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I. INTRODUCTION

The calculation of low-resolution radiance and transmittance spectra
of molecular gases by narrow band model methods has widespread applica-
bility in quantitative spectroscopy. Two particularly important areas of

(1)

application are the calculation of heat transfer in the earth's atmosphere
and the calculation of infrared radiance signatures of hot combustion gases.(z)
The latter spans the range from small laboratory flames to exhaust plumes
of jet aircrait and rocket-propelled missiles,

Most practical applications of band model methods must treat nonuni-
form optical paths., In atmospheric applications, inhumogeneities result
from the variation of pressure and mixing ratio of active species with alti-
tude, Temperature variations also occur in the atmosphere, but for many
applications, these variations may be neglected and the atmosphere treated
as isothermal, In combustion gas applications, however, very strong
thermal gradients may be encountered. This is particularly :rue for exhaust
plume problems in which shock structure and the mixing and afterburning of
unburned fuels with atmospheric oxygen are considered. An irnportant prob-
lem that combines acpects of atmospheric and combustion gas methods is the
propagation of radiation from a hot gas source through a long cool absorbing
atmosphere, If the same molecular species is responsible for both emission
and absorption, the high degree cf line position correlation between the emis-
sion and absorption spectra may preclude the decoupling of the optical path
into isolated emitter and absorber regions and multiplying the source band
radiance by the absorber band transmittance in order to arrive at the trans-
mitted radiance spectrum, The entire optical path through both the absorb-
ing and emitting path segments must be treated as a single nonuniform optical
path,

Radiative transfer along nonuniform optical paths for both isolated lines
and bands of lines has a long and varied history of theoretical study. These

studies can be conveniently grouped into three categories corresponding to



a priori assumptions concerning the type of optical path considered. The
first category includes those solutions and approximations that make no prior
assumptions concerning the variations along the path and are thus applicable
(but not necessarily accurate) to any general nonuniform path, The most
significant entries into this category include the Curtis-Godson (CG) ~pproxi-

(11-13) t]

mation, (3-10) the Lindquist-Simmons (LS) approximation, deriva-

(14) (}e intuitive method of Weinreb and

tive model of Lindquist et al.,
Neundorffer, (15) and the exact solution for an isolatcd Lorentz line of Plass
and Fivel, (16) The formulation discussed and applied by Simtions and
others(”-Zl) can also be considered as a general path approximation, but

requires the selection of parameters or functions that fit the model to spe-
?\
’ on shock-heated

cific types of nonuniform paths, The work of Boughner(’
gas also fits into this restricted general path category,
The second category includes studies that consider optical paths along
which the pressure is specifically assumed to vary exponentially., Applica-
tion to atmospheric slant paths is evident, Significant contributions in this

category include the works of Plass and Fivel, (23) Yamamoto and Aida, (it

and Yamamoto et al, (25)

The third category of studies are most applicable to the problem of
flame radiation through an absorbing atmosphere. The a priori path model-
ing here is the consideration of two uniform path segments in series, Treat-
ment of lire radiation for this case has been made by Sakai and Stauffer(26’27)
[with comments by Plass(zs)] and by Goody. (29) Sakai and Stauffer con-
sidered the general problem of two arbitrarily overlapping Lorentz lines,
For zero separation, their analysis is applicable to the two-cell problem,
Treatment of band radiation for two path segments in series has been given
by Plass(3o’ 31) (32)

Despite the extensive work reflected in this short review, no band

and Rodgers,

model has been developed that adequately handles general optical paths along
which high degrees of inhomogeneity and, particularly, nonisotherrnality
occur. The most often used of these approximations is the CG epproxima-

tion, Generally speaking, this approximation is adequate for application to

RN TPARCE VR T W g
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atmospheric problems and even to combustion gas problems that display
moderately strong temperature gradients, (2,10, 22, 33) For very strong
thermal gradients, and for the case of viewing hot gas sources through inter-
vening cool absorption paths, the CG approximation as well as the remaining
general path formu! tions often fail to yield adequate results.

The concern of the present paper is the formulation of improved band
radiance models that can be applied efficiently to general nonuniform optical
paths and that account for large nonuniformities better than previous models.
Spectra generated with these models and experimental spectra are compared
in a companion paper.* The models are formulated within the confines of the
statistical band model for Lorentz line shape and inverse line strength distri-
bution, Three works are of particular importance in establishing the ground-
work for these formulations: (1) the work of Godson(s) contains the original
derivation of the statistical model for the inverse line strength distribution
and the most thorough treatment of the traditional CG approximation as
applied to the statistical model; (2) the work of Lindquist and Simmons“i)
rationalizes the approach of appro'ximating the derivatives of such transfer
functions as mean transmittance and equivalent width rather than approxima-
ting these functions directly; and (3) the recently reported work of Lindquist
et al.(14) provides the intuitive direction for the formulations,

In this paper, radiative transfer for an isolated Lorentz line is re-
viewed in Section II, and the stati stical band model for uniform optical paths
is reviewed in Section III, Both discussicns are restricted to topics required
in subsequent developments, but are presented in some detail, The founda-
tions established in these two sections are used in the formulations given in
Sections IV and V. In Section IV, the CG approximation as given by Godson
is discussed, and an alternative formulation of this approximation is con-

sidered. This alternative formulation establishes interpretations and

*Stephen J. Young, ""Evaluation of Nonisothermal Band Models for HZO’ "
J. Quant, Spectr. Radiative Transfer (to be published).
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functional relations necessary to the formulation of the various derivative
approximations made in Section V. The latter part of Section IV and Sec-
tion V comprise the significant new work of this paper. The models are

reviewed and summarized in Section Vi,



II. ISOLATED LORENTZ LINE

A, GENERAL RELATIONS

In the statistical band model used in subsequent formulations, the

average transmittance for a spectral interval Av is expressed in terms of

the integrated absorptance (equivalent width) of the individual lines in Av,

In this section, the radiative transfer effects of an isolated Lorentz line are

reviewed to the extent required for these subsequent formulations.
Consider an optical path that extends from the geometric position s = 0

to s = S. The concentration (mole fraction) of active gas c(s), total gas pre-

sure p(s), and temperature T(s) are considered as general, but known, func-

tions of s. The gas is assumed to be in a state of local thermodynamic

equilibrium, The spectral absorption coefficient for the Lorentz (dispersion)

line shape is

(v, 5) = 22 o)

el
T VT y(s)

where S(s) is the line strength and y(s) :s the line width parameter. The

reference of spectral position is the line center. S(s) is assumed to be a

fuaction of temperature only, whereas y(s) may be a function of all three of

the path variables. The variations of S(s) and y(s) with c(s), p(s), and T(s)

are presumed known,
The two fundamental guantities of line radiation that are important here

are the line radiance and the line absorptance. The former is defincd by

S :
5 / ne(s) Wl gg (1)
0

S e b L s e & ke e e T v e B o

————_ )
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where W(=) is the integrated absorptance of the line (equivalent width) for

the poth segrnent between s = 0 and the general position s and is defined by

£ 2 ’ ’ ’ ’ -‘)
Wi(s) :-l:m 21 = exp[— %’é c(s lpz(i :Sé((SS'))Y(S )ds"lidv . (2)

The line absorptance is the equivalent width evaluated for the whole path W(S).

N#(s) is the Planck radiation function evaluated at the true spcctral position
Yo of the line center and at the temperature T(s). The form of equation (1) is
based on the assumption that N*(s) changes negligibly over the spectral width

of the line,

B. EXACT SOLUTIONS FOR W(s)

The prediction of either N or W(S) for the line reduces formally to the
evaluation of W(s) for general s, For a uniform optical path along which c(s),

(34)

p(s), T(s), and hence S(s) and y(s) are constants, the solution to equa-

tion (2) is
W(s) = 2myL[x(s)] 5 (3)
where x(s) = u(s)S/2my is a dimensionless optical depth parameter, and

u(s) = cps is the optical depth between s = 0 and s. L(x) is the Ladenburg-

Rei _he function
L(x) = xe'x[lo(x) +L(x)] (4)

where lo(x) and Il(x) are modified Bessel functions, L(x) is shown in Fig, 1,

The asymptotic limits of L(x) for weak (x = 0) and strong (x = ) absorption

-10.-
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are L(x) - x and L(x) — \/2x/7, respectively., The corr=sponding lirits for
W(s) are

u(s)S = 2myx weak
W(s) = — . (5)
2\/1:(5)5\/ = Z*W\/-ZTT—x strong

An exact solution for W(s) for an arbitrary optical path has been given
by Plass and Fivcl,“b) The solution is a series expansion in tern:s of
moments of y(s). The complexity of the solution and the fact that only the
first three expansion coefficients have been evaluated preclude its use in
most practical applications. This solution is not considered further here.

In the limits of weak and strong absorption, general solutions of equa-

(1)

tion (2) can be obtained in simple form, Familiar arguments used to ob-
tain the weak and strong limits for a uniform path are readily applied to a

nonuniform path and yield

/‘c(s')p(s')S(s')ds' weak
0

ZVfc(s')p(s')S(s')y(s')ds' strong
0

W(s) =

At this point, it is convenient to introduce the concept of path-averaged
line parameters, The path-averaged line strength Se(s) and line width yc(s)

arce defined by

S
se(s)—u—(‘s—)fo (s’ )p(s’)S(s’) ds’ (6)

i A



and

1 s ’ ’ ’ ’
Ye(s)=;(s—)s—emfo (s’ )p(s')S(s' (s ) s’ (1)

where u(s) is the optical depth
s
u(s) = f c(s’)p(s’) ds’ . (8)
0

A convenient dimensionless optical depth parameter is

u(s)Se( s)

T, GT (9)

xe(S) =

In terms of these path-averaged parameters, the limiting solutions for W(s)

may be written as

u(s)Se(s) S ZTwe(s)'xe(s) weak
W(s) = T . (10)
- % (s
ZVu(s)Se(s)ye(s) = Znye(s)\/ : strong

Comiparison of equations (5) and (10) indicates that W(s) for a general
path approaches the same limiting forms fcr weak and strong akgorption as
does W(s) for a uniform path, The difference is that the path averages Se(s)
and ye(s) replace the constants S and y, respectively, and the general result

for u(s) given by equation (8) replaces the quantity cps.

- 1i8=




Consiaerations presented later require the spatial derivative of these

exact limiting solutions, Straightforward differentiations yield

{

c(s)p(s)S(s) weak

Qg F (11)
c(s)p(s)S(s)y(s) _ c(s)p(s)S(s) yis)
[Vuls)S _(sly (s) 2mx (s) Ye(s)

strong

CURTIS-GODSON APPROXIMATION

(3) (4,5)

The CG approximation was introduced by Curtis'™" and Godscn n

the context of isothermal band models used for computing heating rates in

the atmosphere. An extensive literature exists on the application and inter-

pretation of this approximation, The approximation can be formulated from

several points of view, The conceptually simplest, and the one most in

keeping with Curtis' original discussion, is that the path-integrated line-

shape function [the exponential argument of W(s) in equation (2)] is replaced

by a Lorentz line-shape function that depends on effective lire parameters

§(s) and ;(s). That is, W(s) is approximated by

2

An immediate Ladenburg-Reiche integration can be made to give

with

W(s) = 2nYL[X(s)] ,

sy = SaiEls)
2my(s)
-14-



The effective parameters g(s) and ?(s) are deterrined by forcing the
approximate solution for W(s) to agree with the exact solutions [equation (10)]
for weak and strong abscrption. The »esult is that the effective parameters
are best defined as the path-averaged parameters of equations (o) and 7))

i, e., S(b) 'S (s) and y( ) = Vi (s). The CG approximation for an isolated

v

Lorentz line and general nonumform optical path is, then,

W(s) = ZWe(s)L[xe(s)] . (12)

Tre functional form is the same as for a uniform path, but the constant
parameters S and y are replaced by the path averages Se(s) and ye(s),

respectively.

The calculation of line radiance according to equation (1) requires the

derivative dW(s)/ds. Differentiation of equation (12) yields

dW(s)

s = c(s)p(s)S(s)y[x (s), p(s)] (13)
where
sxp) = (2 - p) S5 o o EE (14)

with dl(x)/dx - ¢ 'ln(x). The parameter p(s)is the ratio of the local value

of line width to the path-zveraged lit idth,

(s)
' vy (s) (15)

e

and is the index that measures the degree of local patn nonuniformity,

-15-



The asymptotic limits for the derivative function y{x, p) given by
equation (14) are readily verified to be y(x,p) =1 as x = 0, and y(x,p) ~
p/\/—f_w_x—as x —®, Comparison of equation (13) with the exact soluticns of
equation (11) reveals that these limits for y(x,p) are the correct limits,
Although y(x, p) approaches the correct (imits for weak and strong absorp-
tion, spurious behavior may occur for intermediate values of x if the non-
uniformity index p(s) is large. A large value of p(s) would occur, for
example, if, along an isothermal path, there were a sudden pressure in-
crease such ti it y(s) > ye(s). The derivative functivn is shown in Fig, 2
as a function of x for a few values of p, It can be shown that if p 2 2, there is
a region of x values for which y(x,p) > 1. From equation (11), it is evident
that this effect predicts that W(s) grows uat a rate faster than . does for
weak absorption, This behavior is unacceptable and points ou. a funda-

mental flaw in the CG approximation,

D, LINDQUIST-SIMMONS APPROXIMATION

(11}

The apprcximation of Lindquist and Simmons corrects the flaw in
the CG approximation ncted above., This approximation proceeds from the
observation that the line radiance given by equation (1) is formulated in
terms of the derivative dW(s)/ds rather than W(s) directly., The LS approxi-
mation thus consid«rs a direct approximation to dW(s), ds 1ather than to

W(s). The spatial derivative of W(s) from equation (2) is

\4

® i ] 1 4 ! 1
___(]W(‘s) = c(s)p(s)S(s)E =) exp|- = als jps JOLE Jy(s ) 40 | 4.
ds 1 2 2 7 2 2, 4

v+ yT(s) J WSty (s”)
As i1 the CG approximation, the path-integrated line-shape function (the
exponential argument) is replaced by a Lorentz line-shape function expressed
in terms of effective line parameters §(s) and ?(s), The derivative may then

be expressed as

WLe) = e(sip(s)stsdylXs), Bls)] (16)

-16-
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where
(s) u(s)S(s)
2my(s) 2
p(s) - s) g
Y(s)
and

- -]

2 2 dz

y(x,p) ;f expl —Bx | _dz (17)
0 l t+zp)1+2

A simple analysis of equation (17) yields the asymptotic limits of y(x, p) as
y(x,p) = 1 as x = 0, and y(x,p) — p/\/Z_Trx as x =, Thus, the weak absorption
limit of dW(s)/ds given by equation (16) reduces to the correct limit given by
equation (11) regardless of the choice of g(s) and Y(s). Agreement between
equations (16) and (11) for strong absorption requires g(s)?(s) £ Se(s)ye(s), ‘
which can be satisfied with the intuitive choices S(s) = Se(s) and Y(s) = Ye(s).ﬁ‘

The final result for the LS approximation is

dW(s)
)

- C(S)p(S)S(S)y[xC(S).p(S)] . (18)

a.

An alternative approach to the CG approximation is to replace y(s’) in only
the denominator of the exponential argument of equation (2) by an effective
width parameter J(s). A Ladenburg-Reiche integration and a forced fit
between the approximate and exact solution for W(s) in the weak absorption
limit yields Y(s) = Ye(s) and, finally, the result of equation (12), If this same
approach is used in the LS approximation, the correspondence Y(s) = Ye(s)

1s uniqucly determined by the strong absorption fit of the approximate to

exact solution for dW(s)/ds.

-18-
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The derivative function of equation (17) is not expressible in terms of
elementary functions, A tabulation and approximate solutions for extreme
values of the arguments x and p have been given by Young. (42) The function
is shown in Fig, 2 for comparison with the CG approximation, TLe function
is well-behaved and never exceeds unity, Since the LS approximation treats

dW(s)/ds, no solution for W(s) is given other than the formal solution

S ’
W(s) f -—L—d‘g’ss ) as'

0

which can, in application, be evaluated numerically,
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III, STATISTICAL BAND MODEL

A, GENERAL RELATIONS

In thi= section, the radiative transfer effects are reviewed for an array
(band) of nmiany lines, " all with centers confined to a spectral interval Av,
The average radiance in Av due to these lines and for a general nonuniform

optical path is
S .
ﬁ=.f (s S8 g5 (19)
0

This form of the band radiance equation requires Av tc be small enough that
the Planck function N*(s) can be considered as sensiblv constant across Av,
T(s) is the average spectral transmittance for Av and the path segment

between s = 0 and general position s, The exact expression for Tl'-(s) is

Aoy = [ s av (20)
Ay

where T(v, s) is the spectral transmittance within Av, If the number of lines

N in Av is large, T(v, s) is, in general, a rapidly fluctuating function of v,

and the evaluation of T(s) by equation (20) is quite tedious. In additior evalua-
tion of Tr-(s.) by this method requires detailed knowledge of the spectral posi-
tion, strength, and width of each of the N lines in Av, In order to expedite

the cvaluation of "F(s), band model iechniques are used, The objective of

"All of these lines are assumed to arise from a single molecular gas species.
Treatment of more than one species is trivially handled by invoking the

multiplicative property of band transmittance for nonidentical species.

_21- Preceding page blank

¥

T L Yy T QP i g



band model methods is to approximate T(s) by an expression that depends on
only « few parameters, These band model parameters reflect average
properties of the lines in Av,

The statistical band model approximation of T(s) is developed from two
fundamental assumptions. One is that the placement of lines in Av can be
modeled by a random arrangement of equal width lines, The result of this

(1)

assumption is that

F oy exp[— W‘;’)] , (21)

where W(s) is the average value of W(s) for the lines in Av,
N
- | .
W(s)=-1\—IZW(1,S) , (22)
i=1

and % is a mean line spacing parameter 6 = Av/N, This step in the formula-
tion eases the difficulty in evaluating 7(s) to the extent that the individual
positions and widths of the lines in Av are no longer required. The strengths

are still required for computation of W(i, s).

*This expression for T(s) is the limiting form for N = ® and Av = ®, The
latter ensures that the absorption caused by each line in Av is confined to
Ay, An additional note of importance is that T(s) derived in the statistical
model is not 2 mean spectral transmittance in the sense of equation (20),
but rather a spectral transmittance (for some position v in Av, generally
the center of Av) that has been averaged over all possible line arrange-
ments, It can be established, however, for the condition Av = = that
equation (21) results for any choice of reference position v in Av, Thus,
cquation (21) is also an adequate representation for the average spectral

transimittance,
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The other modeling assumption is that the strengths of the lines in Av
can be described by a continuous distribution function P(S). Then, rather
than writing the average value of W(s) as a summation, as in equation (22),

the integral expression
=— [+-]
W(s) :f P(S)W(S, s) dS (23)
0

is used. The use of this definition requires the selection of a plausible
distribution function P(S) and the expression of W(s) for an isolated line in
terms of a line strength parameter S, For an isothermal path (where S is a
constant), this latter requirement is trivial, For a nonisothermal optical
path, the expression ol W(s) [and its d. rivative dW(s)/ds] in terms of an
acceptable strength parameter is the basic problem considered in Sections IV
through VI, For the remainder of this section, a uniform optical path is

assumed.

B. INVERSE LINE STRE!"GTH DISTRIBUTION

P(S)dS is the probability that an arbitrarily sclected line in Av will
have strength S in the interval dS about S. Several distribution functions have
been considered, Use of the dirac distribution P(S) = &(S - §) is equivalent
to the assumption that all lines in Av have a strength equal to the average
line strength S. The use of an exponent:al distribution P(S) = §-1 exp(-S/g)
yields the Mayer-Goody form of the statistical model, 322 3®) The qistribu-

tion functions used here are the truncated inverse line strength distribution

(5,37)
(38)

introduced by Godson and the exponential-tailed inverse distribution

introduced by Malkmus, Tle use of these two distributions yields nearly
identical results for man, applications., In the present work, the distribu-
tions are used interchangeably in the following manner: The formulation of
models is made with the inverse distribution; the functions required to apply

the models are derived with the exponential-tailed inverse distribution,

-23-
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The form of the inverse distribution used here is

(0 0= S<5y,/R
a 1
P(S) = W STn R SM/R <8< SM 5 (24)
| 0 S >SM

where S5y, and SM/R are, respectively, the maximum and minimum line

strengths allowed in the distribution and are introduced so that P(S) can be
normalized, SM and R are two independent parameters of the distribution,
R is generally assumed to be large. The mean line strength for the distri-

bution is

with S - SM/ln R for large R,

For application to nonisothermal paths, it is necessary to know in
more explicit form how temperature enters into the distribution, In order
to accomplish this, a functional relationship between line strength and

temperature must be assumed, The form assumed here is

-8(i)/T

S(i, T) = S T)e , (25)

where i is a line index, and 8(i) is the energy (expressed in temperature
units) of the lower level of the quantum trarsition causing the line, This
form for S(i, T) follows directly from the assumption that the strength in
absorption is the product of the number of molecules in the lower level and
an intrinsic oscillator strength o(i). A dominant factor that influences the

magnitude of o(i) is the energy change in the transition causing the line.
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lines confined to a small spectral interval Av, this energy change is nearly

constant. To a first approximation, then, d(i) can be considered independent
of i, The preexponential factor SM(i, s) then, is also independent of i, This
simplification is used and yields the final asstmed form for the temperature

variation as

S(i, T) = S),(T) N T (26)

This form defines a unique relation (for fixed T) between the strength of a
line and the energy of the lower level of the transition causing the line, b
distribution of line strengths thus implies a distribution of energy levels,
The use of the inverse strength distribution of equation (24), the relationship
between S and 8 given by equation (26), and the transformation relation

P(S)d(S) = P(8)d(8) gives the energy level distribution as

0 8 <90

P@®) = 0<8 =TInR

T ln R

0 8 >TInR

Because the strongest lines in Av occur {or absorption from (or emission to)
the ground-level § = 0, SM(T) in equation (26) can be identified as the distri-
bution parameters SM in equation (24). The distribution P(6) is constant in

the variable 8 up to a maximum value em = T In R, Since the distribution of
energy levels within a molecule is an intrinsic property of the molecule, we
must insist that em be independent of temperature, This consideration thus
yields an explicit [orm for the temperature dependence of the distribution

parameter R as

R(T) = e

-25-
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The assumption that R is large implies that 9m is large. The firal form of

the inverse line strength distribution used here is (with R and B ™ ®)

T

m
P(S,T) = , (27)
0 S > SM(T)

where the explicit dependence on temperature is included, and where SM(T)

and Gm are considered as the two independent parameters of the distribution,

C. STATISTICAL MODEL FOR A UNIFORM PATH

For an isolated Lorentz line ard 2 uniform optical path, W is given as
a function of S through the Lacenburg-Reiche solution [equation (3)] W
2myL(x), x = Su/2ny., From equations (23) and (27), the mean equivalent

width function is approximated as (with the transformation 7 = Su/2my)

== XM
E T L(Tl)
6 = 21|Y —_ée .n dT‘I »
m<g
where
o SMu
*M T 2my

“When the distribution is written in this form, it can be readily verified that
if the inverse distripution is assumed to hold for any temperature, then it

holds for all temperatures,
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The integral over 1) is easily evaluated by using equation (4) for L(7T) and

standard tables of integrails for Bessel functions. The result for the integral

is
1) = 7T HD 4n = 2xe* . %
x) = 5 dn = 2xe [Io(x) + Ii(x)] 4 e Io\x) -1 ; (28)
0

Thus, the solution for W/¢ is

w g
&

Introduction of the parameters

- SmT 3
k = W_ - -6- ’ (29)
m
1 _ 4T
— T 86 ’ (30)
& m
2
= (31)
6
and
x = 52 (32)
permits the result to be simplified to
w_8
= =71 (33)
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Equations (28) and (33) coustitute the result first cbtained by Godson.

(5,37)

The curve-of-growth function I(4x)/4 is shown in Fig. 1. The weak and

strong absorption limits are the same as for the Ladenburg-Reiche function,

but the range of x over which the transition occurs is broader. This phe-

nomenon occurs hecause the st

.ong absorption limit for a band of lines is not

obtained until a sizable fraction of the weakest lines allowed by the line

strength distribution display stiong absorption behavior. The weak and

strong absorption limits of W/6 are

| =

uk weak

— :
Ek—ﬂ- stro

5 rong

D. BAND MODEL PARAMETERS

Equations (29) through (3

1) relate the rwo parameters k and B to the

line arrangement parameter 5 and the strength distribution parameters S\/I
i

and 5 . These iatter three parameters have meaning only within the con-

m

fines of the modeling assumptions that lead to the results of equation (33).

The practical interpretation or

band modeling procedures is that the results

[equations (28) and (33) in tkis case| constitute a functional form for the

variation of 7(s) [by equation (21)] with optical depth u that depends on two

band model parameters k and 3

fitting the functional form to ex

that are to be determined empirically by

perimental data.

Two general procedures are used to determine k and B, In one, ex-

perime ntal absorption measure

ments are made on a uniform gas sample at

fixed temperature . with a spectrometer centered at the spectral position

of interest and adjusted to a spectral resolution Av. The optical thickness u

of the sample is varied over a wide range such that both weak and strong

absorption data are obtained,

By fitting the weak absorption portion of the

experiniental curve T{u) to the model, X can be determined. By fitting the

strong absorption data, the product %8, and hence B, can be obtained. In
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this manner, the parameters k and B can be obtained for all spectral
intervals Av across an entire moiecular absorption band and for a wide range
of temperatures,

‘"ke other approach to the determination of k and B can be used if the

line optical parameters S(i) and y(i) are known for all of the lines in each

interval Av, The temperature dependence of S(i) and y(i) must also be known,

From equations (22) and (3), W/6 for a uniforn optical path may be written

in terms of the line parameters S(i) and y(i) as

oa X =
1=

Equation (33) represents this same quantity expressed in terms of the band
model parameters k and B, By forcing equations (33) and (34) to be ident.cal

for weak and strong absorption, " the following definitions can be obtained:

A N
k:EZIS“) , (35)
iz

:_ﬂL
T(- \V]

>

>

2
\/S(i)v(i)] . (36)

"In both this and the experimental absorption approach, k and B are deter-
(5, 39)

mined by fitting the model in the limits T = 0 and T = ®», Godson has
indicated that, for some applications, fits at other transmittance values
may be desirable, In his work on the atmospheric transmittance of HZO,
for example, he used fits at 7 = 0,45 and 0, 95 to obtain a best overall

agreement between model and data.
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Note that, by including y{i) in the definition for B as a parameter that depends
on the line index i, the mcdel approximation that all y are constant has been
lessened.

Although only the two parameters k and B are required for application
of the 1sothermal band model, it is convenient (and necessary for some ex-
tensions of the band model formulation to nonisothermal paths) to conside. B

as a ratio of two parameters y and by a generalization of equation (3%),

B2l (37)
8

where ? is a measure of the average line width for the lines in Av, and % is a
mecasure of the mean line spa. .ug in Av. The use of three parameters (k, %
and y) in a two-parameter model required auxiliary information on oae of the
paraineters, This information is generally introduced by performing inde-
pendcat experimental measurements of y or by making theoretical and em-
pirical assumptions ony. When band model parameters are determined
from individual line data [equations (35) and (36)], vy is conveniently defined

by

1 N
Y=ﬁ2 (i) .
1=1

An advantage of introducing the two parameters ; and § in place of B is that
the variations of B with the composition of the gas, i.e., the ratio of active
gas concentration to various foreign gas concentravions, can all be placed in
Y, which leaves © as a function of temperature (and spectral position) only,
When the fundamental band model parameters k, 6, and Y have been detc -

mined as a function of spectral position and temperature, it is possible to
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define the modeling parameters Sy, and the product 66m. From equations (29)

and (30), the following expressions can be obtained:

Sy(T) = 4k(T)&(T) (38)
86 = 4T8§(T) . (39)

These two relations are particularly important in the formulation of ncn-
izothermal band models in Sections IV and V, An interesting side aspect
of equation (59) is that the line density parameter D= 1/8 is predicted to
display a linear temperature dependence, This result offers an opportunity
to experimentally determine the adequacy of the entire modeling procedure

by examining the constancy of the product T€ with temperature,

E. EXPONENTIAL-TAILED INVERSE LINE STRENGTH
DISTRIBUTION

Same comments on the use of the exponential-tailed inverse line

strength distribution rather than the inverse distribution are appropriate

(38)

here, This distribution function is

{ -S/SM -RS/SM
P(S)=—-—SlnRe -e "

where S is allowed to assume all values 0 £ § € o, S\‘1

preted as a maximum allowed line strength, but simply as a parameter of

is no longer inter-

the distribution, The distribution results by use of the more general result
of equation (25) over (26) for line strength and the assumption that SM(i, T)
is distributed about SM(T) according to an exponential strength distribution,
In 2 sense, it is more general than the purely inverse line strength

distribution,

-31-
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For a uniform optical path, the formulation of a band model with the
exponential-tailed distribution parallels the formulation with the inverse

distribution, except that the curve-of-growth function I(4x)/4 is replaced

by Ic(nx)/n, where Ie(x) =(1+ Zx)i/2 - 1, and the factor 4 in equations (30),

(33), (38), and (39) is replaced by .
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IV. CURTIS-GODSON APPROXIMATIONS

In this and Section V, the fundamentals reviewed in Sections I and II1
are used to formulate band models for general inhomogeneous, nonisothermal
optical paths. Here, two approaches to the familiar CG approximation for
bands of lines are considered: that originally given by Godson(s), and cne
that is based on the same assumptions used in Godson's approach, but that
expands on the nature of the assumptions. The second approach also yeilds

expressions that are essential to the formulations in Section V.

A, GODSON'S FORMULATION

In Godson's approach, we assume that the functional form of the curve
of growth for a nonuniform path is the same as that for a uniform path, The
expression for the mean equivalent width is written, from equation (33), as

W (s)

8
mé_s_) = e4 I[4xe(s)]

(40)
u(s)k_(s)
R O

where ie(s) and Be(s) are effective band model parameters to be determined,
and the optical depth u(s) is given by equation (8). The effective paraneters
_]:P(s) and Se(s) are determined by a procedure similar to that used to deter-
mine k and B in terms of line parameters for a uniform path, That is, the
weak and strong absorption l'imits of equation (40) are forced to agree (as
well as possible) with the weak and strong re sults obtained from W(s)/6 given
by equation (22) and the exact limiting solutions to W(i, s) given by equation

(10). The resulting definitions for ie(s) and Be(s) parallel the definitions of

-35.
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equation (35) for k and equation (36) for B, except that they are written in

terms of the path-averaged parameters b (i, s) and Ys (i,s). Theyare
K(s) =25 2 Selins) (41)
i=1
and
2

B (s)= Z \/S (i, s)y ol1s8) : (42)

k (s)

These definiti~ns are not particularly useful because they not only require a
detailed knowledge of individual line parameters, but also require that the
path averages of the strength and width of each line be recomputed for each
nonuniform path considered. These relations can be used, however, to
formulate definitions that are practical. The procedure is most easily
shown for Ee(s). By interchanging the order of line summation and path inte-

gration implicit in the above definition for Ke(s), we obtain

s N
K (s) =u—(’-s-j'{ c(s')p(s')i'zlS(i,s') ds’
1=

From equation (35), the quantity in brackets can be identified as the parame-
ter k that corresponds to an isothermal path at temperature T(s’). Conse-

quently,

= S .
ke(5)=3-(15—)./0- c(s’)p(s’)k(s”) ds’ 5 (43)

:';Se(i’ s) and ye(i, s) are defined by trivial generalizations of equations (6) and
(7), respectively, that include the line index i as an explicit argument to S

and vy,
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where K(s') denotes K[T(s")]. The effective absorption band model parameter
k (s) is thus the average value of k over the nonisothermal path, If k is
known for all temperatures in the range that occurs along the path, k (s) can
be computed for all path positions s.

In order to obtain a corresponding result for Be(s), an additional as-
sumption must be made in order to permit the interchange of the order of

integration and summation in eguation (42}, With the definitions of equations

(6) and (7), Be(s) may be written as

B(S)—

[Av Z\/u( )f c(s’)p(s')Sli, s (i, s’ )ds:|

The additional assumption made by Godson is that S(i, s’) and yf*,.s’) may

be written in the function.l product forms

S(i, s') = 0 (i)o,(s") (44)
anG

yli,s’) = g lidg,y(s") . (45)

The use of these relations and an interchange of the order of sumimation and

integration yields

N
VA S ? ? 1 5 0 ’
B (s)-= -4 c(s’)pls'N~— o (1), (s )z, (i)g,(s s} ds
e u(s)ke(s)'/(; A"i;‘/ A

The quantity under the square root sign is identified, from equations (44) and

(45), to be S(i, s')y(i, s’). The entire squared quantity under the path integral

can then be identified, from equaticn (36), to be B(s’)k(s’)/2m. Thus, Be(s)
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can be written as a path average of the band model parameter 8 weighted by

the absorption parameter k-

1

B (s)=———
e” u(s)-lze(s)

fsc(s')p(s')E(s')su')as' . (46)
0

Equations (40), (43), and (46) constitute the traditional formulation of the

CG approxima.ion for a statistical band model,

B. ALTERNATIVE FORMULATION

We now corsider an alternative approach to the CG approximation for
a random array of lines that more nearly parallels the formulation of the
band model for a uniform optical path, The starting point is the use of the

CG approximation for an isolated line [equations (12) and (9)]

u(s)S (s)
< ] . (47)

W(S) = ZWC(S)L[m
e

As in the formulation for a uniform path, we average this expression over a
line strength distribution function P(S), Since the path is assumed to be
nonisothermal, no explicit line strength appears in equation (47); only the
path-averaged line strength Se(s) appears, it becomes necessary, then, to
consider a strength distribution function for Se' An approximate distribution

(S ) can be established by invoking the separability approximaticn
& y g P y app

"fo use of the Schwartz inequality for integrals, it can be established that if
the separability approximations of equaticns (44) and (45) are not invoked,
then the optimum choice for BL_(s) is some value less than or equal to the

path average given by equation (46),
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[equation (44)] on line strength. The path average for the strength of the ith

line in Av is [equation (6)]
s
Se(i, s) = 3(1;7./(; c(s’)p(s’)S(i, s’)ds’
The use of equation (26) for S(i,s’) yields
1 [° 8(i)/T(s’
Se(i, s) = E(T),/O' c(s')p(s')SM(s') e (1)/T(s") ds’ . (48)

The separability approximation is now introduced by assuming that T(s’) in
the exponential argument of equation (48) can be replaced by a quantity Te(s)

that is independent of s’. This replacement corresponds to the use of

-8(i)/T (s)
cl(i) = e

and
o,(s’) = Spyls’)

in equation (44)., Then,

-8(i)/T (s)
Se(i, s) = SeM(s) e 5 (49)
where
| s : / 5
5_p () =mfo cls'Ip(s')Sy,(s) ds’ . (50)
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Regardiess of the choice of Te(s), it is clear from equations (26) and (49)
that Se(i, s) displays the same functional dependence with Te(s) that S(i, s)
does with T. Consequently, because the energy level distribution function
P(3) is inderendent of temperature, it is readily established that, within the
separability approximation, Se is distributed according tc the inverse

distribution

'Te(S)
Seem 0 =< Se < SeM(s)
P(Se) = { .
0 Se > SeM(s)

The application of this distribution to W(s) given by equation (47) completely
parallels the formulation for a uniform path given in Section III and yields

the result

’

o) . Bes) yiais))

(51)
;E(S) e u(f)k(S) »
B(s)
where
- T (s)
K(s) =5 _ 4() s (52)
’ m
= _ 4T (s)
B(s) = emy (s) —3 (53)
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The parameter ;e(s) in equation (53) for E(s) is given by

s —-—
ve(s)=u—(ggi—d7;;fo (s 1p(s")Spy(s* (s ) ds” (54)

and is obtained from equatinns (6), (7), and (26) by again replacing T(s') with
Te(s) and assuming y(i, s’) to be independent of i and equal to the band model
parameter y(s').

Since equations (40) and (51) are identical in form, it is clear that the
assumption of equation (40) as the ct rve-of-growth function in Godson's
formulation is equivalent to the use of the separability approximation for line
strength and the use of the CG approximation for an isolated line.

The significant departure of this alternative formulation of the CG
approximation from Godson's formulation is the manner in which the effective
parameters ’l:(s) and g(s) are determined. In Godson's formulation, the
effective parameters were introduced a priori as unknowns to be determined.
The present formulation has established a direct link between the effective
band model parameters X and B and the band model parameters for isothermal
paths., More explicitly, equations (52), (53), and (54) together with equa-
tion (50) for S (s) give k(s) and S(s) in terms of the modeling parameters

M(s) and ’Wm. These later parameters are, in turn, given in terms of the
isothermal parameters k(s) and &(s) by equations (38) and (39). Carrying
throvgh the formulation with these relationships, we find that k(s), g(s), and

ye(s) can be expressed as

. [T (s) 6(5)
k(s) = k (S)lI(S) —

B(s)
S AR
8.(s) 8(s)
Yels) = o (oTE (s)f s )p(s' k(s'JB(s'IN(s') ds’ ,  (55)
-39,
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where (s) is a path average of the line spacing band mwodel parameter given

b

S
~ (s) ——I-—f c(s”)p(s’ (s’ )5(s" ) ds’ . (56)

s u( s)?e(s)

and F(_(s) is given by equation (43),
The weak limit form for W(s)/-‘ with this result for Ti(s) s

T (s) > (s)
“I(b) = u(b)k(S) = u(b)k (S)[T( ) _:(‘ ]
&(s)

lnasmuch as it has been established (in Godson's formulation) that the correct

weak limit form for W(s)/¢ is u(s)i:c(s), however, the quantity in brackets

Thus, a definition for Te(s) is established as

nmust be unity,

s) (57)

T (s) = T(s) ——
¢ % (s)

Although T (s) does not enter into the final result of this approach to the CG

approximation, the definition of Tc(s) by equation (57} plays an important role

in the band model formulations presented in Section V,
The final result for this alternative formulation of the CG approximation

is the same as Godson's formulation, except that ﬁe(s) is not defined as a path

average of 8(s) according to equation (46), but rather by

27y (s)
(58)

B (s)'—— ;
*~e(5)

where y (s) is a path-averaged line width given by equation (55), and f*e(b) is

a path-averaged line spacing parameter given by equation (56)
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C. DERIVATIVE FUNCTIONS

The computation of band radiance by use of equation (19) requires the

transmittance derivative dT(s)/ds. Differentiation of equation (21) yields

dils) . 7147 (59)

4
5

The equivalent width derivative obiained by differentiating Godson's result

for the CG approximation is

dW(s)
ds

i

= c(s)p(s)k(s)y[4x_(s), r(s)] (60)

where the derivative function y(x, r) is

yixir) = (2 - 1) S22 (61)
with
di) . ) (62)
The nonuniformity index r(s) is
r(s) = Es—e-‘(% : (63)

where Be(s) is given by equation (46)., This result is similar in form to that
obtained for an isolated line [equations (13) and (14)]). In particular, this re-
sult can display the same spurious behavior of y > 1 for intermediate x if the

ponuniformity index r(s) is very large.
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By differentiating the result for W(s)/b ohtaired in the alternative

formulation for the CG approximation, we obtain

id_:rés_) = c(s)p(s)i(s)y[‘lxc(s), pis), q(s)] . (64)
where
y(x,p,q) = (ZT-B)-(% + (l - 2—;2) Ixx) . (65)

Here, the arguments o(s) and q(s) are

(s

pls) = A= (66)
Ye(Sr
and
he(S)
q(s) = — (67)
5(s)

In the alternative formulation, the index p(s) rieasures primarily the local
depree of inhomogeneity at path position s, and q(s) measures primarily the
local depree of nonisothermality, The parameter r(s) in Godson's formula-
tion measures the combined effects of inhomogeneity and nonisothermality,
For an iscthermas path, q = 1, r = p, and equations (61) and (65) become
identical. Thus, the two approaches treat inhomogeneities along the path in
the same manner. The significant difference between the two approaches is

the manner in which nonisothermalities are t,cated. Consider a hornogeneous
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path for strong absorption, Then, p =1 and r = q, For large x, equations

(61) and (65) yield, respectively,

y(4x, q) *——qj— ,
(2mx)} 2

and
2q - 1 1
T (2mx)

y(4x,1,q) 172

Godson's approach yields a linear increase of y with q for strong absorption,
The alternative approach displays a much weaker increase with q through the
function (2q - 1)/q.

The vesults for either formulation of the CG approximation with the
exponentizl-tailed cistribution are identical to all of the results in this sec-
tion, except that all occurrencer of I(x) are replaced by Ie(x), and the factor
4 “hat appears with xe(s) is replaced by w. In addition, dIe(x)/dx = { AL # Zx)l

replaces equation (62).
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V. DERIVATIVE APPROXIMATIONS

A, INTRODUCTION

The approach to the band models formulated in this section is
fundamentally similar to the approach of the LS approximation for an isolaied
line. The radiance equation [equation (19)] for band radiation is formulated
in terms of the transmittance derivative d?(s)/ds rather than in terms of the
transmittance T(s) directly, The CG approximations presented in Section v
are essentially approximations to T(s) in that they deal directly with the
quantity W(s)/8 = -1n ?(s). Expressions for d?(s)/ds are obtained by differen-
tiating the approximations, In this section, direct approximations to dT(s)/ds

are treated. More accurately, because [equation (59)]

di(s) . = s)_1_d'vVgs)
ds S s '

approximations to the mean equivalent width derivative are considered, The
approach is similar to the alternative formulation of the CG approximation in
that we start with an approximate solution for an isolated line, average over
a line strength distribution, and express the distribution parameters SM and
:Em in terms of band model parameters for isothermal paths by the direct
relations of equations (38) and (39), The results are thus expressed in terms
of the nonuniformity parameters p(s) and q(s). However, intuitive models

based on the parameter r(s) are also considered,

B, DERIVATIVE APPROXIMATION

Where the alternative formulation of the CG approximation was based
on the CG approximation to W(s) for an isolated line, we begin here with the

LS approximation to dW(s)/ds [equations (9), (15), (17), and \18)]

2u( s)Se( s)

W 2 :
d¥Ls) . c(s)p(s)S(s);;/ Pl ) =% . (e8)
0
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In the CG formulation, the only line strength parameter in the equations was
the path-averaged strength Se‘ An average over line strength was performed
by deriving an approximate distribution for Se' In the present case, botn the
path-averaged and local line strength S(s) appear in the formulation. In order
to perform an average over line strength, it is necessary to express Se as a
function of S, or vice versa. This is accomplished by introducing the line
strength separability approximation, but only for S(s’) as it appears in the

path integral for Se(s). That is, equation (49) is used to express Se(i, s) as

-G(i)/'l'e(s)
Se(i, s) = SeM(S) e . (69)

The local line strength param~ter S(i, s) is not separated and is retained as

given by equation (26),

-8/ T(s)

S(i, s) = S (70)

Mmis)

Elimination of 9(i) between equations (69) and (70) gives the desired approxi-

mate relationship between 5 and Se

]T(s)/re:s)

<y S(s)
Sc(b)' SeM(S)[SM(s)

From equations (57) and (67), the tecmperature ratio can be expressed as

E (s)
T(s) e
= q(s)
T;(s) T(s)
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With the definition
S(s)
Tl = D (71)
SMis)

Se(s) can be written
5(s) = S (s (72)

Then, with equations (71) and (72), equation (68) becomes

ZXM(“mq(S) dz

d¥iis) . c(s)p(s)sM(sm%/ exp{- 5
J

di . 1+ zzpz(s) 1 + 2z

where

u(s)SeM(s)
¥ T e

This expression can now be averaged over the line strength dis.ribution function

for the local strength S(s). In terms of the paramet N, the distribution

[cquation (27)] is
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The relation for the mean equivalent width is then™

Té )
Sufs) g 3
m
vals zxM(sm‘*"S)l ] d
X? exp = 2 2 dn z 2 .
0 0 1 +p7(s)z J1+ z

The preintegral factor in brackets can be identified from equation (29) as the

%g‘%ﬂ = c(s)p(s)

local value of the absorption parameter k(~). With the relationships and pro-
cedures used in the alternative CG formulation, it can be established that
xM(s) = 4xe(s), where xe(s) is defined by equation (40), and Be(s) is given by

equation (58), The final resuilt for the derivative is then

%-‘-l-gv-é-sl = c(s)p(s)k(slyl4x_(s),p(s),q(s)] (73)
where
q
y(x,p,q) = 2 / exp{- —I d“] o S
" 1+p 2,2 Ji W iE

The form of equation (73) is the same as those obtained in the CG approxi-

mations, but the derivative function y(x, p, q) is different. In particular,

where the derivative functions in the CG approximations can assume values

-3
The application of P(7)) to dW(s)/ds gives the mean value of the derivative.,
Clearly, the operations of differentiation with respect to s and averaging
over line strengths (7)) are indeperdent operations. Thus, the mean value of

the derivative is equal to the derivative of the mean value of W, i.e.,

dW(s)/ds = dW(s)/ds.
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greater than unity for some values of the argument, that ot aquation (74) is
well-behaved for all values of the arguments. A comparison of the two CG
cxpressions fory [equations (61) and (65)] and an approximation (Appendix)
to the presert function is shown in Fig. 3 for the case p = 2, q=3,andr = 6.
Some analysis of y(x, p, q) as givea by equation (74) has been made by

(

Lindquist et al,, 14) and an approximate method of computing y(x,p,q) is given

*
here in the Appendix. An interesting behavior of this function that is not
1/q

for

predicted by the CG functions is the asymptotic form y ~ CONST/x
1/2 .
is

large x when q > 2. For q < 2, the expected relation y ~ CONST/x
obtained. This feature is evident in Fig. 4, where y(x,p,q) is plotted as a
function of x for several values of q and the fixed value p = 1. These curves

were generated with the approximate procedure outline in the Appendix.

C LINDQUIST -SIMMONS APPROXIMATION
(11

Lindquist and Simmons ) extended their approximation for an isolated
line to the case of a random array of Lurentz lines with equal strengths,
Young“z' 134 further extended the approximation to the case where the line
strengths are distributed according to an exponential or exponential-tailed
inverse distribution, These latier extensions were made with the as sumption
that S and Se are directly related, and that thc constant of proportionality is
independent of the line index i. This assumption is clearly equivalent to the
assumption that q(s) =1 in equation (72). The result obtained for the
exponential-tailed inverse distribution was given as

dWi(s)
d

= c(s)p(s)k(s)y[mx (s}, r(s)] (75)

2]

“In this approximate procedure, the exponential-tailed inverse line strength
distribution is used. If y(x,p,q) is computed according to this approximation,

the factor 4 in equations {73) and (78} should be replaced by 7.
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Intercomparison of Derivative Functions for Band
Models. — CG app roximation {Godson's method);
---- CG approximatior (alternative forrnulation);

— — formal derivative approximation [equation (73)];
1¢, — - — intuitive derivative approximation
[cquati()n (78)].
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Figure 4. Derivative Function for the Derivative Approximation.

y(x, p,q) is computed according to the procedure given
in the Appendix.
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where y(x, r) is the relatively simple expression

ylx,7) = St XD 2 (1 ¥ r?"/l—"‘z_ﬂ . (76)

m& + V1 T 2x%)

The arguments xe(s) and r(s) were given in terms of Be(s) computed

as a path average of B [equatior (46)] as is used in Godson's formulation of
the CG approximation, This choice for Be(s) was made intuitively so that the
strong absorption limit (x ~ @) of y(x, r) given by equation (76) and y(x, r) given
by the CG result of equation (61) would agree, If the formulation for the
exponential-tailed distribution is again carried out for q(s) =1, but without
the intuitive use of r(s), and with the direct relations of equations (38) and

(39), the result is

1 dW —
180s) - o(shp(siR(sdylmx (s) pls)] (77)
where y(x,p) is still given by equation (76), but where t wniformity

argument p(s) is now given by equation (66), The result .. equation (75) is
referred to herein as the iatuitive LS approxima -© and that of equation (77)
as the formal LS approximation,

The intuitive use of r(s) instead of p(s) in order to match the strong
limit forms of the LLS and CG approximations raises the possibility of intui-
tively replacing p(s) by r(s) in the derivative approximation of equation (73)
also, If the result of equation (73) is referred to as the formal derivative

approximation, then the form

dW(s)

';' Ts— = c(s)p(s)k(s)yl4x (s), r(s), q(s)] (78)

with y(x, r,q) given by equation (74) is referred to as the intuitive derivative

approximation,
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D, MEAN-LINE APPROXIMATION

The following approximation is introduct¢d to permit the use of t'.e
simple form oi the derivative function given by equation (76), but to lessen
the degree of approximation inherent in the assumption q(s) = 1. If the line
strength as given by equaiion (26) is averaged over the energy level distribu-

tion P(8) of equation (27), the result is

5(s) = Sy4(s) g(S)

m

Consequently, the reiationship between the mean line strengths at arbitrary

path positions s and s’ is

NS e VA 1] b .
S(s ):[SM(S) T(s) S(s) . (79)

The mean-line approximation assumes that this functional relutionship holds

for each line in Av, thus,

S, (s’)
N " T(s’ )| -
S(i, s )-[SM(S) TfS)Jsu,s) : (80)

Substitution of equation (80) into equation (6) for Se(i, s) and use of equations

(38), (39), and (56) yield

m

S (i s) = Sou(s) ofay (81)

where 7 and qg(s) are defined by equations (71) and (67), respectively. this
approximation retains the linearity of Se(i, s) with S(i, s), but defines the

constant of proportionality explicitly in terms of path properties. In particular,
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an inverse dependence of Se(i, s) on q(s) is predicted. Comparisorn of equation
(s1) with equation (72) shows that the former is obtained by factoring T]q as
Tﬂq'l q

: -1 . ; "
and replacing 7 by its mean - .lie in the interval 0 <7 =<1

The elimination of S M(s) from equation (81) with equi.tions (50) and (38) re-
[

sults in the final form for the formal mean-line approximation as

=5 _ mx (s)
14%is). c(sm(s)k(s)y[T:;—. p(s)} ; (82)

where y(x, p) is given by equation (76), As fur the previous two approxima-

tion, we can consider an intuitive mean-line approximation given by

s)
& ds q

— _ < (8)
1dW(s) _ c(s,)p(s)k(s)y[ﬁes—)—, r(s)] ) (83)
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vI. DISCUSSION AND SUMMARY OF BAND MODELS

A, SUMMARY OF FORMULATION PRINCIPLES )

The formulation of band mcdels for a random array of lines requires
integrations over the spatial variable s’, the spectral variable v, and the line
strength variable S. In a completely general formulation, these three vari-
ables are intirnately interrelated in a complex manner. The heart of nearly
all band model formulations for general optical paths is the introduction of
approximations that separate the affects of the variables such that the orders
of integrations can be inte rchanged. In the models discussed here, the vari-
ables s’ and v are separated with either the CG or LS approximations for a
single line. The variables s ’and S are effectively separated by using the

line strength separability approximation.

The fundamental feature of the CG approximations is that they are
approximations to the mean equivalent width function W(s)/t. The various
derivative approximations, on the other hand, attempt to make direct approx-
imations to the derivative of the mean equivalent width function, which is the

more fundamental of the two from the standpoint of calculating band radiance.

The CG approximation was formulated in two ways: (1) by defining the
effective band model parameters Ee(s) and Ee(s) according to Godson's pro-
cedure of fitting the model to exact weak and strong absorption limits (within
the confines of the separability approximation), and (2) by defining these
effective band model parameters directly in terms of isothermal band model
parameters through relations that are derived from the properties of the
assumed inverse line strength distribution function. The two approaches

appear to be equivalent because they are based on the same assumptions.

However, the results are somewhat different. The latter formulation de-

pends more on the validity of the assumed line strength distribution model

than does the former.




The derivative approximations were all derived in a manner similar
to the second approach to the CG approximation. These formulations are,
thea, functions of the inhomogeneity index p(s) and the nonisothermality
index q(s). In order to match the strong absorption limit of one of these
der.vative band models (LS) io the corresponding limit of the first approach
to the CG approximation, an intuitive replacement of p(s) with r(s) was intro-
duced. This replacement was extended to the remaining two derivative

approaches.

In all of the models, temperature variations along an optical path are
implicitly accounted for in the temperature variation of k(s) and €(s). Ex-
plicit ac-ount is made in all models, except the formal LS model, by the use
of either the nonisothermality index r(s) or q(s). The intuitive models
account most for local nonisothermalities by using both r(s) and q(s). Within
the heirarchy of models, the degree of variation with thermal gradient in-
creases in the order CG, LS, mean line, derivative approximation for the
intuitive models, and LS, CG, mean line, derivative approximation for the

formal models.

The results of the companion paper indicate that, for HZO’ the intui-
tive derivative approximation yields the best comparison between predicted

and available experimentally measured radiance spectra.

B. SUMMARY OF MODELS

The eight models considered here are summarized below by extracting
the relevant equations from the text and presenting them in groups that cor-
respond to the inverse order in which they would be used in making an actual
calculation. In all cases, the thermodynamic variables c(s), p(s), and T(s)
are presumed known along the general line of sight that extends from s = 0
tos - S. The bard model parameters k(s), E(s), Y(s), and B(s) are pre-
sumed known as a tunction of ¢, p, T, and thus s. All of the equations are

written for the exponential-tailed inverse line strength distribution.
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1.

AR

a.

RADIANCE AND TRANSMITTANCE EQUATICNS

S =
N -f N=k(s)da(?)ds ;
0 s

d7(s) =,_, 1 dW(s)

ds -T(s) £ ds g
?(5) = cxp[- W-&-E—).] ’
W o

&ldd(SS) :c(s)p(S)k(S)Y(S) ’

&
o il Ie[nxe(s)] CG approximations
W(s) N T
T =
fs 1 dW(s ') ds’ Derivative
0 £ ds approximations
DERIVATIVE FUNCTIONS
Godson's CG
vis) = ylmx_(s), r(s)] ,
T -
dI (T) Ic( i)

y(Tor) = (2 - 1) —gg—+ (r - 1) 50—,
ILMm=/T+2n-1,

dI (7)) 1
. -

dT) J1+ 20
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b. Alternative CG

y(s) = y[mx (s), p(s), a(s)] ,
y(M, p.q) = [2 = p] dlcf]:m + [1 - 2—('1-9 I";m] :
¢. Formal LS
y(s) = y[m _(s), p(s)] ,
g, p) =20+ + (4 +92)W '
JT+2T (p + JT+20)
d.  Intuitive LS

The same as formal LS, except with p(s) replaced by r(s).

e, Formal Mean Line
™, (s)
y(s) = Y[—q(s—) ' p(S)] '
y(T,p) = same as formal LS.
f. Intuitive Mean Line

The same as the formal mean line, except with p(s) revlaced by r(c).

g. Formal Derivative

y(s) = y[rxe(S), p(s), q(s)] .

where y(1,p,q!} is from the Appendix.
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h,

3.

Intuitive Derivative

The same as the formal derivative, except wi' p(s) replaced by r(s).

PATH AVERAGES

S
u(s) f c(s) p(sHds’ ,
0

— { S -
ke(s)r‘——f c(s ) p(s’)k(=") ds’ ,

u(s) 0
8, (s) - — Jf c(s) p(s N k(s 8(s)ds’ ,
v (s) ke(s) 0
t g =T
VC(S) — — f c(s’ p(s') k(s ") &(s ) ?(s') ds’ .
u(s) kc(s) 6c(s) 0
1 ° =
— f c(s) pls N k(s’) 8(s") ds’
u(s) kc(s) 0
Ec(S)
2y (s)
£ (s)
[ 4

The first option for Ec(s) is used with Godson's formulation of the CG

approximation and in the intuitive derivative approximations. The second

option is used with the alternative formulation of the CG approximation and

‘he formal derivative approximations
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xe(S)

pis)

q(s)

r(s) = B(S)/EC(S) [Be(s) from cption 1 above] .

u(s) Fc(s)
BC(S) i

7(5)/7(:(5) ;

TC(S)/C—‘(S) 5
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APPENDIX

COMPUTATION OF y(x,p,q) IN THE DERIVATIVE
APPROXIMATION

Application of the derivative approximation band model 1equires the |

computation of the function

© { q
2 2x7) d
vpa -2 f Uo '“”‘pg"—‘z—zld“] e

0 1 +p 2z 1 + 2

for arbitrary positive values cf the arguments x, p, q. The inner integral

may be expressed in terms of the incomplete gamma function

£
v(a, €) = f ua'1 e Y du
4]

by the transformation u = Zx"’q/(l + p2 zZ). Then, cquation (A-1) becomes

ER LY

1
Y(N,P,Q) :_——17'3

R N e e L)
q(2x) 0 :

1 & & q l'rpzz2

Computation of y(x, p, q) by numericul integration of equation (A-2) is com-
plicated by the need to evaluate the incomplete gamma function and by the
overall complex behavior of the integrand. In order to circumvent these
difficulties, the following approximate method, which has been found to be

both sufficiently accurate and efficiently applicable is used.
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First, we write y(x, p, q) in the form
1 -1 1
y(X.p.q)-‘q—tr(x,p,l)*% f y(x1%,0,1)d7 , (A-3)
0

which expresses y(x,p,q) in terms of its value at q = 1. This identity can
be established as follows. For q = 1, tue inner integration of equation (A-1)

is casily performed and yields the result

2 = 1 ~ . z2 2 dz
yix,p, 1) —ﬂ_—f + {1 - cxp(- = > Z)J 3 - (A-4)
0 = i} & 1

Replacement of x with xT9 and integration of both sides over 0 = T <1 yields

1 © Hg o & -2 ~q
f y(x7%,p, 1) d7 = %f [ Lept 2ty exp(- -"-"—,2)) dn | —22
0 Y0 |70 2x79 l 1 +p% 2 ‘ 1 +2

I[f the inner integral is integrated by parts with

1 )79
e e cxp(- =% = -r)
1 -p" 2%
and
Z 2
dv Lo a dn .,
2x7Y
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we obtain (for q £ 1)

1 ® 2 2
q _ . 2 1 +p 2z 2x dz
Y(XTI ' P> 1) dn = _:_ b f { - exp |-
o 1 -qm J, 2x 15 pZ zZ 1+ z&
2 ® 1 2xn3
R / / exp . —2%1
1 - qTw 0 0 2 2

an dz2
1 +p z 1 +2

The integral in the first term is recognized froin equation (A-4) to be

y(x, p, 1), whereas the double integral in the second term is recognized

frora equatiorn (A-1) to be y(x, p, q). Thus,

1
_4‘ y(x1%,p,1) dN = 1 fqy(X.p.l) = -1—(_1—& y(x,p,9)

which, when inverted for y(x, p, q), yields and establishes the validity of

equation (A-3).

Next, we approximate y(x, p, 1) by the function derived for the
x
exponential-tailed inverse line strength distribution function. This function

(13)

has been derived by Young and is

20(1 + x) + (1 +p2) JT T 2% e

ST7zxlp + JTT xS

yi(x,p,1)

“The equation that corresponds to equation (A-1) for the exponential -tailed

distribution (with R = =) is

2 TV r° 2xnd | d
y(x,p,q) =3 / f exp)-N - —Z g dN| —=
0 0 1 +p = ‘ 1 + 2

Numerical evaluation of this integral is as difficult as the direct evaluation

of equations (A-1) or (A-2). Moreover, an expression comparable t0 equa-

tion (A-3) cannot be written. Thus, use of the exponential-tailed distributiou

is delayed until equation (A-3) is established.
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The approximate method involves the evaluation of y(x, p, q) according to
equation (A-3) with y(x, p, 1) given by equation (A-5). The integral term of
equation (A-%) is evaluated numerically as follows. The transformation

74

u X7 gives the integral term as

X
w(x™9, p 1) d7 :/qf OV I
- 0

(1/q)-1

Forq » 1, the integrand u y(u, p, 1)is a decreasing function with u.

The most rapid decrease occurs for small p [by inspection of equation (A-5)]
and large q. In the limit p = 0 and q = =, the functional form of the inte-
grand is

|

i i )

Thus, ¢ven in the worst case, the 1ntegrand decreases no faster than u

Lt Il be the value of the integrand at an arbitrary value u . The value of
U, > Uy for which the integrand has fallen to the value t'Il (< f<1)is found

from equation (A-6) to be

u, = 31\/ - -1 . (A-7)

[he integration interval 0 < u € x 1s divided into a series of sequential inter-
vals according to the algorithin of equation (A-7). The last interval is trun-
cated at x if u, > x. A nonzero starting value of u, =€ must be used. Thus,
within cach interval (except 0 < v £ ¢), the integrand varies by less than the

factor f. A two-point Gaussian quadrature is then used to evaluate the
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integral over each interval.” The general form of each of these subintegrals

18

Y2
/ u“/q)-1 y(u,p, 1) du

Yy
With the transformation

A + Bu ,

N
"

o]
"

2/(uy - ugd (A-8)

A=1-uZB ,

the integral assumes the standard Gaussian form

|
xlaf ozt Y ofae), ) da
L1

with

mu=ZéA. (A-9)

[he two-point Gaussian quadrature approximation to the integral is

‘(1"(|)-l )(1/q)-1

1 .
ﬁ}ll(l-l y[‘l(/.l),pl | \1(7.z y[u(‘/.z),p]: , (A-10)

with 2y 5 20.57735027.

‘With a starting value of ¢ = 0.01, and with t = 0.1, only 15 intervals are
needed to handle x as large as 2 X 106. This compares with hundreds (or
more) of terms required in various exact series expansions of equation (A-1)

and (A-2).
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With f = 0. 10, this procedure gives an accuracy of ~3% for the worst case
of variation of the integrand, i.e., u-z, and ~0.7% for a nominal variation

of u

The contribution to the integral from the interval 0 s u < ¢ is treated

by a two-term series expansion. For small u, equation (A-5) gives

2u
1 +p

ylu,p,1)—1 -

Thus,

€
(1/q,-1 b apsae el lly _ L : A-11
/o- : ylu,p, 1) da—eqe T+p) (1 +q) ( )

A nominal value ¢ = 0.01 is used. If x< 0,01, this two-term expansion is

used directly to evaluate the integral over 0 < u = x.

A calculational flow diagram for the procedure is shown in Fig. A-1.
Note tha! the routine treats only the case q > 1. A similar analysis could be
madc for g < !, but this case is not as intrinsically important as the q> 1

casce, lfg< 1, we setq =1,
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LABORATOY OFERATIONS

The Labdoratory Operations of The Acrospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of ecientific advances to new military concepte and systeme. Ver-
satility and flexibility have been Jeveloped to a high degree by the laboratory
pereonnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel-
opmente ie vital to the iccomplishment of taske related to these problems. The
laboratories that contribute to this research are:

Aerophysice Laborz*nrv: ' gunch and reentry aerodynamics, heat trane-

fer, reentry physics, chemical kinetice, etructural mechanice, fiig*t dynamics,
atmoepheric pollution, and high-power gae lasers.

Chemietry and Phyesics Laboritory: Atmospheric resctions and atmos-
pheric optics, chemical reactions in pol(utcd atmospheres, chemical reactions
of excited species ii. rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and eurface phenomena, photo-
sensitive materiale and sensors, high precision laser renging, and the appli-
cation of physics and chemistry to probleme of law enforcement and biomedicine,

Electronice Research Laboratory: Electromagnetic theory, devices, arnd
propagation phenomena, including plasma electromagnetics; quantum electronics,
lasere, and electro- sptics, communication eclences, applied electronics, semi-
conducting, s.per-onducting, and cryetal device physics, optical and acoustical
imaging: atmospheric pollution; millimeter wave and far-infrared technology.

Materiale Sciences Caboratory: Development of new materials, metal
matrix compnsites and new forms oi carbon; ‘est and evaluation of graphite
and ceramice in reentry; spacecraft materiale and electronic components :n
nuclezr weapons environment. application of fracture mechanics to stress cor-
rosic, and fatigue-induced fractures in etructural metals.

Space Sciences Laboratory: Atmoepheric and ionospheric phyeoics, radia-
tio: from the atmoephere, density and compoeition of the atmoephere, aurorae
and airglow; magnetospheric physics, cosmic raye, gen:rativun and propagation
of plasma weves in the magnetosphere. solar physics, studies of solar magnetic
fielde:. space astronomy, x-Tsy astronomy; the ¢ffects of nu« lear explosions,
nagnetic storms, and solar sctivity on the earti's atmosphere, ionosphere, . d
magnetosphere; the effects of optical, electromagnetic, snd particulate radia-
tions in space on epace systeine.

THE AEROSPACE CORPORATION
El Segundc Califorma
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