displacement was plotted as a function of the distance (Y) from the impact point at X=3" for times after impact of 4, 6, 12, and 18µs. For purposes of comparison with the experimental results, the four plots are shown in Figures 4.10 through 4.13 of Section IV as the dashed curves. The agreement between the experimental and finite element result is quite good except for $T \approx 6 \mu s$. This is felt to be due to a stronger than average impact load for the experimental curve. This agreement is corroborated by a look at Figure 5.2 where the displacement of the plate impact point is shown plotted as a function of time. A computer generated second order least squares curve fit the finite element data exactly, demonstrating a parabolic relationship between the impact point dis-

A deliver a strend to

placement and time. The experimentally derived points closely follow this curve with the displacement at $T=6\mu s$ showing the largest deviation, as one would expect.

Figures 5.3 through 5.5 show normal displacement contours of the plate response at times after impact of 6, 8, 12, 18, 24, and $30\mu s$. The values of the contours are given in Table 5.1. The trends demonstrated by the contour plots are in good agreement with the experimental results. Note in Figure 5.5 that reflection has started to take place off the free edge for T=30µs. While some of the symbols in the contour plots may be difficult to discern, the reader can be aided by the fact that contour numbers 1 through 29 represent increasing positive displacement and numbers 30 through 50 represent increasing negative displacement. This means that a loci of zero displacement lies between contours 1 and 31, exclusive.

when we we thank the

TABLE 5.1

Normal Displacement Magnitude for NASTRAN Contour Plots (See Figures 5.3 - 5.5)

SYMBOL DISPLACEMENT (IN.)

SYMBOL DISPLACEMENT (IN.)

1	1.00E-05	26	9.00E-04
2	2.00E-05	27	9.50E-04
3	3.00E-05	28	1.00E-03
4	4.00E-05	29	1.05E-03
5	5.00E-05	30	-1.00E-05
6	6.00E-05	31	-2.00E-05
7	7.00E-05	32	-3.00E-05
8	8.00E-05	33	-4.00E-05
9	9.00E-05	34	-5.00E-05
10	1.00E-04	35	-6.00E-05
11	1.50E-04	36	-7.00E-05
12	2.00E-04	37	-8.00E-05
13	2.50E-04	38	-9.00E-05
14	3.00E-04	39	-1.00E-04
15	3.50E-04	40	-1.50E-04
16	4.00E-04	41	-2.00E-04
17	4.50E-04	42	-2.50E-04
18	5.00E-04	43	-3.00E-04
19	5.50E-04	44	-3.50E-04
20	6.00E-04	45	-4.00E-04
21	6.50E-04	46	-4.50E-04
22	7.00E-04	47	-5.00E-04
23	7.50E-04	48	-5.50E-04
24	8.00F-04	49	-6.00E-04
25	8.50E-04	50	-6.50E-04

The state

?

「「「「「「」」」」

1.44

.....

- 2 × . 1 .

Ser.

....

-

Figure 5.5 - NASTRAN Contour Plot of Normal Displacement at T=24 μs and T=30 μs

AFAPL-TR-76-56

- 1

SECTION VI

DISCUSSION AND CONCLUSION

The work described in the preceding sections has demonstrated that double pulsed holographic interferometry can be effectively used to study the dynamic structural response of an elastic body subjected to impact loading. Within the limits of the displacement range covered by pulsed laser interferometry using a ruby laser (5-1000 μ in), quantitative displacement information describing a plate's initial response to an impact load was obtained. There was good agreement between the experimental tests and analytical results obtained using the NASTRAN finite element computer program (Rigid Format 9). Some scatter between individual tests did occur and was felt to be due to failure to accurately reproduce the impact load on the plate. Future work in this area should strive for a more repeatable impact load. In addition, experimental timing measurements should be increased to a sensitivity of \pm 0.1 μ s instead of the \pm 0.5 μ s used in the present experimental tests.

The good experimental/analytical agreement provides increased confidence in NASTRAN's transient analysis module. The good agreement does not come free, however. For a typical computer run (see Appendix), central processor (CP) time was 923 seconds and input/output (IO) time was 1360 seconds on the Wright-Patterson AFB CDC 6600 Computer.

Future work in the vein of the current research will use

the state of the state of the

and a second

the existing system to study turbine fan blade response to impact load. Some thought is also being given to utilizing the measurement of the plate flexural wave speed to determine elastic material properties of composites (say) and, also, to study material damping characteristics. Finally, plate displacements, at times greater than those dealt with in this report (2-30µs), could be studied using the double-pulse capability of AFAPL's ruby laser.

1

where a Pane

REFERENCES

- Collier, R.J., Burckhardt, C.B.; and Lin, L.H.; Optical Holography, Academic Press, New York, 1971.
- Lamb, H., "On Waves in an Elastic Plate", Proceedings of the Royal Society of London, England, Series A, Vol. 93, 1917, pp 114-128.
- Kolsky, H., <u>Stress Waves in Solids</u>, Dover Publications, Inc. New York, 1963, pp 16-23.
- Mindlin, R.D., "Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates", J. of Applied Mechanics, Vol. 18, No. 1, Mar, 1951, pp 31-38.
- Aleksandrov, E.B. and Bonch-Bruevich, A.M., "Investigation of Surface Strains by the Hologram Technique", Soviet Physics, Technical Physics (ZTF), Vol. 12, No. 2, August, 1967, pp 258-265.
- Haines, K.A., and Hildebrand, B.P., "Surface Deformation Measurement Using the Wavefront Reconstruction Technique", Applied Optics, Vol. 5, No. 4, April 1966, pp 595-602.

interest and the second and the second second and

ş

「日本」の

PARTY CONTRACTOR

APPENDIX

NASTRAN Program Listing

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

NAMEN NI SA NANANA		NMMM				CDC 6400	SERIES	
		чинини				N0051 66		
			11/1			01914		
	ичичичини примини тимитикани примикани	-/////////////////////////////////////	HHH			EVEL 15.2	.D CNAVY	NASTRA
		HHHH/////////						
	MENNER AND	WH	T	WWWWW	NNNA	I	лини	NMM
	WW WWWW //////////////////////////////		MMM	THE H	H NE	E	HWWWW	Ŧ
111 TIMNES NAM P MARTERS	WEWN WWHIIII	ANAM MMAMPA	WWW	MMM M	×	MMM	NMMM FM	WW
1/1 /// NH HE MALLSTA	M MMMAMMM		MMM		Í.	HHHH		
H // //// HLANDA	WWWW NWET W2	AMMM MANNA	MMAI	HHH H	NHWHW	WFWH	TI	NNEW
WANTER MAY NUMBER 11/1/1/1	MMMMAMMMM MK	MMMM MMMM M	MMM	WWH W	MM	MMMM	MM	MMMM
NAME AN ANNALY TRACTOR	N	THE NEW TH	HHH	HH HA	HHH	чинин		Ŧ
KW NHNMKNJMMMKNKJMJATT TATATA								
			MMMM					
			HWW					
	 		E E					
Hills + Hills + a'r hill - allaha bit ait bit bit	Hallititide Mannahlanditi	William William William		H31646	SENEPAT	TON DATE	-	
***************************************		NHNHWWWW!!WNW						

		E HERE						
WWW	MMMMMH HMMMMM							

AFAPL-TR-76-56	COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION
0 I U W	
У О Ш	
0 	
α 	
ш >	
A STRA STO PLAT	
N 1101 1101 1101 1101 1101 1101 1101 11	

AFAPL-TR-76-56	COPY ANALY LEGIBLE FRODUCTION	
N A STRAN EXECUTIVE CONTROL DECK ECHO Echo of First card in checkfoint dictionary to be punched out for this problem Aestat thisted , plate , 7/ 2/76, 10042,		
	54	

.

the second and the state of the

Act ... P. Sound

10 miles

<pre>Mitter Parte Hankiewin Resourd: Stores: Stores: Stores: Stores: Stores: Stores: Stores: Stores: Stores: Stores: Stores: Stores: Stores: Stores: Stores: Store: S</pre>		
<pre>SPECE Set 2: 2: 7: 1: 6: 1: 1: 1: 1: 1: 1: 1: 1: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:</pre>	z	TITIS PLATE TRANATENT BESPANCE
<pre>STT 2=T6.165.194.143.127.121.110.99.00.77.66.55.44.33.22.11 SUSTER 15. SUSTER 145.115.115.111.110.111.111.111.111.111.11</pre>		SPC=2
SUGGER 1 SUGGER 1 PLOTES CALCOM - MODEL 755.105 PLOTES CALCOM - PLOTES CALCOM - PLOTES - COURT		SET 2=176,165,154,143,132,121,110,99,08,77,66,55,44,33,22,11
0000570 0000570 0000570 00005 FLAT PLATE & FINTE ELEMENT PLOTES CALCOME - MODEL 755.105 PLOTES CALCOME - MODEL 755.105 PLOTES CALCOME - MODEL 755.105 PLOTES CALCOME - MODEL 755.105 VIEW OF CONTINUES		SUBCASE 1
<pre>Place P</pre>		SUB1: ILE-HALF SINE LOAD
<pre>built for but for but for the formation of the forma</pre>		15552
PLOTTER CALCHE . MORE 765.115 2011 2010 2010 1000 2010 2010 2010 2010		PLOTID= FLAT PLATE / FINITE ELEMENT
VIEN 9093 VIEN 9094 AAXI'UN 05024011.0.1 AAXI'UN 05024011.0.1 AAXI'UN 05024011.0.1 AAXI'UN 05024011.0.1 A 00.00101.0.1 A 00.0000000000000000000000000000000000		PLOTTER CALCOMP . MODEL 765.105
<pre>KAIK 415 KAIK 415 KAIK 416 KAIK 41</pre>		SET 1= 0UAD2
Maximum Gerowartuk Maximum Gerowartuk Downeue Zoss 0.00104 Zoss 0.001104 Zoss 0.001108 <t< td=""><td></td><td>.66</td></t<>		.66
FINE 0.0110.0 1.011.001.001.001.001.001.001.001.001.0		YAXIMUM DEFORMATIUN .1
DONTOR 7015 0005.0005.0005.0005.0005.0005.0005. 0005.00055.0005.0005.00055.00005.0005.	1	FIN: DRIGIA 1-SET 1
. 4005.10055.10010.00005.100075.100015.10005.00005. 00011.0002.10010.000004.11100.10005.100055.0010005. 000110500055.		CONTOUR ZOISP LISI .JUULTGUUL2LCJ03JCD04OGUU5CJ91603007.
<pre></pre>		.0.05C0055C016C016C00700075C008C0085.
	-	
		(O((120))220)5
PL0: FixNS: W1: Control Contrecont Control Contrecont Control Control Co		
00'LINE 00'LINE 00'LINE 00'LINE 00'LINE 00'C 615 + 105 + 105 + 1005 + 1005 + 1005 + 1005 + 10045 + 100		PLOT FACUATION CONTOURS - UNCOSTO-UNCOSTO - UNCOSTO - UNCOS
<pre>con corr cors Listcoustcoust</pre>		OU'LINE
. BUCG9: 3109571.05105. 		
		. 6u6 9. df 6 95 . : : 1 62 165 .
PLOT TRANSTENT DEFORMATION CONTOUR 1.TIME 3.90-6.4.10-6.SET 1.SYMBOL 3. PLOT TRANSTENT DEFORMATION CONTOUR 1.TIME 3.90-6.4.10-6.SET 1.SYMBOL 3. DUTLINE CONTOUR ZOISP LIST .OLC(1L.022050U31016401065010607. .000501055		
PLOT TRANSIENT GEFORMATION CONTOUR 1, ITME 3.90-6.4.10-6.SET 1,SYMBOL 3. OUTLINE SONTOUR ZDISP LIST .OLG1Lub2650U3L01640006503066.010407. GEG91.0055.03055L66.L016550007.000350003500045. .01055.03055L66U016500075000650003500035. .01011 .01011 CONTOUR CONTACT		••0004
DUITING DUITING <td< td=""><td></td><td>PLOT TRANSIENT GEFORAMTION CONTOUR 1, TIME 3, 90-6,4, 16-6, SET 1, SYMBOL 3,</td></td<>		PLOT TRANSIENT GEFORAMTION CONTOUR 1, TIME 3, 90-6,4, 16-6, SET 1, SYMBOL 3,
. 0.005.00055		CONTOUR ZOISP LIST . ALFALL AND T ATAS AND T AND T AND T
.0005.00055	1	
		. 0:0500455
	1	.0:09:0:0:05:0:02:0:02:0:02:0:02:0:00:00:00:00:00:00
PLOF TERNSTENT OF FOULD STUDIES - UCOSS - UCOS		
PLOT TENSTENT BEFORMATION CONTOUR 1,11ME 5.96 666 16 6,527 1,574004 6, 0015LINF 00015LINF 0047046 ABISP 4.151 +25641,664+24-66944,66955,6003,00635,60665,0084.7 66.0966-55.00055,160164,16015,20022,000255,6003,00635,6004,16645, .66.055,00055,0001,64165, 00677,000075,60687,0004,16645,		
ÓUTLINF 60N1646 78150 LIST +36641+644421-66943+4466455+60665+90647 662946+56455+6456455+3842+30725+6003+00635+6004+16645 6665+34455+6456455+3847+86475+69675+66475+65685		PLOT TEANSTEIN DEFINITION CONTENDED A LITTLE CONCENT A COMPANY A
6041046 78150 LTST +25641466424.669434.648944.668354.606654.908477 .66045+26059+66154.6015+28022+308254.60034.006354.6004+.6645 .66551.94855466154464657+28671.88475445484.666854		OUTLINE
.660%6560696601601530u23002560030063560046645. .86653005566664.6605786786475696866685. .0.690695061160145.		6041946 7015P 4151 + 35641++64-42++56943++34564++56695++60665++9694.7.
. 6.651. 04.6556456.656.6605786475696878647569685. .0.69.0669506116011.5		.600466005906010015300200025000300635000410045.
	1	. 6. 651. 3 20 955 r. 6 96 57. 6 6 4 95 r. 5 967 r. 4 8 6 4 75 r 8 96 8 7 8 9 4 6 9 4 6 9 6 8 8 7
		· · · · · · · · · · · · · · · · · · ·

Carlo an

**

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

|--|

.

1

all a and the

4

**

	11000	. 1		2		• ••		5		:"	1	:	:	6	:	11
- -		COUADZ	pr	•		•	19		19	•						-
		-50NA92		+			19		50							
	;	00000	σ	-		σ.	20		21	10						
		600405	-	+		-	51		55	#						
- 700002 14 15 30 31 21 11 200402 24 1 31 32 31 32 12 200402 24 1 1 42 31 32 12 200402 34 1 1 42 31 32 14 200402 34 1 42 31 32 15 200402 34 3 31 32 16 200402 34 3 31 32 16 200402 34 34 44 34 16 200402 34 34 44 34 17 34 34 44 34 34 18 200402 34 34 44 34 18 200402 34 34 34 34 18 200402 34 34 34 34 18 200402 34 34 34 34 18 200402 34 34 34 34 21 21 34 34 34 34 22 200402 34 34 34	••	200002	16	-		11	28		56	13						
- -		25 4089	+	t						T	t					
1. 700002 20 2 3 3 3 1. 700002 3 1 4 4 4 3 1. 700002 3 1 4 4 4 4 1. 700002 3 1 4 4 4 4 1. 700002 3 1 4 4 4 4 1. 7 7 5 40 40 5 40 1. 7 7 5 40 40 5 40 1. 7 7 5 51 52 40 1. 7 5 5 5 5 40 1. 7 5 5 5 5 5 20002 5 1 5 5 5 5 20002 5 5 5 5 5 5 20002 5 5 5 5 5 5 20002 5 5 5 5 5 5 20002 5 5 5 5 5 5 20002 5 5 5 5	•	204002	18			510	20		1	202						
11 00402 20 1 23 33 32 12- 00402 29 1 31 42 31 32 12- 00402 29 1 31 42 41 31 12- 00402 29 1 31 42 41 31 12- 00402 36 1 32 41 31 12- 00402 36 1 32 41 31 12- 00402 36 1 43 41 41 12- 00402 36 1 52 54 41 12- 00402 1 51 52 54 42 12- 00402 1 51 52 54 42 12- 00402 1 51 52 54 54 12- 00402 54 54 54 54 12- 00402 54 54 54 54 12- 00402 54 54 54 54 12- 00402 54 54 54 54 12- 00402 54 54 54 54 <td>-6</td> <td>200000</td> <td>51</td> <td>-</td> <td></td> <td></td> <td>15</td> <td></td> <td>35</td> <td>13</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	-6	200000	51	-			15		35	13					-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10-	COUADS	50	-		21	32		33	22						
12- 50002 27 1 29 10 41 31 14- 50002 24 31 42 43 32 14- 50002 34 31 42 43 32 15- 50002 34 32 41 41 16- 50002 34 32 41 41 17- 50002 41 41 52 54 27- 50002 54 54 54 27- 50002 54 54 54 27- 50002 54 54 54 27- 50002 54 54 54 27- 50002 54 54 54 27- 50002 54 54 54 27- 50002 54 54 54 27- 50002 54 54 54 27- 50002 54 54 54 27- 50002 54 54 54 27- 50002 54 54 54 27- 50002 54 54 54 28- 50002 54 75 54 <t< td=""><td>-11-</td><td></td><td>56</td><td>+</td><td></td><td>58</td><td>39</td><td></td><td></td><td>53</td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>	-11-		56	+		58	39			53				-		
11. 000002 24 1 1 42 1 12. 000002 34 1 1 42 1 12. 000002 34 1 32 1 3 12. 000002 34 1 32 1 3 12. 000002 41 1 1 53 54 53 12. 000002 41 1 51 55 54 53 12. 000002 41 1 51 55 54 53 13. 000002 54 53 54 54 54 14. 53 64 54 54 54 15. 56 1 51 55 54 15. 50 1 54 54 54 15. 50 1 54 54 54 15. 50 1 54 75 54 15. 50 1 54 75 54 15. 50 1 54 75 54 15. 54 75 54 75 54 15. 54 75 54	12-	SCAUDS	22	-		56	5		41	30						
14- 004002 29 1 14 43 32 16- 004002 36 1 14 43 32 17- 004002 36 1 14 14 14 17- 004002 46 1 15 54 14 17- 004002 46 1 12 54 54 17- 004002 56 1 57 54 17- 004002 56 1 57 54 17- 004002 56 1 57 54 17- 004002 56 1 57 54 17- 004002 56 1 57 54 17- 004002 56 1 57 54 17- 004002 56 1 57 54 17- 004002 56 1 57 54 17- 004002 56 1 57 54 17- 004002 56 1 57 54 17- 004002 57 56 54 17- 004002 57 56 54 17- 004 <td>13-14</td> <td>50NA02</td> <td>28</td> <td>1</td> <td></td> <td>-</td> <td>7</td> <td></td> <td>4</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	13-14	50NA02	28	1		-	7		4	7						
15. COUND2 31 41 41 17. COUND2 75 1 1 2 17. COUND2 15 1 2 5 4 17. COUND2 1 1 2 5 4 27. COUND2 1 1 2 5 1 27. COUND2 1 1 5 5 1 27. COUND2 1 1 5 5 1 27. COUND2 1 5 5 5 1 27. COUND2 5 1 5 5 5 27. COUND2 5 1 5 5 5 27. COUND2 5 1 5 5 5 27. COUND2 5 1 5 7 5 27. COUND2	14-	COUADS	29	-		31	42		£ 4	32						
16- COUND2 76 1 40 17- COUND2 76 1 40 51 40 17- COUND2 76 1 40 51 51 50 27- COUND2 56 53 51 51 53 41 27- COUND2 56 1 51 53 51 52 51 27- COUND2 56 1 53 53 53 53 54 27- COUND2 56 1 53 54 55 54 27- COUND2 56 1 53 54 55 54 27- COUND2 56 1 73 54 55 54 27- COUND2 56 1 73 54 55 54 27- COUND2 57 1 75 64 74 65 74 27- COUND2 </td <td>15-</td> <td>COUAD2</td> <td>34</td> <td>+</td> <td></td> <td>32</td> <td>24</td> <td></td> <td>44</td> <td>25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	15-	COUAD2	34	+		32	24		44	25						
17- 00002 37 40 57 40 27- 00002 36 41 55 54 27- 00002 57 51 55 54 27- 00002 57 51 55 54 27- 00002 57 54 55 54 27- 00002 57 54 55 54 27- 00002 57 54 55 54 27- 00002 57 54 55 54 27- 00002 57 54 55 54 27- 00002 57 54 55 54 27- 00002 57 54 75 54 27- 00002 57 57 56 74 27- 00002 57 57 75 54 27- 00002 57 75 54 74 27- 00002 57 75 75 54 27- 00002 57 75 54 74 27- 00002 57 75 54 74 27- 000002 57 75 56 <td></td> <td>COMANS</td> <td>35</td> <td>• •</td> <td></td> <td>30</td> <td>20</td> <td></td> <td>51</td> <td>104</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		COMANS	35	• •		30	20		51	104						
17- 000072 30 1 41 52 53 42 27- 000072 1 1 51 61 53 42 27- 000072 1 1 51 65 54 27- 000072 1 1 53 64 55 27- 000072 1 1 53 64 55 27- 000072 1 1 7 65 54 27- 000072 1 1 7 64 74 28- 000072 59 1 7 64 74 28- 000072 59 1 7 65 54 28- 000072 59 1 7 65 54 28- 000072 59 1 7 65 74 28- 000072 59 1 7 65 74 28- 000072 59 1 7 65 74 28- 000072 59 1 7 65 74 28- 000072 1 7 65 74 75 28- 000072 1	- 2 -	COVIDE														
27- 500002 40 74 74 27- 500002 40 54 55 44 27- 500002 41 54 55 54 27- 500002 41 54 55 54 27- 500002 54 55 54 27- 500002 54 55 54 27- 500002 54 55 54 27- 500002 54 55 54 27- 500002 54 73 56 57 28- 500002 54 73 56 74 27- 500002 54 73 56 74 28- 500002 54 74 75 54 27- 500002 56 1 73 56 28- 500002 56 1 74 75 37- 500002 56 1 74 75 37- 500002 56 1 74 75 37- 500002 54 77 56 74 37- 500002 74 77 56 37- 5000002 74<				••												
21- 200002 4 4 5 5 4 21- 200002 4 5 61 53 54 54 21- 200002 5 1 51 55 54 25- 200002 5 1 53 64 55 26- 200002 5 1 53 64 55 27- 200002 5 1 53 64 55 27- 200002 5 1 55 54 27- 200002 5 1 55 54 27- 200002 5 1 55 74 55 27- 200002 57 1 74 55 54 27- 200002 57 1 74 55 74 37- 200002 57 74 75 65 37- 200002 57 74 75 65 37- 200002 74 75 74 75 37- 200002 74 75 65 74 37- 200002 74 75 65 74 37- 200002 <td< td=""><td></td><td>20000</td><td>200</td><td>-</td><td></td><td></td><td>20</td><td></td><td>20</td><td>t</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		20000	200	-			20		20	t						
2:- C0UAD2 4: 5:		SOUAD2		1		12	19		24	7						
21- 000402 47 5 61 65 54 24- 000402 54 53 64 65 54 27- 000402 54 53 64 65 54 27- 000402 57 1 53 64 55 54 27- 000402 57 1 63 74 65 54 27- 000402 57 1 63 74 65 54 27- 000402 57 1 63 74 65 27- 000402 57 1 63 74 65 27- 000402 65 1 73 64 75 65 37- 000402 67 1 73 64 75 76 37- 000402 76 1 73 64 76 74 37- 000402 76 1 73 65 74 74 37- 000402 76 1 74 65 74 37- 000402 76 1 74 65 74 37- 000402 76 1 74 <	-02	COUADS	34	-		£ 4	15		55	t						
72- 700072 47 51 52 53 54 55 54 55 54 55 55 75- 700002 56 1 53 54 55 55 55 75- 700002 56 1 56 55 55 55 75- 600002 57 1 61 75 64 75- 600002 57 1 55 76 75 75- 75 64 75 64 75 64 75- 76 75 64 77 65 76 75- 76 77 65 76 75 64 75- 76 77 65 76 77 65 75- 700002 67 77 65 76 77 75- 700002 67 77 65 77 75 75- 700002 67 77 65 76 77 75- 700002 67 77 65 77 75 75- 700002 77 76 77 76 75- 700002 76 77 76 </td <td></td> <td>CAUA02</td> <td>46</td> <td>-</td> <td></td> <td>5.</td> <td>61</td> <td></td> <td>62</td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		CAUA02	46	-		5.	61		62	15						
21- 500432 49 5	- 22-	200002	47	-		51	62		63	52						
21. 20002 63 54 55 54 55 54 21. 20002 54 1 53 54 55 54 21. 20002 54 1 63 74 65 54 21. 20002 54 1 63 74 65 54 21. 20002 54 1 63 74 75 65 21. 20002 54 1 63 74 75 65 21. 20002 54 1 64 65 54 21. 20002 54 1 74 75 22. 20002 54 1 74 75 23. 20002 54 1 74 75 24. 20002 77 65 77 65 34. 20002 77 65 76 65 35. 20002 77 65 77 65 36. 20002 77 65 77 65 37. 20002 77 65 76 76 37. 20002 77 76 65 76 <tr< td=""><td>2 2-</td><td>COULD C</td><td>4.8</td><td></td><td></td><td>52</td><td>20</td><td></td><td>64</td><td>23</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	2 2-	COULD C	4.8			52	20		64	23						
75 700407 50 1 51 50 5	-76	CCAUDO	49	• •					55	54						
27. 20002 54 1 61 72 73 62 28. 00002 57 1 62 73 74 63 31. 00002 57 1 62 73 75 64 31. 00002 57 1 73 63 77 65 31. 00002 57 1 75 64 31. 00002 56 1 73 64 32. 00002 56 1 73 64 33. 00002 56 1 73 64 34. 000002 56 1 73 65 35. 000002 56 1 73 65 35. 000002 76 1 73 65 35. 000002 76 1 75 66 35. 000002 76 1 75 65 35. 000002 76 1 75 66 37. 76 76 37 66 75 37. 000002 76 1 76 76 37. 000002 76 1 76 </td <td></td> <td>CONDO</td> <td></td> <td>• •</td> <td></td> <td>EL.</td> <td>P. P.</td> <td></td> <td>66</td> <td>5.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		CONDO		• •		EL.	P. P.		66	5.6						
77 701402 57 63 73 64 65 71 701402 56 7 55 76 64 71 71 65 7 65 75 64 71 71 75 64 73 74 73 72 701402 67 75 64 73 73 701402 67 75 65 74 73 701402 76 74 73 74 73 701402 76 74 75 65 74 701402 76 74 74 74 75 76 74 75 74 74 75 76 74 74 74 75 76 74 74 74 75 76 74 74 74 76 74 76 74 74 77 76 74 76 74 76 74 76 74 74 77 76 74 76 74 74 76 74 76 74 74 76 76 97 96 <td>- 24</td> <td>200100</td> <td>25</td> <td>• •</td> <td></td> <td>14</td> <td>12</td> <td></td> <td>11</td> <td>1.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- 24	200100	25	• •		14	12		11	1.4						
31- COUNDE 54 64 31- COUNDE 56 1 55 75 66 31- COUNDE 56 1 55 75 65 31- COUNDE 56 1 75 65 77 66 32- COUNDE 76 1 73 94 65 74 35- COUNDE 76 1 73 94 65 74 35- COUNDE 76 1 75 66 75 35- COUNDE 76 1 75 65 74 35- COUNDE 76 1 75 66 75 35- COUNDE 76 1 75 66 75 35- COUNDE 76 1 75 66 75 37- COUNDE 76 1 75 66 75 37- COUNDE 76 1 77 66 75 37- COUNDE 76 1 77 65 74 37- COUNDE 77 1 75 66 37- COUNDE 77 1 77 65 37- COUNDE 77 1 97 97 40- COUNDE 79 1 96 <td< td=""><td></td><td>CUNING</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td>31</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		CUNING		•					31							
71 000002 73 74 75 74 75 74 31 000002 67 1 75 76 77 66 31 000002 67 1 75 76 77 66 31 000002 67 1 75 64 75 76 31 000002 67 1 75 65 74 35 000002 67 1 75 65 74 36 000002 76 1 75 66 74 37 000002 76 1 75 66 74 36 000002 76 1 75 66 74 37 000002 76 1 75 66 74 38 000002 76 1 75 66 74 38 000002 76 1 76 76 76 38 000002 73 1 76 76 76 38 000002 73 1 76 76 76 41 000002 73 1 76 76 76 41 <t< td=""><td></td><td></td><td></td><td>• •</td><td></td><td></td><td>2.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				• •			2.4									
31- 000002 59 1 50 15 70 50 $31 000022$ 56 1 72 500022 57 15 75 $31 000022$ 57 1 72 51 75 51 75 $31 000022$ 56 1 72 56 74 75 $35 000022$ 76 1 76 77 65 77 $35 000022$ 76 1 76 67 67 77 $36 000022$ 76 1 76 67 65 74 $37 000022$ 76 1 76 67 67 77 $37 000022$ 76 1 76 96 97 96 $37 000022$ 76 1 96 97 96 97 $41 000022$ 16 1 96 97 96	- 2 9	204050		••		20				-						
31- 500000 61 1 52 70 60 $32 500002$ 61 73 94 73 61 73 $32 500002$ 65 1 73 94 65 74 $35 500002$ 65 1 73 94 95 86 $35 500002$ 76 1 75 65 86 77 $35 500002$ 76 1 75 65 86 77 $37 500002$ 76 1 75 65 86 77 $37 500002$ 76 1 75 66 97 96 $41 5000002$ 76 107 96 97 96 97 $42 5000002$ 10 107 96 97 96 97 $42 5000002$ 10 107 96 97 96 97 96 97		2040400		-			2:		2:							
32- 500402 67 1 73 64 65 1 73 64 75 35- 500402 76 1 73 64 75 76 35- 500402 76 1 75 65 87 75 35- 500402 76 1 75 65 87 75 36- 500402 76 1 75 65 87 76 37- 500402 76 1 75 65 84 37- 500402 76 1 75 66 87 37- 500402 76 1 75 96 84 37- 500402 76 1 75 96 37- 600402 86 1 96 97 40 96 107 96 96 42- 5004072 96 107 96 42- 5004072 1 97 107 96 42- 5004072 1 96 107 96 42- 5004072 1 96 107 96 42- 5004072 1 96 107 <td></td> <td>204000</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		204000					2			0						
32^{-} 500002 67 1 73 94 65 75 34^{-} 500002 66 1 74 65 17 76 35^{-} 500002 76 1 75 66 77 76 35^{-} 500002 76 1 75 66 77 65 37^{-} 500002 76 1 75 66 77 65 38^{-} 500002 78 94 95 84 77 38^{-} 500002 78 1 95 94 95 84 46^{-} 500002 16 1 95 96 97 96 97 41^{-} 500002 86 107 96 107 96 97 96 97 96 97 96 100 97 96 100 97 96 100 97 96 100 97 96 100	-16	2. 4045	-	t		4	5		-	F						
34- 600172 64 17 65 17 75 66 07 76 37 - 5004027 76 1 75 66 07 76 37 - 5004027 76 1 75 66 97 76 37 - 5004027 76 1 75 66 97 84 39 - 5004027 76 1 75 96 97 84 39 - 50040277 1 67 96 97 86 97 40 - 5004077 16 107 96 97 96 97 42 - 5004072 16 107 96 97 96 97 42 - 5004072 16 107 96 97 96 97 42 - 5004072 106 107 96 97 96 97 42 - 5004072 96 107 96 107	-25	COUADE	19	-		13	84		62	2						
34- 5004072 69 1 75 66 87 76 35- 5004072 76 1 75 66 87 7 37- 5004072 76 1 73 94 95 84 37- 5004072 75 1 83 94 95 84 39- 5004072 79 1 94 95 84 39- 5004072 79 1 95 94 39- 5004072 79 1 95 96 41- 5004072 80 1 96 97 42- 5004072 87 1 96 97 42- 5004072 96 107 96 97 42- 5004072 97 106 107 96 42- 5004072 97 107 96 97 42- 5004072 96 107 96 97 42- 5004072 96 107 96 97 42- 5004072 96 107 96 97 42- 5004072 96 107 96 97 45- <t< td=""><td></td><td>COUP32</td><td>89</td><td>+</td><td>1</td><td>-</td><td>57</td><td></td><td>90</td><td>54</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		COUP32	89	+	1	-	57		90	54						
35- 000402 76 61 66 77 36 - 000402 76 1 94 95 84 36 - 000402 73 94 95 84 38 - 000402 73 94 95 84 46 - 000402 73 96 97 96 97 46 - 000402 80 97 96 97 96 97 41 - 000402 106 107 96 107 96 97 42 - 000402 106 107 96 107 96 97 42 - 000402 106 107 96 107 96 107 42 - 000402 106 107 96 107 96 107 42 - 000402 97 108 109 97 96 107 42 - 000402 96 109 100 96 100 </td <td>- 72</td> <td>CONADO</td> <td>69</td> <td>-</td> <td></td> <td>75</td> <td>99</td> <td></td> <td>87</td> <td>76</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- 72	CONADO	69	-		75	99		87	76						
36- 500402 76 1 83 94 95 84 37- 500402 73 1 95 95 85 37- 500402 73 1 95 96 97 86 37- 500402 73 1 85 97 98 87 40- 500402 80 1 65 97 98 87 41- 500402 86 1 67 107 96 42- 500402 97 107 96 42- 500462 97 107 96 42- 500452 96 107 96 42- 500452 97 109 97 42- 500452 96 107 96 42- 500452 96 107 96 42- 500452 97 109 97 42- 500452 96 107 96 45- 500452 96 117 116 45- 500452 96 117 116 45- 500452 96 117 116 45- 501450 96 117		000405	-22	+		34	19			11			-			
37 5914ACE 77 1 94 35 96 65 39 6004D2 73 1 85 96 97 86 41 5004AD2 73 1 65 97 98 97 41 5004AD2 73 1 65 97 98 97 42 5004AD2 73 1 67 98 98 42 5004AD2 73 1 67 98 42 5004AD2 73 1 67 98 42 5004AD2 73 1 97 107 42 5004AD2 73 1 94 107 42 5004AD2 73 1 96 107 42 5004AD2 73 1 96 77 42 5004AD2 73 1 96 77 44 5004AD2 73 1 109 97 45 5004AD2 76 1 109 97 45 5004AD2 76 1 107 96 45 5004AD2 1 1 1 1 45 6 108	36-	COUADO	76	-		Ea	46		95	84						
38- 500402 79 19 95 37 86 46- 500402 79 1 95 97 98 41- 500402 79 1 96 97 97 42- 500402 79 1 96 98 97 42- 5004072 97 1 96 107 96 42- 5004072 97 1 96 107 96 42- 5004072 97 107 96 97 42- 5004072 97 107 96 97 44- 5004072 96 1 97 96 45- 5004072 96 1 97 96 45- 5004072 96 1 109 97 45- 5004072 96 1 109 96 45- 5004072 96 1 109 96 45- 5004072 97 1 1 1 45- 5004072 97 1 1 1 45- 5004072 97 1 1 1 45- 5004072 96 1 1		de Millio	+	t		-	57		-	50						
39- 6004802 79 96 97 98 97 98 40- 5004802 80 1 67 98 98 41- 5004802 87 96 99 88 42- 5004802 97 105 107 96 42- 5004802 97 108 107 96 42- 5004402 90 1 97 96 44- 50045 1 97 109 97 45- 5004402 96 1 97 109 97 45- 50045 96 1 97 109 97 45- 50045 96 1 10 99 97 45- 50045 96 1 146 99 97 45- 50045 96 1 146 117 116 45- 50045 97 1 146 10 45- 50045 97 1 1 1 45- 50045 97 1 1 1 45- 50045 1 1 1 1 45- 50045 1 1 </td <td>3.8-</td> <td>SOUADS</td> <td>29</td> <td></td> <td></td> <td>52</td> <td>96</td> <td></td> <td>14</td> <td>86</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3.8-	SOUADS	29			52	96		14	86						
46^{-} 500452 80 1 67 98 99 88 42^{-} 500452 86 166 95 96 96 42^{-} 500452 86 106 107 96 97 42^{-} 500462 97 106 107 96 97 44^{-} 500452 90 107 96 91 97 44^{-} 500452 90 109 91 96 91 45^{-} 500452 90 109 91 99 96 45^{-} 500452 90 109 91 96 117 116 45^{-} 500452 90 105 117 116 117 116 45^{-} 500452 99 105 100^{-} 10^{-} 10^{-} 45^{-} 500452 96 10^{-} 10^{-} 10^{-} 10^{-} 45^{-} 500452 10^{-}	-94-	000000	20	-		96	10		0.0	24						
42- 000002 6 1 9 105 16 9 42- 000002 87 1 95 107 96 41- 000002 1 95 107 96 44- 000002 1 97 109 94 45- 0000072 96 1 96 109 46- 0000072 96 1 109 94 46- 0000072 96 1 109 94 46- 0000072 96 1 109 94 47- 0000072 94 117 116 10 47- 0000072 94 1 146 117 166 47- 0000072 94 1 146 117 166 47- 0000072 94 1 146 10	-0-	COMMON		• •		27										
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		CUTION	96	••						20						
42- 0.004/2 97 10 90 10 97 41- 0.004/3 90 1 97 100 91 45- 0.004/3 9 1 97 100 91 45- 0.004/3 96 1 109 91 99 45- 0.004/3 96 1 109 110 99 45- 0.004/3 96 1 105 110 99 47- 0.004/3 96 1 105 116 117 116 47- 0.004/3 99 1 106 117 116 10° 47- 0.004/3 99 1 106 117 116 10° 47- 0.004/3 99 1 10° 10° 10°				•••												
4 COURTS 00 1 90 100 91 4 COURTS 00 1 91 100 90 4 COURTS 00 1 93 100 94 4 COURTS 96 1 93 100 94 4 COURTS 96 1 94 100 94 4 COURTS 96 1 105 117 116 4 COURTS 94 1 107 100 4 COURTS 94 1 107 100	-24	204000				55	10		101	95						
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		204060	-	t		-	-			+						
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+ + +	COUR 2	64	-		16	10		109	6.						
46- COUATY 96 1 105 1'6 117 106 47- COUATY 97 1 105 117 118 167 42- COUATY 93 1 107 119 10° 42- COUATY 93 1 110 119 10°		CONNO2	06	+		85	10	6	110	66	-				-	
47- CAUAD2 97 1 16 117 118 167 4*- CAUAD2 99 1 107 116 119 10° 60- CAUAD2 99 1 107 119 10°	-94	COUANS	96			1.5			117	11	9					
4°- COUADZ 9° I 167 116 119 10°	-47-	00000	16	-		146	14		118	14					-	
to catting as 1 14 120 150		SOUA02	• 6	• •		107	11		119	101						
		50mm6.2	00													

AFAPI - 1R-76-56

A

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

. 13 .																																							
. 7 8 7	117	119	12.		124	129	130	191	201	143	141	241	50		152	151	154	162	163	164	172			176		1	186	2.0	94	96		134	502		802	69	16	a 1.	
9		129	121	132	139		141	241	155	151	152	153 1	161	162	163 1	164	165	173 1	174 1	175 1	183 1		1 661	197 1	161	1 661	197 1	196	205 1	207 1	20.0 1	209 1	216	410	219 2		227	229 2	CT C
4 5	127	128	130	191	130	621	141	141	149	150	19:	152	160	161	162	163	164	172	173	174	182	£ 8 1	101	901	261	+61	196	161	204	206	207	208	515	112	216	219	922	628	
•• E	9 F	117	119	126	127	128	129	121	101	139	347	141	142	151	151	152	153	161	162	163	171	172	11.0	175	201	101	165	186	193	1621	196	197	\$02		207	248	512	212	
. 2	166	107	169		1:6		116	11.	126	127	128	129	135	137	134	- 39	146	147	149 1	149	156		0.1	160	166	101	160	171	1/1	178	179 1	181 1	196		145 1	101	197	190	
. 1	50M05	20002	COUAD2	COUA.2	CONNO2	204000	SURUCO	CUIIVUS	200000	COUADO	COUAN2	COUALS	COUADS	COUAD2	COUANZ	204000	SUAUDS	COUACE	501000	COUAD2	SOMUDS	SUAUCO		COUAD2	204000	- CONNOL	COUNDS	COUADS	COURTS	COUACE	60405	COUANZ	SOUNDS	SAUADO	COURDS	200000	204000	COUANZ	
UNT		-25	54-	55-	-95					-29			66-	67-	- 99	-		72-	-11-	-+2	-92		-01				84-	-50			-60	- 76	-16		- + 6			-96-	

1

22

1

11.19 2.1

Acord and

いるの

58

Constant of the second

102-	. 1	5	m	4 4	5 5	6		:		6	:	10 .
-26	COUANZ	207		227	238	239	228					
	00000	268	-	228	239	240	229					
	COUADO	209	1	229	240	241	230					
-50	50402	216	+	236	241	242	231					
-94	20000	216	1	237	248	549	233					
	504492	217	-	- 538	540	250	539					
	50000S	21 4	-	239	256	251	540					
-63-	50 MB0	219		240	251	252	241				-	
- 11-	COUAJ2	220	1	241	252	253	242					
	600402	226	-	248	550	250	249		-			
12-	COUADS	227	-	5+2	260	261	250					
	COMAD2	228		256	261	262	25:					
	COUAD?	229		251	262	263	252					
	COMANS	236		262	263	264	263					
16-	COULDO	236		259	570	112	266					
- 2 -		110			140	010	+ 90					
						277	1030					
	204000	000		100	212	275	202					
- 2	COURDS	240		263	574	512	264					
-:-	COUAC2	546	-	274	281	-282	211-			-		
-22-	COUAD2	247	1	271	282	283	272					
-5-2-	000005	248		212	283	284	273					
-+2	COUAD2	543		273	284	285	274					
25-	SOUA S	25.	+	-274-	285	286	275			1		
-92.	COUAD2	5.0	1	201	292	293	282					
-+2	204000	152	-	292	£63	+63	283					
23-	COUAD2	259	1	263	294	285	284					
-62	COUD12	- 556		284	265	902	245			-	-	
	200000	26.		205	596	262	286					
	CUBINO.	966		999	100		100					
-25-	COULD	267		293	304	305	294					
	CC01100	26.8		994	385	305	200					
	SUNIOS	000		100			206					
	20	212		052		0.00						
- 95	201000	212		20.0	+ 1 10	610	1 1					
	20.4005	112	4	4.10	110	010	6.0.0					
- 951	CHUACS		-	5.5	210	317	315					
39-	COUAD2-	979	-	3.6	317	318	361					
- 41	COUADZ	280	+	347	318	319	30.8					
-101	204000	286		314	325-	326	315					
-241	204000	282	1	315	326	327	316					
	204000	200	-	316	327	320	317			1		
- + + 1	COUA 22	259	1	317	328	329	318					
46	500402	562		31.6	429	330	319					
46	204000	296		5042	336	122	325					
	CUNNOS	100		305	117		101					-
	CUANO?	100				022						
	201000	000		130	010	600	300	and the second se				
			-				6.36					

.

1

the second second

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

and the second sec

COPY AVAILABLE TO DUG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

		1 2	3 4	2000	6 7 8	. 11 6
5010 54 1.5500 1.650 1.5500 1.6500 <th1.600< th=""> <th1.600< th=""> 1.6500</th1.600<></th1.600<>	GRID.	63	1.5000	.6000	.0000	
	6616	64	1.5600		.0698	
	. 3PIC	. 65	1.5.00	1.2000	.0000	
6F10 7: 1.6500 -0000 -0000 6F10 9: 1.6500 -0000 -0000 6F10 9: 1.6500 -0000 -0000 6F10 9: 1.6500 -0000 -0000 6F10 1:500 -0000			1.5(00	1.5000		
6F10 74 1.550 5000 6000 6F10 75 1.5500 5000 6000 6F10 75 1.5500 5000 6000 6F10 75 1.4500 5000 6000 6F10 75 1.4500 5000 6000 6F10 75 1.4500 5000 6000 6F10 85 1.4500 5000 6000 6F10 94 1.4500 5000 6000 6F10 94 1.4500 5000 6000 6F10 195 1.4500 5000 6000 6F10 195 1.4500 5000 6000 6F10 195 2.4000 1.5000 6000 6F10 116 2.4000 1.5000 6000 6F10	GRIC .		1.6500	.0000		
6810 75 1.6510 7.6 6810 75 1.6510 1.570 6810 75 1.6510 1.651 6810 75 1.6510 1.570 6810 75 1.6510 1.750 6810 76 1.6510 1.750 6810 76 1.6510 1.750 6810 94 1.7500 1.6510 6810 94 1.7500 1.6500 6810 94 1.7500 1.6500 6810 94 1.7500 1.6500 6810 1.9500 9400 1.9500 6810 1.9500 9400 1.9500 6810 1.9500 1.9500 1.9500 6810 1.9500 1.9500 1.9500 6810 1.19 2.1500 1.9100 6810 1.19 2.1500 1.9100 6810 1.19 2.1500 1.9100 6810 1.9100 1.9100				2000		
5710 75 1.6500 1.500 6000 6710 85 1.6500 1.500 6000 6710 85 1.6500 1.500 6000 6710 85 1.6500 1.6500 0000 6710 85 1.6500 0.000 0000 6710 87 1.6500 0.000 0000 6710 94 1.6500 0.000 0.000 6710 94 1.9500 0.000 0.000 6710 94 1.9500 0.000 0.000 6710 94 1.9500 0.000 0.000 6710 115 2.1100 0.000 0.000 6710 116 2.1100 0.000 0.000 6710 116 2.1100 0.000 0.000 6710 116 2.1100 0.000 0.000 6710 111 2.2500 0.000 0.000 6710 120 2.1100 0.000 0.000 6710 120 2.1000 0.000 0.000 6710 120 2.1000 0.000 0.000 6710 120 2.1000 0.000 0.000			1.6504			
6710 73 1.4500 1.6000 1.6500 1.6000 1.6500 1.6000 1.6500 1.6000 1.6500 1.6000 1.6500 1.6000 1.6500 1.6000 1.6500 1.6000 1.6500 1.6000 1.6500 1.6000 1.6500 1.6000 1.6500 1.6000		76	1.656	1.2506		
6710 63 1.8500 6500 1.6500	1110	11	1.6500	1.50.0		
Gato H	CI do	83	1.8366	.0000	.000	
6510 65 1.800 500 1.800 500 6510 85 1.800 1.800 1.800 1.800 6510 94 1.800 1.800 1.800 1.800 6510 95 1.950 6.00 1.800 1.800 6510 95 1.950 6.00 1.900 1.000 6510 97 1.950 6.00 1.000 1.000 6510 145 2.150 1.950 6.00 1.000 6710 146 2.150 1.000 1.000 1.000 6710 146 2.150 1.900 1.000 1.000 6710 146 2.150 1.900 1.000 1.000 6710 146 2.150 1.900 1.000 1.000 6710 146 2.150 1.900 1.000 1.000 6710 146 2.150 1.900 1.000 1.000 6710 140	CBIC		10.8.1	30.05		
6F10 85 1.5.00 900 6F10 87 1.5.00 1.000 6F10 94 1.5.00 1.000 6F10 95 1.5500 1.000 6F10 95 1.5500 1.000 6F10 95 1.5500 1.000 6F10 1.9500 6400 0000 6F10 1.9500 1.2000 0000 6F10 1.9500 1.2000 0000 6F10 1.95 2.1400 1.5000 6F10 1.16 2.1400 1.5000 6F10 1.16 2.1400 1.5000 6F10 1.16 2.1400 1.500 6F10 1.16 2.1400 1.500 6F10 1.16 2.1400 1.500 6F10 1.16 2.2500 1.500 6F10 1.16 2.2500 1.500 6F10 1.16 2.2500 1.500 6F10 1.200 0.000 <td>JI 35</td> <td>9 85</td> <td>1.8.00</td> <td>.6000</td> <td>.0000</td> <td></td>	JI 35	9 85	1.8.00	.6000	.0000	
GRID F7 1.6500 1.5500 0.000 GRID 95 1.9500 6400 6000 GRID 95 1.9500 9400 6000 GRID 10 1.9500 6400 6000 GRID 10 1.9500 9400 1.9500 GRID 10 1.9500 9400 1.9500 GRID 10 1.7 2.1100 9000 GRID 110 2.1100 9000 0000 GRID 110 2.1100 1.200 0000 GRID 110 2.1100 1.200 0000 GRID 113 2.2500 1.5000 0000 GRID 120 2.2500 1.5000 0000 GRID 120 2.2500 1.50	6616	86	1.8.10	30.9.	, ù000	
6FID 94 1.45.91 1.55.0 1000 6FID 96 1.5510 94.45 1.000 6FID 96 1.5510 94.45 1.000 6FID 96 1.5510 94.45 1.000 6FID 19 1.5510 1.000 1.000 6FID 19 1.5510 1.000 0.000 6FID 1.7 2.1100 1.000 0.000 6FID 1.7 2.1100 1.200 0.000 6FID 1.17 2.1100 1.200 0.000 6FID 1.16 2.1100 1.200 0.000 6FID 1.16 2.1100 1.200 0.000 6FID 1.16 2.2500 90.40 0.000 6FID 1.21	- GE.IC	7.9 0	1.8000	1.2000	.0000	
6F10 94 1.9591 040 5.000 6F10 95 1.9591 040 500 6F10 95 1.9591 1.9510 1000 6F10 95 1.9591 1.9510 1000 6F10 1.5 1.9510 1.000 6F10 1.5 1.9510 1.000 6F10 1.5 1.9510 1.000 6F10 1.5 2.100 0000 6F10 1.15 2.100 0000 6F10 1.16 2.100 1.000 6F10 1.16 2.100 0000 6F10 1.16 2.100 0.000 6F10 1.16 2.100 0.000 6F10 1.16 2.100 0.000 6F10 1.16 2.2500 0.000 6F10 120 2.4000 0.000 6F10 <td>- GR10</td> <td>1 88</td> <td>1.8.36</td> <td>1.5000</td> <td></td> <td></td>	- GR10	1 88	1.8.36	1.5000		
5410 95 1.9504 400 6000 5810 98 1.9504 4.00 6000 5810 98 1.9504 4.00 6000 5810 10 1.9504 4.506 6000 5810 10 1.9504 4.506 6000 5810 105 2.1000 6.000 6000 5810 105 2.1000 6.000 6000 5810 105 2.1000 6.000 6000 5810 116 2.1000 6.000 6000 5810 119 2.1500 9000 6000 5810 12 2.5500 9000 6000 5810 12 2.5500 9000 6000 5810 12 2.5500 1.5000 1000 5810 12 2.4000 1.0000 6000 5810 12 2.4000 1.5000 10000 5810 12 2.4000 1.5000 1.5000 5810 13 2.4000 1.5000 1.5000 5810 13 2.4000 1.5000 1.5000 5810 13 2.4000 1.5000 1.5000 5	- 6810	16 0	1.952[1010.		
6810 96 1.9500 6600 0000 6810 97 1.950 1.950 6000 6810 10 2.1000 9000 0000 6810 10 2.1000 9000 0000 6810 10 2.1000 9000 0000 6810 10 2.1000 9000 0000 6810 10 2.1000 9000 0000 6810 10 2.1000 9000 0000 6810 110 2.1000 1.200 0000 6810 116 2.1000 1.500 0000 6810 116 2.1000 0.000 0.000 6810 119 2.2500 0.010 0.000 6810 121 2.2500 0.000 0.000 6810 121 2.2500 0.000 0.000 6810 121 2.2500 0.000 0.000 6810 121 2.400 0.000 0.000 6810 121 2.400 0.000 0.000 6810 121 2.400 0.000 0.000 6810 121 2.400 0.000 0.000 6810 <td>192</td> <td>56 0</td> <td>1.95.6</td> <td>-3636-</td> <td></td> <td></td>	192	56 0	1.95.6	-3636-		
6810 97 1.9554 944 6600 6810 91 1.9554 1.566 1000 6810 105 2.1560 1000 0000 6810 105 2.1560 1000 0000 6810 105 2.1560 1000 0000 6810 105 2.1560 1000 0000 6810 116 2.1560 0000 0000 6810 116 2.1560 0000 0000 6810 119 2.2590 0001 0000 6810 119 2.2590 0001 0000 6810 119 2.2590 0001 0000 6810 119 2.2590 0001 0000 6810 121 2.2590 0011 0000 6810 121 2.2590 0010 0000 6810 121 2.2590 0010 0000 6810 121 2.4400 0000 <td>- GRIG</td> <td>96 0</td> <td>1.9500</td> <td>.6000</td> <td>.6000</td> <td></td>	- GRIG	96 0	1.9500	.6000	.6000	
6,810 9* 1.9501 1.8501 0.000 6,810 105 2.1500 0.000 0.000 6,810 105 2.1500 0.000 0.000 6,810 105 2.1500 0.000 0.000 6,810 105 2.1500 0.000 0.000 6,810 110 2.1500 0.000 0.000 6,810 111 2.1500 0.000 0.000 6,810 111 2.1500 0.000 0.000 6,810 110 2.2500 0.000 0.000 6,810 120 2.2500 0.000 0.000 6,810 120 2.2500 0.000 0.000 6,810 120 2.2500 0.000 0.000 6,810 120 2.2500 0.000 0.000 6,810 121 2.2500 0.000 0.000 6,810 121 2.2500 0.000 0.000 6,810 122 2.4400 0.000 0.000 6,810 131 2.4400 0.000 0.000 6,810 131 2.4400 0.000 0.000 6,810 131 2.4400 0.000	CF10	26 6	1.9536	99996 .		
6810 9) 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.000 6810 105 2.1500 9060 0000 0000 0000 6810 116 2.1500 9060 0000 0000 6810 116 2.100 9060 0000 6810 116 2.2500 9060 0000 6810 120 2.2500 9000 0000 6810 121 2.2500 9000 0000 6810 121 2.2500 9000 0000 6810 121 2.2500 9000 0000 6810 121 2.2500 9000 0000 6810 121 2.2500 9000 0000 6810 121 2.2500 9000 0000 6810 121 2.400 1000 0000 6810 131 2.400 1000 0000 6810 132 2.400 1000 0000 6810 133 2.400 1000 0000 6810 133 2.5500 10.500 6810 149 2.5500	- 5RIC	a6 0	1.9506	1.2000	0000.	
6F10 185 2.1.00 0000 0000 6F10 17 2.1.00 0000 0000 6F10 17 2.1.00 0000 0000 6F10 116 2.1.00 0000 0000 6F10 116 2.1.00 1.510 0000 6F10 116 2.2500 0001 0000 6F10 119 2.2500 0001 0000 6F10 119 2.2500 0001 0000 6F10 120 2.2500 0000 0000 6F10 121 2.2500 0000 0000 6F10 121 2.2500 0000 0000 6F10 121 2.5500 0000 0000 6F10 127 2.4000 0000 0000 6F10 129 2.4000 0000 0000 6F10 129 2.4000 0000 0000 6F10 129 2.4000 0000 <td>- 6A1</td> <td>16 6</td> <td>1.9500</td> <td>1.5000</td> <td>• 6 0 0 6</td> <td></td>	- 6A1	16 6	1.9500	1.5000	• 6 0 0 6	
6F10 145 2:1340 6600 1000 6F10 117 2:1400 1.500 0.000 6F10 116 2:1400 1.500 0.000 6F10 116 2:1400 1.500 0.000 6F10 116 2:1500 1.200 0.000 6F10 118 2:2500 0.000 0.000 6F10 121 2:2500 0.000 0.000 6F10 122 2:400 0.000 0.000 6F10 123 2:400 0.000 0.000 6F10 123 2:400 0.000 0.000 6F10 122 2:400	- GRIC	0 105	2.1.00	. 00 00	0000.	
7F10 177 2.104 000 6F10 116 2.104 1000 6F10 116 2.2590 000 6F10 117 2.2500 000 6F10 113 2.2500 000 6F10 113 2.2500 000 6F10 121 2.2500 0000 6F10 121 2.4500 0000 6F10 121 2.4500 0000 6F10 121 2.4500 0000 6F10 122 2.4500 0000 6F10 122 2.4500 0000 6F10 132 2.4500 0000 6F10 132 2.4500 0000 6F10 132 2.400 0000 6F10 132 2.400 0000 6F10 132 2.400 0000 6F10 132 2.400 0000 6F10 140	140	106	2.1566	00000		
6FID 100 5710 100 5710 110 5710 1500 1600 <t< td=""><td>145 -</td><td>117</td><td>2.10.0</td><td></td><td>20.00</td><td></td></t<>	145 -	117	2.10.0		20.00	
6710 115 2.1000 1.510 6710 116 2.2500 6000 0000 6710 116 2.2500 6000 0000 6710 118 2.2500 6000 0000 6710 121 2.2500 6000 0000 6710 121 2.2500 6000 0000 6710 121 2.2500 6000 0000 6710 121 2.2500 6000 0000 6710 121 2.2500 6000 0000 6710 121 2.4500 6000 0000 6710 122 2.4500 6000 0000 6710 122 2.4500 6000 0000 6710 122 2.4500 0000 0000 6710 122 2.4500 0000 0000 6710 123 2.4500 0000 0000 6710 133 2.4500 0.600 0000 6710 133 2.4500 0.600 0.600 6710 149 2.5500 0.500 0.600 6710 149 2.5500 0.500 0.600 6711 149 <td>125</td> <td>0 100</td> <td>111.2</td> <td></td> <td></td> <td></td>	125	0 100	111.2			
6FID 110 2.2500 10.0 0000 6FID 119 2.2500 5000 0000 6FID 119 2.2500 5000 0000 6FID 120 2.2500 5000 0000 6FID 120 2.2500 5000 0000 6FID 121 2.2500 5000 0000 6FID 121 2.5500 5000 0000 6FID 121 2.4500 5000 0000 6FID 121 2.4500 5000 0000 6FID 132 2.4000 5000 0000 6FID 132 2.5500 9000 0000 6FID 142 2.5500 9000 0000 6FID 143 2.5500 9000 5000 6FID 143 2.5500 9000 6FID 149 <t< td=""><td>- 11 - 9</td><td>501 0</td><td>1011-2</td><td></td><td></td><td></td></t<>	- 11 - 9	501 0	1011-2			
6710 115 2:2500 -0000 6710 120 2:2500 -0000 6710 121 2:2500 -0000 6710 121 2:2500 -0000 6710 121 2:2500 -0000 6710 121 2:2500 -0000 6710 121 2:4500 -0000 6710 127 2:4500 -0000 6710 127 2:4500 -0000 6710 137 2:4500 -0000 6710 137 2:4500 -0000 6710 137 2:4500 -0000 6710 137 2:4500 -0000 6710 137 2:4500 -0000 6710 137 2:4500 -0000 6710 137 2:4500 -0000 6710 147 2:5500 -0000 6710 142 2:5500 -0000 6710 143 2:5500 -0000 6710 143 2:5500 -0000 6710 149 2:5500 -0000 6710 149 2:5500 -0000 6710 1490 2:5500 -0000 </td <td>140</td> <td></td> <td>0.010.0</td> <td></td> <td></td> <td></td>	140		0.010.0			
6FID 110 7.2500 5000 0000 6FID 121 2.2500 9000 0000 6FID 121 2.4500 9000 0000 6FID 131 2.4000 9600 0000 6FID 132 2.4000 9600 0000 6FID 140 2.5500 9000 0000 6FID 149 2.5500 9000 0000 6FID 143 2.5500 9000 0000 6FID 143 2.5500 9000 0000 6FID 149 2.5500 9000 0000 6FID 149 2.5500 9000 0000 6FID 149 2.5500 9000 0000 6FID <	1 4 4	110	0.000			
6710 110 2.2500 9000 0000 6710 121 2.2500 9000 0000 6710 121 2.4500 9000 0000 6710 127 2.4500 9000 0000 6710 127 2.4500 9000 0000 6710 127 2.4500 9000 0000 6710 127 2.4500 9000 0000 6710 131 2.4500 9000 0000 6710 131 2.4500 9000 0000 6710 131 2.4500 9000 0000 6710 132 2.4500 9000 0000 6710 140 9.5500 9000 9000 6710 149 2.5500 9000 9000 6710 149 2.5500 9000 9000 6710 149 2.5500 9000 9000 6710 149 2.5500 9000 9000 6710 149 2.5500 9000 9000 6710 149 2.5500 9000 9000 6710 149 2.5500 9000 9000 6710 <	120		2.25.00	.6005	0000	
6710 121 2.5590 1.2610 6000 6710 121 2.5500 1.5601 0000 6710 127 2.4000 0000 0000 6710 127 2.4000 0000 0000 6710 132 2.4000 0000 0000 6710 131 2.4000 0000 0000 6710 131 2.4000 0000 0000 6710 132 2.4000 0000 0000 6710 132 2.4000 0000 0000 6710 149 2.5500 0000 0000 6710 149 2.5500 0000 0000 6710 142 2.5500 0000 0000 6710 142 2.5500 0000 0000 6710 142 2.5500 0000 0000 6710 142 2.5500 0000 0000 6710 142 2.5500 0000 0000 6710 142 2.5500 0000 0000 6710 142 2.5500 0000 0000 6710 143 2.7500 00000 0000 6710			9.2500	0000		
6710 121 2.2500 1.5001 0000 6R10 127 2.4400 0000 0000 6R10 132 2.4400 0000 0000 6R10 131 2.4400 0000 0000 6R10 131 2.4400 0000 0000 6R10 131 2.4400 0000 0000 6R10 132 2.4400 0000 0000 6R10 149 2.5500 0000 0000 6R10 142 2.5500 0000 0000 6R10 143 2.5500 0000 0000 6R10 149 2.5500 0000 0000 6R10 149 2.5500 0000 0000 6R10 149 2.5500 0000 0000 6R10	189 -	0 120	2.2590	1.2010	.000	
6RID 127 2.4530 .000 .000 6PID 129 2.4450 .3000 .000 6PID 131 2.4450 .9500 .000 6PID 132 2.4450 .9500 .000 6FID 133 2.4450 .9500 .000 6FID 133 2.4550 .900 .000 6FID 141 2.5500 .900 .000 6FID 142 2.5500 .900 .000 6FID 149 2.7500 .900 .900	149	0 121	2.2500	1005-1	.0000	
6F10 126 2:4000 3600 4000 6F10 131 2:400 9600 0600 6F10 131 2:400 1000 0600 6F10 131 2:400 1.200 0000 6F10 131 2:400 1.200 0000 6F10 132 2:400 1.200 0000 6F10 132 2:5500 1.200 0000 6F10 141 2:5500 1.200 0000 6F10 142 2:5500 1.200 0000 6F10 142 2:5500 1.200 0000 6F10 142 2:5500 1.200 0000 6F10 143 2:5500 1.200 0000 6F10 143 2:5500 1.200 0000 6R10 143 2:7500 1.000 6R10 149 2:7500 1.000 6R10 149 2:7500 1.000	- GRI	0 127	2.4.30	.000.	.0000	
5PID 125 2.44000 6666 0600 5RID 131 2.44000 9600 0600 5RID 131 2.44000 1500 0000 6RID 133 2.4500 1600 0600 6RID 139 2.5500 3100 0000 6RID 139 2.5500 3100 0000 6RID 140 2.5500 3100 0000 6RID 141 2.5500 9000 0000 6RID 142 2.5500 9000 0000 6RID 143 2.5500 1450 0000 6RID 143 2.5500 1450 0000 6RID 149 2.5500 1450 0000 6RID 149 2.5500 1450 1450 7.5500 1450 2.5500 1450 0000 6RID 149 2.5500 1450 1450 7.5500 1450 2.5500 1450 1450 6.610 145 2.5500 1450 1450 7.5500 1450 2.5500 1450 1450 7.5500 1450 1450 2.5500 6.7500 <	1-5	120	5.4090	.3000	• • • • • • • • • • • • • • • • • • • •	
5P10 13: 2:400 9f0 0f0 - 6R10 131 2:400 1.200 0000 - 6R10 132 2:550 1.200 0000 - 6R10 139 2:550 3f0 0000 - 6R10 140 2:550 3f0 0000 - 6R10 141 2:550 1500 0000 - 6R10 142 2:550 1.201 0000 - 6R10 143 2:750 1.201 0000 - 6R10 149 2:750 1.200 0000 - 5R10 143 2:750 1.200 0000	145 -	0 129	2.4030	.6000	.0000	
6RID 131 2.4401 1.200 0000 6FID 132 2.4401 1.500 0000 6FID 132 2.5500 3000 0000 6FID 140 2.5510 3000 0000 6FID 140 2.5510 4000 0000 6FID 140 2.5510 4000 0000 6FID 141 2.5550 9000 0000 6FID 143 2.5550 1.200 0000 6FID 143 2.5550 1.200 0000 6FID 143 2.5550 1.200 0000 6FID 149 2.7500 1.000 0.000	145	0 13:	2.4 u 0 0	1016.	.0.00	
- 6810 132 2.4000 1.500 .0000 - 6810 133 2.5500 .0000 - 6810 140 2.5530 .0000 - 6810 140 2.5530 .000 - 6810 141 2.5590 .0000 - 6810 142 2.5590 .0000 - 6810 143 2.5590 .0000 - 6810 143 2.5590 .0000 - 6810 143 2.5590 .0000 - 6810 149 2.5590 .0050 - 6810 149 2.5590 .0050	- GRI	0 131	2.4196	1.2000	.0000	
- 6FID 13° 2.55CL 0000 0000 - 6FTO 140 2.559C 3FCU 0000 - 6FTD 141 2.559C 3FCU 0000 6FTD 141 2.559C 1.2CU 0000 6FTD 143 2.559C 1.2CU 0000 6FTD 143 2.559C 1.2CU 0000 6FTD 149 2.559C 1.5CU 0000 6FTD 149 2.559C 1.5CU 0000	145	0 132	2.4098	1.5000	0000.	
- 6810 139 2.5594 3600 .000 - 6810 140 2.5530 6709 .000 6810 141 2.5590 1.500 - 6810 142 2.5590 1.500 6810 143 2.5590 1.500 - 6810 149 2.5590 .000 - 6810 149 2.770 000 - 6810 149 2.770 000 - 6810 149 2.770 000	- GPI	0 13°	2.5500	.0000	.0000	
- GRID 140 2.5510 60.09 .0000 6FID 141 2.5550 .9000 0000 6FID 142 2.5500 1.201 0000 6RID 143 2.5500 1.201 0000 - GRID 149 2.770 0000 - GRID 149 2.770 0000	130	0 139	512596			
- 6FID 141 2.5520 9009 0000 - 6FID 142 2.55300 1.2001 0000 - 6FID 143 2.5550 1.5000 - 6RID 149 2.5550 1.200 - 6RID 149 2.7700 0030 - 6RID 155 2.7700 0040	- 581	0 140	2.5510	.6309.	.7606	
- GRID 142 2.5500 1.201 .000 - GRID 143 2.5566 1.5646 .000 - GRID 149 2.7750 .0020 - GRID 149 2.7750 .0020	149	1+1 0	5.556	.900	.0690	
- 6810 143 2.5586 1.5646 .0900 - 6810 149 2.7750 .0020 .0000 - 9819 155 2.7760 .3600 .0038	- GFI	0 142	2.5506	1.2031	.0030	
- GRID 149 2.7750 .0020 .0000	135	6 143	2.55.6	1.9646	0000	
- 9k19 15: 2.7+0t -3fuc -0646	GRI	0 149	2.7.50	.00.5	000.	
	136		212-64	-30 ac	•0645	

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

		2.76.0 1.2016	. 6 7 8 9
		2.7000 1.5066	0000
	50	2.6500 .0000	.0000
	25	2.8500 .6000	
	29	2.8596 -9966	66 0 6
	+ u		
	11	3.604 .0006	
	72	3.64.0 .3600	.0408
	53	3.0000 .6000	.6600
		3.600 .9606	
	52	3.0.36 1.2000	.0000
	91	3.4666 - 1.5300	0000
		3.1500 .0000	
		3.150U -30CE	
	tut		
			66.00 66.00
6 6 6 7 1 0 1 1 0			
GRID GRID GRID		3. 2000 2000	
GRID 1	50	3.3000 .6500	
GRID 1		3.3000 .9000	
	26	3.3300 1.20rG .	.0000
I 0145		3.3196 1.5000	
GRID 20	14	3.4500 .0000	0000.
GRID 21		3.45:0 .3000	
GRID 2	9	3.450 .6000	.6600
2 01 35			
GRID 21	E.	3.4500 1.2000 .	0000.
GR10 21	60	3.4500 1.5000	.000
GRID 21	2	3.6400 .0000	.0000
GRID Z	91	3.61.00 .3000	
CI49	21	3.6:00 .6000	
0410 21	0		
2410	0	3.6455 1.2004	
OF NO		3.0001 1.000	0.0.0.1
GRID 23	56	. 7500 . 0000	.0000
50105		3.7596 .3666 .	.6000
GRID 2	2.4	3.7500 .6003 .	.000
66.10 2i	6		.2000
SRID 2	31	3.7506 1.2006	
6610 2	31	3.7500 1.5000	.0606
34 ID 2:	37	3.9.00 .0096	
2 - 6149			.3006
6PID 2	5.	2.91.32 .600°	
d - 0109			r000
01 15	1.	7.4. r 1.20 L	

.'

a strain

ALL PROPERTY

COPY AVAILABLE TO LOG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

342- 346- 346- 346- 346- 346- 346- 346- 346	GRID	21.2	3 4	5	9	 8	6	. 10
28 28 28 28 28 28 28 28 28 28 28 28 28 2	6610	248	4.0530	. 00 00	.0000			
384- 3855 3855 3859 3110- 3110- 3110- 3110- 314- 314-		549		- 36.6E	-0000			
365- 306- 319- 310- 310- 311- 314- 314-	GRID	250	4.0520	.6100	- 2000			
346- 346- 346- 346- 346- 346- 346- 346-	0110	142		03964	0100			
309- 310- 311- 312- 312- 314-	CBID	25.5	4. CEAC	. 5000				
316	CETO	254	4.211	1111	.0000			
316- 312- 314- 314-	0100	266	4.2006	3010	0000			
312- 312- 314-	GRID	261	4.21.0	.65 05	.000			
314-	6810	262	4.2040					
-1 12	GRID	263	4.2000	1.2000	.0000			
31 4-	CEID	261	4.200	1.500	0000			
	GRID	270	4.3500	.66600	0000.			
315-	6140	271	4.3550	-3543				
316-	GRID	272	4.3500	.60.39.	.0000			
31.7-	Clas	273	4.3540	.900	.0000			
31.8-	GFID	274	4.3500	1.20(0	.0000			
319-	CRID	275	1.1564		0000			
32f -	GRID	241	4.51.20	5070.	.3630			
321-	GEID	-282	4.5100	-3360	0090.			
322-	GEID	283	4.5000	. 60 00	.0000			
323-	6810	-284	4.56.0	9696.	-0000			
324-	GRID	285	4.5026	1.2020				
				9996				
-026	0115	963			0000.			
10 8-	CPID	204	4. 4125	. 66.00	1010-			
	Celo	500	4.4125					
330-	01 45	296	4. 9125	1.2000	.0000			
-131-	01-10	103	521010	1.5960	0000			
132-	GP 10	30.3	5.1256	.0030	.00.00			
333-	0145	304	5.1256	-3006.	0000.			
334-	GRID	305	5.1250	.60.00	.0000			
	0149	905	N621.6	.90.90	0000.			
530-	GKID	307	1421.4	1.02.1				
- 118-	0100	216	5.4775		10000			
	0100	316	5113	2002	0000			
346-	GRID	316	5.4375	.6030	0000			
341-	61.99		526495	3006.	.0060		-	
342-	GRID	31.4	5.4375	1.2000	• 25,50			
	01-5		526435	1.5666	•6680			
344-	GRID	325	5.7596	.0000	.00.00			
345	0105			30.96				
346-	GFID	327	5.7503	. COC				
-242	6F10	326	9432.6	.946.	0339.	-		
345-	CIJ	329	5.7530	1.2006	.0000			
	OLdy	370		1. See				

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION
	PL-TR-76-56												1	Ë	K	W			ru						الم الله		2					10					
. 10 .																									+32	234	+02		•A75	+B/5	+075	+675	+F75				
6																								:	160	843	336			1164.0	9666.0	1551.)	u.17.5				
•					-																				149	237	325			9-0-6	28.0-6	-9-9-9+	52.0-6				
																									139	556	314			1955.9	1 000	6.9563	C • 3360				
9		0000	.0000	0000	.000C	0000	.0000		0000.	1000	.0000	0000	-0000-	00000	.0000		.0000					-2597E-3			127	215	30.3	11			27.5-6	9-0-6	9-0-64	75			
5			1.2006	1.5600	.0006	-36.66	.65 60	0006.	1.2030			1001	.6005		1.2000	1.5000	0000.		- 6000	1.2015	1.5000				116	204	292	THRU	1976	C1/1-1	9666 . 1	6166	1164.1				
	6 1625	6.6625	6.0625	6.6625	6.375C	6-3756-	6.3750	0.3756 -	6.3750	04/200	6.6475	6-6875	6.6475	6149 · 9	6.6975	6.6875	1.00.0		1.11.1	7.0135	7.6305			6191.	165	£61	261	909 6	7 0.6	0-0-0	276		46.0-6	CINUT	1.6-6		
																						17		-	10	201	276	123456			1.9861		L.6536	65			
. 2	922	330	340	341	2.7	348	349	550	1351	245	195	669	36:	361	362	195	596		115	373	374	-	SECONE			111	652		5	2000	54.5-6		43.6-0	5-1-52	96		
. 1 .	0100	6610	GRID	- · 6109	GRID	CE IO	GRID		GRID	0144	5410	0141	OIds		GFID	0149	0145		CE ID	GRID	GRID	4471	NUNC	SUDAUC	+42	284	+02	1792	749LF01		+0.75	5404	6/5.	TLOADI		ENCOATA	
COUNT	352-	362-	354-	-166-	356-	357	35		- 92		-745		364-		-99-		-645			372-	373-	37 +-			379-	-646	383-	382-	333-	-545-	386-			-: 62	-166		

1

64 ℃ U. S. COVERNMENT PRINTING OFFICE; 1976 - 657-630/1013