AD-A031 571  NAVAL UNDERWATER SYSTEMS CENTER NEW LONDON CONN NEW =-ETC F/6 17/1
AN ALTERNATE APPROACH TO OPTIMUM BEARING ESTIMATION.(U)
SEP 76 W K FISCHER

UNCLASSIFIED NUSC-TR=5439 NL

DATE
FILMED

[ 276




| K53 mz.a 2.5
LS
el

"" TR =

‘ e I8
2 s s,

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 ~ A




| s
b g o NUSC Technical Report 5439
| & 3
| 2
&'
g 3 DDC
i 3 P20 Afg
2 NOV 3 1976

el
acht
Optimum Bearing Estimation

Wolfgang K. Fischer
Special Projects Department

27 September 1976

NUSC

NAVAL UNDERWATER SYSTEMS CENTER
Newport,Rhode island ® New London,Connecticut

Approved for public release; distribution unlimited.




SRR

PREFACE

This report was prepared under NUSC Project No.
A-750-12, "Narrow Band Bearing Tracker,” Principal
Investigator, Dr. W. K. Fischer (Code 315), Navy
Subproject No. ZR-0000101, sponsoring activity
NAVSEA, Code 06H-1.

The Technical Reviewers for this report were Dr. G.
C. Carter (Code 313) of NUSC and Professor P.
Schultheiss of Yale University.

REVIEWED AND APPROVED: 27 September 1976 Wt 3

AGCESSION 1w

s White Section M
o0¢ N Section (]
UNARKOUNGED a
JUSTIFICATION .............comnrnrnnnn... =
"

Wil AVAIL and/w SPECIAL

/

SAA b

Von Winkle L
Head, Special Projects Department P

Tai

The author of this report is located at the New London
Laboratory, Naval Underwater Systems Center, ’
New London, Connecticut 06320,

Llaaik2




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

[T REFPORT NUMBER
TR 5439

2. GOVT ACCESS)on \

(G

READ INSTRUCTIONS
BEFORE COMPLETING FORM

RE

4. TITLE (end Sub
: AN ALTERNATE APPROACH TO QPTIMUM_EEARING /
-

_ESTIMATION, *

——

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

Wolfgang K)/éischer (

8. CONTRACY OR GRANT NUMBER(e)

/

9. PERFORMING ORGANIZATIg
Naval Underwater

New London Laboratory
New London, CT 06320

N NAME AND ADDRESS [ ommmmmmme

ystems Center

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

A75012
ZR-0000101

11. CONTROLLING OFFICE NAME AND ADDRESS
Naval Sea Systems Command (SEA-06H1)
Washington, D. C. 20362

27 Sepmmizmx 976

22

18. SECURITY CLASS. (of thie report)

UNCLASSIFIED

18a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

2 Approved for public relcase; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, I{ different from Report)

18. SUPPLEMENTARY NOTES

ATF

Narrowband bearing estimation
Bearing tracker,

19. XEY WORDS (Continue on reverse side if necessary and Identify by block number)

k-w space

Impulsive signal spectra

Cramer-Rao
,ONEGA

lower bound

e acoustic energy distribution in k€w space and combines the estimates obtained
at each temporal frequency under a least mean-square-error criterion. :This |
processor is shown to be optimum in the sense that the variance of the !

. resultant bearing estimate is equal to the Cramer-Rao lower bound undet the

An alternate processing scheme for

MQO. ABSTRACT (Continue on reverse side If neceseary X“h by block number)

same conditions assumed by MacDonald and Schultheiss,
processing scheme for bearing estimation of impulsive signal spectra is briefly
discussed in the context of recent

sonar systems,

earing estimation locates the peaks of the

-

The relevance of this

oy 1473

EDITION OF | NOV 68 1S OBSOLETE
$/N 0102-014-

601 |

S

\ »
SECURITY CLASSIFICATION OF THIS PAGE
ki oy i i . R

s S 2




o e AR

Ry

, .
o A R T TR G 4

24,

.

TABLE OF CONTENTS

INTRODUCTION

PRELIMINARIES

MEAN AND VARIANCE OF ESTIMATING THE LOCATION OF

THE GLOBAL PEAK OF ENERGY DISTRIBUTION IN k-w SPACE .

APPLICATION OF BEARING ESTIMATION SCHEME TO
RECENT SONAR SYSTEMS

CONCLUSIONS .
REFERENCES .

APPENDIX A — DERIVATION OF THE EXPECTATIONS
AND VARIANCES

APPENDIX B — SIMPLIFICATION OF THE BIAS AND RANDOM
BEARING ERROR EXPRESSIONS

TR 5439

10

11

12

13

19

i/ii
REVERSE BLANK




P . R, 85

TR 5439

AN ALTERNATE APPROACH TO OPTIMUM
: > BEARING ESTIMATION

INTRODUCTION

The optimum passive bearing estimation problem is examined in this
report from a "k-w space" point of view. (The two-dimensional Fourier trans-
form of the acoustic field in the space-time aperture generates the energy
j distribution in the k-w domain. ) Since the representation of the acoustic field
: in k- wspace has proved useful in a number of applications and since recent
: sonar systems essentially generate a sampled function of the energy distribu-
tion in k-w space, this viewpoint is expected to provide additional insight into
the processing required for optimum bearing estimation.

In particular, guided by an intermediate result of MacDonald and
Schultheiss! and a result by Bouvier and Ianniello, 2 it is postulated that the
maximum likelihood estimator (MLE) merely determines an estimate of the
location of the primary peaks of the energy distribution in k- w space and com-
bines these estimates, through a linear combination, to arrive at an overall
"best" estimate of the target bearing. This postulate is examined in this report,
and the performance of such an estimator is compared with the Cramer-Rao lower
bound under the same conditions assumed by MacDonald and Schultheiss.

PRELIMINARIES

Consider a finite, one-dimensional array to be described by an
effective sensor density p(x), where p(x) includes the effect of sensor location
and sensor shading and is considered to be zero for values oflx| > L/2, where
L is the total length of the array. In practice, p(x) is usually discrete, but
mathematically it may be treated as a continuous function of x multiplied by an
appropriate sampling function. If h(x, t) represents the acoustic field at any
point x and time t, then the output from a conventional time delay beamformer
steered to an angle ¢ with respect to broadside is

b(g,t) ith(x,t+gX)p(X), 1)

where ¢ = and c is the speed of sound in the medium,

sin 6
C
Furthermore, consider that this beam output is spectrum analyzed
over a sliding temporal window of duration T. The spectrum analyzed beam
. output is then described by
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t' + T/2
B=1/T [ dtb (g, t) e
t' - T/2

-i2r ft‘ @)

Substituting (1) into (2) and assuming* that T> > L/c yields

B=t/r i dkd hex b 5o n(i',f‘i'—)e‘iz”ﬁ o BELEx

where II —it-Tt'l is the familiar rectangle function centered about t' and of unit
height and duration T.

For comparison purposes, the direct two-dimensional Fourier trans-
form of the acoustic field h(x,t), as seen through a spatial aperture described

by p(x) and a temporal aperture described by 1/T I[-(%l, is

8=1/T J| dxdt hx,t) pe I &E) o278 o =i 2niex

which represents the acoustic field in k-w space, that is, at a temporal

frequency w= 2 v f and a spatial frequency k =¢(w = Qii%g Comparison of

(3) and (4) shows that Bk, w) = B(-k, w). Thus, spectrum analyzing the
various beams will generate the acoustic field in k-w space, which merely
reaffirms the fact that time delay beamforming is equivalent to performing a
spatial Fourier transform.

In practice, (3) must be modified by an appropriate sampling function
since beams are formed only at discrete values of ¢ and are spectrally
analyzed only at discrete temporal frequencies. For the initial analysis,
however, the spectrum analyzed beam output B ( ¢, f) is considered to be a
continuous function of ¢ and f. Appropriate modifications are made later.

In general, the acoustic field h(x, t) will consist of a signal and
noise component. If the signal is a plane wave arriving at an angle 65with
respect to the normal of the x-axis, as shown in figure 1, h(x,t) may be
expressed as

h (x, t) =8 (t-{,%) + n (x, t),

sin 6p
C

where ¢,= . Thus, provided the noise exhibits no spatial structure, the

*This assumption implies that the observation time T is much greater than
the travel time of the signal wavefront across the array.
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acoustic energy distribution y(¢ , f) = | B(¢&, f)| will exhibit a distinct
maximum when¢ =£,. In accordance withthe postulate mentioned earlier,
it is desired to obtain the mean and variance of the estimate .g o at which
y is a maximum.

ARRAY NORMAL INCIDENT SIGNAL WAVE

SENSOR LOCATION

o o> X

& g @ >

Figure 1. Array Geometry

MEAN AND VARIANCE OF ESTIMATING THE LOCATION OF THE
GLOBAL PEAK OF ENERGY DISTRIBUTION IN k-w SPACE

Consider the spectrum analyzed beam output B ( ¢, f),as given by
(3), to be a continuous function of ¢ and f. As shown in f1gure 2, the proposed
processor searches for the global peak of the square of the magmtude of B.

A
B(E, f) ) y &) SEARCH &
o FOR  f——>
PEAK

Figure 1. Proposed Processing Scheme

A
Accordingly, at a given temporal frequency f, the value of ¢ =¢q at which y is
a peak is considered to be an estimate of the target location. The mean and
variance of this estimate are given by

A
var (§,) = wai;:(y)) E (£) = & ‘TEE(YT')'T ,
I 9¢ E=¢&, R £=§,
where y' iy (&, f). Since taking the expectation is a linear operation, it
may readily be shown that a:; ol - E (v "), so that the above relations

A ony,

become
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E '3 - E2g)

A E (v'
var (go) = E2 (y")

E (go) = EO TR ") -(6)
£=£o £=fo

The various expectations required above shall be computed under the following
assumptions:

1. Signal and noise are spatially homogeneous and temporally
stationary, zero mean, independent Gaussian processes.

2. The observation time T is large with respect to the travel time of
the signal wavefront across the array.

3. The signal wavefront may be regarded as a plane wave.
Later assumptions shall include:
4, The noise is spatially incoherent and uniform.
5. The effective sensor density is discrete and uniform (no shading).

6. The observation time is large with respect to the signal and noise
correlation times,

Throughout this analysis, one will require the crosscorrelation
between two separate points in the space-time aperture. The assumption of

spatial homogeneity and temporal stationarity allows this correlation to be
expressed as a function of spatial and temporal differences; that is,

Elb ey, t) hery ty] =Ry T ™

1 -x2 andr=t1 -tz.

where x = x
Assumption 3 allows the further simplification:

Rh (X,T) i RS (T_ on) * Rn (xv T), (8)
where Rs and Rn are the signal and noise correlation functions, respectively.
Notice that RS depends only on the difference (T -¢£,x). Finally, assumption
4 (uncorrelated noise) allows Rh (x, T ) to be expressed as

Ry &x,7) = R (¢ x) +s(x) R (7), ©)
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where §(x) is the impulse function and R (7) refers to the noise autocorrela-
tion function at each sensor. -

The derivation of the expectations required in equation (6), which is
relatively straightforward but tedious, is presented in appendix A. The results
are quite general-being subject only to the first two assumptions listed above.
In garticular, it is shown that, provided f > 1/T, the expectation and variance
of &, is

e [f axdT@ (P % p) (iwx) s
3 (3;' ) =180 )
A * 0 I axdroe xp) Gwx? |,

1
w2 [[faxdro @  p) x2]2

var (£) =

{2 Reﬂffdxd 0 x| ? -2 (ffaxdrop x x) )’ (1)

+ff dxdT®( * p) /[ dxdTQ(xp * xp)] - (ff dxdTOx (p % p)) 2} ; ’
o

where

O=0x,7)= Rp&x,7) A(T/T) e-—iw‘reiwg -

: : AT Ay se { A gl/T LEEE (Triangle Function)
| otherwise

Re( ) denotes the real part of ( )

% denotes correlation; e. g., g (X) * u(x) fgt) ux+t)dt

T = observation time

Ry (x,7) =E[h(x, t)) hix; - x, t =7)]

between the acoustic field at two separate points in the space-
time aperture.

crosscorrelation

PG
L T S R L L

The integrals are to be evaluated at the value of ¢ corresponding to
: : the true target bearing g, and, unless otherwise noted, all integrations are
1 from -o to + ©,

These expressions show the effect of an arbitrary spatial weighting
function p(x) on estimating the location of the peak of the energy distribution
at a given temporal frequency f) 1/T. As indicated in appendix A, the
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expressions may also be modified to include any arbitrary temporal weighting
function w () by simply replacing A(7/T) in (12) by 1/T [w(71) s w(T)]
and restricting temporal frequencies to those greater than the width of the
corresponding spectral window.

To gain further insight into the performance of this estimator, it
shall now be assumed that the signal is a plane wave and that the noise is
spatially uncorrelated and uniform. As shown in appendix B, these assump-
tions allow each double integral in (10) and (11) to be expressed as a sum of the
product of two single integrals. Furthermore, the estimator becomes unbiased
since, under these conditions,

JfdxdTp( * p) x 0.

0
The result, as obtained from appendix B, is that E (go) = ¢ and
L 1
var (¢) = 5
9 w? [fxz (P * p) de (13)

«{N/s[2[pax [x® pxp?) dx - [pPdx [x® (px p) dx]
/5P 1 5 op? axy,
where

S=8(¢) =/ daGS(o) sinc2 T (f-e) = Gs (f)% sinc2 Tf

N=N@ =/daG_ (o) sinc® T (f-0) = G, (D sinc” T
Gs (f) is the signal spectral density
Gn (f) is the noise spectral density.

Note that one may regard S(f) and N(f) as being the signal and noise
power, respectively, within the analysis band which is centered on frequency f.

Thus far, no particular restriction has been placed onthe sensor
density p(x). However, the uncorrelated noise condition (which has been
applied) is rather unrealistic unless p(x) is discrete. If it is further assumed
that p(x) is uniform (no shading), then p? in (13) may be replaced by p. The
variance then reduces to

1

“z[fxz @*p) dx]

(14)

[(N/S)fpdx +(N/8) 2] :

var (§0)=
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Mathematically, a uniform, discrete array consisting of M sensors may be
described by a density .

P(X) = 2  5(x-x,), (15)
i=1 ]
where §(x) is the impulse function and xj is the coordinate of the jth sensor.

SRRERP N AR

e i, ¢ G DO S IR - 5 BN i~

! b Substituting (15) into (14) yields

; |
W l) [Mavs + ar9®].  qe

2
g3 F Mer)
it = (= IR SR

This expression represents the uncertainty, under the first five
1 assumptions listed previously, of locating the global peak of the energy dis-
tribution in k-w space at a single temporal frequency w. Since § o =siné,,

c
it may readily be shown that

ot cos 902 A (17)
var (¢ ) 3( > var ( 60),

C

where 60 is the estimate of the signal bearing angle with respect to broadside.
Thus, the variance of 80 is

s 5 e

% ¢ B[Mavs) + m/9)7] 18)
var ( 0o ) =( ) .

w cos 6, M M

(X.-x)2
IS ol T

1 r=1

. In these expressions, notice that the effect of the signal and noise
. spectrum is included through the relationships ;

S =G (D« sinc” Tf (19)
L N @ =G, (B *sinc” Tf

In particular, if the observation time is large with respect to the signal and
noise correlation times (assumption 6), that is, if Gs and Gn are broad with

respect to sinc? Tf, then S (f)~1/T G () and N(f)y~ 1/T Gn (f). Substituting
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these spectral densities into (18) and comparing the result with expression (16)

of MacDonald and Schult:heiss1 shows that the two expressions are equivalent
at a single temporal frequency. Therefore, at a single temporal frequency,
the procedure of forming an infinite number of beams and searching for the
peak of the energy distribution is optimum in the sense that the uncertainty of
this estimate is equal to the Cramer-Rao lower bound (CRLB).

A The question of combining the bearing estimates obtained at other
temporal frequencies shall now be discussed. For this purpose, assume that
each of the beams is spectrum analyzed according to (2) at evenly spaced,
discrete frequencies fn =n/Twithn=1, 2, 3, . . », NO. The reason for

ab . Manmabl Al Ll LA

this choice is that if the temporal periodicity of the acoustic field is matched
q to the observation time T, then the minimum sampling interval required to
= properly describe the acoustic field is 1/T.

Consider now that the peak of the energy distribution is estimated at
each temporal frequency fn. According to the previous analysis, each estimate
én may be considered a random variable whose mean is ¢ = 5—1%99 and :

whose variance 0121 is given by (16) with f replaced by f . Furthermore, if T
n

is large with respect to the signal and noise correlation times, it is reasonable
to assume that each estimate (En) is statistically independent.

A natural scheme for combining these estimates is to form a new
random variable geq , which consists of a linear combination of fc;n; that is,
let

No )
geq. 6 n§1 an En * (20)

where No represents the number of independent estimates available and a is
A a weighting factor. Under the constraint that the mean of geq also be equal
b | to go and that its variance be a minimum, it may be shown that Ee should be

& | formed according to

2 ; : Ijsf 162 ¢
% ! = o n, 21)
‘ eq. No " 9 5% | n (
P “n
n:

and that the variance of geq is




(B ool g

TR 5439
1
var (¢ )= N D) -
Yf 1/0n (22)
n=1

Relation (21) shows that each estimategn should be weighted by the inverse of

its variance °2n . Referring to (16), this implies that estimates having a
large ratio,

2
“n 5 “1\2 (8/N) for S/N »1/M ,
M (N/S) + @N/S)

n

(23)

should be weighted more heavily.

Substituting (16) into (22) and using (17) and the fact that S (fn) ~1/T
G _(f)and N (f )=~1/T G_ (f ), one obtains
s ' n n n'n

(24)
2
‘cos 0, % Z 2 ;E) G2 (w)/G] () )-1
var (Beq.) =l ; e i (Xj—xr) 2 “n 1+ M GS [(wn)/Gn (wn)]’

where 9eq is the best estimate of the target bearing

W =Snt =228 .49 3§ ... N
n n T

0]
‘HNO = the highest frequency processed.

The above expression is identical to the CRLB derived by MacDonald
and Schultheissl (their equation 16) and agrees with Carter® when M=2, It
follows that, under the six conditions listed earlier, the CRLB can be achieved
by a processor that estimates the angle 9n of the peak of the energy distribu-

tion in k-w space at each processed frequency f s/, =], 2, vo, N0

and obtains a weighted sum of the N bearing estlmates The particular
weighting to be used in the 'weragmg is proportional to the inverse of the
uncertainty associated with each estimate.

Thus far it has been assumed that a continuous beamformer is avail-
able for estimating go. Obviously, in practice, only a finite discrete number
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of beams can be formed. This dilemma leads directly into the classical inter-
polation problem. One practical solution is to form a ''large number" of beams
and to use a simple interpolation scheme, such as 3-point interpolation, in
order to estimate the location of the global peak, Since the beam pattern is
known, another approach is to crosscorrelate the finite number of spectrum
analyzed beam outputs with the amplitude pattern of the sensor density. This
crosscorrelation must be performed at each processed temporal frequency
and must precede the squaring operation shown in figure 2. Obviously, the
amount of processing required is quite extensive, but it is possible to com-
pletely recover the continuous beam output if the original, finite beams are
formed at the Nyquist rate.

The interpolation problem serves to highlight the fact that the CRLB
can only be approached by any practical estimator.

APPLICATION OF BEARING ESTIMATION SCHEME TO
RECENT SONAR SYSTEMS

The "k-w space" concept has led to an alternate processing scheme
which, under the condition of a broad signal spectrum, is capable of achieving
the CRLB. In view of the large amount of required processing and the fact
that existing split-beam correlators are nearly optimum, this processing
scheme is not recommended for the sole purpose of estimating the bearing of
a broadband signal. However, the technique is quite attractive for recent
sonar systems, particularly since the input quantities required for this
estimator, e.g., spectrum analyzed beam outputs, are already available,

When the signal spectrum becomes more impulsive (that is, when
one can no longer assume that the observation time T is large with respect
to the signal autocorreljtion time), (16) and (19) show (with f replaced by
fn) that the variance of én becomes unduly large, because of the reduced

signal-to-noise ratio, unless the processing frequency fn is aligned on the

particular signal tonal frequency fo. Hence, additional frequency tracking is

required. This leads directly to the concept that bearing estimation is
actually a two-dimensional search (in k and w) for the primary peaks of the
energy distribution. If the temporal frequency rate is sufficiently high, this
frequency tracking may take the form of simple interpolation between fre-
quency bins. Notice that the variance of the resultant bearing estimate 'én at

the nominal frequency f, should correspond to that obtained by DIFAR*-like
automatic target followers (ATF) operating on a single signal tonal frequency.
As before, if the frequency f, associated with each estimate is sufficiently
separated so that the & are independent, the estimates may be combined

"across frequency,' in the manner indicated by (21), to obtain an

*DIrection Finding And Ranging.

10
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overall '"best' estimate whose variance is given by (22), where now NO

represents the number of independent estimates.

From the previous comments, it is clear that the estimator is also
attractive from the viewpoint of replacing the conventional DIFAR~like ATY

because
1. The estimator operates in an open loop and is not afflicted by
the acquisition and gate widths associated with closed loop
trackers.

2. The estimation scheme comhines bearing estimates obtained
from multiple tonal frequencies. The estimator is therefore
more immune to fading tonals than is the conventional ATF,

3. The tracking threshold equals the detection threshold since the
estimation scheme merely locates the peak (in frequency and 1

bearing) of detected tonals.

The effects of multiple targets and frequency and bearing dynamics
have,thus far, been purposely avoided. It is clear, however, that although
the basic bearing estimation procedure remains the same, the effects give
rise to a sorting problem. Before the various estimates gn (or en) can be

: combined "across frequency, '’ one must ensure that they are, in fact, from
the same target.

CONCLUSIONS

It has been shown that the processing scheme suitable for estimating
the bearing of a plane wave in spatially incoherent noise is one that locates and
linearly combines the estimates of each global peak of the energy distribution
in k-w space. For sonar systems that spectrum analyze each of a finite num-~
ber of preformed beams, this amounts to estimating, at each processed
f frequency, the value of sin 6 at which the magnitude squared of the beam

: outputs is a maximum. These estimates may then be combined by forming a
weighted average where the weighting is proportional to the inverse of the
uncertainty associated with each estimate. It has been shown that, for broad
signal spectra, such an estimator is capable of achieving the Cramer-Rao

lower bound and is, therefore, optimum,

For impulse signal spectra, although a similar procedure is indicated,
an analytical expression for the variance of the overall estimate is difficult
to obtain — partly because of the unknown statistics of adjacent spectral

estimates.

A T A A Xy
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Even for general use with multiple targets and frequency dynamics,
the bearing estimation scheme is considerably complicated by the necessary
sorting problem,
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Appendix A

DERIVATION OF THE EXPECTATIONS AND VARIANCES

In this appendix we wish to derive the expectation and variance of the

estimated coordinate of the global peak iny = IB|2, where B is the spectrum
analyzed beam output as expressed by (3) in the text, which is

+ ©

(t-t")

B=B (¢, H=1/T // dxdthix,typ (x) I —e 2"Ht-£X) .
il v

(A-1)

For this purpose, only the following two assumptions are made:

1. Signal and noise are spatially homogeneous and temporally stationary,
zero mean, Gaussian processes.

2. The observation time T is large with respect to the travel time of the
signal wavefront across the array. (This assumption has already been
made in expression (A-1).)

In accordance with (6) of the text, we need to evaluate the expectation

of derivatives of y as well as the expectation of (y')2. The expectation of
derivatives of y may be determined in the following direct manner. From (A-1),

y = BB*=1/T2 [[[[ dx, dx, dt,dt, h(x;,t,) h(x,,ty) p(x)) P(Xy)

(tl-t') II(t2—t') -lw(ty -t,) iwg(xl-xz)
e e

o II (A-2)

4 T

where w = 2 7 f and all integrations are from -~ to +® . Now the nth deriva-
tive of y with respect to ¢ is

™ _ 1,12 1/} dax dx_dt dt_ h(x.,t,) h(x,,t.) p(x,) p(x,) II .~ ks

(ty-t" no-ioltt)  -lwbEX,)
o I [iw(xl-xz)] e e . (A-3)

and the expectation of the nth derivative of y is

13
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E[y™]=1/1° I/ ffax dx,dt dt, E[ex,t)) h(x,,t,) ]p(x,) P(x,)

(tl-t') (tz—t') i -iw(tl-tz) iwg(xl-xz)

o II x o . [iu(xl-xz)] e e R

Because of the spatial homogeneity and temporal stationarity of the acoustic
field h(x,t), we may write

E[hex, b)) hexgty) ] = Ry 6%, 8 -t) (A-5)

and introduce the following integration variables in (A-4):

X =X, "X, in the integration over X,

T = 1-,1 -t_ in the integration over t

2 2

Then, (A-4) becomes
(n) 2

E[y J1/7°[fffdx, dxdt, dTR, (x,T) P(X,) P(X;-X)

('c1 -t') -7 -t")

o I i} dux)® e
T T

wr eing ¢ (A-6)

If we perform the integration over x; and t1 and note that
[ ax; pex)) p(x; =X) = p(x) * p(x) (A-T)

and

¢ -t) -7
[at, I )i =1 (7/T) * I (T/T)=T A(T/T),
T T (A-8)

1- I71/T IrlsT

where A(T/T)=
0 otherwise

and that % denotes correlation, (A-6) reduces to

14
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E[y™] = 1/7 faxdr o (5, 7) G [p0 x p¥)] . (a-9)
where
$(&,7) = Ry(x,T) A(r/T) e 1T (b X (A-10)

The evaluation of E(y'2) is more readily accomplished in an indirect
manner. Thus,

y=I1Bl% = BB*

and

2

o> %) = BB* + B*BY)” = 2Re(B*B'B*B' + BB*B'B'¥) ,
3

where Re () denotes the real part of (), The expectation of (y')2 then

becomes

E(y'?) = 2 Re [ E(B*B'B*B") + E(BB* B'B'%)] . (A-11)
Since the spectrum analyzed beam output B is also a zero mean Gaussian

process, we may use the familiar ""chain rule" for the expectation of four
products to obtain

E(v'z) = 2 Re{2 [E(B*B')]z +[E ®B)] y E(B'B")

+ E(BB¥) E(B'B'¥) +|E (BB') | B iy lE(B*B')2 l } . (A-12)

In a manner completely analogous to the derivation of E [y(n)] "
it may be shown that

*
E[BYBM] < 1/7 fraxd e, ) [-1ux? o % (o0 p ] (A-13)

and
-i2wt'
B(BMB™])==—— fraxdr ox, 1) [1ex” i e E¥ s to® peyeEX),
(A-14)
where

v, ) ERp(x, 7) A(T/T) sinc 2f (T-I7]) (A-15)

S
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sinc Q = sinnQ ‘
mQ

B(k) = kth derivative of B with respect to £ .

e A S L E

Expressions (A-13) and (A-14) allow the evaluation of each of the
expectations in (A-12). For example, E(B'B'*) is obtained from (A-13) with
n=k=1 and E(BB' ) is obtained from (A-14) with k=0, n=1, The complete ex-
pression for E(y' ), in shorthand notation, is

% 2w

H E(y'? )=—5 Re{|/s dxdo(p sk xp)| -
T

- |77 axdr ¢ @ % xp et |2

+ [/ dxdTé (P % p) /S dxd Té(xp x Xp) (A-16)

—ing* pe-ing iwEx iwEx

1 - J/ dxdT ¢ (pe )/ dxd T U(xpe % Xpe )
b - 2[J/ axavoo %) ] %}

This relationship may be simplified considerably via the following
argument. The second term of (A-16) may be expressed as

i N

iwEx (pei2u§x

i/ i e * )2,

Then using (A-15) and (A-10), this may be written as

i2wEx

(pe * xp)] >

(p3k xp)

Now the magnitude of the term in the brackets [ ] is always much less than
one provided f > 1/T. Thus, provided we use temporal frequencies in
excess of 1/T,

|/ axd~ 6(p % x0) [e‘“’* sinc 2f (T~ Irl)

Uf dxdr ¢ (p % XD)I 9 lﬂ-d"dfkv(pe x iugx)l 2

Similarly, the third term of (A-16) will always be much greater than the
fourth term if f > 1/T. Hence, under this minor restriction of temporal
frequencies, (A-16) reduces to

16
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2w2

B 1 E (') =5 Re{|Jaxdre (o s ) |* - 2[{faxdr o p 5 xp)]?
: ‘ > (A-17)
: + Jf axdr 6o s p) oS dxdr o xm)

and from (A-9),

E') = 'i-?r‘ffdxdr¢ X % p) (A-18)

and

2
E@") = "—‘j’r—ffdxdrd» x> (0 % p). (A-19)

BB o S S5 S 7= 2

Finally, the substitution of (A-17) through (A-19) into (6) of the text
leads to expressions (10) and (11) of the text.

It should be mentioned that the final results may readily be extended

E to include any arbitrary temporal weighting function w(r). This is most easily
%

I accomplished by replacing the uriform weighting function II (tTt ) in (A-1) by

. -t :

w —(!:.I—,t—) =n(t-t") II t%t)- This substitution carries through to (A-10), where

A (7/T) must be replaced by 1/T [n(r) I (7/T) % n(r) I (7/T)] =1/T
[w(r) *w(r)]. Similarly, A(7/T) sinc 2f (T- |7]) in (A-15) must be replaced

by 1/T [W(?) e-iwr*w(r) e-lwr]. ,

e S A TR NSRS T TR A SR I, S ™

Furthermore, the assumption in (A-16) that the contribution from
integrals involving y(x, 7) is negligible in comparison to the contribution :
from corresponding integrals involving &(x, 7) remains valid provided that f :
| 5 is greater than the width of the spectral window. Thus, in most practical
f* ¢ situations, the only modification required to expressions (A-17) through (A-19)

: mmmAnnnnm4MManwdwlnbwn*wUﬂ.

=
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Appendix B
SIMPLIFICATION OF THE BIAS AND
RANDOM BEARING ERROR EXPRESSIONS
In this appendix we wish to simplify expressions (A-17) through (A-19)
or (10) and (11) in the text by using the following two additional assumptions of
the text:
3. The signal wavefront is a plane wave and is incident on the array at an
angle 6, with respect to the normal of the x-axis.
4. The noise is spatially uncorrelated and uniform.
These two assumptions allow us to express the crosscorrelation
between any two points in the space-time aperture as
Ry (x,7) =R, (T-§,X) +5(x) R (1), (B-1)
where RS and Rn are the signal and noise autocorrelation functions, respec-
. tively; s (x) is the familiar impulse function; and £,is defined as _Scﬂ%‘ This
effectively uncouples each of the double integrals in (A-17) through (A-19)
and allows each to be expressed as the sum of the product of two single
integrals-one integration being over space and the other time. To illustrate
this, consider an integral of the form
1=//dxdT o(x,T) g(x), (B-2)
. where g(x) depends on the sensor density p(x). Substituting (A-10) and (B-1)
into (B-2) yields
L=f[axdTR_ (T-£,%) A (7/T) e 7 el “8% o
% +ffdxd‘r H(x) Rn (r) A(T/T) s el“’éx g(x) . S
Letting ‘I’1 =T-£,x in the first double integral, we obtain
P
fasar ¥ D8N etetm 2803 tug
I1=)] dxd 1 RS(TI) . e e g(x) (B-4)

+f/dxd7’ R (7) A(T/T) e-i“’Tm(x) g(x) " g .

A

R s

%

A R T




Now, the maximum value that x can attain is + L./2, where L is the total
length of the array. Thus, provided T ) L/c,

+&
A(TI ToX) s A(TI/T) g

Using
,/ dx6 (x) eiuix g(x) = g(0)

reduces (B-4) to
I=deRs(T) A(T/T) e-iw’T ./ dx g(x) eiw(E-Eo )x

+ g0) of dTR (1) A(T/T) e T 5

An equivalent expression for the above integral in terms of the signal and
noise autospectral densities, Gs(t) and Gn(f), can be obtained by noting that

1/T f dTR_(7) A(T/T) o . / daG_(a) sinc? T(d-f)
(B-6)
= G (®) % sinc” Tf = S()
and
1/dear(r) A(T/T) e’i‘”=f daGn(f) sinc® T(o-f)

(B-7)

=G (O * sinc® Tf = N(f) ,

where S(f) and N(f) are the respective signal and noise power within the
processing band centered at frequency f. Using these definitions and
evaluating the integral at £ ={, , we obtain

Jlaxdrow, ) g|, = T SOfeedx + TNO gO).  (B-9)
0
Expression (B-8) may now be used to evaluate each of the double

integrals in (A-17) through (A-19). Accordingly, one obtains (in shorthand
notation)

20
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sodmadediic 2t i

B = 20° {[/ax @xp) +N @ x p), J[/dx 6 4 ) + N 6 x o]

£,
-[sfax @ * x0) + N @x xp),) *} -

E(y')|£_£= 0 (B-10)

By, = o’ 8/ax x" ), (B-11)

where ( % denotes that the resulting function is to be evaluated at x = 0,

The fact that E(y!) | bop. =@ implies that the estimator is unbiased under the
assumed conditions, @

In a lengthy but straightforward operation, expression (B-9) may be
expanded and rewritten as

2 2 2 2 2 2
E(y')lf_s =w{SN[2fpdxfx ex*xp) dx-/p dx/x (P * p) dx:] .
~%0 ]
+N2 [ x® % & p)) ax}. (B-12)
Notice that the coefficients of 82 have canceled.

Finally, substitution of (B-10) through (B-12) into (6) in the text

yields
E(f,) =%, (estimator is unbiased) (B-13) | 3
V
b - 2 2
var (%) ST e o {9 [2/pdx [x* (% p°) dx
2 | 3§
= fpzdx fx (P p) dx] + /97 %2 o % pB) ax}. (B-14)

21
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