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be updated) will dictate decreasing of the number of copies.7Furthermore if
the parameters of the system are time-varying, or if the~~~a~t pattern of the
rates of demand , is unknown or -s~~e. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ of node or link
fail~fe~~ 1s ixpected, then sane kind of dynamic approach must be used.

9rhis thesis considers the problem of optimal dynamic file allocation whe~
more than one copy is allowed to exist in the system at any given time~ A general
model to handle this problem including updating traffic and the ~~sa1bility of
node failures will be developed. The evolution of the system is represented as

- 
a finite state Markov process and Dynamic programming will be used for the solution
of the optimization problem.

~The use of two types of control variables, one for adding new copies to the
system and the other for erasing copies , gives the model certain properties that
permit the construction of an efficient algorithm to solve the optimization
problem. Within the framework of the developed model the addition of the updating
traffic d the possibility of node failures present no important difficulties.
Furthermore the model can i~*j,ly handle the problem of constraints in the max imum
or minimum number of copies.~~n the last chapter the model and algorithms are ap-
plied to several numerical examples.
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ABSTRACT

One of the main reasons computer networks are a major
area of great attention and development today is their ca-
pability to provide the facilities for common use of data
be~ses and information files by all comDuters in the system .

When a file is used by several computers in the network ,
it can be ~to -ed in the memory of at least one of them and
can be acces:~ei by the other computers via the communication
channels. In c eneral the cost or querying is reduced as
we increase the number of copies in the system . On the
other hand , storage costs, limitations on the size of the
memor ies and the cost of updating (every copy must be updated)
will dictate decreasing of the number of copies. Further-
more if the parameters of the system are time-varying, or if
the exact pattern of the rates of demand is unknown or some
non negligible possibility of node or link failures is
expected , then some kind of dynamic approach must be used .

This thesis considers the problem of optimal dynamic
f ile allocation when more than one copy is allowed to exist
in the system at any given time. A general model to handle

• this problem including updating traffic and the possibility
of node failures will be developed . The evolution of the
system is represented as a finite state Markov process and
Dynamic programming will be used for the soluLion of the
optimization problem.

t
The use of two types of control variables , one for

adding new copies to the system and the other for erasing
copies, gives the model certain properties that permit the

- .,,~~~~
,

, construction of an efficient algorithm to solve the optimi-
zation problem . Within the framework of the developed

-
~~~ model the addition of the updating traffic and the possibi-

l i ty  of node f a i l u r e s  present no important d i f f ic u l t i e s .
Furthermore the model can easily handle the problem of cons-
traints in the maximum or minimum number of copies. In the
last chapter the model and algor ithms are applied to sever al
numerical examples.

Thesis Supervisor : Adrian Segall
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CHAPTER I

1 INTRODUCTION

I-i General Setting and Description of the Problem

“The time sharing industry dominated the sixties

and it appears that computer networks will play a similar

role in the seventies. The need has now arisen for many

of these time-shared systems to share each others ’ resources

by coupling them together over a communication network

thereby creating a computer network” (L. Kleinrock fl]).

We def ine a computer network to be an interconnected

1 group of independent computer systems communicating with

each other and sharing resources such as programs, data ,

hardware , and software.

The increasing interest in this area is the cause for

• a continuously growing number of articles, books and projects

related to computer networks [21 
- [7] , [24] . The reasons

why these types of networks are a t t rac t ive  are widely

exposed throughout the literature in this field.

• 

‘

~~~~~~~ 

“ a) sharing of data base , hardware resources , program

and load

• b) remote data processing

c) access to specialized resources

d) recovery of in fo rma t ion  from a remote node in case

of node f a i l u r e
:~~

~~~ 
____- --.—.-—-—-— —-..--——.- --•*-.-—-‘————-—--—-.-- -- .- . .

_ _  
— ‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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V

e) decentra lization of operations and need to trans-

fer information from one point to another etc.

One of the main reasons computer networks are a major

area of grea t atten tion and development today is the ir

capability to provide the facilities for common use of data

bases and information files by all computers in the system.

Th is work deals with the problem of the informa tion alloca-

tion to be shared by the computers in the network . Such

a network is displayed in Fig . 1

• 
. When a f ile is used by several computers in the network ,

it can be stored in the memory of (at least) one of them

1’ •~ and can be accessed by the other computers via the communi-

cation channels. In general , the cost of g~erying is

reduced as we increase the number of copies in the system .

On the other hand , storage costs, limitations on the size

of the memories and the cost of updating (every copy

must be updated) will  dictate decreasing of the number of

copies.

The problem of how many copies of the f iles are to be

kept and their allocation is the main subject of this Thesis.

4 : 1 Most of the previous work in the area of f i l e  alloca-

tion has been devoted to the analysis of the problem under
‘1

static approximations, that is , assuming that all parameters

of the system are known a priori and basing the design on

their average value over the period of operation of the

system. The location of the files is then considered fixed

-t
- ~~~~~~~~~~ ‘ 

- . . -

~~~~~~~~~~~~~~~~~. 
__________ 

_ _ _ _



_ _ _  —•--~~~~~~~~-- -~~~~~~~- - . —-~ - - -~~-- . ..,-~~- —.-• . . •1
10

MEMORY

MEMORY

COMPUTE R
OMPUTER’ ‘I

MEMORY

r .~

I) 

_ _ _ _

I 
OMPUTER

MEMORY

FILES 

LJ 4EMORY

~~~A 1

I How many copies of each f i l e  do
• B we need in the network?

L i
At which computer do we have to

‘ _____  al locate  each copy?I c  I
‘1 For how long must a certain allo—

• cation dis t r ibut ion remain
unchangeable?

etc.
b

Fig .I~.l. General representation of a computer network
r e f l ec t ing  the problem of f i l e  allocation

• 
——.•- •.-• • ‘ •  • ‘.• ,—.‘ •-‘•-,..-•——-—.--•- - .  . —- - - - , - -•

• • •~~~~~~~~~~ • — - - . ~~~~. •- ..— — . • — - - — ~~
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for the whole operating period.

An early work in this field was a paper by Chu [8].

The criterion of optimality used in [8], is minimal overall

operating costs. The model considers storage and transmis-

sion costs, request and updating of the f iles and a limit

on the storage capacity of each computer. The model

searches for the minimum of a non-linear zero-one cost

equation which can be reduced to a linear zero-one program-

ming problem.

Another work is a paper by Casey [91. He considers a

mathematical model of an information network of n nodes, some

of which contain copies of a given data file. Using a

simple linear cost mode l for the network , several properties

of the optimal assignment of copies of the f i le  are demons-

• t trated . One set of results expresses bounds on the number

of copies of the f ile that should be included in the net-

work , as a function of the relative volume of query and
t

update traffic. The paper also derives a test useful in

determining the optimum configuration .

Of very recent appearance is a paper by Mahmoud and

Riordon [22] . In this paper the problems of file allocation

and capacity assignment in a fixed topology distributed

computer network are simultaneously examined . The objective,

in tha t analysis, is to allocate copies of information files

to network nodes and capacities to network links so that a

• , ,•. . 
~~~~~~~~~~~~~~ ~~~~~

- . —•---• .—
~~~~~

- — —•-•- -•--—.-----—-— - — • - -
~~~~

—— —

~~~~~~~ ~~ ,•J~T ~~~~~~

~~~~~~? ~~~~~~~~~~~~~~~~~~~~~~~~ 
‘
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,
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minimum cost is achieved subject to network delay and file

availability constraints. The deterministic solution for a

medium size problem is intractable due to the large amount

of computation so tha t an heur istic algor ithm is proposed .

A quite d i f f e r en t  analysis in which the important

quantity to be optimized is the service time, instead of the
• 

• 
operating cost, is done by Belokrinitskaya et all. [10].

-• The analysis results in a zero—one nonlinear programming

problem (that can be linearized), similar to the one in [8].

1 In the above mentioned works, the problem is considered

• under static conditions and using average values of the

parameters .

If the parameters ~f the system are time-varying ,

however , or if the exact pattern of the rates of demand is

unknown or some non negligible possibility of node or link

failures is expected , then some kind of dynamic approach

-
~~ mus t be used .

It has been only recently that the first studies of

these problems , from the dynamic point of view , have begun

to appear . In a work by A. Segall 
L~~~~lJ the problem of

r.
finding optimal policies for dynamical allocation of files

in a computer network that  works under t ime-varying opera-
• ting conditions is studied . The problem is considered

~1 under the assumption that the system keeps one copy of each

file at any given time. The case when the rates of demand

I i ~

—— — •----•- 
~~~~~~~~~~~~~~~~~~~~~~~ I

—
~~~~~-r~~-• ,

_
.
~~~~~

L , 

_ _ _ _  
_______________
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are not perfectly known in advance is also trea ted . Only

a prior distribution and a statistical behaviour are assumed ,

and the rates have to be estimated on-line from the incoming

requests.

The problem of optimally allocating limited resources ,

among competing processes , using a dynamic programming

approach is studied in [12]. A dynamic programming approach

• is also suggested for the problem of minimizing the costs of

data storage and accesses in [25]. Here two different types

F of accessing costs are considered . The accessing cost will

depend on whether a record is to be read or to be wr itten

(migration). A dif ferent approach to the same problem is

taken in [2~J . A two—node network with unknown access

probabilities is considered . The problem is to set up a

sequential test which determines the earliest moment at

which migration leads to a lower expected cost .

The present work considers the problem of optima l

: dynamic f i l e  allocation when more than one copy are allowed

to exist in the system at any given time . A general

model to handle this problem including updating traffic

and the possibility of node fai lures wil l  be developed .

The evolution of the system is represented as a f in ite-

state Markov process and dynamic programming will be used

for the solution of the optimization problem .

11

~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
- J ITI~~~-~~~~~~~~~~IIII
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• 1.2. Summary of Results

A model for the ana lys is  of optimal dynamic file allo-

cation is introduced . The use of two types of control

variables , one for addi.ng new copies to the system and the

other for erasing copies , gives to the model certain proper-

ties that permit the construction of an e f f i c i e n t  and rela-

tively simple algorithm to solve the optimization problem.

•‘ Among others , the algorithm is efficient due to the fact that

it computes only the nonzero t rans i t ion probabi l i t ies .  A

detailed set of flow-charts and Fortran program listings
L

are given for all the operations and calculations that take

p place in the optinv~za tion process.

Within the same framework the incorporation of node

failures presents no important difficulties , except for

• increasing the number of states. Some kind of constraints

in the state space, those that could be represented as

reductions in the set of admissible states , are also easily

handled by the model.

In the last chapter we apply the algorithms to several

numerical examples. For the case of constant rates of demand

with no failures in the computers the corresponding Markov

processes have a trapping state. For these processes it will

• be shown that the general dynamic programming algorithm

need not be implemented , and a much quicFer answer to the

optimization process can be found .

For the more (leneral case of constant parameters with

po3sibllity of node ailures i~~c1uded , quick convergence to

‘II 

I 
_ _ _ _ _  

_ _ _ _ _ _  _ _ _

t;2. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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the steady state optimal dynamic decision policy was found

for all examples.

Final ly  it wil l  be shown that having a completely

simmetric network (equal parameter values for all computers

and links) will allow a considerable reduction in the number

of states.

A more detailed exposure of results can also be foun d

in the chapter dedicated to “Conclusions and Open Questions” .

1.3. Chapter Outline

In chapter II we begin with  the description of the model.

We first state the general hypothesis and basic assumptions

to be considered throughout the study and continue wi th  the

description of the operation procedure . We indicate the

objective function and define the control and allocation

variables. The chapter ends with the definition of the

state and the description of the dynamic equations of the

system.

•;• In chapter III Stochastic dynamic progranuning is applied

to the model to determine the optimal allocation strategy .

First we will write the recursive equations for a simple net-

work with only two computers and then we will see how easily

these equations generalize to any number of computers. ~Je

f i n i s h  the chapter indicat ing how the model can handle  the

problem of certain constraints in the state space.
-1

In chapter IV we present the problem in its more general

_ _ _ _ _  7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.3



rr’~ ~~

- — - - - - — •  -. ----•  --- ---- . . 
~~~~~~~~~~~~

• 

I
16

framework with the inclusion of the updating traffic and the

possibility of node failures. As in chapter III, we first

write the recursive equations for a network with two computers

and then generalize them to any number of computers. At

this point we give a very detailed set of flow-charts , show ing

how to compute the d i f fe ren t  matrices and vectors of the

recursive equations and how to carry out the whole optimi-

-
‘ za tion process.

Chapter V deals with numerical applications. Using

the insight gained from numerical answers some additional

~
•. I

analytical results are developed .

A few pages dedicated to general conclusions and f u r t h e r

work to be done in this area will follow this chapter.
r 

Two appendices , A and B , expanding results  of chapters

II and III will also be added . A third appendix contains

a set of Fortran program listings correspondincr to the most

significant flow-charts of previous chapters. These programs

have been used to implement the numerical applications of

chapters V. Auxiliary subroutines are also listed .

- 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 
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CHAPTER II

DESCRIPTI ON OF THE MODEL

11.1 Characteristics, Basic Assumptions and Operation

Procedure

We shall make here several simplifying assumptions,

that are still consistent however with the models appearing

in real networks. We shall assume that the files are reques-

ted by the computers according to mutually independent

processes (with statistics to be specified presently) and

also that the fi les are suf f ic ien t ly  short. Moreover the

communication lines are taken to have suff icient capacity

and the computers suff icient memory , so that the transmission

of the file takes a very short time and there is no res-

triction on how many files a computer can carry . Under

these assumptions, it is clear that in fact the files do

not interfere with each other , and we can therefore treat
~~

- i
each file separately.

The analysis will be done in discrete time, assuming

the existence of a central synchronizing clock. It will be

considered that with previous assumptions the time interval

~ j  between clock impulses is long enough to allow the execution

of all the necessary opera tions to take place in it (request

arr ivals,  “reading ” of present state, implementation of

optimal decisions, etc.).

- 
-,w-’ ~~~~~ ‘ - - 

•

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In this chapter the possibility of node failures will

not be included in the model. This extension , together wi th

1 the inclusion of the updating traff ic, will be left to

Chapter IV .

We may summar ize the assumptions as follows:

I 1) No failures in the network (relaxed in Chapter IV)

2) Channels with sufficient capacity (or sufficiently

short f iles)

• 3) Sufficiently large storage capacity at each computer

4) Requesting according to mutual ly  independent processes

5) Files are treated separately (according to former

assumptions the f iles do not in terfere with each
I

other)

6) The analysis is done in discrete time

The proposed procedure is similar to that proposed in

reference [lfl , with the only difference being that we now

allow more than one copy at each instant of time (the way

the updating traffic is taken in consideration will be

described in Chapter IV).

The procedure is illustrated in Fig . 11.1 and can be

described as follows : Suppose a certain number of copies is

- stored at time t in the memories of a set of computers ,
~ I - i say I.  If at t ime t the f i l e  is requested only by computers

in the set I then no transmission cost is incurred and a

:-~ decision has to be made~ whe ther to erase some of the copies

• 
from I (with the specification of the particular copies to

• _____ ••

~~~

:••• •.

~ 
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-~~ 

_ _
- ________________________________________ ___________



r ~~ 

- 

~~~

‘— •--

~

--•-‘.• - ---- .- .--- ‘•--- •-•- -

~~~~ 

--
~~~~~~~ 

.- • —  •-- -- -

~~

‘.-—-—---——.•--- --

~

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.•

~~

—. . • , -—-

U 19

MEMORY I

Lcc~ 
~~~~ - — 

— 
— —

/ 
/ 

[~~~~
i—

~~~~~~ J 

-. — 
S.
-../ 

~Transmissiofl 
-..~

/ Requ~~t ~(costless) from ‘

/ from li Imemory i tO cOmPUter ’I\

Computdr i
~ Transmission

tO
hLE)

.-.

_ _ _ _ _ _ _ _ _ _ _ _ _  

‘
~~Request from
‘S

‘5
’

I ( _~~
)

Computer j

~rransmission ~Request from k _________________

\ o n the f i le  I

\ tok 
_ _ _ _ _

\ 
[MEMo~~

J

\~
\
Computer k
\
(
__
~%)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
Decision: where to keep

I copies of the 
+file at time t

f
MEMORY

Fig. 11.1. Illustration of the Operation Procedure
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be erased) or to keep the same number of copies. If, on

the other hand , the file is also requested by other computers

not in I , then the file is transmitted for use to these

computers and a new collection of copies, say J, appears

in the system at time t~ . A similar decision now has to

• be made but with the set J instead of the set I

The restriction of reallocating the file only in

conjunction with a regular transmission is reasonable for

this model , because if a change of location is decided upon,

one might as well wait until the file is requested for the
— 

I
next time by the appropriate computer, otherwise it is

conceivable that the f i le  might be transferred back and
Ii

forth , without anybody actually using it.

______________________________  

F)
11.2 Data, Parameters and Variables

In this section part of the notation used in the study

will be introduced .

~~ 
•~~ Consider a completely connected network of NC computers.

The requests of the f ile by the computer will be modeled

as mutually independent Bernoulli processes with rates

e . ( t ) , i = l,..NC, that is

P{n~~(t) = 11 = - 

~r {n.(t) 0) = e . ( t )  (2 . 1 )  1.
i 1 ,..NC

- - - . --
~~~~~~~ 

_ _ _ _
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where n . ( t )  = 1 indicates that the f i le  has been requested
1

by computer i at time t. The rates e1( t)  are assumed to be

known for all computers and instants of time.

We define the variables

1 if there is a copy stored at computer i at

• y1(t) = time t (2.2)

0 Otherwise

i = 1 ,..NC

The condition of having at least one copy of the file

J 

in the system at any instant of time can be analyt ical ly

expressed as

NC

1=1 

y
~~
(t) > 1 vtc[o.T] (2.3)

where T is the whole period of operation.

The operation costs are

C
~ 

= storage cost per unit time per copy at memory i

= communication cos t per transmission from computer

i to computer j

~~: i, j = 1,... NC i 
~ 
j

We will  assume C
11 

= 0 Vi

It is assumed that these costs are t ime—invar iant ;  the case

with time-varying costs can be handled by simply writing

Ci(t) and C13
(t) throughout the paper .

_ _ _ _ _ _ _  _ _ _ _ _  
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• 11.3 Objective Function

Supposing that the user accesses that copy of the file

that minimizes his communication cost and, denoting sim-

bolically by 1(t)  the set of nodes having a copy at time t,

we can write the expression for the total expected cost over

• the period ~o.T] as

T 
1

NC NC 
1

C = E~~~~ J ~~~ 
C
~
yJt)+ 

~~~ 
(1_y

1(t))n~~(t)min CkiJ 
( 2 . 4 )  •

~

~=o L i=l 1=1 kEI (t) J

The first sum in the bracket represents the total storage

cost at time t and the second sum is the total transmission

cost. We can see that summands contributing to the trans—

I mission cost are those wi th y1(t) 
= 0 and n1(t) 

= 1 only, that

is, those coming from computers that do not have the file

and have had a request.

The goal is to design a closed-loop control that will

dynamically assign the location of the file and will minimize

• 5 the defined expected cost. We introduce the control variables

in the next section .

11.4 Control Variables and Restatement of the Objective

~ • ‘~ Function

-
~~~~~~~ We will define two types of control variables. One will
‘

-
~~~~~~~ correspond to the erasure process and the other one to the

writing process. The separation of these two operations in

• 

• - 
_ _••-•.- • •  _ _

• - 
• .. .. . . -•• 

5 
• - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -—-• -  - -  -

- ~~~
---- - -5--. -5-- 
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in two types of control variables will simplify significantly

the amount of notation.

The variables are

1 — if the decision is to erase the copy from j

at time t~ assuming the copy was there at

at time t (i.e. y
~~
(t) = 1) (2.5)

0 — otherwise

1 — if the decision is to keep a copy in I at

time t~ assuming that the copy was not there

a1(t) (y1(t)=0) and there was a request from that

computer (n
~~
(t) = 1) (2.6)

• 
I 0 — otherwise

i = l ,..NC

These defini t ions require the introduction of the con-

cept of active control variables. It will be said that the

variable c
~~
(t) is active if y1(t) = 1 and that cz~~(t) is

active if y. Ct) = 0. Due to these definitions a. (t) and
1 1

c1(t) cannot be simultaneously active. From definitions

( 2 . 5 )  and ( 2 . 6 )  the nonactive variables wil l  always be

equal zero . Therefore only active var iables will be con-

sidered throughout the analysis.

With the previous notations , the dynamic evolution

of the system is:

I 

_ 
_ _

S
___•_~~~~~~~~~~~~~~~~~~~~5T~~~~ 

_ _ _ _
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a) y1(t+1) = y . ( t ) [1—E 1(t )]  + [1.Yj(t)]ai(t)n i (t)

i 1,1,..NC (2.lOa)

if f (right hand side) ~

b) y
~~

( t+l) = y . ( t )  i = l,2,..NC (2.lOb)

iff (right hand side of (2.lOa)) = 0

L j

• Equation (2.lob) shows that if our decision variables

are such that all copies of the file will be erased , then

I 

no decision variable is actually implemented , and there-

fore the system remains in the previous state. Otherwise,

the system evolves according to equation ( 2 . l0 a )  namely

computer i will have a copy at time (t+1) if

- • I) it had a copy at time t (y1(t) = 1) and the decision was

not to erase it (c 1(t) = 0) or

ii) it did not have a copy at time t and there was a request

• from computer i (n. (t) = 1) and a decision to write the
1

file into memory i was taken (ct
1

(t )  = 1).

- Th e optimization problem could then be stated as fo l lows:

• 

• 
Given the dynamics (2.10), find the optimal contro l policies

‘U
k

- 5.—— . - - ----5- —— —~~~~~~~~~ •, 
—-5—

L ~~~~~~~~~~~~~~~ - , - 
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i = 1,1,.. ,NC

ci~~( t )  t 1,2,. .T

• and the initial locations y 1( O ) ,  V i ,  SO as to minimize the

expected cost (2.4).

Hence we have a dynamic system in which the inputs are

a sequence of decisions made at various stages of the evolu-

tion of the process , with the purpose of minimizing a cost.

These processes are sometimes called multi-stage decision

processes rlsJ .

~~ 11.5 Definition of State and Dynamics of the System

Being at a certain instant of time, in the optimization

4 
process, the only information needed, given the fact that

the request rates are perfec tly known, is the identification

of the computers that have a copy of the file at that time .

With only this information we can continue the optimization

process and the past is inmaterial as far as the future is

concerned. Therefore the location of the copies at any

instant of time summarizes the information needed at that

instant (together with the rates) and the problem then is to

find an optimal policy for the remaining stages in time .

• 
• The state of the system will be defined , at time t,

as the location of the copies of the f i le  at that  time and

it wil l  be represented by a vector with NC b inary  components, 

-
- ‘ - 

_ .
_

~~~~~~~~~~~~~~~~~~~~~~~ •~~~~• _~~~~~~~~~~~~~~~~~~~~~
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having a zero in the places corresponding to computers that

do not have the file and a one in the places of computers

having a copy . These vectors will be named by the decimal
• 

number whose binary representation is the NC- dimensional

vector and will be represented by a capital Y.

Therefore the state at time t will be the column vector

y1(t)

(t) (2.11)
~~ Y(t) =

yNc (t )

or alternatively the state of the system at time t is m(t)

where

m(t) = decimal number with binary representation given

1 by the sequence y1 (t) y2 (t)~~~
yNC (t)

M = 2 ~~~ - l

- m = 0 will not be a valid state because it corresponds to

the case of having no copies in the system and this situation

• has to be avoided. Thus the previously stated condition

NC

I 

y1 (t) > 1

- is tran~~la ted to t h i s  n o t a t i o n  as m � 0

_ 
~~~~~~~~~

• IS. 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~-_ --~~~~~~~~~~~ 
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~. 4

V
The dynamics of the state are easily obtained from the

dynamics of the allocation variables: we only have to

substitute for each component of the vector defining the

state

(t+1) 1— Ct) 0 
~
‘l (t)

y2(t+1) 0 l— C 2(t) . . 0 y2(t)

= +

~NC
(t l) 0 0 0 - . NC(t) ~‘NC

(t)
- — — . -

0 . . 0 • 

1—~’1(t )  —

0 ct
2(t)n 2(t) - . . l—y 2(t)

+

0

• - 

0 ctNC (t)n NC (t 1 y NC (t)

(2.12a)

iff right hand side of (2.12a) 
~ 

Q and

Y (~~-l) = Y(t) iff right hand side of (2.12a) = 0 (2.12b)

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________
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I~

• To clarify further these ideas let us write the ordered

sequence of events that take place at any time t

- at time t the optimal e~~(t) and ~ (t)

• 
are computed

- at time t the requests arrive

• 
- at time t1 the optimal decisions are activated

• if in doing so the system does not go to state 0

(that is, if not all existing copies are erased).

Otherwise the system does not change state.

This sequence of events is illustrated in Pig . 11—2 .

I

• Calculate the optimal Activate the optimal
E~~~( t )  and a~~(t )  given Requests decisions if in doing
present states and arrive that the system does

I 
current value of the not go to state 0.
rates. Otherwise do not

change s tate.

Fig. 11-2 . Sequence of events at any time t

- • • • •••~~ •••~~~4~S~ S• ~~ U••___ . ~~~~~~~~~
___- 

— 
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11.6 Some Useful Properties of the Model

So far the main structure of the model has been des-

cribed . In this section, we describe some of the properties

of the model. First of all we will look at the transitions

• among states.

Recall from section 11.4 that the active variables are

defined as
• c1(t) is active if yi

(t) = 2.

• 

• cti(t) is active if y.(t) = 0

• Hence these variables are uniquely determined by the state.

For instance , having a network with five computers (NC=5) and

P being in state eleven (01011) the active variables are

State y1 y2 y3 y4 y5 
active variables

I = 11. ~ 0 1 0 1 1 ~~ a1 c2 a3 £ 4 £ 5

withct ’s corresponding to places where there is a 0 (no f ile

in the memory of that computer) and c ’s to places where there

is a I (there is a copy at that computer). The non-active

variables will then bec1
, a2, £3~ a4 and and we saw , also

in section 11.4, that their value is equal zero no matter

which decision is taken , so we can omit them.

Suppose now that the optimal decision at a given time is:

- erase copies from computers 2 and 5

- keep a copy at computer 3
3

or in terms of the control variables

1 .  _
~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



—5-— • — 5-—- ;. - ••• _ _ -- —5- - ---- .5— -5-——,-- ~~~~~~~~~~~~~~~~~~~ -. . •~~

u = 

~1 ~2 ~ 3 £ 4 C~~) = (0 1 1 0 1)

Thus , if there is a request from computer 3, the system will

go to state

• ~
‘l ~

‘2 ~
‘3 ~

‘4 ~
‘S 

_________  
state 6

• 5 0 0 1 1 0

- 
I and if there is no request from computer 3 the system will

go to

1 2 ~ ~ 5 state~~
0 0 0 1 0

~ I Because of the un ique correspondence in the notation we see

~ 
that it is equivalent to say that the decision is

u = ( a~ 6 2 a 3 c
~ 

c~~) = (0 1 1 0 1)

$ ox.

“go to state 6”

• For the sake of simplicity these t~o forms will be

I 
interchangeabiy used.

From the above analysis it can b’ seen that

- • . (initial state) • (decision vector) = (final desired state)

(decision vector) = (initial state) • (final desired state)

where • means “exclusive or ” . This is so because if a con-

trol variable has a value 1 we have to change the value of

the allocation variable in the transition , while if the value

is 0 there is no change in the transition . This kind of
~~ ‘4

operation is e~cactly the “exclusive or” addition . In

— - ~~~~~

——5- 
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par ticular for the example above

11 ~ ~ i. 0 1 1
+
0 1 1 0 1

1 a c a C £ 
_ _ _  _ _ _ _ _ _ _ _ _ _ _1 2 3 4 5

0 0 1 1 0  _ _ _ _ _ _  
6

This property will permit to eas ily write a tableau showing

the transitions among states assuming the requests arrive

from all computers .

• The transition tableau for the case NC 2is shown in Fig . 11-3 
• -

and for NC 3in Fig. 11—4 .

For simplicity , the place corresponding to non-active

~. I
variables are left empty.

_____  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
1=0 1 2=1 0 3=1 1

0 1 0

0 1 1.

C 1 0 0

2=1 0 a 1 0

.5 . £ C
1 2

3=1 1

‘41
I-

Fig. 11-3 . Trans ition tableau, for the case N C 2

(assuming deterministic transitions)

I
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These tableaus will prove later to be of great utility

for the construction of the transit ion probabili t ies among

states. As we said before , we can write this tableau

mechanically and this is important in computer calculations.

Summarizing, for a network with NC computers , the steps

are the following :

1 - If the system is in state m, write in in base 2

with NC digits.

2 - Assign a control variable a to the places where

the digit is 0 and a variable C to the places

j  where the digit is 1.

3 — To obtain the value of these control variables in

a transition from in to n, compute in • n, where n

is also written in base 2 with NC digits , and

assign the values of the resulting digits to the

corresponding control variables.

4 - To obtain the inth row of the tableau repeat step 3

for values of ti from 1 to M (M = 2~~~~l)

5 — To obtain all the rows of the tableau repeat

from step 1 for values of in from 1 to N.

The flow-chart corresponding to these five steps is

shown in fig . 11-5 .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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Re eat from m = 1 to M to obtain

o~~~~~~ t~~~~~b1e:~~~~~~~~~~~ 

N~ digits

and call the digits m1
i — l,...NC

if xn
i 

= 0 the ith control variabi~~
-

~

if in~ = 1 the ith control variable
is c

~
i = 1,..NC

Call u. to the ith variable (a.

o r c ~)

Re eat from n = 1 to M
to obtain all the elements of row in

Transition to state n:
write n in base 2 with NC digits

- - Compute m • n = k , k1 ith digit
u. = k . i = 1 ,..NC

Fig . 11-5. Flow graph showing the steps to obtain the
transition tableau.

h
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1 CHAPTER III

DYNAMIC PROGRAMMING AND BACKWARD EQUATIONS

111.1 Preliminary Remarks

It can be eas ily seen that the model descr ibed in chapter

II has all the pro per ties needed for the appl ication of

dynamic programming , [13] - [16]

In particular it is obvious that the separation property

• holds for the cost function , eq. (2.4). The Markovian state

property is also satisfied , see section 11.5. Hence the
~: )

/ pro blem is :

1 ‘ Given the dynamic equations (2.12), find the optimal
‘a

dynamic allocation strategy , using dynamic programming, to

minimize the cost (2.4).

We will separate the total expected cost (2.4) in two

parts
- T-1
r ’

C = E {H [Y ( T ) ] }  + E L[Y(T),TJ (3 .1)

where NC NC

1 ’ 
L[Y(T),T~ = ~~~ C~y1(t) + 

~~~ 
(l-y l (T))n~~

(T) rnifl Ckl (3.2)

- 

. 1=1 i=l

is the per unit time, or immediate , cost, and

H EY(T)] = L EY(T),TJ (3.3)

- ‘
is the terminal cost. 

-~~ -4.,. - -
~~~~~~~~~~~~~~~~~~~~~~ L : T~~~~~ L~~~~~~~~

-
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’
~~~~~i~~~~~~~ ~~~~

5- 5-I



- —  — •  -~~~~

36

‘ The cost to go at time t given that the system is in

state i will be defined as

v1(t ) = E ~~~ L[Y(t),r] I Y ( t )  = I (3.4)

‘ and the optimal cost-to-go

• V *(t )  = nUn V1(t) i 1,2,. .M (3.5)
u(i)

• From the Markovian property , the following equa l ities

can be easily proved , see ref [ii].

E (L EY(r),rJ J Y R ) ,  t =

E {L [Y(T),T] I~~
t
~ 

= (3.6)

NC NC

• 
~~~~ C~y~~(T) + E ~~~ (1-y 1(T)) e.(i-) min Ck~ fY (t)

i=l i=l

111.2 Backwards Recursive Equations

The backwards equations for this probabilistic system

can be written (see [i’-~J pag 955)as

NC

V* (t)=rnin{E{LEY (t),tJ IY (t)=i) + P..(t ,u)V*(t+l) (3.7)

- 
j j=l

i = 1,2,..M

where P. (t,u) is defined as the probability of being in

state j  at time t+1 given control u and given that the system

I
~

- 

• — - --—5 - -5--- —  • — -  -

— ~~~~~-.  - - •
. 

- 

~~~~~~~~~~~~~~~~~~~~~~ • ___ ___ __
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is in state i at time t, that is,

P
11

(t,u) = Prob {Y(t+1) = j fY(t) = i,u(t)} (3.8)

Fr om the express ion ‘3.2) of the per unit time cost at

time t observe that the decision u(t) at time t affects

only the state Y(t+l) at (t+1) but not Y(t) and n(t) and

therefore the immediate L(t) cost is control independent.

If u~ is the optimal control and V~ the correspond ing

cost to go, then:

NC

V~ (g)=E {L [Y(t),tJ fY(t) =1] + ~~~~P1~~(t~u*)V~ (t+1) (3.9)

k j  . j=l

I = 1,2,. .M

or in vector form

V*(t) = A ( t )  + P(t,u*) V*(t+1) (3.10)

With this notation it is clear that the total minimum expec-

ted cost over the period [0,’r will be the smallest component

of the vector V*(0) and , the state corresponding to this

component will be the optimal initial state.

To pursue further with the investigation of the actual

form of the vector A(t) and matrix P(t,u*) we will begin with

the cases NC=2 and NC=3, the generalization to a larger

number of computers will then become appar ent .

~ • 1

4.

r:~ 
-

~~~~~~~~ 

-

~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

38

111.3 Recursive Equation for N C 2

For the case of two computers the express ion of the

total expected cost over the period ~ .TJ can be written as

T 2 2 
-

C E  
~~~~ 

~~~ C .y 1(t )  + ~~~~~~ 
(1_y j(t))ni (t)Ckj 

=

t 0  i=l 1=1 k~’i

= E 

~~~ [ 
C1y1(t)+C2y2

(t)+(1_Y 1(t))01(t)C21
+ (1_Y2(t))e2(t)C12]

t 0  (3.11)

where we have applied (3.6) and the condition that y1(t)

+ y (t) > 1. Therefore2

L[y(t),tJ=C1y1(t)+C 2y2
(t)+(1_y 1(t))e1Yc)c21

+ (l_y2 (+))e2(t)c12

(3 .12 )

• From this expression we obtain immediately the components of

the vector A(t)

A 1(t)=E{L[Y(t) ,t] ~Y ( t ) = ( o  1) = 1] = c2÷c21e1(t )

A 2
(t)rE{L [Y(t) ,t] IY~~~

=
~~ 

o =2 } = c14-C 12e2 (t )  (3.13 )

A
3

( t )~~E{L [Y(t) ,t~~ Y(t)=(l 1) =3) = C1+C
2

To obtain the elements ~ f the probability matrix it is

very important to follow carefully all the conditions , see

Fig. 11- 2, imposed on the decision process. Following those

rules we have obtained in Appendix A the elements of the

transition matrix , as

-1

_

‘ --‘ 

_  _  

- — - -

k

• —~~~~~~~~~~

-

••- ~~~~i:~~~~~~~~~~~~~~~ J2 ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
________________
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l— c z t ( t ) e1( t )  c~~ ( t )  c zt ( t ) ei
(t ) ( 1_ c t ( t ) )c zt ( t ) e

i
( t )

P(t,u*) = c t ( t ) c z~~
( t ) e 2 ( t )  1— ~~~( t ) e 2 ( t )  ( l — c ~~( t ) ) c z 3 ( t ) O2 t )  (3 .14

ct ( t ) .( 1—c
~~

( t ) )  ( 1 — c t ( t ) ) c ~~
( t ) (~

It can be easily seen that in fact P(t,u*) can be obtained

directly from the tableau of Fig. 11-6 by the following cor-

respondence (see Fig . 111.1):

a) If the value of the control variable u
~ 

in the tableau is

u. = 0 write a term equal to 1—u .
1 1

- 

U1 = 1 write a term equal to u1 -

b) If u. a. writea .e. instead of a.
1 1 i i  1

‘a - c) If the cell is on the diagonal add to the previous term

a correcting term obtained considering a new cell with

values given by the variables y1(t) and y2(t) and applying

steps a) and b)

d) Repeat a ) ,  b) and c) for i=1 and 1=2. The transition

probability is the product of the two terms obtained in

this way. 
1=0 1 2=1 0 3=1 1

_ _ _ _ _ _  

1/

/ 
(( 1_c~ ( t ) )  (i—at (t ) e 1 Ct)) (t) at (t)91 (t) (l—c~ Ct)) at c t ) e 1 (t)

~~~~~~~~ t) (l-at (t~~~~
( t ) )

~~~~~o~ r~~~T~~~term

• Fig . 111-1 How to obtain the first row of the matrix from
the first tableau row 1’

-.4.

.4

i

~

—._--_ 
_ _ _ _ _ _ _ _ _ _ _ _ _  

-
~~~~~~~~~~~~~ — 

~~~~~~~~~~~~~~~~~~~~ 
-
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This is not a surprising result and it could be easily

expected from the way the tableau is constructed . Step C)

is a consequence of the condition imposed that if af ter  the

arrival of the requests the optimal decision requires to erase

the last copy of the system we remain In the same state.

Therefore the probability of remaining in the sante state

(diagonal terms) has to be corrected by a term equal to the

probability of requiring the erasure of the last copy. This

• 
probability is exactly the probability of going to state 0

if this state were allowed. The values of the control variables

3 needed to go to state 0 are obtained through the Mexclusive or

addition of the binary representations of present state and

state 0, but this sum is always equal to the present state

representation ; therefore the values of the control var iables

are equal to the values of the allocation variables of the

present state. In this way we ensure that this matrix

accomplishes all the properties of a stochastic matrix , in

particular the needed condition that all rows must add to one;

this is so because the terms are obtained using all possible
I
~~~~~~~ combinations of 0’s and l’s with two elements (NC elements

in general) and hence we always add terms like

A B+(l—A )B+A (l—B)+(l—A ) (1—B) = 1 (3 .1 5)

Another s implif icat ion can be obtained by observing

that in every row the combination of control values that will

take the system into the state Y ( t + 1 ) = 0  is not allowed . For

example in the first row of Fig. 11-3 , cx
1
0 c 2 1 is forbidden

I’-

_ _ _ _ _ _ _  

- 
• _
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and therefore in the first row of P(t,u) we have

(l—’- a1)c2 
= 0 (3.16a)

• Similarly in the second row of P (t,u )

(l—a 2)c 1 = 0 (3.l6b)

and in the th ird row

Cl £2 
= 0 (3.l6c)

This property• will be useful sometime to simplif y the

expression of the transition probabilities. We have made use

of this property in Appendix A.

,.. 3 Grouping all results together we obtain t~e following

backward matrix equation (NC = 2)

vt (t) C2 + C21e1(t)

V~~(t) = C1 + C12e2(t) +

9( t ) C1 + C 2 
—

- • 
i-at (t)ei (t) c

~~
(t)at(t)e i(t) (1-c (t)at(t)ei(t) Vt (t+1)

Ct ( t) c *~ (t)e2 (t) 1—as (t)e2 (t) (l
~ ct (t) 

a~ (t)82 Ct) V~

l—ct (t)—e
~~
(t) 9(t+l)

-
- — - 

(3.17)

where the optimal decisions for each row of the matrix

P(t,u*) are the values of the corresponding row in the tableau

tha t give minimum scalar product with the vector V*(t  + 1) -
•

In particular , if we def ine

A V t (t+1)

B= (l—e i (t))Vt (t+1)+91 (t)9(t+1) 
(3.18)
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C= (l_e
1(t))vt (t+1)+e1(t)v~~

(t+1)

then if the system is in state 1 at time t

(a*(t) = 01 If A < B and A~~C (3.19a)
= 0

(a *( t) = 1
• 1 if B< A and B< C (3.l9b)

= 1

( cz * ( t)  = 11 if C< A and C< B (3.l9c)
(c~~(t )  = 0

In the same way the optimal decisions being in state 2
L j

and 3 an be obtained.

We will see some numerical applications of these equa-

tions in chapter V.
.4.

111-4. Recursive Equations for NC=3 and Generalization to

any NC

‘1 For N C 3  the total expected cost over the period [0,TJ

can be expressed as (remember C11 = 0, Vi)

T 3 3 3

C E 
~~~~ 

C1y1
( t ) +  ~~~ ~~~ Yl (t)Y~~

( t ) n
k
(t)minC lk

t=l 1=1 i=1 j>i k~ i 1~~~i ,jk~j
: ~

= E 
~ L[Y (t), tJ (3.20)

t=i

III 

_ _ _

. 

_ _

• ~~~~~,
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The components of the vector A(t) are obtained as

• X 1 (t)—E 
{L[y (t),tJIY (t)=(0 0 1) = i) = C3+C3191

(t)+C 3202
(t)

A 2(t)=E {L[Y(t)ltJJY(t) (0 1 0) = 2) = C2+c2101
(t)+C

2303
(t)

A 3(t)=E {LEy(t)~~t]IY(t)=(0 
1 1) = 3) = C2+C3+e1(t)min1C 2111C3i1

N II N — — — — — etc. (3.21)

The whole vector is 
—

C3 + C31 e1(t ) + C 32 e2 (t )

C2 + C21 e1(t) + C23 03 ( t )

A (t) = C2 + C 3 + e1(t )  nUn (C 21, C 31) (3 . 22)

C1 + C12 82 (t) + C13 e3 ( t )

C1 + C3 + e2 ( t )  mm (C12, C32)

~~. C1 + C2 + e3 (t) mm (C13, C23)

C1 + C2 + C3

The way to construct these components from the state

vector is simple.

The easy rules are sketched in the flow char t of Fig .

111—2 .

1
Repeat from m=1 to M

State m
write m in base 2 with NC components
zn

~ 
ith component i=1 ,. .NC

Fig. 111.2 Flow chart __________________________________

to obtain the per J -
~~ s~ t of indexes such that m~~0

• unit time cost I ~ set of indexes such that m.=1vector 1

A~~~ ~~~C1+ E O~~(t min 1c 1~~}

L - - -5•~~~~~~~~ • - 
• • • • •~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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As far  as the probability transit ion matrix is concerned ,

we can calcula te eas ily its components by mak ing use of the

rules stated for the case NC=2 and the tableau of Fig. 11-7.

I Some of the components are shown below (for brevity we delete

the variable t).

( 1— a161) (l-. c1292 ) ( l—c z 191)a 2~ 2 c 3 . . . —

- 

( 1—c 11e1) c 2a3e3 (l — ~ 1e1) ( 1— a3e3)
P ( t , u) (3 .23 )

(1—a 191
)C2(l—C 3

) (1—a 101
)(l—C 2)c3 • •

• 
C
1
C
2 

C
1
E
3

g 
- 

where we have applied a property similar to (3.16) so that

‘a for example in the 7th row of P given in (3.23) we have
I- 

C
1
E
2
C
3 

= 0.

It can be seen now that the rules we developed in cons-

tructing the immediate cost vector and the transition pro-

bability matrix for NC=2 and NC=3 , genera lize eas ily for a

network of arbitrary size. These rules will allow for an

easy algorithm to be implemented on a computer . To make things
~~ concrete , we i l lus t ra te  this  in the fol lowing example:

Example :

- 
4. Suppose we have a network with five computers NC=S, and

4 1 I being in state 3 at time t , we want to know the immediate

cost and the probability of being in state 17 at time t+1.

First of all we write the vector representation of state

3 and i t s  control  var iables  

-~~~ -
~~~
- 

~~~~~~~ 

~~~~~‘j~ •~~~~•T~~~~~~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Y ( t )  = 3 = (0 0 0 1 1) -
~~~~ (a 1,ct 2 , ci3 ,C 4 , C 5

) (3.24)

From this representation we can immediately write the

per unit time cost.

A 3(t) 
= C4+C5+e1

(t) mm (C41, C51) + 02 ( t)  mm (C 42 ,  C52 )

+03(t) mm (C43, C53) (3.25)

To obtain P3,17
(t) we also need the vector representation

of state 17

Y(t+ 1) = 17 = (1 0 0 0 1) ( 3 . 2 6 )

the value of the control variables we need for this transi-

tion are :

(0 0 0 1 1) • (1 0 0 0 1) = (1 0 0 1 0) ~ (a 1a 2a 3c 4 c 5 ) ( 3 .27)

therefore
3 a1 a 2 a3 C

4 
c~ 17

(0 0 0 1 1) -
~~~ ~ ( 1 0 0 0 1) ( 3 . 2 8 )

1 0 0 1 0

now we can write that the transition probability is

(3.29)

:- ‘ It can be useful to verify that in fact we will arrive

to the same expression if this probability is computed by a

straight forward calculation .

From the discussion in section 11—6 and Fig. 11-2 we

see that we can begin in state 3 and finish in state 17 in

four different ways:

1) We decide to go to (1 0 0 0 1) 17 and there is a request

from computer 1

_______ _ _ _ _ _ _  _ _
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decision 

~~~~ J

Prob { Pos. 1 } = a1(1-cz2 ) Cl 3)c 4 (l- c 5) Prob {n 1=1} =

a1(l—cz 2) ( l— cz 3) c 4 ( l— c 5)0 1 (3 .30 )

• 2) We decide to go to (1 1 0 0 1)s25 and there is a request

from computer 1 but there is no request from computer 2

decision = (1 1 0 1 0)

Prob { P0g. 2 ) =a
1

cz
2 
(1—a

3
) c~ (l—C 5)e1 (1—8 2

) (3.31)

3) We decide to go to (1 0 1 0 1) 21 and there is no request

from computer 3 but we have a request from computer 1:

r decision = (1 0 1 1 0) (3.32)

Prob { Pos. 3) a1(l—a 2)a3C4(1—c 5)81(l—8 3)

4) We decide to go to (1 1 1 0 1) 29 but there is no request

from 2 and 3 and we have request from 1

decision = (1 1 1 1 0)

Prob{Pos.4) = a1a2a3 c 4 ( 1-c 5 )9 1( 1—8 2 ) (l~83) (3.33)

As we can see these four possibilities are the results

of the following four decisions

a
1 

a 2 a
3 

C
4 

F

(3.34)
1 0 0 1 0 with prob. e~
1 1 0 1 -O with prob. el(l

~
e2 )

1 0 1 1 0 with prob. 8
~ 
(1—8 3)

1. 1 1 1 0 with prob . 9l (l~
e2) 

(1_8
3)

b

——  —

/

— 
~~~~

— -r~
-

~ wr~~~~~~ 
- • L~~~~ T.I ~~~~~~~~~~~~~~~~~~~~~~~~ ~~—



Adding up those four probabilities we have

Prob {Pos . l)+  Prob {Pos. 2 }  + Prob {Pos . 3) + ProbfPos. 41

= a1 (1—a2) (1—a 3) £4 (1—c 5) 01 +

+ a1 
a2 

(1—a 3) c~ 
(1—c 5) el(l~

82) +

+ u1 (1—a 2) a3 £4 
(1—c 5)01(l—e 3) +

+ a1 a2 a3 £4 (1—c 5)Q1(l—02) (l—Q 3) =

=a101c4(lc 5
) 
[
(1—a2) (l—cz 3) + cz2 (1— ct3) (l_ 02) +

• +0.— ct 2 ) a
3 

(1—0 3) + a
2 a3 

(l
~
G2) 

(~~~03 )] =

a191c4 (1—c 5) (l—a 282
) (l—ci303) = P 3, 17 (3 . 3 5 )

as was obtained in ( 3 . 2 9 )

We could have written the remaining probabilities in

the transition matrix in the same way as we did for P3 17.

Therefore in order to analyze any network under the cond itions 
• 

-

stated in chapters I and II we only have to build up the

recursive equations , using the rules described before and

move backward in time until we reach the steady state , or

arrive at t=0 .

Nevertheless while implementing the dynamic programming

procedure we do not need to calculate all the probabilities

of the transition matrix . As it will be seen below the

reason is that after the control values are decided upon

many of the terms will be known to be zero. For instance,

cons ider the case of the above examp le, in which we were in

I state 3 and the decision was “go to state 17” . The only

4

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ _ _ _ _  - - - 
iI
.-

_ 
~~~~~~~~~~~~~~~~~~~~~~~~ ~
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probabilities that will be different from 0 In the 3rd row of

the transition matrix are P and P.1 ~ 
where3, 17

3 =  (0 0 0 1 1 )

u = (1 0 0 1 0) = (a1ct2u3c4c5) ( 3. 3 6 )

l7 = (1 0 0 01 )

1=  (0 0 0  0 1)

The reason is that the only condition needed to accomplish

the decision is having a request from computer 1, the only

computer in the decision vector with a control variable ciequal

to 1. If this request does not come the system will move to

state 1 (we only excute £4 = 1) and there is no possibility

to go to any other state with that decision vector.
“I

This rule can be easily generalized . Being in state n and

having made decision u(t), the only probabilities different

from zero in row n of P (t ,u) are the probabilities corres-

ponding to destination states resulting from applying to

state vector n the decision vectors obtained from vector

u(t) making all possible substitutions of 0’s and l’s in

places where there are copying variables ( c i’s) equal to 1 in

~~~~~~~~ J u(t).

For instance , if n= 3 as before , but now u ( t )  = ( 1 1 0 1 0)

we will have

3 [Th 1a 2 cz3c 4 C 5 I 25

* (0 0 0 1 1) I U 1 0 0 1) (3.37)
I 1 1 0 1 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~ • - ~~~~~~~~~~~~~~~~~~~~~~~~~
~ ‘
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Then , in order to imp lement this  decision requests from

• computers 1 and 2 are needed , and therefore we have the

following possibilities

a
1 

ct
2 

ci
3 

£ 4 £ 5

3
• (0 0 0 1 1) 

~ 1 1 0 1 0 ~ ~ 1 0 0 1) = 25
with Prob 8182

• 1 4~ 
-

~~~ (1 0 0 0 1) = 17
1 0 0 with Prob 01 (182)

.. 1 1 0 1 0 ~ ~ 1 0 0 1) = 9
0 with Prob (l

~
0l)e2

0 1 0 ~ (0 0 0 0 1) 
= 1

0 0 with Prob (1_e l) (1~
e2)

If C~ would have had he value 1 instead of 0 the last

transition will go to state 3, the starting state , in order

to avoid the erasure of the last copy .

A schematic way showing how to compute the t rans i t ion

probabilities using these rules is shown in Fig . 11—3. A

flow-chart  showing how to compute row n , of the probability

transition matrix , when the decision is “go to state rn” , is

- 4 shown in Fig. 111.3 b). In the flow-chart we assume that
‘4

we have available a subroutine called BITS such that given

n , a number , and NC number of components it returns the base

2 representa ’-ion of n with NC components. The calling

sequence will be

• • - ~~• • - - ~ —• --~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~ iT~ ~~~~~~

- 

~~ • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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CALL BITS (n, NC, NB2)

Fur thermore , we assume we also have available the

function

L = DECI (k, LBk, NC)

such that given a vector LBk with NC components it returns

the number L whose representation in base k is LBk.

These subroutines are given in Appendix C.

The simplificationa explained so far can produce a

great saving in computat ion because , for instan ce , in the

-
• • f irst case presented, only 2 of the 2~-1 = 31 components are

I different from zero.

I ,  The optimization procedure for each starting sta.te will

consist then in the computation of the non null probabili-

ties for the initial state row for every possible transition;

I taking scalar product of these non null probabilities by

the corresponding costs - to - go and choosing the smallest

• result. The decision giving place to the smallest product is

I the optimal decision for that initial state and the product

added to the per unit time cost for that state will produce

• the next (backward ) cost - to - go.

The flow chart of fig. 111-4 shows the set of operations

involved in the optimization process. In the next ~ectio~ ~~a

we will show how this model can be easily extended to prob1em~

with constraints in the state space .

.~

— —~~ —~~~~

=

~~~~~
5-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
:~~~
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Initial State = n
Decision “Go to state m”

• Write n and m in base 2 with NCdigits
n., m1 are the iths digits respectively

Decision vector u(t) = n • m
Decision variables u

~~
(t) ={~i~~~ ~~ ~~ =

Call I to the set of subindeces such that
u . ( t )  a . ( t )  ( i .e .  n 1 = 0) and a1( t )

• N I  = number of elements in I

Form the decision vectors u’~(t) where
v = 1, . . 2~~ according to

u~ (t) = 

u.(t) if-..
{~

i. = ~ and a~ = 0

vth combinationof~~0’s and l’s
in places where n~ 1 and a1 = 0

1 = n • u’~(t) L fl} , 2~~ different l’sTh e non null  probabilities in row n when
decision is “go to state m ” are

P~ 1 ( t )  ~ 01 (t) ~~~~ 
( .  — 

k(t~~ 
V1~L

where j  ~ i and a. 
= 1 in u ( t )

-J 
. Uk l a n d ak O l n u (t)

Fig. 111-3 a) Flow-chart showing how to construct the
non-nul l  probabilities of row rt when decision
is “ go to state in ”

*;he first combination is 00••--0 and the last one is U i — - i .

5- — ~~~~~~~~~ ————~~~~~~~~~~~~ — —
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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( State N
LDecision “go to state m”

Call BITS (N, NC, NB2)
I Call BITS (in, NC , mB 2)

• 1 N 1 0

-~ • _ D0 1 = 1 , NC

= 1J NO~
_

~~ 2 ( 1 )  = 0 k —  ~
— 

YES
J,

- I J N 1 N1 +]~~~~~~~~~

I • • C~~B 2 ( I )  = 0]  
NO
~~~LB2(I)_= 1~~~ •

YES

NI N I + 1~~~• I NAUX (NI) = I

— 0  YES L mNI — PI (N , m) = 1 Stop

N 1 N  YES IB= 1

I B - 0

- ~ N F = 2 ~~~~-~~]

&
Fig. 111.3 b. (continued on ~~~~~ j age)

_ _ _ _  - - w’ ~~~~~~ ~~EIi • • _ • _ • • •-J~•~~~~~~~-~ Ti
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(cont’d)

1 A 1

I Call BITS (J, NI, JB2)

1 1—
I K 1 , N I  I

H i
IA = NAUX(k
LB2(IA) = J B 2 ( k )

I A = A* [( 1—JB2 (k) ) (l-e
~~~

) + J 82 (k ) O
IAJ

lB = 1 YES 
~ = 0 YES L = N

L=DE CI , LB , NC)

PI(N ,L) = A

F Stop

1.~~

... .

‘- 4 ~

‘

Fig

_IlL ~~~~~~~~~~~~~~~
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[i~ATA : NC,T, C1, C~~ , ‘3.(t)

I, j = 1.. .NC t = 0 ,1,. .T

Compute Terminal Costs, V T)
usin Flow-Chart Fl . 111—2

-~ Steps backward in time
Re eat from t = T-l to 0

• - Rows of transition matrix
Row n corresponds to initial state n
Re eat from n =  ito n = M

p _ __ *________ - 

Uecisions:”go to state in”
‘

~~~ 

Repeat from in = 1 to in = M

I- 

____________ _____________________________
Compute non nul l  probabilities of row n.
Prn
1
(t) when decision is “go to state m” ,

using flow—chart of Fig. 111-3.

‘1 Compute the scalar product

~~ P~ 1(t) 9 (t+1)
1 L  ____________

.*

-fl Fig . 111—4 .
p *

a

___________________ -s £~~~~~~~~~~~~ - - — —— — —— -5- - 
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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• I [Choose the smallest (t) = R~
“go to state u ” is the optimal decision
at time t from state n

• J Compute per ui~it time cost A~~(t)

.
, I using flow—chart of Fig . 111—2.

1V ~~(t ) = Xn
(t) + R~ (t)

___________ -

I Vector of costs to go at time t]

Fi g. 111.4. Flow chart of the Optimization Process.

a

I 

5- - - •
-J
~~~ •~

_•y-- 
•~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~
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111-5. Constraints in the State Space

The problem formulation and the model descr ibed will

allow us to handle easily constraints in the state space.

These constraints may take the form of a maximum number of

copies allowed in the system at any instant of time or,

not allowing copies of the file simultaneously in two or

more given computers.

For instance , if given a network with three computers

I— (NC=3), three copies are not allowed in the system simul-

taneously then state 7 will be taken out of the set of

admissible states ; if on the other hand , the restriction is

that there cannot be copies simultaneously in computers 1

and 2, then state 6 is taken out of the state space.

One example of these types of constraints was presented

before when state 0 was not allowed . Therefore , unallowed

states will be treated here in the same way state 0 was

treated before. To gain some i cight we present an example:

Consider a network with four computers (NC=4). If the

present state is 1 = (0 0 0 1) and the decision is

u(t) = (1 1 1 0), then the intended state is 15 = ( 1  1 1 1 ) .

1 a1 a2 ~~~~~ 

C
4 1 15

(0 0 0 1) —1 —--—* (1 1 1 1)
i i i  o J

If there is a request  f r o m  cn i~puters 1 and 3 but not

from computer 2, the system will go to s t a t e  (1 0 1 1) 11

and this event will occur with prob abilLt \-

r~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-5-—-
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c~
Suppose now that state 11 is not allowed , then another

decision has to be made. The situation is such that any

state of the form (a 0 b c) can be reached where a, b and c

can be 0 or 1 (but not all three equal to 0). Nevertheless,

cons idering so general a decision at this point will make

the problem very complicated , therefore a dec ision to remain

in the same state will be considered . This is a particular

case of the whole set of possible decisions. This kind

of decision will give to state 11 the same treatment as

to state O, as suggested,before. The probabil i ty of remaining

L ) 
in one state will n~~ be composed of the following terms:

• Prob {remain in same state}= Prob{going to this state}+

+ Prob {going to state 0} + Prob{going to not allowed states)

(3 . 3 9 )

In the 4eneral algorithm we will eliminate the rows

and columns corresponding to unallowed states and add their

probabilities to the diagonal terms. It should be noticed

that some extended simplification properties, similar to the

one obtained in (3.16), could be obtained from the new

unallowed states.

For instance , for the example above where state 1 was

the current state and state 11 was not allowed , we have thai

= 0 (3.40)

if , moreover, state (1 0 0 1) = 9 were not allowed as well ,

~ 
w_ ,~ then

cz1(l—ct2) (1—a 3) (l~ 64) = 0 (3.41)

__- -i::~-~ IL~ ~~~~~ ~~
_-

~~~~~~~~~~~~~~-- ~~~~~~~~~~
- ~ • r~~~

L___ 
• •~~~~~
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- - and from these two equalities

• a1(1—a 2) (1—c 4
) = 0 (3.42)

An illustrative example where these facts are applied is

studied in Appendix B for the case of a network with two

computers (NC~2). It is shown there that if we restrict

- the system to have only one copy at any instant of time the

backward equations simplify to the equations given by A.

Segall in Lii], where the restriction was to operate with

- . only one copy .

~

.. I

I

I
g

~~ 

- 
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CHAPTER IV

• UPDATING ~fRAFFIC AND NODE FAILURE S

IV-1. Updating Traffic

The updating traffic consists of requests generated at

some nodes after a request of the file, with the only

r purpose of modifying , partially or completely , the conten t

• of the file . With this definition it is seen that the updat-

ing information generated at any node , should be sen t to

~ I 
all other nodes that possess a copy of the file.

It will be assumed , for the present study , that,

1) This kind of traff ic is generated at any node as

a fraction, of the query traffic of this particu1~:

node. In general these fractions can be time depen-

dent variables. If we denote them by

p 1(t), 
p
2(t), — — P NC (t)

L~ 
the rate of updating traffic generated from node

i at time t will be then

( t ) O  ( t )ø i I

2) The updating t r a f f i c  is implemented before the

decision has been activated but after the request

has taken place. The sequence of events is represen-

ted in fig. XV-1 as a generalization of fig . 11-2.

-
~~~~

-
~~~~

•
~~~~~-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ •, - -



-~~~~ - — 5-~~
60

Computation Requests Implementation Activation of
of optimal come of generated optimal decisions
controls updating

traff ic
t
_ 

t t

Fig. IV-1. Sequence of events including updating traffic

With probability çi
1

(t )  an updating of the file is

I 
generated at any computer i that requested the

file and is sent to all computers that will keep a

copy at time t+l.

3) We will assume that there is no conflict between

the updating commands coming from different com-

I. j  puters. This is sometimes a serious problem in a

practical case because it can force us to block

‘

~

- requests , while some updating is being, done in order

to avoid the processing of some old , and then use-

less or even conf lictive , information.

Under assumptions 1) and 2) we can say that updating

traffic is not a function of present state , but

only of present rates and subsequent states (as we

will see in sections IV—2 and IV—3 , this property is

not true if we include the possibility of node

~ ~~• fai lure s) .  The only change to take place in the

V recursive equations will be in vector V*(t+l) that

will have some extra terms added to its components.

The new costs—to-go vector at time t+l will be now •

a ,

ç

~~1

_ _

-
-
_-5-5-5--
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N-l 

—

Vt (t4.1) + E P
k

(t )  O
~~~

(t )  CkN
k=l

N

V~ (t+1) + 
~~ 

Pk(t)ek(t) Ck,N_l

k=l
• k~~N-1

‘ I  N

V~~(t+i) + E Pk(t)Gk
(t) E Ckl =V*(t+1)+R(t)

k=l l~~ I(j) (4.1)

l~’k

V~ (t+1) + E Q
k(t) ek

(t) E Ckl

— 

l~k 
—

:
Here 1(j) is the computers containing a copy at

state j  or in other words the set of subscripts

corresponding to l’ s in vector state j. We are

assuming here that the only charge involved in up-

dating a copy at computer i by computer j is the

transmission cost C.
‘p i]

..‘ ~ The recursive equation will now be

V*(t) = A(t) + P(t,u*) [v*(t+i) +R(t)] (4.2)

- 
• • ,--—~~ ~- _____ - -*~~~r -

~
-- -

~
:•-

-~-~~ •- •—-~~~-.-•- —~~~ -~~~~~- • ~•sj~ _, —
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r.- j
where R(t) is an M—componen~ column vector. Several

examples investigating how the updating traffic affects

the dynamic control of the system will be studied in F
Chapter V.

IV-2. Network with Node Failures

In this section the necessary changes in the model

to include the problem of node failures will be considered .

We shall assign to every computer a probability , P f , of

fa i lure  and a probability, 
~r ’ of recovery according to the

I following definitions

l j  I Pf A Prob. of failure per unit of time (4.3)

Pr = Prob. of recovery per 
unit of time given

that the computer is out of order

It is assumed that Pf and are independent and the

same for all computers and instant of time, or in other

• words that the failure and recovery processes are mode]’~d

as two independent Bernoulli processes with rates Pf and

~r 
respectively.

-~~~~~~ Under these circumstances , the new state has to carry

along information about two facts

1) the computer condition (working or not) and ,

2) if the computer ~s or , whether or not the computer
• has a copy of the file

‘
~ L

-l - 

- 1__T T ~~~~ i. ~~~~~~~~~~~~~~~ :.
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- 
Therefore it can be concluded that each component of the

• vector state has to bring information of one of three

possibilities

a) computer Out of order

• b) computer working and without a copy of the file

C) computer working and with a copy of the file

If we represent possibilities b) and c) with a 0 and

1 respectively, as before , and possibility a) with the

digit 2, the new state vector will be equivalent to a base

3 representation of some decimal number. Since this repre-

sentation is unique we see that we can name the states by

the decimal number whose base 3 representation is the NC-dimen-

sional vector. For example

Y(t) = (0 2 1 1)

• 
will correspond to the state 1 + 3 + 2 x 32 = 22 of a network

with 4 computers , where computer 2 is out of work, computers

1, 3 and 4 are working and the last two have a copy of the

f i le in their memories.

Our model wil l  now contain the following further assuznp-

tions:

a) When a computer is restored , it comes up with no copy

in itsmemory . This says that no computer can make

a t ransi t ion from state 2 to state 1.

b) If there is at least one computer , say i , in working

a’
,, condition but there are no copies in the system then

one copy is brought from outside (specia’ memory)

-I 
~~~~~ ~~~~~~ ___________
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-
I

-..

at a price C 1. If there are several computers in

working condition with no copy in their memories ,

the system will bring a copy frnm outside to the

• computer with the smallest C0~~. Obviously

C0~ > >  C~~~ i,~ = 1,2,..Nr

and the quantities C
01 

will carry a measure of the

risk of losing all copies that we are willing to take.

- :  c) The time between the points t and t~ of Fig . 11-2

is very small compared to the unit interval (t, t+1).

~br dUf p~irpose that means that the probability of

a failure in the interval (t ,  t~ ) is negligible.

With these assumptions the number of states in the state

space will be the number of different NC-dimensional vectors

that  can be formed with 3 d ig i t s,  that is , M=3~~~~~.

• In the present case state 0 is in the state space,

because the system can go to this state after being at

sta te N-i , when all the computers are inoperative, provided

that all computers become operative in only one interva l of

time . The decision variables ~iill remain the same as before

except that there are no decision variables for inoperative

computers. That is , there are not decision variables for

~
..

* —c_-s the components of the state vector with value equal to 2.

I n  particular , when all computers are not operative , there

is no decision to be made . rhe only thing to do is to

wait until one or more computers recover and then bring a

copy into the system from outside .

- - 5 —  • 
- ~~~~~~~~~~~~~~~~~~~~ -~~~~~-- _______ - — —-  - -- -5 - - -- ‘

-
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Given the state at time t, the transition to time (t+l)

- 

will be obtained as follows

a) Decide upon the value of the control variables
(if any)

b) Perform “exclusive or ” of the control variables
I with the actual requests and modify accordingly the

• 
• state variables (as in section 11—6)

c) The failure or recovery of computers (if any) will

-
~ modify in turn the former transition .

f t The state at time (t+1) will then be the result of the

• above three operations.

In following sections we apply these concepts to the

case NC=2, NC=3 and show how they generalize to any NC.

IV.3. Recursive Equations for NC=2 considering Node
Failures

)

The states per NC=2 are

Y(t-)0=(0 0) Y(t)=5=(1 2)
l=(0 1) 6=(2 0)
2=(0 2) 7=(2 1)
3=(1 0) 8 = ( 2  2) (4.4)

4(l 1)

Let C01 be the costs of bringing copies from outside

to computers 1 and 2 respectively. Assuming C
01 

< C02

the per-unit-time costs are

A 0(t) = C01 A 5(t) = C1
A 1 (t) = C2 + C2101(t) A 6(t) = C02
A 2 (t) = C01 A 7(t) = c2 ( 4 . 5)

A 3 (t) = C1 + C12e2 (t )  A 8 (t )  = 0

h i  A 4(t) C1 + C2

I 

__  
_
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It seems , fro” these values of the costs, that the optimi-

zation process will try to keep the system always at state

• 8, because this state has the smallest cost, but the decision

• “go to state 8” is not among the set of admissible decisions ,

since this will erase all copies from the system.

[ For the case NC=2 the only states that will generate

control variables are states 1, 3 and 4 and clearly these

control variables will give rise to transitions aic.: ..g

these states only

If we represent by:
L 1 0 — the transitions ruled by control variables

(when no failures or recoveries are involved)

X — the transitions due to some failure or recovery
of some computer

* — the transitions due to a forced decision
• (namely a copy has to be brought from outside)

The following tableau of possible transitions can be

sketched (remember C < C02) S0 t
a Comps

- . states
1 20 1 2 3 4 5 6 7 8  e

• 
a * x x  x 0 0 0

• i ~~x~~~~ x x x x  r .
2 x ~~ x 2 0 2

States 3 Ø X ~~~0 X X X X  3 1 0  (4.6)
4 ø x ~~~0 X X X X  4 1 1
5 x ~~x x
6 x x
7 x x  *~~~~

E x  X X X 8 2 2

-
~~~ ~~~ 

—I 
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4

• The empty entries in the tableau correspond to impos-

sible transitions; this is an important difference with

respect to the tableau with no failures where all transitions

are possible. These empty places will generate zeroes in

• the transition matrix and this property will be useful later

to reduce the amount of computation in the optimization

• process.

Let us calculate the probability transition for the

entries of the tableau:

row 0: initial state 0 (0 0)

~ I With the condition C01 < C02, there will be a tran-

- , sition from state 0 to state 3 if there are no failures.

Tha t is,

— 
2

With only one failure the transition will be to states

5 or 6 depending on the failed computer and the pro-

babilities will be

P 0 5 (t )  P o ~~~ 
= P f ( l— P f ) ( 4 . 8)

If there are two failures

l I P  40 8 ’ ’  f

Except for the above, no other transitions are pos-

sible.
- r

row 1: initial state 1 (0 1)

The transitions to 1,3 and 4 are controled by the

decision variables defined in chapters II and III

and the condition that no failures occur. Denoting

-1
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
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by P~~~(t) the probability of going from state i to

state j  for the case of two computers and no failures,

the following transition probabilities can be written :

- 

P11
z(1~Pf)

2 ~II = (1—P f)
2(1—cz 191)

P1f (1—P~~~)
2 p f~ = (1—P ~~~)

2
t
2 

ci~ 9~ 
(4.10)

P14=
(1_P

f)
2 p’1 = (1—P f)

2(].—~ 2)a1O1

• •. • The transition to state 21(0 2) (or 6~~(2 O))could

H- only take place if the system decided to go to state

1~~(0 1) (or 3~~(1 0)) and there was a failure.

~ I I The reason is that there is already a 0 in the state

so the other element had to be a 1. Therefore

P12=P4(1-Pf) P~~ = Pf(i-P f) (1-a1e1) 
(4.1 1)

P16=Pf(l—P f) P~~ = Pf(l-Pf) c2~:Z1O1

The transition to state 5~~(1 2) or 71(2 1)

can happen in two ways. Either the system decided

to go to state 31(1 0) or 1~~(0 1) respectively and

a fa i lu re  brought computer 2 out of order or, the

system intended to go to state 41(1 1) and the same
i~~ 3W

failure happened thus we have

P 15=P f ( l_ P f ) (P~~ + P~~ ) = P f (l-P f )~~1O1 ( 4 . 12 )
• P17=P f

(l_P
f) (P~~ + P~~ ) = Pf (l—P f) (l—c 2cz1e1

)

Finall y the transition to state 8~~(2 2) take place

when there are two failures , no matter what transition

was decided upon , hence

H

• - -  IL - 
~~~ 

- 1~~~~~.1 ~~~ 
-
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• P18=Pf
2 (4.13)

row 2: initial state 2a(0 2)

From this state the automatic decision is

“bring a copy from outside to computer 1” . If there

is no failure in computer 1 and computer 2 remains

out of order, then the system goes to state 5.

- Therefore

P2 5~~
1
~~ f~ ~~~~~ 

(4.14)

If , on the other hand , computer 2 is restored

and computer 1 does not fail the system will be in

t state 3 in the next instant c~ time and this event

will occur with probability

P = (1—P )P (4 15)2 3  f r
-

• Considering now the case when computer 1 fa i l s , dif -

ferent transitions appear

• 
~~~

2 6~~ f~r
(4.16)

P2 8~~ f
1
~~ r~

.
~~~~~~~~~ row 3 and row 4 are obtained in the same way as row 1.

row 5: 
[
initial state 5~~(1 2)] has the same transition pro-

babilities as row 2, because as we said before, the
~

decision of going from 2 to 5 is automatic , and

a-, then the possible transi t ions from 5 are only due to

failures or recoveries in the computers(remember the

sequence of events at the end of section IV-3 that

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~ -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
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decided a transition). Thus

PS s
_ P

2 5~~ l~~f ) (1~~r~

P 5 3~~~~~2 3 ( 1 P
f

) 1’r

P5 6~~ 2 ~~~~ ~r

PS 8~~ 2 8
Pf(l—P f)

I 

row 6: [initial state 6~~(2 0)]is obtained in the same 
way

as row 2 but interchanging the computers.

-} I 
P6 1~~~~~f~~r

• 
~~~~

6 2~~ f~r (4.17)
I~~ 

P6 7 1~~ f) ~~~~~

~6 8 ”f~~~~ r~

row 7: [initial state 7~~(2 1)] is identical to row 6 for

the same reason than row 5 was identical to row 2.

1 
row 8: in i t ia l  state 8~~( 2 2 )

From this state there is no available decisions

and the only solution is to wait. The probabilities

are: 

0~~r

P8 2~~
’8 6 r ~~~~ r~ 

(4.18)

- 
P8 8~~~~~

’r~

The vector dynamic equation is

Y( t + l ) P ( t , u ) Y ( t )

where P(t ,u) is the transitir- n probability matrix.

~,

-‘~~L~~~- -

~~—‘;::4”t=:
i—•

~ 
—
~~~~~~
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~~~
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p

It can be checked that the transition probability

matrix obtained above, is a well defined stochastic matrix in

the sense that all rows add up to one. In the next section

we will see that these results easily generalize to any

¶ value of NC and that the transition probabilities can be

obtained easily and efficiently . Then in the next chapter

these results will be applied to a numerical example.

• 
- To conclude this section we point out that in the case

• of a network with failures, the terms due to updating

f traffic are not only function of the state to go but also of

I the present state . The reason is very simple: a computer

-r that is not working cannot generate updating traffic , fu r ther-

more if the state is such that no copies are present in the

system, ((0 2) for instance) no updating traffic can be

generated either. A flow-chart showing how to compute the

updating traffic for any network is presented in the next

section.

L ~
IV.4. Recursive Equations for NC=3 and a general NC

consider ing node Failures

In this section the results of section IV— 3 will be

extended to any NC and general rules showing how to obtain the

~~~~• ~ per unit-time—costs, updating traffic costs, and transition

probabilities will be developed .

-
~~~~~~ ‘ . 

First the case N C 3  will be examined . The number of

states is M 3 3 27, and they are all ternary numbers from

L

_ _ _ _ _  - -
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m=0 (01(0 0 0)) to m=26 (26a(2 2 2)). Let us begin deriving

the per unit time and terminal costs. We have the follow-

ing cases :

a) the state is such that no copies are present and

* 
at least one computer is working

A
~
=min{C0~

) i ciset of working computers~ (4 20a

b) all computers are out of work

t

AM = 0 (4.20b)

c) general case

A
~~ ~ C1+ ~~~ e~~(t) mm fc 1~ } (4.20c)

ifl jeJ

where I is the set of work ing computers with a copy , and

J is the set of working computers without a copy .

Some of these costs are obtaired bellow as illustration

(it is assumed C01 
s C02 < C03)

0~~(0 0 0) A0(t) = C01
4~ (O 1 1) A 4(t) = c2÷C3+e1mln (c21,c31)

71(0 2 1)

18~~(2 0 0) A 8(t)=C 02 (4.21)

241(2 2 0) A 24(t)=C03
261(2 2 2) A ., (t)=0

L 6

The terminal  costs are obtained in the same way except

that as discussed before , there will be a zero in the place

p where there was a C01. A flow- cha’-t showing how to obtain

terminal and per-unit time cost for any value NC is sketched

in Fig . 1V-3.

_ _ _  
- ~~~~~~~~~~~~~ 
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-5

I The way to compute the cost due to updating traffic for

‘
I 

j

all possible transitions in a network with NC computers is

shown in the flow—chart of Fig. IV 2. We call R(I,F) to the

(I,F)th element of the updating traffic matrix .

IData: NC, M , 6 ( i ) ,  
~~~~~ 

~~~~~ -•

— - 
1 1 ,M 4
F 1 ,M 

4 . .Write I and F in base 3 with NC digits
I I~~, F1 iCll,..NC I are the digits

I F2 to the number of 2’s in F(Final
State)

Let us call Ii to the number of l’s in I (Tnitia]
State

Fl to the number of l’s in F (Final
State

and 1(2) to set of indeces 3 I. = 2
k 1

F(l) to set of indeces 3 F1 = 1

1 
_ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _

____/ \ JES — 0  

-

~

, YES 
~~~~~~~ , or, F2 = ~~~~~~~~~

J~
N0

[i(I, F)= P (t)9 (t) Ck k ki
køI (2) lfF(1)

I l�k

~~ 4

STOP

Fig, Iv—2. Flow-chart of updating traffic when failures in
the computer are considered

4
.4

..

~H 
Li_ alt  • _____ - __________________________________ 

- ~~ 
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.. ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
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DATA : NC,M, C1, C1)~ C01
, 
~~~~

i,j = 1,..NC t ~0,T]

if fTerminal costs A = 1
lotherwise A = 0

Repeat from state m=0 to m=M-2

FWrite m in base 3 with NC digitsj

Im i ith digit I = 1, . .N C

Let us call
J = {j) s.t. m~ = 0

• 
• I = {i} s.t. m. = 1

I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[A 
= C1 

+ O.(t) nun {C1~
}

- 

_ _ _ _

LAM_ i I

~~~~~~~~ ~~~ ~ ~
a-~~1

• Fig. IV—3. Flow—Chart showing how to obtain terminal
and per-unit-time ~oz~t~

- I

‘ :1 ,- — — 
•5 — 

_-1• --- 
_ _ _ _
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.

In fig. IV—4 we find the tableau of possible transitions

for the case NC.3 with symbols as defined in section IV—3.

The basic rules for the formation of the tableau are the
same as for the case NC 2;

1) No transition from a state comoonent 2 to a state - •

component 1 is possible

• 
2 )  If there are only 0’s and 2’s in the state vector

the only possible transition is to bring a copy

to the computer with smallest C0~

Example of impossible transitions —

L i  
- - -

from 0 2 2 to 02Q 
- 

--

from )00 to 120
- (4.22)

from 0 2 2 to ®2 0

from 1 2 2  to ®20

where the elements causing trouble have been circled out .

To obtain the general rules for the transition proba-

bilities let us begin analyzing some examples.

We define, as before, P~ 1 
as the transition probability

• from i to j in a network with L computers when no failures

are considered

- The transition due to failures or recoveries only

~j_. 1I~
are obtained with the same basic rules as for the

case NC.2, for instance

0=(0 0 0) —s 9~~(1 0 0), P0 9=(l—Pf)

6= (0 2 0) —. l7=(l 2 2),P0 17= (l—P f) ~~~~~~~~ 
(4.23)

25= (2 2 1) —.
~~~ 2= (O 0 2),P25 2=P~Pf

‘S

~ 

•
~~~~~~~ •~~~~~~~~~~~•• • -~~~~~~~~~ - • -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~
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~I 0 m 0 .—4 N 0 .—4 N 0 —l C~.1 0 .—4 N 0 .—4 N 0 —4 N 0 —.-4 N 0 14 N 0 —~ N
4.14)
4~ C) N 0 0 0 — I  -.4 .-4 N N N 00 0  .-4 ,-4 4 N N N 000  -~ -.4 1 4  N N N
4Ja)

‘~0N X XX X X X X X X X X X X X X X X X X X X X X X

In
N X X X  X X X  X X  X X  X .~~X • .

N X X X X X XX X X X XX X X X X X X X XX X X X  X

m
N )< X X X  X X X X X X  X X ~~ X X ~~
N
N X X X  X X  X X
1-4

N X X X X  X X X X XX  •
0
N X X XX X X X XX X X X X X X X X X  X X X  X X X

0~4 X X X  X X X  X X  X X  ~~~~ X X

- 4 X X X X X X X X X X XX X X X X X X  X

N

~
- 4 X X X X X X X X -

~ 
X X X X X X X~~~*

C.)

i 4  X X X  ~~ X X  X X  ~~~~ Z

. - 4 X X X X X X ~~~~~X X X X X X X ~~~~~X 0
‘1~4

r.4 X X X ~~ X X ~~~ X X ~~ 
U)

m 0
I-I ~~~ 

.1-4
4.1

N •p4

~~ ~~~~~~~ ~~~~~~~~~~~~~~ UI

-.4 I~4
41

0
‘-4 0 0 0  0 0  00  X X  a)

- . c~~a O X O O X X X X O O X O O X X XX
U)

• U)
X X X X  X X X X X X X X X  X X X X X X X X X  0

0

.1
1 s X X X  ~ X X  X X  0 0  X X X  X X  ‘-4-’

I
‘.0 X X X X  X X X X X > (  X X X X X X

a)
In X > < X 0  X X 0 X X 0  X X X X X X  ‘-4

* f
0 0 0  00  0 0  X X X

m 0 0 0X 0 0 X

N X X X  X X X  X X  X X  X X X  X X X  >
‘-4

—4 0 00  X 00  0 0  X X  X X X  X X

o_________________

0 .—I N m ~ in to r~— ~~ C~ 0 —4 (‘-1 m ~ In ‘.0 N ~~ O~ 0 —I N th ~~ ‘ In ‘.0

:1 

N N N N N N N

-
. . 

-~~~ 
-

~~~~~ 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-j
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- The transitions from states with no inoperative

computers are also directed by the same basic rules

as the corresponding transitions for NC~2, see section

IV—3, thus from state l— (0 0 1) to state l0=(1 0 1)

P1 10=(1—Pf)~ P~’~ 0 (4.24)

from state 1=(0 0 1) to state 5=(0 1 2)

p 
~
- ( 1 P ) 2p ( p ’1’ + P~~~~)

— where 3 and 4 are the states obtained from 5 replac—

ing the 2 by 0 and 1, that is

5 =  (0 12)

3 =  (0 10)

4 (O l l)

- If the transition is to a state with two 2’ s then the

number of P~ 
~ 

‘s contributing to the probability

is lar ger (3 or 4 depending on the case)

from state 1.= (0 0 1) to 17 = (1 2 2)

P]~ ~7 ti~~~f) Pf(P1 9  + P~
I
~ 0 + ~~~~~ + P~~~ 3) (4.25)

where as before 9,  10, 12 and 13 are the states
•u~~~ 4w 

(
obtained from 17 replacing the 2’s by all possible

3:1 combinations of 0 ’ s and l’ s , that is

(10 0) = 9

from 17 = (1 2 2) we obtain 
~ =

(1 1 1) = 13

I
. 1 4

t

- - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~
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— If the transition is from state 1= (0 0 1) to state

24=(2 2 0) then

P1 24 = (1—Pf)
2P
f

(P~~~ + P~
’
~ + P~’~ 2 ) (4.26)

• where now we only have three terms in the sum because

state 0=(0 0 0) was unallowed for the case of no

• f a ilures

- The probability transitions from states with only two

computers in working condition will be formed up

• from terms P~~ 3
. The subscrip~~i and j wil l  be

obtained from a modified 2-components states rebult-

ing from the previous one after the elimination of

‘p the element that was equal to 2 in the initial states

and applying previous rules. That is from state

7= (0 2 1) the modified initial state will be (0 l) 1,

therefore a transition from 7 to 1i= (1 0 2) will have

the following probability

P7 ll 1 f r Pf(1
~~
’
2 + P~~ 3

) (4.27)

• where 2 and 3 are ob tained from 7 and 11 as follows

• 

- 
I 7= (€~Ji)

______ 
1 ( 1  0)  = 2

ll=(ivj2) -, 
1(1 1) = 3I The rest of transition probabilities can be obtained in

the same way . It can be easily checked again that the result-

ing transition matrix has all the properties needed by a

•~~ stochastic matrix . The dynamic equation for the state is ,

as before ,

Y( t + 1)  P(t ,u) Y(t)
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These results generalize to a network with any number

of computers. It will nevertheless be convenient to sketch

in a flow-chart the ordered set of steps we have to take

to obtain the element of the transition matrix . To simplify

• the flow chart , let us suppose that we have the following

subroutines available (see Appendix C)

-
- -~ • Write N in base 3 with NC components

BASE 3 (NC ,N,NB3,NO,N1,N2)+ NB3(I) is the Ith component
• 

NC NO = number of 0’s in NB3
(3 > N) Ni = number of l’s in NB3

N2 = number of 2’s in NB3

BITS (N NC N82) f Write N in base 2 with NC digits
NB2(I) is the Ith component

- 

Obtain the vth row of the transition

DOWPRl’~ ‘N~ A I~ 
probability of a network with NC

~.1 ~~~~ components and no failures, when
the rates are

e( i )  i=l ,NC and

- - 
the decision is “ go to state )- “

- This result is obtained with the
flow-chart of Fig .TII-3.
31(J) j.s the Jth element of this
row

I ~ IND is an output index s.t.
- 

. INI) Ji if somell (J)=1 
(*)

]~
() otherwise

U’ .
.

we wil l  now call

C N - the row (or present state) being computed

( a )  Notice that  if this happens the only nonzero element
in the row is fl (A ) 1

- - - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
_

~~~~~~~~â s ~~~~ ~~~~~ ~~~~~ ••



M = the number of states M=3N

NC - the number of computers in the network under consideration

M’ = the number of states for the auxiliar subsystem without
failures

R(J ,I) - the updating traffic cost generated in a transition
from I to J and obtained with the flow-chart of Fig. IV-2

R
N 

- the Nth column of the matrix R { R(J,I) }

For simplicity of representation and convenience of

computation the algebraic representation of the entries

will not be derived . Instead we present an algorithm to

calculate their numerical values after deciding upon the

~~ I 
control variables. Having the transition probabilities

— 
the optimization process can be carried out directly by

moving the decision to all its possible values, performing

the product with the matrix (V + R) and choosing the decision

giving the smallest value. This is what is done in the f low-

chart . The variable A will control the admissible decisions

- ,- — and the variable L the corresponding element within the row .

The results after the computation will be

“Go to state LAMBOP ” actual optimal decision
from state N

scost actual cost due to this t ransi t ion result ing
-~ - from the product -

~ row N X (V + RN )

Looking care~u1ly at the flow-chart it can be seen that

the first thing it does is an assignment of state N to one

of the three basic types of states it considers. In this

way the rest of the computation will take place iii one of

the three main branches X , Y or Z.

F  -

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ::~~~~~:i:i:i~~~~
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[DATA: N. M, NC, ~~~ P,~~ ~r’ L V .  C~~j

~~~~~~~~~~ 
YES J NB3 (k) = 0 VkCt l , . .NC J

~‘&~_9..’ 1N2 0 ~~( 2O 0 )

I Cai~ Base 3 (NC, N, N83, NO, NI, N2~J

~~~~~~~ ~~~~~~~~~~~~~~~~
_- 

NO 
-~~~(NF NC - 

Nfl— • (210)

Q = l O
~C

(initialization )

V DECI (2, NB3, NC)

A = 1, N’ 4
BB(A) = 0. (initialization)
Call ROWPRO (NC, v , A , 0, 11, IND)
Call BITS ( A, NC, A 2 )

L 1, (M-
~ ,)1 

__________

is 

YES 
~ P(M-l) = ~NC

Call Base 3 (NC, L,  LB3, LO, Li, L2)

- L; = u = DECI (2 , LB3, NC)
- 

P ( L )  = (1.p )NC 11(u)

NO

‘ES N B 3 ( k )  = A2 (k) = 1
and LB3(k) = 0 for some kC-{ l,..NC}

— 
A2(k) = 0 andIND - 0 LB3(k) = 1 for NO
some k({l, NC)

YES A = l

YES

L 1 > 0  YES

NO 1 1= 0

(400) (89)
T I — i

(90) (9)

- - - --5 - 5 - .  -5 -—--- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--5— 

~~~~~~~~~~~~~~~ 
~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~
-; 

-
~~~ -
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(400) (90) 

1

(40) (9) (89)

=_O(initialization)J

= II,

1
Call BITS’ (J , L2 , JB2)

I)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ icr I2v N~~~~~~~~~~~~~~~

P(L) = P~
2 (1 - P )

NC_L2 
A

(8 9 )

I B B ( A )  = BB(A) + P(L) (V(L) + R ( N ,~~~~1J1
~~~~

LCa1
~ 

BITS (A 0 , NC, LAOP2)

Decision : “go to state LAMBOP = DECI (3 , LAOP 2 , NC )
.3~1 sCost = Q

H 
. I 

- - -
.
- -5--  -~ -Sj-~~~

-— 
~~~~~~~~~~~~~~~ - -5~~ -5-5 - -

~~~~~~~ - -  - ‘ 

-

~~~~~~~~~~~~~~~~~ . — 
;v,5~,
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Q — 10’ (in~.tia1izatiofl)
k = O
M ’ = 2  — 1

I~~~ l, NC

YES NB3 (I )  = 2

- NO
—I

= + 1
NUVEC (k) = N B 3 ( I )

v = D E I , NUVEC , N

A = 1 , M ’

BB = 0 initia ization
Call ROWPRO (NF , v, A , 0, 11)

is L = 1, (M—l)

-
‘ Call B S~ 3 (NC, L, LB3, LO, Li, L2)

- - NZ = * 0’s in L33(k) 3 NB3 (k) = 2
ND = * 2’s in LB3(k) 3 N83(k) = 2

NW L2 - ND
* * e note on page 85)

E YES ~~ö - N z =~~~~~~~~~

NO (~2 = NZ +_N~~~ ___

_ _ _ _ _  

,Ic~~~~~~F 
NO~~~(250)

I = l ~~N C4  I 
NZ ND NF

YES 
~~~3(I) :~I~~ 

P ( L )  = 

~r 
(1 - 

~~ 
P f

r k = k + 1
- : ,~ ~rJVEC(k) = LB3(I)

u DECI (2 ,tJV’EC, NF)

~P(L) ~NZ (1 - p
r)
N
~
) 
(1 - P ) JT (u)

(450)  (290 )  289

~

- 1 I

_ _ _ _ _ _ _ _ _ _  —  _ _ _  

_ _ _
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*(see note on page 85)

(250) — .4A 01  _ _ _ _ _ _

I JJ = ii, 2~~—1

Call ~~I3~
’S (J , NW , JB2) 

- 

1(450) k = kk = 0 (initialization ) I

jJ= 1~~NC

Q~B 3(I) ~j~— YES

I k k ÷ 11

~~B3 ( I )  

~~~~~~~~~~~~~~~~~ 

VB2 (k) = LB3(ifl-~

(290) ____________________

tkk = k k+ 1
-
t 

I VB2Lk) 
= JB2 (kk )

[v = DECI (2, VB21 NF) I

~~~~~~~~~~ YES

FA~= A  +11 ( y )  1

__I  
~~~~

.

-‘ (289) NF ND NW NF-NW
[PL 

~r ~~~~~ 
Pf (l-P f) i-I

4
FBB (k) = BB(A ) + P(L)(V(L) + R(N,L))1

- - - -- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.
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BITS (A g. NF, LAOP2)

JX = 1, NC

~~~~~~~~~~~~~ 
YESaj— i~ oP3(Jx) = 2 — ~~~ -a

LX L X + l
LAOP3 (JX) = LAOP2(LX) I

1- --5 -

Decision “go to state LAMBOP = DECI(3, LAOP3 , NC)”
scost = Q

I

—I

* - - - - - -
‘See Fortran lis ting  in Appendix C for fur ther  zero t r ansit ion  probability

- checkings at this point.

- 
-

4 1 
- 

—

I

1’

_ _ _  -~~~ - -
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I 
et e s.t. MI=

(200) C <C VK~J NF=NCoJ ok k=l ,N NP NC-l

NP NC

(211) BA=0 (initialization
.
, 

1LF 2~~ ~~1- 11=0, (LF—l

• 5) 
ICall BI~ S(I,NP ,IB2)J

Form the new vector W s.t.

p _______ _ _ _ _ _ _ _ _

- MM M I,2

Form the vector LB3 s.t.
W(k) if k<J

ILB3(k) MM if k=J
W(k-l) if K-J

- 

NZ= # o~ 0’ s in LB 3 ( k )  N B 3 ( k ) = 2
NS=~ of 2 ’ s in L B 3 (k )  N B 3 ( k ) ~~2 and k~~~J j

- ~~=DECI(3,LB2 ,NC)

U

~~ - 

~~~~~~ ~~~~~~~~~~~~ __________ _ _  _ _ _  _ _ _



S. ~~~~~~~ --5 —5---. S.—-~~~- -5 -5.—5S~~ ___ ~~~~~~~~~~ --5— -5-

/
- 

+NO
P

~~~~

PNZ

~

l P

~~

N

~~

NZ

I C ~~~~~~~ Pr ) N2_ 1JZ
_

pNS (1...p )N FN S_l

~~~~~~~~ c1l Pf~~ 

_

-
~ [BA = BA + P (L) V (L) 1

____________________________

NO DECISION~~
SCOST = BA I

-
~~~~~~~~

I Fig. IV.5. Flow-chart showing how to obtain the transition

matrix and the optimal decision for a network

with failures.
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Branch X corresponds to states with no 2 ‘s amongtheir
components

Branch Y corresponds to states where no decision is
available

Branch Z to the rest of states. This branch has a sub-
division depend ing on the destina tion state

if the destination state is such that
to reach it we have only one possibility
otherwise

In branches X and Z every possible transition (index

L) from N is tested and only the transitiors that give a

nonzero probability are obtained . In branch Y, only the

nonzero probability transitions are generated . Functioning

~

.. j in this way the algorithm is very e f f ic ien t  because only

the nonzero terms (~~3O% of the total) are obtained and there

is is no waisted time performing zero computation . The algorithm

was programmed in For tran , using Assembler for BITS Sub- is . -

routine (see Appendix C)

Now that the transition matrix and optimal decisions

have been obtained the rest of the process is identical to

the case with no failures. (Fig. 111-4). The whole process

is represented in Fig. IV-5 and the matrix recursive eq. will

be
,-
~~~~~

V*(t) = A(t)+P(t ,u*) V* (t+l)+P(t,u*)~~R (t) (4.29)

where R ( t )  is now an M by M m a t r i x  and ~ means t h a t  we make

the scalar product of the ith row of P(.,.) with the ith column

of R(.) to obtain the ith component of a column vector. ( 
-

Let us briefly analyze how the actual dynamic behaviour

of a network , with present characteristics , will be, when the

F ~~~~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 



r- 

~ 
-- 

- -~~~~S~~~~~ --~~

Read Data
NC , T, C., C~~ , 01

(t), Pfl 
~r’ 

P .(t)

viC{l,2,. .NC), ?C{0
~
lf. .NC} tCl,2,. .T}

Compute number of states

Compute terminal costs (V(T))
(Flow-chart Fig. P1 -3 with A 1 )

Steps backward in time 
--

t- T— 1,1

~Compute per unit  time cost ( f t ( t ) ) 1
f (Flow-chart Fig . IV-3 with A=0 1

Rows of transition matrix

n = i,M

Compute row n I _____________

- 
.. 

Obtain optimal decision I Keep
and minimum cost (S*(t+1)) F— optimal
(Flow-chart Fig . IV—4 Decisions

Compute new costs-to-go
V*(t) = / t ( t )  +S*(t+1)

- 5 ” Fig. IV— 6 . Optimization Process in Network with

Failures

U

-
~~~~ 

-

~~~

-

~

- 
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sequence of optimal decisions is applied . Let us suppose

that the probability of recovery for a computer that is not

work ing is not equal to 1, or in other words tha t the recovery

is not instantaneous . If we assume that the process begins

with all the computers working , the system will begin to make

transitions among states with no 2’s among their componen ts.

Once a fa ilure takes place the system will change its

“state space ” to stat~~ that have a 2 in the position of the

failure; it will remain making transition in this new “state

space” un til one of two possible events will take place:

j I either there is another failure (or more), or the fa iled

computer begins to work. The process will continue in this

way . We see therefore that the whole state space can be

divided into various subspaces such that the system will

remain most of its time making t ransi t ions in those subspaces

and eventually will move from one subspace to another .  There

will be as many subspaces ”as different vectors we can form

with NC components and two symbols (one for 2 and the

other for 1 or 0). All the vectors with same fram e of 2

components (and at least one 1) will belong to the same sub-
.

-

~~~~~~~~~

space .

For NC= 3 some of the subspaces wil l  be:
“I

0 0 i. — 1
0 1 0 — 3  1 0 1 2  1 0 2 1

• S 1 0 1 1 — 4 S J i  0 2 S j l  2 0 (4.30)
~ 1 0 0 — 9 2 

~~ 1 2 ~ ~i 2 1
-
‘ 1 0 1 — 10

1 1 0 — 12
1 1 1 — 13

- ~~

.- 

~~~~

- - - -

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~
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~~~~~~~:- ~~~~~~~~ 
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-- 
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V.’

- This particular behavior and subspaces division can

also be illustrated if the transition tableau of Fig. IV-4

is written with a different state order as in Fig. IV—6

is shown. The system will be most of the time within the

- 

- marked regions of the tableau and eventually will move from

one region to another. The states with NC-i elements equal

to 2 (as(0 2 2)= 8) may be thoughts as degenerated subspaces

or just subspaces with only one component.

-1

5—

~~
5 .

b , 1  -

- .

~~~~~:1

~~~ 
________  - 

~~~~~~~~~~~~ - - _______-

~~~~~~~ 

- -

_ _ _ _ _ _ _ _ _  - ____  ~~
- ~J
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- r -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

•5.;

(~
)

X X X XX X X X X X X X X  Z

In I.i
N X X X X X X X  X X X  X X X  0

‘4-4

CN X X X X XX X X X X X X X X X X XX X X XX X X  X
‘-5’

m 0
N X X X X  X X ~~~~< X - XX X  ~~~ *

0
N X X

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
X X X X X  X X X X X  X X X

r N
. . - IX XX X XX X XX X X X X XX X

w
C-)

~~~~ X X X X X XX  X X X  X X XX ? CX X  X X X XX

(N — — — ‘  U)

(N X X X  X X X  ~~~~~~~
‘-I
(N X X X X X X X  X X X  ~~~~~~~~~~ X X

C.’ I I 4))
‘~~ X X X X X X X  X X X  ~~~~~~~~~ X X  .CI_ _ _ I

~- I X X X X X X X X X XX X X X X X  X X
C

-
t ~~~~~— — • .

~—I X X X X X X X  ~~~~~~~
I I 0

Lfl .C
‘— 4 X X X X X X X X X X X X ~~I~.’ø~~I X X  U)

-
I. I I

N X X X X X X X  X X X  X X
a)
--4

W X X X X X X X  X X X  X X X X  X X  X

— — -
5- —4 — X X XX XX X  1 0 0 01

I U)
I C

X X X X X X X X~~~ I0 00 X X X X  X X  0
I S.-’

In X X X X X X X  0 0 0’ X X X X
— — - - 4  U)

C
N X X X X X X X  X X X  X X X  X X X

m ~~~~~~~~~~~~~~~

urn .’! 
-~ 

I0000000~
c. ’~ I

T I‘-4 0 00 00 0 0  X X X

~~~~~~
‘ I

,~ 4 Ø~~~Ø Ø~~~~~Ø
I X X X

0
I I

C
1
0 0 0 0 0 0 0I X X X X X X XX  X X

-
~~~~ 

•1 I
~~~ X X X

‘n I e O o 0 0 0 0i X X X  X X X X  X X  >

- 0 0 0 0 0 0 0
I X X X  ~-~~X X  X X

~~~~~ _

-5 ~~ —i m ~~ ‘ C.’ C N (‘. ‘ N In -4 ~~ ‘ ‘~o N In ~~ C.’ u—I (N ~~ N 0 C’.’ C.’ In
—I ,-~ ~~~~ ~~~ .~~ ~~ ~-4~~~~ —4 ru-I (N .-4 N (N N (N (N

‘.
—-5--

— ~~~~~~~~~~~~~~~~~~ - - i -.



v r ~“ ~~~~~~~~~~ 

._ 
—

93 
:~~~~ ~

—-—i

CHAPTER V

NUMERICAL APPLICATIONS AND OTHER ANALYTICAL RESULTS

V.1 Time varying rates, no failures, no updating traffic.

Let us analyze the case of a network with two computers

sharinq a file according to time varying rates. We will

apply the model of chapter III and we want to know the dynamic

evolution of the states (i.e. allocation of the file) in

order to minimize the total expected cost. We also want

to study the evolution of the state dynamics and total cost

~ 
j as the storage cost varies from 0 to the value of the trans-

mission cost. The transmission costs will all be taken to

be equal to 1. The problem will be solved for storage costs

equal to 0, 0.25, 0.5, 0.75, 1. The system will operate for

a period of 20 time units , ~.,20] . The rates are represented

in Fig. V.1, and the results inTable V.1. In the colwnns

called “evolution of states” we write the optimal decision

(“go to state...”) for every possible initial state and every

instant of time.

Examining the table we can see that for the case of

storage cost equal to zero the optimal decision is to always

:~, ‘1. keep a copy of the f ile in each computer. The optimum initial

state is state 3 and the optimal decision being at state 3

• is always “remain in 3” . This is the logical result because

there is no payoff for keeping a copy in any computer. At

t~ l9 we will leave the system at state 2; this decision is

~~~~~~~~ ~~~~~~~~ -~ ____  _ _ _ _
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RAPES C~ — 1 Vi,J OPTIMAL DECISIONSJ EVOLUTION OP STATES
TIME COMPUTER STORAGE COST 0.0 • 25 .50 .75 1.0

1 2 PR!SBNT STATE T~~ T~~ ~~~ I~~T C~T
20 0.8 0.0

1 19 0.8 0.4 222 222 222 222 222
4 ! 18 0.8 0.8 333 333 222 222 222

17 0.8 0.8 333 333 333 333 222
16 0.0 0.8 133 133 133 133 L22
15 0.0 0.0 11.3 113 1.1]. Li]. Li].
14 0.2 0.0 313 313 111 Lii Lii

~~
. j 13 0.6 0.0 313 313 11]. Lii Lii
r J 12 0.6 0.4 333 222 222 222 222

11 0.8 0.8 333 333 222 222 ~22
p 10 0.0 0.8 133 133 133 L33 L22

1 9 0.0 0.2 133 133 lii Lii Lii
• 8 0.0 0.2 133 133 iii Lii Lii

7 0.0 0.2 133 111 111 Lii Lii
6 0.8 0.6 333 111 111 Lii Lii
5 0.8 0.6 333 333 333 333 Lii
4 0.8 0.6 333 333 333 222 222
3 0.2 0.8 333 333 333 222 ?22

• 2 0.2 0.0 313 313 iii Li]. Lii
1 0.0 0.0 

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
113 ~ 13.1 Lii Lii

OPTIMUM INITIAL
STATE 3 3 1 1 1

MINIMUM TOTAL
B~~ SCTRD COST 0.0 9.3 i5.~ 21.~ ?6.7

TABLE V—I.

‘:1

S

— 
—~~~~~ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ __ _ _ _ _ _ _



taken because we know that at t20 thsre will be no request

coming from computer 1. Nevertheless we could , in any case,

remain in state 3 without increasing the cost, so both

decisions give the same cost.

As we increase the storage cost the number of optimal

decisions that are different from “go to state 3” is larger

• and finally when the storage cost is equal to 1 the optimal

decision will always be go to states 1 and 2 only , that is,

keeping only one copy in the system at any time.

Looking now at the columns of Table V.1 we see that the

optimal cost increases in a nonlinear fashion as the storage

• cost increases.

• For comparison we also consider a static analysis with

the correspond ing average ra tes:

e~~(t ) = 

~~~~~~ 

e1( t )  = 0.41 Vt:CL1,20] (5.la)

= 92(t) 
= 0.40 vt ca, 2oJ (5.2b)

t=1

We have

stor~ge cost optimal allocation total cost per 1,T

• 0 • two copies 0

0.25 two copies 10

0.50 one copy at comp. 1 18

0.75 one copy at comp. 1 23

1.0 one copy at comp. 1 28

I
—.- 

- ~~~~~~~~~~~~~~~~~~~~~~ .~ 
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The corresponding total costs are larger here, but not

significantly . This is because we are considering a very

short period of operation.

The curves describing the evolution of the total cost

as the storage cost varies are represented in Fig. ‘.~2 for the
I 

state and dynamic cases. We also represent, in the same

f igure , the two curves corresponding to the rates of Fig.

V.3 and the curves corresponding to a network with 3 compu-

• ters (NC=3) with rates:
L i

el Ct=e l (t Icase 1 V
e2(t)=62 t)IcaSe 1 VtC[1,20]

e3(t)=e2(t)~ ag 2

We can see that~ in all cases , they have a similar shape. In

• particular case 1 and case 2 have the same static curve.

This is due to the fact that in both cases >

• e2 (case 1) = 

~2 
(case 2) and the optimal allocations are

the same for every value of the storage cost, as can be
easily checked .

V.2 Constant Rates. Updating Traffic. No Failures.

• In a practical case it could be very difficult to specify
-

• the rates as detailed as a time variant function , even with

piecewise constant shape . It seems more reasonable to model

the rates as constant functions over a period of time .

1 1

4’ . ..a .a.’. —f~ *~~~~~~ - - - -. •

.4. . •~~~~~~~~ - •~~~ - -• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



An intermediate case will be to obtain the rates as piecewise

constant functions with long steps. In this case a quasi-

dynamic analysis applying the optimization procedure to every

• long step separately can be considered . In any case it is

important to analyze carefully the behavior of the system

with constant rates of demand.

Let us suppose that we have a network with three com-

puters (NC=3), with demand rates

e1(t ) = o . 8  92(t)=0.6 e3(t)=0.4 Vt 1,8

and an operating period equal to eight time units (T-8). As

before we consider the transmission cost equal to one for

every possible transmission

C1~= 1 Vi,jtfl ,2,3}

The storage costs and updating ratios are the same for

all computers

C. = C
S V1C{1,2,3}

• ~ i
= p

I ~ 
• and we want to analyze the system for the values

• C5 = 0, 0.25, 0,5, 0.75, 1

p = 0 , 0 .25 , 0.5 , 0.75 , 1

• The results for p = 0.25 and C~ = 0, 0.25, 0.50 are

shown in Tables ‘1—2. We will represent later the evolution

of the total cost as the storage cost varies taking p as a

parameter. Again we will make linear interpolation between

exact points.

~ 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~$j~ J~ ~ • -
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ei=0.8 92=06 93=0.4

• C5=0.0 
p 0.25

• 
~‘ime Decision

l 2 3 ~ 4 5 6 1 1 2 3 4 5 6 7
• 

• i 1.40 1.20 0.80 1.00 0.60 0.40 0.00
7 7 7 7 7 7 7 7 2.53 2.24 1.81 2.05 1.62 1.33 0.90

• 6 7 7 7 7 7 7 7 3.50 3.18 2~ 73 3.02 2.57 2.25 1.80
5 7 7 7 7 7 7 7 4.42 4.10 

~~~ 
3.95 3.49 3.16 2.70

4 7 7 7 7 7 7 7 ~~~~~~~~~ 
4.54 ~~~~~~~ f~4~O’7 3.60

3 7 7 7 7 7 7 7 6.24 5.91 5.44 5.77 5.30 4.97 4.50
2 7 7 7 7 7 7 7 7.14 6.81 6.34 6.67 6.20 5.87 5.40
1 7 7 7 7 7 7 7 8.04 7.71 7.24 7.57 7.10 6.77 6.30

C5=0.25 p=0 .25

~‘ime Decision
l 2 3 4 5 6 7  1 2 3 4 5 6 7

1.65 1.45 1.30 1.25 1.10 0.90 0.75
7 6 6 6 6 6 6 6 ~3.20 2.96 2.81 2.12 2.57 2.35 2.20
6 6 6 6 6 6 6 6 4.67 14.~~

2 4.27 4.18 4.03 3.80 3.65
5 6 6 6 6 6 6 6 6.12 5.87 5.72 5.63 5.48 5.25 5.10

‘p 4 6 6 6 6 6 6 6 7.57 7.32 7.17 7.08 6.93 6.70 6.55
3 6 6 6 6 6 6 6 ~~~~~ 8.77 8.62 8.53 8.38 8.15 8.00
2 6 6 6 6 6 6 6 10.48 10.22 10.07 9.98 9.83 9.60 9.45
1 6 6 6 6 6 6 6 11.93 11.67 11.52 11.43 11.28 11.05 10.90

) C5=0.5 p=0.25

‘ime Decision
l 2 3 4 5 6 7  1 2 3 4 5 6 7

1.90 1.70 1.80 1.50 1.60 1.40 1.50
7 4 4 4 4 4 4 4 ~~25_1.50_~~~~ LI 

3.25 3.35 3.15 3.25
6 4 4 4 4 4 4 4 5.52 5.26 5.47 5.00 5.10 4.90 5.00
5 4 4 4 4 4 4 4 7.27 7.01 7.22 6.75 6.85 6.65 6.75
4 4 4 4 4 4 4 4 9.02 8.76 8.97 8.50 8.60 8.40 8.50
3 4 4 4 4 4 4 4 10.77 10.51 10.72 10.25 10.35 10.15 10.25
2 4 4 4 4 4 4 4 12.52 12.26 12.47 12.00 12.10 11.90 12.00
1 4 4 4 4 4 4 4 14.27 14.01 14.22 13.75 13.85 113.65 13.75

Table V.2.

,~~1~

~~~~~~~~~ i
_ _ _ _  _ _ _ _ _ _

- 
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The first important characteristic that appears looking

at these tables is that there are no tranqients in the decisions.

This is not a general statement that can be appl ied to any

• network and parameters but will motivate us for a deeper

analysis of the facts that are taking place in the optimi-

I zation algorithm with the assumptions of this section. With

these assumptions we observe:

a) The vector A (t) is time invariant

A (t) = AVtC [l,TJ

• b) The transition matrix P(t,u*) corresponding to

optimal decision is also time invar iant

P(t,u*) = P(u*)

- 

• 

I c) The updating ratio vector (that had to be added to

cost-to—go vectors) is also constant. Let us call

• this vector R

• 
d) The terminal cost vector is equal to the vector A

V(T) = A(T) = A

Therefore we can write the recursive equation for the

first  iteration
- • V (T—1) A+P(ut) (A+R) (5.2)

We want to show first that with these conditions , the

- 
system exhibits a trapping state.

:
‘

~~~ 
Let us call A+R = c2’ where ~~~~~~~~~~~ •~ ‘) T

and let us suppose that is the smallest component of

vector ~~

Vj ~ I je{1,2,..M} (5.3) 

- - 

~~~~~~~~~~~~~~~~ 
— — -------— —--- •- • • ~~~~~~~~~~~~~~~~~~~~
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For the system can remain in the same state, if this is

the decision , with probability one, the ith row (correspond-

ing to state i) of P(ut) will be then —

I
ith row —~ ( 0 0 0 — —  0 l 0 — — 0 )  (5.4)

furthermore if we represent by K the set of states having

the same 1 components as state i and at least one 1 corn-

ponent more (we will call th is set the optimum set) we have

kth row of P(ut) = (0 0 — — 0 1 0 — — 0) Vk€K (5.5)

if we call now

=~~ ‘ where ~~~~~~~~~~~~~~~~~~~~~~ (6 6)

we have

V l E K o r l=i
(5.7)

• t~ Vm€ {1,2,. .M},m~l

Writing now the second backward step in the recursive equation

we have

V (T-2) = A+P(u~ ) [v(T—1) + RI =

= A+P (u~) £ It-f ~~~+ RJ = A + P(u~ )~2
2 (5.8)

where

+ R =~~~ + (5.9)

from (5.3) and (5.7) we have again

u 4 < w ~ V~ ~ I j~~{1,2,..M) (5.10)

and hence 
-

kth row of P ( u ~~) = (0 0 - - 0 1 0 — - 0) Y k E K  or k=i

* (5.11)

I.e. the optimal decision from state I is again “remain in

state i” ; and this decision can be implemented with probabi—

—~~~~~~ •

~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _
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lity one. From this result we obtain, as before

VlEk or l = i  (5.12)

• > Vm€ {1,2,..M ) m ~‘ 1 (5.13)

I where
• P(u~) 

ç~
2= •2 = (q, 2~~~2 , $ 2 ) T (5.14)

This characteristic or behavior will be repeated through the

- 
remaining steps. Therefore state i will be an absorbing or

trapping state, according to the most frequent nomination

• for these kinds of states in the literature (see refs. •

. j I 
[18~ and t193). This means that once the system visits i

it remains there forever . Furthermore if the process is

long enough we may expect that the optimal initial (at t=1)

allocation will correspond to state i or any state k~K and

thus the system will fall off in state i since the very

beginning .

The former property suggests a very eff icient and

- quasi-optimal procedure to analyze a system with the above

‘‘~
- , characteristics. We can describe this procedure as follows:

A quasi-optimal steady—state (Vt [1,T~ ) decision for a

I system with constant parameters and no fa ilures will be

I to allocate the file according to the description of state i,
- 

with i obtained from the condition
I

w . < w  Vj ~ i;j€{1,2,..M} (5.15)

where

t [W 1,W 2 D .  WM~ 
= c ~~~ + R 

~&t~,— ~~~~~~~~~~~~~~~~~~~~~~



rr~~i 
- •

104

This quasi-optimal decision role can be considerably

far  from the true optimum if the termina l costs were very

different in value from the vector A , and if the operating

I 
period were too short as to be able to disguise the influence

of the terminal costs. We can see that this decision is in

fact the decision we had arrived to if the analysis had been

made under the so called static approximation .

Although the former decision could be enough for our

• purposes , since the concept of trapping state is conclusive

I in the performance of this kind of process , it does not clarify

~~~ •~ completely the lack of transients in the iterations. An

• • intuitive and heuristic idea in this direction may come

thinking that the optimization process will be very much

biased by the states belonging to the set K defined above.

This bias will be in the sense that any state not in the set

K will try to move toward some of the states belonging to K

in order to reduce the cost. (In some sense this set K

:: could be interpretated as a “stopping set” using De Leve

terminology [21]). This behavior is represented graphically

in Fig.  V. 4.

In particular , for the case ~=0.25 , C
~
=0.25 of the

b example we are considering,Table V.2 , the diagram of optimal

transitions is represented in Fig, V.5.

S

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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Fig . V.5 Optimal transitions for the example of this section
with P 0.25 , C5 0.25. 
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Let us go back to Table V.2 and look at the minimum

cost and optimal initial states - We have worked out the

minimum total cost for every instant of time, and the optimal

initial states assuming that the process might begin at some

time, not necessarily at time 1. We can see several interest-

• ing results looking at those marked numbers of the table ,

namely: For a given parameter values:

• a) The minimum total cost up to any instant of time

always corresponds to the same initial state.

b) Consequently the optimum initial state is always the

same for every time.
I - I

c) The increasing of the minimum total cost is linear
with time.

d) The optimum initial state does not necessarily

coincide with the omnipresent optimum decision.

Do these conclusions general ize to any system with constan t

parameters? Let us investigate this question .

From previous discussions it is clear that the optimum

- . initial state will belong to the optimum set of states, the

setK .  Remember that if the terminal costs were dif ~Hrent from

the p.u.t, costs we had to wait until the steady state were

reached in order to make this statement; otherwise the opti-

I mum initial state does not need to be in the optimum set.

~ For the states belonging tQ the set K we can write the recur-

• 

• 
sive equation as follows :

4-~~J I

V (t) = + V C t - f l )  + r. VkfK (5.17)i 1 
~ (trapping state)~~K 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I II
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[H
and for the next step

vk(t l) = Ak+Vj(t) + r1 
(5.18)

therefore

• Vk
(t_1) Vk(t) = V

~~
(t)-V j(t+1) = A . +r

1
=w
1 

(5.19)

but

V (T) = A (5.20)
k k

so we can write
• Vk (t) = A k + (T—t) ~~~~. YkE K (5.21)

Th is important result will answer many of our questions.

In fact

-
~ 

, A < Ak V k ,j€K ~~~ V.(t) 
~ 

V~ (t) Vk,j € K
k~~~j  k~~~ j

Vt€ E1,T]

• Hence the minimum total cost will always correspond to the

same state no matter how long the operating period is.

Obviously that state will be the optimum initial state for

any instant of time.

L ~ Furthermore , the minimum total cost increas~~ linearly

with time as it was expected .

So far we have proved that facts a), b) and c) are

valid for any system with constant parameters . Concerning

fact d) it is clear that the state with minimum per unit

time cost among the optimum set need not be the trapping

state , but if the optimum set only has one element (as in

the case C 0 , p=0.25) then it is clear that this element

has to be the trapping state.

-S

•4~ $ • _ _ _ _ _ _ _ _ _ _ _ _ _  

— 
- 

~~~~~~~~~ ~~ A _ _ _
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We can see that the problem with constant parameters and

i terminal costs equal A falls in the section of problems where

• I the optimum decision is the decision that minimizes the

immediate cost.

Before leaving Table V.2 it can be useful to make a few

I I more comments. For instance we will not always find a

unique optimal decision , no matter which state or time we

• are, as the one shown in that table; as an e~camp1e the case

J C~=l, p=0.5 , below shows a transition from 3 to 2 as inter--

• mediate step to arrive to state 4.

Table V.3

9~ = 0 .8 0  02=0.60 93=0.40 p=-0 .5 C5=lTime Decision
1 2 3 4 5 G 7  1 2 3 4 5 6 7

8 2.40 2.20 2.8~ 2.00 ~~~60 2.40 3.00

I 7 4 4 2 4 4 4 4 5.02 4.76 5.60 4.50 5.10 4,90 5.50
I 6 4 4 2 4 4 4 4 ~~~~~~~~~~~~~~~~~ 7.00  7 . 6 0  7 . 4 0  C .0 0

5 4 4 2 4 4 4 4 10.05 9.77 lO .67 9.50 10.10 9.90 10.50
4 4 4 2 4 ‘~ 4 4 12.55 12.27 13.17 12.00 12.60 12.40 13.00

H 3 4 4 2 4 4 ~ 4 15.05 14.77 15.67 14.50 15.10 14.90 15.50
- . 

~

‘ 2 4 4 2 4 4 4 4 17.55 17.27 18.17 17.00 17.60 17.40 18.00
1 4 4 2 4 4 4 ‘~ 20.05 19.77 20.67 19.50 20.10 19.90 20.50

I-

This is due to the fact tnat a decision of movmnq

directly from 3(0 1 1) to 4(1 0 0) has sor~e intrinsic risk

of remaining in 3 if no request is made from computer ~~~.

It turns out that in this case a large price has to be paid

if the system remains at 3. On the other hand a transition

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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to state 2 can be done with probability one and carries with

I it a smaller cost. It can be expected that in a more general

case with more computers and consequen tly a larger var iety

of states this event will appear more frequently.

• • I An important observation is to note that can be iden-

tified with the steady state gain of the process as defined
I 

by Howard E2 oJ, . Equation (5.21) for optimum cost-to-co will

justify our assertion if we can show that the gain is unique

~ 
j even under optimal policies that make the Markov process

non ergodic.

I The only type of policies that can make the system non

erg3dic (in the sense defined by Howard) will be those con-

tam ing at least two persistent decision of the form “remain

- 
in i

i
” where now each i

1 
will be a trapping state. We will

show that if 1 and m are two of these trapping states then

w = ü )1 m

H To see that let us call K(l) and K(m) to the corres-

ponding optima l sets. Notice that

K(1) fl K(m) ~ (0~ empty set)

because K(l) K(m) will contain at least the element
.

~~~~~~ ,
- 

M= ( 1  1. .. ‘ )  Therefo re if

r E K ( 1 )  (~ K ( m )

when

Vr ( t )  = A ( t )  + ( T — t )  (A) l =

= A ( t )  + (r—t) L,lr m

I— V.

-- -
.
--  •‘

~~~
— :: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i.ii~~: ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and hence

Wl~~~
Wm

We conclude that the gain is always un ique , even in the

• case that the pol icy would make the system non cryodic.

The discontinuous sta ircase line in Table V. 2 represents

the beginning of a constant tncrease in costs for every

• state of the process.

Let us analyze now the evolution of the total cost

versus storage cost taking the updating ratio as a parameter.

The curves are shown in Fig . V.6.

First of all we see that the shape of the curves is

similar to the one obtained in ~;ection V.1 for the time

varying case without updating traffic. The curves present

a larger curvature for small values of C~ and p and then the

behavior is almost linear. In Fig. V.7 we represent the

total minimum cost versus p taking now Cs as a parameter.

We can see that both sets of curves are quite close in shape

but the curves of total cost versus p have a deeper slope

and after the curvature section they are completely linear .

We could obtain a better understanding of this curve if we

divide the whole quadrant in three sections corresponding

each section to trapping states with the same number of

copies. In this case we will have a section for three

copies , other section for trapping state with two copies

and the third one for only one copy.

k~ • -~~ -- 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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At each of the ooints of the curves , correspon c~irig to

the cases studied in the present example, we have encircled

the tr4pplng state corresponding to the system with the par-

ticular parameter assigned to the point. We can see now

that linear (or almost linear) part of the curves corres—

ponds to points with the same trapping state while the rounded

parts are due to changes in this state.

We could now ask the following question regarding the

trapping states. Why the trapping state, having two copies, 4

is always state 6(110), and why the trapping state hav ing

one copy is always 4(100)? The reason is very simole.

Remember tha t our rates were such that

03 = 0.4 < = 0.6 < 
~l 

= 0.8 (5.26) 
-

•

therefore , other parameters being equal, the system will 
I

—

try to keep copies in the computer with higher request

rate and there is no reason why it should behave in a different

way . This fact is easily generalizable and we can say that

if we enumerate the computers according to the sequence of

decreasing values of the rates

81 ~
‘ 02 ~:. 

03 ~ 84 -
~~~ 

~ 
8NC > 0 (5.27)

the trapping state will always have its “1” components con-

- -centrated in the left of its vector representation.

Let us now analyze for w n a t values of C and p will the
5

trapping state change . Conc~ ntrat-ing first on the case c~~0 j -

we can see that t h e  change from trapping state=7 to trapp ing

st atr-I~ will be at sorie point in between C5a0.25 and C5 0.5.

• ~‘Je claim that the frontier will be r’tarked by the point at

~ 
L~._ _ .

~~~~~ ~~~~~~~~~~~~~~~~~ - ____ II
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wh ich the system , being in state 6, is indifferent tc a

transition to state 7 to as opposed to remaining in state

6. A small perturb -~tion from this equilibrium point -~i1l

require the system to go to 7 (if the perturbation is to

the left) or to remain in 6 (if the perturbation is t~ the

right).

— 
The reason is again very simple. State 6 cannot be

a trapping state if being in this state, the system decides

V I to move to some other state. On the othet hand , once the

system decides to remain in 6, this state, consider ing

~ 
j all the decisions above , becomes a trapping state.

Let us find this equilibrium point. Consider that the

system is at state 6 (1 1 0) at time t-1, then we have :

Cost due to a transition from 6 to 6

= V6(t) + r6 
(5.28)

Cost due- to a transition from 6 to 7 (1 1 1)

I - *(6.7) = 84V7(t)+r7] 
+ (l_0

3) Ev6(t)+r 6J 
(5.29)

Equilibrium point (assuming 63 ~ 0)

~ (6,6) = #(6.7) ~~~~~ - 
V7(t) + r7 = V6(t) + r6 (5.30)

but we know from (5.21) that

V.7(t) = A 7 + (T—t) (5.31)

V6(t) = A
6 

+ (T-t)

therefore the equilibrium point will be at

A 7 + r7 
= 

~‘6 
+ r6 

(5.32)

(notice that in fact A 6 + r6 = A 7 
f  r7 = w1 )

- - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4’I ~~~~~F :-~~~~~‘_
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A
7 

= 3C5 r7=2p(81+e2
+63)

( 5 . 3 3)
A 6 

= 2C5+83 r 6=p ( 6 1+9 2+20 3 )

and this substitution yields

A 7 + r7 = A
6 

+ r6 
_~: C~ + p(81 + ~2) = (5.34)

So we have obtained a linear relation between P and C~

that describes the equilibrium point. For 0=0 the equilibrium

is at

C~ = = 0.4

For o = 0.25 the equilibrium is at
L - )

C5 
= 83 

— 0.25 (81+82
) = 0.4 — 0.35 = 0.05 (5.36)

~1 The intersection of the equilibrium line with the horizon-

tal axis will correspond to the cost due to the equi1ibriu~

point with C5 = 0

= 0 ==~~ 0 = 6
3
/8

1
+8

2 

= 0.29 (5.37)

V
7

(1)
~ 

= (8—1)w . = 7(A 7+r7) = 7.20 (5.3~ )

p=0 .29

We can see that for the given rates the equilibrium

above is possible only if p <0.29

With the same reasons as before we clai~” now that the

equilibrium between trapping state 6(110) and trappinP state

4(100) will be defined by the points at which the system ,

being in state 4, is indifferent to a ~ovement toward state
L

6 er staying in state 4.

L

~

_ _ _

_ _ _ _ _ _ _
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The new equilibrium line will be defined by

4(4,4) = •(4,6) (5.39)

• where

4(4,4) = V4(t) + r4 
(5.40)

• 
~

- 4(4,6) = 82[V6 (t )  + v6] 
+ (1

~
82) [v~~(t) +rv4]

¶ then

4(4,4) 4~(4,6) ~~~ V~ (t) + = V6(t) + r6 (5 .41 )

but

V4(t) = A 4 + (T—t) w. (5.42)

I V6
(t) = A 6 + (T—t)

-
~ 

- 

with

(5.43)

• A 6 
= 2C5 ÷ 03 r6 = c

~ (e1+G2+2e 3 ) •

hence the equilibrium line is defined by

• 
A 4 + r4 A 6 + r6 ~~4 C + 0(01+03) = 82 (5.44)

I
- therefore

0 = 0 ~~~~~~~~~ C5=82=0.6 —

P = 0.25 ~~ C5=0.3 
(5 45)

- - 
— A ~~ —~~ —I., — U .- )  —

~~ 
—

S

Now after all these properties have been described we

are ready to provide more information about linearity and

curvature of the graphs of Fig . V.6 and V.7. But before doing

that let us generalize the results obtained above . 

~~~~~I - ~~~~~~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - 
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We claim that in a network with constant parameters

and MC com~-:ters numbered in such a way that

8
1

> 

~~~~2
> e3 > - - ~ ~~~ 

8
N C-1 -

~~~ 

8NC ( 5 . 4 6 )

the equilibrium line separating the trapping state with NC

copies from the trapping state with NC-i copies will be

defined by the relation

~ (M-1 , M-1) = (M-•1,M) (5.47)

H- where

Similarly the equilibrium line separating the trapping

~ J state with NC—i copies from the trapping state with NC-2

Copies will be defined by the relation

( i i ,~J )  = ~- ( ~ i , !ii—1) (5.48)

where u is described by the vector (1 ,~~,1,. .1,0,0)

NC

i.e. p = = M--1—2 = M—3 (5.49)

n=2

In general the equilibrium line separating trapping

states with n and n—i number of copies will be described

by the relation

t (v ,v) = 4 ( v ,v + 2)

where NC

(3 , 1 , . .  1, 0, . .  0) , i ,e.v (5.50)
~~~~~~~~~~~~~~~~~~~~~~~~~~

n-i NC-n+l m NC- n

We can arrive to an exr)1~ cit relation of this equilibrium

l i n e  as a ~unction of the parameter of the s~’stem if we

- ________ ~~~~~ _— --—- —L~~~~~~~ ’-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

~ 
~~~~~~~~~~~~ Lc’I~Z ~~~~~~~~~~~~~ ~~~~~~~ . ~~ —-—
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replace v~~(.,.) by its expression in function of those para-

meters. In fact if we are in state v at time t—l we have

4 (v ,v) V
~~

( t)  +
(5.51)

4 (v ,v + 2) = e~[ V~+2 (t)+r +2] 
+ (l_8)[V (t) + r ]

therefore we will have equ ilibr ium if and only if

V (t) + r = V~~2(t) + r~~2 (5 . 52 )

but remembering that

Vk(t) = A k + (T-t) w. V k€K k ~ i (5.53)
i€K

we will have equilibrium if and only if

X -’- r =A + rv v v+2 v+2

but from (3.6) and (4.1) we know that

* 

NC

= (n—i) C5 + 9m - 

(5.55)

m=n

n-i NC

• r = P[(n_2) 
~~~ 

8m + (n-i) 
~~~~ 

e
m] 

=

m= l m=n

(5.56)

NC NC

‘ ‘ I  

= p [(n_2) ~~~~ 
em + ~~~~ 8]

NC

= nC5 + 8 (5.57)

m=n+l

. 
. 

_ _ - .~~~~ — - - - - —- - - ~~— - -- - —•---- -~~~~~~~--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
7 ..~~&.th ~~~~~~~~~ ~~~~~~ ~~~k ~~~~~~~~~~~ 
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- ;  I NC NC I-

= P [(n_i) 

~ 
+ 

~~~ 
8] (5.58)

- m n  m=n+1

therefore we will have equilibrium if and only if

(n-i) C5+ 8m 
+ 0 {(n_2) E 8m + 

~~ 
=

= + + ~ [ fl_a E e
m 
+ ~~~ eJ (5.59)

- 

m=n+1 m=l m=n+l

- - that is iff NC

= C~ + P 
~~~ 

9m (5.60)

m~n

Let us now calculate the total. minimum expected cost. Clearly

this cost will be given by

V
3
(i) = A. + (T—l) w . j, iCk (5.61)

- . 

- 

where

< A~~~~ V k 
~ 

j

i v+2 or i = v in the equilibrium line because

A + r = -~~ + r (5.62)
1 V u v+2 v+2

and i = v+2 to the left of this line whereas i=v to the

- ~~~-: right. The minimum cost in t!,e left side of the equilibrium
!~~~

line (without trespassing the area where v+2 is the trapping

I state) will be then

V~~(1) A .+A~~~7 + r~~ 2 
(5.63)

- 

• • • 
~~

•-— - • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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whereas in the right side and before crossing another

equilibrium line the cost will be

V~~(1) = A
3 

+ A +  r ~ K
r (5.64)

It is important to notice that j does not have to be 
-

•

the same in both expressions because when we move the point

up and down on the curves , we are changing C5 or p and j

will. be a function of C .  Furthermore the set K (remember

j  K) will be increased by one elemen t,the new trapping state,

every time we cross an equilibrium line.

Let us express these two costs in terms of the para—

meters of the system .

V1(l) = rnin {TCs+ ~~~ 8 + nC5 + A + PB (5.65)

• m=-r+1

Vr (l) = mm ~TC + 8 +(n—l)C +F+OC (5.66)
(n-1)-:-r --~NC ( ~ m S

m= -r+l

where A and B are constant (in the region where v+2 is the

trapping state) with values

A = 
~~ 

em (5.67)

~; 
m=n+l

NC NC

H 3= (n-i) E 8m 
+ E 6 ( 5 . 6 8 )

m=l m=n+l ‘I

I

_~~ --~~~~~~~~~~~
-
~~~~~~~~~~ - 

~~~~~~~~~~~~ ~~~~~~~ ~ ~~ TT~~~~~~~~~2T i~
-
~~ ~
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and F and G are also constant (in the region where v is

the trapping state) with values

NC

• 8 A + 8 (5.69)

H !  NC 

m 

NC 

m 

NC

G = (n—2) E 0m~ E 6m 
= ~~~

- E 0m~
6n (5.70)

m= i m n  m=l

~- 1

Now we have all the necessary elements to study the

exact shape of the curves of total cost versus storage cost

• taking the updating rate as a parameter or otherwise total

cost versus updating ratio taking the storage cost as a

parameter.

For p conSt.V*(i) is a picewise continuous linear

• 
I function 0 r -

~~~~~ 

that will change its si- .’pe every time we

• 
~ 

j find a new minimum in the term in braces in (5.65) this

will happen every time C 8 for n+1< m < NC)

For C = cOnst. 

— — 

( 5 . 7 1)
s NC

m m  TC + 6 = constant for a fixed as m
41 a T - N C

- m=T +l

i.e., is constant in the zone between equilibrium lines and

t~ ero~ore V*(1) is a picewise continuous linear function 
•

of p that will only change i.s slope every time it c’rosses

4 an ec’u~ libr~ um line.

-1
- 

• - • — ——_____________
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~
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With these properties we can now draw the exact cost

curves for the example of this section, without imolement-

ing the dynamic program algorithm . The curves are in Fig.

V.8 a) and b). This figure closes the analysis of networks

with constant parameters and updating traffic and in the

next section the analysis of the computer networks with

constant parameters , updating traf f ic and some nonzero

probability of node failures will be considered .

~ 1 V.3.  Nonzero Failure Probability

• The dynamic analysis under consideration takes its

t complete meaning when we include in the system the probability

of node failure .

-
• The Markov process describing the evolution of the system

•

~ 
without failures under optimal decision rules has a trapping

I ’ 
state, a fact which gives rise to a number of specific

~rcperties as described in section V.2. On the other hand .

if failures occur , the trapping state disappears , as seen

from the discussion in Chapter IV. In particular , if

failures can happen in all computers with nonzero probability ,

then the steady state probability that the Markov process

will be in a given state is strictly less than 1 for any

-
~~~~~~~~~~~~ decision strategy .

ii Let us analyze a simple example. Consider a network

with two computers, N C 2 , and the following parameters :

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ t~~~~~~~1~~~T ~~~~~~~~~~~~~ ~~L~~• ~~~~~~~~~~~~~~~~~~~~~~~
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- 

1

81(t) = 61 = 0.5

82(t)=8 2 — 0.4

C1 2 = C 2 , 1 = C T —l

C1 = C ~ C5 
- 0 5

C 01 = 50 C02 = 51

Pf — O.Ol 
~r °~~

The terminal costs are given by (4.5) with C0~~ 0 Vi ,

State number State vector Terminal costs

0 0 0  0.0

1 0 1  i.0

2 0 2 0.0

3 1 0  0 .9

4 1 1  1.0

5 1 2 0.5

6 2 0  0.0

7 2 1  0.5

8 2 2  0.0

The results of the optimization process for the first itera—

tions are shown as follows :

L~~~~zz~~~t 
- 

____ ______
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where under “cost” we write the values of the costs-to-

go ordered from state 0 in top to state 8 in bottom,

after every iteration . Under ugo to” we list the opti-

mal decision, corresponding to every state. The stars

mean that for these states no decisions are needed.

Continuing the iterations we could see that the

decision “go to state 4” is in fact the steady state

optimal solution for states 1, 3 and 4. This fact can

j also be confirmed by applying the Howard aigorithm 20

to this problem . - 

-

Theref ore , for this problem, with the specified

parameters, the optimal steady state decision is to keep

as many copies as possible , that is one copy at each

computer.

If keeping now the other parameters f ixed we reduce

the probability of failure by a factor of 10, i.e. from

0.01 to 0.001, we will f ind that the optimal steady

state decision is “go to state 3” , that is keeping only

one copy at computer one. The first iterations are

shown in table V. 6.

.4
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Therefore a reduction in the risk of node failures

is reflected in a reduction in the number of copies. It

is obvious that further reductions in the probability of

failures will not have any Influence at all in the optimum

policy because we cannot have less than one copy in the system.

We have seen how changes in the fa ilure orobab ility

may change the minimum number of copies to be kept in a

system; but what will be the repercussion of changes in 
~r ’

the probability of recovery ? It can be easily seen that

changes in 
~r 

will not have as much inf luence in the optimal

decision as changes in Pf for the case NC=2. The reason is

that , for NC=2 , 
~
‘r 

only appears in transition probabilities

from states where no decisions are available. The influence
• 

of these state costs on the decisions from other states is

ref lected through smaller probabilities (assuming Pf relative- 
—

- 1y small) and in a relatively simmetric form. Only if Pf

is near 1, the value P~ might have a certain importance .

An intuitive explanation of the fact that the value of

Pf will have much more 
influence than the value of 

~r 
can

be given by observing that , no matter how fast the failed

computers have been restored , if the system looses all the

copies, then a high price has to be paid in order to bring a

copy from outside .

For cases with NC>2 the situation is not so simple

because then 
~r 

may appear directly in transition probabi-

lities with several decisions available. Nevertheless , we
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can say that in those cases , the larger the number of work-

ing computers in a particular state the smaller the influence

of 
~r’ 

for Pf<< l.

- 
- 

i- Therefore will affect more the decisions among states

with large number of fa iled computers . The rea son can be

easily seen with one example. Consider a network with NC=5

computers. If we are in state 1 —
~~~ 

(0 0 0 0 1) then the next

important costs that will affect the optimum decision from

1 will be the costs of states with no failures in their 
-

•

componen ts , and therefore no 
~r 

in their probability expres-

sions; all these costs are going to be multiplied by (l-P f)
5
~

(remember Pf<<l). The next set of important states contribut-

ing to the decisions is the set of states with one failed

computer . These terms will have a factor of (l-P f) Pf.

Continuing in this way we can see that the states that will

reflect more the value of 
~r’ 

that is the states with a large

number of 2’s in their components , will be multip lied by

very small weights; for instance a state with only one working

H - computer will be affected by the term Pf
4(1-P f)

’
~O if Pf<< l.

On the other hand if the present state is for instance ,

state (0 2 1 2 2), and we assume P then the importantr - 

2 3
terms will be the terms affected by the weights (l—P f) ~~~
(1_P

f C 2Pr
(l_P

r)
2 and (l_P

f)Pf
(l_P

r)
3 and therefore will

increase its role in the opti.na l decision from these s t a t e s

compared to the former one .

Ar intuitive explanation to this fact can be given as

follows :

~~~~~~• ~~~~~~~
-

~~~~~~~
- - -

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
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r

If 
~r 

has a high value , close to 1, then there are high

probabilities of transitions from , say state (0 2 1 2 2) to

states like ( 0 0 0) or ( _ 2 — 
0 0); suppose now tha t corn-

puters 4 and 5 have high request rates and that transmis-

sion costs from computer 3 to computer 4 and 5 are much

higher than transmission costs from computer 1. to the same

computers , then a decision of writing a copy at computer I

will probably be optimal . On the other hand , ~~ is close

• to 0 then the transition probabilities to the statesabove

will be very small and other factors will influence the optima l

decision .

Of course if P
f 

is near 1 then 
~r 

will increase its

role in all decisions. With the discussion above we have

only confirmed that the model in fact reflects the physical

intuition that as long as Pf remains very small , the proba-

bility of recovery is of no great importance in the system

(remember the intuitive explanations given above). It is

obvious that the previous discussion has been undertaken

considering a fixed , not too small, cost (comparing to trans-

- ~~~~~~ mission costs) of bringing a copy from outside to the system ,

in the case of loosing all the copies. It is clear that

these costs will play a similar but opposed role to the

fa ilure probabi l i t ies, The reason is trivial.

Let us cons ider now an example with 3 computers NC=3.

The parameters of the network are the following :

4

~ 

-
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e1(t) = = 0 .8

0

2

( t )  = 0.6

83(t) = e3 = 0.4

C1,~ = CT = 1 Vi ,j i,j {1,23}

C1 = C2 = C3 = C 5 = 0.25

P = 0.25

C01 = 1000 C 02 = 1001 C03 = 1002

~r
0
~~

Now we write the optimal decisions corresponding to
I

the first iteration for three values of Pf.

4 Pf = O u O l p 0.00 1, 0 .0001

In all cases it can be checked that the decisions at
• j

time T-5 (and T-4) constitute already the steady state optimal

pol icy .

In these three cases it can be very well seen lOW the

decrease of the failure probability decreases the number of

copies.

L For Pf=O .Ol the steady state policy is to keep always

as many copies as possible , that is, all working computers

will carry a CO~~~~ u For Pf 
= O u O O l  the optimal policy is to

keeD as many copies as possible except for state 12 and 13

where two copies are enough (remember the discussion on Table

V.3). For P = 0.0001 the optimal policy says: if all corn—

vu-. puters are working keep only two copies (in 1 and 2). other-

wise keep as many copies as possible.

- 

The optimal decision from states 12 and 13 for the case

_________________________________ -
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Pf=O .OOl might 
appear surprising considering that from all

other states the decision is to go to state 13 , The rea son

- for this apparently anomalous fact can be seen by observing

that a direct movement to state 12 carries a greater risk of

ending up in a state with only one copy , than if we try to

move the system to state 13. Then the transition from 13 to

12 is automatic (see also the discussion on Table V.3).

Another fact that can be inferred from the table is that

— the optimal decisions always try to keep copies in the corn-

puters with highest request rate and smallest cost of bringing

~~~ / 
a copy from outside. Remember that in the present example

and C01<C02<C03

Looking at all the examples studied in this section we

N can see as a common point that in all cases the steady state

optima l solution is reached after very few iterations. If we

began the iterations with a set of different terminal costs

this would not have been the case. This fact has been con-

firmed for several examples by evaluating elgenvalues and

eigenvectors of the transission matrix. We expanded dif—

ferent terminal cost vectors in the matrix eigenvector base

and observed that the vector A gives the o~ ickest rate of

convergence . Nonetheless , t~ is fact couid ~ot be proven

analyticall y. A good reason to believe t h a t  t he  chosen

terminal costs are a good set of values f - : r a good speed of

convergence ~f the ftc rations is to think that with theso

terminal costs we let the system Finish 1:, ~~natura1 and

~)t forced” way because th se termina’ costs are similat to

74

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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the immediate cost(except for certain corrections due to

the C
01 

costs tha t make , in general, the f irst dec ision

-• in the iterations different from the others). Nevertheless,

this fact will tell us tha t those terminal vectors are

better than others but not necessarily giving rise to a

quick convergence .

If this is indeed the case, we could say that because

u we are main ly interested in the steady state pol icy the elec-

tion of the per unit time costs as terminal costs will reduce

considerably the amount of computation needed to find the

steady state optim~i policy. Otherwise, we always have

- 

P available the algorithm developed by Howard ~2Oj that has

been proven quite efficient for those kinds of problems .

In order to implement this algorithm we could take advantage

of the fixed zeroes position in the transition matrix to

solve the system of equations that this system generates.

Another point that can save certain amount of computation in

the solution of the system of equations is the fact that

all states with NC=l uu 2 n t s in the equivalent positions give

rise to identical transition probabilities and hence to

identical rows in the transition matrix. That is for NC=4.

79— ( 2221)
78= (2220) 

row 79 of P(t,u) E row 78 of P(t,u) Vt,u

7 4 = ( 2 2 0 2 )  row 77 of P (t,u) row 74 of P(t,u) Yt,u

etc.

- - 
- - - - 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
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There have also been suggested in the literature e.g. E23J ,

linear programming formulations to obtain an optimal policy

using the principles of the policy improvement procedure of

- Howard ’s algorithm ; these formulations solve the maximization

I problem involved in the policy improvement iteration of

I 
Howard ’s algorithm by means of linear programming calculations.

-
~~~~ V .4  Completely Simmetric Network

p .
- In spite of the simplicity that the model provides to

the analysis of a general network with any number of compu-

ters, there is one argument against it , as in fact is the

case with many finite state formulations. The problem is

the exponential growth of the number of states with the number

u i of computers in the network grows. There is not much that

can be done in order to avoid this growth but to try to find

suboptimal solutions. One way in which these suboptimal

schemes can be found is to assume that all transmission costs

are equal , all rates are equal , all storage costs are equal

etc. In such a situation we can see that all nodes in the

network have the same role and there is no need to specify

which node or nodes have a copy at a certain time but instead

the state vector will contain only the information of the

number of copies in the system at any particular time . Then

the -jeneral Markov process , for this network , is mergeable,

see 1~ , in the sense that we can group together a certain
~ ‘.5

• 
n u mh ’± i  ~ f states into a superstate and work with this super—

- !  •

~~~~~

- 

. 
_ _   

- - ----
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state as if it was a simple state for the modified Markov

process. In the case that for certain reasons, important

difference in computer request rates for instance , we were

I 

interested in a further analysis, within some superstates,
- 

this can be done after the merged process was analyzed . Of

course the results are not going to be optimal any longer

but if we choose wisely the parameters good bounds to the

• optimal situation could be obtained .

For the case NC=2 we know that the states are 0-8 ,

and can be grouped or merged as it is sh—wn in (5.72)

0 — 0 0 — 0

H 
3 - l 0 ~~

’

4 — 1 l _.\.B H
(5.72)

7 — 2 1

:t c:n

2

::een that this grouping verifies all the pro-

-
~~ perties needed for a right merging , that is

~~ ~i,m 
= 

~~ in 
for iv i E S k (5.73)

m~S1 
where Sk ,  S1€ (0,A ,B,C,D}

because now the indeces in the control variables are meaning-

less and O  = e  = 9

- 

The elements of the new transition matrix will be 

~1 
— — 

~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~-- —
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0 A 8 C D

- 0 0 (l_P
f)~ 

0 2Pf (l—P f
)

A 0 (l—P f)
2(l~~L8) (l—P f)

4c~e 2Pf (l—P f)

B 0 (1_P
f)
2 E (l_P

f)
2(1_c) 2P~ (l—P f) P~

C 0 
~
‘f~~ r 

0 (l—P f) ~~~~~~~~~ 
E
~f~~~

Pr)

D 0 0 2
~ r~~~

’
~r~

where now ~ represents the fact of adding one copy and c the

fact of erasing a copy , no matter in which computer these

‘ 

i 

actions will take place .

~ J As an example let us see that if fact P~~ = (l-P f)
2 (l cte).

We can write from the properties of the merging process

(5. 75)

where

I 
P1,1 = (l_P

f)
2 (l— ~ 19)

P
1 

= (l_P
f)
2c2ct18 (5.76)

P3 1  
= ( l —P ~ ) 2 c 1a 2e

-t 
-

• 
P3 3  = (l—P f)~~(l—c ~28)

omitting the indeces, that we saw are now meaning 1 ess,

~A ,A 
= (l—P

f)
2 (l—ae-4-rcte) (5.77)

u t ~, 
- but because the decision of goin~ to state 0 is not ~~ admis—

sible decision and , furtherr~ r - - , we do not want to a l l ow

contradictory decisio ns (u~rasing and writing simultaneous ly)

- ‘  
- we have

c O  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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-

and then
~
A ,A = (l—P f)

2(l—20) (5.78)

We can see that with this rearrangement we have reduced

a 9 state system to a 5 state system.

For NC=3 the reduction is even more drastic. The states

can be grouped as follows

New state Grouped state Representative of
_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  

the new state

0 0 (0 0 0)

A 1 , 3 , 9 (1  0 0 )

B 4 , 10 , 12 ( 1  1 0 )  ( 5 . 7 9 )

•
~~~ J 

C 13 (1 1 1)

-f D 2 ,5 ,6,7,11,15 ,18 ,19 ,21 (0 0 2)and(l 0 2)

E 14,16,22 (1 1 2)

F 8,17,20,23,24,25 (0 2 2)and(1 2 2)

¶ G 26 (2 2 2)

So we had a reduction from 27 to 8 in the number of

states. Now we had to define the new control variables.

add a new copy

add two new copies
(5.80)

erase one copy

erase two copies

The process can be easily generalized .

- 0~~• ~

- 
.
~

- 

-4
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CONCLUSIONS AND OPEN QUESTIONS

Throughout the chapters of this thesis we have developed

a new model to handle the problem of optimal dynamic file

allocation . The model had to be general enough to allow the

~
• study of problems such as: dynami c allocation with possible

computer failure and optimal allocation when we have res-

trictions in the state space. The restrictions i~tay take

the form of a max imum number of cop ies allowed in the system

at any instant of time or not allowing copies of the file

~~~

- j si~nul taneou~ 1y in two or more given computers . The use of

two types of control variables , one for adding new copies

to the sys tern (a), and the other for erasing copies (c),

made easier the task.

First we stated the working hypothesis (sufficiently

high link capacities , sufficient memory sizes , stochastic

independence in the requesting process from different corn- —

puters, etc.) that could allow us to work with each file

-
~~~~~, 

separately and to model the system as a Markov process.

Having characterized the evolution of the syster~ under

a Markov orocess and being interested in finding the optima l

dynamic file allocation such that the total cost were minimized - -

we f o u n d  in the stochastic dynamic programming an excellent

- 

•

~~~~~ 

- 

tool to solve the problem .
r

We defined the state of the system as a vector with

a number of components equal to the number of computers in

the network . In that way each component of the vector would
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characterize the particular situation of each computer. We

would have a 0 in the ith location if computer i were in

working condition but with no copy stored in its memory ;

a 1 if computer i had a copy in its memory and a 2 if computer

i were out of work (if failures are included in the model). t 
-

With this representation we could think in the state of the

system as being a base 3 reproduction of a certain decimal

number (or base 2 reproduct ion when the probability of fa ilure

is considered equal to zero). Therefore we could identify

the states with this number .

We showed that the states and control vectors exhibited

some properties ti it allowed us to write mechanically the

transition tableau. This transition tableau h~s proved of

great utility in writing the recursive equations generated

by the application of dynamic programming . In fact we

found some rules that made it possible to construct algorith-

mic flow—charts to compute the transition probabilities in

a very efficient way . Perhaps one of the next important

- 
-~~ points related with this algorithm is its property of being

totally general as far as the number of computers is concerned .

We have also seen that updating traffic generated at

some or all of the nodes can be easily incorporated in the
u~~~~

analysis. We have given flow—charts showing how all these
~

terms can be calculated in the same way as the per unit time

costs.

One of the reasons why the flow-charts were found to be

qu ite ef ficien t is because they compute only the nonzero -
‘

-•~~~~~ 
-- -v ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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elements of every matrix and vector . This is an important

fact if we consider that , for instance, in the transition

matrix only approximately 30% of the components are nonzero .

A flow-chart for the whole optimization process was also

— 

presented.

Af ter the complete introduction of the model we appl ied

it to several examples. First we consider the case of time

varying rates with no failures and no updating traffic in

the network . We studied for this case how the state dyna-

mics changed as the stor age cost was increased . The analys is

confirmed the intuitive point that the maximum number of

copies needed in the network decreased as the storage cost

increased . We also compar ed, for this case , the dynamic

analysis with some static analysis. %~e plotted the curves

of total cost—versus storage cost for the static and dynamic

analyses for two examples with different rates but with the

same average rates over the period of operation . It was

found that the curves for the dynamic analysis were very

- - , close. A third example with higher rates were also plotted

showing higher costs.

Later ou , the case of constant rates with updating traf-

fic and no failure was studied in great detail. It was
I--

shown that ~or this case the “~ rkov process fitted into the

special class of Markov chains with a trapping state . This

fact was used to derive a certain number of properties. One

of th e  ur o p e r t i e s  is that these processes with a terminal

-- 
- 

~~~~~~~~~~~~ _ _ _  - - - ~~~~~~~~~~~~~
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cost vector equal to the inmtediate cost vector do not present

any transient in their decision policy. Furthermore, the

minimum expected cost increases picewise linearly with time

to go. One important outcome of these two results was to

find some expressions relating the trapping state and the

optimal initial state with the storage cost and the updating

ratio. In that way we could study, without actually implement-

ing the dynamic programming algorithm , how the optimal

allocation changed as we vary either the storage cost or

the updating ratio or both. Curves were also given to show

the evolution of the total cost versus storage cost tak ing

the updating ratio as a parameter , and the total cost versus

updating ratio taking the storage cost as a parameter. It

was shown that due to above mentioned properties , those

curves could be drawn without actually using the dynamic

programming algorithm .

Finally the case of nonzero failure probability was studied .

It was shown how an increment in the failure probability may

increase the number of copies to be stored in the network at

any time . It was also shown how , in general , variations in

the probability of computer recovery do not have a signifi-

• cant effect on the optimal decisions if the failure probability

is reasonably small. Perhaps one of the most important find-

Ings for this case , that could not be proved analytically

though , was the fact that taking the per unit time cos . as

the vector terminal costs the process converges very quickly

-- - - - 
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to the steady state decision . This is an important fact

that could save a lot of computation and would avoid the

need to use the Howard algorithm . Otherwise Howard ’s algorithm

— could be used efficiently while taking advantage of the fixed

zero position in the transition matrix and the fact that some

of its rows are identical.

As it was pointed out earlier, one of the difficulties —

that the finite state model rises is the fast increase in

the number of states when the number of computers increases.

To overtake this difficulty a suboptimal method based on a

completely simmetric network which can be thought as an

approximation to the actual network was suggested . This

approximation provides a reduced Markov chain whose state

are collections of the states of the original process.

The reduction in the number of states for NC3 was from 27 to 8.

Some points remain still to be studied rei~ ted to dynamic

file allocation . As mentioned before , we found some con-

vergence properties that could not be proved analytically .

Furthermore other suboptimal models can he of interest for

the case of large networks . For example , some a priori

c~ iculated bound in the maximum and minimum number of copies

could reduce considerably the number of s ta tes .  But per--

haps one of the most appealing tnp lc s  to he pursued in  t h i s

area is including the situation when the rates of requ~ st are

not perfectly known in advance . The main goal then would
‘ -l

1-c s  to tr y  to g e n e r a l i z e  S e g a l l ’ s r e su l t s  11 for  t h is  problem

1
.
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to a broader framework as the one presented here for the case

of deterministic rates. With this approach , one could also

investigate decentralized schemes for dynamic file allocation

- 
where the decisions at every time , whether to wr ite or

erase a copy , are done locally by each computer and all

computers work in a team to minimize the overall cost [28].
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APPENDIX A

Transition Probabilities for N C 2

4 I

We defined

Pi)(t~
u) = Prob{Y(++l) = j Y ( t )  =

In particular

P 11( t ,u )  Prob {Y (t+ l)  = I Y( t)  = 1) =
-

~~~~~~~ = P rob {Y (t+ l ) l Y ( t ) = l ,n 1(t )= 1}Prob(n 1( t )= l  Y ( t ) = l}

+ Prob(Y(t+l)=l Y (t)=l ,n1(t)=0)Prob{n , (t)=0 Y(t)~~
l}

but

L j Prob{n1(t)=lIY(t) 1}= Prob{n 1(t)=l}= 81
( t )

- ~~. 
Prob{n1(t)=OIY(t)=l}= 1—91(t)

Prob{Y(t+l)=l)Y(t)=l,n1 (t) l} (l-a 1 (t))(l-c 2 (t))

ProbtY(t+l)=lIY(t) 1,n1 (t) 0} 1

therefore

P11 (t,u)=(l-a1
(t)) ( l — ~~2

( t ) )  91
(t )  ÷ l—e1

(t) =

=(l—a.~(t))e1 (t)— (1—cz 1 (t))c 2 (t)e 1(t)+l—e 1(t)

but ( l — a 1( t ) ) c 2 ( t )  = 0 for  any value of ct 1
( t )

and c2 (t) in the control space then

P11 (t,u) = l- r~1 
(t)81 (t)

In the same way

‘-1 P (t , u ) = P r o b {Y ( t + 1) 2~~Y ( t Y l }
12 

P r o b {Y ( t + l ) 2 I Y ( t ) l , r 1 ( t ) l }P r O b {f l 1( t ) l~~+

+ P r o b { Y ( t + l ) = 2 I Y ( t ) l , n~~( t ) 0 ) P r O b {f l~~( t ) 0 }

bu t  P r o h ( Y ( t + l ) 2~~Y ( t ) l , n 1 ( t ) 0~~ 0

~~~~~~~ - - -- - - 

ii
L - 

-

~~~~~~~~~~~~~~
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therefore

= a1 (t )  c
2

(t )  81
( t )

with the same procedure

P13 (t-,u)= a1 (t) (1—c 2 
( t ) )  01 (t )

= c
1

(t )  a
2
(t) 0

2
(t)

P22 (t ,u )  = (l—a 2(t)) (l—c 1(t)) 02 ( t )  + 1—0 2 ( t )

= l—a 2 (t )82 (t )  because c1(t ) ( l — c z2 (t ) )  = 0

P 23 (t ,u ) = a2 ( t )  ( l — c 1(t ) )  e2 (t )

P31 (t,u) = c1( t ) ( l - c 2 (t ) )  = c1(t) because c1(t)c 2
(t) = 0

P32 (t,u) = c2(t) (l—c 1(t)) = c2(t)

P33 (t,u) = ( 1 — c 1 
( t ) )  ( 1—c 2 (t

) )  i — c 1 (t )  — c 2 (t )

• 
- -( a-

- ‘ 1  ‘
* 

-u
4 1

4

1 

~~~ ~~~-r  
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APPENDIX B

Backward Equations for a Network with Two Computers and the

Restriction of Only One Copy in the System.

- 
We saw in section 111-3 that the backward equations

-
- 

for the case NC=2 without restrictions in the state space

— 
- 

were

rv~ct ) c
2
+c21e

1
(t)

V~~~( t )  c1+C12e2(t) +

V
~~~~

( t )  C
1

+C
2

l-a

~~

(t)01(t) c~~(t)a~~(t)01(t) (l-c~~(t))a~~(t)01
(t) Vt (t+1) ~

c
~~
(t)cz

~~
(t)8,(t) l c *~~(t)82(t) 

(l-.c
~.
(t))ct

~~
(t)82(~~) V~~(t+l)

ct (t) c~~(t) l—ct (t)—c
~~
(t) V~~(t+l’

If we restrict the system to have only one copy at

- 
- 

- . any instant of time then state 3 is not allowed and we have

to do two changes according to section 111-5.

1) we eliminate the last row of every matrix in the

equation

2 )  we add the p r o b a b i l i t- ;  of go ing  to s t a t e  3 to the

p r o b a b i l i t y  of r ema it ing in the  previous s t a t e .

t ) oinq t h a t  t he  t r a n s i t i o n  s tate  become s

I 
- -

L~ 
- -

~~~~~~~~~~~~~~~~~~~~~~~ T~ :~~~~~~~ ~~~~~~~~~~~~~~~~~~ $- :~ 
‘

~~~
-
_ _



- — — -
~~

— - -— ‘— — -
~~~ 

-—— — -- -—— ——— - - -- —-— ---— _- — —  ———- — - - - - —‘— — — — —

149

f
l_cz

1e1+cl—c 2 cz101 c2 ct101 1
~_ 

c1ct202 
1 202+ ( l — c 1) cz2e2j

= [l_c 2a iOl c2cz101

[c 1a202 1c 1a202

Realizing now (looking at the tableau of section 11-4)

that for any allowed transition a1 = c2 and c1 = a2 we

can write

c2a1 = a1

c1a2 = a2

~ ) and we arrive to the logical and expected result that we do

not need the erasure variables. With this simplification

the recursive equation is

frt (t ) 1 1C2+C 2l ei ( t ) ] +  Il_a 1( t ) e l (t )  ~1(t ) e1 (t )  ] 1~(t÷])1
Lit i [C1+c1202 t j  l c t 2 (t ) 02 (t )  l_a 2 (t ) e 2 (t )j  L~~t÷ 1i
that is the same equation of ref. 11 except for the switching

of subscripts due to different state definitions.

.
~~~~~~~

-
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I APPENDIX C

- 

FLOW-CHARTS AND SUBROUTINE FORTRAN LISTIN GS

I
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