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I.    INTRODUCTION 

The calculation of low-resolution radiance and transmittance spectra 

of molecular gases by narrow band model methods has widespread applica- 

bility in quantitative spectroscopy.    Two particularly important areas of 

application are the calculation of heat transfer in the earth's atmosphere 
(2) and the calculation of infrared radiance  signatures of hot combustion gases. 

The latter spans the range from small laboratory flames to exhaust plumes 

of jet aircralt and rocket-propelled missiles. 

Most practical applications of band model methods must treat nonuni- 

form optical paths.    In atmospheric applications,   inhomogeneities result 

from the variation of pressure and mixing ratio of active  species with alti- 

tude.    Temperature variations also occur in the atmosphere,   but for many 

applications,   these variations may be neglected and the atmosphere treated 

as isothermal.    In combustion gas applications,   however,   very strong 

thermal gradients may be encountered.     This is particularly   rue for exhaust 

plume problems in which shock structure and the mixing and afterburning of 

unburned fuels with atmospheric oxygen are considered.    An important prob- 

lem that combines a.pects of atmospheric and combustion gas methods is the 

propagation of radiation from a hot gas source through a long cool absorbing 

atmosphere.    If the same molecular species is responsible for both emission 

and absorption,   the high degree of line position correlation between the emis- 

sion and absorption spectra may preclude the decoupling of the optical path 

into isolated emitter and absorber regions and multiplying the  source band 

radiance by the absorber band transmittance in order to arrive at the trans- 

mitted  radiance spectrum.     The entire optical path through both the absorb- 

ing and emitting path segments must be treated as a single nonuniform optical 

path. 

Radiative transfer along nonuniform optical paths for both isolated lines 

and bands of lines has a Jong and varied history of theoretical study.     These 

studies can be conveniently grouped into three categories corresponding to 
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a priori assumptions concerning the type of optical path considered.    The 

first category includes those solutions and approximations that make no prior 

assumptions concerning the variations along the path and are thus applicable 

(but not necessarily accurate) to any general nonuniform path.    The most 

sienificant entries into this category include the Curtis-Godson (CG) rpproxi- 

mation,^3"10   the Lindquist-Simmons (LS) approximation, ti     deriva- 

tive model of Lindquist et al. , ^     ' the intuitive method of Weinreb and 

Neundorffer, ^15' and the exact solution for an isolated Lorentz line of Plass 

and Fivel. The formulation discussed and applied by Simiaons and 

others^17"21^ can also be considered as a general path approximation,  but 

requires the selection of parameters or functions that fit the model to spe- 

cific types of nonuniform paths.    The work of Boughner       ' on shock-heated 

gas also fits into this restricted general path category. 

The second category includes studies that consider optical paths along 

which the pressure is specifically assumed to vary exponentially. Applica- 

tion to atmospheric slant paths is evident.    Significant contributions in this 
(23) (24) 

category include the works of Plass and Fivel,v        Yamamoto and Aida, 
(25) 

and Yamamoto et al. 
The third category of studies are most applicable to the problem of 

flame radiation through an absorbing atmosphere.    The a priori path model- 

ing here is the consideration of two uniform path segments in series.    Treat- 
(? h 27\ 

ment of line radiation for this case has been made by Sakai and Stauffer 

[with comments by Plass(28)] and by Goody/ Sakai and Stauffer con- 

sidered the general problem of two arbitrarily overlapping Lorentz lines. 

For zero separation,   their analysis is applicable to the two-cell problem. 

Treatment of band radiation for two path segments in series has been given 

by Plass(30'31) and Rodgers.(32) 

Despite the extensive work reflected in this short review,   no band 

model has been developed that adequately handles general optical paths along 

which high degrees of inhomogeneity and.  particularly,   nonisothermality 

occur.    The most often used of these approximations is the CG approxima- 

tion.    Generally speaking,  this approximation is adequate for application to 
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atmospheric problems and even to combustion gas problems that display 

moderately strong temperature gradients. (2' 10' 22' 33)   For very strong 

thermal gradients,   and for the case of viewing hot gas sources through inter- 

vening cool absorption paths,   the CG approximation as well as the remaining 

general path formu1   tloni often fail to yield adequate results. 

The concern of the present paper is the formulation of improved band 

radiance models that can be applied efficiently to general nonuniform optical 

paths and that account for large nonuniformities better than previous models. 

Spectra generated with these models and experimental spectra are compared 

in a companion paper."    The models are formulated within the confines of the 

statistical band model for Lorentz line shape and inverse line strength distri- 

bution.    Three works are of particular importance in establishing the ground- 

work for these formulations:   (1) the work of Godson(5) contains the original 

derivation of the statistical model for the inverse line strength distribution 

and the most thorough treatment of the traditional CG approximation a« 

applied to the statistical model; (2) the work of Lindquist and Simmons 

rationalizes the approach of approximating the derivatives of such transfer 

functions as mean transmittance and equivalent width rather than approxima- 

ting these functions directly; and (3) the recently reported work of Lindquist 

et al.(14) provides the intuitive direction for the formulations. 

In this paper,   radiative transfer for an isolated Lorentz line is re- 

viewed in Section II,   and the statistical band model for uniform optical paths 

is reviewed in Section III.    Both discna.lcns are restricted to topics required 

in subsequent developments,  but are presented in some detail.     The founda- 

tions established in these two seen >ns are used in the formulations given in 

Sections IV and V.    In Section IV,  the CG approximation as given by Godson 

is discussed,   and an alternative formulation of this approximation is con- 

sidered.    This alternative formulation establishes interpretations and 

^Stephen J.   Young,   "Evaluation of Nonisothermal Band Models for H20( " 

J.   Quant.   Spectr.   Radiative Transfer (to be published). 
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functiona! reiation. necessary to .he formulation of .he various derivative 

appro.ima.ions made in Section V.    The latter part of Section IV and Sec- 
.,. „-L- „t tViiQ naner      The models are tion V comprise the significant new work of this paper. 

reviewed and summarized in Section VI. 

A 



II     ISOLATED LORENTZ LINE 

A.        GENERAL RELATIONS 

In the statistical band model used in subsequent formulations,   the 

average transmittance for a spectral interval Av la expressed in terms of 

the integrated absorptance (equivalent width) of the individual lines in Av. 

In this section,  the radiative transfer effects of an isolated Lorentz line are 

reviewed to the extent required for these subsequent formulations. 

Consider an optical path that extends from the geometric posiUon s = 0 

to s " S      The concentration (mole fraction) of active gas c(s).   total gas pre- 

sure p(s),   and temperature T(s) are considered as general,  but kno.n.   func- 

tions of s.    The gas is assumed to be in a state of local thermodynarmc 

equilibrium.    The spectral absorption coefficient for the Lorentz (dispersion) 

line shape is 

k(v. s) = 
S(s) V(s) 

+ V'(s) 

w here S(s) is the line  strength and Y(.]    s the line width parameter.    The 

reference of spectral position is the line center.    S(s) is assumed to be a 

function of temperature only,  whereas y(s) may be a function of all three of 

the path variables.     The variations of S(s) and y(s) with c(s).   p(s).   and T(s) 

are presumed known. 
The two fundamental quantities of line radiation that are important here 

are the line radiance and the line absorptance.    The former is defined by 

N 
/ 

N*(a) 
dW(s) 

ds 
ds (1) 
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where W(-) is the integrated absorptance of the line (equivalent width) for 

the poth segment between s = 0 and the general position s and is defined by 

W{«) = ri'—K cis')v(s')S{s')y(s') 

v    + \   (s   ) 
ds' 

) 

J) 
dv (2) 

The line absorptance is the equivalent width evaluated for the whole path W{S). 

N:::(s) is the Planck radiation function evaluated at the true spectral position 

of the lino ci-nter and at the temperature l(s). The form of equation (1) is 

based on the assumption that N:::(s) changes negligibly over the spectral width 

of the line. 

B. EXACT SOLUTIONS FOR W(s) 

The prediction of either N or W(S) for the line reduces formally to the 

evaluation of W(s) for general s.     For a uniform optical path along which c(s), 
(34) p(s),   T(s),   and hence S(s) and ■Y(S) are constants,   the  solution to equa- 

tion (2) is 

W(s) = 2TTYL[X(S)] (3) 

where x(s) = u(s)S/2Try is a dimensionless optical depth parameter,   and 

u(s) = cps is the optical depth between s ^ 0 and s.     Mx) is the Ladenburg- 

Rei .he function 

Mx) = xe"X[l0(x) + I^x)] (4) 

where IQ(X) and IJx) are modified Besse) functions.     T(x) is  shown in Fig.   1, 

The asymptotic limits of Mx) ^OT weak (x - 0) and strong (x - ") absorution 

-10- 
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are L(x)  - x and L(x) - y/Zx/ir,   respectively.     The corresponding limits for 

W( s) are 

W(s) 

u(s)S Ziryx weak 

(5) 

Z\/u.(s)Sy - 2-xyJ^ strong 

An exact  solution for W(s) for an arbitrary opticaJ path has been given 

by Plass and Fivel. The solution is a series expansion in terrrjs of 

moments of \{s).    The complexity of the solution and the fact that only the 

first three expansion coefficients have been evaluated preclude its vise in 

most practical applications.     This solution is not considered further here. 

Jn the limits of weak and strong absorption,   general solutions of equa- 

tion (2) can be obtained in simple form.     Familiar arguments       used to ob- 

tain Ihe weak and strong limits for a uniform path are readily applied to a 

nonuniform path and yield 

/    c(S')p(s'}S(s') ds' 

W(s) 

2\//c(«')p(«')S<«'»Y(«') da1 

weak 

strong 

At this point,   it is convenient to introduce the concept of path-averaged 

iramete r 

arc defined by 

Line parameters.     Ihe path-averaged line  strength S  (s) and line width \   (s) 

S  (s) = -j—    f  cU'lpU'^s') ds' 
e u(s) ./0 

(6) 
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and 

Vs' = i^)hi)XSc<s',p(s')S,s')v(s',ds' (7) 

where u(s) is the optical depth 

u(s) -    f c(s,)p(s') ds' 
Jo 

(8) 

A convenient dimensionless optical depth parameter is 

u(s)S  (s) 
Xe(s)--    2^   (s) 

(9) 

In terms of these path-averaged parameters,   the limiting solutions for W(s) 

mav be written as 

W(s) 

u(s)S  (s) = Ztry   (s)x  (s) weak 

  l2x~{ s") 
2>/u(s)Se(s)ve(s) = 2wVe(«)\/ ;  strong 

(10) 

Comparison of equations (5) and (10) indicates that W(s) for a general 

path approaches the same limiting forms for weak and strong ahcorption as 

does W(s) for a uniform path.     The difference is that the path averages Se(s) 

and \   (s) replace the constants S and -y,   respectively,   and the general result 

for u(s) given by equation (8) replaces the quantity cps. 

13- 



Consioerations presented later require the spatial derivative of these 

;xact limiting solutions.    Straightforward differentiations yield 

dW(,s) 
ds 

'(s)p(s)SU) weak 

c(s)p(s)S(s)Iis) B c(S)P(s)S(s) lisl        strong 

yu(s)se(she(s)      /Z^Tfl)    V3' 

(ID 

C.        CURTIS-GO DSON APPROXIMATION 

The CG approximation was introduced by Curtis       and Godscn    ' ^    in 

the context of isothermal band models used for computing heating rates in 

the atmosphere.    An extensile literature exists on the application and inter- 

pretation of this approximation.    The approximation can be formulated from 

several points of view.    The conceptually simplest,   and the one most in 

keeping with Curtis' original discussion,   is that the path-integrated line- 

shape function [the exponential argument of W(s) in equation (2)] is  replaced 

by a Lorentz line-shape function that depends on effective line parameters 

S(s)andy(s).    That is,   W(s) is approximated by 

W{s) 1 
-ro | 

1   - exp u(s) 
S(s) \(s) 

i    + y   (s) 

I 

An immediate Ladenburg-Reiche integration can be made to give 

W(s) =  2TT7L[X(S)] 

A ith 

x{s) 
u(s)S(s) 

-14- 



The effective parameters S(S) and^(s) are determined by forcxng the 

approximate solution for W(S) to agree with the exact solutions [equation (10)J 

for weak and strong absorption.    The ^esult is that the effecüve parameters 

are best defined as the path-averaged parameters of equations (o) and (?). 

i.e..   S(s) = Se(s) and^U) = Ya(«).    The CG approximation for an isolated 

Lorentz line Ld general nonuniform optical path is,   then, 

W(s) = Ziry   (s)L[xe(fi)1 (12) 

The functional form is the same as for a uniform path,  but the constant 

parameters S and v are replaced by the path averages S^s) and V0(.). 

respectively. 
The calculation of line radiance according to equation (1) requires the 

derivative dW(s)/ds.    Differentiation of equation (12) yields 

**iSl* c(s)p(s)S(s)y[x  (s),p(s)] (13) 
as 

where 

yU.pHU-P^Mp-U^ 
(14) 

with dUx)AlN      r-Xl0(x).     The parameter p(.) L. the  ratxo of the local value 

of line width to the path-r.veraged 111 idth. 

^  .ih (15) 

and is the index that measures the degree of local path nonuniformity. 
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7"he asymptotic limits for the derivative function y(x,p) given by 

equation (14) are readily verified to be y(x, p) -"' 1 as x - 0,   and y(x, p) -• 

p/fZrrx as x - oo.    Comparison of equation (13) with the exact solutions of 

equation (11) reveals that these limits for y(x, p) are the correct limits. 

Although y(x, p) approaches the correct iimits for weak and strong absorp- 

tion,   spurious behavior may occur for intermediate values of x if the non- 

uniformity index p(s) is large.    A large value of p(s) would occur,   for 

example,   if,   along an isothermal path,  there were a sudden pressure in- 

crease such tl  it ■Y(S)   » y   (s).     The derivative functit n is shown in Fig.   2 
e 

as a function of x for a few values of p.    It can be shown that if p > 2,   there is 

a region of x values for which y(x,p) > t.    From equation (11),   it is evident 

that this effect predicts that W(s) grows at a race faster than       does for 

weak absorption.     This behavior is unacceptable and points out a funda- 

mental flaw in the CG appruxinaation. 

D. LINDQUIST-SIMMONS APPROXIMATION 

(11' 
The approximation of Lindquist and Simmons       ' corrects the flaw in 

the CG approximation ncted above.    This approximation proceeds from the 

observation that the line radiance given by equation (1) is formulated in 

terms of the derivative dW(s)/ds rather than W(s) directly.    The L.S approxi- 

mation thus considers a direct approximation to d'i'(s)/ds lather than to 

W(s).    The spatial derivative of W(s) from equation (2) is 

iVV(s) 
ds 

c(s)p(s)S(s) if Ihl 
>    + \   (s) 

cxp 
:(S

/)p(S-)S(S-)v(S
/)   ds/ 

2        2,   / v 
i    + v   (s   ) 

As ii the CG approximation,  the path-integrated line-shape function (the 

exponential argument) is replaced by a Lorentz line-shape function expressed 

in terms of effective line parameters S(s/ and •yfs).     The derivative may then 

be expressed as 

^£l = c(s)p(S)S(s)y[x(S),p(s)] (16) 

.16- 
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Fliure 2.    Derivative functions for an isolated Lorentz line, 
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where 

x(S) 
u(s)S(s) 

\(s) 

and 

yix.p) exp I      d. 
1  + z2p2) 1 + z' 

(17) 

A simple analysis of equation (i7) yields the asymptotic limits of y(x, p) as 

y(x, p) -" 1 as x - 0,   and y(x, p) - p/JZrr-x. a.s x — <*>.    Thus,   the weak absorption 

limit of dW(s)/ds given by equation (16) reduces to the correct limit given by 

equation (11) regardless of the choice of S(s) and ■Y(S).    Agreement between 

equations (16) and (11) for strong absorption requires S(s)"y(s) = S  (s)\   (s), 

which can be  satisfied with the intuitive choices S(s) a S  (s) and \(s) = y   (s). 
e e 

The final result for the LS approximation is 

dW(s) 
ds c(s)p(s).S(s)y[xe(s), p(s)] (IB) 

An alternative approach to the CG approximation is to replace y{s') in only 

the denominator of the exponential argument of equation (2) by an effective 

width parameter \( s).    A  Ladenburg-Reiche integration and a forced fit 

between the approximate and exact solution for W(s) in the weak absorption 

limit yields \(s) =  ■y   (s) and,   finally,  the result of equation (12).    If this same 

approach is used in the LS approximation,   the correspondence \(s) = y   (s) 

is uniquely determined by the strong absorption fit of the approximate to 

exact solution for dW(s)/ds. 
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The derivative function of equation (17) is not expressible in terms of 

elementa'-y functions.    A tabulation and approximate solutions for extreme 
(12) 

values of the arguments x and p have been given by Young, The function 

is shown in Fig.   2 for comparison with the CG approximation.    The function 

is well-behaved and never exceeds unity.    Since the LS approximation treats 

dW(s)/ds,  no solution for W(8) is given other than the formal solution 

W(s) •/'V-' 
which can,   in application,  be evaluated numerically. 
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III.    STATISTICAL BAND MODEL 

A.        GENERAL RELATIONS 

In thin section,   the radiative transfer effects are reviewed for an array 

(band) of many lines,     all with centers confined to a spectral interval Av. 

The average radiance in Av due to these lines and for a general nonuniform 

optical path is 

/ 

|     N*(s) drU)  ds 
ds (19) 

This form of the band radiance equation requires Av to be small enough that 

the Planck function N:::(s) can be considtred as sensibly constant across Av. 

T(S) is the average spectral transmittance for AM and the path segment 

between s -  0 and general position s.    The exact expression for T(S) is 

T{S) 

^A; 

s) dv (20) 

where T(v, s) is the spectral transmittance within Av.    If the number of lines 

N in Av is large,   T(V, S) is,   in general,   a rapidly fluctuating function of v, 

and the evaluation of T(S) by equation (20) is quite tedious.    In addition    evalua- 

lion of ■r(s) by this method requires detailed knowledge of the spectral posi- 

tion,   strength,   and width of each of the N lines in Av.    In order to expedite 

the evaluation of T(S),   band model techniques are used.     The objective of 

All of these lines are assumed to arise from a single molecular gas species. 

Treatment of more than one species is trivially handled by invoking the 

multiplicative property of band transmittance for nonidentical species. 
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band model nu-thods is to approximate T(S) by an expression that depends on 

only a few parameters.     These band model parameters reflect average 

properties of the lines in Av. 

The statistical band model approximation of T(S) is developed from two 

fundamental assumptions.    One is that the placement of lines in Av can be 

modeled by a random arrangement of equal width lines.     The result of this 

assumption is that 

"(s) =  expl- ——j        , (21) 

where W(s) is the average value of W(s) for the lines in Av, 

N 
W(s) =4r S W^'3)        » 

i=l 
[22) 

and  '   it, a mean line spacing parameter 6 = Av/N.    This  step in the formula- 

tion eases the difficulty in evaluating T(S) to the extent that the individual 

positions and widths of the lines in Av are no longer required.     The strengths 

are  still required for computation of W(i, s). 

This expression for T(S) is the limiting form for N -» and Av -• •,     The 

latter ensures that the absorption caused by each line in Av is confined to 

Av,    An additiona] note of importance is thai.  r(s) derived in the statistical 

model is not a mean spectral transmittance in the sense of equation (20), 

but rather a spectral transmittance (for some position v in Av,   generally 

the center of A.) that has been averaged over all possible line arrange- 

ments.    It can be established,   however,   for the condition A'. - ■ that 

equation (21) results for any choice of reference position V in Av.     Thus, 

equation (21) is also an adequate representation for the average spectral 

I ransmittance. 
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The other modeling assumption is that the strengths of the lines in Av 

can be described by a continuous distribution function P(S).     Then,   rather 

than writing the average value of W(s) as a summation,   as in equation (22), 

the integral expression 

W(s) =/     P(S)W(S, s) dS (23) 

is used.     The use of this definition requires the selection of a plausible 

distribution function P(S) and the expression of W(s) for an isolatrd line in 

terms of a line strengt;: parameter S.    For an isothermal path (where S is % 

constant),   this latter requirement is trivial.    For a nonisothermal optical 

path,  the expression of W(s) [and its c   rivative dW(s)/ds] in terms of an 

acceptable strength parameter is the basic problem considered in Sections IV 

through VI.    For the remainder of this section,   a uniform optical path is 

assumed. 

B. INVERSE LINE STRENGTH DISTRIBUTION 

P(S)dS is the probability that an arbitrarily selected line in Av will 

have strength S in the interval dS about S.    Several distribution functions have 

been considered.     Use of the dirac distribution P(S) =   d(S - S) is equivalent 

to the assumption that all lines in Av have a strength equal to the average 

line strengt!; S.     The use of an exponential distribution P(S) = S~    exp(-S/S) 

yields the Mayer-Goody form of the statistical model.        ' The distribu- 

tion functions used here are the truncated inverse line  strength distribution 

introduced by Godson    ' and the exponential-tailed inverse distribution 
(3H) 

introduced by Malkmus. The use of these two distributions yiells nearly 

identical results for man, applications.    In the present work,   the distribu- 

tions are used interchangeably in the following manner:    The formulation of 

models is made with the inverse distribution; the functions  required to apply 

the models are derived with the exponential-tailed inverse distribution. 
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The form of the inverse distribution used here is 

r   o 0 <  S < SM/R 

P^Hn^      VRSSSSM 

s > s M 

(24) 

where SM and SM/R are,   respectively,  the maximum and minimum line 

strengths allowed in the distribution and are introduced so that P(S) can be 

normalized.     SM and R are two independent parameters of the distribution. 

R is generally assumed to be large.     The mean line  strength for the distri- 

but ion is 

S     R 1 
R In R     M 

with S - SM/ln R for large R 

For application to nonisothermal paths,   it is necessary to know in 

more explicit Torm how temperature enters into the distribution.    In order 

to accomplish this,   a functional relationship between line strength and 

temperature must be assumed.    The form assumed here is 

S(i,T) = Sv,(i,T) e 
-e(i)/T 

M' 
(25) 

where i is a line index,   and 9(1) is the energy (expressed in temperature 

units) of the lower level of the quantum transition causing the line.    This 

form for S(i, T) follows directly from the assumption that the strength in 

absorption is the product of the number of molecules in the lower level and 

an intrinsic oscillator strength a(i).    A dominant factor that influences the 

magnitude of a(i) is the energy change in the transition causing the line. 
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lines confined to a small spectral interval Av,   this energy change is nearly 

constant.    To a first approximation,   then,   a(i) can be considered independent 

of i.    The preexponential factor SM(i, s) then,   is also independent of i.     This 

simplification is used and yields the final assvmed form for the temperature 

variation as 

S(i,T) = SM(T) e 
-e(i)/T (26) 

This form defines a unique relation (for fixed T) between the strength of a 

line and the energy of the lower level of the transition causing the line,    A 

distribution of line strengths thus implies a distribution of energy levels. 

The use of the inverse strength distribution of equation (24),   the relationship 

between S and 9  given by equation (26),   and the transformation relation 

P(S)d(S) - P(0)d(9) gives the energy level distribution as 

P(ö) = { 

0 

1 
T In R 

0 

9 < 0 

0 < 9 < T In R 

0 > T In R 

Because the  strongest lines in Av occur for absorption from (or emission to) 

the ground-level 9  =  0,   S. ,(T) in equation (26) can be identified as the distri- 

bution parameters S,,  in equation (24).     The distribution P(9 ) is constant in 

the variable 9  up to a maximum value 9       = T In R.     Since the distribution of 

energy level« within a molecule is an intrinsic property of the molecule,   we 

must insist that 9      be independent of temperature.     This consideration thus 

yields an explicit form for the temperature dependence of the distribution 

parameter R as 

R(T)      e 
9     IT m 
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„        , -i •       tv,o< 0      i« larpe      The final form of The assumption that R is large implies that Bm is large. 

the inverse line strength distribution usec ■d here is" (with R and fl      ^ 0O) m 

P(S, T) 

S5SM(T) 

5 > VT) 
(27) 

where the explicit dependence on tempeiature is included,   and where ^(T) 

and 9      are considered as the two independent parameters of the distribution. 
m 

C.        STATISTICAL MODEL FOR A UNIFORM PATH 

For an isolated Lorentz line and a uniform optical path,   W is given as 

a function of S through the Lac.enburg-Reiche  solution [equation (3)1     V\ 

2^L(x),   x -   SU/Z.,.    From equation. (23) and (27),   the mean equivalent 

\\ i .idth function is approximated as (with the transformation T. = Su/2^) 

T = 2^ 
T 

tQ m / 

M 
Mil) 

where 

SMU 

When the distribution is written in this form.   It can be  readily verified that 

L£ the inverse distnouUon is assumed to hold for any temperature,  then it 

holds for all temperatures. 

-26- 



The integral over T\ is easily evaluated by using equation (4) for L(TI) and 

tandaid tables of integrals for Bessel functions.    The result for the integral ■ 
is 

I(x) = fX-p- dfl = 2xe-X[lo(x) + I^x)] <  e-XI^x) -  1 (28) 

Thus,  the solution for W/£ is 

T = 2T^ W MXM) 

m 

Introduction of the parameters 

-        M k ^W~ 
m 

S 
6 

(29) 

1        4T 
T - ee 
t m 

(30) 

21^ (3i) 

and 

ku 
x = (32) 

permits the result to be simplified to 

^4l(4>)        . 
6       4 

(33) 
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EquaUo„6 (28) and (33) co;,ätitute the r8Sult first cbtained by Godson. 

The curv.-ot.gr.wth function I(4x)/4 is shown in Fig.   1.    The weak and 

strong absorption limits are the same as for the Ladenborg-Reiche functton. 

bnt the range of « ov.r which the transition occurs is broader.    Thts phe- 

„omcnon occurs because the st.ong aosorpt.on Umit for a band of Unes I. not 

obtained until a sizabie frac-ion of the weakest lines allowed by the Une 

length distribution displayj^ong absorption behavior.    The weak and 

strong absorotion limits of W/6 are 

W 
■ 

/eak 

strong 

D>        RAND MODEL PARAMETERS 

Equations (29) through (31) relate the two parameters k and 0 to the 

line   trrangcment paran.eter 6 and the  strength ditribution parameters ^ 

ind e These  i.tter three parameters have meaning only within the con- 

fines o\ the modeling assumptions that lead to the results of equation (33) 

The practical Lnterpretation ox band modeUng procedures is that the results 

[equation. (28) and (33) in this case] constitute a functional form for the 

variation of "(.) [by equation (21)] with optical depth u that depends on two 

band model parameters k and P that are to be determined empirically by 

fitting the functional form to experimental data. 
Two general procedure, are u.ed to determine k and 9.    In one.   ex- 

perimental ab.orption mea-urement. are made on a uniform .as sample at 

Led temperature   V with a  spectrometer centered at the  spectral posiUon 

„f inU.reSt and adjusted to a spectral  resolution Av.     The optical thickness u 

,„■ the  .ample L. varied over a wide  range  such that both weak and strong 

lbsürption data are obtained.     By fitting the weak absorption portion of the 

experimental curve T(u) to the model,  k can be determined.     By fitting the 

„trong absorption data,  the product kg.   and hence 0.   can oe obtained.    In 
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this   manner,   the parameters  k  and  ß   can  be   obtained  for  all   spectral 

intervals Av across an entire molecular absorption band and for a wide range 

of temperatures. 

The other approach to the determination of k and 0 can be used if the 

line optical parameters S(i) and y(i) are known for all of the lines in each 

interval Av.     The temperature dependence of S(i) and \(i) must also be known, 

From equations (22) and (3),   W/6 for a uniforn   optical path may be written 

in terms of the line parameters S{i) and y(i) as 

W 
5 

i= 1 
(34) 

Equation (33) represents this same quantity expressed in terms of the band 

model parameters k and ß.    By forcing equations (33) and (34) to be identical 

for weak and strong absorption,     the following definitions can be obtained: 

N 
k-^Es(i) 

i=l 
(35) 

ß =1» 
N -,2 

i=l 
(36) 

In both this and the experimental absorption approach,   k and ß are deter- 
— — (5  39) mined by fitting the model in the limits T = 0 and T = •,    Godson    ' has 

indicated that,   for some applications,   fits at other transmittance values 

may be desirable.     In his work on the atmospheric transmittance of H?0, 

for example,   he used fits at T      0. 45 and 0. 95 to obtain a best overall 

agreement between model and data. 
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Note that,   by  Including yli) in the (icfinitio;-» for ß as a parameter that depends 

on the line index i,  the model approximation that all v are constant has been 

lessened. 

Although only the two parameters k and ß are required for application 

of the isothermal band model,   it is convenient (and necessary for some ex- 

tensions of the band model formulation to nonisothermal paths) to couskie. ß 

as a ratio of two parameters y and 1 by a generalization of equation (31), 

ß =±21 
6 

(37) 

where ^ is a measure of the average line width for the lines in Av,   and T is a 

measure of the mean line sf i   ing in Av.     The use of three parameters (k",", 

and y) in a two-parameter model required auxiliary information on o ie of the 

parameters.     This information is generally introduced by performing inde- 

pendent experimental measurements of y or by making theoretical and em- 

pirical assumptions on y.     When band model parameters are determined 

from individual line data [equations (35) and (36)],  y is conveniently defined 
by 

N 

1=1 

An advantage of inr.roducing the two parameters y and 1 in place of ß is that 

the variations of ß with the composition of the gas,   i. e. ,   the ratio of active 

gas concentration to various foreign gas concentravions,   can all be placed in 

\,   which leaves 6 as a function of temperature (and spectral position) only. 

When the fundamental band model parameters k, 7,   and y have been deter- 

mined as a function of spectral position and temperature,   it is possible to 
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define the modeling parameters SM and the product 69^    From equations (29) 

and (30),   the following expressions can be obtained: 

SM(T) = 4k(T)6(T) (38) 

56      = 4T6(T) m 
(39) 

These two  relations are particularly important in the formulation of ncn- 

ii?othermal band models in Sections IV and V.    An interesting side aspect 

of equation (')9) is that the line density parameter D=   1/5 is predicted to 

display a linear temperature dependence.    This result offers an opportunity 

to experimentally determine the adequacy of the entire modeling procedure 

by examining the constancy of the product T6 with temperature. 

E. EXPONENTIAL-TAILED INVERSE LINE STRENGTH 

DISTRIBUTION 

Same comments on the use of the exponential-tailed inverse line 

sti-ength distribution rather than the inverse distribution are appropriate 
(38) here.     This distribution function is 

p^=irnrR 
S/S \I RS/SM1 

- e J 
wher« S is allowed to assume ^11 values 0 s S i ».    S., is no longer inter- 

preted as a maximum allowed line  strength,   but  simply as a parameter of 

the distribution.    The distribution results by use of the more general result 

of equation (25) over (26) for line strength and the assumption that S.-(i, T) 

is distributed about S.,(T) according to an exponential strength distribution. 

In .\ sense,   it is more general than the purely inverse line strength 

distribution. 

31- 



— "51 

For a uniform optical path,  the formulation of a band model with the 

exponential-tailed distribution parallels 'he formulation with the inverse 

distribution,   except that the curve-of-growth function I{4x)/4 is replaced 
1/2 bv I  UX)/TT.   where I  (x) = (1 + 2x) -   1,   and the factor 4 in equations (30), 

'    e e 
(33),   (38),   and (39) is replaced by IT. 
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IV.    CURTIS-GODSON APPROXIMATIONS 

In this and Section V,   the fundamentals reviewed in Sections II and III 

are vised to formulate band models for general inhomogeneous,   nonisothermal 

optical paths.    Here,  two approaches to the familiar CO approximation for 

bands of lines are considered:   that originally given by Godson     ,   and one 

that is based on the same assumptions used in Godson's approach,   but that 

expands on the nature of the assumptions.    The second approach also yeilds 

expressions that are essential to the formulations in Section V. 

A.        GODSON'S FORMULATION 

In Godson's approach, we assume that the functional form of the curve 

of growth for a nonuniform path is the same as that for a uniform path. The 

expression for the mean equivalent width is written,   from equation (33),   as 

vJi   \      3js) 

x  (s) e 

(40) 

u(s)ke(s) 

0   (s) e 

v. here k  (s) and B   (s) are effective band model parameters to be determined, 
e e 

and the optical depth u{s) is given by equation (8).    The effective parameters 

k  (s) and 0   (s) are determined by a procedure similar to that used to deter- 

mine k and 0 in terms of line parameters for a uniform path.     That is,  the 

weak and strong absorption Umits of equation (40) are forced to agree (as 

well as possible) with the weak and strong results obtained from W(s)/6 given 

by equation (22) and the exact limiting solutions to W(i, s) given by equation 

(10).    The resulting definitions for k  (s) and 0   (s) parallel the definitions of 
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equation (35) for k and equation (36) for 0,   except that they are written in 

terma of the path-averaged parameter! S (i, s) and \ (i, s).      They are 

N 

i=l 

(41) 

and 

ßo(s) = e 
ZTT 

ke(S) 

N 12 

tZW1**.^** 
i=l 

(42) 

These definitions are not particularly useful because they not only require a 

detailed knowledge of individual line parameters,  but also require that the 

path averages of the strength and width of each line be recomputed for each 

nonuniform path considered.     These relations can be used,   however,  to 

formulate definitions that are practical.    The procedure is most easily 

shown for k  (s).    By interchanging the order of line summation and path inte- 

gration implicit in the above definition for k  (s),   we obtain 

k   (s) 
e u(s) / c(s,)p(s/) 

1 
Av 

N 

2jS(l.«') 
1=1 

ds' 

From equation (35),  the quantity in brackets can be identified as the parame- 

ter k that corresponds to an isothermal path at temperature T(s/).    Conse- 

quently, 

k   (s) - -^r/'Sc(S')p(s')k(s') ds' (43) 

S  (i, s) and v   (i, s) are defined by trivial generalizations of equations (6) and e e ^ o 

(7),   respectively,   that include the line index i as an explicit argument to S 

and \. 
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where Ms') denotes k[T( s')].    The effective abborption band model parameter 

k  (s) is thus the average value of k over the nonisothermal path.    Ifk is 

known for all temperatures in the range that occurs along the path,   Ms) can 

be computed for all path positions s. 
In order to obtain a corresponding result for ße(s),   an additional as- 

sumption must be made in order to permit the interchange of the order of 

integration and summation in equation (42).     With the definitions of equations 

(6) and (7),  B   (•) may be written as 

ß   (s) = e 
2TT 

k  (s) e 

N      , —  
-i-y\/   1     f'cUXs'Wi.s'Mi.s'Ms' 

The additional assumption made by Godson is that S(i. s') and v^. s') may 

be written in the functional product forms 

S(i, s') - a1(i)o2(s/) (44) 

ana 

Y(i, s') - g^Dg^s') (45) 

The use of these relations and an interchange of the order of summation and 

integration yields 

2 

-t L y57iF-2(s')glMg2(s', 3   (,) =  L"  f   c(S
/)p(s') 

u(8)k (s)«^) 

ds' 

The quantity under the square root sign is identified,   from equations (44) and 

(45),  to be S(i, s'Mi, s').    The entire squared quantity under the path integral 

can then be identified,   from equation (36),   to be ßU')k(s')/2TT.     Thus,  ß^s) 
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can be written as a path average of the band model parameter ß weighted by 

the absorption pai vmeter k 

ße(s) = 
u{s)ke(s)*,o 

J^cUXs'Ws'^s'Ks' (46) 

Equations (40),   (43),   and (46) constitute the traditional formulation of the 

CG approximation for a statistical band model. 

B.        ALTERNATIVE FORMULATION 

We now consider an alternative approach to the CG approximation for 

a random array of lines that more nearly parallels the formulation of the 

band model for a uniform optical path.    The starting point is the use of the 

CG approximation for an isolated line [equations (12) and (9)] 

W(s) = 2TT^   (S)L 
u(s)S  (s)' 

e 
2Trve(s) 

(47) 

As in the formulation for a uniform path,   we average this expression over a 

line strength distribution function P(S).    Since the path is assumed to be 

nonisothermal,   no explicit line strength appears in equation (47); only the 

path-averaged line  strength S  (s) appears.    It becomes necessary,  then,  to 

consider a strength distribution function for S  ,    An approximate distribution 

P(S   )   can  be   established  by  invoking   the   separability  approximation 

By use of the Schwartz inequality for integrals,   it can be established that if 

the separability approximations of equations (44) and (45) are not invoked, 

then the optimum choice for ß   (s) is some value less than or equal to the 

path average given by equation (46). 
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[equation (44)] on line strength.    The path average for the strength of the i 

line in Av is [equation (6)] 

.th 

S  U. s) =-i-r/'Sc(S
/)p(s/)S(i, s^ds' 

The use of equation (26) for S(i, s') yields 

S (i. s) e ui)! c(s')p(s/)S„(s/) e 
/>    -e(i)/T(S

/)  ._i 
Mx ds' (48) 

The separability approximation is now introduced by assuming that T(s   ) in 

the exponential argument of equation (48) can be replaced by a quantity Te(s) 

that is independent of s'.    This replacement corresponds to the use of 

a^i) = e 
-e(i)/Te(s) 

and 

in equation (44).     Then, 

o2(s') = SM(s') 

Se(i's) = SeM{s)e 

•9(i)/T   (s) 
(49) 

where 

SeM(s)=^/Sc(s/)P(s')SM(s')ds (50) 
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Regardless of the choice of T  (s),   It is clear from equations (?,6) and (49) 

that 5(1, s) displays the same functional dependence with T   (s) that S(i, s) 

does with T,     Consequently,  because the energy level distribution function 

P(3) is independent of temperature,   it is readily established that,   within the 

separability approximation,   S    is distributed according to the inverse 

distribution 

rTe(s) 

s e e   m 
P(Se)=1 

0 

0 < S    < S  ..(E) e        eM 

S    >S  „(s) e        eM 

The application of this distribution to 'W(s) given by equation (47) completely 

parallels the formulation for a uniform path given in Section III and yields 

the result 

sp-ipw.n 

x(s) 
u(s)k(s) 

(51) 

wnere 

k(s) = S     As) 
TJa) 

eivT   '   66 
m 

(52) 

ß(s) = ZTP^   (S) 
e 

4Te(s) 

69 
m 

(53) 
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The parameter y   (s) in equation (53) for ß(s) is given by 

V^uU^sj/^^'^'Ms'Ms' (54) 

and is obtained from equations (6),   (7),   and (26) by again T-^J-lacing Tis') with 

T   (s) and assuming yU, s') to be independent of i and equal to the band model 

parameter y(s   ). 

Since equations (40) and (51) are identical in form,   it is clear that the 

assumption of equation (40) as the cv   ve-of-growth function in Godson's 

formulation is equivalent to the use of the separability approximation for line 

strength and the use of the CG approximation for an isolated line. 

The significant departure of this alternative formulation of the CG 

approximation from Godson's formulation is the manner in which the effective 

parameters k(s) and ß(s) are determined.    In Godson's formulation,   the 

effective paramelcrs were introduced a priori as unknowns to be determined. 

The present formulation has established a direct link between the effective 

band model parameters k and 0 and the band model parameters for isothermal 

paths.    Mjre explicitly,   equations (52),   (53),   and ( 54) together with equa- 

tion (50) for S  M(s) give k(s) and ß'(s) in terms of the modeling parameters 

Sx.(s) and  ^5     .     These later parameters are,   in turn,   given in terms of the 

isothermal parameters k(s) and 5(s) by equations (38) and (39).     Ca? rying 

through the formulation with these relationships,   we find that k(s),  0(s),   and 

y   \s) can be expressed as 

k(s) = ke(s) 

9(s) 

Te(s)   5e(s) 

^     Ms) 

2T7Ye(s) 

T (s) 

T   (s)   *   (s) 
e e 

T(s)     7 6(«J 

y  (s) 
u(s)k   (s)f   (s)    0 

e        e 

y*Sc(s/)p(s/)k(s,)'(s/)y(s/) ds' , (55) 
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uhiri' "    (s) is <A path average of ihc line  spacing» band model parameter given 

.(•) ^    f    c(s')p(.s ' )k(s' )b{»' ) ds' 
u(s)k   {a)    0 

e 

(56) 

md k  (s) ia given bv equation (43). 
e   
The weak limit forni for W{»)/6 vvith this  result for k(s) is 

\V(s) = u(s)k(s)  = u(s)k   (s) 
T   (s)   :   (s) 

e e 
T(s)     - (s)J 

Inasmuch as it has been established (in Godson's formulation) that the correct 

weak  limit forni for W(s)/-   is u(s)k   (si,   however,   the quantity in brackets 

must be unity.     Thus,   a definition for T   (s) is established as 

T   (s) - T(s) 
e 

:(s) 

"e(s) 
(57) 

Allhoukih T   (s) does not enter into the final result of this approach to the CG 
e 

approximation,   the definition v)f T   (s) by equation (57) plays ^.n important role 

in the band model formulations presented in Section V. 

The final result for this alternative formulation of the CG approximjition 

is the  same as Godson's formulation,   except that ß   (s) is not defined as a path 

average of 3(s) according to equation (46),   but rather by 

0   (s) e 

2«>  (s) e (58) 

where >,   (s) is a path-averaged line width given by equation (55),   and   :   (s) is 

.i path-averaged line spacing parameter given by equation (56). 
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C.        DERIVATIVE FUNCTIONS 

The computation of band radiance by use of equation (19) requires the 

transmittance derivative d'T{s)/ds.    Differentiation of equation (21) yields 

dliil-    T'   ) 1  dW(s) 

ds     "       '   ' 6     ds 
(5Q) 

The equivalent width derivative obtained by differentiating Godson's result 

for the CG approximation is 

\^~  - c(s)p(s)k(s)y[4xe(s), r(s)]        , (60) 

where the derivative function y(x, r) is 

y(x.r) = (2 -  r)^ + (r -  1) 
I(x) (61) 

with 

dl(x) s Ux) 
dx x 

(62) 

The nonuniformity index r(s) is 

r(s) = rüT (63) 

where 0   (s) is given by equation (46).     This result is similar in form to that 

obtained for an isolated line [equations (13) and (14)].    In particular,   this re- 

sult can display the same spurious behavior of y > 1  for intermediate x if the 

nonuniformity index r(s) is very large. 
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By differentiating the result for W(s)/6 obtained in the alternative 

liirnuilalion for the CG approximation,   we obtain 

u h»- re 

ll|i2i=c(«)p(«^,)y(4x («KpU),^«)]        , (64) 

y(: 

Here,   thf argutnents f,i(s) and q(s) are 

P(s)     ^- (66) 

Ye(»l 

and 

(s) 
q(s) ; "3  . (67) 

In the alternative formulation,   the index f.(s) measures primarily the local 

degree of inhomogeneity at path position s,   and q(s) measures primarily the 

local degree of nonisothcrmality.     The parameter r(s) in Godson's formula- 

tion measures the combined effects of inhomogeneity and nonisothermalKy. 

For an isothermal path,   q ^   1,   r ^ p,   and equations (61) and (65) become 

identical.     Thus,   the two approaches treat inhomogeneities along the path in 

the-  sam.' manner.     The significant differem p between the two approaches is 

the manner in which nonisothermalities are Ucated,    Consider a homogeneous 
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path for strong absarption.    Then,   p at 1 and r = q.    For large x,   equations 

(61) and (65) yield,   respectively, 

y(4x,q) ^Y7z 

and 

,      2q -   1 1 
y(4x.l.q)   '-^— /2 

^ (ZtTx) 

Godson's approach yields a linear increase of y with q for strong absorption. 

The alternative approach displays a much weaker increase with q through the 

func»'on (2q -  i)/q. 

Ihm results for either formulation of the CG approximation with the 

exponential-tailed distribution are identical to all of the results in this sec- 

tion,   except that all occurrences of I(x) are replaced by ie(x),   and the fac^o 

4 :hat appears with x  (s) is replaced by IT.    In addition,  dle(x)/dx =  l/{i * Üx) 

replaces equation (62). 

.,   ,1/2 
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V.    DERIVATIVE APPROXIMATIONS 

A. INTRODUCTION 

The   approach  to  the  band  models   formulated   in  this   section  is 

fundamentally similar to the approach of the LS approximation for an isolaLcd 

line.    The radiance eqn«ttion [equation (19)] for band radiation is formulated 

in terms of the transmittance derivative d~(s)/ds rather than in terms of the 

lransmittance~(s) directly.    The CO approximations presented in Section IV 

are essentially approximations to ^(s) in that they deal directly with the 

quantity "w^/t = -ln~(s).    Exijressions for d~(s)/ds are obtained by differen- 

tiating the- approm.nations.    In this section,   direct approximations to dT(s)/ds 

are treated.    More accurately,  because [equation (59)] 

ds     "  '   {S>  6     ds 

approximations to the mean equivalent width derivative are considered.    The 

approach is similar to the alternative formulation of the CO approximation in 

that «re start with an approximate solution for an isolated line,   average over 

a line strength distribution,   and express the distribution parameters SM and 

■c       in terms of band model parameters for isothermal paths by the direct 
m 

relations of equations (38) and (39).     The results are thus expressed in terms 

of the nonuniformity parameters p(s) and q(s).    However,   intuitive models 

based <>n the parameter r(s) are also considered. 

B.        DERIVATIVE APPROXIMATION 
■ 

Where the alternative formulation of the CG approximation was based 

on the CO approximation to W(s) for an isolated line,   we begin here with the 

LS approximation to dW(s)/ds [equations (9),   (15),   (17),   and (18)] 

ä|i£l=  c(s)p(s)S(s)W     exp 

•'o 

2u(s)Se(s) , 

2TT\   (S)     . 2   2,. ^e 1  f z   p   (s) 

dz 

l  +  z
2 

(68) 
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In the CG formulation,  the only line strength parameter in the equations was 

the path-averaged strength S  .    An average over line strength was performed 

by deriving an approximate distribution for S   .     In the present case,   botn the 

path-averaged and local line strength S(s) appear in the formulation.    In order 

to perform an average over line strength,   it is necessary to express S    as a 

function of S,   or vice versa.    This is accomplished by introducing the line 

strength separability approximation,  but only for S(s' ) as it appears in the 

path integral for S  (s).     That is,   equation (49) is used to express S^i, s) as 

-e(i)/T   (s) S
e
(i's) = W81 e ' ^ 

1 he local line strength parameter S(i, s) is not separated and is retained as 

given by equation (26), 

c/-      i      c    /»\    -ö(i)/T(s) ,7n. 
S(i, s) = SM(S) • • * 'u' 

Elimination of 6(i) between equations (69) and (70) gives the desired approxi- 

mate relationship between 3 and S 

S (s) = S eM^{s^(i)J 
T(s)/T Js) 

e 

From equations (57) and (67),   the temperature ratio can be expressed as 

-Pi   \       "  <s) T(»| e ,   v 
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''S 

With the definition 

(71) 

S (s) can be written 
e 

Se(sM SeM(S)Tl 
q(s) (72) 

Then,   with equations (71) and (72),   equation (68) becomes 

dWisl=c(s)p(s)SM(s)Tl^/     exp 
ds If 

•'o 

2xM(s)T] q(»)l 

1 + z2p2(s) 

dz 

1 + z 

where 

Xx>.(s) = 
u(s)SeM(s) 

lK4w' 2T^e(s) 

This expression can now be averaged over the line strength distribution function 

for the local strength S(s).    In terms of the paramet       H.   the distribution 

| equation (27)] is 

fT(s) 
Tie m 

P(Ti) = { 

0 < T] < 1 

?>> 1 
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The relation for the mean equivalent width is then 

1 dW(s)        /   w   Jc    ,   > T(s) 

a m 

x|/       /    exp 

•'o    J0 

2xM(S)Tl qi") 

1 + p2(s)z2 
^dT) dz 

1 + z 

The preintegral factor in brackets can be identified from equation (29) as the 

local value of the absorption parameter k(-).    With the relationships and pro- 

cedures used in the alternative CG formulation,   it can be established that 

xM(s) = 4xe(s),   where x  (s) is defined by equation (40),   and ß   (s) is given by 

equation (58).    The final result for the derivative is then 

4^^= c(s)p(s)k(S)y[4x  (s).p(S),q(8)] (73) 

where 

y(x, p,q) 

^o  L o 
exp ZxTT 

,22 1 + p   z 
dll 

dz 

1 + z 
(74) 

The form of equation (73) is the same as those obtained in the CG approxi- 

mations,  but the derivative function y(xf p,q) is different.    In particular, 

where the derivative functions in the CG approximations can assume values 

The application of P(T1) to dW(s)/d8 gives the mean value of the derivative. 

Clearly,  the operations of differentiation with respect to s and averaging 

over line strengths (T)) are independent operations.    Thus,  the mean value of 

the derivative is equal to the derivative of the mean value of W,   i. e. , 
dW(s)/df. = dW(8)/ds. 
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greater than unity for some values of the argument, that ot equation (74) is 

well-behaved for all values of the arguments. A comparison of thn two CG 

expressions for y [equations (61) and (65)] and an approximation (Appendix) 

to the present function is shown in Fig.   3 for the case P =  2.   q = 3.  and r -  6. 

Some analysis of y(x.P.q) as given by equation (74) has been made by 

Lindquist et alM
{14) and an approximate method of compuUng y(x.p.q) is gwen 

here Ifl the Appendix. *   An interesting behavior of this function thatU not 

predicted by the CG functions is the asymptotic form y ~ CONST/x^ ^ for 

large x when q > 2.     For q < 2.   the expected relation y - CONST/x   ' 

obtained.    This feature is evident in Fig.   4.   where y(x,pf q) is plotted as a 

function of x for several values of q and the fixed value p =  1.    These curves 

were generated with the approximate procedure outline in the Appendix. 

C. I.TNDOl] IST-SIMMONS APPROXIMATION 

Lindquist and Simmons(11) extended thei' approximation for an isolated 

line to the case of a random array of L -rent, lines with equal strengths. 

Young(12' 13) further extended the approximation to the case where tht hne 

strengths are distributed according to an exponential or exponential-tailed 

inverse distribution.    These l»tt< r extensions were made with the assumption 

that S and S    are directly related,   and that the  constant of proportionality is 

.ndependent^f the line index i.     This assumption is clearly equivalent to the 

assumption that q(s) ^ 1  in equation (72).    The result obtained for the 

exponential-tailed inverse distribution was given as 

dWil2a c(s)p(s)k(s)y[Tn<  (s). r(s)] 
ds e 

(75) 

In this approximate procedure,  the exponential-taileo inverse line strength 

distribution is used.    If y(x, p.q) Ll computed according to this approximation, 

the factor 4 in equations (73) and (78) should be replaced by TT. 
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 formal derivative approximation [equation (73)]; 
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[equation (78)!. 
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Figure 4 Derivative Function for the Derivative Approximation. 
y(x,p,q) is computed according to the procedure given 
in the Appendix. 
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where y(x, r) is the relatively simple expression 

y(x, r) 
Zr(l   >   x) t  (1  +  r" ly/l  -I  2x 

yjl 1 2x(r + /TTTx)2 
(76) 

The arguments x  (s) and r(s) were given in terms of ß   (s) computed 

as a path average of 0 [equatior (46)] as is used in Godson's formulation of 

the CG approximation.    This choice for ,8   (s) was made intuitively so that the 

strong absorption limit (x  -• ») of y(x, r) given by equation (76) and y(x, r) given 

by the CG result of equation (61) would agree.    If the formulation for the 

exponential-tailed distribution is again carried out for q(s) = 1,   but without 

the intuitive use of r(s),   and with the direct relations of equations (38) and 

(30),   the   result is 

T^£l= c(s)p(s)k(s)y[Trxe(s),p(S)] (77) 

where y(x,p) is  still given by equation (''6),  but where t mniformity 

argument p(s) is now given by equation (66).     Thf  result -. equation (75) is 

referred to herein as the intuitive LS approxima and that of equation (77) 

as the formal LS approximation. 

The intuitive use of r(s) instead of p(s) in order to match the strong 

limit forms of the LS and CG approximations raises the possibility of intui- 

tively replacing p(s) by r(s) in the derivative approximation of equation (73) 

also.     If the result of equation (73) is referred to as the formal derivative 

approximation,   then the form 

1 dW(s) 
I     ds c(s)p(s)k(s)y[4xe(s), r(s), q(s)] (78) 

with y(x, r,q) given by equation (74) is referred to as the intuitive derivativ ,• 

approximation. 
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D MEAN-LINE APPROXIMATION 

The following approximation is introducf d to permit th- use of f.a 

simple form 01 the derivative function given by equation (76),  but to lessen 

the degree of approximation inherent in the assumption q(s) = 1.    If the line 

strength as given by equation (26) is averaged over the energy level distribu- 

tion P(9) of equation (27),  the result is 

S(s).SM(s)^> 

m 

Consequently,  the relationship between the mean line strengths at arbitrary 

path positions s and s'  is 

S(s') 
SM(S')  T(s') 
S^T-TTI]- S(s) (79) 

The mean-line approximation assumes that this functional  relationship holds 

for each line in Av,  thus, 

S(i, s') 
SM(s') T(s') 
sTTiTTHT 
'M 

S{i, s) (80) 

Substitution of equation (80) into equation (6) for Se(i, s) and Ufa of equations 

(38),  (39),  and (56) yield 

s^'^W^iU) (81) 

where P, and q(s) are defined by equations (71) and (6-).   respectively.     ihis 

approximation retains the linearity of Se(i, s) with S(i, s),   but defines the 

constant of proportionality explicitly in terms of path properties.    In particular. 
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an inverse dependence of S  (i, s) on q(fl) is predicted.    Comparison of equation 

(öl) with equation (72) shows that the formctr is obtained by factoring Tj4 as 

T.Tp"    and replacing by its mean       h.e in the interval 0 S 1)  S ] 

^•=/,:<.-'d-,=l 

The elimination of S  ^{s) from equation (81) with equ,..*ions (50) and (38) re- 

suits in the final form tor the formal mean-line approximation as 

1 dW(s) 
!      ds -  c(s)p(s)k(s)y 

TTxe(s) 

q(s) 
(82) 

where y(x, p) isi given by equation (76).    As f.>r the previous two approxima- 

tion,   we can consider an intuitive mean-line approximation given by 

1  dW(s) , 
5      ds 

c(.s)p(s)k(S)y 
TTX    (S) 

~^T .   r(8) (83) 
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VI.     DISCUSSION AND SUMMARY OF B/.ND MODELS 

A.        SUMMARY OF FORMULATION PRINCIPLES 

The formulation of band models for a random array of lines  requires 

integrations over the spatial variable s'.   the spectral variable v.   and the line 

strength variable S.    In a completely genenl formulation,   these three vari- 

ables are intimately interrelated in a complex manner.     The heart of nearly 

all band model formulations for general optical paths is the introduction of 

approximations that separate the affects of the variables such that the orders 

of integrations can be interchanged.    In the models discussed here,  the vari- 

ables s' and v are separated with either the CO or LS approximations for a 

single line.    The variables s ' and S are effectively separated by using the 

line strength separability approximation. 

The fundamental feature of the CO approximations is that they are 

approximations to the mean equivalent width function W(s)/*.     The various 

derivative approximations,   on the other hand,   attempt to make direct approx- 

imations to the derivative of the mean equivalent width function,  which is the 

more fundamental of the two from the standpoint of calculating band  radiance. 

The CG approximation was formulated in two ways; (1) by defining the 

effective band model parameters k^s) and B^s) accoruing to Godson s pro- 

cedure of fitting the model to exact weak and strong absorption limits  (within 

the confines of the separability approximation),   and (2) by defining these 

effective band model parameters directly in terms of isothermal band model 

parameters through  relations that are derived from the properties oi the 

assumed inverse line strength distribution function.    The two approaches 

appear to be equivalent because they are based on the same assumptions. 

However,   the  results are somewhat different.    The latter formulation de- 

penda more on the validity of the assumed line strength distribution model 

than does the former. 
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The derivative approximations were all derived in a manner similar 

to the second approach to the CG approximation.    These formulations are, 

thei,   functions of the inhomogeneity index p(s) and the nonisothermality 

index q(s).    In order to match the strong absorption limit of one of these 

der.vative band models (LS) co the corresponding limit of the first approach 

to the CG approximation, an mUulive replacement of p(s) with r(s) was intro- 

duced.    This  replacement was extended to the  remaining two derivative 

approaches. 

In all of the models,  temperature variations along an optical path are 

implicitly accounted for in the temperature variation of k(s) and 6(s).    Ex- 

plicit account is made ill all models,   except the formal LS model,  by the use 

of either the nonisothermality index r(s) or q(s).     The intuitive models 

account most for locil nonisothermalities by using both r(s) and q(8).    Within 

the heirarchy of models,  the degree of variation with thermal gradient in- 

creases in the order CG,   LS,  mean line,  derivative approximation for the 

intuitive models,   and LS,   CG,  mean line,  derivative approximation for the 

formal models. 

The  results of the companion paper indicate that,  for H^O,  the intui- 

tive derivative approximation yields the best comparison between predicted 

and available experimentally measured radiance spectra. 

B.        SUMMARY OF MODELS 

The eight models considered here are summarized below by extracting 

the relevant equations from the text and presenting them in groups that cor- 

respond to the inverse order in which they would be used in making an actual 

calculation.    In all cases,  the thermodynamic variables ds),   p(s),   and T(8) 

are presumed known along tne general line of sight that extends from 8=0 

to s      S.    The band model parameters k(s),  ~(s),  ^(s).  and 0(8) are pre- 

sumed known as a lunction of c,   p,   T,   and thus s.    All of the equations are 

written for the exponential-tailed inverse line strength distribution. 
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1. RADLANCE AND TRAxNSMITTANCE EQUATIONS 

N =  .  /*    X.:.(s)ältl.'ds    , 
Jo ds 

d"(sl 
ds 6      ds 

""■(s)      exp 
W(s 

T ^i-)  - c(S) p(S) k(s) y(s) 

W(s) 
I 

e"     e 

fr 

CG approximations 

1   dW(s  )       /        Derivative 
1 j—^ ds 

ds approximations 

2. DERIVATIVE FUNCTIONS 

a. Godson's CG 

y(s)      y[TTx   (s),   r(s)J   , 

dl   (T) I   (') 
yC.r) -- U  -  r)      f,      t (r  -  1 )-V- 

i (Ti) -- JT^lr - i   . 

dl fl|) .        1 

~dT"    v/i
_rTF 
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b. Alternative CG 

y(s) = y[7rx   (s),   p(s),  q(s)J   , 

yCl.p.q) 
dIe(Tl) 

1 
Z  - p      e 

q         T fll       ' 

t. Formal LS 

y(s)  = y[TTXe(s),   p(s)]   , 

/-n     4     iP(l ^ -> • (i  . p^iyTTT 

yrrr* (p + /mT)' 

d. Intuitive   LS 

The same as formal LS,   except with pis) replaced by r(s). 

e. Formal Mean Line 

y(8) ■ y 
'TTX    (s ) e 

q(s) 
.   p(s) ']■ 

ylX.p) = same as formal LS. 

1. Intuitive Mean  Line 

The same as the formal mean line,   except with p(8) replaced by r(o). 

g. Formal   Derivative 

y(8)  -y(Trxe(s),  pis),  q(8)]   , 

where yCp.q) is from the Appendix. 
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h.        IntLuüvf Derivative 

The same as the formal derivative,   except w' h p(s)  replaced by r(s). 

i. PATH AVERAGES 

/s 
cim*) pis') ds'   , 

k   (s) =-^r   r c(^)p{s')K{'\ds'    . 
e n{s) Jn 

(s) /*    c(s') p(s') kls') 6(8') ds'   . 

\e(«> 
1             fS c(s') p(s') k(s') Ms') v(s') ds' 

u(s) k   (s) *.   (s) •'O e e 

L    f    cis'l pis') k(s') 9(s') ds 
k   (s) •'O 

ß   (s) 
e 

u(s ) k   (s ) 

iTTV     (S) 'e 

'JS) 

The first option for J#(i) is u-ed with Godson's formulation of the CG 

roximation and m the mtuitive derivative approximations.    The second 

option is used with the alternative formulation of the CG approximation and 

♦he formal derivative approximations 

app 
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u(s) k   (s) 
Xe(8)   -       S   (s) ' 

p(s)      >,(s)/-v   (s)   , c 

q(s)      Se(i)/6(«)   , 

r(s)  = 0(s)/£e(s) [$  (•) from option 1 above] 
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APPENDIX 

COMPUTATION OF yix.p.q) IN THE DERIVATIVE 

APPROXIMATION 

Application of the derivative approximation band model lequires the 

computation of the function 

y(x,p.q) 
/a' r   ^ i f 2x -q 

exP)- u dz 

1  + z 
(A-II 

lor arbitrary positive values of the arguments y,  p,  q.    The inner integral 

may be expressed in terms of the incomplete gamma function 

\(a,?) 
■/n 

a-1     -u   , e      du 

a Z    2 by the transformation u = 2x'rS/{l  f p    ■   ).     Then,   equation (A -1 ) becomes 

y(x, p,q) 
2     2^/q 

q( 2\)     ^ 0 1+z V^ltpz/ 
(A-2) 

Computation of y(x,   p,  q) by numerical integration of equation (A-2) is com 

plicated by the need to evaluate the incomplete gamma function and by the 

overall complex behavior of the integrand.    In order to circumvent these 

difficulties,  the following approximate method,  which has been found to be 

both sufficiently accurate and efficiently applicable is used. 
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First,  we write y(x,   p,  q) in the for Ml 

i Z"1 

y(x,p.q)      -Y(x,p, 1) t 3^_      /      y(xT|Cl,p,l) dT,    , (A-3) 

which expresses y(x.p,q) in terms of its value at q  =  1.     This identity can 

be estabUshcd as follows.     For q   -   1,   tue inner integration of equation (A - 1 ) 

is t-asily performed and yields the  result 

y(x,p, 1) J_JE. s 
2    2 

l 
sxp (" .   '} r) 

dz 

1   - z 
(A-4) 

RepUcemeat of x with x^^ and integration of both sides ovr 0 i T  < i y.elds 

/' 
y(x'M,p,l) dT,  s Uli \f,L±Ad\ 

0     ^O 2x'"q        | 
1   - exp 

\    1  ♦ p2 zZ/l 

dz 

J  ♦ z 

If the inner integral is integrated by parts with 

ana 

u       1 exp (--^V-^ 

dv      ! B-5- d-    . 
2x -<] 
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we obtain (for q ^  1) 

dz 

1    +   T 

dT 
dz 

1 + z 
2    • 

The integral in the first term is   recognized from equation (A-4) to be 

y(x.   p.   1).  whereas the double integral in the second term is  recognized 

from equation (A - 1) to be y(x,  p,  q).    Thus, 

f    ylxAp.l) dT, ^-pL- ylx.p.l) -j-SL^y^.P'^    , 

Which,  when inverted for yix.   p,  q).  yields and establishes the validity of 

equation {A-3). 

Next,  we approximate y(x,   p.   1) by the function derived for the 

exponential-tailed inverse line strength distribution function/   This function 
(13) has been derived by Young and is 

,.       Zp(l   i x)  ^  (1   ^  P    ) yi   '   ^x 

J\  ♦ 2x   p  t  J\  + 2x] 
(A-5» 

The equation that corresponds to equation (A-l) for the exponential-tailed 

distribution (with R •* •) li 

2x-q      ' 
I      exp,- : -  ^—2 

'0 
y(x,p,q) exp 

'0 I 1  ■»■ p     z 

dT] 
dz 

1 +z' 

Numerical evaluation of this integral is as difficult as the direct evaluation 

of equations (A-l) or (A-2).    Moreover,  an expression comparable to equa- 

tion (A-3) cannot be written.    Thus,  use of the exponential-tailed dUtributio-.i 

is delayed until equation (A-3) is established. 
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The approxinidtf method involves the evaluation of y(x,   p,  q) according to 

equation (A - ■* i with y{x,   p,   1) given by equation (A-5),    The integral term of 

equation (A - ^ I is evaluated numerically as follows.     The transformation 

u      x ,    gives the integral term as 

f    y(x'q.p.l)d-      —IT-    f* u{{/Ci)-1 y(n,p.\)du    . 
•X qx   'H  *0 

For q   •  1.   Ihr integrand u       q  '    y(u,   p,   1 l is a decreasing function with u. 

The most  rapid decrease occurs for small p [by inspection of equation (A-5)] 

ami large q.    In the limit (.   • 0 and q - »,   the functional form of the inte- 

ii land is 

I  - 
u( 1   -Zu) 

(A-6) 

Ihus,   even in the worst case,  the integrand decreases no taster than u     . 

Let I    be the value of the integrand at an arbitrary value u..    The value of 

u,   • u     lor which the integrand has  fallen to the value fl.  (0< f<  1 I is found 

from «quatiun (A-6) to be 

. r /i - «•,  (i • iu, i 
(A-7) 

Ihe  mtiu ration interval 0 5   u < x is divided into a series of sequential inter- 

vals according to the algorithm of equation (A-7).     The last interval is trun- 

; aled at x if u, > x.    A nonzero starting value of u1   = e must be used.     Thus, 

within each interval  (except 0 S v <  -i),   the integrand varies by  less than the 

laiti.r I.     A two-pmnt   Gaussian  quadrature   is   then   used   to   evaluate   the 
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integral over each interval.^    The general form of each of these subintegrals 

is 

With the transformation 

z - A + Bu    , 

B ■ 2/{u2  - ttj)    . (A-8) 

A  -   1   - u2B    . 

the integral assumes the standard Gaussian form 

i    C u(z)(1/q,-1y['i(Z».pJd- 

with 

uU) ■ z   - A 
B 

(A-91 

fhe two-point Gaussian quadrature approximation to the integral is 

iju(..1.
(,/l|,-,yi..(.1).rhu(^)(,/^-,ylu(.ii,.p|[ (A-10) 

with Zj   2  - 10.577^5027. 

With a starting value of c   ^0.01,   and with i  = 0. 1,   only 15 intervals are 

needed to handle x as large as 2 X 10   .     This compares with hundreds (or 

more) of terms   required in various exact series expansions of equation (A - 1 ) 

and (A-2). 
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With i - 0. 10,  this procedure gives an accuracy of ~3% for the worst case 

.r: 
1 

of variation of the integrand,   i.e.,  u'2,  and~0.7% for a nominal variation 

of U 

The contribution to the integral from the interval 0 5 u < e is treated 

by  a two-term series expansion.     For small u,   equation (A-5) gives 

y(u,p,l)-H-l   -7T7   • 

Thus, 

jr'u'1^-'y,u,P,1Mu^q."^'[.-,1.^(ltq,]. (A-.i) 

A nominal value « -   0.01  is used.    If x < 0.01,  this two-term expansion is 

used directly i<> evaluate ih? integral over 0 < u < x. 

A ralculational flow diagram for the procedure is shown in Fig.   A-l. 

Note tha   the routine treats only the case q > 1.    A similar analysis could be 

made for q < I,   but this case is not as intrinsically important as the q> 1 

case,    Ii q •    1.   we set q       1. 
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LABORATORY Ol ERATIONS 

Th« Laooralory Operation« of 1 he Ac'ospac« Corporation i« conducting 

aspanmantal and theuratical invaatigaliona nacaaaary (or lha «valuation and 

application of aciantific advancca to new military concept! and ayatema.    Ver- 

aatility and flexibility have been developed to a high degree by the laboratory 

per tunnel in dealing «nth the many problem« encountered in the nation'a rapidly 

developing apace and miaaile ayatema.    Expertiae in the laleat aciantific devel- 

upmenta ia vital to the iccompliahment ol taaka related to three p-oblema.    The 
laboratonea that contribute to thia reaaarch are: 

Aerophync« Labors'"-"-    ' «unc h and reentry aerodynamica,   heat (rana- 
imr.   reentry phyaic»,   chemical kinatica,   atructural macSanica,   fag'11 dynamic«, 
atmoaphenc pollution,   and high-power gaa laaera. 

Chamntry and Phy«ic« Laborttory:    Atmoaphenc  reaction« and atmoa- 
phenc optic«,   chemical  reaction« in polluted atmoaphere«,   chemical  reaction« 
of eaciled «pecie« u, rocket plume«,   < hemical Ihermodynamic«,   plaama and 
laaer-mduced reaction«,   laaer choriiatry,   propulaion chrmi«trv.   «pace vacuum 
and radiation effect« on material«,   lubrication and aurfacr phenomena,   photo- 
aenaitive material« and aenaor«,   high precieion laaer ranging,   and the appli- 
cation of phyaic« and chemietry tu problem« of law anforcemenl and biomedu me. 

Electrunu a Reaearch Laboratory:    Electromagnetic  theory,   device«,   arid 
propagation phenomena,   including plaama electromagnetic«, quantum electronic«, 
laaer«,   and electro  ^ptic a. communication «cience«,   applied electronic«,   «ami ■ 
< onducting,   •  oar   onducting,   and c ryatal device phyaic«.   uptu al and acouatical 
imaging, atmob^ncne pollution, millimeter wave and far-infrared technology. 

ary:    U 
of car matrix compoeite« and new forma of carbon. ie«t and evaluation of graphite 

and ceramic« In reentry, apacecraft matenala and electronic component« ;n 
nucletr waapona environment, application of fracture mechanic« to «tree« cor- 
roaic  and fatigue-induced fracture« in «tructural metal«. 

Space Science« Laboratory-    AOnoaphenc and lonoaphenc  phyaic«.   radi«- 
tto    Iron» the -*mio«phrrr,   density and compoaition of the atmoaphere,   aurorae 
and airglow. inagnetuapherii   phyaic«,   co«mic rays,   um. -«(. ,n and propagation 
of plaama wavea in the magnetoapherr. «olar phyaic«.   «tudie« .>( «ular magnetic 
field«, «pace aatronomy.   x-ray aatronomy. the effect« of nu< leaf exploaion«. 
nia<net,c  «lorm«.   and «olar tctlvily on the earlV« atmoaph-re.   lunoaphere,   i ^1 
magnetoaphere. the effecta of optical,   electromagnetic,   and partirulate radia- 
tion« m «pace on apace ayatema. 
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