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~~ ALTERNATE APPROACH TO OPTIMUM
BEARING ESTIMATION

• INTRODUCTION

The optimum passive bearing estimation problem is examined in thisreport from a “k -. ~ space” point of view. (The two-dimensional Fourier trans-form of the acoustic field in the space-time apertur e generates the energydistribution in the k-~ domain. ) Since the representation of the acoustic fieldin k- c~space has proved useful in a number of applications and since recentsonar systems essentially generate a sampled function of the energy distribu-tion in k-w space, this viewpoint is expected to provide additional insight intothe processing required for optimum bearing estimat ion.

In particular, guided by an intermediate result of MacDonald andSchuitheissi and a result by Bouvier and Ianniello, 2 it is postulated that themaximum likeithood estimator (MLE) merely determines an estimate of the• location of the primary peaks of the energy distribution in k- w space and com-bines these estimates , through a linear combination, to arrive at an overall“best ” estimate of the target bearing. This postulate is examined in this report ,and the performance of such an estimator Is compared with the Cramer-Rao lowerbound under the same conditions assumed by MacDonald and Schultheiss.

PRELIMINARIES

Consider a finite , one-dimensj on~l array to be described by aneffective sensor density p(x), where p(x ) includes the effe ct of sensor locationand sensor shading and is considered to be zero for values ofixi > L/2 , whereL is the total length of the array. In practice , p(x ) is usually discrete, but• mathematically it may be treated as a continuous fun ction of x multiplied by anappropriate sampling function . If h(x , t) represents the acoustic field at anypoint x and time t , then the output from a conventional time delay beamformersteered to an angle 0 with respect to broadside is

b (~~, t) = 1 dx h(x , t+~~x)p(x), (1)
-

~~~ sin o 
-

~~~where ~ —b-— and c is the speed of Sound in the medium.
Furthermore , consider that this beam output is spectru m analyzedover a sliding temporal window of duration T. The spectrum analyzed beamoutput is then described byI

1~~~~~~~~F•
- —.~~~~~--------

------ . - --5..

- - 
- -
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t’ +T/2
B = l/T f dtb ( , ~ , t) e~~

2
~ 

~~~. (2)
t ’ - T/2

Substituting (1) Into (2) and assumingt that T) > L/c yields

B = l / T fJ dxdt h(x , t) p(x) ~~(~~t-~)e
_i2

~1ft e i2 ir f~ x 
(3)

where ii is the familiar rectangle function centered about t’ and of unit
height and duration T.

For comparison purposes , the direct two-dimensional Fourier trans-
form of the acoustic field h(x ,t), as seen through a spatial aperture described

by p(x) and a temporal aperture described by 1/T U (t ~~ ,~~ is

8 = 1/T ff dx dt h(x , t) p(x ) ~ 
(t-t’) 

e
_ i2 hT ft e _ i 2 T r f~x

(4)

which represents the acoustic field In k-co space , that Is , at a temporal
frequency co = 2 ir f and a spatial frequency k = w = 

U Sill 
~ • Comparison of

(3) and (4) shows that B(k , co )  8 (-k, w ) .  Thus , spectrum analyzing the •1
various beams will generate the acoustic field in k-co space, which merely
reaffirms the fact that time delay beamforming is equivalent to performing a
spatial Fourier transform.

.

In practice , (3) must be modified by an appropriate sampling fun ction
since beams are formed only at discrete values of E and are spectrally
analyzed only at discrete temporal frequencies. For the initial analysis, - -

however , the spectrum analyzed beam output B (~~, f) is considered to be a
continuous function of ~ and f. Appropriate modifications are made later.

In general , the acoustic field h(x , t) will consist of a signal and
noise component. If the signal is a plane wave arriving at an angle O0with
respect to the normal of the x-axis, as shown in figure 1, h(x , t) may be
expressed as

h (x, t) = s (t—~0x) + n (x, t),

where 
~~,

= Thus, provided the noise exhibits no spatial structure, the -
~~~

tThis assumption implies that the observation time T is much greater than 0

the travel time of the signal wavefront across the array . - •

2 1 :  
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acoustic energy distribution y( ~ , f) = I B( ~~ ~ 
2 will exhibit a distinct

maximum when ~ = 
~ o.  In accordance with the postulate mentioned earlier ,

it is desired to obtain the mean and variance of the estimate 
~ 

at which
y is a maximum.

ARRAY NORMAL / INCIDENT SIGNAL WAVE

S ENSOR LO CA TI ON
S S S U

Figur e 1. Array Geometry

MEAN AND VARIANCE OF ESTIMATING THE LOCATION OF THE
GLOBAL PEAK OF ENERGY DISTRIBUTION IN k-w SPACE

Consider the spectrum analyzed beam output B (~~, f), as given by
(3), to be a continuous function of and f. As shown in figure 2 , the proposed
processor searches for the global peak of the square of the magnitude of B.

_ _ _  _ _ _ _ _  A
B(~,I) F ~

] y (
~,f) SEAR CH 1)-I I t I ~~ FOR I

~~I J j  PEAK

Figur e 1. Proposed Processing Scheme

-
• Accordingly, at a given temporal frequency f , the value of ~ ~~~~~ 

at which y is
a peak is considered to be an estimate of the target location. The mean and
variance of this estimate are given by

var 
A 

= 
var ~~~ 2 E ~ 

) = - 
E ~y ’)

(to ) aE (y ’) ‘~~~° o ÔE (y ’)
a 4  ~ =~~o ~=~ o 

- •

‘ where y’ = —
~
--y (~~, f). Since taking the expectation is a linear operation , it

aE ’ “may readily be shown that ‘~~ ‘ = E (y “), so that the above relations
become

3

-— • . ~~---— - - - - - - ~~~~~~~~~~~ --~-— —.~~---- - - — -
~~~~ ---• -
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var (~~) = 
E 

B2 3r~~ 
(co) = - 

~~~ ~~~~~~~ ~~~~~~~~~~ .(6)

The various expectations required above shall be computed under the following
assumptions:

1. Signal and noise are spatially homogeneous and temporally
stationary, zero mean, independent Gaussian processes.

- 2. The observation time T is large with respect to the travel time of
the signal wavefront across the array.

3. The signal wavefront may be regarded as a plane wave.

Later assumptions shall include:

4. The noise is spatially incoherent and uniform.

5. The effect ive sensor density is discrete and uniform (no shading).

6. The observation time is large with respect to the signal and noise - 
-correlation times. 

* , - -~

Throughout this analysis, one will require the crosscorrelation
between two separate points in the space-time aperture. The assumption of
spatial homogeneity and temporal stationarity allows this correlation to be
expressed as a function of spatial and temporal differences; that is ,

E [h (x.1, t1) h (x2, t2)] 
= Rh (x, r (7)

where x = x1 
- x

2 
and r = t

1 - t2
.

Assumption 3 allows the further simplification: - - -

Rh (x,r )  = R (r-~0x) + R~ (x, r), (8)

F’ where R
5 

and R~ are the signal and noise correlation functions, respectively. S

Notice that R5 depends only on the difference (T - 
~~ 

x). Finally, assumption
- 

I 
4 (uncorrelated noise) allows Rh (x, T ) to be expressed as

Rh(x,r) = R5 (r-~ x) +6(x)R (-r), (9)

S 
.

5-
4 —

___ -5 - - -— —-- — - -~~~~~~~~~~ • — - -S- - - —  - ----- S 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - •- - ~~~~~~~~~~~~~~~
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r
where ô(x) is the Impulse function and R (T) refers to the noise autocorrela-
tion function at each sensor. -

The derivation of the expectations required in equation (6), which is
relatively straightforward but tedious, is presented in appendix A. The results
are quite general—being subject only to the first two assumptions listed above.
In particular, it is shown that, provided f >  l/T , the expectation and variance
of~~~~is

ff dxd’r~~(p * p) (iwx)
E (

~& = ~~~
— - 

(10)

— 

If  dxdTØ(.p *P )  ( iwx) 2 
~~~

2 2— co2 [ffdxd ~rO(p * p) x ]

•{ 2 Re[Iffc1xd r~~ ( p *x p ) (  
2 

-2 (ffdxdrO(p * ~p) )2  (11)

+11 dxdrØ(p * p) J J dxdrØ(xp * xp)] - ( if  dxdrØx (p * p)) } , 
- 

-
~

where

0= )(x,r )~~ Rh(x ,T )  A (T / T ) e 1C
~

T
e~~~~

X (12)

A(r /T ) = { 1- ~rI/T rI< T 
(Triangle Function)

otherwise

Re ( ) denotes the real part of (

* denotes correlation ; c. g., g (x) * u(x) = fg(t) u(x + t) dt

T = observation time

Rh (x,r )  = E [h(~~, t1
) h(x

1 
- x, t

1 
- T )]  = crosscorrelation

between the acoustic field at two separate points in the space-
time aperture.

The integrals are to be evaluated at the value of ~ corresponding to S

- - the true target bearing % and , unless otherwise noted , a 11 integrations are
from -~~to+~~.

These expressions show the effect of an arbitrary spatial weighting
— ~~

- function p(x) on estimating the location of the peak of the energy distribution 
Sat a given temporal frequency f ) 1 /T As Indicated m appendix A, the

5 

—-—- S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •— —-~~~ —S5-—-- — -—-- S - --—S-- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ___SS.___ - S _S__. ___
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expressions may also be modified to include any arbitrary temporal weighting - :

function w ( - r ) by simply replacing A(T/ T ) in (12) by l/T [w( r )  * w( ir )]and restricting temporal frequencies to those greater than the width of the
corresponding spectral window.

To gain further insight into the performance of this estimator , it
shall now be assumed that the signal is a plane wave and that the noise isspatially uncorrelated and uniform. As shown in appendix B, these assump-
tions allow each double integral in (10) and (11) to be expressed as a sum of the
product of two single integrals. Furthermore, the estimator becomes unbiasedsince, under these conditIons ,

ffdxdrØ(p * p) x = 0.
~~~~~

The result, as obtained from appendix B, is that E (~~) = ~0and

I’ 
1

var (E )= 
2o 

~2 [1 ~2 (p * p) dx] (13){ N/S [21 pdx I x2 (p * p
2) dx - f p2dx f x2 (p * p) dx] 

S

f x2 (p2 p2) dx }, 
*

— where •1
S = S(f) = f dc~G (o ) sinc2 T (f -o) = G (f) * sinc~ Tf

N = N (f) = f da G (0) sine2 
T (f-os) = G (f)* sine

2 Tf

G (f) is the signal spectral density

G (f) is the noise spectral density .

Note that one may regard S(f) and N(f ) as being the signal and noisek power , respectively, within the analysis band whi ch is centered on frequency f.

Thus far , no particular restriction has been placed on the sensor• density p(x) . However , the uncorrelated noise condition (which has been
applied) is rather unrealistic unless p(x)~ is discrete. If it is further assumedthat p(x ) is uniform (no shading), then p’ In (13) may be replaced by p. The
variance then reduces to

var (~ ~ 
= 

2 2 1~~~
8)!pth + (N/S) 2] . (14)

~ {f x  ~p *p )  dx] . -~~

6
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Mathematically, a uniform, discrete array consisting of M sensors may be
described by a density

M
p (x) = 6 (x-.x.), (15)

J=l J
where 6(x) is the impulse function and x . is the coordinate of the jth sensor.

Substituting (15) into (14) yields

var (~~) = 
M M [M (N/S) + (N/S)2 ] .  (16)

~~ ~~i 
(x

3 
- X )

2

This expression represents the uncertainty , under the first five
assumptions listed previously, of locating the global peak of the energy dis-
tribution in k- co space at a single temporal frequency co. Since = Sin Oo, . - -

C
it may readily be shown that

2
/CoSO o\ (17)

var (~ ) ~( ) var ( 
~~ 

),
° \ c /  °

where is the estimate of the signal bearing angle with respect to broadside. - I
Thus , the variance of ~ is

/ c \
2 [M (N/S) + (N/S 2

] (18)
var ( 00) =

~
— ) —

~~~~~~ 
.

\w cos E)0/ M M 
2~~~~~ 

(Xj
_ X

r)

j=l r=1

In these expressions, notice that the effect of the signal and noise
spectrum is included through the relationships -

S (1) = G (f) * sine
2 
Tf (19)

N (f) = G~ (f) * sine 2 Tf ~.

- - 
In particular, if the observation time is large with respect to the signal and
noIse correlation times (assumption ( ) ,  that is, if G and G are broad with

respect to sine2 Tf , then S (fl I /T G
5 

(~ and N(~ ~~1 IT G (f). ~~bstitutthg

I~ ~~~~ r~~—’—-- — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~



- ~~~ -
— S -‘ - - - ~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~

TR 5439

these spectral densities into (18) and comparing the result with expression (16)

S of MacDonald and Schultheiss1 shows that the two expressions are equivalent
at a single temporal frequency. Therefore , at a single temporal frequency,
the procedure of forming an infinite number of beams and searching for the
peak of the energy distribution is optimum in the sense that the uncertainty of
this estimate is equal to the Cramer-Rao lower bound (CRLB).

The question of combining the bearing estimates obtained at other
temporal frequencies shall now be discussed. For this purpose , assume that
each of the beams is spectrum analyzed according to (2) at evenly spaced ,
discrete frequencies f = n/T with n = 1, 2 , 3, * * . , N 0. The reason for

this choice is that if the temporal periodicity of the acoustic field is matched
to the observation time T, then the minimum samplin g interval required to
properly describe the acoustic field is l/T .

Consider now that the peak of the energy distribution is estimated at
each temporal frequency I .  According to the previous analysis, each estimate

A . - - sin e
~ may be considered a random variable whose mean is and
n 0 C

whose variance a 2 is given by (16) with f replaced by I . Furthermore, if T
n *

is large with respect to the signal and noise correlation times, it is reasonable
to assume that each estimate (~ ) is statistically independent.

A natural scheme for combining these estimates is to form a new
random variable 

~eq. ’ which consists of a linear combination of ~~~; that is , - 
-

let N

eq. 
~~~ 

a n ~n ‘ (20)

where N0 represents the number of independent estimates available and a~ is

a weighting factor. Under the constraint that the mean of 
~eq. also be equal

to ~ and that its variance be a minimum , it may be shown that ~ should be
eq.

formed according to

N A

Eeq. No 2 
Z 1 1/at ~~ (21)

n=l

and that the variance of t~ i~eq.

8 -•

h~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~ ~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S
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var (~~~~) = 
1 

(22)

Relation (21) shows that each estimate 
~ 

should be weighted by the inverse of

its variance a~~ . Referring to (16), this implies that estimates having a

large ratio,

2 2

2 
—a--- (S/N) for S/N >> 1/M 23

M (N/S) + (N/S) 
M (

should be weighted more heavily.

Substituting (16) into (22) and using (17) and the fact that S ( I )  ~ l/T
G (f ) and N (f ) l/T  G (f ), one obtainsS n  n fl n

(24)
2 N 2 2 i -

(C0S 6~
, 

M M 0 G (co )/G (~ ) -

2 2 S fl n ii

- 

- 
var 

~°eq) c2 j=l ~=i 
(X j _X

~~) 

n=1 
~~~ 1 + M Gs[(wn)/Gn ~~~~ 

‘

where 0eq 
is the best estimate of the target bearing

co - 2 i r f -
~~
-

~~
-

~~
- n = l , 2, 3, ... , N

S 
= the highest frequency processed.

S The above expression is identical to the CRLB derived by MacDonald S

and Schultheissl (their equation 16) and agrees with Carter3 when M=2. It
follows that , under the six conditions listed earlier , the CRLB can be achieved -

; by a processor that estimates the angle 0 of the peak of the energy distribu-
tion In k-~ space at each processed frequency f~ n/T, n = 1, 2 , . . . , N

S and obtains a weighted sum of the N 0 bearing estimates. The particular
weighting to be used in the averaging is proportional to the inverse of the
uncertainty associated with each estimate. 

S

- 
- Thus far it has been assumed that a continuous beamformer is avail-

- 

- 
- 

able for estimating 
~~~

. Obviously , in practice , only a finite discrete number

9 

-~~ ---—-— -~~~
S-— -~~~~~~~~~~~~~ - -~~~~~~~- - --- - - - - -- --—---
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of beams can be formed. This dilemma leads directly into the classical inter-
polation problem. One practical solution is to form a “large number” of beams
and to use a simple interpolation scheme, such as 3-point Interpolation , in
order to estimate the location of the global peak. Since the beam pattern is
known, another approach Is to croascorrelate the finite number of spectrum
analyzed beam outputs with the amplitude pattern of the sensor density. This
crosscorrelation must be performed at each processed temporal frequency
and must precede the squaring operation shown in figure 2. Obviously, the
amount of processing required is quite extensive, but it is possible to corn-
pletely recover the continuous beam output if the original , finite beams are
formed at the Nyquist rate.

The interpolation problem serves to highlight the fact that the CRLB
can only be approached by any practical estimator.

APPLICATION OF BEARIN G ESTIMATION SCHEME TO
RECENT SONAR SYSTEMS

The “k- ~,. space” concept has led to an alternate processing scheme -

which, under the condition of a broad signal spectrum, is capable of achieving
the CRLB. In view of the large amount of required processing and the fact
that existing split-beam correlators are nearly optimum , this processing
scheme is not recommended for the sole purpose of estimating the bearing of
a broadband signal. However, the technique is quite attractive for recent - -

sonar systems, particularly since the input quantities required for this
estimator, e.g., spectrum analyzed beam outputs , are already available.

When the signal spectrum becomes more impulsive (that is , when
one can no longer assume that the observation time T is large with respect
to the signal autocorrel~tlon time), (16) and (19) show (with f replaced by

that the variance of~ becomes unduly large, because of the reduced
signal-to-noise ratic~ unless the processing frequency f is aligned on the
particular signal tonal frequency f .  Hence , additional frequency tracking is
required. This leads directly to the concept that bearing estimatIon is
actually a two-dimensional search (in k and w )  for the primary peaks of the 

- 
-

energy distribution. If the temporal frequency rate is sufficiently high , this
— frequency tracking may take the form of simple interpolation between fre-

quency bins. Notice that the variance of the resultant bearing estimate 
~ 

at
the nominal frequency f~ should correspond to that obtained by DIFAR *_like 

— 
- 

-

automatic target followers (ATF) operatingon a single signaltonal frequency.
A s before, if the fr equency 1n associa ted with each estimate is sufficiently - - - 

-
-

separated so that the 
~~ 

are independent, the estimates may be combined
“ across frequency, ” I n the manner indicated by (21), to obtain an

DIrection Finding And Hanging.

10
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overall “best” estimate whose variance is given by (22), where now N0
represents the number of independent estimates.

From the previous comments, it is clear that the estimator is also
attractive from the viewpoint of replacing the conventional DIFAR—like ATT’

— because

1. The estimator operates in an open loop and is not afflicted by
the acquisition and gate widths associated with closed loop
trackers.

2. The estimation scheme comhines bear ing estimates obtained
from multiple tonal fr equencies. The estimator is therefore
more immune to fading tonals than is the conventional ATF.

3. The tracking threshold equals the detection threshold since the
estimation scheme merely locates the peak (in frequency and
bearing) of detected tonals.

The effects of multiple targets and frequency and bearing dynamics
have,thus far , been purposely avoided. It is clear , however , that although
the basic bearing estimation procedure remains the sameA the effects give S

rise to a sorting problem. Before the various estimates 
~~ 

(o r  e~) can be

combined “across frequency, ” one must ensure that they are, in fact , from
the same target.

CONCLU SIONS

S It has been shown that the processing scheme suitable for estimating
the bearing of a plane wave in spatially incoherent noise is one that locates and
linearly combines the estimates of each global peak of the energy distribution
in k— ~ space. For sonar systems that spectrum analyze each of a finite num-
ber of preformed beams , this amounts to estimating, at each processed
fr equency, the value of sin 0 at which the magnitude squared of the beam
outputs is a maximum. These estimates may then he combined by forming a
weighted average where the weighting Is proportional to the inverse of the
uncertainty associated with each estimate. it has been shown that , for broad S

signal spectra , such an estimator is capable of achieving the Cramer-Rao
lower bound and is , therefore , optimum.

S 

For impulse signal spectra , although a similar procedure Is indicated, S

an analytical expression for the variance of the overall estimate is difficult I ~ -
-

to obtain — partly because of the unknown statistics of adjacent spectral I - 

—

estimates.
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Even for general use with multiple targets and frequency dynamics,the bearing estimation scheme is considerably complicated by the necessarysorting problem.
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Appendi x A

DERIVATION OF THE EXPECTATIONS AND VARIANCES

In this appendix we wish to derive the expcctation and variance of the
estimated coordinate of the global peak in y = IBI 2 where B is the spectrum
analyzed beam output as expressed by (3) In the text , which is

(t—t ’)
B = B (~~, f) = l/T 1! dxdt h(x , t) p (x) II —e42 

7r f(t—~~x) - (A—i)
-

~~~~ T

For this purpose , only the following two assumptions are made: .- -

1. Signal and noise are spatially homogeneous and temporally stationary ,
zero mean , Gaussian processes. —

2. The observation time T is large with respect to the travel time of the
signal wavefront across the array . (This assumption has already been
made in expression (A-i).)

In accordance with (6) of the text , we need to evaluate the expectation
of derivatives of y as well as the expectation of (y ’) 2. The expectation of
derivatives of y may be determined In the following direct manner. From (A-i),

y = BB* = 1/T 2 f f f f  dx1dx 2 dt1dt2 h(x 1, t1) h(x2, t2) p(x.1) p(x2)

(t
1

—V)  (t
2

—t ’)  — i w (t1—t 2) ~~~ (x1—x~)
. 1 1  - I I  e e - 

, (A-2)
T T

where c.~ = 2 ir f and all integrations are from - ~~ to + ° . Now the nth deriva -
tive of y with respect to ~ is

2 (t —t ’)
~~~ = l/T ff ff dx1dx2dt

1
dt2 h(x 1, t1) h(x2, t2) p(x1) p(x2) II 1

T

(t2 —t ’) n — I w ( t
1

—t
2

) —i~.i~~(X1
X

2
)

. ~ T [i~~(x1 X2) ]  e e , (A—3)

and the expectation of the nth derivative of y is

13 
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E[y~~]= l/T
2 
ffffdx~J,~ dtth E[h(x1,t1

) h(x2,t2)]p(x1) p(x2)

(t1 t’) (t
2
—t’) h —iw(t1

—t2) 
i~~~(x1

—x 2 )

• ii ii [i~ (x1-x 2)) e e . (A-4) 
S

T T

Because of the spatial homogeneity and temporal stationarity of the acoustic
f ield h(x,t), we may write

E [h(x1,t1
) h(x

2
,t2)] 

= R
h

(x
l
_x

2I t
l
_t
2
) , (A—5)

and introduce the following integration variables In (A-4) :
S 

x = x1-x 2 in the integration over

T = ~ -t in the integration over t

Then, (A-4) becomes

(n)

S 

E [y ]= l/T2 
ffff dx, dxdt, drR ~ (x, r )  p(x1

) p(x1-x)

(t —t’) (t — T —t’)
1 1 fl — ic~ i i~~~x (A—6)

U (iwx) e e
T T

if we perform the integration over x.1 and t1 and note that

f dx1 p (x1) p(x1-x) 
= p(x) * p(x) (A-7)

and

~1 t’) (t1—t ’ — r )  
S

S I dt1 U— II = u ( T/ T)  * II ( T/T) = T A( T/T) ,
T T (A-8) S

( 1— ~r~/’j ’ IT~~T

where A( r/T)
( 0 otherwise

and that * denotes correlation , (A—6) reduces to
S~~~~~~~~~~~

;
S 

- 

-
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E[~~~)] = 1/T ffdxd T~~ (x,T) (i~~x)fl
[p(x)~~ p(x)] , (A-9)

where

R~(X ,~~) A(T/T) e
_ 1 L S Y  

e”~~ 
X (A-b )

The evaluation of E(y ’2 ) is more readily accomplished in an Indirect
manner. Thus,

y= 1B1 2 = BB*

and

tYf)2 ~~~~~~~~~ 
= (BB*’ + B*BI) 2 

= 2Re(B*B’B*B’ + BB *B ?Bf*)

where Re ( ) denotes the real part of ( ). The expectation of (y ’) 2 then
becomes

E(y’2 ) = 2 Re {E (B*B’B*Bt)  + E(BB* B 1Bt *)] . (A-li) -
~

Since the spectrum analyzed beam output B is also a zero mean Gaussian ‘5 .process , we may use the familiar “chain rule” for the expectation of four
products to obtain

E(y’2) = 2 Re{ 2 [E(B*B’)] 2 
+ [E (BB)] 

* 
E(B ’B’)

÷ E(BB*) E(B~B?*) + I E  (B B!) 12  + t E(B*B t ) 2 1 }  (A-12)

in a manner completely analogous to the derivation of E {y~~ ],it may be slx wn that

~~~~~~~~~~ = 1/T ffdxd T~ (x, r ) [(-i -~ x)5 p(x) * (l~~x)k p(x)] (A-13)

and

— i2 ~ .~t’

~ I E [B B~~~~~~~ ffci x d T .s (X , T ) [ ( i~~ X)~~ p(x) el~~~
C 
* (iwx) 1’ p(x) e~~~~C] ,

T. 
(A-14)

S where
- .s (X, r )  R h (x , -r )  I~k( r/T ) sine 2f (T— IT I) (A—15)

~~ A~~~~~~~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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sinc Q sini~Q I
iiQ

~~~ = kth derivative of B with respect to ~~~.

Expressions (A-13) and (A-14) allow the evaluation of each of the
expectations in (A-12). For example, E(B’B’*) is obtained from (A-13) with
n=k=1 and E(BB’) is obtained from (A-14) with k=U , n=1. The complete ex-
pression for E(y’2 ), In shorthand notation, is

2
— 2w

E(y’
2) = — ~~~ Re{~Jf dxd T P (p *xp )~ 

2

T

- II dxd r L;J pe~~~x 
* x p e~ ~ 

f X~ 2

~// dxd i- 4> (p~~~p) f/ dx dT c~(xp~~~xp) (A-16)

-iw ~~X -Lax p iw~ x i~~~x S

- f ./ dxd T ~ (pe * pe - )j/dxd r ~‘(xpe * xpe

~~2~f JdxdT~~(p~~~xp)]  2}

This relationship may be simplified considerably via the following
argument. The second term of (A-16) may be expressed as

~JfdxdT ~~~~~~~~ pe
12
~~~

C 
* xp)I 

2

Then using (A-15) and (A-b ), this may be written as

i2w~ x 2(pe *xP)i
f/ dxdT d(P * xp) le ‘~ sinc 2f (T— IT! ) j

S 
(p*xp)

Now the magnitude of the term In the brackets [ ] is always much less than
one provided f > l/T. Thus, provided we use temporal frequencies in
excess of l/T ,

~ff dxdr~~(p,~c xp) ~2 )) ~ff dxdr~~(pe’~~~’~ * xpe”~~ ’5 j 2 
U

Similarly, the third term of (A-l6) will always be much greater than the
fourth term 1f f )  l/T. Hence, under this minor restriction of temporal
frequencies , (A-16) reduces to

16
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2

- E (y ? 2 ) = 5 _
Res {~ ff d x d r 4~(p *xp ) ~~2 _ 2 [ f f t h d r c f , p *xp ) ] 2

T 
(A—17)

+Jf dxdr 4) ( p *p ) .JJ dxdrd ?( ~p~~ xp) },

and from (A-9),

E(y ’) = 9-fJdxdr~ x(p * p) (A-l8)

and

2
E(y !’) :~L_ffdxd r~~x

2 (p~~~p). (A-b9)
T

Finally , the substitution of (A-b7) through (A-19) into (6) of the text
leads to expressions (10) and (11) of the text .

It should be mentioned that the final results may readily be extended
to Include any arbitrary temporal weighting function w( r) . This is most easily

. . . . . . (t—t ’)accomplished by replacing the uniform weighting fun ction ~‘ T in (A-i ) by

w = ‘7(t-t’) II (J~j11. This substitution carries through to (A-b ), where
A (n T) must be replaced by l/T [ 1 7 ( r )  II ( ‘IT) * 

1 7 ( r )  II ( ‘IT)] = l/T
[w(-r ) *w(r ) ] .  Similarly , ~(r / T ) sine 2f (T— r i)  in (A—15) must be replaced
by l/T[w(r) e ’ *w(?) ~~~~~

Furthermore, the assumption in (A—16) that the contribution from
integrals involving 4i (x , r )  is negligible in comparison to the contribution

S from corresponding Integrals involving 4(x, -r) remains valid provided that f
is greater than the width of the spectral window. Thus , in most practical
situations, the only modification required to expressions (A-17) through (A-19)
is that A( r/ T ) m (A-b ) be replaced by l/T [w(’r) * w(-r)]

17/ 18
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1~~
Appendix B

SIMPLIFICATION OF THE BIAS AND
RANDOM BEARING ERROR EXPRESSIONS

In this appendix we wish to simplify expressions (A-17) through (A-19)
or (10) and (11) in the text by using the following two additional assumptions of
the text: 

5

3. The signal wavefront is a plane wave and is incident on the array at an
angle O~ with respect to the normal of the x—axis .

4. The noise is spatially uncorrelated and uniform.

These two assumptions allow us to express the crosscorrelation
between any two points in the space-time aperture as

R.~(x, -r) = R ( -r-_ 
~ 

x) + 8(x ) R (r), (B—i)

where R and R are the signal and noise autocorrelation functions , respec-
tively ; o (x ) is the familiar impulse function ; and ~~is defined as ~~~~~~~ -!~-° This
effectively uncouples each of the double integrals in (A-17 ) through (A—19)
and allows each to be expressed as the sum of the product of two single
integrals-one integration being over space and the other time. To illustrate
this, consider an integral of the form

I IJ thd r c~(x, 1) g(x), (B 2 )
• where g(x) depends on the sensor density p(x). Substituting (A-b ) and (B-i)

into (B—2) yields

i =fJ thdr ~~ ( r -  
~ 

x) A (r/T) e~~~
T 

~~~~~ g(x)

÷J/dxd i 6(x) Rn (~ ) A( T/T ) e
_ T eI

~~~
X g(x) (B-3)

Letting ,
~i 

= 
~~~~

- 

~ x in the first double integral , we obtain

+ ~0 x) —i —

I= fJdxd T
1 R5(r1) A — 

T 
e 

W 
1 

o x 
e

i
~~~

C 
g(x) (B-4)
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Now, the maximum value that x can attain is ± L/2, where L is the total
length of the array. Thus, provided T )> L/c, 

- 

S

A 

(T 1 
+ E 0 x) A(T1/T) .

T

Using

I dx8 (x) ~~~~~ g(x ) g(0)

reduces (B-4 ) to

I=fdT R (T)  A(T/T)e 1
~~ .f dx g(x)e 0)X

+ g(0) •J dTR (T) A( T/T ) e 1
~~

T. (B-5)

An equivalent expression for the above Integral in terms of the signal and
noise autospectral densities, G5(f) and G~ (f), can be obtained by noting that

1/ TJ d TR 5 ( r )  A(T/T) e 1
~~~= fdo~G5(a) sine2 T(d-f)

5 (B—6)
= G5(f) * sine 2 TI E S(f)

and

b / TJ d T R (r )  A (1/T) e~~’~~ = f do~G~ (f) sine2 T(cy -f)

2 (B— 7)
= G (f) * sinc Tf N (f) ,

where S(f) and N( 1) are the respective signal and noise power within the
processing band centered at frequency f. Using these definitions and
evaluatIng the Integral at E = 

~~~- ,  we obtain

JJdxdi~~(x, r) g(x)~~~ = T S(f)fg(x )dx + T N(f) g(0). (B-8)

Expression (B-8) may now he used to evaluate each of the double S

Integrals in (A-17) through (A—1 9) . Accordingly, one obtains (in shorthand . 
S

notation)

20
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-

-
- E~~’2)~ = 2~

2 {[sJdx (p*p) + N (p * p)0 ][SJth (xp * xp) + N (xp * xp)o] 
-

- 

- 

- [sfcix (p * xp) + N (p * xp)0] 2 (B-9)

E(yt ) I = 0 (B-b )

E(y”)~~~= -w2 sj dx x2 (p * p), (B-li) 
-

where ( denotes that the resulting function is to be evaluated at x = 0. -

The fact that E(y!) I 
~ 

= 0 implies that the estimator is unbiased under the
- assumed conditions. ° -~

In a lengthy but straightforward operation, expression (B-9) may be
S expanded and rewritten as

E(y’
2

)~ = w 2 {s~ [2! pdxfx
2 (p * p

2) dx -J p2 dxfx 2 (p * p) dx] 1
+ N 2

J x
2 (p 2 

* p2) dx }. (B-i2) 
-

Notice that the coefficients of S2 have canceled.

Finally, substitution of (B—b ) through (B-12) into (6) in the text
yields 

- -1
E ( 1 )  = 

~~, 
(estimator is unbiased) (B-13) -~~

— 

var (~~) 2 2 2 • { (N/S) [2fpcIxJx 2 (p * p
2
) dx

- ~~~[ J x  (p* p) dx ]

- fp
2
dx f x

2 (P *P) dx] + (N/s) 21x2 (p2 
* p2) dx}. (B 14)
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