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1. INTRODUCTION
Radio frequency signals propagated beyond the horizon may be diffracted
by obstacles, or scattered by the troposphere. In the case of diffraction
transmission, variation in the atmospheric index of refraction causes the
apparent antenna beam to bend up or down resulting in reduced received
signals and fadeouts. For tropospheric scatter transmission, variations

in the atmospheric index of refraction give rise to variations in the

angle of arrival of the signal at the receiving antenna which’ results in
signal fading. This reduces the average received power and creates
outages, deteriorating system reliability and performance.

Requirements in the Future Digital Network (FDN) call for improvement
of the Defense Communications System (DCS) troposcatter and diffraction
links to provide reliable wideband digital communication capabilities.
The requirements on bit error rates (BER) vary from 1 X 107° to § X 10~
depending on path length and desired availability.

The Defense Communications Agency (DCA) in its Systems Improvement
Plan (SIP 1-75) tasked the Army to develop an adaptive antenna control
technique to combat the fading caused by changes in the index of refraction
(as discussed above). A letter of agreement (LOA) to implement the Army's
accomplishing the task was signed by the Army Materiel Command (AMC)*
and the Army Communications Command (ACC) on 19 June 1975. The Communi-
cations Systems Agency, a joint AMC-ACC organization, then tasked AMC's
Electronics Command (ECOM) to perform the engineering effort on this
program.

A. Program Objectives: The objectives of this program are to:

(1) Investigate the feasibility of an adaptive antenna control (AAC)
system;

(2) Determine the optimum technique to accomplish AAC; and

(3) Implement and test a prototype of this technique on the RADC
troposcatter test bed in upstate New York.

B. Program Parameters/Constraints: Since the AAC is being designed
for operational equipment in the DCS5, the following parameters/constraints
are involved:

(1) Structural modifications will be limited to the feed system;
the dish itself will not be altered;

*?ubsequintly renamed Army Materiel Development and Readiness Command
DARCOM
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(2) A minimum performance improvement equivalent to one order of
iversity must be attained;

(3) The system will operate on links with the following characteristics:
a. antenna reflector diameter to 60 feet, feedhorns at the focal point,
b. transmission frequencies from 600 MHz to 5.0 GHz,

c. smooth earth path lengths from approximately 100 to 320 nautical
‘4. antenna beamwidths (at 3 dB points) from approximately 0.4° to

e. FDM/FM or digital signal processing,

f. bandwidths to 15 MHz,

m

transmitted RF power to 10 KW.

ADVANTAGES OF AN AUTOMATIC ANTENNA CONTROL SYSTEM

A

A. Technological Standpoint:

An AAC system will increase the time availability of the communication
link. This will be accomplished by the ability of the antenna to adapt
ite maximum response to the direction of the maximum received signal power.

As a result, the receiver signal to noise ratio will be increased and
error rates subsequently decreased.

Moreover, the AAC system possesses the advantage of having the option
to combine with space and/or frequency diversity techniques to achieve
even higher quality of performance.

B. Economic Standpoint:

The AAC system would not require any major overhaul of existing
systems. 1t is much less complex and expensive than a system employing
space diversity in which two or more receiving antennas are used. The
required frequency spectrum occupancy is much smaller than that for a
frequency diversity system.
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s 3. FEASIBILITY OF AN AUTOMATIC. ANTENNA CONTROL SYSTEM
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In July 1972, the U.S. Army ran a mechanical beam steering experiment
on the DCA Schwartzwald-Savona radio link in Europe. During the experi-

E ment, the transmitting and receiving antenna feedhorns were steered

L mechanically in both the vertical and horizontal planes through a manual

; remote control arrangement. It was found that by steering the feedhorn(s),

. the average received signal power could be increased, thereby reducing

propagation outages due to severe fading. An average signal level
improvement of approximately 3 dB was obtained.

Research and experimental works by Watermanl showed that a narrow
beam could be swung in quick succession through a limited angular sector
by fast control of phasing, and the use of a broadside phased array.

Phase and amplitude response patterns were obtained, and used to determine

the direction in which the received signal level was maximum®s3. With 2

state-of-the-art technology, it is feasible to automatically adapt antenna '
£ beam direction to the changes in the received signal angle of arrival.

An alternative to spatial movement of an antenna beam is a system
which employs angle diversity techniques. It has been demonstrated by
Monsenh as being capable of achieving performance compgrable with that of
space or frequency diversity. Experiments by Surenian”’ also indicated
that angle diversity is comparable to space diversity in performance
capabilities.

L. DESCRIPTION OF TECHNIQUES

The central problem is to adapt the antenna response to accommodate
a changing transmission path for the transmitted signal. Conceptually,
this can be accomplished by either fixing the direction of the transmitting
antenna beam and adaptively adjusting the receiving antenna beam or by
allowing the freedom for both transmitting and receiving antennae to
determine optimum alignment. The adaptive control can be either the
spatial movement of an antenna beam(s), or selecting/combining signals
using diversity-type techniques. The individual choices are discussed
in succeeding paragraphs.

A. Beam Steering Methods: i j:

(1) Electronic Beam Steering: If the antenna beam is to be spatially
steered, it is feasible to accomplish this via purely electronic means.
One possible implementation would be the appropriate phasing of a multi-
feedhorn system. The number of horns, their positioning, and the range of
phasing would depend on the range of beam deviation required.
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common volume, and diversity combining the various signals. One way to
implement this is the use of multiple feed horns in a dish, arranged to
produce multiple antenna lobes. This technique is commonly called angle
diversity. To implement angle diversity on diffraction mode paths, it
must be shown that multiple paths, with relatively uncorrelated fading
characteristics, exist.

C. System Modes:

(1) Open-loop Control: For the open-loop configuration, with either
electronic or mechanical beam steering, optimal performance is achieved
by adaptively controlling the receiving antenna beam(s) based on received
signal statistics.

(2) Closed-loop Control: As the name implies, the control informa-
tion loop is completed by giving each terminal access to the results
observed by both terminals when an adaptive change is made. The control
channel must be made as reliable as possible, and designed such that a
temporary signal degradation would not cause an interruption due to the
need to re-establish the control loop.

The amount of feedback data that the control channel must carry will
determine whether or not the present orderwire channels can be used for
the purpose. Some type of data processing will be necessary to convert
feedback data to antenna beam control information. To a degree, the
round trip delay time, between antenna action and feedback reaction will
determine the feasibility and effectiveness of closed loop techniques.

D. System Configurations:

(1) Steerable Single Beam: Operationally, a single antenna beam is
steered in the direction of maximum received signal power. Sensor equip-
ment, or incremental trial and error techniques, can be used to track the
optimal beam pointing angle.

Such a system needs no combining circuitry and is relatively simple
to implement. It can be implemented by either electronic or mechanical
steering techniques, and can be controlled either open-loop or closed-loop.

(2) Fixed Multiple Beams: A fixed multiple beam system emplovs
angle diversity techniques, as discussed in Section B. above. Care must
be taken in determining the optimal pointing angle of each beam, to
ensure that the correlation coefficients among the received signals from
the diversity channels are less than about 0.6. This is due to the
basic requirement of statistical independence among diversity channels
in order to achieve quality performance.
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rdditional receivers and combining circuitry are necessary for imple- :
menting angle diversity.* The output of each receiver, corresponding to 3
one diversity channel, is fed to the combiner. Various combining tech- '
1 nigues can be used to enhance the received signal. Among them, maximal
: ! rafio combining and equal-gain combining techniques are more popular,
s lection combining +nchnlque provides slightly lower performance.

exercised in 1mo ementing the combining to avoid introducing
digital traffic.

Beams: A steerable multiple beam system
> trol and angle diversity techniques. The
¥ am must be appropriately determined, and be suc X
ser icient between the signals of any two beams be _—
1lticle sensor equipments are needed to scan through predetermined
ar secters corresponding to the diversity channels. The optimal
ingd angle of each beam could be determined by a data processor.
3eam steering may be accomplished by either electronic or mechanical
B ]
) meails.
3 Similar ty, multiple receivers are used$ and the
t s are ner for signal enhancement.
b, - ¥ steerable multiple beam system can achieve better
ﬂ cerformance than either a single steerable beam or a multiple fixed beam
", COMPARISON OF TECHNIQUES AND TRADEOFFS
£ lechanical: Solid state technology offers a very
of electronic techniques. It avoids mechanical
v rlies an inherent reliability advantage. The
3 respcnse, since no mecha 1cal inertia is involved, is many times faster,
. leaving 14 estion as to its ability to track the variations in the
sngls oFf ar £ 1 strongest signal. Components likely to need
nce or repair are more conveniently located.
| scnarica “eering is not without advantages, however. It has been
- wrlerented -r -verational eircuits and has shown an improvement in i
3 renet e ‘ema. _evel. There is no problem in proportioning high trans- ’
mitter pover (up to 10 kw) between/among feed horns, nor in physical
©lzcemen®t of rulti-horn arrays. Disadvantages inciude bending/flexing of g
avegnide ©o allow mechanical motion, and the inability to follow angle
‘e cnances in a tine frame shorter than seconds.
"irn~ 2 Zr:z'-detection system is used. Other circuitry would be
ary for a predetection technique.
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B. Open-loop vs. Closed~loop Control: Open-loop control systems are
simpler, and more economical to implement than closed-lcop systems. A
major advantage for closed loop control is that the results of transmitter
antenna beam movements are available back at the transmitting terminal
via the closed loop control channel. This is particularly important for
a mechanical beam steering system since it is prcbable that the trans-
mitting and receiving antenna horn(s) may physically move together. In
an open loop system, it must not be assumed that the optimum orientation
for both transmit and. receive beams is coincident. Transmit and receive
frequencies are normally well separated to insure that the high power of
the transmitter does not disable its co-located receiver. It must be
established that this frequency separation does not disrupt an assumption
of coincident ray paths before coincident movement of transmit and receive
beams is accepted.

It is possible that a mechanical or electronic beam steering open loop
control system could experience excessive hunting. If one terminal
realigns its feed horn structure to change its angle of arrival, it also
changes its transmit angle (angle of launch). The distant terminal would
notice a change in its angle of arrival due to the changed transmit angle
at the original terminal. A realignment by the distant terminal could
set up a hunting sequence. This type of hunting could be prevented in a
properly instrumented closed-loop system wherein actions of each terminal
are known by its partner.

Round-trip delay time, which can be in the order of 3 milliseconds
(depending on path length, path geometry, and processing speed, etc.)
is a factor to be considered in closed-loop control systems. It is to be
determined whether delays of this order are significant. This in turn
depends on how fast a fade rate the system will be designed to follow.

An obvious advantage of open-loop control is that it does not require
a channel to send feedback information. This requirement is simplified
for a closed-~loop system if existing orderwire channels can be used, while
still satisfying the reliability criteria.

The potential gain in circuit reliability for closed-loop control
must be weighed against the advantages of a simplified system for the
open-loop control.

C. Steerable Single Beam vs. Fixed Multiple Beams vs. Steerable
Multiple Beams: A steerable single beam receiver offers the advantage of
adaptive control, which maximizes the average received signal strength.
Closed-loop control can be employed to further improve system performance.
The need for a sensor equipment is offset by the fact that no combining
circuitry is necessary. Choices for critical system parameters such as
the scan rate for the sensor equipment and the decision criterion for
beam movement, determine the maximum utility of the system.
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A fixed multiple beam receiver employs r“gle liversity techniques,

. has been shown to approach those of space and frequency
Y hniq 4, No sensor equipment is needed, but extra receivers
d/or combining circuitry must be implemented. Proper choice of beam
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C. System Configuration Comparison:

(1) Steerable single beam system: The complexity and cost of a
steerable single beam system will vary according to its implementation.
Some type of information processing capability will be necessary, but
there is a choice, for example, between a scanning type sensor system
and a trial-and-error approach. There is sufficient flexibility such
that a well considered design could make the steerable single beam system
atiractive from both a cost and performance standpoint.

(2) Fixed multiple beam system: The fixed multiple beam system will
probably be the closest rival to the steerable single beam system. The
sensor system or trial-and-error technique would be replaced by an
adaptation of well proven angle diversity techniques. Due consideration ;
must be taken in the initial setup since the receiving lobes are fixed. «
Considering the fact that this technique has been shown experimentally 4
to approach the performance of space or frequency diversity, the system '
promises to be competitive in performance with steerable single beam
systems.

(3) Steerable multiple beam system: A steerable multiple beam system
is more expensive to implement than either a steerable single beam or
fixed multiple beam system, and would include all the necessary equip-
ments for the other two configurations. The processor must have an
algorithm able to follow fast (less than 1 second) fades. The added
improvement for most links would probably not justify its cost and
complexity.

7. POTENTIAL PROBLEMS

Many technical problems are expected in implementing an AAC system.
The following are significant and probable examples:

A. Suboptimal threshold level for a decision to implement a beam
movement cycle: When the threshold level is too high, oscillation of
antenna beam position may occur; if it is too low, little or no adaptive
control is accomplished.

B. Slow response time: System performance would be deteriorated if
- the antenna beam is not adapted to the desired or optimal pointing angle
within a reasonably short instance of time, after control action is
initiated. This may be due to hardware limitations and characterized by
large overshoots.

C. Phase variations: Due to the differences in propagation path
length, phase variations among signals from the diversity channels may
deteriorate a system employing multiple beams.
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C. There are several possible approaches, applicable to DCA antennas
(dishes up to 60 ft. in diameter, with feedhorns at the focal point):

(1) mechanical techniques wherein feedhorns at/near the focal point
are physically displaced,

(2) electronic techniques, wherein physical feedhorn movement is
replaced by beam steering via phase array techniques,

(3) angle diversity wherein an antenna has two or more fixed main
beams whose responses are diversity combined.

D. In designing an adaptive antenna control system, tradeoffs are
possible, for example, closed loop vs. open loop control.

(1) Open loop control systems are less complex, and more economical
to implement and maintain, however they are effective only in correcting

receiver antenna response, whereas,

(2) Closed loop control can effectively adjust a transmitting antenna
beam since it is aware of the effect on the receiving antenna of the
adjustment. It is, however, more expensive and complex, and requires a
highly reliable data channel.

E. Several potential problems suggest themselves and some are
dependant on the particular approach. Potential problem areas include:

(1) a proper choice of a decision threshold,
(2) an adequate system response time,

(3) the phase variations among multipath signals (for high data rate
transmissionsg, and

(L) the handling of feedback information.

9. RECOMMENDATIONS

It is recommended that a study be initiated to determine the feasi-
bility of adaptively controlling the resvonse of troposcatter and
diffraction mode antennas, and to determine the optimum adaptive control

technique.
Method: An effort should be initiated to:

(1) determine the optimum approach and orepare a design plan for
a prototype of its hardware implementation, and

P
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(2) vprove its feasibility and determine its advantage by fabricating
and laboratory testing the prototype. This would be followed by install-
ing it on equipment in a test bed, to determine its advantage over a
parallel uncontrolled circuit.
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