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In the present work, some aspects of digital communications over
channels with memory are studied. The basic objective is to model channels
with memory and to develop more efficient and reliable communication tech-
niques over such channels. In particular, the receiver design problem for
channels with memory is considered and then the relationship of receivers
and channel models is examined. In the receiver design problem, fading is
assumed to be the source of channel memory. First, the idea of receivers
with memory is investigated and a suboptimal receiver with one-bit memory
is derived which performs better than the optimal receiver without memory.
A receiver with large memory is devised which consists of an estimator and
a detector., The decision rule adapts to the channel conditions based on the
information provided by the estimator. The performance of the receiver is
examined by computing the average probability of error., The estimator is a
limited-memory decision-feedback estimator, the estimation criterion being
the MMSE. Finally, a methodology is described which can be used to develop
channel models based on the physical processes involved. Two measures are
defined which quantitatively characterize the correlation of errors and then

the relationship of the receiver design problem to channel modeling is

examined.
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{ 1. INTRODUCTION

3 1.1. General

Error-free and reliable transfer of information is the basic goal

of any communication system. Analog communication has been the traditional
mode of communication but in the recent past digital communication has

1§ become increasingly popular. There are several reasons for this trend
towards digital communication. One of the prime reasons for this gradual
shift is the feasibility of relatively error-free transmission over long
distances. Digital communication systems may also capitalize on the

recent revolution in the integrated circuit technology and are, thus, cost
effective. Some of the other features of digital communication systems

are high speed transmission and error-control capabilities. In the present
work, only digital communication systems are considered because of the
current interest in such systems. A block diagram of a typical digital
communication system is shown in Fig. 1.1.

Digital communication systems have conventionally been assumed to
be memoryless. This assumption results in notational convenience and it also
simplifies the analysis. In practice, however, most digital communication
systems exhibit memory. By memory of a digital communication system, it is
meant that the digital data at the receiving end is correlated. The major

sources of the statistical dependence are the source, the channel encoder and

f the channel itself. Quite frequently the source is assumed to produce
l independent bits which is not valid in practice. Most of the practical

i} sources generate statistically dependent data sequence to be transmitted. The

source encoder, which has not been shown explicitly in Fig. 1.1, is considered

N N R T T Er—e——,
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Figure 1.1.

Block diagram of a digital communication system.
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I to be a part of the source and it also contributes to the statistical

I dg}gg_{lence of the data input to the channel encoder. Deterministic redun-
dancy is introduced in the channel encoder for error-control. In both

I: block coding and convolutional coding, parity check bits are added to every

k information bits and a total of n bits are transmitted. The physical

processes responsible for the channel memory are intersymbol interference,

= fading and correlated noise. The dependence introduced by the source and the

- channel encoder are beyond the scope of the work presented here and, therefore,

L NI (0.4 AR ISR S

these two have not received any further consideration. Thus, channel is
considered to be the only source of memory in the received data sequence and

communication over such channels is the subject of this thesis.

1.2. Channels with Memory

g
B
:
B
f
B
§
£

Channels with memory have been studied quite extensively in the
literature. Development of reliable and more efficient communication schemes
has been an area of intense research activity as evidenced by the survey
article of Lucky [1]. A considerable amount of attention has been focussed on

™ the problem of devising efficient detection schemes. The standard reception

schemes assume the independence of the received data bits and a bit-by-bit

detection without memory is performed, the design criterion being the minimi-

}t ’ zation of the average probability of error. In most of the practical digital

Liad
sy

communication systems, however, the independence assumption is not valid due

Els lj to the channel memory. The received data is correlated and it is expected
fiAs that receivers with memory which exploit this dependence would yield better

performance.

At ' b AN oAl J
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Intersymbol interference has traditionally been treated as the source

" il

of channel memory and the receiver design problem for such channels has been

i by, ;. oo VI

studied extensively [2-38]. Several classes of equalization techniques have

been proposed. A brief summary of the effort in the general area of receiver g

Wy B ey ey B

design for intersymbol interference channels is presented here. The adaptive

et
P R
ik

equalization systems were first formalized by Lucky [2,3]. An adaptive mean-

1 square equalizer is a finite-length transversal filter whose coefficients are

15 adjusted using decision-directed estimation loops so as to minimize mean-

squared error (MSE) in the output samples. Proakis and Miller [4] and Gersho 2“3
[5] have analyzed the structure with respect to convergence time and tap gain
error. Several authors [6-10] have examined techniques for faster convergence.
Structures which are different from the basic linear equalizer [1l] have also
been considered, such as in [11~17]. Nonlinear equalizers have also been

:r considered. Several suboptimal nonlinear receivers have been explored in the
literature [18-21]. Decision-feedback equalizer has been treated extensively.
The output samples §n are fed back through a transversal filter to subtract

out the tails of these pulses from subsequent pulses. Austin [22] examined

this "bootstrap' system and the optimization for minimum mean-squared error

x | (MMSE) was performed by Monsen [23]. More recently Monsen [24] has compared

sl L

the performance of a decision feedback equalizer and a linear equalizer.

»

@_ Price [25] considered the receiver in the zero-forcing mode of operation.
Salz [26], Clark [27] and George, Bowen and Storey [28] have also treated

i ! different variations of the basic decision-feedback equalizer. Maximum-

likelihood sequence estimation in the presence of intersymbol interference has

T T T T
p—

R been a popular area of investigation [29-38]. Chang and Hancock (29] devised an




optimum decision procedure in which a decision was made on the basis of the
complete message. Abend and Fritchman [30] modified the procedure and
derived an optimum sequential compound detector under a fixed delay constraint,
They considered optimal bit-by-bit detection based on the sequence received
in the past. Gonsalves [31] has also considered a related problem. The
Viterbi algorithm generated considerable interest and it found applications
in receiver design for intersymbol interference channels [32-37], with the
objective of finding the most likely sequence transmitted. The complexity
increases for larger sequences. Recently Yao and Milstein [38] have considered
a maximum likelihood bit detector in the presence of intersymbol interference.
The other major source of channel memory, fading, has received very
little attention. The memory of the channel is characterized by the statis-
tical dependence of the received data bits. Fading is assumed to be a slowly
varying process (especially for high data rates) and its contribution during
different signalling intervals is correlated. This correlation could be
exploited to yield a receiver with better performance. The present work will
concentrate of fading as the source of channel memory and will assume the
absence of intersymbol interference. The goal here is, therefore, to derive
receiver algorithms which exploit the continuity and correlation of the fading
process to yield a better performance in the average probability of error sense.
Memory will have to be incorporated in the receivers to attain the goal stated
above. 1In the next section, the organization of this thesis is described and

an outline is presented.

1.3. Thesis Qutline

The major problem considered in the present work is the receiver

design problem for channels with memory. The source of channel memory is




assumed to be fading. Chapter two introduces the receiver design problem.
The feasibility of receivers with memory is investigated and a receiver with
one-bit memory is considered. The statistical correlation of the two adjacent
data bits is utilized to achieve a receiver with better performance. The
standard design criterion, i.e. the minimization of probability of error,
is employed. The performance measure is the average probability of error.
Two examples are considered and numerical results obtained indicate that an
improvement in the performance is attained. This leads us to expect that
receivers with larger memory would perform even better.

An alternative approach to receiver design problem is investigated and
receivers with larger memory are considered next. The receiver is assumed
to consist of an estimator and a detector. The estimator is responsible for
the estimation of uncertain parameters present in the received signal. The
estimator is followed by a detector which treats the estimate furnished by
the estimator as the correct value of the uncertain parameter and adapts
the decision rule to the existing channel conditions. In Chapters three
and four the receiver design problem with large memory is discussed. 1In
Chapter three, an estimate of the uncertain parameters is assumed to be
available and the attention is directed towards the development of an optimum
adaptive detector. The memory length is assumed to be large and asymptotic
results are obtained. The optimum decision rule is determined and the
performance is examined by considering the probability of error. An example
is presented to illustrate the receiver. In Chapter four, the principles of
estimator design are discussed. The estimation criterion which results in

the optimum receiver is determined. A limited-memory estimator with




decision-feedback is derived. The estimate is assumed to be a linear function
of the observations with nonlinearity introduced through the coefficients due
to decision-feedback. In some communication system applications, the received
signal does not always contain the uncertain parameter to be estimated.

For these applications, the estimator is to be modified to include this

TR A Rt
RN vy

uncertainty about the presence of the parameter to be estimated. This

'[- situation arises in the on-off keying systems. This estimation algorithm also
finds applications in control theory. While tracking the trajectory of a

target, the observation mechanism may fail, for instance, due to misalignment

PR

of antennas. Examples are considered and the performance of the estimators
is examined by computing the mean-squared error.

In Chapter five, another aspect of digital communications over
channels with memory is considered. Modeling of digital channels’ is an
important problem and has been discussed in this chapter. The concept of

channel modeling based on the actual physical processes to characterize the

input-output behavior of the channel is described. Relationship of receivers
with memory and channel models is examined. Some measures to represent the
channel memory quantitatively are defined and illustrated by an example.

Finally, the work is summarized and the results are presented in the last

po——

chapter.




2. RECEIVER WITH ONE-BIT MEMORY

2.1. Introduction

As indicated in the first chapter, the objective of the present
work is to design receivers with memory for channels which exhibit memory.
The source of channel memory is assumed to be fading and the absence of
intersymbol interference is assumed. Signal detection schemes with memory
have been considered in the literature [39-42]). The receiver problem in
such cases can be formulated as a hypothesis testing problem. A Bayesian
approach results in a decision rule in which the likelihood ratio is
compared to a threshold to decide as to which hypothesis is true. Cover and
Hellman [39-41] have considered the hypothesis testing problem with finite
memory. The data is reduced to an m-valued statistic and it is employed
to make a decision. The hypotheses themselves are independent of each other.
The difference between the design of receivers with memory and the hypothesis
testing with memory is that the statistics corresponding to each signalling

interval are statistically dependent in the receiver design problem whereas

the experiments in the hypothesis testing problem are assumed to be independent.

Baxa and Nolte ([42] have considered the signal detection problem using Cover's
approach. They discuss the problem under the constraint of. finite soft
memory. The memory is modeled as a finite-state machine and the memory is
updated according to a suboptimal time dependent rule. Baxa and Nolte do not
consider channels with memory and the statistical correlation of the
received bits.

In the present work, receivers with memory are derived for digital

communication systems where the received bits are correlated. Fading is

i m———————— i
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assumed to be the disturbance process causing this statistical dependence.
In this chapter, a receiver with one-bit memory is investigated so that the
decision on a particular bit is based on the statistics and the decision
of the previous bit. Channels generally exhibit a larger memory and,
therefore, a receiver with a larger memory is expected to perform better
but at the expense of implementation complexity. The discussion of such
receivers is postponed for later chapters. The objective in this chapter
is to investigate the idea of a receiver with memory for fading channels.
The emphasis is on exploring the theoretical feasibility of the idea and
not on deriving a relatively complex detection algorithm with larger memory.
In the next section, the problem is defined and appropriate assumptions

are stated. In the following two sections, an optimal solution and a
decision-feedback suboptimal scheme are described. Finally, two examples

are considered and numerical results are presented.

2.2. Problem Statement

The objective of this chapter is to design a receiver with one-bit
memory for fading communication channels. It is assumed that a binary
system is operating over a fading channel in the absence of intersymbol
interference. The transmitted bits are assumed to be independent with zeros

and ones equiprobable. The transmitted signal is so(t) or sl(t) depending

on whether a zero or a one is sent. The transmitted signal in any signalling

interval [0,T) is given as follows:

V2 £ (t) cos(ut +8,(t)) 0<E<T

Bi(t) = (2.1)
0 Otherwise
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with

Aig
j‘ £ (t)dt = 1 2.2
o

and where wy and ¢i correspond to frequency and phase modulations respectively.

Orthogonal signalling is assumed, i.e.,

'
8{' 8o(t) 8, (t)dt = 0 (2.3)

The channel is assumed to be corrupted by additive white Gaussian noise

n(t) with power spectrum N Fading is assumed to be slow so that the

0
channel gain and phase are constant over the period of one signalling
interval and thus may be represented by a sequence of dependent random
variable pairs {vk,ek}. The sequence {vk,ek} is defined by the expression
of the received signal r(t) during the k-th signalling interval [(k-1)T,kT),
namely, if H; (the hypothesis that i is transmitted during the k-th interval)

is true, then

& &
r (t) = r[t+(k-1)T] = kaz' £, (t) cos(w t +@, (t) +6,)
+ nft + (k~1)T]
it si(t,ek) + nk(t) , 0<t<T, i=0,1 (2.4)
Hence, Ve and 9k denote the contributions of amplitude and phase fading

during the k-th signalling period. The statistical dependence in the
received data is introduced by the correlation of the sequence {vk,ek].
This statistical dependence as a function of the fading process is utilized

to derive the detection scheme with memory. A correlation receiver is

-y
g
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employed to process the incoming waveform, as shown in the block diagram of
Fig. 2.1. The outputs of the integrators which serve as decision statistic

are defined by

7

xi = £ r, (t) vé.fi(t)cos(wkt-+¢i(t))dt , i=0,1 (2.5a)
1 IT t) V2 £, (t)sin(®,t +8, (t))dt , i=0,1 2.5b)

Yk o b rk( ) i(t)s n( i i( ) ’ t] ( ».

The basic form of the desired recursive structure to be optimized is
shown in Fig. 2.2. The sequences {Xg,Yg,Xi,Yi} are functions of the
sequence {vk,ek}, and this relationship is exploited to design the receiver

with one-bit memory next.

2.3. An Optimal Solution

In order to obtain the optimal solution for the one-bit memory
detection problem, it is treated as a four-hypothesis Bayesian decision
problem. For notational convenience, only the coherent reception case

(no phase uncertainty) is considered so that under the signal model (2.1)
o 3 i j
K 0, i=0,1. Let Hij denote the hypothesis that Hk-l and Hk are true, i.e.

during (k-1)-th signalling interval i is transmitted and j is sent during

b 4

the k-th signalling interval. The four hypotheses are defined as follows:

HOO: rk_l(t) = vk_lso(t) 4—# -l(t)

(2.6a)
rk(t) = vkso(t) + nk(t)

Bort  Tpa1(®) = VpagPo®) Ty (®)
(2.6b)

rk(t) = vksl(t) + nk(t)

LA A BT T MR T Lo d e B 3 o e
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.
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Figure 2.1. Block diagram of the demodulator.
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Hlo: rk_l(t) = vk-lsl(t) + nk_l(t)
(2.6c)
£ () = v 8,(t) +n (t)
i R L L Bl T
(2.6d)

rk(t) = Vksl(t) +: nk(t)

Bayesian approach is used to obtain the optimal solution with the Hamming
distance as the cost function. This is equivalent to minimizing the
conditional probability of error given the previous bit statistics

P(ek|X2-1,Xi_1) where {Xg} and {Xi} are defined by (2.5). 1If Qo and Ql

0
k’
and Hi, then the Bayes' risk may be expressed as

represent the optimum decision regions in the (X Xi) plane for the

hypotheses Hg

o % ; 0 1 0 i
il 1

0 0
+ff f01(x,y|Xk_1,Xi_1)dxdy + [§ fll(x,ylxk_l,x;_l)dxdy] @.0
Q Q
0 0

0 1 |0 LR
where fij<x’y,xk-1’xk-l) denotes the conditional density of Xk,Xk given

xg-l’xi-l and hypothesis H The conditional densities are given by

13"
o
J 22Gom? . onlepnt | v)s (v, v, v, dv
BORT R RS R T e VR Rk kel

0 B -
fij(x,Y|Xk'1’xi-l) X

-]
) hg-l(u)h;-l(v)ka l(vk-l)dvk-l
(2.8)

where f jl j(x), denoted by hi(x), is the conditional density of Xg
X |\v
k ’
given the fading parameter v, and the hypothesis Hg . It should be noted

> SO G 1
that the conditional independence of xk, Xk, xk-l and Xk_1 has been utilized in




S -

1i5

obtaining (2.8). Furthermore, the conditional densities hi(x) are Gaussian
and thus the resulting densities used in (2.7) may be easily derived if an
appropriate model for the density of the fading sequence {vk} is assumed.
The decision regions Qi’ i=0,1, obtained by the minimization of the Bayes'
risk given in (2.7) or equivalently obtained by the minimization of the
conditional probability of error P(eklxg_l,xi_l) are given by the following

likelihood ratio test:

1
I T e
fOl(x’Y|xk-1’xk-1) +f11(x’YIXk_1:Xk_1) >

i g1 e e (2.2)
Eoo (oY X1 sXy ) +E0 Gyl % ) HE

which is seen, of course, to depend on the previous bit statistics xg-l and

Xi_l. Equation (2.9) determines the optimum decision regions in the two-

1
k-1"

resulting decision rule may also be expressed in terms of the likelihood

dimensional space (xg,xi) as a function of variables Xg_l and X The

ratios A1 and is given by

1
"
A +A Z1+A 2.10
1+3g o) ( )
B
where Ai are defined as follows
= 0 | 0 1
A= fo Graylxy X ) B Gyl X)) (2.11a)
0 1 0 1
RLE SN C D o S U SN C b o Sty (2.11b)

0 1 0 1
IR TTLCT b SRS Sl V2 SN 81 b s ooltp) (2.11c)




It is observed that the optimum detection scheme with one-bit memory is quite
complex to implement because the decision rule depends upon the level of

the previous output. However, the decision regions are different from the
ones for the memoryless scheme which indicates that an improvement is
feasible if a detection scheme with memory is employed. Therefore, in the
next section a suboptimal detection algorithm with memory is considered
which keeps the essential features of the optimal scheme in that it

minimizes the bit-error probability and is simpler to implement.

2.4. Suboptimal Scheme

The suboptimal scheme considered in this section is a decision-
feedback scheme for which it is assumed that the system error probability

is sufficiently low so that the received digits can be assumed to be correct.

This simplifies the receiver structure considerably. There is, however, a
possibility of error propagation but it is not very serious. The problem
of error propagation in decision-directed schemes has been considered

previously by Davisson and Schwartz [43]. The suboptimal scheme may also

be considered as a simplification of the optimal scheme in that the k-th

R T o mvfm - "W

bit decision depends only on the two-level quantized value of the previous
signalling interval statistic. Namely, the k~th bit decision is assumed to

be a function of the decision on the previous bit and not of the variables

0 1
k=1* *g-1

are employed for the decision on the previous bit. If the output of the

1
X In the suboptimal scheme, two different likelihood ratios kﬁ and kk

receiver is represented by the binary sequence {Zk], the expressions for the

likelihood ratio Xk(zk_l) can be written as
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xo 1f -7 =0
A (2 i k k-1 (2.12)
k k=1 1
Kk otherwise
where
f (x,y|z = 0)
0 1| 1 k-1
Zy 1>
Ag e xkxkf k-1 H'k (2.13a)
£o o D x|z, _; = 0)
AL LT
and
o1
xlt - k k-l (2.13b)
£ x,ylz, , = 1)
0.1 0 k-1
x X lzy )
The minimization of the conditional probability of error results in the
decision rule
1
B
A > =
L% 1 if zk_1 i (2.14)
B

A block diagram of the suboptimal receiver is shown in Fig. 2.3. The decision
on the first bit for both the optimal and suboptimal scheme is made using

the decision rule without memory. The likelihood ratio for the scheme without

memory is given by
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Figure 2.3. Suboptimal receiver structure.
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£ (%x,y)
0, 1¢..1
L
= (2.15)
f 0.1 o(st)
l
By
and the decision rule is
1
B
A 2 1 (2.16)
0
n

Then, for all succeeding bits the decision rule is modified according to
the scheme with memory. Two alternative schemes are considered here.

First, the decision on each bit is made based on the decision rule which
assumes that the decision rule used for the previous bit was memoryless,
i.e., (2.16). Thus, the decision rule (2.14) is fixed and is a function

of only the previous decision, i.e. Z The second possible scheme

k-1°
is recursive in that the decision rule used for the detection of the

previous bit is employed to obtain the decision rule for the k-th bit.

It can be shown that the recursive algorithm attains a steady state if the
sequence {vk} is stationary and the steady state decision rule may be employed
for detection purposes and only its derivation is obtained recursively.

In the next section, two examples are considered where further details are

furnished about both the optimal and the suboptimal schemes. The performance

of the detection schemes is also examined in terms of the probability of error.

2.5. Examples

In this section, two examples are considered to illustrate the
detection algorithms with one-bit memory. Binary on-off keying systems are

chosen as examples since the decision rules could be expressed as simple
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threshold tests, which are easy to visualize and represent. The two signals

corresponding to the transmission of a zero and a one are given by

0

so(t)
(2.17)

sl(t) s(t) = f(t)cos(mct-+¢(t))

where f(t) has been normalized as in (2.2). The first example considers

the case of Rayleigh fading and the second treats Gaussian fading.

2.5.1. Rayleigh Fading Example

The communication system considered in this example is assumed to

g

be operating over a channel where both the amplitude and the phase of the

g

received signal vary. The envelope of the received signal is assumed to have
Rayleigh density and the phase is assumed to have uniform density. This model
is frequently used for ionospheric and tropospheric links. Using the signal
model of (2.1) the received signal during the k-th signalling interval,

represented by rk(t), may be written under the two hypotheses as

Hg: rk(t) = nk(t) y Uit T (2.18a,
L. r (t) = v f(t)cos[w t +@(t) +6. ] +n (t), 0<t < T (2.18b)
"5 Tk K e W T ™%

The signal component could be expressed in terms of its quadrature components

and rk(t) is given by

ng rk(t) = nk(t) y st e T (2.19a)
Hi: rk(t) = alkf(t)cos[wct-+¢(t)]-+a2kf(t)sin[mct-+¢(t)]

- nk(t)

A
= alksl(t) +82k82(t) +nk(t), 0<t<T (2.19b)




et ]

where .lk and 'Zk are independent zero-mean Gaussian random variables with

sariance oi (where E[vi] = Zci). Also, the two terms sl(t) and sz(t) are
orthogonal. The sequences {alk} and {aZk} are assumed to be correlated,
otherwise a memoryless scheme results. The correlation coefficient of

both sequences is denoted by r, namely

e RN B S B,

2
Ef{a, a, 1} = ¥o, , i=1,2 (2.20)

The structure of the optimum receiver is shown in Fig. 2.4. The decision

rule is of the form

1
e ﬁ
= 2 2 > 4
L =) + ) <o . (2.21) ]
o 3

1
where Xk and Yk correspond to Xk

optimum threshold. The objective is to devise a decision rule which

and Yi defined in (2.5) and T, is the

utilizes the correlation of (xk’Yk) with the pair (xk-l’Yk-l) to yield a
better error performance. This is accomplished by computing the threshold
Tk at each step which minimizes the probability of error in the k-th bit

and the threshold Tk is a function of the signal-to-noise ratio, the
correlation between (Xk’Yk) and (xk-l’Yk-l) and the statistic of the previous
bit Lk-l' The signal-to-noise ratio T and the correlation coefficient p

between the pairs of random variables (xk’xk-l) and (Y,,Y, ,) are defined as:

2 -1
Ne= oa(NO) (2.22)

o= (MryMm+1)"t (2.23)
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where r has been defined in (2.20). It must be noted here that xk and Yk

are independent of each other due to the independence of a, and a5

Hence the conditional joint densities of the pairs (Xk’xk-l) and (Yk,Yk_l)
are also Gaussian because of the previous assumptions. The optimal and
the suboptimal schemes are now described. Only the results are presented

here, the detailed derivations are given in the Appendix A.

2.5.1.1. Optimal Scheme

The optimal scheme involves the computation of the optimum decision
threshold. The decision statistic zk is compared to the threshold Tk and
a decision on the k-th bit is reached. The threshold for the detection
of the first bit, Tl’ is obtained by the minimization of the probability of

error and is given by
T, = 2(L+MAa+MNL (2.24)

Thresholds for the detection of succeeding bits are computed so as to minimize

the conditional probability of error, i.e., T, is given by

k
ar(e, = 1|X,__,.Y, )3T, =0 (2.25)
For this example, the equation which determines '1‘k is:

exp(-T,/2) + [2(1+M) (1 -p")} empl- (T +0%4,_)/2(1+ M(1-0 %))

2

|

Il Tp 45,/ (1 +M-pH}- 201 +T1)]'1exp{-Tk/2(1 +M} =0  (2.26)
where Io(-) is a modified Bessel function of the first kind and ‘k-l = xi-l
+ Yi-l' Thus, T, is a function of T, p and zk-l and is computed in a

recursive fashion from (2.26). The performance of the optimal scheme could
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be evaluated by computing the probability of error which is given as
®
R =] 3 g(ek=1|zk_1)f£k_1(wlﬁg_1)dw
+T 2 pe, =1l4, )¢ (W|Hi )dw (2.27)
e 2 k k-1 ‘k-l -1

where
P(ek = ll'ek-l) = % exp(-Tk/Z) + 'i];'{l'GXP(Tk/z(l +n))}

1 1 ~L L -1 - -
ril1-alp a2 | aemZa-eH 5 2a+m Fa-et

fz \Jlﬁo) = % exp(-w/2)

k-1

£, @lap) =1 @+m7! exp(-w/2(1+M)
k-1

Q(*,*) is the Marcum's Q function [78,79] which, for completeness, is described
in the Appendix B. The conditional density of ‘k-l is obtained using the

= 2 2
fact that X and Y are independent Gaussians and zk_l xk-l + Yk-l [44].

k-1 k-1
It is observed that the decision threshold obtained from (2.5) is different
from T1 and it is expected that the optimal scheme will perform better.

However, the optimal scheme is quite complex to implement and, therefore, it

is not explored any further and the suboptimal scheme is considered next.

2.5.1.2. Suboptimal Scheme

The suboptimal scheme is a decision-feedback scheme where two
different decision thresholds are used depending upon the previous decision.
Threshold Rﬁ is used if the previous decision was a zero and Ri is employed

otherwise. Tl’ as determined in (2.24) is utilized for the detection of the

FOE S S
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first bit. Thresholds Tk which minimize the conditional probability of
error are computed in a recursive fashion from the following equations
086
3p(e, =1z, =0)/aR =0 (2.28a)
= = 1 =
ar(e, =1z, , =1)/oR =0 (2.28b)

Thresholds Rg and R; for the detection of the second bit are computed from
(2.28), for k = 2. The resulting set of equations which yield the values

of Rg and R; are
i 1 - o |
7 N lexp{ R)/2(L+M 2 - exp(-1,/2) = Ao @BNZ(L+T) 2 (159 ;

1 - -
T2 (1+M) 2(1-;:2) 9 -2 exp{-Rg/Z}[Z - exp(-T,/2)-exp(-T,/2(1+M))] = 0
5 ? - - (2.29a)

nf=

i (1+n)'1 1 / 1 % "% 2 "%. % -
2 exp{~Ry/2(1+M}[exp(-T,/2)+ Q {p(Ry))Z(1L+M) =(1-p7) %5 TI(1+M)

|
(1-92) 2}- 51 exP("R:zl/Z)[exp(-Tl/Z) + exp (-T1/2(1 +M))]1 =0 (2.29b)

which is a set of nonlinear implicit equations which must be solved for Rg.
The process may be continued recursively to obtain Ri as a function of

R;-I' It can be shown that a steady state for the threshclds is reached and
the resulting values of the thresholds can be computed. Here only a special
case is considered where for the detection of the previous bit it is assumed

that the memoryless threshold T, is used. The value of the threshold '1‘k is,

L

therefore, expressed as

0

-

1

5

T Cyay) =
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The performance of the suboptimal scheme can be evaluated by
comparing the probability of error using the standard memoryless scheme
and the suboptimal scheme described above. The probability of error
using the standard scheme P(e)nm is given by
ad # 1. 2
P(e)m.n 5 exp( T1/2) + 3 [1-~exp( T1/2(1-+ﬂ))] (2.31)
and the probability of error in the second bit using the suboptimal scheme
P(e)m is given by:
P(e) = L [2 +exp(-R0/2){2-exp(-T /2)-exp(-T,/2(1+M))}
m 4 2 1 1
- exp(-Ry/2(1+M)) (2-exp(-T,/2))-exp(-T /2)exp(-Ry /2 (1 +1))
+ exp(-R;/Z){exp(-TI/Z) +exp(-T1/2(1-+ﬂ))}
o
(ry)° A
* f e exp(-w2/2(1 +ﬂ))Q{DW(1+ﬂ)'2(1-92)-2 ;
0.2 (1+M)
1 T e
T3(1+7M) 2 (1-p") *}aw] (2.32)

It can be observed that the probabilities of error using the scheme without

memory and the one with memory are equal if Rg = R; - Tl'

were obtained for the suboptimal scheme. The numerical values of thresholds

Numerical results

and the probabilities of error obtained for different values of signal-to-

noige ratio are summarized in Table 2.1. The correlation coefficient r for

these computations was assumed to be one.
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Table 2.1
n T1 Ry R1 P(e)nm P(e)m
10 5.27537 | 4.87149| 5.80982 . 14236 . 14146
102 9.32254 | 8.66881| 10.17792 .02728 .02694
103 13.83133 ) 13.10032} 14.80521 .00394 .00389
104 18.42272 | 13.67107| 19.44922 .00051 .00050

2.5.2. Gaussian Fading Case

In this example, it is assumed that the communication system is
operating over an amplitude fading channel with coherent reception. The
received signal during the k-th signalling interval, denoted by rk(t), may

be represented by

HY: 1 (6) = (6) O<t<r (2.33a)
1
p = <
Hk. rk(t) ka(t)cos[wct +P(t)] + nk(t), 0<t<T (2.33b)
where f(t) is normalized as in (2,2). The sequence of random variables
{vk] is assumed to be a stationary Gaussian sequence with zero mean and
variance 02. The correlation coefficient of v and v, is denoted by r.

k-1 k
P and T are as defined in (2.22) and (2.23). The basic structure of the

proposed optimum receiver is shown in Fig. 2.5. The decision rule is of the

form
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1
Hy
S (2.34)

0

Hy

The objective is to compute the threshold Tk which minimizes the conditional
probability of error. The threchold is a function of the signal-to-noise
ratio and the correlation coefficient. The optimal and the suboptimal
schemes are considered next. Again, the detailed derivations of the

equations are referred to Appendix C.

2.5.2.1. Optimal Scheme

Detection scheme without memory is used for the detection of
the first bit. The threshold T1 is computed so as to minimize the

probability of error and is given by
L 1
T, = (1 +MLa(l +M}=n 2 (2.35)

Thresholds for the detection of succeeding bits, T, , are given by

k

3 oy
L+ Zexp(-T2/2(1+) + {1 +M) (1-p5)}
2 2 2 )
exp{-(T, Py, _)%/2 (14M)(1-p")} -2 exp(-T,/2) =0 (2.36)

Again it is observed that the threshold depends on the statistic of the
previous bit and it is quite complex to implement in real time. Consequently,

the suboptimal scheme is considered next.

2.5.2.2. Suboptimal Scheme

As discussed earlier, two different decision thresholds are
employed for the detection of the k-th bit. The decision threshold Tk’ which

is a function of the previous decision, is given by:
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Q, if 2z, =0

Tk(zk-l) = (2.37)
Rk otherwise

The equations which yield the values of Q2 and R2 are obtained by minimizing

the conditional probability of error P(e2 =1]Zk_]_=i) and are given by

a/(a+b) + [erf{(T-0Q,)a} + erf{(T, +PQ,)a}1/2(a +b)

0
= (1+M)% expl =102 /2(1 +M)) (2.38)

and

c/(c+d) + [erfc{(Tl- pRz)a} + erfc{(T1+p RZ)OI}]/Z(c+d)

i
2

= (L+M)2expl - NR2/2(1+M)) (2.39)

where

ke 2
erf(x) = 2m 2 [ exp{ -t“/2}dt
(o]

ﬂ .
I

= erf(Tl)

o
]

1
erf (T, (1 +M) 2)

c=1.-a

d =1.-b

. 3
(1+M) 2 (1-p%) "2

R
n

The thresholds are computed in a recursive fashion. The equations which yield

B i el o i = o e e T TR T e S S

the thresholds Qk and Rk are similar to (2.38) and {2.39) and are given by
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8/(g+h) + [(erfla(Q_;- pQ)} + erf{a(Q._; +p QI DP(Q, ;)
+ (erfla®, _; -p Q) )+ erflo(r,_; +p QI DP(®R, _)1/2(g+h)
= (147 expl-1¢2/21+M)} (2.40)
and
m/(m+n) + [(erfe{o@_ - PR} + erfefa(q _, +pR)IDPEQ _;)
+ (erfe{o® ;- PR} + erfela® _; +oRIDPR, _)1/2@+n)
= 1 +M7 expl- ﬂRi/2(1+T\)} (2.41)
where

g = erf(Q _1)P(Q ;) + erf(Rk_l)P(Rk_l)

-1 il
h = erf(Q_(L+M™3)P(Q ) +erf®R _, (1+M P® )
m = erfc(Qk_l)P(Qk_l) + erfc(Rk_l)P(Rk_l)
n=

- 5 %
= erfe(Q 1 (1+M) #)P(Q ) +erfe(® _,(1+M) PR, )

It can be shown that a steady-state is eventually reached and the steady-state
solution may be obtained by setting Qk-l = Qk = Q and Rk-l - Rk =R in

(2.40) and (2.41). The resulting equations cannot be solved analytically

and, therefore, approximate solutions for Q and R are obtained by

linearization. Let AQ and AR represent the deviations of Q and R from the no-

memory threshold T = T., i.e.

1’

(2.42a)

(2.42b)

i RS

B RS TR T Ny ik o=

A

R st YRR -
o n." T i e R R
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& The approximate solution for the deviations AQ and AR is obtained from the
H linearized equations as a set of simultaneous linear equations:
;“ allAQ + aleR = b1 (2.43a)
aZIAQ + aZZAR = b2 (2.43b)
L where
a;, = u(a-+b)(aép-+a3/a) - al(a-+b)(2n) + vp(c-i-d)(a3 'Oé)
+ MT(a +b) (1 +M) "t 5
e
a, = v(c-+d)(az-+a3) - al(C'+d)(2") &
L
a,, = @ (a+b)(2m 7 -v(a +b)(, +a5)
1
a,, = vp(a+b)(a, -03)-+ @, (c +d) (2m) 2 - u(c-+d)(a§§-+a3/5)

+ MT(a +b)(1+M) "~}
1 e -1 A=
by = b = 3 (erf(TB(1+M) 2y + erf (T8 (1+M)2))

ad 3 il
b, = d = 3 (erfe(TB(1+M) ) + erfe(Tp (1 +M) )

; 4 e 1 -4 g

j B = (@-p)%(14p) %, u=3@m+M)%, v=u@-p9)*,

,: o = exp(-T°/2), @, = exp(-TB2/2(1+M)), o, = exp(-T°/28° (L +M)).
In (2.43), 811,822 > 0, a12 >0, a4 <0, b1 < 0 and b2 > 0 so that AQ < 0

A
1

and AR > O, unless r = 0, for which case the receiver reduces to the zero
memory receiver.
The performance of the receiver is measured in terms of the

probability of error. The bit-error rate using both schemes is given by:

oy
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P(e) ~=b+c (2.44)
P(e)m = (a+b)erfc(Q) + (c+d)erfc(R) + c erf(R(1 +‘n)-%)
1
+ (a+)erf(QL+M )
T 4 2
& I @2m(1+7M)) 2exp(-u“/2)[erfc{a(T - pu)}
u=Q
+ erfc{a(T +pu)jdu (2.45)

The relationship between the probabilities of error using the decision

scheme with and without memory is stated in the following theorem.

Theorem 2.1: The probability of error using the optimal detector without

memory, P(e)nm, is greater than or equal to the probability of error P(e)m

using the proposed suboptimal decision scheme with one-bit memory, i.e.,
P(e) . 2 P(e)
The equality is achieved if and only if the correlation coefficient r is zero.

An illustration of the theorem for the Gaussian fading case is
shown in Appendix D. Numerical results were obtained for different values
of the signal-to-noise ratio 7. The correlation coefficient r was assumed

to be one. The numerical values of the thresholds and the probabilities

of error are presented in Table 2.2.
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P(e)nm

P(e)m

10

10

10

10

1.6241
2.1590
2.6298

3.0350

1.5307
2.0058
2.4576

2.8876

1.7403
2.3152
2.7857

3.1802

.2399
.1004
.0374

.0133

.2391
.0994
.0369

.0131

i.d

e e G o st bl < v i ana on




g L i~

B o B g s 55 S 2, S

o

=

e ]
L

v

[ e ]
.

et

I
|
I

35

2.6. Discussion

In this chapter, the idea of introducing memory into the receiver
with applications to channels with memory was explored. In particular, receivers
with one-bit memory for fading channels were considered. An optimal detection
scheme and a suboptimal decision-feedback scheme were devised. Their perform-
ance was measured in terms of probability of error. Two examples were con-
sidered. Improvement in the performance was achieved indicating the theoretical
feasibility of the idea. It is expected that introducing larger memory would
result in more improvement. The emphasis in this chapter was to examine the
feasibility of the idea and receivers with larger memory are discussed in

the next chapter.
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3. RECEIVER WITH LARGE MEMORY

3.1. Introduction

The results obtained in the last chapter indicated the feasibility
of receivers with memory. A suboptimal decision-feedback receiver with one-
bit memory was shown to perform better than a receiver without memory. The
amount of improvement obtained leads us to the consideration of an alter-
native approach to the receiver design problem which is the subject of this
chapter. The receiver is assumed to consist of an estimator and a detector.
The estimator is employed to estimate the existing channel conditions and
an estimate of the uncertain parameters is furnished to the detector. The
detector implements an adaptive decision rule based on the information
provided by the estimator about the channel conditions. The memory is in-
corporated into the estimator and the estimate is based on the observations
from a finite past. The memory length of the receiver is denoted by M and
this means that the estimator utilizes the signals received during the
previous M signalling intervals to yield an estimate of the uncertain
parameters. In this chapter, we concentrate on the adaptive detector and
the discussion on the estimator design is postponed to the next chapter.
It is assumed in this chapter that the estimator yields a known functional
of the past M observations as estimates of the uncertain parameters. The
estimation criterion and the selection of the estimation functional are
discussed in chapter four.

As in the previous chapter, absence of intersymbol interference

is assumed and fading is treated as the only source of channel memory.
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A large memory length, M, is required to estimate the fading parameters of
the channel due to the assumed slowly varying nature of the fading process
relative to the signalling rate. It is expected that such a receiver

with a large memory would perform significantly better than the zero-
memory receiver, It was mentioned earlier that only the adaptive detector
is discussed at length in this chapter. In section two, the problem is
stated along with the necessary assumptions. The receiver structure is
described in the third section. The performance evaluation is considered
in the fourth section. Finally, the receiver operation is illustrated by

considering a specific example and numerical results are obtained.

3.2. Problem Statement

The goal here is to develop a receiver with an M-bit memory for
a binary communication system operating over a fading channel in the
absence of intersymbol interference. The transmitted bits are again
assumed to be independent of each other with zeroes and ones equiprobable.
The received signal in any signalling period [0,T) under the two hypo~

theses is given by:
HO: r(t) = so(t,g) + n(t) <t<T (3.1a)
Hl: r(t) = sl(t,g) + n(t) €St <T (3.1b)
where @ denotes the uncertain parameters due to fading i.e. both amplitude

and phase fadings may be included in 8. Fading is again assumed to be

slow so that is can be assumed to be constant during a signalling interval
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‘terms of X; and Y; which are defined by (2.5), and are functions of the

and the effect of fading may be represented as a sequence of dependent

random variables. The signal si(t,g) is conditionally deterministic, i.e.,

it is completely known if @ is known. Since the absence of intersymbol
interference has been assumed, the signal model is the same as that given

in (2.1) and (2.2). The additive noise n(t) is again assumed to be white
Gaussian with power spectrum NO. The contributions of fading, i.e., amplitude
and phase fading parameters are denoted, as in Chapter 2, by {vk,ek}.

Hence the received signal during the k-th signalling interval [ (k-1)T,kT))

under hypothesis Hi is then represented as

n>

rk(t) r[t + (k-1)T]

vkﬁ fi(i:) cos{wit +¢.(t) +0,} + [t + (k-1)T]

Vi si(t,ek) + nk(t) 0<t<T,1i=0,1 (3.2)

where H; has been defined in Chapter 2., Orthogonal signalling is assumed
for simplicity. A correlation receiver as shown in Fig. 2.1 is used to

demodulate the incoming signal. The decision statistic is obtained in

dependent random variable pairs (vk, Gk) corresponding to the fading
process. The statistical properties of the sequence {vk,ek} are employed

to derive the receiver with memory. The relationship between (X;, Yi)

and (vk,ek) if Hi is true, for i = 0,1, is given by
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Xk = 6i v, cos ek +n (3.3a)

ik k

. S
Yk aijv sin Bk + n (3.3b)

k k

The optimal solution to the receiver with an M-bit memory problem

can be obtained by treating the problem as a 2M - hypothesis decision

problem. The structure of the possible optimum receiver is shown in Fig. 3.1.

The number of hypotheses increase exponentially with M. Therefore, for a

P4 = i m = wm OB

large M, the problem becomes too complex and one must resort to suboptimal

.

receivers which are easier to implement. A suboptimal constrained receiver

B oasad

s

is, therefore, considered in the next section.

3.3. The Constrained Receiver

As indicated in the previous section, the complexity of the optimal

solution leads naturally to the investigation of a constrained suboptimal

receiver. The details of the receiver are described in this section.

3.3.1. System Structure

The adaptive receiver considered here consists of an estimator

and a detector. A limited-memory filter computes an estimate of the

fading parameters on the basis of the previous M observations and decisions.

The estimate is furnished to the detector which treats the estimate as the

correct value of the uncertain parameter in making the decision on the
present bit. This idea has previously been explored by Price [45] and
Kailath [46]. Jointly optimum combined estimation-detection schemes

have recently been considered (e.g. [47-49]). The problem considered
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Figure 3,1. Optimum receiver with M-bit memory.
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here is related tut different because we are only interested in the
detection problem and estimation is present only to aid in a better
detection. Decision-feedback is employed to make the algorithm
implementation simpler. It is assumed that the system error probability

is low so that all the past decisions are considered to be correct. This
is a standard assumption with the decision-feedback schemes. This assumption,
however, causes error propagation and, thus, there is a possibility of run-
away. The problem of runaway in decision-directed schemes has been con-
sidered by Davisson and Schwartz [43]. A block diagram of the proposed
receiver is shown in Fig. 3.2. The detector adapts the decision rule to
the existing channel conditions and which obviously depends upon the
estimate furnished by the estimator and its statistics. An estimate of the

uncertain parameters a and b, is evaluated and furnished to the adaptive

k
detector. In the next section, estimator design is briefly considered,

the details being postponed to the next chapter.

3.3.2. Estimator Description

As discussed earlier, the estimator is responsible for the
estimation of the uncertain parameters {ak,bk}. The estimator design is
based on the classical estimation theory results. The class of linear
estimators is selected for the estimator implementation. This implies

that the estimates & and Bk of a, and bk are linear functionals of the

k

past observations. One major difference, however, is that the memory of

the filter is limited to the past M observations where M is the memory

length of the receiver. Limiting the memory of the filter is essential

A i S B, A o b 1)
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Figure 3.2, Block diagram of the suboptimal constrained receiver.
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due to the nature of the fading process. An estimate based on all the

past observations may result in a wrong estimate. The class of limited-
memory filters have been studied by Jazwinski [50]. The presence of the
detector is utilized and decision-feedback is used in the estimator which
causes it to be nonlinear. The sequences {ak} and {bk} are assumed to be

ergodic Markov sequences with means and autocorrelation functions

E{ak} m (3.4a)

E{bk} m (3.4b)
E{akaz = Ra(k-Z) (3.4c)

E{bkbz} = R (k-£) (3.4d)

The limited-memory estimate 3k and Bk with decision-feedback are assumed

to have the following structure.
" 1
o LA W
i=1

1
PR T Tl Y0 T (3.6)

= M
bk E [Z Y

i

where [Zk} is the binary output sequence of the detector. The constants
[ai, Yi} are computed so as to minimize the mean squared error (MSE)

and the detailed derivations of the estimator are presented in the next
chapter. The estimate obtained here is a conditional estimate based on
the past M decisions [zk-l’ "'Zk-m} which is denoted by Zk. The estimate

being conditioned on Zk is an approximation to the estimate obtained by
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applying the classical estimation theory results. In some communication
systems, the received signal does not always contain the uncertain parameters
to be estimated. An example of this class of communication systems is the
on-off keying system. The estimator design is modified to be able to use it
with the on-off keying system, This point will be discussed in further detail

in the next chapter.

3.3.3. Asymptotic Results

The estimates Qk and Bk as given by (3.5) and (3.6) are linear
functions of the past M observations and the nonlinearity is introduced by
the decision-feedback. The memory length M is a function of the fading
process and its statistics, e.g., average fade duration, fading rate and
distribution of fade duration. Since fading is assumed to be a slowly varying
process relative to the signalling rate, M is assumed to be large and asymp-
totic results are obtained. It is noted that the observations are not
independent of each other and, therefore, the standard central limit theorem
is not applicable. Central limit theorem for dependent random variables
[51-53] is used to obtain the asymptotic results. It has already been stated
that the sequence {ak,bk} is assumed to be an ergodic Markov sequence and,
therefore, it satisfies the strong mixing condition. The central limit
theorem for dependent random variables as stated in [51-53] is then used to
conclude that the estimates 3k and Bk are asymptotically normal., Details of
this central limit theorem and the strong mixing condition are furnished in

the Appendix E. In communication theory context this theorem has been utilized

by Kanefsky and Thomas [54] for nonparametric detection systems. The

AR 4> 8 DS
e .




conditional means and the variances of the Gaussian random variables Ek

and bk are denoted by Ea(k), §b(k) and Ca(k), gb(k). These means are
conditioned on the sequence of previous M decisions, i.e., on Zk. The condi-

tional means are given

g, 0

and §b(k) is given by

M
g, (k) = T y;m
i=1

The conditional variances are given by

¢, (0 = E{G €)%z, )
B(3,712,) - 8200

M
2
I T oagalz, .2 R (123) + Nobyyl - &
i=1l j=1
and similarly
. 2

gb(k) — iEl JEI Yi‘Yj[zk'izk-ij(i-j) + NOéij] o) gb

where 61j denotes the Kronecker delta function. It should again be

emphasized that these expressions for the means and variances are approximate

because they are conditional on Zk. The detector optimization is considered

next.
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3.3.4. Optimization of the Detector

The design criterion for the receiver is the minimization of the
probability of error. Therefore, the detector is obtained so as to minimize
the conditional probability of error. A Bayesian approach is used to obtain
the optimum decision rule. The decision rule is based on the estimate of the
uncertain parameters, its statistics and the decision sequence Zk. The decision
rule is, therefore, adaptive. The variables Xi and Yi under the two hypotheses
are given by (3.3).

For minimization of the probability of error criterion, the cost
is the usual Hamming distance. If Qg and Qi represent the optimum decision
regions, the expression for the conditional Bayes risk function can be written

as

1
[e, Gy |, 2 axdy + 5 jlj £ o oCoy|H,Z)dxdy  (3.11)

0 XY

0
Y
bL e nkxkk

1
=5 J
Q

where f(‘,'lﬂi, Zk) represents the conditional density under a given hypo-
thesis Hi and the past decisions. The conditional density based on the
estimates of the uncertain parameters can be used to obtain the density
functions described in (3,11), i.e.,
p ©® ®
€5 gooylmezy = [T f euylnod by £Gy 6, (2,048 b
Y, -® e XY,

where f(ﬁk,sk) is the joint density of Qk and Bk and it is Gaussian from the

asymptotic normality of ak and Bk’ f1.e.4
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e 8% (v-g,)?

A D = T 2 - .
fakbklzk(“’vlzk) @m " 267 exel- 57 %, } (3.13)

a

Since orthogonal signalling has been assumed in the presence of additive white

Gaussian noise, the conditional density based on the estimates can be expressed
as

AN f o2
(x-3, )" + (y-by)

2N
K 0

£ i(x,y|3k,l;k,H.lj;) = (2n NO)‘]-’exp{- 1 (3.14)

: S8
XkYk\ak,bk,H
The optimum decision rule is obtained by minimizing the conditional risk function

of (3.11). It can be expressed as the following likelihood test.

. 1
£, ,06uy|HLZ)

1
SRR >k
<

0
£ 0,007 |2y 0
i

A

i it (3.15)

=

The decision rule is adaptive since the likelihood ratio Ak depends upon the

estimates and their statistics. Equation (3.15) can be explicitly written

as
f 5 (x,y|u,v ) £ ¢ (u,v|Z )dudv H
Jody xbri\%k, i 1 sl 3,5, k 5k
A = 3 £ (3.16)
0 H
£ 2 %,y u,v,H) £a o (u,v|Z )dudv k
-i -i ol VR T TR e BT

where the expressions for the densities are given in (3.13) and (3.14). The

performance of the receiver is examined in the next section.
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g’ 3.4. Performance Evaluation
-
? The performance of the constrained receiver is investigated by
3 b { evaluating the average probability of error. Stationarity is assumed and,
i an
§ Eom therefore, any arbitrary bit k could be selected and its probability of error
3
i - can be computed. The adaptive decision rule developed in the previous section,
S' given by (3.16) is conditioned on the decision sequence Zk. The decision
o regions determined by the decision rule are denoted by Qg and Qi. These
decision regions are also conditioned on the knowledge of the decision on the
previous M transmitted digits. Therefore, the probability of error computed
3 for any bit using the adaptive decision rule also depends upon Zk. This
conditional probability of error, in fact, depends upon the estimate furnished
¥ by the estimator and its statistics. The conditional probability of error is
given by
;@ | P(e, |2,) = & I I f x,y| o 4 ) dxdy
3 et 7 PR e ity ;
- : D
3 1 0
i ‘ +3 urlj £ OYo(x,ymk,zk) dxdy (3.17)
: .k
.’ i 3
’4 ) This can be written as 3
E 'f -} 1 ® 1
3 1 L = - 3 b
1 P l2) =5 [ [1[ [ £, Guyla, b 0 dxdy
‘- L . e o L
g - 2 i O ~
+ jl £ 0(x,y|ak,bk,Hk)dxdy]f5 : (u,lek)dudv (3.18)
3 Qk kak k k




The density expressions are given in (3.13) and (3.14). The means §a and §b
and the variances Qa and Cb are functions of the decision sequence Zk as
evident from (3.7)-(3.10).

The average probability of error can be computed by first evaluating
the conditional probability of error using (3.18) for each of the ZM possible
bit configurations in the previous M digits and then computing an average of
all of these equally likely conditional probabilities of error. For a large
M this exhaustive method may not be computationally attractive since the
number of terms increase exponentially with M. Computation of probability of
error in the presence of intersymbol interference and additive Gaussian noise
is a similar problem and has received considerable attention recently. Exact
calculation is quite tedious and, therefore, bounds on the probability of
error have been computed. Lucky [2,3] considered the worst case operation of
equalizers and obtained lower bounds on the probability of error. The second
class of bounding techniques stem from the use of the Chernoff bound. The
most notable bounds of this class have been obtained by Saltzberg [55] and
Lugannani [56]. These bounds have been found to be quite loose and other
modified bounds have also been considered. Approximations to the probability
of error have also been computed by using the series expansions of the Gram-
Charlier type. This series expansion technique has been applied to the
intersymbol interference problem by Ho and Yeh [57] and Shimbo and Celebiler
{58].

In the next section, an example is considered. The average proba-

bility of error is computed using the exhaustive method for small M. For
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more complicated communication systems, and for larger memory lengths,

bounding techniques and approximations similar to the ones described above

T

AR L T

can be used to evaluate the probability of error in the presence of fading

and additive Gaussian noise. It should be noted again that for communication
systems where observations do not always contain the uncertain parameters to
be estimated, the whole analysis needs to be modified. The example considered

in the next section illustrates this aspect also.

3.5. Example

In this section a coherent on-off keying system is considered as an
example to illustrate the receiver. This example also illustrates the case
when all the observations do not contain the uncertain parameters to be

estimated and the estimator described earlier is to be modified. The adaptive

decision rule can be expressed in terms of an adaptive threshold which is a
function of the existing channel conditions. This results in notational
convenience and simplicity in presentation of the example. The received

signal under the two hypotheses is given by

Ees il (3.19a)

2 rk(t) nk(t) 0

= O
1A

P T () VKJE £(t) cos{wt + p(t) +0,} +n (t), 0<t<T (3.19b)

x

In the coherent system, Ok is assumed to be known and the decision statistic

obtained from the demodulator is given by

A mo

: % = (3.20a)
e

Vi + oy (3.20b)

e S A




where Xk is, in fact, X& and the superscript has been dropped for notational

convenience. Also ¢ = YO = Y1 = 0 for coherent on-off keying system.
k k

P Ry e GV S R o iy B

The estimator computes an estimate Gk of the uncertain parameter Vi

e e e a At S
1

which is furnished to the detector to be employed as the correct value in the

As indicated previously, the estimator design is

decision making process.

R

modified for this communication system with uncertain observations. The mean

and the correlation function of the sequence [vk} are represented by

E{vk} =m

E{vkvz] = R(k-4)

The estimator is assumed to have the following structure

M
~ kg Gt . 3.23
e B Bed® P

The estimate Gk depends on Zk as discussed earlier. The set of M equations

which yield the constants {ai,Bi} are given by

i

M
Ela.[zk_i Zy 5 RA-3) + N6, 1 = 2, _, R(D),

i

j=10sM (3:24)

P IETI INEERTUR ST MDA Y

The conditional mean §k and the conditional variance gk are obtained from

(3.25)
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: 2
Zk-i zk-j aiaj[R(i-J) + Noéij] - §k . (3.26)

MR
T ¢ <=

£ "

$ i 1

k3

The optimum adaptive decision rule is computed in terms of the
threshold which minimizes the conditional probability of error. The expression
for the conditional probability of error in this case can be written as

%

P ) =3[ [2m(yy+¢)]

-1
2 exp{-(x-gk)z/Z(No-fgk)} dx

1
2

+%I [2mN,)” exp{-x2/2No}dx (3.27)

LA

The threshold T, is computed by minimizing the conditional probability of

k

error and is computed from
dP (e, |Z,)/3T, =0 (3.28)
which results in
T, = N.& ¢ {1+ N 2E2 + (v +¢ )an(l+C NP -1 (3.29)
k 0°k°k k0 °k ‘°k 0" ®k kK0 g

As expected, the threshold Tk is a function of gk, gk and the signal to noise
ratio 1/N0. The performance of the receiver is given by the following condi-

tional probability of error

P iZ)=l £{ (T, -€ )/ 3 f{T/N‘é'}] 3.30
(ek K 2[er ( k-;k (Cki-No) }+ erfc W/ NoS (3.30)

T T o

Sl Tl
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where
X

erf(x) = j 2m)

-0

=2 exp{-u2/2}du
The conditional probability of error is data dependent and the average proba-
bility of error could be computed by the exhaustive method discussed pre-
viously. The conditional probability is computed for each of the 2M possible
bit configurations and an average is computed which is the average probability
of error.

A numerical example is considered. {vk} is assumed to be a Markov

sequence with mean m and autocorrelation

Rk-g) = p e8] 4 o2 (3.31)

so that its variance is normalized to unity. The numerical values chosen are
m=.,5,pP =.,9 and M = 8, The average probability of error as a function of
signal to noise ratio (SNR) is computed and is presented in Table 3.1 and

Fig. 3.3. The improvement in the performance is significantly better than

the improvement obtained from the receiver with one-bit memory. The con-
strained receiver is quite robust as long as the received sequence of length

M contains at least a single transmission of one which is the case for a
meaningful communication system. If a sequence of M zeroes is transmitted,

the performance of the constrained receiver is wovse than the performance of

a receiver without memory for lack of any observations containing the uncertain

parameters.
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Table 3.1

SNR

Average Probability of Error

Optimal receiver Constrained receiver
without memory with memory

10

10

10

10

10

0.4276 0.4255
0.2761 0.2753
0.2396 0.1866
0.2386 0.1536
0.2385 0.1420

0.2385 0.1380

54




R T SR T R S e . TR T e gy e S

55

R S VI R

i e it b RGNS L e Tl v

Y o
L )
. [ —1

1 A
% : x 0.5 T T T 1
| » 04 5 ; o
| S ~—— Receiver Without Memory
L Y S “ "
w ~=== Receiver With Memory
5 0.3 =
= N
b _-E- ~‘~‘~ —
=] 02"' ‘s.-‘-
-Q ‘-—Q-
[e] s cnmcccccnccccnnac -
S
& oif =
i 0 | I 4 [
: 1 10 10% 10° 10* 10°
| SNR fe sin
| §
! i

Figure 3.3 Performance of the constrained receiver.
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3.6. Discussion

In this chapter an adaptive receiver with large memory is developed.
The receiver consists of an estimator and a detector. The estimator furnishes
an estimate of the uncertain fading parameters to the detector which treats

the estimate as the correct value of the uncertain parameter., The optimum

adaptive decision rule is obtained by minimizing the conditional Bayes' risk

and the decision rule is based on the previous decisions. The memory length
is assumed to be large and asymptotic results are obtained. The performance
of the receiver is examined by computing the average probability of error.

A methodology is described to compute the bounds and approximations to the
probability of error for receivers with large memory lengths. A coherent
on-off keying system is considered as an example and the performance of the
receiver is examined. The constrained receiver performs significantly better
than an optimum receiver without memory. In this chapter, the estimates were
assumed to be available and the design of estimators is discussed in the

next chapter.
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4. ESTIMATION ALGORITHMS FOR RECEIVERS WITH MEMORY

4.1. Introduction

In the previous chapter a receiver with memory was discussed.
The receiver consisted of an estimator and a detector. The estimator is
responsible for the computation of the estimates of the channel uncertain
parameters. The design of estimators is considered in this chapter.
Classical estimation theory provides the basic tools for the estimator
design. While a recursive estimator (e.g. Kalman filter) is simple to
implement, it is based on all the available data (i.e. it has infinite
memory) and requires the knowledge of the dynamics of the signal model.
If the system dynamics is not known completely or if it is not known
accurately, the estimate based on all the past information may not result
in a convergent estimate. Jazwinski [50] proposed limited-memory filters
to avoid such divergence. The memory length depends upon the time interval
over which the model represents a satisfactory approximation to reality.
Fading process, which is to be estimated is one such process whose dynamics
and statistical parameters are not known accurately. It is, therefore,
expected that an estimator based only on the recent past would be more
suitable for the estimation of fading parameters. Physically also, the
fading passes through periods of severe fading and an estimate based on the
observations from the severe fading period but which did not occur in the
recent past may result in a wrong estimat=., The size of the filter memory

required depends upon the parameters of the fading process, e.g., fading

rate and average fade duration.
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As noted earlier, the idea of limiting the filter memory has
been treated in the literature. Jazwinski [50] has devised optimal : 3
i limited-memory filters for systems where the system dynamics is not com- 5 3

£ pletely known. Limited-memory filters are also used in the receivers

considered here, which also utilize the presence of the detector in a
decision-feedback structure (see (3.5) and (3.6)). The objective of the
combined estimator-detector structure is signal detection. Therefore, the
estimator should be designed so as to minimize the probability of error in
;‘ the detection process. In the next section the estimation criterion required
to accomplish the basic goal of the receiver is considered. 1In section 4.3, fa
a limited-memory estimator with decision-feedback using the appropriate
estimation criterion is derived.

The estimator discussed in Section 4.3 assumes the presence of
the parameter to be estimated in all the observations. In many practical
situations, however, the observations do not always contain the parameter
to be estimated, i.e., the probability that the observations contain the
parameter to be estimated is less than one. In digital communications,
this problem occurs in the on-off keying systems. When a zero is trans-
mitted, the received signal does not contain any information about the
fading parameters. Under these circumstances, the estimator discussed

above cannot be used directly and a modified version of the estimator is

Vi : needed. In section 4.4, a limited-memory filter with decision-feedback

and uncertain observations is derived. In section 4.5, several aspects of

—

the resulting estimator are discussed.

-
fro—1
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4.2, Estimation Criterion

It has been discussed earlier that the goal of the combined
estimator-detector structure is signal detection. In the previous chapter
a limited-memory estimator with decision-feedback was assumed available.
The estimate was assumed to be a linear function of the observations with
nonlinearity due to the decision-feedback being introduced in the coefficients.
In this section the problem of the desired estimation criterion to achieve
optimum detection is considered.

The discussion in this section applies Esposito's results [59] on
the subject to the problem under consideration here. For simplicity a
binary coherent on-off keying system is assumed. The results obtained
similarly apply to more general communication systems as well but at the
expense of more complex analysis. For this simple case, the decision

statistic Xi in (3.3) reduces to

Hg: Xk = (4.1a)
Bt X =a 4 0, (4.1b)

since Xg =0, Yk =0, i = 0,1 and where the superscript in X; has been

dropped for notational convenience. The optimum decision rule for the
winimization of the probability of error criterion involves the computa-

tion of a likelihood ratio and then it is compared to a threshold, namely

® 1
-i £, (x |a) £,(a) da :k

k fo(xk)

1 (4.2)

g
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where fi(xk|a) is the conditional density of Xk under the hypothesis Hi

and given fading parameter a, fak(a) is the density function of the fading
parameter a, and where f0(~) does not depend on a for obvious reasons.

In the following, a theorem relating the estimation criterion
for the estimator and the optimum performance of the constrained receiver
is presented and proved. It uses a basic theorem due to Esposito [59]
which is presented first, for completeness.
Theorem 4.1 (Esposito): If the conditional density of v given the inde-
pendent variable s, i.e., f(vls) is bounded and continuous for every s and

for every value of v, then for each v there exists a value S$(v) such that

]
J £v]s) £5(s)ds = £(v|§) (4.3)

Proof: Let L(v) = Min f(v[s) and U(v) = ng f(v|s) be the lower and upper
i s
bounds of f(vls) for a given v. Since fs(s) is the density function of S,
we have

£,(s) 20
and

f £,(s) ds = 1

It, therefore, follows that

L) < [ £(v]s) £5(s) ds < UW) (b4.4)

By hypothesis f(vls) is, for each v, a continuous function of s. It

follows that for each v there exists a value s(v) such that
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J £wls) £5(s) ds = £(v]8)
Q.E.D.

The main theorem of the section is now considered.

Theorem 4.2: The optimized constrained receiver under the minimization
of probability of error criterion is obtained by using a minimum mean-
squared error (MMSE) estimator.

Proof: First, an expression for the estimate which minimizes the proba-
bility of error is obtained using the result of Theorem 4.l1. The estimate
is found to have a structure similar to the Kalman filter which is a MMSE
estimator. For the coherent on-off keying system, the optimum decision

rule is given by (4.2). Since the noise is assumed to be white Gaussian,

the conditional densities are given by

o
= (@) 2 exp{ - (5, - a)%/2N,) .5)

al
3

L
£o(x) = (2N )72 exp -xl?;/ZNo} (4.6)

For simplicity [ak} is assumed to be a Markov sequence so that
=5 Ml Ta. thasd

The model may be generalized to higher-order Markov cases as well. The

MMSE estimate of a, given the past observations is given by

Ak |k-1 = Tk-1 e

with variance

2 2. .3
Vielker = ¥ Vier + A1) o) (4.9)
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Hence, the conditional density function of the uncertain parameter given
the past observations is given by
-'é_ ~ 2
faklzk(a) ko (Zﬂ Vk‘k-l) exp{ s (a i aklk'l) /zvk|k_1} (4.10)

The optimum likelihood ratio for minimizing the conditional error proba-
bility of (4.2) is given by
[--]

M= ] exp{-L0x - @?/280) + [x5/21]

1 2 )
7 2 - SR e
Qn \k|k-l) .exp{ (a - aklk-l) /2Vk|k_1} da 4.11)

After algebraic manipulations, integration and simplification, (4.11)

results in
A, = {N/(N, +V )}% exp{[xzvz + 2x a v N
k 0’0 T Tk|k-1 k' k|k-1 kk |k-1"k|k-1"0

-ai|k-1N0Vk|k-1]/[ZNOVklk-1(No + Vk|k-1)]} (4.12)

Theorem 4.1 is now used to find an estimate which yields the minimum
probability of error. The conditional density is computed using the

expression for conditional density on the right hand side of (4.3)

=
I

= £ O /855 (x)

exp{[xi/ZNO] - [(xk - ak)Z/ZNO]}

~ h2

2a - a

2% T %
exp{————Eﬁg————} (4.13)
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;
The exponents in the expressions (4.12) and (4.13) are compared and the
resulting equation is solved for ak. The estimate Ek is given by the
form ,
3k ='3k e K(k)[xk - aklk-ll (4.14)

which is the optimum linear MMSE estimate and, therefore, the constrained

receiver is optimized under the minimization of probability of error criterion

by using a MMSE estimator.

Q.E.D.

4.3, Estimator with Certain Observations

4.3.1. Estimator Design

The objective here is to develop limited-memory estimators with
decision-feedback for the two sequences of uncertain parameters {ak} and
{bk} which were defined in the previous chapter. The means and the
correlation parameters of the two sequenceg are as defined in (3.4). The
estimation criterion used is MMSE and this optimizes the constrained
receiver as discussed in the previous section. This implies that the
estimates Ek and Bk are computed so as to minimize E{(ak B ﬁk)zlzk} and
E{(bk - Bk)zllk}. The estimate is assumed to be a linear function of the
observations and nonlinearity is introduced in the coefficients by the

decision sequence Zk' The structure of the estimators is assumed to be

M

3 = 151 ARG U R (4.15)
B TGN R R (4.16)
K 151 L L k=i’ Tkq .
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The memory length of the estimator is M in that the estimates are based
only on the past M observations and decisions. The observations Xﬂ_i,
Yi_i, j = 0,1 are as defined in (3.3). The estimator design involves the
evaluation of the coefficients {ai,yi} which are computed so as to minimize
the MSE. If the decisions are assumed to be error-free then the binary
sequence {Zk} represents the sequence of transmitted digits which are
assumed to be independent of each other.for the digital communication

system under consideration. In this case Z i is just a binary variable

k-
and estimators given by (4.15) and (4.16) are still linear. All the
observations X;, Yi, i = 0,1 contain the uncertain parameters to be

estimated. Under these assumptions, the constants {ai,Yi} which yield the

optimal estimators are computed from the following orthogonality conditions

= 1l..M (4.17)

|
o
-
=
|

Bl 8015 Ky + A DR 112,) -

. 1 0
E{ Gy - B (2 Yy + A2 Y 12, ] =

|
(=}
]

1..M (4.18)

For convenience only (4.17) is simplified and the derivations leading to
an equation in aj are shown. The equation in Yj can be obtained in an
identical fashion and only the final result is given. Equation (4.17)

yields
Blafz & .+ -z X0 1.}
klZg-1%%-1 k-1)%k-11 145

- BladZ Ky + A-g XL 112L

i=1,...M (4.19)

O T

i

|
|
a;
|
|
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or
E{M 2 8 iz 1-Z 0 Yz
LE %Moy * OB )Xoy e dfies ¥ e )% 112,
= Ra(i), i=1,...M (4.20)
or M
jEl dj[Ra(l-J) + Noéij] = Ra(l), i=1,...M (4.21)
Similarly, for Yj’
M
z Yj[Rb(i-j) + Noﬁij] = Rb(i), 1= e (4.22)
=1

The coefficients {aj,Yj} may be obtained by solving (4.21) and (4.22). An
appropriate model for the sequences {ak} and {bk} is needed prior to the
computation of {aj,Yj}. An initial value of the estimate is selected for
the initialization of the estimator. If k < M, the estimate §k is based
on the previous k observations. If k > M, M of the most recent observations
are employed to compute the estimate. In high speed digital communication
systems, the steady-state operation of the estimator is important and not
the initialization period.

In the above analysis, the decisions are assumed to be error-free.
In practice, however, the assumption is not valid. If a wrong decision is
reached, then the corresponding observation does not contain the uncertain
parameter to be estimated. The equations (4.21) and (4.22) can be extended
to include the decision uncertainty but they result in suboptimal estimators
since the orthogonality condition which yields optimal linear estimators

does not result in optimal estimators for this nonlinear problem. The

3 R It




extended equations in «, and Y, are

j 3

M
2
jElaj[(l-p) Ra(i-j) + Noéij] = (1-p) Ra(i), i=1,...M (4.23)

M

Evjm-p)znb(i-j) +Ngby 1 = (op) RU(), = 1,..M (4.24)

j=1

where p is the average probability of error. The performance of the

estimators is investigated in the next section.

4.3.2, Estimator Performance

The performance of the estimator is examined by computing the

MSE, which for the estimation of a, is given by
~ ~ 2
MSE(3,) = E{(a - 8,)"}

Since the estimate ﬁk is a linear function of the observations, the

orthogonality condition implies that

and, therefore,

MSE(Qk) = E{(ay - &)a,}

M
=R (0) - £ a,R (1)
» gy 19

Similarly, the MSE for the estimate b, is given by

k

- M
SASEENOIS RANC
i=
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In (4.27) and (4.28) the estimator performance is computed based on the

o xS RS Nt P St S~
i = e

H
s assumption of error-free decisions. In practice, however, the detector
3 § makes errors and the performance of the decision-feedback estimator is
2 { = worse than is given in (4.27) and (4.28). If the detector makes-
i
a 3
‘ . N(N < M) errors in the previous M decisions, the MSE could be expressed as
M M
i MSE(& ) = R (0) - TR (1) +p L o R (i)
i=1 =1 "1
. 1
+o7 L z_ [mi Ra(il) + o, Ra(iz)] +ooe :
f=11=1 "1 2 g
| 1 2 .'
‘. 12#11
22 M M
s g Z [c:fi Ra(11)+...+ o Ra(iN)] (4.29)
A f.=1 { =1 1 N
2 1 N
A- iN#ij
E where p is the average probability of error. A similar expression for
{ MSE(Bk) can be obtained.
i 4.3.3, Example
- It is assumed that {ak} and {bk} are Markov sequences with
correlation coefficient p. The means are assumed to be zero and variances

are assumed to be one. The correlations are then given by

|k-2] (4.30)

R (k-4) =R (k-L) = p

It is assumed that the decisions are error-free so that the equations

which yield the coefficients [ai} and {yi} are




o din.

el RN sl it o

!
;
!
j

M
|3-1] P
jElaJ[p + Noéijl P »

M

jEIYj[p|j'i| + Nobij] = pi, { oM (4.32)

In this example, MSE for the two estimators based on the assmuption of
error-free reception are obtained. Equation (4.29) can be employed to

obtain the MSE when the assumption of error-free reception is not valid.

M
MSER) = 1-% ap (4.33)
i=1
~ M i
MSE(b,) =1 -¢ Y4P (4.34)
i=1
The MSE was computed as a function of M, the memory length. The numerical
results obtained with p = .9 and No = 1 are presented in Table 4.1 and
plotted in Fig. 4.1. It is obvious from the expressions (4.33) and (4.34)
that the MSE decreases as M increases. The results obtained assume the
steady-state operation of the estimator. As indicated earlier in high

speed digital communication system applications, steady state operation of

the estimator is of interest and not the initialization period.

4,4, Estimator with Uncertain Observations

4,4,1, General

In the digital communication systems where the received signal

does not always contain the uncertain parameters to be estimated, the
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M
jzlaj[p‘j-il + Nody 1 = ot s I 4.31)
and
M
“zlyj[p|j°i| + Noéij] = pi, A P (4.32)
J’

In this example, MSE for the two estimators based on the assmuption of
error-free reception are obtained. Equation (4.29) can be employed to

obtain the MSE when the assumption of error-free reception is not valid.

M
MSE(E) = 1-% ap (4.33)
i=1
and
~ M i
MSE(b,) =1 -¢ 4P (4.34)
i=1

The MSE was computed as a function of M, the memory length. The numerical
results obtained with p = .9 and Ng = 1 are presented in Table 4.1 and
plotted in Fig. 4.1. It is obvious from the expressions (4.33) and (4.34)
that the MSE decreases as M increases. The results obtained assume the
cteady-state operation of the estimator. As indicated earlier in high
speed digital communication system applications, steady state operation of

the estimator is of interest and not the initialization period.

4.4, Estimator with Uncertain Observations

4.4,1, General
In the digital communication systems where the received signal

does not always contain the uncertain parameters to be estimated, the
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estimation algorithm described in the previous section needs to be modified.
In binary on-off keying systems, the received signal does not contain the
uncertain parameter to be estimated if a zero is transmitted. The esti-
mation problem with uncertain observations has been treated in the
literature recently [60-62]. Nahi [60] developed an optimal MMSE linear
recursive estimator. His estimate was based on all the available data.

The binary indicator random variables were assumed to be independent of

each other. Jackson and Murthy [61] generalized the estimation algorithm to
include limited dependence of the binary random variables characterizing the
uncertainty. Sawaragi et al. [62] employed the Bayesian approach to obtain
an approximate nonlinear estimator for sequential state estimation with
interrupted observation mechanism,

In the present work, it is desired to derive an estimator with
uncertain observations which is used in conjunction with a detector for
digital data reception over channels with memory. The desired estimator
is a modified version of Nahi's linear recursive estimator in that the
filter memory is limited so as to avoid filter divergence. It is assumed
that the transmitted digits are independent of each other., A finite-state
Markov source could also be considered and an analysis similar to Jackson
and Murthy [61] may be used for estimator design. The presence of the

detector is utilized and a decision-directed scheme is derived in the

next section.
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4.4,2. Estimator Derivation

The objective is to derive MMSE limited-memory estimators with
decision-feedback and uncertain observations for the sequences of channel
uncertain parameters {ak} and {bk}. The means and the correlations of the
sequences are as defined previously in (3.4). The estimates ak and Bk are
computed so as to minimize the MSE, i.e., E{(ak'-ﬁk)zlzk} and E{(bk'-gk)zlzk}.
The estimates are assumed to be linear functions of the observations and the
nonlinearity ié introduced in the coefficients through the decision sequence
Zk. The structure of the estimators is assumed to be the same as (4.15)
and (4.16). The estimator coefficients {ai,Yi} are evaluated so as to
minimize the MSE. It is assumed that all the decisions are error-free and,"
therefore, {Zk} represents the sequence of transmitted digits. The set of
estimator coefficients for the linear problem is given by the orthogonality
conditions of (4.17) and (4.18). Proceeding in a similar manner as outlined

in the previous section, the equations which yield the coefficients

{ai,Yi} are obtained and are given by

lyeeM (4.35)

™M=

{zk Z, .R (i=3)+N

L e-ii- 3R TR T WL TSR

1

[zk_izk_jnb(i-jnnoaij} ¥y = Zk_ij(j), L & TR, ) (4.36)

nM

i=1

Notice the difference between equations (4.21), (4.22), and (4.35), (4.36)
due to uncertain observations. Equations (4.35) and (4.36) can be used to

mpute the estimator coefficients. These equations are, however, data

cpendent in that they depend upon the decision sequence Zk' An on-line
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computation of the estimator coefficients is necessary which is not
attractive computationally. The equations are, therefore, averaged over
all possible combinations of Zk‘ The estimator coefficients are computed
off-line from the resulting equations and stored for on-line applications,

The equations which yield the estimator coefficients {ai,Yi} are given as

M
{PlRa(O)+N0} aj+i§1 PiRa(i-j) a, = pR () §oum bl .37
i#j
LR
{p R, (0) +N,} Yat = PIR, (i-3) ¥; = PR, (3), j=1,0..M  (4.38)

i#j

where P1 denotes the probability that a one is transmitted. Under the
assumption of error-~free decisions, pl =R

In practice the assumption of error-free decisions is not valid.
If a wrong decision is reached, then the information provided by the
decision about the presence of the uncertain parameter in the observation
is not correct, Equations (4.37) and (4.38) can be extended to include
this decision uncertainty but they result in suboptimal estimators since
the orthogonality condition which yields optimal linear estimators does
not result in optimal estimators for this nonlinear problem. Equations

(4.37) and (4.38) when extended become

M
2 2 -
{py (1-p)R_(0) + N} a5+151[p1(1'p) R (i-1)} @y = p, (1-P)R_(§),
i#j
j=1,...M (4.39)
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M
{py (1=p)R (0) + N} Yj-fizlipi(l-p)ZRb(i-j)} Y; = P (1-PIR (),
i#]
Jow 1,000 - (4.40)

where p denotes the probability of error and Py is given by
1 0
p; = ztjlj £ OY(,(x,ylnk,zk) dxdy
o e
I
+[ [ £, oyl .2, dxdy] (4.41)

1 Y
& R

Thus, equations which can be used to derive the estimator coefficients

have been developed and in the next section the performance of the

estimators is considered.

4.4,3, Estimator Performance

The performance of the estimator is evaluated by computing the
MSE. For the class of estimators under consideration here, (4.26) still
holds and the MSE is obtained in an identical fashion as for the estimator

with certain observations.

MSE(ak) = E{(ak - ak)ak}
M
- R 0) - z @z, iR (i) (4.42)
Similarly,
M
MSE(bk) = Rb(o) Yi%k- iRb(i) (4.43)

i =1




i

Equations (4.42) and (4.43) are based on the assumption of error-free

decisions. An expression for the MSE when all the decisions are not
error-free can be obtained in a similar manner as (4.29). The performance

of the estimator is data dependent since it is based on the decision

sequence Zk. Bounds on this conditional MSE can be computed and they are
evaluated by computing the MSE under the best and worst operating conditions.
The worst case occurs when all of the M previously received digits are zeroes
and the MSE in this case is the upper bound (UB) on the estimator perform-

ance. From (4.42) and (4.43)

UB(3,) = R, (0) (bbb
UB(Bk) = R, (0) (4.45)

The lower bo'nd (LB) is obtained by evaluating the MSE under the best
operating conditions which occurs when all the previously received digits

are ones, Again using (4.42) and (4.43)

M
LB('ék) = Ra(O) -3 otiRa(i) 4.46)
j=1
" M
LB(bk) = Rb(O) T Yin(i) (4.47)
i=1

The performance of the estimator as discussed above is conditioned
on the decision sequence Zk. The MSE can be averaged over all the possible

sequences and an average MSE can also be evaluated. The expressions for

the average MSE are given by

gkl gt i IS Bl =

Stk
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2 M
MSEave(ak) = Ra(O) -iflplaiRa(i) (4.48)
- M
MSE_ . (b ) =R (0) -iflplYi Ry (1) (4.49)

A numerical example is considered next.

4.4.4, Example

For the numerical example, {ak} and {bk} are again assumed to be
Markov sequences with correlation coefficient p. The means are assumed to

be zero and variances are assumed to be one. The correlation functions are

|k-£]

Ra(k-z) = Rb(k-z) =p (4.50)

The decisions are assumed to be error-free. The set of equations which

yield the estimator coefficients {ai} and {Yi} are

li-3] o g
@02, 2 s +Ng8y 41 = 2 j® e (4.51)

M

i=1

(]
N
.
—
"

AL p|1-JI+Noéij] 1,...M  (4.52)

MR

i=1

In the present work, a simulation is not performed and two specific examples
are solved. Therefore, the actual equations described by (4.51) and (4.52)
are employed for the evaluation of the estimator coefficients and not the
equations given in (4.37) and (4.38). In practice, the estimator coefficients

will be evaluated off-line and equations (4.37) and (4.38) will be employed.

The conditional MSE for both the estimators with the assumption of error-free
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decisions is given by
M :
~ l
MSE(ak) =1 -12 aizk-i P (4.53)
=1
- M i
MSE(bk) =1 -1§1Yizk'i p (4.54)

The MSE for two decision sequences with different memory lengths are

computed. Numerical results are obtained with p = .9 and No = 1. The

steady state operation of the estimator is assumed. The numerical results

vt s il e 2 g i | oy

for the memory length four are presented in Table 4.2 and plotted in Fig. 4.2.

The decision sequence Zk, i.e. {zk-l’ Zieps 2y 3 Zk-4}’ was assumed to be
{1001}. 1In the second example, the memory length is ten and the decision

sequence Z, is {110 1111 00l}. The results are shown in Table 4.3 and

k
Fig. 4.3.

4.5, Discussion
In this chapter, estimation algorithms for receivers with memory

are discussed. The basic goal of the combined estimator-detector structure
is signal detection., The estimation criterion which optimizes the receiver
is derived. Limited-memory estimators with decision-feedback are discussed.
The estimates are assumed to be linear functions of the observations with
nonlinearity introduced through the coefficients which are functions of the
past decisions. Two cases are considered. First, when all the observations
contain the uncertain parameters to be estimated, and secondly when all the

observations do not contain the channel uncertain parameters. Decisions

are assumed to be error-free but results are extended to include the case
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Signalling
Interval

Decision during MSE

the signalling

[a

10
11
12
13
14

15

-5329

.4922
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L4572
4441
.5603
4901
4655
.5887
.6668
.5329
.4922
4572
L4441
4441
TS|

4441
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Figure 4.2 MSE of the estimator with uncertain observations
with memory length four.
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Table 4.3 ~
Signalling Decision during MSE “3
interval the signalling
interval
k 0 4514 5
k+ 1 0 .5559 é ‘
k+ 2 1 .6403 % |
k + 3 1 .5062 ;
k+4 1 4623 ‘
k+5 0 4462
k +6 1 4400
k +7 1 .4376
k + 8 1 .4366
k +9 & 4362
k + 10 0 .5435
;‘ k + 11 0 .6302
: k + 12 1 .5031
%: k + 13 1 4612
: k + 14 0 5637
{ k + 15 1 4821
l k + 16 0 .5807
k + 17 0 .6608
' k + 18 1 .5126
k + 19 1 4649
i
i
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Figure 4.3 MSE of the estimator with uncertain observations
with memory length ten.
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when all the decisions are not assumed to be correct. The performance of the
estimators is computed in terms of the MSE.

In practice, the detector is expected to make errors and the
estimation problem is nonlinear. However, the average probability of error

for digital communication systems is expected to be low and the probability

of N errors (N > 2) in M decisions for a reasonable size M can be assumed to

be negligible., Therefore, an estimator for this problem which is obtained by
using the orthogonality condition is not optimal but is expected to be nearly
optimal due to the almost error-free decision sequence.

The estimation algorithms developed in this chapter may also be used
in control theory. One practical application could be tracking of a target
trajectory where the target return is processed at discrete intervals and
uncertain parameters are estimated. If observation mechanism breaks down,
for instance, due to misalignment of antennas etc. the observations do not
contain the parameters to be estimated and the estimation algorithm of
section 4.4 could be employed in such cases., Thus, the estimation algorithms

developed may find applications in a variety of practical problems.
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5. MODELING OF DIGITAL CHANNELS

5.1. Introduction

Modeling of digital channels is an important problem in the theory
of digital communications receiving considerable attention in the literature.
Analytical models of digital channels find extensive use in the theoretical
prediction of error-rate and other channel error statistics. These
predicted values of error statistice assist in the comparative analysis
of different modems and also in the analysis and performance evaluation
of various error-control techniques. It is desirable for a communication
system designer to be able to predict the preformance before selecting the
system, i.e., the modem and the coding techniques. Digital channel models
also provide an insight into the clustering of errors and this may help
in the development of more efficient and reliable communication techniques.
Thus, the channel modeling problem is uf current interest with potential
applications in the design of data communication networks where it is
essential that the data links be characterized accurately.

There have been two basic approaches to the channel modeling
problem. The first approach has been pursued by Bello and his colleagues
at SIGNATRON Inc. They consider the actual physical processes present
in the transmission media which are responsible for the channel behavior
observed in practice. Basic results from the electromagnetic propagation

theory have been used and the relationship between the random disturbance

processes and the actual antenna parameters of the communication links have

been derived. Bello [63] developed a mathematical model for the troposcatter
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channel. Scattering and other related phenomena are used to derive the -
channel model. The transfef function is assumed to describe the channel
and the statistics are completely determined by the time-frequency
correlation function. The model has been employed to predict the error
rates and for the comparison of the performances of different modems [64-65].
The model has also been used to predict the performance of various codes
and coding techniques [66] by computing the probability of m errors in a
block of length n. This error statistics provides a tool for the performance
evaluation of block codes but does not give an insight into the actual
stochastic behavior of the channel error sequence.

The second class of channel models try to characterize the input-
output behavior of the channel. The actual physical processes present in
the channel are not taken into account and accurate stochastic models which
represent the stochastic behavior of the channel error sequence are developad.
Three major types of input-output models have been proposed. The simplest
of them all are the renewal models [67-69]. They assume that the error
sequence is a discrete renewal process and the occurrence of an error depends
only on the time elapsed since the last error occurrence. The second group
consists of models which consider the bit-by-bit behavior of the error
sequence. Gilbert [70] proposed a two-state Markov model which was later
generalized by Fritchman [71] who discussed a partitioned Markov chain model.
Haddad et.al. [72] considered the statistical behavior of gaps and developed
the third class of models which are the Markov gap models. These models
were later extended to include some additional memory which characterized the

short-term error behavior more accurately [73,74]. The input-output models
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have been employed successfully to predict the performance of error-control
techniques. Clusterinz of errors and the concept of multigaps has been
explored by Adoul [75].
It has been discussed above that the model developed by Bello
considers the actual physical processes involved whereas the input-output
models try to model the stochastic behavior of the error sequence. It
is expected that a model which incorporates both features would represent
a channel more exactly. It is, therefore, desirable to consider a unified
treatment of the channel modeling problem in that a description of the
actual processes is utilized to model the input-output behavior. 1In section -
5.2, attention is focussed on some aspects of a unified treatment of the
channel modeling problem. The main objective of this chapter, however, is
to examine the relationship between receivers with memory and error clustering.
This fits into the general framework of the channel modeling problem since
the channel model depends upon the actual communication system in use and,
therefore, it depends upon the receiver. To examine the relationship of

receivers and error clustering it is necessary to define some measures which

quantitatively characterize this relationship. These measures would describe

the statistical behavior of errors in the channel error sequence. In section

5.3, the measures are defined and numerical results are obtained in the

last section which represent the relationship of receivers and channel models

s PR
B SR

quantitatively for special cases.
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5.2. Channel Modeling Considerations

It has been indicated previously that a unified treatment of the
channel modeling problem will be briefly presented in this section.

Actual physical processes are taken into account while modeling the input-
output behavior of the channel. To accomplish this, it is essential

to consider the actual communication system. The communication system
description would'help in incorporating the knowledge about the actual
physical processes involved into the channel model. It is assumed that the
communication system described in Chapter three is under operation. The
memory in the channel is introduced by the pair of dependent random
variables {vk,ek}. The statistics and other description of these random
variables is employed in deriving a channel model.

First the basic framework and some terminology is introduced. The
channel is assumed to be as shown in Fig. 5.1. It consists of an information
source which generates the input sequence {xi]. The channel corrupts the
transmitted information with noise and produces an output sequence {yi}.

It is assumed that the noise sequence, which is denoted by (ni}, is independent
of the input sequence {xi}. The input and output symbols are the elements

of the Galois Field GF(q) with operation @, which is addition modulo q. The
output sequence is generated by the summation of {xi} and {ni} over GF(q).

The channel error sequence {ei} is defined as a mapping ¢ from the noise sequence

{ni} onto the set {0,1} so that the value of e, is given by

0 if n, = 0

e, = ¢(ni) = { (5.1)

1 otherwise
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Thus, [ei} is a discrete random process taking on values zero and one.

In the binary sequence [ei}, an occurrence of one indicates the presence of
an error. It is this discrete error sequence {ei} whose stochastic behavior
is to be described.

Digital channel models could be generated which utilize the
properties of the channel in representing the input-output behavior. The
generation of model requires the computation of probabilities of various
error clusters or configurations in the sequence {ei]. The error sequence
is assumed to be stationary and ergodic so that the computation of the
statistics of any particular sequence does, indeed, yield the channel model.
An adequate description of a memoryless channel is the average probability
of error. The models for channels with memory are obtained by evaluating
the probabilities of error clusters., For example, the Gilbert's model could
be generated by computing the conditional probabilities P{(ek==0)|(ek_l==0)},
P{(ek=0)1(ek_1=1)}, P{(ek=1)|(ek_1=0)} and p{(ek=1)|(ek_1=1)} for any
pair of adjacent error bits. The expression for one of these four probabilities

is evaluated for illustration purposes,
P{(e, =D |(e,_; =1} = P{(e, = 1)Ne, _; =)}/P(e,_; =1) (5.2)

The joint probability may be obtained from the following

(e =DNGey =) = [JI] ¢

Boo

1 $5lics l(u,v,x,y)dudvdxdy
b R ¢ XkY
k-1"k-1"k 'k

& j‘j‘jj‘ i 0 0 1 1(u9vsx,Y)dUddedy
Q01 xk-

1 %1%

S 1

FORERTEE 1 R
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s IIXK ;O YO lel(U,V.x,y)dudvdxdy
k. IIXX £o YO xOYO(U,V,x,y)dudvdxdy (5.3)
Q, Me-11%ck

where Qij represents the optimum decision regions obtained using the appro-
priate detection scheme when the combination of the hypotheses H;-lﬂi is
true. If all the four conditional probabilities are evaluated it results
in the parameters required to characterize the Gilbert model. It does
not necessarily prove the validity of the model. Other more complicated
models like the partitioned Markov chain models and the Markov gap models
which are based on the knowledge of the physical processes can be derived
in a similar manner but at the expense of a considerable amount of computa-
tional complexity. A receiver with or without memory could be employed and
the channel model obtained will correspond to that particular communication
system.

In the present work, the objective is not to generate complex
channel models and, therefore, the subject is not pursued any further.
In this section, the approach to be used for the modeling of a communication
system has been indicated. The goal in this chapter is to examine the
relationship between the receivers with memory and error clustering. In
the next section, the measures which are used to achieve this goal are
defined and discussed. These measures try to characterize the statistical
dependence of errors and are, thus, essential tothe understanding of channels

with memory and their modeling.
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5.3. Measures of Channel Memory

In this section, an attempt is made to define some measures of
channel memory in terms of the input-output model. It is expected that
these measures will have applications in modeling of channels and also
communication system design. These measures will also describe the
clustering properties of the error sequence of a communication system.

In other words, these measures provide information about the occurrence of
error events based on the past errors.

The channel error sequence {ei} is assumed to be stationary with
(5.4)

where p is the average error rate. Two measures are considered. The

first measure is obtained from statistical considerations and the other
derived from the information theoretic point of view. In statistics, the
correlation of two random variables is determined by means of the correlation
coefficient. A similar measure is defined here using the same concept

to describe the dependence of error events {ei}-

Definition: The (n+l)-th order generalized correlation coefficient

°h+1(m1’m2"'mn) of the sequence of random variables [ei} is defined as

om P
n

E{ (e, -p) (ek_ml-P) N

Oy @My e o) = TS

i It is observed that al = 0 and

i > 1, can be computed from (5.5).

where 02 = p(l-p) is the variance of e

the values of o
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The second measure is derived using the information theoretic
approach. The depend.nce of error events is considered and a measure in

terms of the mutual information [76] is described.

Definition: The (n+l)-th order error clustering coefficient ﬂn+1(m1,..ﬂmn)

is defined as

P[(ek=1)ﬂ(ek_m1-l)ﬂ o ﬂ(ek_mn=1)]

5n+1(m1,m ,...mn) = 4n

P(ek=1)P(ek_m1=1) ... P(e, =1)

k-m
n

This coefficient provides a quantitative measure of the dependence of
various error events. If 5n+l(m1,...mn) = 0, the error events are independent.
A negative value of Bn+1(m1,...mn) indicates negative correlation and a

positive value implies positive correlation. If the event [(ek_m =1)n...n(ek_m =1)]
n

is denoted by E then ﬁn+1(m1,...mh) can be

j

expressed in terms of the mutual informations

and the event (ek_mj=1) by Yj,

PiYole;) Py lE)]
5n+1(m1,...mn) = fn O + 4n P(wl) I
Py .|E .1 P[Y .]
+ 4n —Bcg _mol + An izl
P(Yoo) ALY
= I(¥sE)) + I(¥},E)) + ..o + I(Y 0B )
n-1
£ I(V.LE.L) (5.7)
j-O i j+1

where I(YJ,EJ+I) represents the mutual information of the two events ¥, and

i

E Thus, ”n+1(m1"‘ mn) and Bn+1(m1""mn) define two measures which

j+1°

R B 0 B D o ittt B RN e
Lo <' WA v G N » & =

FPESETE




OIS

g
g
;
s
4
3

e T 13 A R 5o

92

quantitatively specify the dependence of various error events. These

measures can be employed to examine the relationship between receivers and
channel models. It is expected that a receiver which exploits the correlation
of the received data would alter the correlation properties of the error
sequence and thereby changing the channel model. The measures can be

computed for the actual communication system in use if an appropriate model
for the uncertain parameters of the channel is assumed. In the next section,

the computational procedure is illustrated by means of an example.

5.4. Receivers and Error Clustering

In this section, the effect of the receivers on error clustering is
examined. The measures defined earlier provide an insight into the clustering
of errors. The measures describing the correlation properties of the error
sequence can be computed for different communication systems. In particular,
in this section the coefficients an+1(m1,...mn) and Bn+1 (ml,...mn) are
computed for the communication systems using the receivers both with and
without memory. As noted these coefficients provide quantitative information
about the occurrence of errors conditioned on past errors. A higher value
of an+1(m1,...mn) and Bn+1(m1,...mn) provides more information about the
occurrence of errors. Thus, the errors are more predictable for such
communication systems and it is expected that this may help in the development
of more efficient and reliable communication techniques.

The computation procedure is illustrated by considering an example.

The coherent on-off keying system example considered in chapter three is

pursued and the correlation and error clustering coefficients are computed.
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In particular, 02(1) and 52(1), the second order coefficients are evaluated.
Higher order coefficients an+1(m1,...mn) and Bn+1(m1,...mn) can be computed

in a similar fashion. As special cases of (5.5) and (5.6),

E{(e,-p) (e, _;-P)}
o o e e
P (e, =DN(e,,=D)}-p" ;
i p(l-p) £3.4)
and
P{ (e, =1)N(e, .=1)}
B, (1) = oo
P(e=1) P(e,_,=1)
P{ (e, =1)N(e, .=1)}
= 4o —8 K1 (5.9)

P

In order to be able to compute % and 52 it is necessary to evaluate the

joint probability P{(ekal)ﬂ(ek_1=1)}. For the example under consideration,

the joint probability can be expressed as

X 2 =
P{ (e,=DN(e, =1} = erfc(Tk/Noa){erfc(Tk/Noa) +2 erf[(Tk-gk)/(No'i'Ck)ZN

T, T

k "k S 2.9 gyl
+ f f [2n(N0+€)(1-92)2] 1exp{- = p;y 4 }dxdy (5.10)
-« = 2(1‘9 )(No"'C)

The coefficients 7 and 92 are computed as a function of signal to noise
.Lf ratio and the results are obtained for both the receivers i.e. the optimum
receiver without memory and the constrained receiver. These results are

E presented in Tables 5.1 and 5.2 and in Fig. 5.2 and Fig. 5.3. It is




Table 5.1

4

I 2

SNR Optimal receiver Constrained
s without memory receiver with
] memory
: 1 .3020 .2901
¢ 10 .5050 .5066

102 .5832 6640

10° .5878 .7320

10* .5883 .7573

10° .5884 .7662
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Table 5.2

Constrained receiver

SNR Optimal receiver
without memory with memory

1 .3418 .3328
10 .8488 .8529
10 1.0545 1.3692
103 1.0633 1.6279
104 1.0642 1.7314
10° 1.0643 1.7693
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observed that the values of °é and 52 for communication system using the
receiver with memory are greater than the ones obtained when using the
receiver without memory. This indicates that more information about the
occurrence of errors is available and errors are more predictable when
using the receiver with memory. This is the reason that the performance
of receivers with memory is better and also the fact that the errors are
more predictable can be used to devise more efficient communication
techniques. The discrepancy in the behavior of az, 32 for low SNR can be
attributed to the approximations made in the design of the receiver with
memory. The approximate design implied small error probability which

certainly is not valid for the low SNR case.

5.5. Discussion

In this chapter, modeling of digital channels is considered. 1In the
past two different approaches to the channel modeling problem were proposed.
In the present work, a methodology for a unified treatment of the channel
modeling problem is described. The objective is to utilize the knowledge
of the actual physical processes in characterizing the input-output behavior of
the channel more accurately. The emphasis is only on describing the method-
ology and not on generating complex channel models. An attempt is made to
characterize the channel memory quantitatively. Two measures are defined
which quantitatively describe the clustering of errors in the channel error
sequence. Relationship of receivers with memory and channel models is examined.
Receivers with memory which utilize the correlation of the received data are

expected to alter the clustering properties of the channel error sequence.
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communication systems using a receiver with memory and without memory are
compared by computing the correlation measures. The errors generated by

a system using a receiver with memory are more predictable and occurrence of
an error provides more information about the occurrence of further errors.

The example considered illustrated these points.

X s o
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6. SUMMARY AND CONCLUSIONS

In this thesis some aspects of digital communications over channels
with memory have been studied. The basic objective was to model channels with
memory and to develop more efficient and reliable communication techniques over
such channels. 1In particular, the receiver design problem for channels with
memory was considered and also the relationship of receivers and channel models
is examined. In the receiver design problem, the source of channel memory was
assumed to be fading. Receivers with memory were derived for applications with
channels with memory. In Chapter two, a receiver with one-bit memory was con-
sidered. The optimal receiver was derived but it was too complex to implement
and, therefore, a suboptimal decision-feedback receiver with one-bit memory
was considered. The suboptimal receiver was shown to perform better than the
optimal receiver without memory. The emphasis in the second chapter was on
the investigation of the theoretical feasibility of receivers with memory
and not on actually deriving optimum but complex receivers.

A receiver with large memory was considered in the third chapter.

The receiver was assumed to consist of an estimator and a detector. The
estimator provided the information about the existing fading conditions to

the detector which adapted the decision rule accordingly. The memory length

was assumed to be large and asymptotic results were obtained. The design
criterion for the receiver was the minimization of the probability of error.

The performance of the receiver was measured in terms of the average probability
of error. Numerical results were obtained for a specific communication system

and the performance of the constrained receiver with memory was compared to

that of the optimal receiver without memory. The results indicated a significant

RP—
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improvement in the receiver performance when memory was introduced. In
Chapter four, the estimator design was described. A limited-memory decision-
feedback estimator was developed with applications both in communication and

control theory. The performance of the minimum mean-squared error (MMSE)

s

estimator was examined and numerical results were obtained. The results
for estimator with certain observations indicated that the MSE attains its
minimum for a memory length of four. The numerical results for the MSE with

uncertain observations were also presented.

In Chapter five, the modeling of digital channels with memory was
discussed. A unified treatment of the channel modeling problem was
considered. Actual physical processes were employed to describe the input-
output behavior of the channel. A methodology to be used for the development
of such models was described and actual channel models were not derived.

The role of actual communication systems in the clustering of errors in the
channel error sequence was discussed. Two measures were defined which
quantitatively characterize the . correlation of errors. These measures are
expected to have applications in the development of more efficient communica-

tion techniques. Finally, the effect of receivers on the correlation of

errors was considered. The coefficients o and Bm are computed for the

cases when the optimum receiver without memory was used and when the con-

strained receiver was employed. Numerical results obtained indicate that if
: E: the receiver with memory is employed in the communication system, the

| &

a occurrence of an error provides more information about future errors. Thus,

tJ the occurrence of errors could be predicted more accurately.
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| is Finally, the two major research problems which should follow the 1
- work presented here are indicated. The receiver design problem should be |
- pursued in the presence of both fading and intersymbol interference. The
g’ unified treatment of the channel modeling problem should be considered

and channel models, which take into account the actual physical processes
involved while describing the input-output behavior of the channel should

be developed.
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APPENDIX A E
Derivation of Equations from Section 2.5.1
The objective here in this appendix is to present derivations of
some of the expressions obtained in Section 2.5.1. The threshold for the %
detection of the first bit, Tl’ is obtained by minimizing the probability 3
3
of error in the first bit, P(el== 1). Note that this is also the
probability of error of the zero-mémory receiver.
i 0 1 1
= = - S < -
Me = 1) =3 elésm ja) + 5 {4, < b)) (a.1)

where zl is the decision statistic defined in (2.21). If the optimal

decision regions are denoted by QO and Ql’ the above can be written as

P( 0 (x,y)dxdy

1
e, =1) = = f
1 2 | xl,yllﬂ1
9

1 (x,y)dxdy

1
*3 I fx1’Y1lH1
Q

N |

f (21'7)“1 exp{-(x2'+y2)/2}dxdy
Q

1

+§1 H @1 +“))'1exr>{-(x2 +y2)/2(1 +M) ldxdy . (A.2)

o

which when changed into the polar coordinate system results in

’
8
&
»
&
%
H
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® (T )%
P(e,=1) = %‘- [y r exp(-r /2)dr + “ r(l +'ﬂ)-1exp(-r2/2(1 +'ﬂ))dr]
r-(Tl) r=0
- 21 exp(-T,/2) +3 {1-exp(-T,/2(1+T))} (4.3)
The value of the threshold T1 which minimizes the right hand side of
(A.3) is given by
3p(e, =1)/3T, = - % exp(-T,/2) +7 (1 +n)'1exp(-1~1/2(1 +M) =0 (A.4)
This results in (2.24), i.e.,
=217 +myenc1 +M) (A.5)

The thresholds Tk for the optimal scheme are determined by (2.26) and are

obtained so as to minimize the following conditional probability of error:

=T
(e =1lx 1o ) = P> T X Y Hg)
+ P> TR oY o)+ RO <TX LY aHG)

+ P(4, <T, Ix BT L

(x y|u v)dxdy + [ £ (x,y|u,v)dxdy
Xe-12Y k-1°Ho0 {{j‘ S LT S
o

=1

4 U
Q
+({I kaYklxk-ka-pH (x5 ]u,v)dxdy-

01

(x,ylu,V)dxdy]

+ ‘gi f'kaklx

k-1°Tk-1'811
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-3 (1! @m lexp(- 2 +y?) /2)axdy + [ 2m) exp(-(x” +3°) /2)dxdy

01 Ql

+ [T @m+m) Texp(-G +y2)/2(1+M))dxdy
Q
0

+ If (2n(1-+ﬂ)(1-92))-1exp{-[(x-pu)2-+(y-pv)2]/2(1-+ﬂ)(1-92)}dxdy]

Q, (A.6)

Denote the four integrals in (A.6) by Ij’ j=1,2,3,4, in the order they are

listed. The integrals may be written in polar coordinates as

o

e S R exp(-r>/2)dr = exp(-T, /2) (A.7)
r=(Tk)3
3
(5"
13 = f r(l-fﬂ)-lexp{-r2/2(1-+ﬂ)}dr
r=0
=1 - exp{-Tk/2(1-+W)} (A.8)
Py
2n (Tk)2
Y- 241 2 2
1, = [ [ rlan@+ m)(1-p")1 "exp{-[(r cos @-pu)” + (reind-pv)"]
4 g0 =0

/2¢1 +M) (1-p%) }drds

(1,)°

il

; £ (1 +M) (1-p2)} Texpl-(F +074, ) /2(1 +1) (1-p%)}
r=

1
2 -p2
olor (e, _D?/(+M(-p )}dr

-8 _% i 2 i
“ 1= alpet, D LA +MA-) ] ¥ LA +M 1-0D)) ) a.9)

RS AT S ko i | i .
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)
We substitute from (A.7) - (A.9) into (A.6) and set the derivative with "’
respect to '1‘k equal to zero to obtain (2.26).
For the suboptimal scheme, (2.29) is employed to compute the
threshold values Rg and R; . These expressions for Rg and R; are obtained i
so as to minimize the conditional probabilities of error P(e2 =1|Zl =0) 3
k]
and P(e2 =1|Z1 =1). Here the computation of Rg is illustrated by 1
minimizing P(e2 = 1|Zl=0)' R; can be obtained in an identical fashion.
1>(e2—1|z1 0) =5 Mz, 1|z1 0,1,) + 5 P(Z, olz1 0,H,)
=1 ez =0)1" ez, =1,2, =0|H. ) + P(z, =1,2. =0|H, )
4 1} 2 b | 00 2 i 10
+ P = = = =
(z,=0,2, 0|H01) + P(2,=0,2,=0 [HOl)] (A.10)
1 1 0 !
y [P(Zl=0)] is a constant as far as the computation of R2 is concerned K
so it is denoted by C0 and also Rg is denoted by T2 for convenience. g
= = = > > < :
P(e, =1lz; =0) = ¢ [P(L,>T,,8, <1, |y} + {4, >1)50, <T, [, ]} i
+ P{L, <T ,4.<T |0, } +P{2,<T L. <T |H .}] !
22 ROl 7 ol Bl Ve 1 | i
= COI{l-exp(-TI/Z)}exp(-Tz/Z) + {l-exp(-Tl/Z(l +M)}
exp(-Tz/Z) + {1-exp(-T1/2)}{1-exp(-T2/2(1 +M))}
x
P
. .1 2 -1, .3 <1
+ [ 4,1+ exp{-45/2(14M ) (1-qlod, (141 T (1-0T) T, :
‘2 =0 B ot '

1 - -
T +mt (1-0h) Hae, (a.11)
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The derivative of (A.ll) is set to zero to obtain (2.29a).

can be derived in a similar manner.

107

Equation (2.29b)

bl
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APPENDIX B

Some Important Functions

In communication theory, some functions occur quite frequently. 4
A brief summary of the functions used in this thesis is presented in this

appendix. The first function is the error function which is defined as

X 1 u2
erf(x) = J —— exp{- 3 }du (B.1)

o0 427

and the complement of the error function is given by

]

erfc (x) 1 - erf(x)

]

2
—— GXP{- 121— }du (B'Z)
X A2m

The function has been tabulated in most of the standard books on mathematical
tables. For digital computer applications a rational approximation to the

error function can be used [77].

t2-+a t3+a t4-+ast5)exp(-x2).+ e(x) (B.3)

erf(x) =1 2 3 4

(alt + a
where

£ = (1+px) "t
p = .3275911

a, = .254829592, y 8 = .284496736

= 1.421413741, N 1.453152027

1.061405429
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and the error € (x) satisfies the following bound

lex)| < 1.5 x 1077

The other major function of importance is the Marcum's Q function

[78] which is defined as

Q(a,B) = | 2 exp<- L 2+°’ >10(a2)dz (B.4)

where IO(-) is a modified Bessel function of the first kind. The Q function
has been tabulated by Marcum [79]. The integral cannot be evaluated

analytically. An asymptotic approximation to the Q-function is given by

(B.5)

2
’B-oz> % exp[-(B-0) /2] |
'\/2 '\/ZTTO'B

1

Qo5B) = 5 {erfe(—

if B> 1, >> 1 and B >> B-o > 0. DiDonato and Jarnagin [ 80] have described
an efficient numerical technique for the computation of the Q-function.

Their results are presented next. They define two functions V(K,c) and

P(R,D) as
K G2
V(K,c) = % X exp(- —;—) I0 (—%—) r dr (B.6)
(o]
and
2 R
P(R,D) = exp(-D/2) | exp(-k*/2) 1,(x D)r dr ®.7)
(o]

These two functions are related by




{1-exp<- R22D2> IO(R D) + V(‘R-Dlt l%i%L>]

+ if R> D

if R<D

Recursive schemes are utilized to obtain the value of P. If 2RD < M

where M is a positive constant, the following set of relations are employed

2n-1>( 2RD \?2

S =
i o2/ 2072

IR2-D2[ 4n =
s Eo e <1 S IR
R“4+D RA4D

_ /RD\?
SZn i <2n>

Son-2

The initial terms are given by

5= exp(-(R?+D2)/2)

The recursive scheme is continued until

T2n<e and 32n<e (e > 0)

P(R,D) is given by




i et

1 N' N' :
PR,D) ~ 7 [1 - nEO Son n§0 TZnJ 1f R>D

i i o S A

(-) if R<D (B.13)

The above value is given correctly to at least (lloglocl-l) decimal digits.

i
-
¥
3
4




APPENDIX C

Derivation of Equations from Section 2.5.2

In this appendix, some of the equations in the Section 2.5.2 are
derived. The threshold for the detection of the first bit, Tl, is

computed by minimizing the probability of error in the first bit.

. A 1
P(Y, > T,|H)) + 5 B(Y, < T1|H1)

]

N | =

P(e1=1)

S L

[ @M Eexp(-y*/20ay + £ [ @n(#m)) Fexp (-y° /2 (10) )y

T, (c.1)

I
N[

When the derivative of the right hand side of (C.l) is set to zero, it results

In (2:35), 1.e.;

- -;- (zn)"ﬁexp(-rzl/z) + %— (2w(1+n))"5exp(-Ti/2(1+m)) =0 (.2)

and this implies

By {(1¥n)zn(1+n)}%n"% (c.3)

The thresholds T, for the optimum decision rule are obtained by minimizing

k
the conditional probability of error

1
P(e=1|Y, =) = 7 [PCY, > T, [Y, _; Hy) + PCY, > T, [¥, _;.H4)

+ P(Yk < Tk|Yk_1: gp) + BOY, < Tlek-1’“11)3

e R ARG Tk ik s
= g [2:] @07F exp(-y®/2)dy + [ (2n(1#1)) Cexp (-y*/2(1+1))dy
Ty o
Tk 2. % 2 2
+ [T (1-p%)) Pexp (= (y-ov) /214 (1-p"))dy]  (C.4)
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The derivative of (C.4) is set to zero and it yields (2.36). To obtain (2.38)
and (2.39), the expressions for the conditional probability of error
P(e2=1|21=0) and P(e2=1|21=1) are computed and the derivatives are set to

zero. Here (2.38) is obtained and (2.39) can be obtained similarly.
= = =l = = 0 -1- o= = 1
P(e,=1|2,=0) =5 P(z,~1|2~0,H,) + 5 P(2,70|Z,=0,H,)

it

= ZF(—ZFGS [P(22=1,ZI=OIH00) + P(22=1,21=0|H

10’

+ P(2,20,2,=0|Hy,) + P(2,=0,2;=0[H, )]

C0[4 erf(Tl)erfc(Oz) + 4 erf(Tl(L+ﬂ)-%)erfc(Qz)

Q
P

+ 4 erf(02/(1+ﬂ)%)erf(T1) F 2@ (M 2 exp{-sZ/Z(L+n)}

B=0

ferf ((T-pp) (1) E(1-p2) ™¥) 4 ere ((TroB) (1) “E(2-02) H) e

(C.5)

Setting the derivative of (C.5) to zero results in (2.38). The equations
which yield the thresholds Qk and Rk are similar to (2.38) and (2.39) and
are obtained in a similar fashion as outlined above. The steady state solutions
Q and R are obtained by setting Qk+1- 0k = Q and Rk+1 - R.k = R. Approximate
solutions are obtained by linearizing the equations. It is assumed that the
deviations AQ and AR are small. The nonlinear functions are expanded in
Taylor series and only the linear terms are kept, e.g.,

erf(x(L=pB)) = euf(al) - Rﬁé nxp(-uzrz/Z) (G.6)
W 21T

A E PG

\ s R

O W TRV
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3 {
:
£ =
;4 : ]
4 ] U and
Gt =1, 2 2
L exp{-N@ M) P @ + &)
A H
]
: \ =12 24
B o & exp{~T ()T (1 + 9
: -1 2 rq
~ {1-NTAQ(1+M) }exp{-ﬂT 2a+m)) (c.7)
Approximate values of terms which are similar to the terms shown in (C.6)
and (C.7) are substituted in the exact set of equations for Q and R, and it 3

results in the set of simultaneous linear equations (2.42) which are solved

for the threshold values.

% ;\.-'N;M4mj'.a.m‘m o S AT A -l A
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; U APPENDIX D

Illustration of Theorem 2.1

————

In this appendix, theorem 2.1 is: verified for the .Gaussian

fading example. For convenience in illustration, the probability of

|
|

error in the second bit using both the schemes is computed and compared.
The expressions for the probability of error for any arbitrary bit will be
similar but a little more complicated. When r = 0, both the thresholds

Q and R are equal to the no memory threshold T and P(e)nm is given by

9
P(e) = = (atb)erfc(T) + (cHd)erfe(T) +c erf (T(14)) 2)

5
+ (a +§]-'-)erf(T(1+n)-2)

y e
erfc(T) + erf(T(1+N) 2) = Ple) (p.1)

Thus, the equality is attained for r = 0. Now, it is shown that even for
E small r, P(e)m'< P(e)nm' It will then intuitively follow that the inequality

S ! holds for large r.

et o ol MR s

Bas), P{ (e,=1)N(z,=0)} + p{ (e,=1)N(z,=1)} (D.2)

<8 where

+

o
P{ (e,=1)N(z,=0)} = erf(T)erfc(Q) + erf(T(1+N) 2)erfe(Q)

oi
+ erf(Q(1+M) °)erf(T)

=2

1 4 ¢ 2
+5 @n(14)) @ I exp(-B"/2(14M))
B=0

e

ki ke - =
| {erf ((T-0B) (141) 2 (1-02)) "Srer £((T +98) (141 "3 (1-p2) 3}

(D.3)
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and

=
P e

X
P{(e2=1)ﬂ(zl=1)] = erfc(R)erfc(T) + erfe(R)erfe(T(1+1) 2)

Pd By B e

2 1
+ erfc(T)erf(R(1+N) 2) + % @n@+m)) 2

e |

5 2 =1 4 2.k
§ exp(-B"2(14M) “lerfe{(T-pP) (14M) *(1-p") *}ab
B=-r (D.4)

For small r and, therefore, for small p, linear approximations for the error

1 functions are employed in (D.4) and (D.5).

il R IR P AL S = s B
T SR Mo 1 V
.

i 2 L 2k 2 P
erf{ (T-pB) (1+M) “(1-p") °} = erf{T(1+N) 2(1-p") °}

e .
- oB(2m(1+M) (1-p%)) “Zexpl -T2 /2 (147) (1-p )} (D.6)

iyt -%.,..2y-%
erf{ (T+pB) (1+M) 2(1-p7) 2} = erf{T(1+M) 2(1-p") 2}

il
+ pB(2M(1H) (1-p2)) Zexp{ -T2 /2 (14M) (1-p%)} (0.7)

I

ik 2 e e 2 -k
erfe{ (T-pB) (1+N) 2(1-p") °} = erfe{T(1+N) 2(1-p°) 2}

2, . -3 . 2
+ pB(2m(1+N) (1-p7)) 2exp{-T"/2(14M) (1-p7)} (D.8)

"
. i

For small p, therefore (D.3) and (D.4) reduce to

% Z: P{(e2=1)ﬂ(z1=0)} = {erf(T) + erf(T(1+ﬂ)-%)erfc(Q)
é ] + {erf(T) + erf(T(1+ﬂ)-%(1-92)-%)}erf(Q(1+ﬂ)-%)
: (D.9)
[j P{(e,=1)N(z,=1)} = {erfe(T) + erfc(T(1+ﬂ)-%)}erfc(R) 3
+ {erfe(T) + erfc(T<1+ﬂ)'%<1-92)'%)}erf{n(1+n)'%} i

(D.10)
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Therefore, f
L ’
P(e,) = By erfc(Q) +p, erf(Q(14N) *) i
i £
+ (l-ﬁl)erfc(R) + (l-pz)erf(R(1+ﬂ) =y (D.11) B
ke
where 51 = erf(T) + erf(T(14) 2)
i 2 S
B, = erf(T) + erf(T(1+M =(1-p") =)
Utilizing the fact that
Q=T+ A
R=T + LR
and that AQ and AR are small, the following approximations are obtained.
-
erfe(Q) = erfe(T) - 8Q2m “Zexp(-1%/2) (0.12)
e
erfc(R) = erfc(T) - AR(2M) 2exp(-T2/2) (D.13)

- " o

erf(QUIHM 2) = erf(T(14M)™2) + AQ(2m(1+N) Zexp(-12/2(1+1)  (D.14)
P 8 o b E

erf (R(14+1) °) = erf(T(1+N) <) + AR(2T(141)) 2exp(--'l‘Z/Z(l-f-Tl)) (D.15)

Substituting these approximate values into (D.11), the result is

i
RE,) = erfe(T) - (2m >(B, MQ+ (l-Bl)AR}exp(-TZ/Z)

Z)m

.l ok
+ erf(T (1#1) ©) + (2m(1+N)) °{p, 8Q+ (1-B,)4R}

exp (-T2 /2 (147))

ol
<

- P(ez)nm + (Zﬂ) exP(‘TZ/Z){(SZ‘ﬁl)AQ ¥ (’Z'PI)AR] (D-16)




1
P(e,) = erfe(T) + erf(T(1+N) )

.

1 i
(Zﬁ)-§ exp(-TZ/Z) = (2m(1+M)) 2exp(-Tz/Z(H-T]))

T S T P Y
P

we have

ok
P(eZ)nm - P(ez)m = (2m) 2exp(-T2/2)(52-51)(AR-AQ) (D.17)

It was observed earlier that az > ﬂl and also AR > 0, 4Q < 0 so that the

right hand side of (D.17) is positive and thus

Ple,y) > Pley)y,

j
-%_
:
; |
]
f
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APPENDIX E

Central Limit Theorem for Dependent Random Variables

The central limit theorem for indpendent random variables has been
treated extensively in the literature. It has been shown that the central
limit theorem holds for dependent random variables also under certain
conditions [51-53]). In this appendix,a brief exposition to the theorem
and the conditions under which it holds is presented. The material here
follows the discussion on the subject in [52] very closely but is presented
here for completeness.

The sequence of dependent random variables is assumed to be Markov,
Let O be a space of points x representing the possible observations at any
given fixed time. The possible events for which a probability is well
defined are the elements of a g-field @ of subsets of Q. The transition
probability function of the Markov process is denoted by P(x,A). It is
assumed to be Q-measurable and is defined as a function of x for each
event A in 0 and a probability measure on the g-field @ for each x in-Q.

A probability measure P“ can be defined to describe the relative likelihood
of observing the different possible trajectories w = (xo,xl, «+. ) of the
random system being studied through time. The observation on the system at

time n is given by the n-th coordinate function or random variable xn(w) -x.

and the random process is written as {Xn} = {Xn(w); n=0;1, ...}. This random

process [Xn} has been assumed to be Markov above. The g-field generated by

® @®
the sets of the form t-}_(o A where A eQ is denoted byQ ' O -t).(oﬂt, Qt = Q.

A shift transformation Tt corresponding to a forward time shift for

o5

P
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; 0 w = (xo,...xn) is defined by

1 & () =% (E.1)

i

= 1f for each event C € aa
4 P (rC) = P (C £.2
; L (16 M, (E.2)

then the Markov process is called stationary. The g-field Cla was constructed
so that it is exactly the ¢-field generated by the random variables {Xn}.

The o-field generated by a finite number of random variavles Xk, m<k<n,

e i ——

is denoted by a;.

Suppose Yn(w), n=0,1,... is a sequence of real-valued random

nbn -

. variables on the probability space of the Markov process {Xn}. The series

{Yn} is called time-consistent if Yn(w) is measurable with respect to
G:, n=0,1,... and stationary if Yn(TW) = Yn+1(w), n=0,1,... where r is

the shift transfcrmation defined above.

The conditions to be imposed on the stationary Markov sequence

o e i e %S N e\ i ot

el

{xn} are considered next. The following proposition from ergodic theory

SE

is stated without proof. The proof is given in [81].

Proposition: Let p be a probability measure on the g-field @ on Q. 1If ¢

e

is a measure-preserving mapping of @ onto itself, then ¢ is ergodic iff

§= -3
lim el w(ANg “B) = w(A)u(B) (E.3)

n-+® " j=1
]
[{ for each pair of sets A, Be Q.
In the case under consideration here, P is the probability

[} measure and the measure-preserving shift transformation ¢ is ergodic. Let

us define
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koo k
a(n) = sup l; T P@BNTF) - P(B)P(F)| (E.4)
k=1
BGE%
F‘e?o
where 5, = e{xj,j < 0} is the g-field generated by X;» J £0 and
30 = B{xj’J > 0} is the g-field generated by XJ, J > 0. The

stationary Markov sequence {xn] is called uniformly ergodic if a(n)~0 as
e,
A property of the Markov sequence {xn} is now discussed. This

property is stronger than what is actually needed for the work in this thesis,

Define

d(n) = sup_ |P(BNF) - P(B)R(F)| (E.5)
B GBO

F esn

The Markov process is called strongly mixing if d(n)»0as n* @®. This term

strongly mixing as defined here is different and somewhat weaker [52] than the
definition given in the standard literature on ergodic theory, e.g.,

Biilingsley [81] and Arnolid and Avez [82].

Let {Yén), k=0,1 ...} be a time consistent series. Such a series

is called uniformly asymptotically negligible if for each e > 0
Mm sup P[|Y1£n)(w)| >e]= 0
n~ k

. Wi

Define Y(n)(s,t) = I Yk v

k=s

e halichae do Lt dulll
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The stationary Markov process {Xk} is said to have central structure if for

any uniformly asymptotically negligible stationary sequence {Yk(h)} af “time
consistent series, any partial sums Y(n)(sn,tn), - < s, < tn < ®, are well
approximated in distribution by a limiting distribution. The following

theorem is stated without proof.

Theorem: Let {Xn} be a stationary Markov process. The process has central
structure iff it is uniformly ergodic.

Finally, the central limit theorem is stated.

Theorem: Assume that {xk} is a stationary Markov process. Assume that

E{xk} = 0 and the following conditions are satisfied

(n)

2
W Ef|Y"V (s .t )% ~ nee -8 )

as (tn-sn) -+ ®, where h(f) ? ® as £ * =

'2+6} 149/2

an (v e 01" = ome s )t

as (tn-sn) -+ » for some § > 0.

(iii) {xk} is uniformly ergodic.

(n)

Then Y (Sn,tn) is asymptotically normally distributed.

The condition (iii) can be replaced by the strong mixing condition

in the statement of the above theorem. As noted earlier strong mixing is a

more stringent condition than the uniform ergodicity.




The stationary Markov process {xk} is said to have central structure if for

any uniformly asymptotically negligible stationary sequence {Yk(h)} af “time
consistent series, any partial sums Y(n)(sn,tn), -~ < B < tn < ®, are well
approximated in distribution by a limiting distribution. The following

theorem is stated without proof.

Theorem: Let {Xn} be a stationary Markov process. The process has central
E structure iff it is uniformly ergodic.

Finally, the central limit theorem is stated.

: Theorem: Assume that {xk} is a stationary Markov process. Assume that

E{Xk} = 0 and the following conditions are satisfied

(n)

@) E{r™ e e 1% ~ nee s )

as (tn-sn) -+ ®, where h(4) * ® as {4 * =

o
ay E([v™ s )P = omee s

as (tn-sn) -+ @ for some § > 0.

f (iii) {xk} is uniformly ergodic.

Then Y(n) (Sn,tn) is asymptotically normally distributed.

The condition (iii) can be replaced by the strong mixing condition

in the statement of the above theorem. As noted earlier strong mixing is a

more stringent condition than the uniform ergodicity.
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