o i SRl i s SN e S b G R b RS o

- 3

June 1976 Report ESL-R-667
ARPA Contract N00014-75-C-1183

V=

AD A031G08

DYNAMIC FILE ALLOCATION IN A

COMPUTER NETWORK

Francisco de Asis Ros Peran

AR

DISTRIBUTION STATEMENT A I

Approved far public release;
Distribution Unlimited |

.
\ Electronic Systems Laboratory Decision and Control Sciences Group

J

L
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

N AR A Do
o

Department of Electrical Engineering and Computer Science

T

AUETAT ARG ¥ v T N A S AT G I IR <0 W Sy B S B i AT WA AR T T T T T ST 3 W

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

June, 1976 Report ESL-R-667

T [J/

s White Section
308 Butt Sectin [
EXARKCUNTED U}l DYNAMIC FILE ALLOCATION IN A

JESTIFICATION. .o
COMPUTER NETWORK

DISTRIBUTION/AVAILABILITY GODES
Oist. AVAIL and/or SPEGIAL
0 Francisco de As{s Ros Peran

by

This report is based on the unaltered thesis of Francisco de Asis Ros
Peran, submitted in partial fulfillment of the requirements for the
degree of Master of Science at the Massachusetts Institute of Technology
in June, 1976. This research was conducted at the Decision and Control
Sciences Grouz of the M.I.T. Electronic Systems Laboratory with partial
support provided under ARPA Contract NO0014-76-C-1183.

DDC

D Nov © 1978
.l IHEJ%UU

/Elcctronic Systems Laboratory

Department of Electrical Engineering and Computer Science]

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

DISTRIBUTION STATEMENT A

Approved far public release;
Distribution Unlimited ‘

o

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) t‘¥__i/g JGsTer res/s
T REPORT DOCUMENTATION PAGE BEFORE COMBE R TiRG TORM
e e N e 7. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
5d

TIRLE (sad Subliile) € — S. TYPE OF REPORT & PERIOD COVERED

Dynanu.c File Allocation in a Computer Network RESEARCH
/ 6. PERFORMING QRG. REPORT NUMBER

> (L4 ESL-B-c6T 1.
L—\U THOR(s) 8. OR GRANT NUMBER(s)
(L&
1 Francisco de Asls Ros',Pergm j ARPA Order No. 3045/5-7-75
1 Pt A/~ awr/Nooo14-75-C-1183
‘ S. PERFORMING ORGANIZATION NAME AND ADDRESS = 8. P
N AREA & WORK UNIT NUMBERS ' o
Massachusetts Institute of Technology Program C 5. 5T10
Electronlc Systems Laboratory > 4 ; Al
02139 ONR Ide ~No.—049-383
11. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency Jun 7

1400 Wilson Boulevard 13. ﬂyuaz

| arlington, Vi :‘?:ma 22209
4. MONITORING AGENCY NAME & ADORESS(if different from Controlling Oftice) 15. SECUR‘TY CLASS. (of » rmll)

Office of Naval Research B
Information System Program
Code 437 15a. DECL ASSIFICATION/ DOWNGRADING
Arlington, Virginia 22217 SCHEDULE
16. DISTRIBUTION STATEMENT (of this Repart)
Approved for public release; distribution unl;nuted _,,,,_,___.—-—M-—~
f 3
@/'//r// '/</ /-) =L L83,
j W4 K/ a/ LA &L JﬁqL

17. DISTRIBUTION STATEMENT (of the adstract entered in Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Data Communication Networks
File Assignment
Network Reliability

.
A\BRACT (Contlnue on reverse side If necessary and identily b; dlock number)

One of the main reasons computevnetworks are a major area of great attenticn
and development today is their capability to provide the facilities for common use
of data bases and information files by all computers in the system.

When a file is used by several computers in the network, it can be stored in
the memory of at least one of them and can be accessed by the other computers via
the communication channels. In general the cost or querying is reduced as we in-

crease the number of coples in the system. On the other hand, st:orage costs,
every copy_must

DD, ')‘23"7, 1473 EOITION OF ! NOV 6515 09SCLETE / 7 A \
) ") O ‘.
~ { - \"’ -
Dofe Entered)

SACUNTY CLASSIEICATION OF THIS PAGE (When L

A
odits. 0 il

N
be updated) will dictate decreasing of the number of copies./)Furthermore if g
the parameters of the system are time-varying, or‘;:sggg_gxet pattern of the }
rates of demand is unknown or-scme non negligible ility of node or link f
B failyfé§"I§“Expected, then some kind of dynamic approach must be used. 1

“&his thesis considers the problem of optimal dynamic file allocation when &
more than one copy is allowed to exist in the system at any given time, A general
model to handle this problem including updating traffic and theuggsafiility of
‘ _ node failures will be developed. The evolution of the system is represented as
| : ~a finite state Markov process and Dynamic programming will be used for the solution
| of Qhe optimization problem. 4

NSRSty TSV S S R I 5

2 The use of two types of control variables, one for adding new copies to the J
i 3 system and the other for erasing copies, gives the model certain properties that 4
permit the construction of an efficient algorithm to solve the optimization ;
problem. Within the framework of the developed model the addition of the updating
traffic And the possibility of node failures present no important difficulties.
Furthermore the model can easjly handle the problem of constraints in the maximum d
or minimum number of copies.{¥n the last chapter the model and algorithms are ap- ’
plied to several numerical examples.

g

T " " T IR T TP A Y

DYNAMIC FILE ALLOCATION IN A
COMPUTER NETWORK

by
Francisco de Asfs Ros Perén
Ingeniero de Telecomunicacién
Universidad Polité&cnica de Madrid

1972

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF g
g MASTER OF SCIENCE g
0 at the

2> MASSACHUSETTS INSTITUTE OF TECHNOLOGY ;
5 May, 1976

g‘ ,.: S i

‘&5 ‘——-‘:‘_‘i’\ik 2 fb\w\"‘_‘sc

¥ Signature Of AUthOr....... . Tcececrrenncanen o “hn

o Department of Electrical Engineering

: and Computer Science, May 7, 1976 i
i P

Certified by..cccveeeee. R gen L A SR o e e
Supervisgr

" ¥

Accepted by...cccceee € RS R
Chairman, Departmental Committee on Graduate

Students

3 AR N T RN SRR, £T 3

WG

TR . . SR S T e

s s s Shlauabt oo

e ——

DYNAMIC FILE ALLOCATION IN A COMPUTER NETWORK
by \ .
Francisco de AsIéyRos Perén
Submitted to the Department of Electrical Engineering and
Computer Sciences on May 7, 1976 in partial fulfillment of
the requirements for the Degree of Master of Science.

ABSTRACT

One of the main reasons computer networks are a major
area of great attention and development today is their ca-
pability to provide the facilities for common use of data
bases and information files by all computers in the system.

When a file is used by several computers in the network,
it can be sto-ed in the memory of at least one of them and
can be accessed by the other computers via the communication
channels. 1In ceneral the cost or querying is reduced as
we increase the number of copies in the system. On the
other hand, storage costs, limitations on the size of the
memories and the cost of updating (every copy must be updated)
will dictate decreasing of the number of copies. Further-
more if the parameters of the system are time-varying, or if
the exact pattern of the rates of demand is unknown or some
non negligible possibility of node or link failures is
expected, then some kind of dynamic approach must be used.

This thesis considers the problem of optimal dynamic
file allocation when more than one copy is allowed to exist
in the system at any given time. A general model to handle i
this problem including updating traffic and the possibility
of node failures will be developed. The evolution of the
system is represented as a finite state Markov process and
Dynamic programming will be used for the solution of the
optimization problem.

The use of two types of control variables, one for
adding new copies to the system and the other for erasing
copies, gives the model certain properties that permit the
construction of an efficient algorithm to solve the optimi-
zation problem. Within the framework of the developed
model the addition of the updating traffic and the possibi-
lity of node failures present no important difficulties.
Furthermore the model can easily handle the problem of cons-
traints in the maximum or minimum number of copies. In the
last chapter the model and algorithms are applied to several
numerical examples.

Thesis Supervisor: Adrian Segall

Title: Assistant Professor of Electrical Engineering
and Computer Science

o o B, SN e T P T

e il

' -

ACKNOWLEDGEMENTS

Thanks are due to Prof. Segall who was the original
source of this thesis topic and many of the ideas here
exposed. Rafael Andreu was very helpful in the computer
programming part of the work due to his considerable
experience in this area. Ramén Bueno contributed with his
bilingual ability to the final English structure of some
parts of the text. And finally Camille Flores' typing
skills permitted to meet the deadline.

This work has been supported by a fellowship from
the Fundacibén del Instituto Tecnolfgico para Postgraduados,
Madrid (Spain) and by the Advanced Research Project Agency
of the Department of Defense (monitored by ONR) under

contract NOOOl1l4-75-C1183.

padRTR =S - e e G R ek Y

a

s e

S E———

T ————

S Dy o e

B

PR

4

p ,
-
" »

4

I»

e

Lu

<8 g

T

TABLE OF CONTENTS

Abstract

Acknowledgements

mable of Contents

Lists of Figures

CHAPTE? I.- INTRODUCTION

I.1l.~ General Setting and Description
of the Problem

I.2.~ Summary of Results
I.3.~ Chapter Outline
CHAPTFR I1.- DESCRIPTION OF THE MODEL

II.l.- Characteristics, Basic Assumptions
and Operation Procedure

IX1.2.~- Data, Parameters and Variables
II.3.~ Objective Function

I1.4.~- Control Variables and Restatement
of the Objective Function

I1.5.~ Definition of State and Dynamics
of the System’

I1.6.~ Some Useful Properties of the Model

CHAPTER III.- DYNAMIC PROGRAMMING AND BACKWARD
EQUATIONS

II1.1.~ Preliminary Remarks
IIT.2.~ Backwards Recursive Equations

II1k.3. Recursive Equations for NC=2

III.4.

Recursive Equations for NC=3 and
Generalization to any NC.

3o SR B AT e AT P ey 17

Page

14
15

17

17
20

22

22

25

29

35
36

38

42

5
= |
'= p Page
B
¢ : III.5.~ Constraints in the State Space 56
E
| CHAPTER IV.- UPDATING TRAFFIC AND NODE FAILURES 59
Rl IV.1.~ Updating Traffic 59
B IV.2.~ Network with Node Failures 62
? ; IV.3.- Recursive Equations for NC=2 con-
f sidering Node Failures 65
| {
E | IV.4.- Recursive Equations for NC=3 and
a General NC considering node Failures 71
CHAPTER V.- NUMERICAL APPLICATIONS AND OTHER
ANALYTICAL RESULTS 93
V.l.- Time Varying Rates. No Failures.
No Updating Traffic 93
V.2.- Constant Rates. Updating Traffic.
No Failures 98
V.3.- Nonzero Failure Probability 123
V.4.- Completely Simmetric Network 136
CONCLUSIONS AND OPEN QUESTIONS 149
APPENDIX A 146
APPENDIX B 148
APPENDIX C 150
BIBLIOGRAPHY 175

1
{
l L
g & : LIST OF FIGURES

f f Fig. Mumber Page
| I.1l.- General representation of a computer
E | network reflecting the problem of
5 file allocation. 10
E ! IIT.Y.= Illustration of the Operation Procedure. 19
E1 I1.2.- Sequence of events at any time t. 28
B, 1T . 3= Transition tableau for the case NC=2
F | (assuming deterministic transitions). 31
o II.4.- Transition tableau for the case NC=3
k (assuming deterministic transitions). 32
‘ II.S5.- Flow graph showing the steps to obtain
: the transition tableaus. 34
{ EEE o1 .= How to obtain the first row of the
BF transition matrix from the first tableau
% row. 39
: 111.2.~ Flow-chart showing how to obtain the
g per-unit-time cost vector. 43

III.3a).- Flow-chart showing how to construct the
nonzero probabilities of row n when

the decision is "go to state m". Sl
III.3b).~ Fortran flow-chart of Fig. III.3a). 52
£ I11.4.- Flow-chart of the optimization process. 54
b} Iv.l.- Sequence of events including updating
: traffic, 60
'H IVv.2,~ Flow-chart of updating traffic when
] failures in the computer are considered. 73
Y - V3= Flow~-chart showing how to obtain terminal
e and per-unit-time costs. 74
:f" N Iv.4.- Tableau of possible transitions for NC=3. 76
- j IV eda™ Flow-chart showing how to obtain the
&L transition matrix and the optimal decision
for a netrowk with failures. 81
; IVie6is= Optimization process for a network with
& failures, 89
f IVilu= Reordered transition tableau showing
g the "subspace behavior" for NC=3. 92

. VR Py, AT VR R

o
RS

Fig. Number Page

V.l.~- Rates, Case 1, 96
: ¥.2.= Cost curves for static and dynamic
| approximation. 97
V.3.- Rates. Case 2. 96
V.4.- Qualitative sketch of a typical behavior

for a system with constant parameters.

K is the optimal set and K its com-
plementary (only some states are repre-

3 sented). 105
j‘t ~ Ved.— Optimal transitions for the example of
E 1 section V.2 with P=0,25, C_-0.25. 106
V.6.- Total cost vs. storage cost with p as a
! parameter. 112'
3 / V.7~ Total cost vs. p with C, as a parameter. 113
v.8a).- Total cost vs. storage cost with p as
a parameter. 1 represents trapping
Er state and j optimum initial state. 124
: % V.8b) .- Total cost vs. CS with p as a parameter. 125

T e, Y TR T o7 VLA, S T

e e A

CHAPTER I

INTRODUCTION

I-1 General Setting and Description of the Problem

"The time sharing industry dominated the sixties
and it appears that computer networks will play a similar
role in the seventies. The need has now arisen for many
of these time-shared systems to share each others' resources
by coupling them together over a communication network
thereby creating a computer network" (L. Kleinrock[l]).

We define a computer network to be an interconnected
group of independent computer systems communicating with
each other and sharing resources such as programs, data,
hardware, and software.

The increasing interest in this area is the cause for
a continuously growing number of articles, books and projects
related to computer networks [2] - [7], [24]. The reasons
why these types of networks are attractive are widely
exposed throughout the literature in this field.

a) sharing of data base, hardware resources, program

and load

b) remote data processing

c) access to specialized resources

d) recovery of information from a remote node in case

of node failure

e) decentralization of operations and need to trans-
fer information from one point to another etc.
One of the main reasons computer networks are a major

area of great attention and development today is their

capability to provide the facilities for common use of data

bases and information files by all computers in the system.
This work deals with the problem of the information alloca-
tion to be shared by the computers in the network. Such

a network is displayed in Fig. 1

When a file is used by several computers in the network,
it can be stored in the memory of (at least) one of them
and can be accessed by the other computers via the communi-
cation channels. 1In general, the cost of guerying is
reduced as we increase the number of copies in the system.
Oon the cther hand, storage costs, limitations on the size
of the memories and the cost of updating (every copy
must be updated) will dictate decreasing of the number of
copies.

The problem of how many copies of the files are to be
kept and their allocation is the main subject of this Thesis.

Most of the previous work in the area of file alloca-
tion has been devoted to the analysis of the problem under
static approximations, that is, assuming that all parameters
of the system are known a priori and basing the design on
their average value over the period of operation of the

system. The location of the files is then considered fixed

10

Q) COMPUTER

-

COMPUTER
4.

\A MEMORY

~
B

MORY f

FILES

How many copies of each file do
we need in the network?

At which computer do we have to

‘ allocate each copy?
! c

For how long must a certain allo-
cation distribution remain
unchangeable?

etc.

j Fig.I.1l. General representation of a computer network
! reflecting the problem of file allocation

11

e e e e

for the whole operating period.

An early work in this field was a paper by Chu [8].
The criterion of optimality used in [8], is minimal overall
operating costs. The model considers storage and transmis-
sion costs, request and updating of the files and a limit
on the storage capacity of each computer. The model
searches for the minimum of a non-linear zero-one cost
i equation which can be reduced to a linear zero-one program-
t ming problem.
3 / Another work is a paper by Casey [9]. He considers a

mathematical model of an information network of n nodes, some

?' § of which contain copies of a given data file. Using a
E simple linear cost model for the network, several properties
] of the optimal assignment of copies of the file are demons-
‘ trated. One set of results expresses bounds on the number
of copies of the file that should be included in the net-
work, as a function of the relative volume of query and

update traffic. The paper also derives a test useful in

determining the optimum configuration.

Of very recent appearance is a paper by Mahmoud and
Riordon [Zﬂ . In this paper the problems of file allocation
and capacity assignment in a fixed topology distributed
computer network are simultaneously examined. The objective,
in that analysis, is to allocate copies of information files

to network nodes and capacities to network links so that a

= e :

minimum cost is achieved subject to network delay and file

availability constraints. The deterministic solution for a
medium size problem is intractable due to the large amount
of computation so that an heuristic algorithm is proposed.

A quite different analysis in which the important
] guantity to be optimized is the service time, instead of the
operating cost, is done by Belokrinitskaya et all. [10].
The analysis results in a zero-one nonlinear programming
problem (that can be linearized), similar to the one in [8].

In the above mentioned works, the problem is considered

.

under static conditions and using average values of the

parameters.

DY

If the parameters of the system are time-varying,
however, or if the exact pattern of the rates of demand is
unknown or some non negligible possibility of node or link

failures is expected, then some kind of dynamic approach

must be used.

It has been only recently that the first studies of

these problems, from the dynamic point of view, have begun

to appear. 1In a work by A. Segall [11] the problem of

finding optimal policies for dynamical allocation of files

P ———

in a computer network that works under time-varying opera-
ting conditions is studied. The problem is considered
under the assumption that the system keeps one copy of each

file at any given time. The case when the rates of demand

- e i el

.

e
IV S S S

’;—-" 4

13

are not perfectly known in advance is also treated. Only

a prior distribution and a statistical behaviour are assumed,
and the rates have to be estimated on-line from the incoming
requests.

The problem of optimally allocating limited resources,
among competing processes, using a dynamic programming
approach is studied in [12]. A dynamic programming approach
is also suggested for the problem of minimizing the costs of
data storage and accesses in [25]. Here two different types
of accessing costs are considered. The accessing cost will
depend on whether a record is to be read or to be written
(migration). A different approach to the same problem is
taken in [26]. A two-node network with unknown access
probabilities is considered. The problem is to set up a
sequential test which determines the earliest moment at
which migration leads to a lower expected cost.

The present work considers the problem of optimal
dynamic file allocation when more than one copy are allowed
to exist in the system at any given time. A general

model to handle this problem including updating traffic
and the possibility of node failures will be developed.

The evolution of the system is represented as a finite-
state Markov process and dynamic programming will be used

for the solution of the optimization problem.

Y e A R, W T

e I

B e

14

I.2. Summary of Results

A model for the analysis of optimal dynamic file allo-
cation is introduced, The use of two types of control
variables, one for adding new copies to the system and the
other for erasing copies, gives to the model certain proper-
ties that permit the construction of an efficient and rela-
tively simple algorithm to solve the optimization oroblem.
Among others, the algorithm is efficient due to the fact that
it computes only the nonzero transition probabilities. A
detailed set of flow-charts and Fortran program listings
are given for all the operations and calculations that take
place in the optimization process.

Within the same framework the incorporation of node
failures presents no important difficulties, except for
increasing the number of states. Some kind of constraints
in the state space, those that could be represented as
reductions in the set of admissible states, are also easily
handled by the model.

In the last chapter we apply the algorithms to several
numerical examples. For the case of constant rates of demand
with no failures in the computers the corresponding Markov
processes have a trapping state. For these processes it will
be shown that the general dynamic programming algorithm
need not be implemented, and a much quicker answer to the
optimization process can be found.

For the more ageneral case of constant parameters with

possibility of node failures included, quick convergence to

W oo A DI U O, A A NG T N e v RAT iy Y Sl w
s Deti " B = . P :

T

R —

R

g e e T ST

the steady state optimal dynamic decision policy was found
for all examples.

Finally it will be shown that having a completely
simmetric network (equal parameter values for all computers
and links) will allow a considerable reduction in the number
of states.

A more detailed exposure of results can also be found

in the chapter dedicated to "Conclusions and Open Questions".

I.3. Chapter Outline

In chapter II we begin with the description of the model.
We first state the general hypothesis and basic assumptions
to be considered throughout the study and continue with the
description of the operation procedure. We indicate the
objective function and define the control and allocation
variables. The chapter ends with the definition of the
state and the description of the dynamic equations of the
system.

In chapter III Stochastic dynamic programming is aoplied
to the model to determine the optimal allocation strategy.
First we will write the recursive equations for a simple net-
work with only two computers and then we will see how easily
these equations generalize to any number of computers. ¥e
finish the chapter indicating how the model can handle the

problem of certain constraints in the state space.

In chapter IV we present the problem in its more general

16

framework with the inclusion of the updating traffic and the

L b S .

possibility of node failures. As in chapter III, we first

s e b it B

; write the recursive equations for a network with two computers

and then generalize them to any number of computers. At

e S

e
this point we give a very detailed set of flow-charts, showing ﬁ
how to compute the different matrices and vectors of the 1

recursive equations and how to carry out the whole optimi-

zation process.

Chapter V deals with numerical applications. Using
the insight gained from numerical answers some additional
analytical results are developed.

A few pages dedicated to general conclusions and further
work to be done in this area will follow this chapter.

Two appendices, A and B, expanding results of chapters
II and III will also be added. A third appendix contains
a set of Fortran program listings correspondina to the most
significant flow-charts of previous chapters. These programs

have been used to implement the numerical applications of

chapters V. Auxiliary subroutines are also listed.

Wwww- - T — T———— - e T—— —
- 17

B G et

A ""\""T‘—'}.'
4

Y S

AT TR
'i‘ga3ﬂhii

CHAPTER II

DESCRIPTION OF THE MODEL

II.1 Characteristics, Basic Assumptions and Operation

Procedure

We shall make here several simplifying assumptions,
that are still consistent however with the models appearing
in real networks. We shall assume that the files are reques-
ted by the computers according to mutually independent
processes (with statistics to be specified presently) and
also that the files are sufficiently short. Moreover the
communication lines are taken to have sufficient capacity
and the computers sufficient memory, so that the transmission
of the file takes a very short time and there is no res-
triction on how many files a computer can carry. Under
these assumptions, it is clear that in fact the files do
not interfere with each other, and we can therefore treat
each file separately.

The analysis will be done in discrete time, assuming
the existence of a central synchronizing clock. It will be
considered that with previous assumptions the time interval
between clock impulses is long enough to allow the execution
of all the necessary operations to take place in it (request
arrivals, "reading" of present state, implementation of

optimal decisions, etc.).

In this chapter the possibility of node failures will
not be included in the model. This extension, together with
the inclusion of the updating traffic, will be left to
Chapter IV. q

We may summarize the assumptions as follows: :

i 1) No failures in the network (relaxed in Chapter 1IV)

2) Channels with sufficient capacity (or sufficiently
. short files)
3) sufficiently large storage capacity at each computer

4) Requesting according to mutually independent processes

|

i 5) Files are treated separately (according to former

" X assumptions the files do not interfere with each
b .

I other)

b

f ‘ 6) The analysis is done in discrete time

f The proposed procedure is similar to that proposed in

reference [11], with the only difference being that we now
allow more than one copy at each instant of time (the way

the updating traffic is taken in consideration will be

described in Chapter 1IV).

The procedure is illustrated in Fig. II.1 and can be
described as follows: Suppose a certain number of copies is
stored at time t in the memories of a set of computers,
say I. If at time t the file is requested only by computers
in the set I then no transmission cost is incurred and a
decision has to be made, whether to erase some of the copies

from I (with the specification of the particular copies to

vaw A IV, R S

TR AW AT e SIS e, ‘

"

\“‘N. S S

PP

~
s / \Transmission ~
/ Request v(costless) from ™ |
/ from /i imemory i to computer I i
[N
Computér i \
l y Transmission
o= = to Jj
§ILE) p \ :
- \\\ :
wRequest from j \
\ N .
\ N \ 4
\ \ ,L\ 3
\ N (‘) f
\ AN - 3 A
b 1 Computer j
\ A
*Transmission ‘Request from k
\ on the file |
Y\ tok |
. ‘ MEMORY
\ |
\ l
\ I
\
\ :
. 3 i
i\
Computer k
N o
. 7
Decision: where to keep
copies of the
file at time t
MEMORY
Fig. IXI.1. Illustration of the Operation Procedure

T —,' 7

-~ ‘-‘e ’l:

be erased) or to keep the same number of copies. If, on
the other hand, the file is also requested by other computers
not in I, then the file is transmitted for use to these
computers and a new collection of copies, say J, appears
in the system at time t+. A similar decision now has to
be made but with the set J instead of the set I

The restriction of reallocating the file only in
conjunction with a regular transmission is reasonable for
this model, because if a change of location is decided upon,
one might as well wait until the file is requested for the
next time by the appropriate computer, otherwise it is
conceivable that the file might be transferred back and

forth, without anybody actually using it.

II.2 Data, Parameters and Variables

In this section part of the notation used in the study
will be introduced.

Consider a completely connected network of NC computers.
The requests of the file by the computer will be modeled
as mutually independent Bernoulli processes with rates

Gi(t), i=1,..NC, that is

L[}

Pr{ni(t) =1} =1 <p {ni(t)

- 0} = Gi(t) (2.1}

i=1,..NC

e R, B T I e S A G

R S P

where ni(t) = 1 indicates that the file has been requested
by computer i at time t. The rates ei(t) are assumed to be
known for all computers and instants of time.

We define the variables
1 if there is a copy stored at computer i at

yi(t) = time t (2.2)
0 Otherwise
i=1,..NC

The condition of having at least one copy of the file

in the system at any instant of time can be analytically

expressed as

NC
Z i iel > 1 VtC[O,T] (2.3)
i=1

where T is the whole period of operation.
The operation costs are

Ci = storage cost per unit time per copy at memory i

C = communication cost per transmission from computer

ij

i to computer j
Iy 3 = 1,dvs NC i#3
We will assume Cii =0 ¥i

It is assumed that these costs are time-invariant; the case
with time-varying costs can be handled by simply writing

Ci(t) and Cij(t) throughout the paper.

R
Nt G SRR Sl Gl i

II.3 Objective Function

Supposing that the user accesses that copy of the file
that minimizes his communication cost and, denoting sim-

bolically by I(t) the set of nodes having a copy at time t,

|
we can write the expression for the total expected cost over] ;
the period [o.'r] as r
T NC NC {
/ 5 i
C =E E E Ciyi(t)+ E (l-yi(t))ni(t)mln Cki (2.4) |
t=0 * i=1 i=1 keI(t) :

The first sum in the bracket represents the total storage

cost at time t and the second sum is the total transmission !

cost. We can see that summands contributing to the trans- 19

mission cost are those with yi(t) = 0 and ni(t) = 1 only, that

is, those coming from computers that do not have the file
and have had a request. ;
The goal is to design a closed-loop control that will

dynamically assign the location of the file and will minimize

the defined expected cost. We introduce the control variables

in the next section.

II.4 Control Variables and Restatement of the Objective

Function

We will define two types of control variables. One will

correspond to the erasure process and the other one to the

writing process. The separation of these two operations in

<\-N e ——— . -~

-

——

23

in two types of control variables will simplify significantly
the amount of notation.

The variables are
(1 — (if the decision is to erase the copy from i

at time t+ assuming the copy was there at

ci(t)=4 at time t (i.e. yi(t) = 1) (2.5)
0 — otherwise
\
(1 — (if the decision is to keep a copy in i at

Jtime t+ assuming that the copy was not there

ai(t)=4 (Yi(t)=0) and there was a request from that
computer (ni(t) = 1) (2.6)
{
0 — otherwise
i= 1,..NC

These definitions require the introduction of the con-

cept of active control variables. It will be said that the

variable ci(t) is active if yi(t) = 1 and that ai(t) is
active if yi(t) = 0. Due to these definitions ai(t) and
ei(t) cannot be simultaneously active. From definitions
(2.5) and (2.6) the nonactive variables will always be
equal zero. Therefore only active variables will be con-

sidered throughout the analysis.
With the previous notations, the dynamic evolution

of the system is:

S ———

ii) it did not have a copy at time t and there was a request

a) y; (e+1) = y (0 [1me (0] + [1oy (0)]agoing (0)
i=1,1,..NC (2.10a)
NC
iff Z (right hand side) # 0

i=1
b) yi(t+1) = yi(t) i=1,2,..NC (2.10b)
NC
iff E (right hand side of (2.10a)) = 0
i=1

Equation (2.10b) shows that if our decision variables
are such that all copies of the file will be erased, then
no decision variable is actually implemented, and there-
fore the system remains in the previous state. Otherwise,
the system evolves according to equation (2.10a) namely
computer i will have a copy at time (t+1) if
i) it had a copy at time t (yi(t) = 1) and the decision was

not to erase it (ci(t) = 0) or

from computer i (ni(t) = 1) and a decision to write the
file into memory i was taken (ai(t) =1).
The optimization problem could then be stated as follows:

Given the dynamics (2.10), find the optimal control policies

E;(t) i = 1'1'--'NC

1
1

u;(t) t=1,2,..7

and the initial locations yi(O). Vi, so as to minimize the
expected cost (2.4). 3
Hence we have a dynamic system in which the inputs are

a sequence of decisions made at various stages of the evolu-

tion of the process, with the purpose of minimizing a cost.

These processes are sometimes called multi-stage decision

processes [15].

I1.5 Definition of State and Dynamics of the System I

Being at a certain instant of time, in the optimization
process, the only information needed, given the fact that
the request rates are perfectly known, is the identification
of the computers that have a copy of the file at that time.
With only this information we can continue the optimization
process and the past is inmaterial as far as the future is
concerned. Therefore the location of the copies at any
instant of time summarizes the information needed at that
instant (together with the rates) and the problem then is to
find an optimal policy for the remaining stages in time.

The state of the system will be defined, at time t,
as the location of the copies of the file at that time and

it will be represented by a vector with NC binary components,

o T TN A T R T 1 L

26

having a zero in the places corresponding to computers that

do not have the file and a one in the places of computers

] ‘ having a copy. These vectors will be named by the decimal
number whose binary representation is the NC- dimensional

i vector and will be represented by a capital Y.

Therefore the state at time t will be the column vector
3 [y, ()
yz(t) {2:31)

"

Y(t)

yNC(t)

—_ -

i

or alternatively the state of the system at time t is m(t)

where

m(t) = decimal number with binary representation given

by the sequence yl(t) yz(t)m-ch(t)
M= 1;2:0ca
'r" M = 2NC -2
b X
B vl m = 0 will not be a valid state because it corresponds to
4
e+ the case of having no copies in the system and this situation
> N has to be avoided. Thus the previously stated condition
}i ! NC
. § :
oy,__ Yi(t) fr 1
.
: i=1
g is tran-lated to this notation as m # 0

-

i3

Zs‘;!ﬁﬁxgt

B PR AT S ————

B

B

R

&,

. ;
: ey
PR IR o i 55

The dynamics of the state are easily obtained from the
dynamics of the allocation variables: we only have to

substitute for each component of the vector defining the

state
F - ' ma Wr - -
yl(t+1) l-El(t) o s o) yl(t)
Yz(t+1) 0 l'Ez(t) . . - 0 Y2(t)
. - +
Yy (E+1) s o PRI t
| ¥nc Sl A 0 vt | Yne(®)]
0 a,(t)ny(t) - . - 1-y, (t)
+
(0]
0 yc (B)nye (t) 1=y (t)
(2.12a)
iff right hand side of (2.12a) # 0 and
Y(t+1l) = Y(t) iff right hand side of (2.i2a) = 0 (2.12b)

27

28

i] To clarify further these ideas let us write the ordered
sequence of events that take place at any time t
- at time t the optimal e} (t) and af(t)

are computed

~ at time t the requests arrive
~ at time et the optimal decisions are activated
if in doing so the system does not go to state 0

Y | (that is, if not all existing copies are erased).

Otherwise the system does not change state.

This sequence of events is illustrated in Fig. II-2.

| Calculate the optimal 2ctivate the optimal
o % e;(t) and a;(t) given Requests decisions if in doing
present states and arrive that the system does
current value of the not go to state 0.
rates. Otherwise do not
change state.

& Reeve: % t*
7§ (t+1)~ (e+1 Y L,b

‘._—_____. . | R T, | '

Yo TR b S A 1

0 t t i t+1 T

Fig. II-2. Sequence of evenis at any time t

\,.
BT e e T——

R s S PN S

A l"‘*"’m\g’ P Vg R AR ST SR

2 |

I1I.6 Some Useful Properties of the Model

So far the main structure of the model has been des-
E cribed. 1In this section, we describe some of the properties ;

of the model. First of all we will look at the transitions

among states. ;
1

Recall from section II.4 that the active variables are :

defined as
si(t) is active if yi(t) =1

ai(t) is active if yi(t) =0

Hence these variables are uniquely determined by the state.
For instance, having a network with five computers (NC=5) and
being in state eleven (01011l) the active variables are

State Yy Yy Y3 Y4 Yg active variables

Y=11 —» [0 SR (S R L —_—) €y Q3 £, Eg

witha's corresponding to places where there is a 0 (no file
in the memory of that computer) and g¢'s to places where there
is a 1 (there is a copy at that computer). The non-active
variables will then besl, Opr E3r Oy and ag and we saw, also
in section II.4, that their value is equal zero no matter
which decision is taken, so we can omit them.

Suppose now that the optimal decision at a given time is:

- erase copies from computers 2 and 5

- keep a copy at computer 3

or in terms of the control variables

L e A B R 0L e, Sy A

u=(alc‘.2(v.3€4€5)=(0 1 1 0 1)

—rTeer

Thus, if there is a request from computer 3, the system will

DRPRPSIS S SIGCE SR S

E | go to state

o e Al

P Yy Y Y3 Y4 ¥s . state 6
T A

e e

and if there is no request from computer 3 the system will
go to)

£l A ® 48 state 2

0 0 0 1 0

vy

Because of the unique correspondence in the notation we see

that it is equivalent to say that the decision is

A AT
.

u= (o €, a3 €, 55) = (6 - 31 0 1)

e

or
"go to state 6"
For the sake of simplicity these two forms will be

interchangeably used.

R———

From the above analysis it can brc seen that

(initial state) ® (decision vector) = (final desired state)

(decision vector) = (initial state) ® (final desired state) :
where ® means "exclusive or". This is so because if a con- ¥

trol variable has a value 1 we have to change the value of
the allocation variable in the transition, while if the value
is 0 there is no change in the transition. This kind of !

operation is exactly the "exclusive or" addition. In

R e

T

S Ll

g

"y

s’
X W

particular for the example above

|
]
1
i
a
|
|
1

11 - e T - 1T T

PRRI T SR SR SO BN TN L .

This property will permit to easily write a tableau showing

the transitions among states assuming the requests arrive

from all computers.

The transition tableau for the case NC=2is shown in Fig. II-3

and for NC=3in Fig. II-4.

For simplicity, the place corresponding to non-active

variables are left empty.

N
ActiNﬂ)
Y(t variable 1=0 1 2=1 0 3=1 1
c2 0 1 0
= o
1=0 1 1 0 1 1
€
= a
2=1 0 2 1 0 1
€ €
1 2 1 0 0 =i 0 0
3=1 1

Fig. II-3. Transition tableau, for the case NC=2

(assuming deterministic transitions)

- (SUOT3TSUERI} OTISTUTWISIIP BuTwnsse) £=0N dsed dY3j 10J nearqel UOTITSURIL y-11 "b14
T 1 1=t
o0 0 Jvo o |o 11 © 0 1 0 By By by
e e se e <
1 0 1 0 1 tn 01T 1=9
0 o© 0 0 0 1 0 8 3 23 15
1 1 0 0 o 1 0 T=6
o otw b 18 o 1 0 €3 s
Eo L <
11 01 1 0.0 1 1 o %o 06 T=b
0 0 0 1 Ts
1 1 1 0 To |1 1 0=t
00 10 0 13 0 0 Ey S5
1 Tt 1o ¥ 1% 0 1 0 1 €0 To o 1 0=¢
0 0 1 0 £y
1.3 T % 0 1 T 0 o To |1 0 0=1
0 1 0 1 0 3
T T i=.]0T1=9]1 <[00 1= T 0= T So{qeTIeA
(1+3) X “ARN (3 X
ke
s T e 3 - ——

=0y

4,

g

T

w9 PR IR, it

o Sagpe

These tableaus will prove later to be of great utility

for the construction of the transition probabilities among

states.

As we said before, we can write this tableau

mechanically and this is important in computer calculations.

Summarizing, for a network with NC computers, the steps

are the following:

1 -

The

shown in

1f the system is in state m, write m in base 2
with NC digits.

Assign a control variable @ to the places where
the digit is 0 and a variable € to the places
where the digit is 1.

To obtain the value of these control variabhles in
a transition from m to n, compute m & n, where n
is also written in base 2 with NC digits, and
assign the values of the resulting digits to the
corresponding control variables.

To obtain the mth row of the tableau repeat step 3
for values of n from 1 to M (M = ZNC-l)

To obtain all the rows of the tableau repeat

from step 1 for values of m from 1 to M.

flow-chart corresponding to these five steps is

£ig. II=S,

e O BRI Sy S TR o Tt T ST R T

34

Repeat fromm = 1 to M to obtain
all the rows of the tableau

et i e

and call the digits m;
i = lgotoNC

i |

if mi 0 the ith control variable

is oy t
[4 if m 1 the ith control variable 6

i
is €4
i=1,..8C
Call u; to the ith variable (“i
or ci)

—
-~

B e = S S

Repeat from n = 1 to M

x o
to obtain all the elements of row m ‘

Transition to state n:

| DEUSGE S e

write n in base 2 with NC digits
Compute m ® n = k, ki ith digit *

ui = ki i=1,..NC

Fig. II-5. Flow graph showing the steps to obtain the
transition tableau.

g R TR

" - ¢ - - ——— . b, %, r L. %
T o e gy W RO TN 7 amy S A T T S : ; 7R ' :‘:”!f"‘”“.ﬁ} ?\-f ﬁixw

‘ 35

CHAPTER III

et O e it

DYNAMIC PROGRAMMING AND BACKWARD EQUATIONS

III.1 Preliminary Remarks

; | It can be easily seen that the model described in chapter

II has all the properties needed for the application of

dynamic programming, [13] - [}6] -
P In particular it is obvious that the separation property
holds for the cost function, eq. (2.4). The Markovian state
property is also satisfied, see section II.5. Hence the
problem is:

Given the dynamic equations (2.12), find the optimal
dynamic allocation strategy, using dynamic programming, to
minimize the cost (2.4).

We will separate the total expected cost (2.4) in two

parts
T-1

c =E{H [¥(m]} + B Z LY (1), 1]

=0

where NC NC

L{Y(1),1] = Z C;y; (1) + Z (l—yl(r))ni(r)km;'r: ?ki (3.2)
€I (1

i=1 i=1

is the per unit time, or immediate, cost, and

H[Y(m] = v [¥(m),T]

is the terminal cost.

i 4?;”\—“3‘«3 :‘, .‘t IR

36

The cost to go at time t given that the system is in

state 1 will be defined as
| T
F v,it) =B ; Z L(Y(1),T] IY(t) =i i (3.4)
| 1=t

and the optimal cost-to-go

VI(t) = min Vi(t) i=1,2,..M (3.5)
u(t)

‘ From the Markovian property, the following equalities

z can be easily proved, see ref [11].
/ E {L [¥(7),1] IY(t), E o= 051,..TI=
Bt | E (L [¥(r)ex] 1E(x)) = (3.6)
% NC [NC
>3 D IRERCINY 4
Ciyi(T) + E (1 yl(r)) el(f)kgiﬁ)ckl Y(1)
i=1 i=1
k. ITII.2 Backwards Recursive Equations
g
8. s The backwards equations for this probabilistic system
: 3‘ can be written (see ﬁj pag 955)as
-*’r
8 %5 NC
5 v*(t)=min{E{L[Y(t),t] |Y(t)=i)} + B {r, *(t4 .7
% : ' u(t){{[()] |yey=1) Z‘ {4 (E V(LR (3.7)
s] =1
A 1=1,2,..M
,:" j where Pij(t,u) is defined as the probability of being in
) state j at time t+1l given control u and given that the system
B 4
g

e s A R TS MY

-

37

is in state i at time t, that is,

Pij(t,u) = Prob {Y(t+l) = j |Y(t) = i,u(t)} (3.8)

From the expression (3.2) of the per unit time cost at
time t observe that the decision u(t) at time t affects
only the state Y(t+1l) at (t+l1l) but not ¥Y(t) and n(t) and
therefore the immediate L(t) cost is control independent.
If u* is the optimal control and V* the corresponding
cost to go, then:
NC
VE(g)=E (L [¥(t),t] |¥(t) =i} + :z: Pyy(t,ut)VE(E+]) (3.9)
j=1
i=1,2,..M
or in vector form
V*(t) = A(t) + P(t,u*) V*(t+l) (3.10)
With this notation it is clear that the total minimum expec-
ted cost over the period [O,Tl will be the smallest component
of the vector V*(0) and, the state corresponding to this

component will be the optimal initial state.

R TR N0 L 1 ST

To pursue further with the investigation of the actual
form of the vector A(t) and matrix P(t,u*) we will begin with

the cases NC=2 and NC=3, the generalization to a larger

number of computers will then become apparent.

38

i
a
.

III.3 Recursive Equation for NC=2

t For the case of two computers the expression of the

total expected cost over the period b.zﬂ can be written as

T 2 2 ‘

C=E Z C,y;(t) + E (1'-3,’1(1;))ni(t)¢ki - ff

x - i

v ..» ' ‘I‘

} = B Z [Clyl(t)+cz}'2(t)+(l-yl(t))el(t)C21+(l-y2(t))ez(t)clz] {

2 " (3.11) [f

| |

/ where we have applied (3.6) and the condition that yl(t) i

F ! + y,(t) > 1. Therefore :
: W

L[Y(t) ;t]=C1Yl(t)+C2y2(t)+(1-yl(t))el(t)c21+(l_y2 (+))32 (t)clz

(3.12)

From this expression we obtain immediately the components of

A (B)=E{L[Y¥(t) ,t] |Y(£)=(0 1) =1} = C,+C, 8, (t)

f

|

|

i

the vector A(t) p
|8

|

C1+C,,8, (t) (3.13) !

Ay (0)=E{L[Y(t) ,t] ¥ (t)=(1 0) =2}

Cl+C2

Ay (8)=E{L¥ (t) ,t] |Y(t)=(1 1) =3}

To obtain the elements of the probability matrix it is
very important to follow carefully all the conditions, see

Fig. II- 2, imposed on the decision process. Following those

rules we have obtained in Appendix A the elements of the

transition matrix, as

39 1

-
G-ai(t)el(t) €3 (t) ai(t)el(t)(l—ci(t))ai(t)el(t)

setanl ‘godbilobia b Lo

P(t,u*) = |e*(t)at(t)e,(t) 1l-a*(t)e,(t) (L-e* (t))a*(t)e,(t) | (3.14 i
1 2 2 2 2 1 2 2

ei(t)(l-eg(t)) (l-ei(t))ez(t) (1 ei(t))(l-ei(t))

It can be easily seen that in fact P(t,u*) can be obtained

directly from the tableau of Fig. II-6 by the following cor-

respondence (see Fig. III.1l):

a) If the value of the control variable ui in the tableau is

u 0 write a term equal to l-ui

i

u.

i 1 write a term equal to u

i

b) If ui = uiwrlteaiei instead of ay

c) 1f the cell is on the diagonal add to the previous term

a correcting term obtained considering a new cell with

values given by the variables yl(t) and yz(t) and applying

steps a) and b)

d) Repeat a), b) and c) for i=1 and i=2. The transition

probability is the product of the two terms obtained in

this way.

1=0 1 2=1 O 3=1

5 0 1 0
3 ,//’f::><f’/’/ p//’/// V/////// /
bk il o et L i W

BT TN AT L o

(l-eg(t))(l-ai(t)el(t)) 65(t)“i‘t)91‘t) (1-e3(t)) a](t)8, (t)

aﬁ(t) (l-ai(t)el(t))

v S — A —

cting term

Fig. III-1 How to obtain the first row of the matrix from
the first tableau row

[Lt

40

This is not a surprising result and it could be easily

expected from the way the tableau is constructed. Step C)

is a consequence of the condition imposed that if after the

arrival of the requests the optimal decision requires to erase
the last copy of the system we remain in the same state.
Therefore the probability of remaining in the same state
(diagonal terms) has to be corrected by a term equal to the
probability of requiring the erasure of the last copy. This

’ probability is exactly the probability of going to state 0

e —————————————

! if this state were allowed. The values of the control variables
= / needed to go to state 0 are obtained through the “exclusive or"
addition of the binary representations of present state and -

‘ é state 0, but this sum is always equal to the present state h
representation; therefore the values of the control variables b
are equal to the values of the allocation variables of the |
present state. 1In this way we ensure that this matrix

|

accomplishes all the properties of a stochastic matrix, in

b particular the needed condition that all rows must add to one; f
this is so because the terms are obtained using all possible i
combinations of 0's and 1's with two elements (NC elements
in general) and hence we always add terms like
A B+(1-A)B+A(1-B)+(1-A) (1-B) = 1 (3.15)
4 Another simplification can be obtained by observing

that in every row the combination of control values that will

take the system into the state Y(t+1l)=0 is not allowed. For ¢

example in the first row of Fig. II-3, al=0 c2=l is forbidden

. s i

By Qe e o v S = - o - N T A N o AR, AN - R KNS

- s - - ¥ Rl) R
o SO TN SRR T T T ST —m— soao da e B b o :”y:' ? -‘ | R $3 ?g 5
L

e

and therefore in the first row of P(t,u) we have
(l-al)ez =0

Similarly in the second row of P(t,u)
(l-az)e1 =0

and in the third row

€) €5 = 0

(3.16b)

(3.16c)

This property will be useful sometime to simplify the

expression of the transition probabilities. We have made use

of this property in Appendix A.

Grouping all results together we obtain the following

backward matrix equation (NC = 2)

[v2(¢) C, + C,,0, (t)

2 2191
Vz(t) = Cl + Clzez(t) +

Vg(t) Cy +.C

1 2

[1-at (t)e, (t) eX(t)af(t)e (t) (I~eh(t)a}(t)e, (t)

ef(t)ag(t)e,(t) l-af(t)8,(t) (l-e}(t)ak(t)e, (t)

e (t) €3 (t) SEjraccaier § [t

—

(3.17)

where the optimal decisions for each row of the matrix

P(t,u*) are the values of the corresponding row in the tableau

that give minimum scalar product with the vector V*(t + 1)

In particular, if we define
A=Vi(t+1)

B=(1-91(t))VI(t+l)+91(t)V;(t+1)

R A R o R e A ST T

R

e R ol e e o

42

C= (1-61 (t))V‘l' (t+1)+61 (t)vs (t+1)

then if the system is in state 1 at time t

ui(t) =0
if A<B and A<C (3.19a)

{s;(t) =0

{ai(t) =1
if B< A and B< C (3.19b)

eg(t) =1

ai(t) =1
ifC< A and C< B (3.19¢c)

{ci(t) =0

In the same way the optimal decisions being in state 2
and 3 can be obtained.
We will see some numerical applications of these equa-

tions in chapter V.

III-4. Recursive Equations for NC=3 and Generalization to

any NC

For NC=3 the total expected cost over the period (0,1]

can be expressed as (remember Cii = 0, ¥vi)

T 3 3 3
. E Z Ciyi(t)+z Z Z Y, (0)y, (E)n, (6)minc,,

t=1 | i=1 i=1 j>i k#i lefi,j
k#3

3

2 Z L{Y(t),t]

t=1

b ey A BN AN, TS S, AT O A

N

43

; } The components of the vector A(t) are obtained as
i’ f A, (£)=E {(Llyt),t]ly(t)=(0 0 1) = 1} = C3+C4,0, (£)+C5,0, (t)
|
| A, (t)=E {(L[Y(t) €] |¥Y(£)=(0 1 0) = 2} = C,+C, 0, (£)+C,,0,(t)
[Ay(8)=E {L[Y(t),t]|¥(t)=(0 1 1) = 3} = C,+C,+8, (t)min{C,,,Cy,|
w on " " " AR - - etc. {(3.21)
3 . The YBOle vector is S
z Cy + Cyp ©,(t) + Cy,y 6,(t)
E i C, + Cyy el(t) + Cys 63(t)
! A(e) =|C, + C3 + @ (t) min (C,), Cqy, (3.22)
A'/ C, + €y, 8,(t) + Cy, 05(t)
U :\ C, + €y + 6,(t) min (Cp,, Cy))
c, + C2 + 93(t) min (Cl3, C23)
:1 * €, + 0y ¥

vector is sim

IXE=2.

Fig.

vector

R il o B s AT YT S T

III.2 Flow chart
to obtain the per
unit time cost

ple.

The way to construct these components from the state

The easy rules are sketched in the flow chart of Fig.

Repeat from m=1 to M

State m

write m in base 2 with NC components
m; ith component i=1,..NC

J —= set of indexes such that mj=0

I ——» set of indexes such that mi=1

NEE Y c

- iel

gt Eej(t)min {c,y!

iel J

jeJ

—~lir—

[2

g — o

"

As far as the probability transition matrix is concerned,

we can calculate easily its components by making use of the
rules stated for the case NC=2 and the tableau of Fig. II-7.
Some of the components are shown below (for brevity we delete

the variable t).

F -

(1-alel) €203e3 (1°°'1°1) (1-0383) s
P(t,u) = (3.23)
(1-0191)22(1-53) (1—alel)(1-ez)e3

where we have applied a property similar to (3.16) so that
for example in the 7th row of P given in (3.23) we have
€E1Ep€3 = 0.

It can be seen now that the rules we developed in cons-
tructing the immediate cost vector and the transition pro-
bability matrix for NC=2 and NC=3, generalize easily for a
network of arbitrary size. These rules will allow for an
easy algorithm to be implemented on a computer. To make things
concrete, we illustrate this in the following example:

Example:

Suppose we have a network with five computers NC=5, and
being in state 3 at time t, we want to know the immediate
cost and the probability of being in state 17 at timec t+1l.

First of all we write the vector representation of state

3 and its control variables:

e e PN P [0 v A M YR T

45

Y(t) = 3= (00011) -———c—(al,az,a3,e4,es) (3.24)

From this representation we can immediately write the

PUPRSCEEIEN S 5= NS TR

per unit time cost.
A3(t) = C4+C5+91(t) min (C41, C51) + ez(t) min (C42, CSZ)

i To obtain P 7(t) we also need the vector representation

3.1
of state 17

- Y(t+1) = 17 = (1 0 0 0 1) (3.26)
the value of the control variables we need for this transi-
tion are:

(00011 ® (10001 =(10010) = (0102036465) (3.27)

i
: therefore g
v 3 %3] @2] %3] 4| €5 17
& (00011 ——» — (1 000 1) (3.28)
| 1]ojol1}o
E

now we can write that the transition probability is
P3’17=a161(l—azele-u363)64(1-85) (3:.29)

It can be useful to verify that in fact we will arrive

to the same expression if this probability is computed by a

straight forward calculation.
From the discussion in section II-6 and Fig. II-2 we
see that we can begin in state 3 and finish in state 17 in
four different ways:
1) We decide to go to (1 0 0 0 1) = 17 and there is a request

from computer 1

-1
é a102r3F;r5
j decision 3 O]Q E k
| 1 |
4 14
Prob { Pos. 1 } = a,(l-a,) (l-aj)e,(1-eg) Prob {n =1} = f}
=al(l-a2)(l-a3)e‘(1-e5)91 (3.30) Ei
2) We decide to go to (1 1 0 0 1)=25 and there is a request 5
l from computer 1 but there is no request from computer 2
. decision = (1 1 0 1 0)
‘. ‘ Prob { Pos. 2 }=a102(l-a3)c4(1-€5)91(1-92) {3.31)
3) We decide to go to (1 0 1 0 1) = 21 and there is no request
from computer 3 but we have a request from computer 1:
- decision = (1 0 1 1 0) (3.32) E?
% Prob { Pos. 3} =a1(1-a2)a3e4(1-85)91(1-93)

1

4) We decide to go to (1 1 1 0 1) = 29 but there is no request ?ﬁ
from 2 and 3 and we have request from 1
decision = (1 11 1 0)

¢ Prob{Pos.4} = ala2a3€4(l-£5)91(1-92)(1-63) (3.33)

As we can see these four possibilities are the results

of the following four decisions

w2 P Nowe ksl e (3.34)
2 O e with prob. el

S e L e with prob. 91(1-92)

i AR et with prob. 61(1—63)

T R T with prob. 91(1—92)(1-63)

A T BT T s R o Y R SIS Y SRR 0 _‘{'&"A':‘-'jt{\f%

‘ 47

LM e e

Adding up those four probabilities we have

el e

'
i Prob{Pos.1}+ Prob{Pos. 2} + Prob{Pos. 3} + Prob{Pos. 4}

1}

ay (1—a2)(1-a3) €4 (l-es) 61 +

a; oy (1-a3) €4 (1-&5) 91(1-92) +

+
cadia o ol i 2ie ool

oy (l-az) ag €4 (1-55)61(1-93) +

+ a) %y @y €y (1-25)91(1-02)(1-03)

=0,8,€,(1-¢€g) [(1=a,) (1=aj) + a,(l-aj) (1-8,) +

' g +(l-a2) a, (1-93) + ay G5 (1—62)(1-83)] =

=alele4 (1-85)(1-0292)(1-0393) = P3’17 (3.35)

as was obtained in (3.29)

>
et

We could have written the remaining probabilities in
the transition matrix in the same way as we did for P3'17.
Therefore in order to analyze any network under the conditions
stated in chapters I and II we only have to build up the

recursive equations, using the rules described before and

move backward in time until we reach the steady state, or

arrive at t=0.

Nevertheless while implementing the dynamic programming
procedure we do not need to calculate all the probabilities
of the transition matrix. As it will be seen below the
reason is that after the control values are decided upon
many of the terms will be known to be zero. For instance,
consider the case of the above example, in which we were in

state 3 and the decision was "go to state 17". The only

e By O TR A | RO Sty SO AN, 1T

Y

RS 5 e ol o

Y e

lf'I

2 o

s
.

RS i ” s }

——

el A o

T
- .41-8'.'.4

probabilities that will be different from 0 in the 3rd row of

the transition matrix are P3'17 and P3,1 where

3=(00011)

u=(10010) = (ulaza3e4es) (3.36)
17 = (10001

1=(0000O01)

The reason is that the only condition needed to accomplish

the decision is having a request from computer 1, the only
computer in the decision vector with a control variable aequal
to 1. If this request does not come the system will move to
state 1 (we only excute €y = 1) and there is no possibility
to go to any other state with that decision vector.

This rule can be easily generalized. Being in state n and
having made decision u(t), the only probabilities different
from zero in row n of P(t,u) are the probabilities corres-
ponding to destination states resulting from applying to
state vector n the decision vectors obtained from vector
u(t) making all possible substitutions of O's and 1's in
places where there are copying variables (a's) equal to 1 in
u(t).

For instance, if n=3 as before, but now u(t) = (1 1 0 1 0)

we will have

3 A A,03E4F 25
(0 o1l —» — (1100 1) (3.37)
11010

" v O Sl VR TN g SR R

S ewTige: i)

e

.

B e ——

T ———

Then, in order to implement this decision, requests from

computers 1 and 2 are needed, and therefore we have the

PUPSOUINEDS. S Cs——

k { following possibilities

! 3
(00011)~—> —e (1 1001 = 25
I with Prob 9162
"‘ /--.
— (1 00 01) = 17 ‘
E 4808 A with Prob 91(1-62)
; — (0 1001) =9
/ e S B with Prob (l-el)e2

—» (00001 =1
with Prob (1-91)(1—92)

) % = 65 would have had the value 1 instead of 0 the last

transition will go to state 3, the starting state, in order

to avoid the erasure of the last copy.

A schematic way showing how to compute the transition

probabilities using these rules is shown in Fig. II-3. A

flow-chart showing how to compute row n, of the probability

transition matrix, when the decision is "go to state m", 1is

shown in Fig. III.3 b). In the flow-chart we assume that

we have available a subroutine called BITS such that given

n, a number, and NC number of components it returns the base

2 representation of n with NC components. The calling

sequence will be

o NI 74.1*.7._;'-'@-» BT VP -sr'ﬂt -

e e

A\‘."_-’-.‘ ——

CALL BITS (n, NC, NB2)

Furthermore, we assume we also have available the
function

L = DECI(k, LBk, NC)
such that given a vector LBk with NC components it returns
the number L whose representation in base k is LBk.

These subroutines are given in Appendix C.

The simplifications explained so far can produce a
great saving in computation because, for instance, in the
first case presented, only 2 of the 25-1 = 31 components are
different from zero.

The optimization procedure for each starting state will
consist then in the computation of the non null probabili-
ties for the initial state row for every possible transition;
taking scalar product of these non null probabilities by
the corresponding costs - to - go and choosing the smallest
result. The decision giving place to the smallest procduct is
the optimal decision for that initial state and the product
added to the per unit time cost for that state will produce
the next (backward) cost - to - go.

The flow chart of fig. III-4 shows the set of operaticns

involved in the optimization process. In the next scction .

\

4

we will show how this model can be easily extended to problem§

with constraints in the state space.

ey TP S—

e

>
2 P
e

Ll
B T

" 2
2 *
-t

l.j?%ut

& v et

. 3

L

#*The first combination is 00---0 and the last one is 111--1.

51

Initial State = n

Decision "Go to state m"

Write n and m in base 2 with NCdigits
n,, m;, are the iths digits respectively

: I

is "go to state m"

o A L 2N T, AT T G S RN s Y e

Decision vector u(t) = n & m
L L _Ja. (&) df n, = 0
Decision variables ui(t) -{gi(t) if n; -y
Call I to the set of subindeces such that
ui(t) = ai(t) (i.e. n; = 0) and ai(t) =1
NI = number of elements in I
Form the decision vectors uv(t) where
v = 1,..2NI according to
: ., =1 or
u.(t) 1f+{n1 = 5
uz (t) = i ny 0 and a, =0
vth combinationof@70's and 1's
in places where o T 1 and a; = 0
v
1=neui(t) L={1}, 2N qifferent 1's
The non null probabilities in row n when
decision is "go to state m” are
L = I a A
Pnl (t) 5 Oj(t) % (1 Ok(t)) V1eL
where j ¢ I and aj =1 in uv(t)
k e I and o = 0 in uv(t)
III-3 a) Flow-chart showing how to construct the
non-null probabilities of row n when decision

E | 52
E |
3 {
|
{
k. | State N
; ‘ Decision "go to state m"
: ”EEI# BITS (N, NC, NB2) |
: Call BITS (m, NC, mB2) 1
1 NI =0 E
- N1 =0 | 3
k| DO _I=1,NC 3
. ! 5
A } WB2 (1) = D)—e{TB2(I) = ¢
' l YES E
: v j
: / [(RT=N1 +1] E
& NB2(1) = 0) o TB2(I) =
: YES
y E
NI = NI + 1 4
NAUX (NI) = I :
> ‘
s YES [L = m F
NI = ND—ESTE = 1
iB = 0
——nlf-
) J
Ppe = 385 - 4
Fig: IIE.3 b. (continued on next page)

i 0, B ey, VRO T 7 AR SR SRS
/ \

j 53
!

| (cont'd) 4
Y
|
!
| 1
E
] . J =0, NF
: ¥
: { R =7
Call BITS (J, NI, JB2)
b |
4 ; K =1, NI i~
y
IA = NAUX (k)
LB2(IA) = JB2 (k)
A = A* [(1-JB2(k)) (1-0,,) + JB2(k)0,,]
)
Fig. IXX:3 b) Fortran Flow Chart of Fig. TII.3 a. ;

T e A I e ARSI St A ST AT S

Fig.

DATA: NC,T, Ci' Cij' 9i(t)
il j = 1,..NC t =0'1100T
M = 2NC-)

Compute Terminal Costs, V(T)
using Flow-Chart Fig. III-2

Steps backward in time
Repeat from t = T-1 to 0

"BRows of transition matrix
Row n corresponds to initial state n
Repeat from n = 1 ton = M

Oecisions: "go to state m
Repeat fromm = 1 tom = M

‘using flow-chart of Fig. III-3.

Compute non null probabilities of row n.
Pgl(t) when decision is "go to state m",

Compute the scalar product

m = m .
Rn(t)~1¥L P (E) VY (t41) |

oy
-

IEE=4.

55

4 + Choose the smallest R: (t) = Rﬁ (t)
F | "go to state pu" is the optimal decision

: at time t from state n

¥
Compute per unit time cost A, (t)
using flow-chart of Fig. III-2.

4
V;(t) = Xn(t) + R:(t)

o *

[Vector of costs to go at time t |

——

Fig. I1I.4. Flow chart of the Optimization Process.

- et S A Iy TR S S R T

56

III-5. Constraints in the State Space

The problem formulation and the model described will

allow us to handle easily constraints in the state space.
These constraints may take the form of a maximum number of
copies allowed in the system at any instant of time or,
not allowing copies of the file simultaneously in two or
3 more given computers. |
For instance, if given a network with three computers
(NC=3), three copies are not allowed in the system simul-
taneously then state 7 will be taken out of the set of
admissible states; if on the other hand, the restriction is

that there cannot be copies simultaneously in coﬁiuters 1

P VTR T

gl |
’ g and 2, then state 6 is taken out of the state space.

One example of these types of constraints was presented
before when state 0 was not allowed. Therefore, unallowed b

states will be treated here in the same way state 0 was

treated before. To gain some irnsight we present an example:

Consider a network with four computers (NC=4). If the

present state is 1 = (0 0 0 1) and the decision is
u(t) = (1 1 1 0), then the intended state is 15 = (1 11 1).
1 X & Gs € 45
B0 0 ' Siow By W (L 1 1 2
h N O B

If there is a request from computers 1 and 3 but not
from computer 2, the system will go to state (1 0 1 1) = 11

!
§ and this event will occur with probability 8,(1-8,)6,.

Ty A, T oy R TR D, 4 A T S MG

57

Suppose now that state 11 is not allowed, then another

decision has to be made. The situation is such that any

e e e S

state of the form (a o b ¢) can be reached where a, b and ¢
can be 0 or 1 (but not all three equal to O). Nevertheless,
: ' considering so general a decision at this point will make

the problem very complicated, therefore a decision to remain

in the same state will be considered. This is a particular
case of the whole set of possible decisions. This kind
of decision will give to state 11 the same treatment as
to state O, as suggested, before. The probability of remaining
in one state will now be composed of the following terms:
Prob{remain in same state}= Prob{going to this statel}+
+ Prob{going to state 0} + Prob{going to not allowed states}
(3.39)

In the general algorithm we will eliminate the rows
and columns corresponding to unallowed states and add their
probabilities to the diagonal terms. It should be noticed
that some extended simplification properties, similar to the

one obtained in (3.16), could be obtained from the new

unallowed states.
For instance, for the example above where state 1 was

the current state and state 11 was not allowed, we have that

al(l-az)a3(l-c4) =0 (3.40)
if, moreover, state (1 0 0 1) = 9 were not allowed as well,
then

al(l-az)(l—a3)(1-e4) =0 (3.41)

B

= —— e e : o G T TR T e AT P S P G > PETRAERCT T el ”x
" 2 hAy z = ¥

— v ey

R st o

g L .

58

and from these two equalities

al(l-az)(l-e4) =0 (3.42)

An illustrative example where these facts are applied is
studied in Appendix B for the case of a network with two
computers (NC=2). It is shown there that if we restrict
the system to have only one copy at any instant of time the
backward equations simplify to the equations given by A.
Segall in [}1], where the restriction was to operate with

only one copy.

R e R v

ot g s, e Tty

pp—r

CHAPTER IV

UPDATING TRAFFIC AND NODE FAILURES

IV~1. Updating Traffic

The updating traffic consists of requests generated at |
' some nodes after a request of the file, with the only 1

purpose of modifying, partially or completely, the content

i Sy

of the file. With this definition it is seen that the updat- A

rr— -

f ing information generated at any node, should be sent to

L all other nodes that possess a copy of the file.

E It will be assumed, for the present study, that,

4 % 1) This kind of traffic is generated at any node as

a fraction, of the query traffic of this particular

node. Ingeneral these fractions can be time depen-

e

dent variables. If we denote them by

pl(t)l Dz(t)r = —ch(t)

the rate of updating traffic generated from node

B e

i at time t will be then

B & it s Lol

ot

? 8
* 1.
-

p;(t)e, (t)

2) The updating traffic is implemented before the

decision has been activated but after the request

EWE LW

T

has taken place. The sequence of events is represen-

ted in fig. IV-1 as a generalization of fig. II-2.

o W AN, T TV e, WA VPN T

: — -
~
.

P

U S o N,

60

Computation Requests | Implementation | Activation of
of optimal come of generated optimal decisions
controls updating
traffic
t t ' t

Fig. IV-1. Sequence of events including updating traffic

3)

With probability pi(t) an updating of the file is
generated at any computer i that requested the

file and is sent to all computers that will keep a
copy at time t+1.

We will assume that there is no conflict between

the updating commands coming from different com-
puters. This is sometimes a serious problem in a
practical case because it can force us to block
requests, while some updating is being,done in order
to avoid the processing of some o0ld, and then use-
less or even conflictive, information.

Under assumptions 1) and 2) we can say that updating
traffic is not a function of present state, but

only of present rates and subsequent states (as we
will see in sections IV-2 and IV-3, this property is
not true if we include the possibility of node
failures). The only change to take place in the
recursive equations will be in vector V* (t+l) that

will have some extra terms added to its components.

The new costs-to~go vector at time t+1 will be now

B S Al

N-1
|
| VE(E+L) + D0 oy (E) 8 () Cpy
k=1
N
VE(tel) + D PL(E)O (L) Cp oy
k=1
K#N-1
E ‘ ; N
L/ VS (e+1) + D P (r)e (t) Y G | Y er#R)
| k=1 leI(3) (4.1)
) 17k
!
5 N N
vh (£+1) + Z 0, (t) 8 (t) Z s
k=1 1=1
17k 3

Here I(j) is the computers containing a copy at

state j or in other words the set of subscripts

corresponding to 1's in vector state j. We are

assuming here that the only charge involved in up-

dating a copy at computer i by computer j is the

transmission cost Cij'

The recursive equation will now be

VE(t) = A(t) + P(t,u*) [v*(t+1) +R(t)]

62

where R(t) is an M-components column vector. Several
examples investigating how the updating traffic affects

the dynamic control of the system will be studied in

Chapter V.

IV-2. Network with Node Failures

In this section the necessary changes in the model
to include the problem of node failures will be considered.
We shall assign to every computer a probability, Pf, of
failure and a probability, Pr' of recovery according to the
following definitions

P_ AProb. of failure per unit of time (4.3)

£

P_=Prob. of recovery per unit of time given

that the computer is out of order

It is assumed that Pf and Pr are independent and the
same for all computers and instant of time, or in other
words that the failure and recovery processes are modeled
as two independent Bernoulli processes with rates Pf and
Pr respectively.

Under these circumstances, the new state has to carry
along information about two facts

1) the computer condition (working or not) and,

2) if the computer is or, whether or not the computer
has a copy of the file

T T

Therefore it can be concluded that each component of the
vector state has to bring information of one of three
possibilities

a) computer out of order

b) computer working and without a copy of the file

c) computer working and with a copy of the file

If we represent possibilities b) and c) with a 0 and
1 respectively, as before, and possibility a) with the
digit 2, the new state vector will be equivalent to a base
3 representation of some decimal number. Since this repre-
sentation is unique we see that we can name the states by
the decimal number whose base 3 representation is the NC-dimen-
sional vector. For example

Y(t) = (0 2 1 1)
will correspond to the state 1 + 3 + 2 x 32 = 22 of a network
with 4 computers, where computer 2 is out of work, computers

1, 3 and 4 are working and the last two have a copy of the

file in their memories.

Our model will now contain the following further assump-
tions:
a) When a computer is restored, it comes up with no copy
in itsmemory. This says that no computer can make
a transition from state 2 to state 1.
b) If there is at least one computer, say i, in working

condition but there are no copies in the system then

one copy is brought from outside (special memory)

64

at a price Coi' If there are several computers in
working condition with no copy in their memories,
the system will bring a copy from outside to the
computer with the smallest Coi' Obviously

Coi >> Cij i,j = 1,2,..NC

and the quantities Coi will carry a measure of the
risk of losing all copies that we are willing to take.
c) The time between the points t and t+ of Fig. II-2
is very small compared to the unit interval (t, t+1).
For ©uf purpose that means that the probability of
a failure in the interval (t~, t') is negligible.
With tﬁese assumptions the number of states in the state
space will be the number of different NC-dimensional vectors
that can be formed with 3 digits, that is, M=3NC.
In the present case state 0 is in the state space,
because the system can go to this state after being at
state M-1, when all the computers are inoperative, provided
that all computers become operative in only one interval of
time. The decision variables will remain the same as before
except that there are no decision variables for inoperative
computers. That is, there are not decision variables for
the components of the state vector with value equal to 2.
In particular, when all computers are not operative, there
is no decision to be made. The only thing to do is to
wait until one or more computers recover and then bring a

copy into the system from outside.

o o A A, SRR T 5o T T AT

TR R T

T PR T
i <

et i i

Given the state at time t, the transition to time (t+l)

will be obtained as follows

a) Decide upon the value of the control variables
(if any)

b) Perform "exclusive or" of the control variables
with the actual requests and modify accordingly the
state variables (as in section II-6)

c) The failure or recovery of computers (if any) will
modify in turn the former transition.

The state at time (t+1) will then be the result of the
above three operations.
In following sections we apply these concepts to the

case NC=2, NC=3 and show how they generalize to any NC.

IV.3. Recursive Equations for NC=2 considering Node
Failures

The states per NC=2 are

Y(t)0=(0 0) Y(t)=5=(1 2)
1=(0 1) 6=(2 0)
2=(0 2) 7=(2 1)
3=(1 0) 8=(2 2) (4.4)
4=(1 1)
Let C01 be the costs of bringing copies from outside
to computers 1 and 2 respectively. Assuming COl < C02

the per-unit-time costs are

Ao(t) = C01 As(t) = C1

Aplt) = C, + Cy18; (L) Ag(t) =Cp,

Ayl(t) =Coy Ap(t) = C, (4.5)
Az(t) = C; + C1,0,(t) Aglt) =0

A4(t) = C1 + c2

s iy A B A S A AT X ST TP

It seems, from these values of the costs, that the optimi-
zation process will try to keep the system always at state
8, because this state has the smallest cost, but the decision
"go to state 8" is not among the set of admissible decisions,
since this will erase all copies from the system.
For the case NC=2 the only states that will generate
control variables are states 1, 3 and 4 and clearly these
control variables will give rise to transitions among
these states only

If we represent by:

% —— the transitions ruled by control variables
(when no failures or recoveries are involved)

X —— the transitions due to some failure or recovery
of some computer

the transitions due to a forced decision
(namely a copy has to be brought from outside)

The following tableau of possible transitions can be

sketched (remember COl < C02) i

states : Comps
0123456178 o

0 * X X X 0] 00

1] ® X 8 @ X X X X 1101

2 X * X X 210 2

States 3] ® X ® A X X X X 311 O (4.6)

4 8 X 88 X X X X $1 1 .1

5 X * X X S5 il 2

6] X X * X 6 2 0

N X X * X T2 &

X X X X 81 2 2

]
.
e
P |
2
k|

. .“\:2-{"_?4___ 7 4 . ey}

row 1: initial state 1 = (0 1)

The empty entries in the tableau correspond to impos-
sible transitions; this is an important difference with
respect to the tableau with no failures where all transitions
are possible. These empty places will generate zeroes in

the transition matrix and this property will be useful later

to reduce the amount of computation in the optimization
process.

Let us calculate the probability transition for the
entries of the tableau:
row 0: initial state 0 = (0 0)
there will be a tran-

with the condition C <'C

0l 02’
sition from state 0 to state 3 if there are no failures.
That 1is,

2
P0 o(t) = (l—Pf) (4.7)

With only one failure the transition will be to states
5 or 6 depending on the failed computer and the pro-
babilities will be

Po 5(t) = Po 6(t) = Pf(l—Pf) (4.8)

If there are two failures

2

£ (4.9)

P, gft) =P

Except for the above, no other transitions are pos-

sible.

The transitions to 1,3 and 4 are controled by the
decision variables defined in chapters II and IIIX

and the condition that no failures occur. Denoting

Ty Ty A . TN S SRR AT T S S TR S M’»t”‘:‘m

T

68

by Pi;(t) the probability of going from state i to
state j for the case of two computers and no failures,

the following transition probabilities can be written:

R R e
P ,=(1-P.) € P17 = (1-Pg) “(1-a,0,)
e SR e o
P,3=(1-P)% P13 = (1-P) e, a, ©, (4.10)
Jaa S SETREEE o gt
P, =(1-P) € PIy = (1-P,) “(1-¢,)a,0,

The transition to state 2=(0 2) (or 6=(2 0))could
only take place if the system decided to go to state
1=(0 1) (or 3=(1 0)) and there was a failure.

The reason is that there is already a 0 in the state

so the other element had to be a 1. Therefore
I
11

S 11 s
P,e*Pe(1-P,) P)3 = P (1-P,) c,0,0,

P.,=P. . {1=P.} P P_(1-P¢) (1-a,0,)
12 " 4 £ f 4 171 (4.11)

The transition to state 5s(1 2) or 7=(2 1)
éan happen in two ways. Either the system decided
to go to state 3=(1 0) or 1=(0 1) respectively and
a failure brought computer 2 out of order or, the
system intended to go to state 4=(1 1) and the same

failure happened thus we have

] y 11 : % N _
Pl5—Pf(1 Pf)(P13 o Pl4) = Pf(l Pf)alel
(4.12)
& 2 II : ¢ AR, g I

Finally the transition to state 8=(2 2) take place
when there are two failures, no matter what transition

was decided upon, hence

e

iy 90 oy, el N G ‘:,,g.n W TN

(4.13)

row 2: initial state 2=(0 2)
E | From this state the automatic decision is

"bring a copy from outside to computer 1". If there

is no failure in computer 1 and computer 2 remains
out of order, then the system goes to state 5.

By Therefore

mma—

P, 5=(1-Pf)(1~Pr) (4.14)

If, on the other hand, computer 2 is restored
and computer 1 does not fail the system will be in
B) state 3 in the next instant of time and this event

will occur with probability

PZ 3=(1-pf)pr (4.15)

Considering now the case when computer 1 fails, dif-
ferent transitions appear j

= —
Py 6 Tefr
(4.16)

P =Pf(1-Pr)

2 8

o :
."‘ L0 s .

&

row 3 and row 4 are obtained in the same way as row 1.

k'3 ‘A o ’

4: :‘ row 5: [initial state 5=(1 2)] has the same transition pro- A
i?‘{ babilities as row 2, because as we said before, the 5
i%»x decision of going from 2 to 5 is automatic, and i
f'_f then the possible transitions from 5 are only due to 3
4;‘; failures or recoveries in the computers (remember the
J::% sequence of events at the end of section IV-3 that :
b

4

—

E v . ’ " ’ . i " .
o - B ORI g R T e BT T e o T e R L e h Vi S ,".'“\ 2oy .»‘_ “ i .;*’)ﬂ-"‘

70

decided a transition). Thus

Pg =P, g=(1-Pf) (1-Pr)

Py 3Py 3=(1-Pg) P,

p =P

56 26

P5 8=P2 8=Pf(l-Pf)

row 6: [initial state 6=(2 Oq.is obtained in the same way
as row 2 but interchanging the computers.

Pg 1= (1-PglP,

Pe a™PePr (4.17)

P6 7=(1-Pf)(1-Pr)

P =Pf(1-Pr)

6 8
row 7: [initial state 7=(2 1)] is identical to row 6 for

the same reason than row 5 was identical to row 2.

row 8: initial state 8=(2 2)
From this state there is no available decisions

and the only solution is to wait. The probabilities

are:

P =P =Pr(1-Pr) (4.18)

g 20806

- e 2
P8 8-(1 Pr)

The vector dynamic equation is

Y(t+1)=P(t,u)Y(t)

where P(t,u) is the transition probability matrix.

+

- L,—‘

il

. ‘ > o .‘m’!’h "."1

R |
%
=
2.

71

It can be checked that the transition probability
matrix obtained above, is a well defined stochastic matrix in
the sense that all rows add up to one. In the next section
we will see that these results easily generalize to any
value of NC and that the transition probabilities can be
obtained easily and efficiently. Then in the next chapter
these results will be applied to a numerical example.

To conclude this section we point out that in the case
of a network with failures, the terms due to updating
traffic are not only function of the state to go but also of
the present state . The reason is very simple: a computer
that is not working cannot generate updating traffic, further-
more if the state is such that no copies are present in the
system, ((0 2) for instance) no updating traffic can be
generated either. A flow-chart showing how to compute the

updating traffic for any network is presented in the next

section.

TV.4. Recursive Equations for NC=3 and a general NC
considering node Failures

In this section the results of section IV-3 will be
extended to any NC and general rules showing how to obtain the
per unit-time-costs, updating traffic costs, and transition
probabilities will be developed.

First the case NC=3 will be examined. The number of

states is M= 3=27, and they are all ternary numbers from

vt 00 TP [VAR, MG oty B, 4 P ST PR
»

T T

it

Y DA

l-.‘ég.‘téih;

Py

. '-.,_..

s o SR LD

o T JTeR WSS

Wy

72

m=0 (0=(0 0 0)) to m=26 (26=(2 2 2)). Let us begin deriving
the per unit time and terminal costs. We have the follow-
ing cases:

a) the state is such that no copies are present and

at least one computer is working
} j€{set of working computers}
j

Am=min{C0 (4.20a)
b) all computers are out of work

Ay = 0 (4.20b)
c) general case

VO e oy(t) min (c) (4.20c)

iel jeJ
where I is the set of working computers with a copy, and
J is the set of working computers without a copy.
Some of these costs are obtaired bellow as illustration

(it is assumed C01 < C02 < Co3)

0=(0 0 0) Ao(t) . C01

4=(0 1 1) A4(t) = C2+C3+Blmin(C21,C3l)
7=(0 2 1) .‘~.7(t)=C3+61C31
18=(2 0 0) Ala(t)=C02 (4.21)
24=(2 2 0))\24(t)=C03
26=(2 2 2) A26(t)=0

The terminal costs are obtained in the same way except
that as discussed before, there will be a zero in the place

where there was a C A flow-chart showing how to obtain

Ud=
terminal and per-unit time cost for any value NC is sketched

in Fig. IV-3.

g i B el s,y S ST SRR PR { 3 s -E',g,\" s EoT 4
J ' ¥ - o S and il - !

e

The way to compute the cost due to updating traffic for
all possible transitions in a network with NC computers is
shown in the flow-chart of Fig. IV.2. We call R(I,F) to the

(I,F)th element of the updating traffic matrix.

Data: NC, M, 0(1), py, C;g]

I =1,M

F

i
-
=

Write I and F in base 3 with NC digits
I,, F; i€f1,..NC} are the digits

F2 to the number of 2's in F(Final
State)

Let us call { I1 to the number of 1's in I (Tnitial
State

Fl1 to the number of 1's in F(Final
State

AT, -8

il

s

it
[

and ,I(Z) to set of indeces D I;
F(1) to set of indeces 3 Fj

0 =G D

NO

< ES (fi=0 , or, F2 = NC-1)

.
INO
R(I, F)= Z P (t)8, (t) Z Cr1

k¢I(2) 1eF (1)
17k

b

Fig, IV-2. Flow-chart of updating traffic when failures in
the computer are considered

T R e Ty " " —
. e o ™ o

74

S TP Sl e TR

BRTAT DR, C.¢ C.qs T, 0 9,18}
i ij oi i
1,3 = 1,..NC t [o.7]

if {Terminal costs A = 1

L]
(=}

otherwise A

i Repeat from state m=0 to m=M-2

Write m in base 3 with NC digits

E. -l m, » ith digit i = 1,..NC

2 1

o Let us call
J = {3} s.t. mj =0

I = {1) s.t. m, = 1
NJ number of elements in J m - coj

NI number of elements in I 4~17

Tet J 4 &.t.

coj L Vies 1 ¥'3

oo = C, + 0.(t) min {C_.}
= 1%:1 5 J§J J j€x 4

& |

Vector A(t) if A
@r“ {Vector v(T) if A

Fig. IV-3. Flow-Chart showing how to obtain terminal
! and per~unit-time costs

e e e e R i s

for the
The bas
same as

1)

2)

Example

from 0

iF from 0O
from O
from 1
where t
To
bilitie

We

from i

are con

2

case NC=3 with symbols as defined in section IV-3.

{
4
1
| In fig. IV-4 we find the tableau of possible transitions
Y

ic rules for the formation of the tableau are the
for the case NC=2;

No transition from a state combonent 2 to a state
component 1 is possible

If there are only 0's and 2's in the state vector
the only possible transition is to bring a copy

to the computer with smallest COi

of impossible transitions -
22 to 020D

(4.22)

he elements causing trouble have been circled out.
obtain the general rules for the transition proba-

s let us begin analyzing some examples.

define, as before, ng as the transition probability
to j in a network with L computers when no failures
sidered
The transition due to failures or recoveries only

are obtained with the same basic rules as for the
case NC=2, for instance

0=(0 0 0) —= 9=(1 0 0),P, g=(1-P,)°

6=(0 2 0) —» 17=(1 2 2),Po 17=(1-Pf)(1-Pr)Pf (4.23)

> 2 S
5=(2 2 1) —s 2=(0 0 2),P,5 ,=P P,

o iy Ay ST TP g R WO TR TR e y ‘ .

Sl S R s

gz s

-

76

O NONNONNOANOHMANOANONNO~NNO~NN
COOMMHAANNNOOOHMAANNNOOONMmMANNN

State
Vector
1-2-3

C OO0 00O mmmrmmrmmmemmeNNNNNNNNN

DG DG 5 BE D DE D DG B B DS X D DG DG K X DK XX DX X X X X X X X

x XX XXX XX XX X X e x

; B R R R »
L] LR WKk XN

i x XX XX XX a g=
x o XXX LR R R R] « XX

MMM NN MMM DM MM NN X XM KKK
X XX XXX XX XX B a@m XX
EE S S R R s
EE I R S R R
E ST B XX XX 8@

MMM XN BIX XXX X XEBA X

X OMXE X B X X @
3 B as® R =@)
B m®x BEXEE X

MMk DD N XXX B XXX X

10 1) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Tableau of possible transitions for NC=3.

B 2R X OBER B® XX
Ok R X BB XXX EBE X B R X XXX
Of X XXX X XM MMM DMK XM
~| X X B XX XX B8 MM XX
o X XXX PR PR P
n| X O XxX® XXX R PR
< B 288 BR B8 Mo
i B8 B®X BRXESE X P] T,
I
Nl X X MOX X XX XX XM XXX >
- B8 8 X BB RBER XX 5 MM Mo &
...‘ .
o > <9
O ANMPNNOUNOIANANOODAINMETSINVONONOANMT N
N e S NN NN ANANN

" g W 9 7 i 14 4 TP I 1} 1y e

- The transitions from states with no inoperative

il e A i

computers are also directed by the same basic rules :
as the corresponding transitions for NC=2, see section

IVv-3, thus from state 1l=(0 0 1) to state 10=(1 0 1)

(1-p)3 pI1] (4.24)

Py 10" 1 10

iy

f from state 1=(0 0 1) to state 5=(0 1 2)

IR S R
’ Py 5=(1=Pg) "Pe(Py73 + Py7y)

: - j where 3 and 4 are the states obtained from 5 replac-

ing the 2 by 0 and 1, that is

S.= (0 1 2)
3=(010)
; 4 = (011)

- If the transition is to a state with two 2's then the
number of P? 5 's contributing to the probability
is larger (3 or 4 depending on the case)

from state 1=(0 0 1) to 17 = (1 2 2)

e 2 III III III III
3 P, 177(1-P) P (P17g + P17 1g + P17 s + P 13) (4.25)
]
;; 1 where as before 9, 10, 12 and 13 are the states
3

obtained from 17 replacing the 2's by all possible
combinations of 0's and 1's, that is

(1 0 0)
(1 0 1)
(1 10)
(111)

(=)

from 17 = (1 2 2) we obtain

momoin

[S
wNo

~ If the transition is from state 1=(0 0 1) to state
24=(2 2 0) then
TR E L e S SR (4.26)
where now we only have three terms in the sum because
state 0=(0 0 0) was unallowed for the case of no
failures
- The probability transitions from states with onlv two
:;J | computers in working condition will be formed up
from terms Pin. The subscripts i and j will be

obtained from a modified 2-components states result-

‘\‘ma ——

ing from the previous one after the elimination of

) the element that was equal to 2 in the initial states

e

and applying previous rules. That is from state
7=(0 2 1) the modified initial state will be (0 1)= 1,
therefore a transition from 7 to 11=(1 0 2) will have

the following probability

L RO 1I 11
! P7 11 ¢ Pf)PrPf(P1 5 + P1 3) (4.27)
} where 2 and 3 are obtained from 7 and 11 as follows
o 7=(0@1)
3 ~ (1 0) = 2
b 11=(102) "1 1) =3

The rest of transition probabilities can be obtained in

the same way. It can be easily checked again that the result-

fi‘gﬁﬁﬁh;!

L

- &
o
[

ing transition matrix has all the properties needed by a
stochastic matrix. The dynamic equation for the state is,

as before,

Y(t+1l) = P(t,u) Y(t)

A e A ——— ‘1

;
Y

T B P TR T P (AR S P

e SSRE

-
»

F.
\hv‘_ —

=
ks

-

7
Sl S D

-

e sl

79

These results generalize to a network with any number

of computers. It will nevertheless be convenient to sketch

in a flow~chart the ordered set of steps we have to take

to obtain the element of

the transition matrix. To simplify

the flow chart, let us suppose that we have the following

subroutines available (see Appendix C)

BASE 3 (NC,N,NB3,NO,N1,N2)~+

NC

(3 > N)

BITS (N,NC,NB2) —— {

ROWPRO (NC,v,A,8,11,IND)~> l

we will now call

N - the row (or present

DR

(*) Notice that if this
in the row is M()A)=1

Write N in base 3 with NC components
NB3(I) is the Ith component

NO = number of 0's in NB3

N1 = number of 1's in NB3

N2 = number of 2's in NB3

Write N in base 2 with NC digits
NB2(I) is the Ith component

Obtain the vth row of the transition
probability of a network with NC
components and no failures, when

the rates are

e(i) i=1,NC and

the decision is "go to state 2"
This result is obtained with the
flow-chart of Fig.T7II-3.
(J) is the Jth element of this
row
IND is an output index s.t.

IND 1 if somelitd}=1 (*)

0 otherwise

state) being computed

happens the only nonzero element

e

Dl ittty 8 nf s s i

S
i F e eyl

TR

s

& e

.
.

R ¥

£ 'L.gm-!

' . e :

e

80

M = the number of states M=3N

NC - the number of computers in the network under consideration

M' = the number of states for the auxiliar subsystem without
failures

R(J,I) - the updating traffic cost generated in a transition E
from I to J and obtained with the flow-chart of Fig. IV-2 | 3

Ry - the Nth column of the matrix R = {R(J,I)}

For simplicity of representétion and convenience of
computation the algebraic representation of the entries Lf
will not be derived. 1Instead we present an algorithm to
calculate their numerical values after deciding upon the
control variables. Having the transition probabilities
the optimization process can be carried out directly by
moving the decision to all its possible values, performing
the product with the matrix (V + R) and choosing the decision
giving the smallest value. This is what is done in the flow-
chart. The variable A will control the admissible decisions
and the variable L the corresponding element within the row.
The results after the computation will be

"Go to state LAMBOP"

actual optimal decision
from state N

actual cost due to this transition resulting
from the product > row N X (V + RN)

scost

Looking carefully at the flow-chart it can be seen that
the first thing it does is an assignment of state N to one

of the three basic types of states it considers. In this

way the rest of the computation will take place in one of -E

the three main branches X, Y or Z.

I——

s ’ g A P YOI 2 TR D ”‘\’.‘:“wr‘z"\’}t .::.X»?w

S

_ i

ol LRl o o o

FOSe T Y

y
f

m: N. M' Nc’ ei, Pf'Trl F-,_V. Coi

—=(200)
(210)
Q = (initialization)
M' = 2“C o 3
v = DECI (2, NB3, NC)

A=1, M

call BITS (A,

BB()) = 0.(initialization)
Call ROWPRO (NC, v, A, 6, 1, IND)

NC, A2)

YES o P (M-1) PNC

)
Y

['an Base 3 (NC, L, LB3, 1O, Li, L2) |}

uglk P(L) = (1-pf)NC mw [

NB3(k) = X2(k)
and LB3(k) = 0

=1
for some k € {l,@

%2(K) = 0 and
@‘Gwm = 1 for
some k€ {1, NC}

!

YES

(400) (90) (40) (9) (89)
b) b

|a = o(initialization)]|

L2

IPGPRETRSRET L -Sa S 3 P A SR <

Fin) Call BITS (J, L2, JB2)
| k=0

R b, N

VB2 (I) = LB3 (1)]

.‘,1 k=k +1 y

VB2(I) = JB2 (k)
V = DECI(2, VB2, NC)
A=A+ (V)
1 - (9)
% P(L) = PR (1 - PO 72 4
(89)

[BB(A) = BB(A) + P(L) (V(L) + R(N, L)) |

oo Y YES_]Q = BB(})
BB()A) <Q Aop - A

Call BITS (A__, NC, LAOP2)
op

Decision: "go to state LAMBOP = DECI (3, LAOP2, NC)f
scost = Q

|

o, v VO T IR P T T

83

1 (211)
Q = 10’ (initialization)
-0

k
m' = 2NF

-1

I =1, NC

NO

Sl TN vy i vl

'k =k +1
NUVEC (k) = NB3(I)
.

v = DECI , NUVEC, N

i vt

BB(X) = 0 (initialization)
Call ROWPRO (NF, v, A, 0, I)

L=1, (M-1) $

's in LB3(k) 2 NB3(k)
- ND
* (Cee note on page 85)

B

0's in LB3(k) 3 NB3(k) = 2
$ 2 = 2
L

k =k + 1
UVEC (k) =

sl .
u = DECI éi,UVEC, NF)

- U 4 ND H NF
P(L) = P." (1 - P} (1 - Pg) I (u)

b b

LB3(I)

(450) (290) 289

(450)

* (see note on page 85)

)
JJ = II, Zm -1

Call BITS (J, NW, JB2) E
k = kk = 0 (initialization -

YES - ‘ B
1

[x=%k+ 1] 3
L83w%52(k) = LB3 (1) }*]

I =1, NC

YES
} Y
Kk = Kk + 1
VB2 (k) = JB2 (kk)
—>
S
Y
(289) NF ND _NW W,

- v .\ NF-
[BL) = B (3-8 1 B (1-Py)
¥

85
;‘ i
be |
’\ |
3 ‘ 'EEIT‘J%TSTXOP, NF, LAOP2)
1 LX = 0
5 JX = 1, NC
| pag—

. NB3(JX) = 2)—CSu TAOP3 (%) = 2

‘ LX = LX + 1
E | LAOP3 (JX) = LAOP2 (LX)
E | -
F " A el
T Decision = "go to state LAMBOP = DECI (3, LAOP3, NC)"
scost = Q

*
See Fortran listing in Appendix C for further zero transition probability
checkings at this point.

&

T o ot W B ept
e et T e AR SN TP 2 Sl W

W S DR R T g, AT ST T R R

o -
S
N

2 g

‘

=

%

Fimird

e g

e er
27
A L

/

BN

"

© TR AN B S v
-

86

et J be s.t. MI=1 e
(200)—={C_;<C_, VKAJ NF=NC
e k=1,N NP=NC-1 MI=2
J=NC+1
NP=NC
(210) NC2> (NC-1))~ ES¢ N2=NC-1 ¥ =M Letd be the only
component s.t. NB3(J)=2
Let J be s.t. ‘
= o) YES Cus<Cox VK#J Ig;:gé;;
s.t. NB3(k)#2 :
NB3 (J) #2
(a1A] BA=0(initialization
- Lr=2""
I11=0, (LF-1

Form the new vector W s.t.
g 0 if Ik=0
k 2 if Ik=1

MM=MI, 2

Form the vector LB3 s.t.
W(k) if k<J
LB3 (k) = MM if k=J
W(k-1) if K:J

NZz=# of 0's in LB3(k) NB3(k)=2
NS=# of 2's in LB3(k) NB3(k)#2 and k#J

[L=DECI (3,LB2,NC)]

)
{
4 t)
—— 1
< Mr=1)N fp (L)=pN%(1-p_)N2~NZ
‘ r r
!
: YES
‘ | ~—oNZ ,_, \N2-NZ _NS NF-NS-1
E | |c-pr (1-p_) NS (1-p,)

[BA = BA + P(L) V(L

NO DECISION
SCOST = BA

S

Fig. IV.5. Flow-chart showing how to obtain the transition
matrix and the optimal decision for a network
with failures.

i
f
E
i
b
¥

Branch X corresponds to states with no 2's amongtheir
components

Branch Y corresponds to states where no decision is
available

R — LIS

Branch Z to the rest of states, This branch has a sub-
| division depending on the destination state .
J Zz, if the destination state is such that |
to reach it we have only one possibility

Z2 otherwise

In branches X and Z every possible transition (index

L) from N is tested and only the transitiors that give a

e

nonzero probability are obtained. 1In branch Y, only the
nonzero probability transitions are generated. Functioning

in this way the algorithm is very efficient because only

\v—ﬁ—

the nonzero terms (v30% of the total) are obtained and there

is no waisted time performing zero computation. The algorithm

was programmed in Fortran, using Assembler for RITS Sub- =
routine (see Appendix C)

Now that the transition matrix and optimal decisions '%
have been obtained the rest of the process is identical to

the case with no failures. (Fig. III-4). The whole process

is represented in Fig, IV-5 and the matrix recursive eq. will
be

V¥ (t) = A(t)+P(t,u*) V*(t+1)+P(t,u*)BR(t) (4.29)
where R(t) is now an M by M matrix and ® means that we make
the scalar product of the ith row of P(.,.) with the ith column

of R(.) to obtain the ith component of a column vector.

j;‘” ‘ Let us briefly analyze how the actual dynamic behaviour

of a network, with present characteristics, will be, when the

o
p

FEEDRPRETRI e e

R ST T p——

|

]
1

- o, o L 3 B! RESAT 2y ¥ "
0, T s A, AP o YR RAT PO R T ¢ SCTIRY L TR WY A Pha a8

>

Read Data
NC, T, Ci’ Cji' ei(t), Pf, Pr' Di(t)

vi€l1,2,..¢), €{0,1,,. .MC} =€11.2,..7}

Compute number of states
H=3NC

Compute terminal costs (V(T))

(Flow-chart Fig. IV-3 with A=1)

Steps backward in time

Compute per unit time cost (A(t))
(Flow-chart Fig. IV-3 with A=0

Rows of transition matrix

n=1,M
Compute row n
Obtain optimal decision Keep '
and minimum cost (S*(t+1)) optimal
(Flow-chart Fig. IV-4 Decisions

Compute new costs-to-go
V*(t) = A(t) +S*(t+1)

Fig. IV-6. Optimization Process in Network with

Failures

e \.,o;

.~

L

{E;ﬁ

}<} <

s

[W% 5

90

sequence of optimal decisions is applied. Let us suppose

that the probability of recovery for a computer that is not
working is not equal to 1, or in other words that the recovery
is not instantaneous. If we assume that the process begins

with all the computers working, the system will begin to make

£
4
£
i
E':
2
;
'
£
£
;

transitions among states with no 2's among their components.
Once a failure takes place the system will change its

"state space" to states that have a 2 in the position of the
failure; it will remain making transition in this new "state
space" until one of two possible events will take place:
either there is another failure (or moré), or the failed
computer begins to work. The process will continue in this
way. We see therefore that the whole state space can be
divided into various subspaces such that the system will
remain most of its time making transitions in those subspaces
and eventually will move from one subspace to another. There
will be as many subspaces 'as different vectors we can form
with NC components and two symbols (one for 2 and the

other for 1 or 0). All the vectors with same frame of 2
components (and at least one 1) will belong to the same sub-
space.

For NC=3 some of the subspaces will be:

(00 3 ~ 2
010 -3 4 021
S, [011-~4 S, (102 Sy 120 (4.30)
100 -9 X 12 121
101 =18 -
110 ~ 12
133 =13

S 3 TP 0 S5 S K38 p— S——— - R — - G AT R T N ARSI SRR

'_-M(. i ‘—.‘_‘NF——_. i

This particular behavior and subspaces d;vision can
also be illustrated if the transition tableau of Fig. IV-4
is written with a different state order as in Fig. IV-6
is shown. The system will be most of the time within the
marked regions of the tableau and eventually will move from
one region to another. The states with NC-1 elements equal
to 2 (as{0 2 2)= 8) may be thoughts as degenerated subspaces

or just subspaces with only one component.

< e 0 W T TR e S e

i 92

3.

i
{ Il
{ 0 &)
; D BE B¢ e B B B B B B4 DK DK DK MK B X B XK X X X X XK X M X X Z
n M
N L 5 B¢ % 2 X * « o
-
(D¢ D¢ B B¢ 3 3C B B DK DG B B 3K e B X XK X B B4 X X X X < .
™ (o]
o~ HKXMXNXXKNX > XX XX XX * % ;
o M
. NI R R T T E T 2 X X £
3 e a
k- N E X E R T - e
4 3}
Y o XXMM XXX XXKXXXX TR g
o~ e o
NI] LX) £
- | 5]
N R L L T @ el X =
o | | (]
e N L XXX BB > X =
= 0]
' o R A T E L E T 5 5 < o
o V) —— o
E | e ¢ X Eaa 3
- ¢ i | ! 2
3 e T R N\ A ®
. { I =
] % X X X @E®E XXX X > ®
~
W B XX 5 5 54 54 5 > =
v — — — E‘
oM XXX XX IBE e 3
— I c
i [5 < 3 X K BB B> X x5 S
<+~
5 | Xxxxxxx @B 3 4 3¢ 34 x > bt
{ ==y 0
A =4
NI R LS SR I 5 S
| S gy £
H RRRRRR® e
~| | I o
il leBEBBEE XXX N
o| | | o
| ereERE® > K > 8
l 0
m«haﬂaasgmxxxxxxx > 5 &
|
< Faaeasal 5 N I
o meeeeeal xxx 3 3 3 3 5 % >
|
¥ < lepeeram BN MMM ¢ :
) R i e i, i) o :
~
i o > y
i HH"‘J (r-‘: L v—‘v—‘lHlv—(N('\iJ ~ONANNNN

e =

atd
LT

~es

B vy

R
®|ae

CHAPTER V

NUMERICAL APPLICATIONS AND OTHER ANALYTICAL RESULTS

V.1 Time varying rates,no failures, no updating traffic.

Let us analyze the case of a network with two computers
sharing a file according to time varving rates. We will
apply the model of chapter III and we want to know the dynamic
evolution of the states (i.e. allocation of the file) in
order to minimize the total expected cost. We also want
to study the evolution of the state dynamics and total cost
as the storage cost varies from 0 to the value of the trans-
mission cost. The transmission costs will all be taken to
be equal to 1. The problem will be solved for storage costs
equal to 0, 0.25, 0.5, 0.75, 1. The system will operate for
a period of 20 time units, E,ZQ]. The rates are represented
in Fig. V.1, and the results inTable V.1l. In the columns
called "evolution of states" we write the optimal decision
("go to state,..") for every possible initial state and every
instant of time.

Examining the table we can see that for the case of
storage cost equal to zero the optimal decision is to always
keep a copy of the file in each computer. The optimum initial
state is state 3 and the optimal decision being at state 3
is always "remain in 3". This is the logical result because
there is no payoff for keeping a copy in any computer. At

t=19 we will leave the system at state 2; this decision is

o, A S . AR T Y, ,-, 3T et

o

94

RATES| Cy = 1 V¥i,j OPTIMAL DECISIONS
EVOLUTION OF STATES
TIME | COMPUTER | STORAGE COST 0.0] .25 .go|.7§ 1.0
1 2 | PRESENT STATE | 123123 123 |

20 | 0.8 0.0
19 | 0.8 0.4 222(222|222 [222 (222
18 | 0.8 0.8 333| 333|222 |222 |222
17 | 0.8 0.8 333(333]333 333 |222
16 | 0.0 0.8 133/133(133 133 22
15 | 0.0 0.0 113{113(111 11 11
14 | 0.2 0.0 313(313/111 p11 1l
13 | 0.6 0.0 313(313/111 f11 P11
12 | 0.6 0.4 333|222 222 [222 222
11 | 0.8 0.8 333|333|222 [222 [222
10 | 0.0 0.8 133/133(133 133 p22
9 | 0,0 0.2 133133111 11 11
8 | 0.0 0.2 133/133(111 11 p11
7 | 0.0 0.2 133111111 11 11
6 | 0.8 0.6 333(111(111 11 p11
5 | 0.8 0.6 333333333 |333 111
4 | 0.8 0.6 333(333|333 [R22 222
3 | 0.2 0.8 333]/333]333 [222 222
2 | 0.2 0.0 313(313(111 p11 p11
1 | 0.0 0.0 113113111 11 p11

! OPTIMUM INITIAL
- STATE 31311111}
2 MINIMUM TOTAL

' BXPECTED COST 0.0{9.3]|15.721.626.7

TABLE V-1

will be no request

taken because we know that at t=29 there
coming from computer 1. Nevertheless we could, in any case,

remain in state 3 without increasing the cost, so both

decisions give the same cost.

é As we increase the storage cost the number of optimal
decisions that are different from "go to state 3" is larger

! and finally when the storage cost is equal to 1 the optimal

decision will always be go to states 1 and 2 only, that is,

keeping only one copy in the system at any time.

Looking now at the columns of Table V.1 we see that the

optimal cost increases in a nonlinear fashion as the storage

i cost increases.

For comparison we also consider a static analysis with

the corresponding average rates:

@D
-
<
-
”
1
|~
()]
_—
ot
A
I
o

.41 vte(L,20] (5.1a)

85 (t) = 55 Z e,(t) = 0.40 wtef,20) (5.2b)

i S o oo ein S
1 *‘.v.‘n g —
T > :

We have .

storage cost optimal allocation total cost per 1,T

0 . two copies 0
0.25 two copies 10
0.50 one copy at comp. 1 18
0.75 one copy at comp. 1 23

1.0 one copy at comp. 1 28

Case 1.

Rates.

Fig. V.1.

i

AT i
FEAIRES . s
. (SEE S BRI
4 B

l
i
L

4 :
- TR EPEE S |
: Edtpons I B . s
” 23] SR RR E e
' ’ 1 -
a—. v

......

15

10

Case

Rates.

Fig. V.3.

e v—

IR W

VRSN AT U T 80

AN e

R4 w0 . 541&“’:'

p
e,

S o S e R St e s T T R

*0Z=1 °suorjewrxoxddy orweuig pue OT3e3}S IOF SaAIND 3s0) “Z°A °bra

| g
| |
e
3s0D HMu_oL.to St
|

sZ°0

E NS
% ol s !
€ Twu_. oFILIS

€ 9sED OFmreuAq~

i Y

i

, _ —fseco
|z pue T °Sed-oTieds

.....

s e e S R 2 B LR 6 MR IS
O i s AR T S R T 4T

350D obex03S

ql‘lji.\‘?.'bvllxlvi. A N \.i»'ll"l}v)L\lﬂll\“l‘J \HU;\aA.IJﬂ.u‘, “‘..3 ~

.\xﬁ AN
o ¥

.

G
-
-

o~
e

» oz Gk
. .
2

A
3.
sek

-

.

.
*"v.-

=

e gy B

&

o B

AT e IS Vv

O T~ 5 Y v = (U

The corresponding total costs are larger here, but not
significantly. This is because we are considering a very
short period of operation.

The curves describing the evolution of the total cost
as the storage cost varies are represented in Fig. V2 for the
state and dynamic cases. We also represent, in the same
figure, the two curves corresponding to the rates of Fig.

V.3 and the curves corresponding to a network with 3 compu-
ters (NC=3) with rates:

0, (£)=6, (t)| 5qe 4
e2 (t)=92 (t)'case 1 VtCE.,ZO]
036120, (t)] 0
We can see that in all cases, they have a similar shape. In
particular case 1 and case 2 have the same static curve.
This is due to the fact that in both cases 9?v3>e§v ’
G;V(case 1) = G;V (case 2) and the optimal allocations are

the same for every value of the storage cost, as can be

easily checked.

V.2 Constant Rates. Updating Traffic. No Failures.

In a practical case it could be very difficult to specify
the rates as detailed as a time variant function, even with
piecewise constant shape. t seems more reasonable to model

the rates as constant functions over a period of time.

An intermediate case will be to obtain the rates as piecewise

constant functions with long steps. In this case a quasi-
dynamic analysis applying the optimization procedure to every
long step separately can be considered. 1In any case it is
important to analyze carefully the behavior of the system
with constant rates of demand.

Let us suppose that we have a network with three com-

puters (NC=3), with demand rates

el(t)=0.8 ez(t)=0.6 93(t)=0.4 vt 1,8
and an operating period equal to eight time units (T=8). As
before we consider the transmission cost equal to one for
every possible transmission

C..0 1 Vi,je¢(1,2,3}

ij
The storage costs and updating ratios are the same for
all computers
Cp =€

> " vi€ {1,2,3}
gy =P
and we want to analyze the system for the values

c, = 0, 0.25, 0.5, 0.75, 1
p =0, 0.25, 0.5, 0.75, 1

The results for p = 0.25 and Cs =0, 0.25, 0.50 are
shown in Tables V-2. We will represent later the evolution
of the total cost as the storage cost varies taking p as a
parameter. Again we will make linear interpolation between

exact points. 1

e e

9130.8 6,=0.6 0.,=0.4

2 3

c.=0.0 p=0.25

f s
! ITime Decision
} Y2 345467 1 2 3 4 5 6 7
{ 8 1.40 1.20 0.80 1.00 0.60 0.40]0.00
AT E YT . : . 5 1 . 0.90
¢ I7 3133273 250 4.00 L.3% 3.0 31.57 223511
s 17777777 4.42 4.10 [3.64,3.95 3.49 3.16}2.70
4 |7777777 5.33_5.00_4.54 | 4.86_4.39 74.07|3.60
| 3 |7777777] 6.24 5.91 5.44 5.77 5.30 4.97 | 4.50
B | 2 1277271277 2.14 6.81 6.34 6.87 £.20 5.87]5.40
g 1 199317779 .68 7.71 1.24 71.87 1.18 §.7115.30%
:) € =0.25 0=0.25
{ Time Decision
1 T2 34656 7 1 2 3 4 5 6 7
EN 168 1.4% 1.30 71.25%5 1.10 0.9010.715
] 6 66666 6| 3.20_2.96_2.8L 2.72 2.57_|2.35] 2.20
6 |6 666666 4.67 4.42° 4.27 4.18 4.03 3.80| 3.65
; 5 |6666666| 6.12,5.87 5.72 5.63 5.48 5.25]5.10
T 4 |6666666| 7.57,7.32 7.17 7.08 6.93 6.70|6.55
' 3 l666666¢6] 5.0 8.77 B8.52 8.53 8.38 8.15] 8.00
; % 2 |66 6 6 66 6/ 10.48 10.22 10.07 9.98 9.83 9.60] 9.45
F 1 16 €& €666 11.93 11.67 11.52 11.43 11.28 11.05 10.90
E C =0.5 p=0.25
k: S
r Time Decision
, I 2345617 1 2 3 4 5 6 7
Y.90 1.70 1.80 1.50 1.601 1.40] 1.50
; 7 1646 ¢ 444 8] 35,75 3.50 J:.091 3.25 3.35] 3.15] 3.25
: 6 |4 444444 "5.52° 5.26 5.47 5.00 5.10| 4.90| 5.00
8§ {4 44488448 7.27 7.01 7.22 6.75 £.85) 6.65] 6.75
4 |4 444444 9.02 8.76 8.97 8.50 8.60| 8.40| 8.50
3 (44444 44| 10.77 10.51 10.72 10.25 10.35]10.15]/10.25
2 |4 444444 12.52 12.26 12.47 12.00 12.10{11.90(12.00
1 |4 4 4 4 44 4f 14.27 14.01 14.22 13.75 13.85(13.65/13.75

Table V.2.

agw Ao, T R, W Uppape

TeT—r——T

network
analysis

zation a

these as

c)

d)

We

101

The first important characteristic that appears looking

This is not a general statement that can be applied to any

and parameters but will motivate us for a deeper

of the facts that are taking place in the optimi-

lgorithm with the assumptions of this section. With

sumptions we observe:

a) The vector A(t) is time invariant

At) = Ave€[1,T]

b) The transition matrix P(t,u*) corresponding to

optimal decision is also time invariant

P(t,u*) = P(u¥*)

The updating ratio vector (that had to be added to
cost~-to-go vectors) is also constant. Let us call
this vector R

The terminal cost vector is equal to the vector A

VIT). = A(T) = A

Therefore we can write the recursive equation for the

first iteration

vV(T-1) = A+P(ui) (A+R) (5.2)

want to show first that with these conditions, the

system exhibits a trapping state.

= 5}) G s | 1 i R
Let us call A+R = Q' where § -[mi,wz, ..mM]

' and let us suppose that w4 is the smallest component of

2 vector Q!

t

{ m;w; Vi # 1 je{1,2,..M} (5.3)

i at these tables is that there are no transients in the decisions.

N

e e RSP P p—
3

For the systemcen remain in the same state, if this is

the decision, with probability one, the ith row (correspond-

ing to state i) of P(ui) will be then
i
ith row — (000 -~-~010 - - 0) (5.4)

furthermore if we represent by K the set of states having s
the same 1 components as state i and at least one 1 com- :
ponent more (we will call this set @he optimum set) we have

kth row of P(u}) = (0 0 - -0 i 0 - - 0) VkeK (5.5)

if we call now

P(ut)0! =0! where o‘=(¢i,¢5,..¢§)T (5.6)

we have
¢i = m‘i ¥ 1€K or 1l=i

(5.7) ,
op > ¢ ¥me{1,2,..M},m#l |

Writing now the second backward step in the recursive equation

we have
V(T-2) = A+P(uf) [V(T-1) + K] =
= A+P(uj) [A+ o'+ R] = A + P(uj)@? (5.8)
where ;
Q2 = A+0! + R =0 + ¢! (5.9) ?
from (5.3) and (5.7) we have again ;
wi<wl Vg # i jel1,2,..M] (5.10)
and hence f
kth row of P(uj) = (0 0 - - 0 i 0 - - 0) ¥YkeK or k=i
(5.11)

i.e. the optimal decision from state i is again "remain in

state i"; and this decision can be implemented with probabi-

103

lity one. From this result we obtain, as before

02 = v} Vi€k or 1l=1i (5.12) |
N vme{1,2,..M} m#1 (5.13) |
where g
P(uf) Q= 0%= 02,62,..08)7 (5.14) ’

This characteristic or behavior will be repeated through the
remaining steps. Therefore state i will be an absorbing or
trapping state, according to the most frequent nomination

for these kinds of states in the literature (see refs. ot

[18] and [19]). This means that once the system visits i

it remains there forever. Furthermore if the process is
long enough we may expect that the optimal initial (at t=1)
allocation will correspond to state i or any state ke¢K and
thus the system will fall off in state i since the very
beginning.

The former property suggests a very efficient and
quasi-optimal procedure to analyze a system with the above

characteristics. We can describe this procedure as follows:

A gquasi-optimal steady-state (Vt [;,T]) decision for a
system with constant parameters and no failures will be
to allocate the file according to the description of state i,
with i obtained from the condition

where

[wl,wz,..wM]T =Q=A+ R

e i P AR BB W, AT P Y

104

This quasi-optimal decision role can be considerably

i A St e N

far from the true optimum if the terminal costs were very
different in value from the vector A, and if the operating
period were too short as to be able to disguise the influence
; of the terminal costs. We can see that this decision is in ﬁ
fact the decision we had arrived to if the analysis had been
b made under the so called static approximation.
Although the former decision could be enough for our h
purposes, since the concept of trapping state is conclusive
in the performance of this kind of process, it does not clarify

completely the lack of transients in the iterations. An

intuitive and heuristic idea in this direction may come

thinking that the optimization process will be very much |

biased by the states belonging to the set K defined above.

This bias will be in the sense that any state not in the set

v a6 inll VRNl et i e

K will try to move toward some of the states belonging to K

in order to reduce the cost. (In some sense this set K

could be interpretated as a "stopping set" using De Leve
terminology [21]). This behavior is represented graphically
in Fig. V.4,

In particular, for the case p=0.25, Cs=0.25 of the '
example we are considering,Table V.2, the diagram of optimal

transitions is represented in Fig, V.5.

AT ARSI

e i 4 T TR, AT (T S T

Sk G o Lo

- ~
s s "
A TIne T w / N
/ iy 7 N\
* \
/ e
/ = \ L. / 1 \
/ i \
; (1-8)) (1-8,) / I /
| 1
| e e / \ ; \
\ \
m . \ \ ‘ \
|
b \ _
| 5 \ y \
; , 3
W // \\
” \ . /

Fig. V.4. Qualitative sketch oi a typical rmwmchH for a system with constant para-
meters. K is the optimal set and X~ it: complementary (only some states are

represented) .

. ’ o
ks Ly

£ 1
LRl A . . " : " eed

L R : T TR ST
& R T

Fig. V.5 Optimal transitions for the example of this section 3
with P=0.25, Cs=0'25' k.

o ANy SV Ty, N T T R

107

Let us go back to Table V.2 and look at the minimum
cost and optimal initial states . We have worked out the
minimum total cost for every instant of time, and the optimal
initial states assuming that the process might begin at some
time, not necessarily at time 1. We can see several interest-
ing results looking at those marked numbers of the table,
namely: For a given parameter values:

a) The minimum total cost up to any instant of time
always corresponds to the same initial state.

b) Consequently the optimum initial state is always the
same for every time.

c) The increasing of the minimum total cost is linear
with time.

d) The optimum initial state does not necessarily

coincide with the omnipresent optimum decision.
Do these conclusions generalize to any system with constant
parameters? Let us investigate this question.

From previous discussions it is clear that the optimum
initial state will belong to the optimum set of states, the
set K. Remember that if the terminal costs were dif~ .rent from
the p.u.t. costs we had to wait until the steady state were
reached in order to make this statement; otherwise the opti-
mum initial state does not need to be in the optimum set.
For the states belonging tqQ the set K we can write the recur-
sive equation as follows:

V() =2 + V (t+1) + 1, VkeK (5.17)
i (trapping state)€K

" o 0, Y i R, WP, A MR T

ettt s el e S i

p—

S R RN

108

and for the next step

Vk(t-l) % Xk+Vi(t) +r;

therefore

Vk(t-l)-Vk(t) = Vi(t)-Vi(t+1) = Ai+ri=wi (5.19)
but

V (T) = A (5.20)

SO we can write

Vk(t) =)‘k + (T-t) Wy ¥keE K (5.21)

This important result will answer many of our questions.

In fact
)‘j < Ay ¥ k,jEK =3 vj(t) < Vk(t) Vk,j € K
k#3j k#]j
vte [1,T]

Hence the minimum total cost will always correspond to the
same state.no matter how long the operating period is.
“‘Obviously that state will be the optimum initial state for
any instant of time.

Furthermore, the minimum total cost increases linearly
with time as it was expected.

So far we have proved that facts a), b) and c) are
valid for any system with constant parameters. Concerning
fact d) it is clear that the state with minimum per unit
time cost among the optimum set need not be the trapping
state, but if the optimum set only has one element (as in
the case Cs=0, p=0.25) then it is clear that this element

has to be the trapping state.

nes

N T TR i e e N L Jl..F: A

s

B

s

199

We can see that the problem with constant parameters and
terminal costs equal A falls in the section of problems where
the optimum decision is the decision that minimizes the

immediate cost.

Before leaving Table V.2 it can be useful to make a few
more comments. For instance we will not always find a
unique optimal decision, no matter which state or time we
are, as the one shown in that table; as an example the case
Cs=1, =0.5, below shows a transition from 3 to 2 as inter-

mediate step to arrive to state 4.

Table V.3
8,=0.80 92=0.60 e3=o.4o p=0.5 Cs=1

Time Decision
123 45¢6 7 1 2 3 4 5 6 3
8 2.40 2.20 2.80] 2.00] 2.60 2.40 3.90
7 4 4 2 4 4 4 4 5.02 _4.76 5.60) 4.590] 5.19 4,90 5.50
6 4 42 44 44| _7.541 7.271_8.16| 7.00| 7.60 7.40 8.09
5 4 4 2 4 4 4 4| 19.95 9.77 10.67| 9.50|10.10 9.9n 10.50
4 4 4 2 4 24 4 4] 12,55 12.27 13.17)12.00}12.60 12.40 13.00
3 4 4 2 44 2 4| 15.05 14.77 15.67]14.50]15.10 14.90 15.50
2 4 4 2 4 4 4 4| 17.55 17.27 18.1717.00}17.60 17.40 18.90
1 4 4 244 4 4] 20,05 19.77 20.67(19.50({20.10 19.90 20.50

m™his is due to the fact that a decision of moving
directly from 3(0 1 1) to 4(1 O 0) has some intrinsic risk
of remaining in 3 if no request is made from computer 1.

It turns out that in this case a large price has to be paid

if the system remains at 3. On the other hand a transition

I!‘ | | 110

to state 2 can be done with probability one and carries with

it a smaller cost. It can be expected that in a more general f
case with more computers and consequently a larger variety .
of states this event will appear more frequently.

An important observation is to note that wy can be iden-
tified with the steady state gain of the process as defined

by Howard [26]. AEquation (5.21) for optimum cost-to—go will

justify our assertion if we can show that the gain is unique

‘l
= } even under optimal policies that make the Markov process
t non ergodic.
‘-/ The only type of policies that can make the system non

ergodic (in the sense defined by Howard) will be those con-
’
1 % taining at least two persistent decision of the form "remain
in ij" where now each ij will be a trapping state. We will

show that if 1 and m are two of these trapping states then

To see that let us call K(1) and K(m) to the corres-

ponding optimal sets. Notice that

K(1) N XK(m) # ¢ (b= empty set)
because K (1) K(m) will contain at least the element
| M=(1 1...1). Therefore if &

reK(l) N K(m) E

when

vr(t) Ar(t) + (T-t) w, =

1

.ty g

n

Ar(t) + (T-t) W

_— . g . = . A RO Dt Y . i
b — v o 5 O e S i TR T ST = R PR »,3@«“_'5\ 1".;{;?3‘!;'

PSS T S <l N

v —~— Y = - . — T

111

and hence

We conclude that the gain is always unique, even in the
case that the policy would make the system non cryodic.

The discontinuous staircase line in Table V.2 represents
the beginning of a constant increase in costs for every
state of the process.

Let us analyze now the evolution of the total cost
versus storage cost taking the updating ratio as a parameter.

The curves are shown in Fig. V.6¥

First of all we see that the shape of the curves is
similar to the one obtained in section V.1 for the time
varying case without updating traffic. The curves present
a larger curvature for small values of Cs and o and then the
behavior is almost linear. In Fig. V.7 we represent the
total minimum cost versus p taking now Cs as a parameter.

We can see that both sets of curves are quite close in shape
but the curves of total cost versus p have a deeper slope
and after the curvature section they are completely linear.
We could obtain a better understanding of this curve if we
divide the whole quadrant in three sections corresponding
each section to trapping states with the same number of
copies. In this case we will have a section for three
copies, other section for trapping state with two copies

and the third one for only one copy.

B g e e 210 i

e

(*s3jurod 30eX3 Uud3AM3IAq

uorjerodiajuyr xeaur]) -x93sweaed e se d Y3Tm 3so0) abHei1o3ls snsIaA 3Iso0d [e3zol ‘9°A brg

£ o |
et 4%1%
1 5

112

.....

3

-3
&
‘m‘u‘
£
4
¥
15

£
S
¢
£

e _. [DA ks v, |
: 0°T
380D
abeao3s
X C -~ ol T Coud e calillis”
—_ A st . e S - " PNRONE. s o ~

113

it AR i s N B 51 AT . o, v i B S 55 B o S A s g G Sl b 2 s o Shuadiarid.

A slims 53l e ARl e R

- 1930wered € se °5 Yatm d °*sa 3s0) Te3oL “L°A °brd

e et —

< - + SZ°0
Tx.;, ; W
Dbl 4 4 R
A o o *:4r+
S (o i e HREN
| e P e e Tt
E & 4=t t-4 - b= b 44~
e
.«.r,_ i} | §
o..,.’.J +I;..
- S°0
= S0 ST R R A i i B
e e ¢ 44
e por ey
e T o I e TR '
.k Al e
i i M R e 1
PR TS g ', -
N R B
-~
sl e e - - 5% Jyaste 3
neg Ryl mis
S A B fes .
- - (L | Y “ <t
A=At ——t e et
S e s RS
i B 4 v §=d + 4+
e d o L 8 ..*.,.
A...h,vw,,. s L4444
i " | i -
| . 1
EEEEpERREERanEEnesy S
.+;,._..;_~ 4 v o4 . -
A_. “;.4“.% fodesy R « 2
SMEERNEERBESE S ESDE
s o doibadaldl ol | S S VS SN

 TEIE L S

‘ | 4

114

R

At each of the points of the curves, corresponding to

the cases studied in the present example, we have encircled

o i P e i s B

the trapping state corresponding to the system with the par-
ticular parameter assigned to the point. We can see now
that linear (or almost linear) part of the curves corres-
! ponds to points with the same trapping state while the rounded
parts are due to changes in this state.
¢ We could now ask the following question regarding the
trapping states. Why the trapping state, having two copies,

is always state 6(110), and why the trapping state having

B Faioi oo oo

one copy is always 4(100)? The reason is very simole.
W Remember that our rates were such that

63 = 0.4 < e, = 0.6 < 91 = 0.8 (5.26)

{ therefore, other parameters being equal, the system will

try to keep copies in the computer with higher request

rate and there is no reason why it should behave in a different
way. This fact is easily generalizable and we can say that

if we enumerate the computers according to the sequence of

decreasing values of the rates

By 2 D R R et e (5.27)

the trapping state will always have its "1" components con-
centrated in the left of its vector representation.

Let us now analyze for what values of Cs and p will the
trapping state change. Concentrating first on the case p=0 ;
we can see that the change from trapping state=7 to trapping
state=6 will be at some point in between C_=0.25 and C_=0.5. ;

We claim that the frontier will be marked by the point at

e A N] 7S A I

115

which the system, being in state 6, is indifferent tc a
transition to state 7 to as opposed to remaining in state
6. A small perturbation from this equilibrium point «will
require the system to go to 7 (if the perturbation is to
the left) or to remain in 6 (if the perturbation is to2 the
right) .

The reason is again very simple. State 6 cannot be
a trapping state if being in this state, the system decides
to move to some other state. On the othet hand, once the
system decides to remain in 6, this state, considering
all the decisions above, becomes a trapping state.

Let us find this equilibrium point. Consider that the
system is at state 6 = (1 1 0) at time t-1, then we have:

Cost due to a transition from 6 to 6

¥ (6.6) V6(t) + re (5.28)

Cost due. to a transition from 6 to 7 = (1 1 1)
$(6.7) = 93[V7(t)+r7] + (1-8) [Vs(t)+r6J (5.29)
Equilibrium point (assuming 63 # 0)

$(6.6) = ¢(6.7) &= | V7(t) +r, = V6(t) t+ rg (5.30)

but we know from (5.21) that

V7(t) = A7 + (T-t) wy

V6(t) = AG + (T-t) Wy

therefore the equilibrium point will be at
A7 + r, = A6 + re

(notice that in fact As + r6 = A7 ¢+ r, = mi)

116

A = 3, ;=20 (8,+0,+8;)
. (5.33)
5 3 A6 = 2Cs+e3 r6=p(el+92+293)
f and this substitution yields
i
| Ay + 1y =)+ 1, &% Cg + p(8; +8,) =8, (5.34)
; So we have obtained a linear relation between P and Cs

that describes the equilibrium point. For p=0 the equilibrium E
is at :
yt
cC. =6, =20.4 (5.35)

For p = 0.25 the equilibrium is at

S e3

(@]
1]

= 0.25 (61+92) = 0.4 - 0.35 = 0.05 (5.26)

The intersection of the equilibrium line with the horizon-

tal axis will correspond to the cost due to the equilibrium
point with Cs =0
Cy = 0 =B p = 63/el+92 = 0.29 (5.37)
V7(1) = (8-l)wi = 7(A7+r7) = 7.20 (5.38)
C =0
S 7
p=0.29 3

We can see that for the given rates the equilibrium
above is possible only if p <0.29
With the same reasons as before we claim now that the

equilibrium between trapping state 6(119) and trapping state

! 4(100) will be defined by the points at which the system,

being in state 4, is indifferent to a movement toward state

6 or staying in state 4. ‘

w*“‘??‘q‘afﬁw.e;gq-. B ———

N SR VR

The new equilibrium line will be defined by

¢ (4,
where

$(4,

b (4,
then

b (4,
but

Vgt

VG(t
with

Ay =

AG =

hence the

D =

Now
are ready
curvature

that let

4) = ¢ (4,6) (5.39)
4) = V,(t) + 1, (5.40)
6) = 0,[Vg(t) + ve] + (1-0 [Vy(e) +rv,]

4) = ¢(4,6) = V,(t) + r, = V(L) + r¢ (5.41)
) = Ay + (T-t) wy (5.42)
) = A6 + (T-t) W

Cg + 8, + 8, r, = ¢(8, + 8,) (5.43)
2c, + ©, re = 9(8;+6,+20,)

equilibrium line is defined by

L2 e A6 + re = Cs + o(el+e3) = 62 (5.44)
0 == C_=6,=0.6

0.25 == C_=0.3 (5.45)

after all these properties have been described we
to provide more information about linearity and
of the graphs of Fig. V.6 and V.7. But before doing

us generalize the results obtained above.

We claim that in a network with constant parameters
| and NC computers numbered in such a way that
{

B o i El TR T b

the equilibrium line separating the trapping state with NC

copies from the trapping state with NC-1 copies will be

l defined by the relation

%, | ¢ (M-1, M-1) = (M-1,M) (5.47)
E: | where
‘ m=2NC_3
Similarly the equilibrium line separating the trapping
| state with NC-1 copies from the trapping state with NC-2

copies will be defined by the relation

X ~e
L B

¢ (u,u) = ¢(u, M-1) (5.48)
where u is described by the vector (1,1,1,..1,0,0)
NC
‘ foe. 0= :E: 2" = M-1-2 = M-3 (5.49)
ks n=2
In general the equilibrium line separating trapping =

states with n and n-1 number of copies will be described 3

by the relation

p(v,v) = ¢(v,v + 2)
where NC ;
ST, W e d) s i R sag e :z: 2 (5.50)
n=1 NC-n+1 m=NC--n
We can arrive to an exvlicit relation of this equilibrium ﬂi

line as a function of the parameter of the system if we

3

e y " - : AR e R
e O P ORI e o o il il ZE) ~~} i s

119

replace 4 (.,.) by its expression in function of those para-

|
; meters. In fact if we are in state v at time t-1 we have
| ¢ (v,v) =V (t) + r
. . (5.51)
6 v+ 2 =ef v\,+2(t)+rv+2] + (e [v (o) + r)
therefore we will have equilibrium if and only if
! Vv(t) + s ™ Vv+2(t) + T 42 (5.52)
but remembering that
{ Ve lt) = 4 + (T=t) w, VKEK ki (5.53)
| i .
i€k
} we will have equilibrium if and only if
! Xv+ Ly =A\)+2 4 Tu+2
4 i but from (3.6) and (4.1) we know that
.
NC
Av = (n-1) Cq * E - Moo (5.55)
\ m=n
E . n-1 NC
Sy . rv = p[(n-2) E em + (n-1) E emJ =
-134 =1 m=n
(5.56)
NC NC
= p [(n-—Z) E B ¥ E em]
=1 m=n
NC
= E «57
Av+2 nCs 3 em (5.57)
m=n+1 ¥

R e

129

NC NC
rv+2 = p [(n-l) E Gh + E emJ (5.58)
i m=n m=n+1

therefore we will have equilibrium if and only if

NC NC NC
B |
3 ! p
1 (n-1) C+ E & *0 [(n-Z) E o * E em]
i ‘ m=n m=1 m=n
G- NC NC NC
‘ =nC_ + E A [(n-l) E B ¥ E em] (5.59) |
4 ! m=n+1 m=1 m=n+1 |
that is iff NC
B @n = Cs + P E Qm (5.60)
o
) -l
m#n

Let us now calculate the total minimum expected cost. Clearly

this cost will be given by {

AN A o S DO

vj(l) = Aj + (T-1) ws Jj, 1€k (5.61)
v
n'; where
2 J k
f - |)\j <)\k Vk#3j keK
e ¥ ,.
.waﬁ i = v+2 or 1 = v in the equilibrium line because ;
- 3 i :
,_’f“.‘g lA\i —- A\)+ r\) = x\)+2 = rv+2 (5-62) ;\
;“3 and 1 = v+2 to the left of this line whereas i=v to the
&
%4t right. The minimum cost in the left side of the equilibrium
line (without trespassing the area where v+2 is the trapping
state) will be then
1 k= N e il 4
Vatsl = Agtioaz * Toea jex i :
%
— 1

e i A I A T R, < A P T S R R T TR e it S gy o ':*W
. v ; kil e) ;

121

whereas in the right side and before crossing another
equilibrium line the cost will be
v§(1) P Tt o (5.64)
It is important to notice that j does not have to be
the same in both expressions because when we move the point
up and down on the curves, we are changing Cs or p and j
will be a function of Cs. Furthermore the set K (remember
j K) will be increased by one element,the new trapping state,

every time we cross an equilibrium line.

Let us express these two costs in terms of the para-

meters of the system.

E | NC
B | 3
4 % V7' (1) = min TEL A+ E e + nC_ + A + PB (5.65)
s m s
‘ n<t<NC
d m=T1+1
NC)
vi(1) = min o+ E 6 ¢ +(n-1)C_+F40G (5.66)
(n=1) <T<NC
m=T1+1
where A and B are constant (in the region where v+2 is the

trapping state) with values

NC
a= 0 e (5.67)
m=n+1
NC NC
B=(n-1) 3, e + D, e (5.68)
m=1 m=n+1
.

e Wiy o T P TNy o AR TR

122

and F and G are also constant (in the region where v is
the trapping state) with values
{ NC
] |
3 ! = = + -
F | F > e =a e, (5.69)
: m=n
L NC NC NC
Li) = - = -
= G=(-2)Y, o+ D, © =B) 8+6 (579
m=1 m=n m=1
} Now we have all the necessary elements to study the

exact shape of the curves of total cost versus storage cost

_J,-—?"

taking the updating rate as a parameter or otherwise total
cost versus updating ratio taking the storage cost as a
parameter.

For p=const V* (1) is a picewise continuous linear
function of Cs that will change its sliope every time we

find a new minimum in the term in braces in (5.65) this

will happen every time Cq em for n+l<m < NC)

= const.
For Cs NC (5. 71)
min o E: © = constant for a fixed a
; m
a:T<NC
m=T+1
£ i.e., is constant in the zone between equilibrium lines and

there’ore V*(1l) is a picewise continuous linear function
of p that will only change its slope every time it crosses

an eauilibrium line,

o A, TR TN

e e i e

123

With these properties we can now draw the exact cost

curves for the example of this section, without imnlement-

ing the dynamic program algorithm, The curves are in Fig.

V.8 a) and b). This figure closes the analysis of networks }!
with constant parameters and updating traffic and in the £
next section the analysis of the computer networks with i;
constant parameters, updating traffic and some nonzero pj

probability of node failures will be considered.

V.3. Nonzero Failure Probability

The dynamic analysis under consideration takes its
complete meaning when we include in the system the probability
of node failure,

The Markov process describing the evolution of the system

without failures under optimal decision rules has a trapping
state, a fact which gives rise to a number of specific
prcperties as described in section V.2. On the other hand,
if failures occur, the trapping state disappears, as seen
from the discussion in Chapter IV. In particular, if
failures can happen in all computers with nonzero probability,
then the steady state probability that the Markov process
will be in a given state is strictly less than 1 for any
decision strategy.

Let us analyze a simple example. Consider a network

with two computers, NC=2, and the following parameters:

T — - .

*@3e3s Ter3rur umwyldo [pue a3e3s bBurddexy sjussaadax T
*I9j2wered e se d Y3iTm 3500 26BI03IS *SA 3ISOO WNWIUTW Te303 JO s8aAInN) ‘eg°'A -"brg
, | |
{
: (Dwal - 0
w
i ,
B RE 5 GZ°0
et st BE ARl
— —<4 S§°0
» = b e e o] 9°0 %
~ _ :
e i e oL i TosT Y ! 15O Bt i) Sl . F
7 87 &V AV AREuEn PSR R O s
i O ...,j_f... i Mm:.a..aomrub.uouonm ”
_ : | N mmmccso mnon yats sjurod © 5
b
; S0 m.om~o ooaﬁ : 3
L ¥, “ Rttt R | FE A e A..u.llL - vu M = . o g H
g ¥
< |
;
w
|
e T
& e . b Lo Lk ¥ - WA 2

*93e3s Hﬁ.ﬂwﬁ: unwr3ido [pue s3e3s Hurddexy sjuasaadex 1
*I9j9wered e s D UY3TM 0 "SA 3ISOD WNWIUTW Te303 9Y3 JO S8AIND -qg A ‘brd

Sz°0
: 62°0
S*0
wn
o~
-
£ SL°0
. R ' . $ = \ ‘. \ .
% Ooeﬂ o) . i3 5% : | .
.‘,.,--.i.-ii-sﬂli.fi(.l;. R RS T S
‘.:ﬁ.;__ffﬂ__,_ 4 g R d
e e e e e

e A WU ——

: 126
.-,-»4 »
2B
,,
‘ {f e,(t) = 6, = 0.5
E | e,(t) = 8, - 0.4
| Cy,2=C,p =¢T -1
‘ E C1 = C2 = Cs - 0,5
| | R = 0.25 1
i f C01 = 50 C02 = 51
E Pf - 0.01 Pr = 0.1
1 1 The terminal costs are given by (4.5) with Coi=° Vi, 5
{
State number State vector Terminal costs i
0 00 0.0 {
' 1 01 1.0
2 0 2 0.0
3 1.0 0.9
4 11 1.0 !
5 1.2 0.5 ;
6 250 0.0 i
7 21 0.5 g’
8 2 32 0.0 '

The results of the optimization process for the first itera-

tions are shown as follows:

where under "cost" we write the values of the costs-to-
go ordered from state 0 in top to state 8 in bottom,

after every iteration. Under "go to" we list the opti-
mal decision, corresponding to every state. The stars

i mean that for these states no decisions are needed.

Continuing the iterations we could see that the

: ‘ decision "go to state 4" is in fact the steady state

} l optimal solution for states 1, 3 and 4. This fact can
L / also be confirmed by abplying the Howard algorithm 20
to this problem.
i }
ﬁ Therefore, for this problem, with the spécified
f parameters, the optimal steady state decision is to keep

as many copies as possible, that is one copy at each
computer.

4 If keeping now the other parameters fixed we reduce

the probability of failure by a factor of 10, i.e. from

0.01 to 0.001, we will find that the optimal steady
state decision is "go to state 3", that is keeping only

one copy at computer one. The first iterations are

shown in table V.6.

v A N, B LR T T N R A S RS

*9°A d1q®eL
vs 0LZSSZ'¥Z % €86699°LT % 6869696 xx 000000°0 8
™ Zsv220°¢ ™ 880GTE"Z ¥ 96v¥S9° 1 ¥x 0S¥6%0° T L
s 2SbT2S°€S vy 880ST18°2S ™ 96¥¥ST 2S xx O0GV6VS TS 9
™ PIZ¥96°2 s OvEELZ 2 ¥ P6€£629°T xx 09¥6€0° T S
€ 96STPT"S € 169960 ¥ ¢ ZvoLvO € € 005866° 1 v
ﬁ € 9GSSTHO°S € 16966 "€ € ZhOLY6°Z € 005868° 1 €
™ PIZPOV°ZS ™ OVEELL" TS % P6E6ZT 1S xx 09¥6€S°06S 4
€ S9PLSZ" S € vL6ZO0C V¥ € €EV00PT "€ € 9.8090°¢Z 1
¥ 9SL1PO°®S ¥% 068¥66°2S ¥y ZhZLY6 1S ¥x 00.868°065 0
03 0b 1S0D 03 0b 1S0D 03 0b 1S0D 03 ob 1S0D 2338
v=d =L <=L =5 DOWTY
@
- "STA 21qel
s ¥92662° %2 % TLEBLI LT s 6365696 %x 000000°0 8
»+ (0PTBE"E e 8T1S9LYV "2 x 89L€89°1 xx 00S¥PH0 " T L
#»+ TOPIB8° €S e 81S9L6°2S % 89L€8T°2S xx 00SPPS TS 9
x» 06G9€€°€ s 8L90VV "2 ¥ €666G9°1 xx 009v€0°T S
v 989196°S 17 VEBLLE ¥ v £€69981°€¢ € 050686° 1 i
17 Z16S8L"S 17 €80VPS" ¥ ¥ 0TEVSZ € 3 050G688° T £
»» 0659€8°2S »x 8L90%6° TS %% €666ST" TS %% 009%€S°0¢S Z
12 8¥0806°S v PZ9v89°¥ 12 269C1v°¢€ € 90€9%0°¢ 1
s €£S0900°GS s ZLSETL €S ¥ TL089E"2S x¥ 0%0.88°06S 0
03 ob 1s0d 03 0b 1s0d 03 0ob 1S0D 03 0b 1S0D S3e3s
p=L €=y =l =1 TawTy

e

ey e ————__ oW , P
9 . » ‘n y

Liariliow. ol

129

Therefore a reduction in the risk of node failures

is reflected in a reduction in the number of copies. It

e e I e ol it

is obvious that further reductions in the probability of
failures will not have any influence at all in the optimum
policy because we cannot have less than one copy in the system.
We have seen how changes in the failure probability
may change the minimum number of copies to be kept in a
system; but what will be the repercussion of changes in Pr’
the probability of recovery? It can be easily seen that
! changes in Pr will not have as much influence in the optimal
R / decision as changes in Pf for the case NC=2. The reason is
that, for NC=2, Pr only appears in transition probabilities
ﬁ from states where no decisions are available. The influence
of these state costs on the decisions from other states is
reflected through smaller probabilities (assuming Pf relative-
- ly small) and in a relatively simmetric form. Only if Pf

is near 1, the value Pr might have a certain importance.

An intuitive explanation of the fact that the value of

Pf will have much more influence than the value of Pr can

nﬂi be given by observing that, no matter how fast the failed

> 5
.-
J

computers have been restored, if the system looses all the
copies, then a high price has to be paid in order to bring a
copy from outside.

For cases with NC>2 the situation is not so simple
because then Pr may appear directly in transition probabi-

lities with several decisions available. Nevertheless, we

R i - T G i B R PR O R (TN T Lo e R PR E\‘\It{:“w
of

et e A I e i A s

-4\'-‘»-—._-___ g —d

w

e

-

S e

t

‘L

can say that in those cases, the larger the number of work- ;

ing computers in a particular state the smaller the influence

of P, for Pf<<l. éé

Therefore Pr will ajifect more the decisions among states i

with large number of failed computers. The reason can be
easily seen with one example. Consider a network with NC=3 !
computers. If we are in state 1 —s (0 0 0 0 1) then the next
important costs that will affect the optimum decision from

1 will be the costs of states with no failures in their
components, and therefore no Pr in their probability expres-
sions; all these costs are going to be multiplied by (l-Pf)s,
(remember Pf<<1). The next set of important states contribut-
ing to the decisions is the set of states with one failed
computer. These terms will have a factor of (1-Pf)4Pf.
Continuing in this way we can see that the states that will
reflect more the value of Pr' that is the states with a large
number of 2's in their components, will be multiplied by

very small weights; for instance a state with only one working
computer will be affected by the term P *(1-P.)~0 if P <<l.

On the other hand if the present state is for instance,
state (0 2 1 2 2), and we assume Pr>>Pf then the important
terms will be the terms affected by the weéights (l-Pf)z(l—Pr)3,
(1-p,¢?P_(1-p)% and (1-P.)P (1-P)> and therefore P will
increase its role in the optimal decision from these states
compared to the former one.

An intuitive explanation to this fact can be given as

follows:

s %0 DI B PR N e TR ST

WA

e

TEENT

If P has a high value, close to 1, then there are high
probabilities of transitions from, say state (0 2 1 2 2) to
states like (_ 0 _ 0 0) or (_ 2 _ 0 0); suppose now that com-
puters 4 and 5 have high request rates and that transmis-
sion costs from computer 3 to computer 4 and 5 are much
higher than transmission costs from computer 1 to the same
computers, then a decision of writing a copy at computer 1
will probably be optimal. On the other hand, if r is close
to 0 then the transition probabilities to the statesabove
will be very small and other factors will influence the optimal
decision.

0f course if Pf is near 1 then Pr will increase its
role in all decisions. With the discussion above we have
only confirmed that the model in fact reflects the physical
intuition that as long as Pf remains very small, the proba-
bility of recovery is of no great importance in the system
(remember the intuitive explanations given above). It is
obyvious that the previous discussion has been undertaken
considering a fixed, not too small, cost (comparing to trans-
mission costs) of bringing a copy from outside to the system,
in the case of loosing all the copies. It is clear that
these costs will play a similar but opposed role to the
failure probabilities, The reason is trivial.

Let us consider now an example with 3 computers NC=3.

The parameters of the network are the following:

e e

] R e R Ly om oW = T R T e WA 9z
3 L R o TS T R - - - - - P L2 ¥4
| T R R - = = = . - - - - - 0272 vz
- - - - - s e e e S R E IR £2
L CE ¥ ET o ELotC R BT Tr iz 1R |l BT BT T Lz e 1 1¢ 44
OB R OB W Ol Er omr o ogo1TolTr oty tr xE 0T¢C 12
{ - - - - - - - - = = I 202 0z
¢ It xR i LR T orroen v Lorr i@ onroxe T0¢C 61
| - - - - - S I 002 81
- - - - - o e - - - - - 221 LT
9T 9T 9T 91 §% .] #% 91 o1 81 6% | 9T 81 'oT .9T ‘st 12t 9T
| 9T 9T 9T 9T ST [9T 9T 9T 9T ST | 9T 9T 9T 9T ST 0z1 ST
| ¥T BT BT FL. PT L BT BT YT BT RI L BT BT BT T #Y Ear-T v
L B0 VBN B EY ET OF ¢l %x PRl T2 Er EM 2 €1
R S RS O o N GRS 4 S R R O e e 0TT1 Zt
O SR R L L e R R T S R e . o 1
= L ‘1 ex TV %1 | ERoAY Y oND 0 V£l el Bl fr 22X T 01 0T

™ T &Y BLRR BBl EF OET AT BU T I RTET E% fT % 00T 6

! S - - - - - e S T zzo 8

9T 9T 9% 8T S¢ 8% 9T 9t 8t &p | 9t' ST 9r /F 61 120 L

-l e TR - - - - - 020 9

BT BT UPT T MT [RTCRL ML w1 L L PL WY ¥ ¥ WU 210 S

AR R 4 S s O R B R G e TTO v

ST 12T el -pt BT EL €0 B0 BT 1 EU €T €T LT 21 0T0O0 3

- . e e = - - - - - I 200 z

(A SR 8 & G < o O % S o 4R R o R 4 R 100 T

e e L e - - - - - 000 0

92138 Jusssadg
S-L ¥-L €-1 2-& T-&| S-L ¥-I €-& Z-I T-L| S-I p-d €-I Z-I I-L SuTy
1000°0 100°0 10°0 ad
_u dIVLS OL 0D, SNOISIDEd TVWILJO

= = = . S - - e —

133

el(t) -G = 0.8

8,(t) =6, = 0.6

8,(t) = 8, = 0.4 |

o = 0= 1 ¥, 1.3 11,2,3) "
llJ 4

C, G, mCa = Cym 0.25 i
p = 0.25 %

Co1 = 1000 Co2 = 1001 c03 = 1002 ?

Po= 0.1 j

Now we write the optimal decisions corresponding to

e aaid o o

the first iteration for three values of Pf.

p. =0.01, 0.001, 0.00C1

. |

In all cases it can be checked that the decisions at

time T-5 (and T-4) constitute already the steady state optimal

policy.

In these three cases it can be very well seen how the

decrease of the failure probability decreases the number of

copies.

For P_=0,.01 the steady state policy is to keep always

£
as many copies as possible, that is, all working computers

will carrxy a copy. For Pf = 0,001 the optimal policy is to

keep as many copies as possible except for state 12 and 13

where two copies are enough (remember the discussion on Table

V.3). For P_ = 0.0001 the optimal policy says: if all com-

f
puters are working keep only two copies (in 1 and 2), other-

wise keep as many copies as possible.

The optimal decision from states 12 and 13 for the case

Pf=0.001 might appear surprising considering that from all
other states the decision is to go to state 13, The reason
for this apparently anomalous fact can be seen by observing
that a direct movement to state 12 carries a greater risk of
ending up in a state with only one copy, than if we try to
move the system to state 13. Then the transition from 13 to
12 is automatic (see also the discussion on Table V.3).
Another fact that can be inferred from the table is that
the optimal decisions always try to keep copies in the com-
puters with highest request rate and smallest cost of bringing

a copy from outside. Remember that in the present example

6,>8,>8

1°65>93 and COI<C <C

02 703
Looking at all the examples studied in this section we

can see as a common point that in all cases the steady state

optimal solution is reached after very few iterations. If we

began the iterations with a set of different terminal costs
this would not have been the case. This fact has been con-
firmed for several examples by evaluating eigenvalues and
eigenvectors of the transission matrix. We expanded dif-
ferent terminal cost vectors in the matrix eigenvector base
and observed that the vector A gives the cuickest rate of
convergence. Nonetheless, this fact could not be proven
analytically. A good reason to believe that the chosen
terminal costs are a good set of values fcr a good speed of
convergence of the iterations is to think that with these
terminal costs we let the system finish ir. a"natural and

not forced" way because those terminal cos<s are similar %o

et A, O T Y A T

-

NESED | PSSR

the immediate cost (except for certain corrections due to

the Coi costs that make, in general, the first decision
in the iterations different from the others). Nevertheless,
this fact will tell us that those terminal vectors are
better than others but not necessarily givingrise to a
quick convergence.

If this is indeed the case, we could say that because
we are mainly interested in the steady state policy the elec-
tion of the per unit time costs as terminal costs will reduce

considerably the amount of computation needed to find the

steady state optima: policy. Otherwise, we always have
available ‘the algorithm developed by Howard [20] that has
been proven quite efficient for those kinds of problems.

In order to implement this algorithm we could take advantage
of the fixed zeroes position in the transition matrix to
solve the system of equations that this system generates.
Another point that can save certain amount of computation in
the solution of the system of equations is the fact that

all states with NC=1 "2"'s in the equivalent positions give
rise to identicq} transition probabilities and hence to

identical rows in the transition matrix. That is for NC=4.

79=(2221) -

78=(2220) oW 79 of P(t,u) = row 78 of P(t,u) Vt,u
77=(2212) &

74=(2202) row 77 of P(t,u) = row 74 of P(t,u) ¥t,u
etc.

e A VI e R B8 e, A S ST

There have also been suggested in the literature e.g.[23],

linear programming formulations to obtain an optimal policy
using the principles of the policy improvement procedure of
Howard's algorithm; these formulations solve the maximization
problem involved in the policy improvement iteration of

Howard's algorithm by means of linear programming calculations.

V.4 Completely Simmetric Network

In spite of the simplicity that the model provides to
the analysis of a general network with any number of compu-
ters, there is one argument against it, as in fact is the
case with many finite state formulations. The problem is
the exponential growth of the number of states with the number
of computers in the network grows. There is not much that
can be done in order to avoid this growth but to try to find
suboptimal solutions. One way in which these suboptimal
schemes can be found is to assume that all transmission costs
are equal, all rates are equal, all storage costs are equal
etc. In such a situation we can see that all nodes in the
network have the same role and there is no need to specify
which node or nodes have a copy at a certain time but instead
the state vector will contain only the information of the
number of copies in the system at any particular time. Then
the jeneral Markov process, for this network, is mergeable,
see 19 , in the sense that we can aroup together a certain

number of states into a superstate and work with this super-

g 8 I P PR TG e N AT Y

state as if it was a simple state for the modified Markov
process. In the case that for certain reasons, important
difference in computer request rates for instance, we were
interested in a further analysis, within some superstates,
this can be done after the merged process was analyzed. Of
course the results are not going to be optimal any longer
but if we choose wisely the parameters good bounds to the
optimal situation could be obtained.

For the case NC=2 we know that the states are 0-8,
and can be grouped or merged as it is shown in (5.72)

0-00—0

1 1

23

0

1 B
2—C
y
1

8 -2 2—D

T 2

It can be seen that this grouping verifies all the pro-
perties needed for a right merging, that is
Z Pi,m = z Pj % for i,]esk (5.73)
’
mes, mesl where Sk' S, € {o,A,B,C,D}
because now the indeces in the control variables are meaning-
less and 91 = 62 = 0

The elements of the new transition matrix will be

138

¥ |
| 0 A B c D
/ P 2 2
) ; 0|0 (l-Pf) 0 2Pf(l-Pf) Pf
| o 2,1 . 2 o 2
; A0 (1 Pf) (1-a8) (1 Pf) a8 2Pf(l Pf) Pf
-p.)2 P 12(1- 2 (5.74
B|O0O (1 Pf) € (1 Pf) (1-¢) ZPf(l-Pf) Pf
ci10 (l-Pf)Pr} 0 (1-P.) (1-P)+P P P (1P)
2 2
| D Pr 0 0 2Pr(l_Pr) (1-Pri_J
¥ where now n represents the fact of adding one copy and ¢ the
fact of erasing a copy, no matter in which computer these
_ actions will take place.
‘/ As an example let us see that if fact PAA = (l-Pf)z(l—ae).
We can write from the properties of the merging process
g T PAA=P1'1+P1’3=P3'1+P3'3 (5.75)
where
= (1-p) 2(1-
Pl,l (1 Pf) (1 ale)
2
P = (1-P.) €,0,8
L 9 B X (5.76)
‘ P3,l (l—Pf) £,0,0
: 2
} P3'3 (l—Pf) (1-a29)
: omitting the indeces, that we saw are now meaningless,
: Py (1-P) ? (1-a6+ £ a8) (5.77)

but because the decision of going to state 0 is not an admis-

sible decision and, furthermore, we do not want to allow

contradictory decisions (erasing and writing simultaneously)

we have

B e
i
By O MR, T e

e R

< A

139
and then
_ G - S =
PA,A = (1 Pf) (1-a8) (5.78)
We can see that with this rearrangement we have reduced

a 9 state system to a 5 state system.
Foer=3the reduction is even more drastic. The states

can be grouped as follows

Néw state Grouped state Representative of
the new state

0 0 (0 0 0)

A 1,3,9 (1 0 0)

B 4,10,12 (1 1 0) (5.79)
(o 13 (1 11)

D 2,%,6,7,11,15,18,19,21 (0 0 2)and(1 0 2)

E 14,16,22 (1 1 2)

F 8,17,20,23,24,25 (0 2 2)and (1 2 2)

G 26 (2 2 2)

So we had a reduction from 27 to 8 in the number of

states.

1
a

2

1
€

2
>

The

Now we had to define the new control variables.
add a new copy
add two new copies
(5.80)

erase one copy

erase two copies

process can be easily generalized.

=

IRz

Bl R

ARy

e

s

140

CONCLUSIONS AND OPEN QUESTIONS

Throughout the chapters of this thesis we have developed
a new model to handle the problem of optimal dynamic file
allocation. The model had to be general enough to allow the
study of problems such as: dynamic allocation with possible
computer failure and optimal allocation when we have res-
trictions in the state space. The restrictions may take
the form of a maximum number of copies allowed in the system
at any instant of time or not allowing copies of the file
simultaneously in two or more given computers. The use of
two types of control variables, one for adding new copies
to the system (a), and the other for erasing copies (c),
made easier the task.

First we stated the working hypothesis (sufficiently
high link capacities, sufficient memory sizes, stochastic
independence in the requesting process from different com-
puters, etc.) that could allow us to work with each file
separately and to model the system as a Markov process.

Having characterized the evolution of the system under
a Markov process and being interested in finding the optimal
dynamic file allocation such that the total cost were minimized
we found in the stochastic dynamic programming an excellent
tool to solve the oroblem.

We defined the state of the system as a vector with
a number of components equal to the number of computers 1in

the network. In that way each component of the vector would

e A T WA e AR T T

St N eadaiith

‘\N. —— e

141

characterize the particular situation of each computer. We
would have a 0 in the ith location if computer i were in
working condition but with no copy stored in its memory;

a l if computer i had a copy in its memory and a 2 if computer
i were out of work (if failures are included in the model).
With this representation we could think in the state of the
system as being a base 3 reproduction of a certain decimal
number (or base 2 reproduction when the probability of failure
is considered equal to zero). Therefore we could identify

the states with this number.

We showed that the states and control vectors exhibited
some properties that allowed us to write mechanically the
transition tableau. This transition tableau has proved of
great utility in writing the recursive equations generated
by the application of dynamic programming. In fact we
found some rules that made it possible to construct algorith-
mic flow-charts to compute the transition probabilities in
a very efficient way. Perhaps one of the next important
points related with this algorithmis its property of being
totally general as far as the number of computers is concerned.

We have also seen that updating traffic generated at
some or all of the nodes can be easily incorporated in the
analysis. We have given flow-charts showing how all these
terms can be calculated in the same way as the per unit time
costs.

One of the reasons why the flow-charts were found to be

quite efficient is because they compute only the nonzero

. e D AR T g AT I R T b Sl e S B S

o I p————

-
g

it e, i S

e
S

142

elements of every matrix and vector. This is an important
fact if we consider that, for instance, in the transition
matrix only approximately 30% of the components are nonzero.
A flow-chart for the whole optimization process was also
presented.

After the complete introduction of the model we applied
it to several examples. First we consider the case of time
varying rates with no failures and no updating traffic in
the network. We studied for this case how the state dyna-
mics changed as the storage cost was increased. The analysis
confirmed the intuitive point that the maximum number of
copies needed in the network decreased as the storage cost
increased. We also compared, for this case, the dynamic
analysis with some static analysis, We plotted the curves
of total cost-versus storage cost for the static and dynamic
analyses for two examples with different rates but with the
same average rates over the period of operation. It was
found that the curves for the dynamic analysis were very
close. A third example with higher rates were also plotted
showing higher costs.

Later on, the case of constant rates with updating traf-
fic and no failure was studied in great detail. It was
shown that for this case the "irkov process fitted into the
special class of Markov chains with a trapping state. This
fact was used to derive a certain number of properties. One

of the proverties is that these processes with a terminal

i 0, T T YO g A T

el i e st T

T Trese—

st

?

-t 2

cost vector equal to the immediate cost vector do not present
any transient in their decision policy. Furthermore, the
minimum expected cost increases picewise linearly with time 1

to go. One important outcome of these two results was to

find some expressions relating the trapping state and the
optimal initial state with the storage cost and the updating
ratio. In that way we could study, without actually implement-
ing the dynamic programming algorithm, how the optimal
allocation changed as we vary either the storage cost or
the updating ratio or both. Curves were also given to show
the evolution of the total cost versus storage cost taking
the updating ratio as a parameter, and the total cost versus
updating ratio taking the storage cost as a parameter. It
was shown that due to above mentioned properties, those
curves could be drawn without actually using the dynamic
programming algorithm.

Finally the case of nonzero failure probability was studied.
It was shown how an increment in the failure probability may
increase the number of copies to be stored in the network at
any time. It was also shown how, in general, variations in

the probability of computer recovery do not have a signifi-

~cant effect on the optimal decisions if the failure probability

is reasonably small. Perhaps one of the most important find-
ings for this case, that could not be proved analytically
though, was the fact that taking the per unit time cosc as

the vector terminal costs the process converges very quickly

to the steady state decision. This is an important fact

€ that could save a lot of computation and would avoic the
? need to use the Howard algorithm. Otherwise Howard's algorithm
could be used efficiently while taking advantage of the fixed
; zero position in the transition matrix and the fact that some
of its rows are identical.
As it was pointed out earlier, one of the difficulties
that the finite state model rises is the fast increase in
the number of states when the number of computers increases.
' To overtake this difficulty a suboptimal method based on a
} completely simmetric network which can be thought as an

approximation to the actual network was suggested. This

approximation provides a reduced Markov chain whose state

"'
e

are collections of the states of the original process.

The reduction in the number of states for NC=3 was from 27 to 8.
\ Some points remain still to be studied related to dynamic
file allocation. As mentioned before, we found some con-

£ vergence properties that could not be proved analytically.

Furthermore other suboptimal models can be of interest for

the case of large networks. For example, some a priori
calculated bound in the maximum and minimum number of copies
could reduce considerably the number of states. But per-
haps one of the most appealing topics to be pursued in this
area is including the situation when the rates of request are
not perfectly known in advance. The main goal then would

e to try to generalize Segall's results 11 for this problem

o

SN N o R T o T T S

145

L

to a broader framework as the one presented here for the case

of deterministic rates. With this approach, one could also

PUNSSRERESSIS PSS S CSe—"

F investigate decentralized schemes for dynamic file allocation
E : where the decisions at every time, whether to write or

erase a copy, are done locally by each computer and all

E computers work in a team to minimize the overall cost [28].

- S T e 4 T SRR L1 SO

\“a-—-——- e

i

PO T

APPENDIX A

Transition Probabilities for NC=2

We defined

Pyj(tou) = Prob{Y(++1) = j ¥Y(t) = i}
In particular

P,, (t,u) = Prob{Y(t+l) = 1 ¥(t) = 1} =

= Prob{Y(t+l)=1 !(t)=1,nl(t)=l}Prob{nl(t)=l Y(t)=1}

+ Prob{Y(t+1)=1 ¥(t)=1,n, (t)=0}Prob{n, (t)=0 Y(t)=1}

but

Prob{nl(t)=1|Y(t)=l}= Prob{nl(t)=l}= 8, (t)
Prob{n, (t)=0|¥(t)=1}= 1- (t) :

Prob{Y (t+1)=1|¥(t)=1,n, (£)=1}=(l-a; (t)(1-€, (¢t))

Prob{!(t+l)=1|X(t)=],nl(t)=0}= 1

therefore
Pll(t,u)=(1—al(t))(l—ﬁz(t)) 8,(t) + 1-8,(t) =
=(1—%}t))el(t)-(l-ul(t))ez(t)el(t)+l-61(t)
but (l—al(t))cz(t) = 0 for any value of al(t)
and cZ(t) in the control space then
Pll(t,u) = l-al(t)el(t)
In the same way
Py, (t,u)=Prob{Y (t+1)=2]Y(t)=1}=
=Prob{¥ (t+1)=2]|Y(t)=1,n, (t)=1}Prob{n, (t)=1}+
+Prob{¥ (t+1)=2]|Y(t)=1,n;(t)=0}Prob{n,(t)=0}

but Prob(!(t+l)=2[¥(t)=l,n1(t)=01= 0

7 s . B PO T N T G D

P Y TR IR TR T T T A T T

therefore

Py, (t,u) = aj(t) €,(t) O (t)

with the same procedure

g P j(tyu)= al(t)(l—ez(t)) 8, (t)
{ P,,(t,u) = g;(t) az(t) 8, (t)
!
! P22(t,u) = (l-az(t))(l-el(t)) Gz(t) + 1-92(t)
= l-uz(t)ez(t) because el(t)(l-az(t)) =0
;o P,y(t,u) = a,(t) (1-€, (t)) O,(t)
! Py, (t,u) = €, (t) (1-e,(t)) = €, (t) because €, (t)e,(t) =0 é

! Pyy(t,u) = €, () (1-gy (£)) = €, (t)

A) Poglteu) = {l-e (£)] (T-e)] = J-%, (k)2 (¢)
'.-'

o £ .
7
- -
= S > S— . _

.
- -
5 vopg ol AN

'L
@

u

-~

._. ..“v
PR IPL A |

g
. -

I — e —— e

1438

APPENDIX B

Backward Equations for a Network with Two Computers and the

Restriction of Only One Copy in the System.

We saw in section III-3 that the backward equations
for the case NC=2without restrictions in the state space
were

*
[vl(t) C,+C,,0, (t)
VE(t) | =]C +C 0, () |+

Vg(t) C1+C2

1’“I(t’91(t) e;(t)ai(t)el(t) (l—es(t))ai(t)el(t) Vi(t+1)
e;(t)ag(t)ez(t) l-ag(t)ez(t) (1~ci(t))a5(t)92(t) Vi(t+1)
e{(t) ei(t) 1-ci(t)-e5(t) vg(t+1}

If we restrict the system to have only one copy at
any instant of time then state 3 is not allowed and we have
to do two changes according to section III-S5.
1) we eliminate the last row of every matrix in the
equation
2) we add the probability of going to state 3 to the
probability of remaining in the previous state.

Doing that the transition state becomes

-

e 0, T g SR KPR e T R

s

149 'l!

l-alel+(1—cz)u191 ezalel 2
€229, 1=058,+{1¢,)u,0,
i
= l-ezalel ezalel a
€1°292 1-c1a292
Realizing now (looking at the tableau of section II-4) 3
that for any allowed transition a, = €, and €, = a, we

can write

Bghy = 9

%2
and we arrive to the logical and expected result that we do
not need the erasure variables. With this simplification
the recursive equation is
* e
vie)]| _[c,4c,0, 0], [1 (86 (1) a (t)e (1) | [vi(esn)

Vﬁ(t) C +C1292(t)

1 Lo.z(t)ez(t) l—az(t)ez(t) Vz(t+1)

that is the same equation of ref. 11 except for the switching

of subscripts due to different state definitions.

" ' ;
¥
E ‘
{
-9
0 |
4 {
3 |
{
{
1
|
i
{
by &
.
E
i
:
:
$

BRI A T

150

APPENDIX C

FLOW-CHARTS AND SUBROUTINE FORTRAN LISTINGS

nooud TR ATI 11t
m%w_‘_mu& 900 0L FIVIVAY AJOY e

w AONILNOD 612
(VISNI)D41IS0NS =(VISNI)AA
dOERVYI= (VISNi)SIVIS
(LSOJS ‘dOEMVT1 1aN*A*VIFHI VISNI'H N) NMOY 11VD
W’L=VISNI GILZ Oqa
II-0dHZIL=3RIIR
OdRIIN*1=1II (€2 OQ
(ID’D*W*N*VI3HI*SD) SOTVD 11VD
(LdN*ID*VYIAHLI’OBY*W’K) 4VHIdN T1VD
GZ°0+V=Y
(N°L=1°I) (0SOL°T1)31I¥m
(W°L=I°(I)A) (OHOL°T)IIIEA
(W°L=1"I) (Q€OL’T)3LINM
obd’v (09%0L*T)alrEnm
ANNILROD 9
(N°L=C° (L) VIAHI) *SY (060L°T)IIINM
(NL=T3°TX) (080L*1)31lI¥M

3

5

!

i~ IO’AH’N*VIFHI’SD) SOTV¥D TIVD :

o {-0dWTL=0dRELN M

¥=SD m

6*1L=2I 0hZ Oa m

3 ‘0=% j%

S*L=SI (92 oa $

: *0=0HE E

*1=1d i

L-(NxsZ) =W ¢

(N’L=0’ (P) VIZEL) (0LOL’S) avay :
_ OdWEII’N (0001 *M)gvay
w_ 5=
9=1

(h9) AN’ (n9)D°NIN’ (19)1an’ (h9)A* (0L) VITHI TVZE

(CL)ZAI*(n9) SIVIS*CANTIL’ICHA ¥ISAINI

123d TVN¥Z 1X3

SY3LARVEVA INVISNOD ANY (h-III°*SId JEVHC-#O1d) SI¥NTIVA

ON hLIIAM YHCMLIAN V ¥04 SS3O08d NCILVZIWIIAC FHL 40 WYEO0Md NIVH

o

e e e e e - g
A3) “

2 -

RN, 7 T P T T AR L .4!; i s

B ————

NOILLONCOM] J1E1931 AT LIRY3d
104 $300 904 0L 95@VTIvAY Ad09

ang

dols

- (Z°640L°XLL*€I) L¥R¥0Z
n (BIO0L*+SELVY SRILL,)IVRY¥OI

(Z°9dGL Lhl’s+4) LYNEOL

(Z°%4 ‘4= OILVH SHIIVAGN «°X0L°Z°nd’¢=1SCD 3OV¥OIS .)IVRWYOL
(Z1Si °91/ +SALNLIS 40 NOIINT0AI dWIT) IVHHOJ
(2°94GL°LHI° 4 SISOD TYNIRYAL JIVRY¥OL
(SISL’X0h) LVHY¥OA

(ZIGL XL’y) IVRYCA

(0 °Gd91i) I¥N¥0d

(EI2) lvRa0d

ZONIIROD

ANNILNOD

GZ'0+0HY=0HY

ZONILNOD

dNNILROD

W°L=I'(I)A) (CLOL°T)ILII¥M
W*L=1°(I)SIV1S) “‘aN1IR (QZOL°*1)2L18M

(¥¥) AA=0X) A

06014
osol
0LOl
0901
0s0L
cuct
0EOlL
czot
oLot
coot
R4

€92

onc
0€C

0ze

AR R

wp
i
i
g

it R

,,M § A.. 1 .ww..w‘m .rn.r
,\.b. ;.(‘ ,

L |0 300 00d 6L TEVINAY 1400

ana

NENIEY
dNNIINOD 91
JONILROD Gi

43LNI=(r) ZER

(rr)Zen=(1) ZaRr

(I) ZEN=8F IN1

L4I-WOIN=L
ZN’L=1 S| od
¢/WOJN=0DN
91 €I 0% (1°IT°WOSN)LI g
L 0l 09
0=(I)Z&R
i b+ I=1
2 8 CI 09 (RCON'TOD°I)AT L
021=(1) ZaR
LeI=I 01 i
S 0l 09 §
02I=aN 3
L +1=1I m

0L 01 0£ (Z2°l11°0l1) 4I
(001Is2) -aN=(I) 28R
¢/QR=001I ¢
1=I
N=aR
1 (QL) ZEN NOISNZNWIGA
(Z-0’H-V)8»TV¥3¥ IIDIT4RI

(CEN‘WOCN’N) SITd ENILOO¥ENS
ININOANOZ HI-1 @HL SI (I)Zem

SIIOIA RCCN HIIM 2 ZSVYE NI N 31I¥M aNIInO¥ENS SIHL

0o

T T — Vo=

w4

g

f ny TN g s
NOILOROONd 21977 AT Lllw3d
INY O7AN BN N 949
10K $300 900 OL F3aVIVAY AdDD
CN3
fil 84
(€Ldze’zi*ni R1
dCCT'SNY LN ice
(ggav’2v) 0’s hEY
o = | 118
dNO® * DY ES
SNY0Y ‘D% 81
l€°s 18BS
LN 103¥S
‘g gs d001
* fL°¢) s*uaay 1
= (400aY¥ ‘0) 0 *SKv N 1
tL’c) n*uaay ; 7
(4aa¥’0) 0 °’R 1
(L*0)0’vaav 1
sbed="3NO0Y 1
L uca]
" nda N
3 0oz SNYNX
rd noa dNOB
6 aca gaay
ot noz asve
aSVd’» ONISO
0‘asva y1ve
(gLdzeze*nt RIS
Ly vls sliis
'SLI6s ANIINOVENS 4C NOISHZA ¥3AT1ERASY o} }

G —

W.h., r.» !wmty'f .
£ ik’

Hﬂh 7,um aad 01 41

!v..» v

155

ERSEErE o, e i Sl i ae e kS L RN, 1 s el ¥

M:‘>q »m:m

¢/DN=COR

L CI 09

L+4CN=0N

0=1(I) ¢ar

t+I=1

8 CI 05 (CN°03°1I)dl

6 ClL 09

L =v¥a1

CJOI =(I1) can

S Cd 09

0ZI=0R

9 CL 09 (g°11°001)dI

l+I=1

L CI 09 (L°02*v3aT)dI

L+ZH=2R

€L CL 09

L+LR=LN

£EL 0l 09

L+CR=0R

ZL’LL’ctL (L-(1I) can) ax
(COIxt) -aN =(I)€AN

€ /0N=0D1

0=2R

0=LN

0=0ON

=1

C=Va1

N=aN

(0O() €GN HI9FINIT
(Z-0’H-%) 6xT1Yd¥ IIDITANI
(ZN’LN’ONR‘EAN’R*DOR) €2SVE FNIIno¥EnsS
€GN NI S.C 40 HIEROR =2N
€N NI S«l 4C ¥Y3GRON =N
€N NI S0 40 YIGHON =ON
ANANOdROD HI-I FHL SI II)cdRm
SININOAROZ CN HLIM ¢ 3SY9 NI N FJIIUM ANIINONENS SIHI

mo S 5 k ?Jl.ﬂ

€l
4}

il

ciL

vovovouov

pa TVOOT) KTI LINEN
00 UL TIVINAY Ad0D

- oot -

ang
NENL3Y
4ONILNOD SI
Y3dINI=([) ER
(r)eaN=(1)€dN
(I) cER=¥EIRI
—.OHOUZNﬁ
03N‘1=1 St od

MHOLLD G

a
Ny oeInn
st M,.ﬁ:....

'} il ; : 1}
J1givdil Al .:.. Lissudd

a_
Jad OL J1dVIvAV Ad09

and
NENI3Y
dONILNOD 02
¥=1(I) 1dn
IOl N# (F)VIAHIL»OHY+Y=Y Ol
L-LN=IN (}°Cd°(r)2€1)dl
LI=LN
SR’t=r QL OaQ
ANNILNOD S
L+1I=1I (L°0%°(¥) 281) d1
CN°L=N § Oa
(28I°ON°I)SII8 11VD
0=4I
=\
R’L=I 02 oqa
(01)261° (OL)V¥IAHI*(h9)1dn NOISRIAWIQA
(LdO*1D*YIAHL‘OHY’N*DOR) 4VHIAL ANIIpO¥ENS
SAYNTIWd ON HIIM NHOMLIN V ¥CJ DILAVHI ONIIVAdLN S

A b AN o AN o A b O Rl 5 s e MR 458 i ORI o s bl 15

_,“..,)_M:J.),... 1A TY w..:nb b.

»oﬁﬂu Gt 01 0f (0*aN°r)dl
GE Cl 09 (0°03°uIldl
FONIINOD OF

((VI)VIgBLIx (M)2aP+ ((VI)VLABL-"L) x((d)780-1)) s¥=¥

(M) cdr=(¥1) 291

(%) XOUN=VI

IN‘L=Y 0€ Oa

*L=V

(ZEC’IN‘CL)SLIE TIND

\-cre=r

dN‘’L=rC Of OQ

INxxZ= dN

L=81 (IN°*OF°*LN)dI

0=81

0S¢ Cl 0Y (0*0d°*IN) 4l

ZNNILROD Ol
I=(IN) XLCVUN
L+IN=IR G

0L OL 0S (L°03°(I)zaN)drl

L+LN=LR

1=(1)z81

0L Ol cc (Q°*Ca*(1)eu1)dl

0= (1)z91

ON‘L=1 CIL oa

0=LK

0=IN

; (Z¥T1°DON’ERYT) SIIE TIVD

*0=8¥%

W' L=8KWYT QL OQ

‘00000001 =0

(ZBN*DN’N) SIIE TIV¥D

123c’ (oL) zar® (OL) XGVR (OL) 2L T (OL) 2V T° (OL) ZEN GELTINT

(19)1dn’ (h9)A*(H9)1d° ((L) VIZHI NOISNIWIQ

3 (1SOSS’d0ENYI‘IdN A VIAHL N ’R*DON) NMO¥W 3INILPO¥SNS
! DI4dVEL ENILVAAN SNIGNTIORI S
€-111 €Id 40 LEVHC-MOTd AKHL Ol SANOJSI¥YCZ ANIINO¥ENS SIHL B

158

t
Mﬂ.,
’ﬂ
ww
5

o

‘000 0L TIEVIVAY A0

Xd

b

ang
NEOLZY
0=1S02S
d0¥1=4CENV1
FORIINOD OL
dHVTI=doN1
gV=0
CL CL 09 (0°dao*gvldI 09
(GRVT1) idN+ (ERVT) A=8Y
*L=(dRY1)1d 0S
09 Ol 09
IONILROD Oh
((1) lag+ (1) A) » (1) Td+aNV =GV
V=(1) Id 9¢
(OR*Z81%Z) 1030a=1 SE
9¢ Cl 09
N=1

2
]
:
3
;
i

T ¥

o,

T

Sl st o Ay A B e 5

aminnneu Tim

N 3
Nmonaoed T kT pgs
T vLaUU vUld UL 3G .«.:?,Mw »mcu

160

anz
NEN1dY

IONILNOZ 08

AONIINOD OF

ID» (L) VIZHI+ (I)D=(I)D (Z
[0t OL 09

s+ (I)o=(1I)D ¢l
: QL‘Q2’0z (M¥)dr
i (C) JISTI =¥
] N'l=C 0f Od
3 (II8I°N*I)SIIg T1V¥D
| 0= (1)
W'L=I 08 od
, (OL)LIEI*(19)D*(01L)¥IZBI NOISNAWIA
b S!D'HUN’VYIAHL’SZ)ISI2TYD ANILOOYEAS

i SFdHTIVS ON BLIM NYOMISIN ¥V 804 SISCO AWIL-LINO- HEd S5

:
o
.ﬁ‘
L
i
&
:
3
2

1

N
nmmth

W IO0HB VIFEI ‘W ON) YELAO TTVD

IO AV *VITHL 0D 1D*SD W DON) LoDlNne 11VD

O=¥X

1-3NIL=8NILN

S*0+V=Y
JUNILIROD L

688868 =(1’L)090I1S

(I)a=(I°L)AA

R’L=1 L oaq

(LLOL’9) 3llum

(GR1LL=TX*TN) (0LOL“*9) FLIYM

(¢JORB’Y (0S90L°9) IIIuA
Z0NILNOD 9

(OR’L=C “(f) VI3HL) ‘ZK1IL (0601°9)ILIEA

(OR°L=1¥°13) (08GL*9) ILI¥AM

g4d’ 4d (2001 “‘9)3l1iza

IOR“L=r’ (r)cZ) (LOCL®9) 3lIam

9 ¢l 09 (p*08°¥)¥) 41

(A*VX*YI9HL ‘0D °1D*'S2*W’ON) SOOLNDd T11VD

L=¥)

¥=S>

2°1=SI 092 oa

o=V

*1=1D

(ON*1=C ‘(r£)o0Z2) (plol’slavas

(CN’L=1 *(I)cB¥) (cLoL’S)avay

SHax€ =N

(CN’L=I’(I)vIaHl) (otoL’g)avas

¥4d°dd’aNIL‘ON (0001 ‘G)avaE

(0SL°GL)0SCIS “3WIT ¥39AIRI
(0sZ ‘0SZ) 8° (osL’st)d1a’d

4 (064) 103 (0SL*SL)AA’ (CSLIA’ (0L)OZ* (OL)OHYE* (0L) ¥IEHI NOISNAWIA

1030 ¥3a°alAal
I8 TNUREILXT
(9-AI°9Id LYVHO-pPCTd) SIENTINI HIIM

NJOMLAN V ¥Cd SS3D04d NCILVZIWILdO FBL 40 RVYH0Hd NIVH

162

F1I0d 1 iy

LR AP £

anNd

VY d0l1S
,M >;mu (T°8401°XL1%21°X1) Lywyod
(BI0L*+S3LYNY dNIL) lyWEoa

((s Cu CY ISC2 0)9%y AIVIS « “XL) lwwyod
((X6°CI’X6)9Y9* s d3LS +°X1L) luw¥Od

(Z°hd’ 4= OLLVE ONIIVCAAN +°X0(°2°hd’e= LSCI ALYUOIS +) L1¥RBOL
((XE*Z1°xe’9°21a)S*YE*nI®) LYW¥O4

((XG*9°Z1d4°X€)G*Z1°X2Z) 1lvWyod

(¢+STLVIS FATILNDASNOS NIIMLAE ANTYA NI SAINIYBAAIA) IvWy¥od
(C*vd91) LyW¥Dd

(9*sd®s=¥ds*X0L ‘S cd*y=d4d) IVW¥Od

(2°8d0L°*s =(I)COLs) LVRHOd

(€*0LdZ*<cIZ) IYWEOd

FONILNOD

c*0+ (NT)OHY=(NT) OHE
DN’L=NT 052 OQ
ZUNILNOD

(@RIL*Z=T3° (I*T¥)d1I0) ‘11 (ShO!

‘g) ILIUM

l-I=1I1

W'L=I Ch<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>