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In the present work , some aspects of digital communicat ions over

channels with memory are studied . The basic objective is to mode l channels

with memory and to develop more eff icient  and reliable communicat ion tech -

V ni ques over such channels. In particular , the rece iver design problem for

channels with memory is considered and then the relationship of receivers

~. and channel models is examined. In the receiver design problem , fading is

assumed to be the source of channel memory. First , the idea of receivers

with memory is investigated and a suboptimal receiver with one-bit memory

is derived which performs better than the optima l receiver without memory.

A receiver with large memory is devised which consists of an estimator and

( a detector. The decision rule adapts to the channe l conditions based on the

. information provided by the estimator. The performance of the receiver is

-
~~ examined by computing the average probability of error.  The estimator is a

limited-memory decision-feedback estimator , the estimation criterion being

the 144SE. Finally , a methodology is described which can be used to develop h
0 

channe l models based on the physical processes involved. Two measures are

defined which quantitatively characterize the correlation of errors and then j
1 the relationship of the receiver design problem to channel modeling is

- examined,
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1. INTRODUCTI ON

F 1.1. General

Error-free and reliable transfer of information is the basic goal

of any communication system. Analog communication has been the traditional

mode of communication but in the recent past digital communication has

L become increasingly popular . There are several reasons for this trend

V towards digital conununicat~on. One of the prime reasons for this gradual
V 

shift is the feasibility of relatively error-free transmission over long

distances . Digita l communication systems m a y  also capitalize on the 
—

recent revolution in the integrated circuit technology and are , thus , cost

effective. Some of the other features of digita l communication systems V

are high speed transmission and error-control capabilities . In the present

work , only digita l communication systems are considered because of the

V 
current interest in such systems . A block diagram of a typica l digi tal

communication system is shown in Fig. 1.1.

• Digita l communication systems have conventionally been assumed to

be memoryless. This assumption results in notationa l convenience and it also

simplifies the ana lysis. In practice , however , most digital  communication

systems exhibit memory . By memory of a digita l communication system , it is

meant that the digi tal  data at the receiving end is correlated . The major

sources of the statistical dependence are the source, the channel encoder and j
- the channe l i t s e l f .  Quite frequently the source is assumed to produce

independent bits which is not valid in pract ice.  Most of the practica l

fl sources generate s ta t i s t ica l ly  dependent data sequence to be transmitted . The

V source encoder , which has not been shown explici t ly in Fig. 1.1, is considered

U -

V
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r Figure 1.1. Block diagram of a d ig i ta l  communication system .
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to be a part of the source and it also contributes to the statistical

d~~~ndence of the data input to the channel encoder. Deterministic redun-

dancy is introduced in the channel encoder for error-control. In both

I block coding and convolutional coding, parity check bits are added to every

k information bits and a total of n bits are transmitted . The physical

processes responsible for the channel memory are intersymbol interference ,

fading and correlated noise. The dependence introduced by the source and the

I
channel encoder are beyond the scope of the work presented here and, therefore,

these two have not received any further consideration. Thus, channel is V

considered to be the only source of memory in the received data sequence and

communication over such channels is the subject of this thesis.

— 1.2. Channels with Memory

Channels with memory have been studied quite extensively in the

literature . Development of reliable and more efficient communication schemes

has been an area of intense research activity as evidenced by the survey

~~

. article of Lucky [1]. A considerable amount of attention has been focussed ~n

the problem of devising efficient detection schemes. The standard reception

schemes assume the independence of the received data bits and a bit-by-bit

• I detection without memory is performed, the design criterion being the mninimi-

zation of the average probability of error . In most of the practical digital

I . communication systems , however , the independence assumption is not valid due

to the channel memory . The received data is correlated and it is expected

that receivers with memory which exploit this dependence would yield bet ter

[ performance .



- 
~~~~~~~~~~~~~~~~~~~

I

Intersymbol interference has traditionally been treated as the source

r 
of channel memory and the receiver design problem for such channels has been

studied extensively [2-38]. Several classes of equalization techniques have

been proposed . A brief summary of the effort in the genera l area of receiver

design for intersymbol interference channels is presented here . The adaptive

£ equalization systems were firs t formalized by Lucky [2 ,3]. An adaptive mean-

square equalizer is a finite-length transversal filter whose coefficients are

adjusted using decision-directed estimation loops so as to minimize mean-

I 

squared error (MSE) in the output samples . Proakis and Miller [4] and Gersho - - : 1

[5] have analyzed the structure with respect to convergence time and tap gain

error . Several authors f 6-10] have examined techniques for faster convergence.

Structures which are different  from the basic linear equalizer [1) have also

been considered , such as in [11-17]. Nonlinear equalizers have also been

considered . Several suboptima l nonlinear receivers have been exp lored in the

literature [18-21]. Decision-feedback equalizer has been treated extensively .

I The output samples 
~ 

are fed back through a transversal f i l te r  to subtract

out the tails of these pulses from subsequent pulses. Austin [22] examined

- this “bootstrap” system and the optimization for minimum mean-squared error
. 1

(MMSE) was performed by Monsen [23]. More recently Monsen [24] has compared

the performance of a decision feedback equalizer and a linear equalizer.

Price [25] considered the receiver in the zero-forcing mode of operation .

Salz (26], C lark [27] and George , Bowen and Storey [281 have also treated

-
~ different variations of the basic decision-feedback equa lizer. Maximum-

likelihood sequence estimation in the presence of intersymbol interference has

V been a popular area of investigation [29-38]. Chang and Hancock [29] devised an

—V ~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ —- V -- ~~V ~~-V ~ V~~~~~~~~ V - V  — ~V V ~~~~~~~~~~~~~~~~~~~ ~~~~ - ~~~~~~~~~~~~~~
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• - optimum decision procedure in which a decision was made on the basis of the

V complete message. Abend and Fritchman 130] modified the procedure and I
derived an optimum sequential compound detector under a fixed delay constraint.

They considered optimal bit-by-bit detection based on the sequence received

in the past. Gonsalves [31] has also considered a related problem. The

Viterbi algorithm generated considerable interest and it found applications

in receiver design for intersymbol interference channels [32-37], with the

objective of finding the most likely sequence transmitted . The comp lexity
- . 

increases for larger sequences. Recently Yao and Milstein [38] have considered

a maximum likelihood bit detector in the presence of intersymbol interference.

The other major source of channel memory, fading , has received very

little attention. The memory of the channel is characterized by the statis-

V tical dependence of the received data bits. Fading is assumed to be a slowly

V varying process (especially for high data rates) and its contribution during - 

V

different  signalling intervals is correlated . This correlat ion could be

exploited to yield a receiver with better performance. The present work will

concentrate of fading as the source of channel memory and wil l  assume the

absence of intersymbol interference. The goal here is , therefore , to derive V 
-

receiver algorithms which exploit the continuity and correlation of the fading

H process to yield a better performance in the average probability of error sense. V~

.) Memory will  have to be incorporated in the receivers to attain the goal stated

above. 1i the next section, the organization of this thesis is described arV~

an outline is presented. -

1.3. Thesis Outline

The major problem considered in the present work is the receiver 
V

V 

design problem for channels with memory. The source of channel memory is 



- — I--
V 

~~~~ ~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~ 
- ___________________• —a-— 5

- - - - - 
~~~~~~~~~~ - 

V 

- 
- • V — V ~ ~~~~~~~~~ ~~~~~~ ~

I
1 6

I 
assumed to be fading . Chapter two introduces the receiver design problem.

The feasibility of receivers with memory is investigated and a receiver with

one-bit memory is considered . The statistical correlation of the two adjacent

r data bits is utilized to achieve a receiver with better performance. The

standard design criterion, i.e. the minimization of probability of error ,

is employed . The performance measure is the average probabi lity of error.

V Two examples are considered and numerical results obtained indicate that an

improvement in the performance is attained . This leads us to expect that

;- receivers with larger memory would perform even better.

An alternative approach to receiver design problem is investigated and ~ - V

— receivers with larger memory are considered next. The receiver is assumed
— —  I -~

- 
to consist of an estimator and a detector. The estimator is responsible for I •~~

the estimation of uncertain parameters present in the received signal. The

estimator is followed by a detector which treats the estimate furnished by

F the estimator as the correct value of the uncertain parameter and adapts

the decision rule to the existing channel conditions . In Chapters three
4and four the receiver design problem with large memory is discussed . In

Chapter three , an estimate of the uncertain parameters is assumed to be

available and the attention is directed towards the development of an optimum

adaptive detector . The memory length is assumed to be large and asymptotic

results are obtained . The optimum decision rule is determined and the

performance is examined by considering the probability of error. An examp le

is presented to illustrate the receiver. In Chapter four, the principles of

estimator design are discussed . The estimation criterion which results in

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ estimator with
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decision-feedback is derived . The estimate is assumed to be a linear function

of the observations with nonlinearity introduced through the coefficients due

to decision-feedback. In some communication system applications , the received

II signal does not always contain the uncertain parameter to be estimated .

For these applica tions , the estimator is to be modified to include thi8

uncertainty about the presence of the parameter to be estimated . This

situation arises in the on-off keying systems. This estimation algorithm also

- finds applications in control theory. While tracking the trajectory of a

target, the observation mechanism may fail, for instance , due to misa lignment

of antennas. Examples are considered and the performance of the estimators
-

- 

[ is examined by computing the mean-squared error .

- In Chapter five , another aspect of digita l communications over

- - channels with memory is considered. Modeling of digital channels is an

important problem and has been discussed in this chapter . The concept of

channel modeling based on the actual physical processes to characterize the 
V

input-outpu t behavior of the channel is described . Relationship of receivers

with memory and channel models is examined. Some measures to represent the

-~ channel memory quantitatively are defined and ill ustrated by an example. . 

V

—

Finally, the work is summarized and the results are presented in the last

chapter .

II
II
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2.  RECEIVER WITH ONE-BI T MEMORY

2.1. Introduction

As indicated in the first chapter, the objective of the presentr work is to design receivers wi th memory for channels which exhibit memory .

The source of channel memory is assumed to be fading and the absence of

LV 

intersymbol interference is assumed . Signal detection schemes with memory

F have been considered in the literature [39-42]. The receiver problem in V

such cases can be formulated as a hypothesis testing problem . A Bayesian

approach results in a decision rule in which the likelihood ratio is

compared to a threshold to decide as to which hypothesis is true . Cover and

Hellman [39-41] have considered the hypothesis testing problem with finite

V memory. The data is reduced to an rn-valued statistic and it is emp loyed

to make a decision . The hypotheses themselves are independent of each other.

The difference between the design of receivers with memory and the hypothesis

testing with memory is that the statistics corresponding to each signalling

interva l are statist ically dependent in the receiver design problem whereas

the experiments in the hypothesis testing problem are assumed to be independent .

Baxa and Nolte [42] have considered the signal detection problem using Cover ’s

- approach . They discuss the problem under the constraint of finite soft

memory. The memory is modeled as a finite-state machine and the memory is

(1 updated according to a suboptimal time dependent rule. Baxa and Nolte do not

consider channels with memory and the statistical correlation of the

received bits .

En the present work, receivers with memory are derived for digital

communication systems where the received bits are correlated . Fading is

~- • l l  
_ _ _ _ _ _ _ _ _ _ _ _

IV _ VL_ __ 
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I assumed to be the disturbance process causing this statistical dependence .

$ In this chapter, a receiver with one-bit memory is investigated so that the
V 

V 
decision on a particular bit is based on the statistics and the decision

of the previous bit. Channels generally exhibit a larger memory and ,
- .  

therefore, a receiver with a larger memory is expected to perform better

but at the expense of implementation complexity . The discussion of such

receivers is postponed for later chapters . The objective in this chapter

is to investigate the idea of a receiver with memory for fading channels.

The emphasis is on exploring the theoretical feasibi lity of the idea and

not on deriving a relatively complex detection algorithm with larger memory.

In the next section , the problem Is defined and appropriate assumptions

are stated . In the following two sections , an optimal solution and a

decision-feedback suboptima l scheme are described. Fina lly , two examp les

are considered and numerical results are presented .

2 . 2 .  Problem Statement

- 
The objective of this chapter is to design a receiver with one-bit

memory for fading communication channels . It is assumed that a binary

1: system is operating over a fading channel in the absence of intersymbo l

Interference . The transmitted bits are assumed to be independent with zeros

and ones equiprobable . The transmitted signal is s0(t) or s1
(t) depending

I I on whether a zero or a one is sent . The transmitted signa l in any signalling 
V

r interva l [0 ,T) is given as follows :

c ~~ f i (t)  cos (~.1t + 01( t ) )  0 < t <

f 8
1

( t )  
1 

(2.1)

L 

0 Otherwise

- ——----— - -S---— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--—--~~—-
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I with

T[ r f~
(t)dt

~~~
l (2.2)

[ and where ~ and ø~ correspond to frequency and phase modulations respectively.

Orthogonal signalling is assumed , i.e.,

T 
s
0
(t) s

1
(t)dt = 0 (2.3)

r The channel is assumed to be corrupted by additive white Gaussian noise

n(t) with power spectrum N
0
. Fading is assumed to be slow so that the

I channel gain and phase are constant over the period of one signalling

interval and thus may be represented by a sequence of dependent random

variable pairs [vk,8k~
. The sequence {vk,0k3 is defined by the expression

r of the received signa l r( t ) during the k-th signalling interval [ (k-l)T ,kT) ,
V 

name ly, if H~ (the hypothesis that i is transmitted during the k-tb interval)
f .

I is true , then 4
-J , 

r
k
(t) ~ rE t + (k-l)T] = V

k~~~~ 
f 1(t) cos (w~t +~ 1(t) +e k )

+ n [t  + (k-l)T]

t L. = V
k 

sI (t ,ek) + n.~(t) , 0 < t < T , i O , 1 (2.4)

II Hence , V
k 

and ek denote the contributions of amplitude and phase fading
I V during the k-tb signalling period. The statistica l dependence in the

[ received data is introduced by the correlation of the sequence [V k , 8k
).

This statistica l dependence as a function of the fading process is utilized

to derive the detection scheme with memory. A correlation receiver is

~~~

, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~
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- employed to process the incoming waveform , as shown in the block diagram of

Fig . 2.1. The outputs of the integrators which serve as decision statistic

are defined by

T
1. = $ rk (t)  ~/i f1(t)cos(W1t + 01( t))d t  , i 0 ,1 (2.5a)

‘
~
k 

— S rk (t) AJ~ f j (t)sin(W it + Ø j (t))dt  , i 0 , l (2.5b)

The basic form of the desired recursive structure to be optimized is

shown in Fig. 2 .2 .  The sequences ~~~~~~~~~~~~ are functions of the

sequence [v k ,O k
), and this relationship is exploited to design the receiver

• with one-bit memory next .

2.3. An Optima l Solution

In order to obtain the optimal solution for the one-bit memory

detection problem , it is treated as a four-hypothesis Bayesian decision

prob lem . For notationa l convenience , only the coherent reception case - 
V

(no phase uncertainty) is considered so that under the signal model (2.1)

Y~ = 0 , i 0 ,1. Let H1~ denote the hypothesis that H~~ 1 and H~ are true, i.e.

during (k- L ) -  ~h signa l ling interva l i is transmitted and j  is sent during

• ) the k-th signalling interval. The four hypotheses are def ined as follows :

V H
00

: rk_ l ( t)  = vk_ l so (t)  + n (t) 
V

(2.6a)
- - rk (t) vkso (t)  + n

K
(t)

! ~- -~~ 

-

H01: rk l
(t)  = vk_ l Bo (t) + nk l (t)1 1
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• 1 
~~~~f (t)cos (w0t+ø0

(t)) 
0

j 5
T

~ I, 
b
~~~~~~~~

f0(t)sin(w0t+

~
O

(t)) III dtIIl ~~~~~~~~~~~~

rk (t)

~~~~~~~~~~f1
(t)cos(w

1t+Ø 1
(t))  l J . . $ ~

~~~~~~~~ f 1(t)sin (w 1t + Ø 1( t ))  

r~ ç
T

dt

Figure 2.1. Block diagram of the demodu lator .
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r k ( t )

MODULATOR

IV

DECISION

STATI STIC

PROCESSOR

I 
g(X~ ,Y~ ) 

____ 

~~~~~g (4,Y~ )

DELAY

a ’  
_ _  _ _ _  _ _I _J DECISION

E DEVICE

I ~,
[Z

k 1

I
Figure 2 . 2 .  Optimum receiver structure . V
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I H is : rk l (t)  = v
k 151(t) + nk l (t)

- (2.6c)

~ T rk
(t) = v

k
so

(t) + n
k
(t)

V 
H11: r~~ 1(t) = vk_lsl

(t) + 1
~k_ l (t)

-~~ & (2 .6d)
~

- 

— 

rk
(t) = v

k
s
l
(t) +

Bayesian approach is used to obtain the optima l solution with the Hamming

j  distance as the cost function . This is equiva lent to minimizing the

conditiona l probabi lity of error given the previous bit statistics

i P(ek f X ~ _ l , X
~~ l ) where [x~) and [x~) ~re defined by (2.5). If and

- 
represent the optimum decision regions in the (X~ ,X~) plane for the

V~ hypotheses Hk and Hk~ 
then the Bayes risk may be expressed as

V 

1 R 

~ L ss ~~00 ~Y I~~~~ 1,~~~_ 1)~~~~y + 
~~~ 

f10
(x ,yIX~~1,X~~1)dxdy

- , + $~ f01(x ,yJX~~1,X~~1
)dxdy + $$ f11(x ,yI~~~ 1

,X~~1)dxdy] 
(2 .7)

~:- [
I I where ~~~~~~~~~~~~~~~~ denotes the conditiona l density of ~~~~~ given

and hy pothes is H
i~~ 

The conditiona l densities are given by

~ 1 
0 1 

- Sh
~

(x)h
~~ l

(u )h
~

(y)h
~~]

(v)f (vk,vk l )dv
k

dvk l
- 

fjj(x YIX
~~l~

xk..l) =

~ L j’ hk l (u)h k l (v) f V (vk l )dv k l

(2.8)
11

where f~~ v j
(X)~ denoted by hk (x ) ,  is the conditiona l density of

V k k ~
H
k j

[ 
given the fading parameter vk and the hy pothesis Hk . I t should be noted

that the conditiona l independence of X~ , 4, X~~1 and X~_1 has been utilized in

~~k~ii _ _ _ _ _ _- - - - — - - -~~~~~~~~~ - — -  -~~ ~~~~~~ V~~~~~~~~~ V_ VV V ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ - - — - -- _ _ _ _ _ _ _
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obtaining (2.8). Furthermore, the conditional densities h~ (x) are Gaussian

and thus the resulting densities used in (2.7) may be easily derived if an

appropriate model for the density of the fading sequence [v
k) 

is assumed .

The decision regions O~, i O ,]~ obtained by the minimization of the Bayes ’

risk given in (2.7) or equivalently obtained by the minimization of the

conditiona l probability of error P(e
kIX

~~l,X~~l
) are given by the following

likelihood ratio test:

- 

f01(x ,yI~~ ~~
,4 1~ 

+ f 11(x ,y I ~~~~1,4 1) ~~
0 1 0 1 (2.9)

f OO (x ,y (x k_ l , Xk ..l ) +f10(x ,yIX~.~1,X.~_1) H~
which is seen, of course , to depend on the previous bit statistics and

x~ 1. Equation (2.9) determines the optimum decision regions in the two-

dimensional space (x~,X~ ) as a function of var iables and 4_ 1~ 
The

resulting decision rule may also be expressed in terms of the likelihood

ratios A
i and is given by

H
A + A  ~~ l + A  (2 .10)
1 3~~~ 2

-
V 

where A~ are defined as fo l lows

A
1 = f01(x,yI~~_1,4~1) / f 00(x,yI~~_1,4_1) (2 . lla)

L 
~ 

-

~ , 

A
2 

= f 10(x ,y~ x~~~1,4 1) /f 00 (x ,y~x~~~1,4 j ) (2 .l lb)

A
3 

= ~~~~~~~~~~~~~~~~~~~~~~~ (2.llc )

L

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- 
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It is observed that the optimum detection scheme with one-bit memo~~ is quite

- -  comp lex to implement because the decision rule depends upon the level of

V the previous output . However, the decision regions are different from the

ones for the memoryless scheme which indicates that an improvement is

feasible if a detection scheme with memory is employed . Therefore, in the

next section a suboptimal detection algorithm with memory is considered

which keeps the essential features of the optimal scheme in that it

minimizes the bit-error probability and is simpler to implement .

2.4.  Suboptima l Scheme 4

The suboptima l scheme considered in this section is a decision-

feedback scheme for which it is assumed that the system error probability

is sufficiently low so tha t the received digits can be assumed to be correct.

This simplifies the receiver structure considerably. There is , however, a

V 
possibility of error propagation but it is not very serious . The problem

of error propagation in decision-directed schemes has been considered

- previous ly by Davisson and Schwartz [43] . The suboptima l scheme may also

be considered as a simplification of the optimal scheme in that the k-th

- 
bit decision depends only on the two-level quantized value of the previous

signalling interval statistic . Namely, the k-tb bit decision is assumed to

be a function of the decision on the previous bit and not of the variables

Ii X~~~1, X~~1
. In the suboptima l scheme, two different likelihood ratios and 4

are emp loyed for the decision on the previous bi t .  If the output of the

- 
receiver is represented by the binary sequence [Zk), 

the expressions for the

likelihood ratio Xk(Zkl ) can be written as

I n
‘- - -I--
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- I
: I Xk (Zk l ) 

if Zk l  = 0 (2 .12)

X otherwise

I where

V J 0 1 ~ 
(x,y lZk 1 = 0)

X1
~
XkIZk1)H1,

~ (2.]3a)

£ o 1 0 (X,Y~
Zk l = 0)

V 
X
k
X
kIZkl ,Hk

and

~ 1 1 (x ,y I Z k l = 1)

-- 1 XIKXk1Zk_l,
H
k (2.l3b)

... 
~ 1 0 (x ,y t Z k ~ 

= 1)
X

k
X1~

I Z k l ~
Hk

The minimization of the conditional probability of error results in the
V 

decision rule

4

X~ ~ 1 if Zk l  
= i (2.14 )

t , A block diagram of the suboptimal receiver is shown in Fig. 2.3. The decision

on the first bit for both the optima l and suboptimal scheme is made using

- 
~~~~~

-
~~
‘ the decision rule without memory . The likelihood ratio for the scheme without

memory is given by

[1
V 

V
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-
~~~~ I ~~ 1

(x ,y)
xkxkkk, A -I- — 

~ ~ ~ 0(x ,y) (2.15)

t ~~
- X

k
X

k
I}l

k

~ I and the decision rule is
4.’

- 1 (2 .16)

0- - F  Hk

-- Then, for all succeeding bits the decision rule is modified according to

the scheme with memory. T~o alternative schemes are considered here.

First , the decision on each bit is made based on the decision rule which

~

‘- assumes that the decision rule used for the previous bit was memoryless ,
V 

~ 
i.e., (2.16). Thus, the decision rule (2.14) is fixed and is a function

of only the previous decision, i.e. Zk l . The second possible schemeF
is recursive in that the decision rule used for the detection of the

previous bit is employed to obtain the decision rule for the k-th bit.

V I. 

It can be shown that the recursive algorithm attains a steady state if the

F sequence fvk) 
is stationary and the steady state decision rule may be employed

for detection purposes and only its derivation is obtained recursively.

In the next section , two examples are considered where further details are

furnished about both the optimal and the suboptimal schemes. The performance

~~ L of the detection schemes is also examined in terms of the probability of error.

i’~ 
~~ 

2.5.  Examples

In this section , two examples are considered to illustrate the

U detection algorithms with one-bit memory . Binary on-off keying systems are

chosen as examples since the decision rules cou ld be expressed as simple

-- ~• - • - - ~~ ~~.. ~~~~~~~~ ~~~~~~~~ •~~~~~~~~~~~~ _ _ _ _ _  V
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I threshold tests, which are easy to visualize and represent. The two signals

corresponding to the transmission of a zero and a one are given by

r
~ (2.17)

- s
1(
t) = s(t) f(t)cos(w t +Ø(t))

where f ( t )  has been norma lized as in (2 .2 ) .  The f i rs t  examp le considers

the case of Rayleigh fading and the second treats Gaussian fading .

L 2.5.1.  Rayleigh Fading Example -
V

The communication system considered in this example is assumed to
~ -...
- be operating over a channel where both the amplitude and the phase of the

V 

received signal vary. The envelope of the received signal is assumed to have 
4

Rayleigh density and the phase is assumed to have uniform density. This model

is frequently used for ionospheric and tropospheric links . Using the signa l

model of (2.1) the received signa l during the k-th signalling interval,

represented by rk ( t ),  may be written under the two hypotheses as

~ 
1•

~ 
11k rk (t) = nk (t)  , 0 < t C T (2.18a1

I 
~ 

4: rk
(t) V

k f ( t ) c o s [ W t +
~~

(t) 
~~

0k 3 + ~~~~ ( t ) ,  0 < t < T (2.18b)

The signal component could be expressed in terms of its quadrature components

and rk(t) is given by 
- 

-

Ill R~: r
k
(t) n.K (t) , 0 t T (2 .19a )

4: r
k

(t ) a lkf(t)cos[w t +ø(t)] +a2k f( t)sin(u
~
t+

~~
(t )]

+n .K ( t )

— alksl(t) +a2k s2(t) +n k
(t)  , 0 < t < T (2 .l9b)

~~13
~~~~~ 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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where a
lk and 52k are independent zero-mean Gaussian random variables with

[1 iariance a2 (where E(v
2] = 2O~). Also, the two terms s (t) and s (t) are

I 
orthogonal. The sequences (alk~ and t~2k 1 are assumed to be corr:lated , V

otherwise a metuoryless scheme results. The correlation coefficient of

both sequences is denoted by r , namely

~ 
j

E [a
~ k a

~k l 1 = r o~ , i = 1,2 (2.20)

The structure of the optimum receiver is shown in Fig. 2.4. The decision

• rule is of the form

4

(.. £k = + 

~“k~ ~~ 

T
k 

(2.21) 4 - -

Ilk

where Xk 
and 

~k 
correspond to 4 and 4 defined in (2.5) and Tk is the

optimum threshold . The objective is to devise a decision rule which I~. I
uti lizes the correla tion of (x.K ,Yk ) with the pair (X.K_l,Yk l ) to yield a

better error performance. This is accomp lished by computing the threshold

Tk 
at each step which minimizes the probability of error in the k-th bit

and the threshold T
k 

is a function of the signal-to-noise ratio, the

L correlation between (xk~
Yk ) and ~~~~~~~~~~ and the statistic of the previous

bit Lk l . The signal-to-noise ratio ~1 and the correlation coefficient p
1” i 11Li between the pairs of random variables (X.K ) Xk l ) and 

~~k’~ k 1~ 
are def ined as :

U = c~~(N0) 1 (2.22)

LI 
P = (~1r ) ( f l + l ) ~~ (2.23)

~~~ I

H
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where r has been defined in (2.20). It must be noted here that and

are independent of each other due to the independence of 8lk and

Hence the conditional joint densities of the pairs (Xk,Xk I ) and 
~~k”~k-l~

are also Gaussian because of the previous assumptions . The optimal and

the suboptima l schemes are now described. Only the results are presented

I here , the detailed derivations are given in the Appendix A.

V 

J 2.5.1.1. Optimal Scheme

The optimal scheme involves the computation of the optimum decision

I threshold . The decision statistic is compared to the threshold T
k 

and

a decision on the k-th bit is reached . The threshold for the detection

of the first bit, T1, is obtained by the minimization of the probabi lity of

V j error and is given by

T1 
= 2 (l+TDLn(l+11)11 ’ . (2.24)

Thresholds for the detection of succeeding bits are computed so as to minimize

the conditiona l probability of error , i.e., Tk 
is given by

I ~
P(e

k 
= llX k_l,Yk...l

)ThTk 
= 0 (2.25)

For this example , the equation which determines T
k is:

exp (-T
k
/2)+ [2(1+fl) (l_p 2)}

~~
exp (_ (Tk +P2Lk l )/2(l+1~

)(1_ p
2
))

I I0
[pT ~ L~~1/(1+~ )(l-p

2
))- [2(1+

~
)Y’exp[-Tk

/ 2 ( l +
~
)} = 0 (2.26)

where I ( • )  is a modified Bessel function of the first kind and S 4
+ 1k-l

a Thus, T
k 

is a function of 
~~~, 

p and tk l  and is computed ~n a  
-l

V’

~ recursive fashion from (2.26). The performance of the optimal scheme could

~~ 
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be evaluated by computing the probability of error which is given as

I P(e
k
) 
~~~ ~ P(e

k lILk l )f
t

(v
~~~~l

)dw

‘U
- w~0 

2 
P(e

k
lISk l )f

L (w14_l )dw (2.27)

where

- 
~

- I’ P(e
k lltk l ) ~ exp(~Tk/2)+~~ [i~exp(T

k
/ 2 ( l +

~~
))} I I

-
. +~~ 

[
~ -Q [PL~~1 ( l+~ )

2(l~P
2
)
2 ; T~ ( l+~)

2(l~p
2
)23j

~ ~7IIIo) = 
~~ exp(-w/2)

- k-l

f5 (wIH 1) = ~ (1+~~)~~ exp (-w/2(l +l?))
k-i

[ Q( . ,~) is the Marcuin’s Q function (78 ,79] which , for completeness , is described - 
-

in the Appendix B. The condItiona l density of is obtained using the V

fact that Xk_l and are independent Gauasians and t
k~l 

4..~ 
+ Y~~1 

(44].

11 it is observed that the decision threshold obtained from (2.5) is different
- 

from T1 and it is expected that the optimal scheme will perform better. 
j -

- 
~ 

However, the optimal scheme is quite complex to imp lement and , therefore , it

7 - is not explored any further and the suboptima l scheme is considered next.

V 
2.5.1.2. Suboptimal Scheme

- The suboptima l scheme is a decision-feedback scheme where two

V 

different decision thresholds are used depending upon the previous decision.
£1[I Threshold R~ is used if the previous decision was a zero and 4 is employed

otherwise. T1, as determined in (2.24) is utilized for the detection of the
4,

~a 
— - -—- - - --V



t 
~ first bit. Thresholds T

k 
which minimize the conditional probability of

error are computed in a recursive fashion from the following equations

I ~
P(e

k lIZk l O)/
~~~ 

0 (2.28a )

• I T  H-
= 0 (2.28b) V

- Thresholds R~ and 4 for the detection of the second bit are computed from

~ 
(2.28), for k 2. The resulting set of equations which yield the values

o f R ~~and R ~~are

- 

~ (1 +Tfl 
1
exp (-R~f2(l+T1)3[2 exp( T1

/2 ) - QCp (R 2 )~~( 1+~1)~~~( l p 2 )~~ ;
- 

F -~~ ~~ 2 - -i- 0T~ ( i + f l )  2 ( l P  ) 2
] -~~~~ exp [-R 2 /2 ) (2 - exp(-T 1/2)-exp(-T 1/2 ( l+l 1) ) ]  = 0

(2.29a)

1. 1 -l 1 1 --
~ 2 ..~~ I

V 

~ (1+ 11) exp(-R 2 /2( 1+ 1D3 [exp~-T 1/ 2 ) + Q [p ( R 2 ) 2 ( 1+ T ~) 
2 (1-p ) 2 ; T2 ( l +~~) 

2 
- :

I 
2 1

(i-p )~ 3]- ~ exp(-R~f2)(exp(-T1/2)+ exp (-T1/2(1+11))1 = 0 (2.29b)

which is a set of nonlinear implicit equations which must be solved for i4.
The process m a y  be continued recursively to obtain R1~ as a function of 

V 

-

I 4~
. It can be shown that a steady state for the thresholds is reached and

- ~~~
- I the resulting values of the thresholds can be computed. Here only a special 

V

- b case is considered where for the detection of the previous bit it is assumed

~~

- that the memoryless threshold is uøed . The value of the threshold T
k ~~

V therefore , expressed as

— I IR° , if

I Tk
(Zk l ) — 2 (2.30)

if Zk_l l

- - ~~~~~~ _ V
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The performance of the suboptima l scheme can be eva lua ted by

comparing the proba bi lity of error using the standard memory less scheme 
V

and the suboptima l scheme described above. The probability of error

using the standard scheme P(e) is given by

P(e) = ~~ exp(-T 1
12) +~~~ [l-ex p(-T

1
/2(l+fl))] (2.31) ~ 1

and the probability of error in the second bit using the suboptimal scheme

L P(e) is given by :

-

V 

P( e) = ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[ - exp(-R~/2(l+T~ )(2-exp(-T1
/2))-exp (-T

1
/2)exp(-R~/2(l+T~))

-• + exp(-R~J2){exp(-T1
/2)+exp (-T

1
/2(l+T!))) 

V

1 1(R
~
)2 

1 1
- - 

+ 
~~ ~~] + ~~~ 

exp(_w2/2(l +11))Q(pw(1+1) 2(l_p 2)2 ; -

(R~~)2

I ..-L ~ 1

~~ 
T~ ( l + f l )  2 (l_ 0 2 ) ~~dwJ (2 .32 )

It can be observed that the probabilities of error using the scheme without

1
, memory and the one with memory are equal if i4~ = R~ = T

1
. Numerical results

were obtained for the suboptima l scheme . The numerical values of thresholds

~~~ 11 and the probabilities of error obtained for different values of signal-to-

r noise ratio are auninarized in Table 2.1. The correlation coefficient r for

these computations was assumed to be one.

I --~~ - - -~~~~~ -- V~~~~~~~~~ - -- ~~~~~~~~~~~~ .-- - V - - —~
— -V- - - - - -

~~~~~~~~~~~ 
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I Table 2.1

I _ _ _ _  _  _

L ____ 

T1 R0 R 1 P(e) um

L 
10 5.27537 4.87149 5.80982 .14236 .14146

io2 9.32254 8.66881 10.17792 .02728 .02694

r IO~ 13.83133 13.10032 14.80521 .00394 .00389
I

1O’~ 18.42272 13.67107 19.44922 .0005 1 .00050

U ’

2.5.2. Gaussian Fading Case

In this example , it is assumed that the communication system is

F operating over an amplitude fading channel with coherent reception. The

received signal during the k-th signalling interval, denoted by rk(t) ,  may ~
- 

-

be represented by I ~
H~: rk

(t) = n
k
(t) , 0 t < T (2.33a)

4: r
k

(t) = v
k
f(t)cos[w

ct+ø(t)] + ~~~~( t ) ,  0 < t < T (2.33b)

V where f(t) is normalized as in (2.2). The sequence of random variables

Cvk) 
is assumed to be a stationary Gaussian sequence with zero mean and

variance ~~~ The correlation coefficient of V
k l  

and V
k 

is denoted by r .

P and Ti are as defined in (2 .22) and (2.23). The basic structure of the

El proposed optimum receiver is shown in Fig. 2.5. The decision rule is of the

form

I
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C!

r
k
(t)

~~~~~~~ 
f.dt ~k

___ DECI SION 
CZ~ J

~k-l
I _________________

I
r I

i)ELAY

E - Figure 2.5. Optimum receiver structure for the Gaussian
fading case.
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~

< 
T
k 

(2 .34)

H~

The objective is to compute the threshold T which minimizes the conditional

probability of error . The threshold is a function of the signal-to-noise

ratio and the correlation coefficient. The optimal and the suboptima l

schemes are considered next. Again , the detailed derivations of the

equations are referred to Appendix C. - -

2 .5 .2 . 1.  Optimal Scheme

Detection scheme without memory is used for the detection of 
- 

-

the first bit. The threshold T
1 
is computed so as to minimize the

probability of error and is given by 
- 

5--
- 

-

1 1

r ~ = [ ( l + T ~) L n (1 +~1) ] 2  11 2 (2.35)

hi
Thresholds for the detection of succeeding bits , T are given by

k

( l + 2exp (~4/2(l+ 11)) + [(l+11)(1~p
2)Y2

4 - exp~_ (T~_Py~ .1)
2
/2 (1+T))(1-p

2
)3 -2 exp(-4/2) = 0 (2.36)

Again it is observed that the threshold depends on the statistic of the

previous bit and it is quite complex to implement in rea l time . Consequent ly,

- ~
- the suboptima l scheme is considered next .

2.5.2.2. Suboptimal Scheme

As discussed earlier , two diff erent decision thresholds are

employed for the detection of the k-th bit. The decision threshold Tk, which 
V 

-

~~~ I. - : ITTITIT:::TT °IT 
given by



- ~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

VV1 J JL. - 
- 

-
-

- - I~ ~l~I - ~ - -a=rq~~~ - - -  . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V . — ..- V -

Vt

1 30

V 

(~~k if Zk_ l O
Tk

(Zk_ l ) =
~~ (2.37)j - ~~

Rk otherwise

The equations which yield the values of Q2 and R
2 are obtained by minimizing

t the conditiona l probability of error P(e
2~

.llZ 
1 i) and are given byr k

a/(a+b) + [erf[ (T
1-p Q 2)~) + erf[(T1

+pQ
2)~ fl/2(a+b)

= (1+11)2exp (_T~Q
2
/2(l+1l)) (2.38)

• - and

• c / ( c + d )  ÷ ferfc ((T
1
- pR2)~ 1 + erfcf(T1+pR 2)~ )]/2(c+d)

= (1+~~~exp[ -~~R~/2(l+~~)) (2.39)

V H where

- -  

2erf(x)  = (2rr ) 2 J’ exp[ - t /2~ dt $1
0

F~ 
-

- a = erf(T
1
)

- 1
b erf (T

1(l+
1D2)

c l . — a
L

d = i . -b

t ~ 
= (1+11)~~ (l-p

2
)~~

L 1 
The thresholds are computed in a recursive fashion. 

- 

The equations which yield

the thresholds and R~ are similar to (2.38) and (2.39) and are given by

II
II 

—•- 

~~~~~~~~

V — - -— ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~j
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~
- I g/(g +h) + E (erf[o

~
(Qk l _ p Q

k
))+erf [

~
(Qk_l + p Q

k)})P(Q k_l)

T + (erff
~

(R.L (l
_ p Q

k)J+ erf[c~
(Rk_l +pQ k)J)P(Rk_l)]/2(g+h)

! i: = (1+11)2 exp f-11Q~/2(1 -f-ID) (2.40)

and
- !  r
V 

m/ (m+n) + [(erfc[
~
(QVk l

_ p L
K)) + erfc[~

(Qk l + p R
K)))P(Qk l )

[ ÷ (erfc[
~

(Rk l- ~~~~~ + erfc[~(~~~1+p~~~)})P(~~~1) ]/2 (m + n)
- 

= (1+11)2 exp[~~114/2(l+11)~ (2.41)

r where

- g erf(Qk_l )P(Q k l ) + erf (R k_l )P(R .K l
) —

1 h = er f (Q k l (l+11) 2)P(Q k l ) ~~er f (~~~1(l+11)
2)p(~~~1) 

- 

-~

m = erfc (Qk l )P(Q k l ) + erfc(Rk l )P( R k l )

n = erfc (Qk l (l+11)
2)P(Q k l ) + erfc(~~~1(j+11)

2)p (~~~1)

It can be shown that a steady-state is eventually reached and the steady-state

solution may be obtained by setting 
~k-l 

= 

~k 
Q and Rk l  = R

k 
R in

(2.40) and (2.41). The resulting equations cannot be solved ana lytically V

and , therefore , approximate solutions for Q and R are obtained by

linearization. Let AQ and AR represent the deviations of Q and R from the no-

memory threshold T T1, i.e.

Q T + ~~~ (2 42a)

R = T + AR (2.42b)

~
~~~~~~~~~~ V~~~~~ V - V V~~~~~~~~~ —~ ~~~~~~~~~~~ - -~~~~~~~~~ V—  V ~~~~~~~~~~~~~~~~~ -V V ~~~~~~~~~- V V V V ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ V-V - -~— V
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The approximate solution for the deviations AQ and AR is obtained from the

linearized equations as a set of simultaneous linear equations:

~~- a11AQ + a12AR = b
1 (2.43a)

a21AQ + a22 AR = b2 (2.43b)

where

a11 = u ( a + b ) (
~26+~ 3

/B) - ~1
(a+b)(2u)~~ +vp (c+d)(~3 -~~2)

L. 
8 12 

= v ( c + d ) (~ 2 +~ 3
) - cy

1(
c+d)(217) 2

a21 = ~1
(a+b)(2-rr)2 -v(a+b) (~2 +~ 3)

-I
a22 = vp (a +b)(~2 ~3

) -+ o#
1

(c +d)(2 -r r ) 2 - u(c +d)( ty 2 B +~~3/B)

1 1
= b - ~~(er f (T~ (l+ 11) 2 ) +  erf(Te (l+11)2))

V 

1 I
1.. 1 2 d - ~~(erfc(T~ (1+11) 2) +  erfc(T l

(l+ID 2))

= (l-p)~ (1+p)~~ , u = 
~~(2~ (l+11))~~ , V = u(l~~p

2)2

exp(-T
2/2 ) ,  

~2 
= exp(-T

2
8
2
/2(l +ID), 

~3 
= exp(-T

2
/25

2
(l +11)).

In (2.43),  a ,a > 0 , a > 0 , a < 0 , b < 0 and b > 0 so that AQ < 011 22 12 21 1 2

and AR> 0, unless r = 0, for which case the receiver reduces to the zero

memory receiver .

The performance of the receiver is measured in terms of the

t probability of error. The bit-error rate using both schemes is given by:
L

-
~~ —_ _ _ _ _ _ _ _ _ _  _ _ _
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- - P(e) = b + C (2.44)

I 
P(e) = (a+b)erfc (Q) + (c+d)erfc (R) + c erf(R(l+~~)~~~

- 1 -
~~

+ (a+1)erf(Q(l+TI) 2)

[ R 1J. (2rr(1+11))~~exp(-u
2/2)[erfc[~~(T-p u))

u=Q
- 1

+ erfc(~~(T+pu)3]du (2.45)

The relationship between the probabilities of error using the decision
~ II..

scheme with and without memory is stated in the following theorem.

Theorem 2.1: The probability of error using the optimal detector without

I memory , P(e) , is greater than or equal to the probability of error P(e)m
using the proposed suboptimal decision scheme with one-bit memory , i.e.,

P(e) >P(e)nm~~ m

) The equality is achieved if and only if the correlation coefficient r is zero.

H - An illustration of the theorem for the Gaussian fading case is

- 

V shown in Appendix D. Numerical results were obtained for different values

- 
~ of the signal-to-noise ratio 11. The correlation coefficient r was assumed V

- 
to be one. The numerical values of the thresholds and the probabilities

of error are presented in Table 2 2

r~~

U
V~~~~~~~~~~~~~ ft 

~~~~~~ ~~~~~~~~~~~~~~~~~~~ -
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I
- Table 2.2

11 T Q R P(e) P(e)

V 

10 1.6241 1.5307 1.7403 .2399 .2391

102 2.1590 2.0058 2.3152 .1004 .0994

1o~ 2.6298 2.4576 2.7857 .0374 .0369

: - lO~ 3.0350 2.8876 3.1802 .0133 .0131

I - i
f T

F
~1

I
~ y~: ~

.~~~

L ~~~~~~~~~
. I_ . ~ - — ~~~~~~~~~~~~~~~~~~~~~~~~ _ - --
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~. ~~~ 2.6. Discussion

~ 
In this chapter, the idea of introducing memory into the receiver

with applications to channels with memory was explored. In particular, rece ivers

S with one-bit memory for fading channels were considered. An optimal detection

I scheme and a suboptimal decision-feedback scheme were devised. Their perform-

¶ - ance was measured in terms of probability of error. Two examples were con-

V 
sidered. Improvement in the performance was achieved indicating the theoretical

I - feasibility of the idea. It is expected that introducing larger memory would

- result in more improvement. The emphasis in this chapter was to examine the

1. feasibility of the idea and receivers with larger memory are discussed in

- the next chapter.

-; I-
~. 

1.

4 —.
- ;~-

-
II
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- 
3. RECEIVER WITH LARGE MEMORY

~1 3.1. Introduction

~~~~ V
~ The results obtained in the last chapter indicated the feasibility

- 
of receivers with memory. A suboptimal decision-feedback receiver with one-

V
Vj &a.

- 
~

- bit memory was shown to perform better than a receiver without memory. The

amount of improvement obtained leads us to the consideration of an alter-

native approach to the receiver design problem which is the subject of this - 

-

chapter. The receiver is assumed to consist of an estimator and a detector.

- 
The estimator is employed to estimate the existing channel conditions and

an estimate of the uncertain parameters is furnished to the detector. The

[ detector implements an adaptive decision rule based on the information

provided by the estimator about the channel conditions. The memory is in-

corporated into the estimator and the estimate is based on the observations

from a finite past. The memory length of the receiver is denoted by M and

this means that the estimator utilizes the signals received during the L
previous H signalling intervals to yield an estimate of the uncertain

- parameters. In this chapter , we concentrate on the adaptive detector and 
V

the discussion on the estimator design is postponed to the next chapter.

It is assumed in this chapter that the estimator yields a known functional

of the past M observations as estimates of the uncertain parameters. The

~ 
estimation criterion and the selection of the estimation functional are

•1
- discussed in chapter four.

As in the previous chapter , absence of inters~~bol interference

fV is assumed and fading is treated as the only source of channel memory.

-hi
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1
I A large memory leng th , M, is required to estimate the fad ing parameters of

the channel due to the assumed slowly varying nature of the fading process

I relative to the signalling rate. It is expected that such a receiver

I 
with a large memory would perform significantly better than the zero-

memory receiver. It was mentioned earlier that only the adaptive detector

I is discussed at length in this chapter. In section two, the problem is

stated along with the necessary assumptions. The receiver structure is

I described in the third section. The performance evaluation is considered

V 
in the fourth section. Finally, the receiver operation is illustrated by

I considering a specific example and numerical results are obtained.

3.2. Problem Statement

The goal here is to develop a receiver with an H-bit memory for

a binary communication system operating over a fading channel in the

absence of intersymbol interference. The transmitted bits are again

¶ assumed to be independent of each other with zeroes and ones equiprobable.

The received signal in any signalling period [0,T) under the two hypo-

theses is given by:

H0 : r ( t )  = s
0(t ,

8) + n (t) 0 < t < T (3.la)

H1: r ( t )  = s1(t ,8)  + n ( t )  0 < t < T (3.lb)

I where 8 denotes the uncertain parameters due to fading i.e. both amplitude

- and phase fadings may be included in 8. Fading is again assumed to be

V 
slow so that is can be assumed to be constant during a signalling interval

_ _  _______
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V 

J 
and the effect of fading may be represented as a sequence of dependent

random variables. The signal s1(t,
8) is conditionally deterministic ,- i.e.,

J, it is completely known if 8 is known. Since the absence of intersymbol

interference has been assumed, the signal model is the same as that givenr
in (2.1) and (2.2). The additive noise n(t) is again assumed to be white

Gaussian with power spectrum N
0
. The contributions of fading, i.e., amplitude

and phase fading parameters are denoted , as in Chapter 2 , by [vk ,$ k ).

Hence the received signal during the k-tb signalling interval [(k-J)T,kT))

under hypothesis 4 is then represented as

r
k(t) ~ r[t + (k-l)T]

- . 
= V

k~J~ 
f~~(t) cos[w~t + 

~~i
(t )  + 

~k
1 + n (t  + (k-l)T 1

= vk s .( t ,$ k ) + ~~~~~~~~ 0 < t < T , i. = 0 , 1 (3.2)

where R~ has been defined in Chapter 2. Orthogonal signalling is assumed

V for simplicity. A correlation receiver as shown in Fig. 2.1 is used to

demodulate the incoming signal. The decision sta dstic is obtained in

terms of 4 and 4 which are defined by (2.5), and are functions of the
dependent random variable pairs (vk. e k ) correspond ing to the f ading

I process. The statistical properties of the sequence [vk~
8
k) 

are employed

- to derive the receiver with memory. The relationship between (X.~, 4)
- - and (vk,$k) if 4 is true , for i = 0,1, is given by

i_i
II

—‘——V — — ~~-V—--- ~— —~~~~~~~~ - 
—--V - —a  - -- V- V -
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X
k 

— ô
lJ
v
k

cos 8
k + 6 J J a~ + j 0 , 1 (3 .3a)

j  Yj~~~ 8~ J
V~sin 8k + 

~k ~jj
bk + , j  = 0,1 (3.3b )

, The optimal solution to the receiver with an H-bit memory problem

can be obtained by treating the problem as a 2 - hypothesis decision 
V

• I problem. The structure of the possible optimum receiver is shown in Fig. 3.1.

The number of hypotheses increase exponentially with M. Therefore , fo r a

I ~. large M, the problem becomes too complex and one must resort to suboptiinal - -

r receivers which are easier to implement. A suboptimal constrained receiver

is, therefore, considered in the next section.

3.3. The Constrained Receiver

- f As indicated in the previous section, the comp lexity of the optima l

- solution leads naturally to the investigation of a constrained suboptimal

I receiver . The details of the receiver are described in this section.

1 3.3.1. System Structure
- 

The adaptive receiver considered here consists of an estimator

- - and a detector. A limited-memory filter computes an estimate of the -:
fading parameters on the basis of the previous M observations and decisions.

The estimate is furnished to the detector which treats the estimate as the

I 
correct value of the uncertain parameter in making the decision on the

present bit . This idea has previously been explored by Price [45] and

Kailath [46L. Jointly optimum combined estimation-detection schemes

have recently been considered (e.g. [47-49)). The problem considered

U
_ _  

- 
- - 
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MODULATOR

• ~~~~ 4,4

_ _ _ _ _ _ _ _ _  
_ _ _  _ _ _  

1~
DECISION 1 1 DECISION
STATISTIC J M-BIT 

____________ STATISTICL PROCESSOR MEMORY PROCESSOR

________ ________ I 

g
~~,0

1 1
g(~j,Y~) _____________ DECISION g(X~~ Y~ )

DEVICE

I

(Z
k)

[

[ Figure 31. Opt imum receiver with M-bit memory.
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1 here is related tut different because we are only interested in the

detection problem and estimation is present only to aid in a better

I detection. Decision-feedback is employed to make the algorithm

implementation simp ler. It is assumed that the system error probability V

1 is low so that all the past decisions are considered to be correct. This

is a standard assumption with the decision-feedback schemes. This assumption, 
- J

L ,I. however , causes error propagation and, thus, there is a possibility of run-

[ away. The problem of runaway in decision-directed schemes has been con-

sidered by Davisson and Schwartz [43J. A block diagram of the proposed —

— 

receiver is shown in Fig. 3.2. The detector adapts the decision rule to - -~

- the existing channel conditions and which obviously depends upon the

estimate furnished by the estimator and its statistics. An estimate of the

uncertain parameters a.K and bk is evaluated and furnished to the adaptive
~

detector. In the next section, estimator design is briefly considered ,

the details being postponed to the next chapter.

3.3.2. Estimator Description

As discussed earlier, the estimator is responsible for the

1. estimation of the uncertain parameters [a
~K
,bk). The estimator design is

- 

based on the classical estimation theory results. The class of linear

1. estimators is selected for the estimator implementation. This implies

7 that the estimates and bk of a.K and b
k are linear functionals of the

~iast observations. One major difference , however, is that the memory of

~~ 
the filter is limited to the past M observations where H is the memory

V length of the receiver. Limiting the memory of the filter is essential

~~~~~

-

V
V 

~~~~ 
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- 
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t I 

~
rk
(t)

-- DEMODULAT OR

~ 
1: 

_ _ _ _ _ _ _ _  _______

— 4 ESTIMATORS

I.

1. 
___________________________

COMPUTATION
OF

ESTIMATE
STATISTICS

4 - .

- - DECISION
• STATISTIC _______

PROCESSOR

g(X~,Y~) ~ ~~g(4,Y~)

DECISION
DEVICE

~~~ 
11

Figure 3 2. Block diagram of the suboptimal constrained receiver
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due to the nature of the fading process. An estimate based on all the

past observations may result in a wrong estimate. The class of limited-

memory filters have been studied by Jazwinski [50]. The presence of the

-~ detector is utilized and decision-feedback is used in the estimator which

causes it to be nonlinear. The sequences (aki and (bkl are assumed to be

V 

1 ergodic Markov sequences with means and autocorrelation functions

-: E(akj = m (3.4a)

- E(bkI 
= rn,0 (3.4b)

E(a
kaL
) = R

a
(k_L) (3.4c)

E(bkbz) 
= Rb

(k_ L) (3.4d) 
V

-. The limited-memory estimate a and b with decision-feedback are assumed

to have the following structure.

H 
i oa

k i~1~~
k_i Xk i  + (l_Zk .)  

~~~~~~ 
(3.5)

V - and

I bk = E [Zk i  Y

~
_
~ 

+ (l
~

Zk_ i ) 
~~~~~~ 

(3.6)

- where (Zk) is the binary output sequence of the detector. The constants

I [.
~~~~~‘ ~~ 

are computed so as to minimize the mean squared error (MSE)

and the detailed derivations of the estimator are presented in the next

I chapter. The estimate obtained here is a conditional estimate based on

the past M decisions (Zkl, •••Zk_m } which is denoted by Zk. The estimate

being conditioned on Z is an approximation to the estimate obtained by
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I applying the classical estimation theory results. In some communication

systems, the received signal does not always contain the unt~ertain parameters

to be estimated . An example of this class of communication systems is the V

on-off keying system. The estimator design is modified to be able to use it

L with the on-off keying system. This point will be discussed in further detail

in the next chapter.

3.3.3. Asymptotic Results

L The estimates and as given by (3.5) and (3.6) are linear

functions of the past H observations and the nonlinearity is introduced by

L the decision-feedback. The memory length M is a function of the fading

process and its statistics , e.g., average fade duration, fading rate and

distribution of fade duration. Since fading is assumed to be a slowly varying

- - 
process relative to the signalling rate, H is assumed to be large and asymp-

• - totic results are obtained . It is noted that the observations are not

independent of each other and, therefore, the standard central limit theorem

is not applicable. Central limit theorem for dependent random variables

(51-53) is used to obtain the asymptotic results. It has already been stated

V that the sequence (a.K ,bk~ 
is assumed to be an ergodic Markov sequence and,

- - therefore , it satisfies the strong mixing condition. The central limit

theorem for dependent random variables as stated in [51-53] is then used to

fl conclude that the estimates and bk 
are asymptotically normal. Details of

- ‘ this central limit theorem and the strong mixing condition are furnished in

the Appendix E. In communication theory context this theorem has been utilized

by Kanefsky and Thomas (54] for nonparametric detection systems. The

L
1

~ i I 
_ _ _ _  

_ _ _
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~~~~~~~~~~~~~~

- - -
~~~~ V -~~~~~~ -- - - w. - - - 

-V -V ‘~~- - —~~~ V - V - — ~ VV V~V~~~~~~~



— — - - -- - -V - 
‘
~~~~~

‘ .  -__ -~~~ - V V_V_ —

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -i~-’~~ 

- - - . ~~~-

I
- I

conditional means and the variances of the Gaussian random variables

and bk are denoted by ~~
(k),  ~~(k) and CaO~~ ~,0(1). These means are

1: conditioned on the sequence of previous N decisions, i.e., on Zk. The condi-

tional means are given by

V 

~~~~ 
= Et

~~ tZk~

H
= E C E  [Z k i  4-i + ( 1_Z k j )X

~~ j ]
~~i1

H
~- -  = ~ ~~.in (3.7)

i=l a

and 
~~~~ 

is given by

1 N
= 

.~~ 
~~~~~ (3.8)

1=1

The conditional variances are given by

= E[(aki)
2
tZk)

E(
~~

2
~
Zk) 

-

M M

i~ l ~=1 
~i~j k_iZk_j1(a(~~

i) + N0ô~j
] - (3.9)

Fl and similarly —

M N
Cb (k) = 

~ ~
Yj’~

l
j

[Z kjZkjR.~(
i_i) + N0o~~ ] - (3.10)

1=1 j=l

- 
- where 6 . denotes the Kronecker delta function. It should again ber ij

L emphasized that these expressions for the means and variances are approximate

because they are conditional on Zk. The detector optimization is considered

next.
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J 3.3.4. Optimization of the Detector V

V The design criterion for the receiver is the minimization of the

- I probability of error. Therefore, the detector is obtained so as to minimize

the conditional probability of error. A Bayesian approach is used to obtain

the optimum decision rule. The decision rule is based on the estimate of the

~ [ 
uncertain parameters, its statistics and the decision sequence Zk

. The decision

rule is, therefore, adaptive. The variables X,~ and 
~k 

under the two hypotheses

are given by (3.3). -

For minimization of the probability of error criterion, the cost

0 1
- is the usual Hamming distance. If and ç~ represent the optimum decision

regions, the expression for the conditional Bayes risk function can be written

as

= 
1 

(x ,y l4,Z~ )dxdy + 
~ S S ~ ~ o (x ,yI

~~
,Zk

)dxdy (3.11)

~k 
k~k 

Xk Yk

-: where f(.,.IH
~
, Zk) represents the conditional density under a given hypo-

thesis H~ and the past decisions. The conditional density based on the

estimates of the uncertain parameters can be used to obtain the density

functions described in (3.11), i.e.,

i i ’  .

~. L 
~ ~~~~~~~~~~ 

= S S ~ i ~
(X ’yl~~

,ak ,~ k) f (
~~

,
~ klzk

)dak
d
~k 

(3.12)
XkYk 

x~~~~ XkYk
- - r

- L

- 
where f(ak,bk) is the joint density of ak and bk and it is Gaussian from the

asymptotic normality of ~ and b , i.e.,k k

- ~~~
-
~

-
-~

V-

-
- U

~~~ll
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2 2
~ 

(u-~ ) (V-~~~
,0

)

= (2rr ) 
~~~~~ 

exp(- 
2Ca 

- (3.13) 
V

- - Since orthogonal signalling has been assumed in the presence of additive white

noise, the conditional denaity based on the estimates can be expressed

~- . I (X-a~ ) 2 +
£ 
~ ~

(x ,yI
~~~

,bk, H~) = (2ir N
0) 

-exp [-. 2N ) (3.14)
XkYk~

ak,bk ,Hk 0

The optimum decision rule is obtained by minimizing the conditional risk function

of (3.11). It can be expressed as the following likelihood test.

i l (
~c ,yI4 , Z k ) 1

XkY

~ 0 (x , y I H ~ ,Z~ ) 
H°XkYk k

The decision rule is adaptive since the likelihood ratio A
k depends upon the

::t~~~

ate5 

:~~ 

their statistics. Equation (3.15) can be explicitly written

- S S 
~. ~. 1(x ,yl u,v,4) f~ (u,vIZk)dudv H~-

~~ 
-

~~ 
XkYkkK,bk,Hk 

ak k >
L Ak 

= 1 (3.16 )

— $ $ f 0 0 .-. ~ 0 (x , yj u ,v ,H~) 
~a S(u ,vIZk)dudv 

Hk
I -~~ -

~~~ 
XkYkIa,~

,bk,Hk k k

p where the expressions for the densities are given in (3.13) and (3.14). The

- perform ance of the receiver is examined in the next section.

r
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- 3.4. Performance Evaluation

The performance of the constrained receiver is investigated by

- evaluating the average probabili ty of error. Stationarity f~; assumed and,

- therefore, any arbitrary bit k could be selected and its probability of error

can be computed. The adaptive decision rule developed in the previous section,

F given by (3.16) is conditioned on the decision sequence Zk. The decision

~ L 0 1r egions determined by the decision rule are denoted by Q,~ and C~~. These

decision regions are also conditioned on the knowledge of the decision on the

- . 
previous M transmitted digits.  Therefore, the probabi l i ty  of error computed

. L for any bit using the adaptive decision rule also depends upon Zk. This

V - 
conditional probability of error , in fact , depends upon the estimate furnished

by the estimator and its statistics. The conditional probability of error is

I given by

- 
P(eklZk) = 

2 5o
5 

~~~~~~~~~~~~~~ 
dxdy

V 
~~~~~~k k

b + 5 $  
~ o (x ,y l~~

,Z k) dxdy (3.17)

- ~l X.KYkk

This can be written as

H 1 II P(ek lZk) = ~!S[S S f l l (x ,ylak, Sk,4) dxdy

-
- r + 5 $ f 

~ O
(x ,yIak,~ k ,H~

)dxdy]f5 
~ 
(u,vjZk)dudv (3.18)

~ l XkYk k k
- ~

- - -

- ~~t
•- •.5- V -

I
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~ — - -- - V ~~~~~ 

— - -- - — - 
~~ ~~

-VV -VV ~ ~~~~~~



- - V  ~~~~~~~~~~~~~~~~~~~~ ---~- 

- - _ _ _ _ _

V 
49

I The density expressions are given in (3.13) and (3.14). The means 
~~ 

and 
I -

and the variances C and Cb are functions of the decision sequence Zk as

evident from (3.7)-(3 .1O).

The average probability of error can be computed by first evaluating

- the conditional probability of error using (3.18) for each of the 2
M 

possible

I I bit configurations in the previous M digits and then computing an average of

all of these equally likely conditional probabilities of error. For a large

- 
M this exhaustive method may not be computationally attractive since the

number of terms increase exponentially with H. Computation of probability of

I 

- error in the presence of intersymbol interference and additive Gaussian noise V

is a similar problem and has received considerable attention recently. Exact

calculation is quite tedious and, therefore , bounds on the probability of

- : error have been computed. Lucky (2 ,3] considered the worst case operation of

equalizers and obtained lower bounds on the probability of error. The second

- class of bounding techniques stem from the use of the Chernoff bound. The

I most notable bounds of this class have been obtained by Saltzberg (55] and
V 

Lugannani [56]. These bounds have been found to be quite loose and other

modified bounds have also been considered. Approximations to the probability

of error have also been computed by using the series expansions of the Gram-

Li Charlier type. This series expansion technique has been applied to the

V
_ i , . intersymbol interference problem by Ho and Yeh [57] and Shimbo and Celebiler

[58].

V 
In the next section, an example is considered. The average proba-

-rn -
bility of error is computed using the exhaustive method for small M For

li-
V

~~~~~~~~~~~~~ 
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r more complicated communication systems, and for larger memory lengths,
1~.

bounding techniques and approximations similar to the ones described above

can be used to evaluate the probability of error in the presence of fading

- and additive Gaussian noise. It should be noted again that for communication

- systems where observations do not always contain the uncertain parameters to V

be estimated , the whole analysis needs to be modified . The example considered

in the next section illustrates this aspect also.

3.5. Example

In this section a coherent on-off keying system is considered as an

example to illustrate the receiver. This example also illustrates the case

I when all the observations do not contain the uncertain parameters to be

estimated and the estimator described earlier is to be modified . The adaptive

decision rule can be expressed in terms of an adaptive threshold which is a

function of the existing channel conditions. This results in notational

convenience and simplicity in presentation of the example. The received

signal under the two hypotheses is given by

• 

I U H~~: r
k(t) = nk(t) 0 < t < T (3.l9a)

{j H~~: rk(t) = Vk~~ 
f(t) cos[wt + ~ (t) + 

~ k 3 + nk ( t ) ,  0 < t < T (3.19b)

- 

:-- -- 
I 

1 In the coherent system, 0k 
is assumed to be known and the decision statistic

obtained from the demodulator is given by
- r~I~i X

~~
= f lk 

(3 20a)

1._i H~ X.~~= V k + n .K (3.20b) 
V

~I1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 
where X.K 

is, in fact, and the superscript has been dropped for notational

convenience. Also = Y1 = 0 for coherent on-off keying system.
i t —  &•. z.-

The estimator computes an estimate of the uncertain parameter Vk

which is furnished to the detector to be employed as the correct value in the

-. decision making process. As indicated previously,  the estimator design is

~ 

modified for this communication system with uncertain observations. The mean

and the correlation function of the sequence [vk) are represented by

m (3.21) - 
-

- f E(Vk
V
L) 

- R ( k -2)  (3.22)

- 

The estimator is assumed to have the following structure

H
= 

•
E Zk_i~i 

X
~K~~ 

(3.23)
t _  i=l

- The estimate Vk depends on Zk as discussed earlier. The set of H equations

- 
which yield the constants are given by

I M

.~~~ ~
i(Z~(. Zk .  R(i-j) + Nooi.] = Z

kj  
R( j) ,

H 
~~~

-

V I U j  = l,...M (3.24)

- 
- 

The conditional mean and the conditional variance are obtained from

Ii H
~~‘ U 

~k ~ 
2
k-i ~~ 

m (3.25)
- p  i l

1
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M M
= 

.t .~~ 
Z~~1~ Zk_j ~~~~(R(

i_i) + No
6ijJ - (3.26 )

- 
i=l j=l

- 1’ The optimum adaptive decision rule is computed in terms of the
- L
P threshold which minimizes the conditional probability of error. The expression

for the conditional probability of error in this case can be written as

- T
F 

k 1

V 

P(eklZk) = 
~ S (2n(No+Ck

)]2 exp
~

_ (x1k
) /2 (N

o +Ck)) dx 

V

I + f , f [2 TT N0
] 2  exp[-x

2/2N0)dx (3 27)

F r  k —

The threshold Tk is computed by minimizing the conditional probability of

error and is computed from

I ~
P(eklZk)ThTk 

= 0 (3.28)

which results in

1 1 2 1
4 Tk = NO~kCk 

[(1+C kN~ ~k~~~k 
+ (N

O +Ck
)Ln (l+CkN~~

))}2 -1] (3.29)

1 

As expected , the threshold Tk 
is a function of 

~k’ 
Ck 

and the signal to noise

- 
ratio 1/N0. The performance of the receiver is given by the following condi-

tional probability of error

1 1
P(ek(Zk) = ~(erfC (Tkik)/(Ck+NO)2J+ erfc~Tk/NOfl] (3.30)

j~ jj

(A

L 
-
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where

erf(x) 5 (2ir ) exp (-u 2 / 2 }d u
-~~~

The conditional probability of error is data dependent and the average proba-

bility of error could be computed by the exhaustive method discussed pre-
V 

viously. The conditional probability is computed for each of the 2
M 

possible

bit configurations and an average is computed which is the average probability - 
-

of error.

A numerical example is considered. £Vk) 
is assumed to be a Markov

sequence with mean m and autocorrelation

R(k-2) = ~ tk~~~ + m2 
(3.31)

so that its variance is normalized to unity. The numerical values chosen are

m = .5, p = .9 and N = 8. The average probability of error as a function of

signal to noise ratio (SNR) is computed and is presented in Table 3.1 and

Fig. 3.3. The improvement in the performance is significantly better than

the improvement obtained from the receiver with one-bit memory. The con-

strained receiver is quite robust as long as the received sequence of length

M contains at least a single transmission of one which is the case for a

meaningful communication system. If a sequence of M zeroes is transmitte4,

the performance of the constrained receiver is worse than the performance of

a receiver without memory for lack of any observations containing the uncertain

$ 
- 

parameters.
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‘ 
I Table 3.1

I Average Probability of Error
SNR -

r Optimal receiver Constrained receiver
L without memory with memory

1 0.4276 0.4255

10 0.2761 0.2753

io2 0.2396 0.1866

l0~ 0.2386 0.1536

- 1 _  lO~ 0.2385 0.1420

[ - 
lO~ 0.2385 0.1380

li
i

i 
I

-

~

Ik
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Figure 3.3 Performance of the constrained receiver.
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3.6. Discussion

In this chapter an adaptive receiver with large memory is developed.

The receiver consists of an estimator and a detector. The estimator furnishes

an estimate of the uncertain fading parameters to the detector which treats

1. the estimate as the correct value of the uncertain parameter. The optimum

adaptive decision rule is obtained by minimizing the conditional Bayes ’ r isk
- - 

and the decision rule is based on the previous decisions. The memory length

is assumed to be large and asymptotic results are obtained. The performance

of the receiver is examined by computing the average probability of error.

A methodology is described to compute the bounds and approximations to the

probability of error for receivers with large memory lengths. A coherent

on-off keying system is considered as an example and the performance of the

receiver is examined. The constrained receiver performs significantly better

than an optimum receiver without memory. In this chapter , the estimates were

assumed to be available and the design of estimators is discussed in the

next chapter.

- -
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4. ESTIMATION ALGORITHMS FOR RECEIVERS WITH MEMORY

4.1. Introduction

In the previous chapter a receiver with memory was discussed .

The receiver consisted of an estimator and a detector. The estimator is

responsible for the computation of the estimates of the channel uncertain

parameters. The design of estimators is considered in this chapter.

Classical estimation theory provides the basic tools for the estimator

design. While a recursive estimator (e.g. Kalman filter) is simple to

implement, it is based on all the available data (i.e. it has infinite

memory) and requires the knowledge of the dynamics of the signal model.

If the system dynamics is not known completely or if it is not known

accurately , the estimate based on all the past information may not result

V in a convergent estimate. Jazwinski (50] proposed limited-memory filters

to avoid such divergence. The memory length depends upon the time interval

over which the model represents a satisfactory approximation to reality.

Fading process , which is to be estimated is one such process whose dynamics

and statistical parameters are not known accurately. It is, therefore,

expected that an estimator based only on the recent past would be more

suitable for the estimation of fading parameters. Physically also, the

fading passes through periods of severe fading and an estimate based on the

{ observations from the severe fading period but which did not occur in the

recent past may result in a wrong estima? -- . The size of the filter memory

L required depends upon the parameters of the tading process, e.g., fading

rate and average fade duration.

[I
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As noted earlier, the idea of limiting the filter memory has

been treated in the literature. Jazwinski [501 has devised optimal

limited-memory filters for systems where the system dynamics is not com-

- pletely known. Limited-memory filters are also used in the receivers - V

- - considered here, which also utilize the presence of the detector in a

decision-feedback structure (see (3.5) and (3.6)). The objective of the

combined estimator-detector structure is signal detection. Therefore, the

- 
- estimator should be designed so as to minimize the probability of error in

the detection process. In the next section the estimation criterion required

to accomplish the basic goal of the receiver is considered. In section 4.3,

V a limited-memory estimator with decision-feedback using the appropriate

- estimation criterion is derived.
V 

The estimator discussed in section 4.3 assumes the presence of

the parameter to be estimated in all the observations. In many practical

situations, however , the observations do not always tontain the parameter

to be estimated , i.e., the probability that the observations contain the

parameter to be estimated is less than one. In digital communications,

V this problem occurs in the on-off keying systems. When a zero is trans-

mitted , the received signal does not contain any information about the V -
-

- 
fading parameters. Under these circumstances, the estimator discussed

above cannot be used directly and a modified version of the estimator is :- -

needed. In section 4.4, a limited-memory filter with decision-feedback

and uncertain observations is derived. In section 4.5, several aspects of
- V

— the resulting estimator are discussed .

‘-‘
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4.2. Estimation Criterion

It has been discussed earlier that the goal of the combined

J 
estimator-detector structure is signal detection. In the previous chapter

a limited-memory estimator with decision-feedback was assumed available.

The estimate was assumed to be a linear function of the observations with

nonlinearity due to the decision-feedback being introduced in the coefficients.

In this section the problem of the desired estimation criterion to achieve

optimum detection is considered.

The discussion in this section applies Esposito ’s results [59] on

the subject to the problem under consideration here. For simplicity a

- binary coherent on-off keying system is assumed. The results obtained

similarly apply to more general communication systems as well but at the

expense of more complex analysis. For this simple case, the decision

1
statistic in (3.3) reduces to

0
H
~K
: X.

~~
= n

~K 
(4.la)

1

- .  

H
~K
: X

k 
= aK + nk (4.lb) 

I

since X~ = 0, Y~ = 0, i = 0,1 and where the superscript in has been 
V

- V 

dropped for notational convenience. The optimum decision rule for the

( c’inimization of the probability of error criterion involves the computa-

tion of a likelihood ratio and then it is compared to a threshold , namely

~~~ 
1 .  1

- - $ f1(x~ja) fa(a) da 
H
k

-
~~ kAk 

= 
f (V - 

) < 1 (4.2)

- _____ • —. -- ——j - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- -~~~~~------~~~~- - —--——- ----  - —---~~-- - - -
~~



V—. -~~~--~- -— -
~~~~~~~~~~~ 

‘
~~~~~~~

:-r- .
- - -

~~~
--- --- - - -

~~~~~~~~~~~~~~~~

‘

~~~~~~~~~~~~~~~~~~~~~~~~

-- 
-

~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 
- - V ~~~~~ -- - V - - - 

—

1 60

I where f~ (x~ja) is the conditional density of X.K under the hypothesis
- - 

and given fading parameter aSK, fak
(a) is the density function of the fading

parameter ak and where f
0
(.) does not depend on aSK for obvious reasons.

In the following, a theorem relating the estimation criterion

L for the estimator and the optimum performance of the constrained receiver

is presented and proved. It uses a basic theorem due to, Esposito [59]

which is presented first, for completeness.

Theorem 4.1 (Esposito): If the conditional density of v given the inde-

pendent variable s, i.e., f(vls) is bounded and continuous for every s and

.-) for every value of v, then for each v there exists a value ~(v) such that V

S f(vls) f s (~) ds = f(vI~
) (4.3)

Proof: Let L(v) = Mm f(vls) and U(v) = Max f(vls) be the lower and upper

V bounds of f(vls) for a given v. Since fs(s) is the density function of S,
-

~~~ we have

and

S ~~~~ 
ds = 1

It, therefore, follows that

~~~- :-  j~! L(v) <5 f(vjs) 
~~~~ 

ds < U(v) (4.4)

By hypothesis f(vls) is, for each v , a continuous function of s. It

~‘t~ L follows that for each v there exists a value ~(v) such that

V
~~~~~~ t

_ ;~ - -
,;~

V - -~~~~ --V 
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-~ 

S f ( v l s) f e (s) ds = f(vt~ )

- Q.E.D.

- The main theorem of the section is now considered.

Theorem 4.2: The optimized constrained receiver under the minimization

of probability of error criterion is obtained by using a minimum mean-

squared error (MMSE) estimator.

- Proof: First , an expression for the estimate which minimizes the proba-

bility of error is obtained using the result of Theorem 4.1. The estimate

is found to have a structure similar to the Kalman filter which is a MMSE

estimator. For the coherent on-off keying system, the optimum decision

V 

rule is given by (4.2). Since the noise is assumed to be white Gaussian,

the conditional densities are given by

~~l
(
~~~~~
kk
) = (2nN

0
)2 exp( - 

~~k 
- ak

) /2N01 (4.5)

f O (x~
K ) = (2-rTN)2 exp [-x~ /2N0) (4.6)

For simplicity (ak) is assumed to be a Markov sequence so that

a
k÷l 

= ra
k + Wk (4.7)

Ii The model may be generalized to higher-order Markov cases as well. The

MMSE estimate of a
k given the past observations is given by

~U aklk_ l = rak l  (4 8)

- 

~~~~~~~
- . with variance

V
ktk l r2Vk_l + (l-r2) a~ (4 9)

II
g 
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- Hence, the conditional density function of the uncertain parameter given
~

I the past observations is given by

I ~~~ ~
akIZk~~~ 

= (2n V
kIk ~~~~~~~~~ 

exp~ - (a - 

~~tk~l
)
2
12V

kLk~l
) (4.10)

- The optimum likelihood ratio for minimizing the conditional error proba-

bility of (4.2) is given by

A
k 

= 

~: 
exp (-[(x~ 

- a)
2/2N0] + [x~ /2N0]) 

-

(2u 
~~~~~~~~~~~~~ 

- (a - aklk_ l ) /2V
kIk l) da (4.11)

- _ 

- 

After algebraic manipulations , integration and simplification , (4.11)

L results in

A
k 

= (N 0/ (N 0 + V
klk l

))2 exp
~

[x
~
V
~~k l  + 2xkaklk lVklk lNO

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
+ Vk I k l ) ] )  (4.12)

Theorem 4.1 is now used to find an estimate which yields the minimum

probability of error. The conditional density is computed using the

expression for conditional density on the right hand side of (4.3)

Ak =

= exp((~~ /2N0] - [(x k - 

~~)
2/2N03)

‘.~b L~ 
2
~ kx.K 

-

- ~~~~ j I 
= expj 2N (4.13)

- 0

p 
~~~~

-

- I  -
~~~ ~~

Ii
U 

__ _ _
~ 
_

~__ ~~~~~~~~~~ 
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The exponents in the expressions (4.12) and (4.13) ire compared and the

resulting equation is solved for ~ . The estimate -
~~~~ is given by the

form

ak _ a
klk l + K(k) [x SK 

- a
klk l] (4.14)

which is the optimum linear MMSE estimate and, therefore , the constrained

- receiver is optimized under the minimization of probability of error criterion

¶ by using a MMSE estimator .

Q.E.D.

- 
4.3. Estimator with Certain Observations

4.3.1. Estimator Design

The objective here is to develop limited-memory estimators with

decision-feedback for the two sequences of uncertain parameters (ak) and

3 b~) which were defined in the previous chapter. The me ans and the

correlation parameters of the two sequences are as defined in (3.4). The

- estimation criterion used is ~ 4SE and this optimizes the constrained

receiver as discussed in the previous section. This implies that the

estimates and b
k are computed so as to minimize E[(ak 

- 

~~
)2IZk) and

Ej(bk 
- b

k)
2
1Zk). The estimate is assumed to be a linear function of the

observations and nonlinearity is introduced in the coefficients by the

~_~~~~
:-; .  fl decision sequence Zk

. The structure of the estimators is assumed to be
- 

- L _ V~

ak 
= 

~~~ 
~~

[Z
k

X
~~i 

+ (1 - Z
k i

)X
i
] (4 15)

~~ 

bk 
= 

~~~ 
~i

EZk_iYk_i + (1 - Zk_i )Yk_i ] (4.16)

IL-

Il
L~

- ±L~ - - - - — - —- - — - --
~~

--  -- - -
~~~~~~~~~~~
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The memory length of the estimator is M in that the estimates ~re based

only on the past M observations and decisions. The observations

I ~~~~ j = 0,1 are as defined in (3.3). The estimator design involves the

evaluation of the coefficients 
~~~~~~ 

which are computed so as to minimize

the MSE. If the decisions are assumed to be error-free then the binary -
V

‘ 
sequence [zk) represents the sequence of transmitted digits which are

- assumed to be independent of each other. for the digital communication

V 
system under consideration. In this case ~~~~ is just a binary variable

and estimators given by (4.15) and (4.16) are still linear. All the

I i iV 
- -~ observations Xk~ ~k’ ~ = 0,1 contain the uncertain parameters to be

I estimated. Under these assumptions, the constants (~~
,y.) which yield the

optimal estimators are computed from the following orthogonality conditions

I E((ak -ak
) [Z

k i~~~
. + (l-Zk j ) ~~~~~ i ] I Z k ) = 0 , i = l..M (4.17)

.1 E((bk
_ b
k

) [Z kjY~~i + (l_Z
k i )Y

~~i
]tZk) = 0 , i = l..M (4.18)

~ I For convenience only (4.i7) is simplified and the derivations leading to

an equation in are shown. The equation in can be obtained in an Ii
1 ‘~ ‘-1

-~~~ identical fashion and only the final result is given. Equation (4.17)

I yields i ’

~
- E C~~

[Zk..iX~~.i + ( l_ Z
k ...j )X

~ j~] IZk)

V 

= E(ak
[Z
k i~~~i 

+ (l-Zk ~~~~~~ 
IZk), -

I i = 1,...M (4.19)

I

- - I
11

-

I 
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V or

E[(E
~~j

(Z
k

X
~ 

+ (l
~
Zk 

)X~~~1 [zk ~~~ 
+ (l

~
Zk ~~~~~~~~ I

L 
= R ( i), i = l , . . . M  (4.20)

or M

~E ~j
[R
a
(i_

~
) + N

0ô~~
] = R

a
(i)

~ 
i = l,...M (4.21)

- 
j=l

- 
Similarly, for 

~~

M
- 

•
E V.(R~ (i_j) + Nøôi~

] = R.,( i) ,  i = 1,.. .M (4.22)
j l

V 
The coefficients ta . . )  may be obtained by solving (4.21) and (4.22). An

appropriate model for the sequences (aSK ) and (bk) is needed prior to the

- 
- computation of (~~.,y ). An initial value of the estimate is selected for

- the initialization of the estimator. If k < H, the estimate is based

on the previous k observations. If k > N, M of the most recent observations

are employed to compute the estimate. In high speed digital communication

- systems, the steady-state operation of the estimator is important and not

V - the initialization period.

In the above analysis, the decisions are assumed to be error-free.
I- .

In practice, however, the assumption is not valid. If a wrong decision is

~ 

reached , then the corresponding observation does not contain the uncertain

parameter to be estimated. The equations (4.21) and (4.22) can be extended

L to include the decision uncertainty but they result in suboptimal estimators

since the orthogonality condition which yields optimal linear estimators

- - - does not result in optimal estimators for this nonlinear problem. The

I
Ii~~~ V - ~~~~~~~ ———V  -~~~~ 
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i extended equations in and are

I j
~
l
~j

1~P
2
R
a

i~i + N
ooij] = (l-p) R (i), i = l,...M (4.23)

~E y.t (l—
p) R.0

(i-j) + N
06~~) = (]S _p) R.,,(i),  i = l,...M (4.24)

-
~

1 where p is the average probability of error. The performance of the

estimators is investigated in the next section.

. 4.3.2, Estimator Performance

The performance of the estimator is examined by computing the

- - 

MSE, which for the estimation of is given by

- MSE (~~) E[(ak 
- ~~)

2
) (4.25)

Since the estimate is a linear function of the observations, the

F orthogonality condition implies that

E ((ak  - ak) = 0 (4.26)

and, therefore,

MSE(a,K) = E((ak -a
k

)a
k)

- = R (0) ~~~~~~~~~~~ R (i) (4.27)
a i ai—l

Similarly, the MSE for the estimate is given by

M

~~~ [ -  MSE (bk) = R,0
(O) - £ y~R.~,(i) (4.28)

i=
-—-7

V 
- 
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I In (4.27) and (4.28) the estimator performance is computed based on the

assumption of error-free decisions. In practice, however, the detec tor

I ~~ makes errors and the performance of the decision-feedback estimator is

worse than is given in (4.27) and (4.28) . If the detector makes -

-- N(N < M) errors in the previous M decisions, the MSE could be expressed as

M M
1.. MSE (~~) R (0) - ~ ~~R (i) + p E or .~ R (i1)a a 

i.i=l 1 a 
V

2 M  N
+ L. ~ 

[
~ R (i

1
) + R (i ) ]  +... Vr 2. 

i l  1.2=1 
i1 a i2 a 2

n M M
+ ~~-- ~ ... 

~~~ 
[
~~ R (

~i
)+...+ 

~i 
R (4.29)

— . i
1
=l 

~N
1 ~ 

a 
N a

iN#ij
4 . -

where p is the average probability of error. A similar expression for

L MSE (b
k) can be obtained.

4.3.3. Example

It is assumed that (aSK ) and (bk) are Markov sequences with 
I 

-

correlation coefficient p. The means are assumed to be zero and variances

Ii are assumed to be one. The correlations are then given by

R
a
(k_~L) = R

b
(k_L) ~k-L I (4.30)

~

It is assumed that the decisions are error-free so that the equations

U which yield the coefficients [~~
) and are
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[1 t~~~
(p ’~~~

1 + N061.~] p~ , i = l,...M (4.31)

t .  and
MV 

E V [p 1~~
1
~ + N06i ] p 1

, i = l,...M (4.32)
Vj iui]~~~~i

In this example, MSE for the two est imators based on the assmuption of V

error-free reception are obtained. Equation (4.29) can be employed to

obtain the MSE when the assumption of error-free reception is not valid.

M
MSE (~~) = 1 - 

~ ~~~~ 
(4.33)

i=1
and V

M

MSE (bk ) = 1 - E ViP
i 

(4.34) —

i=l

The MSE was computed as a function of M, the memory length. The numerical

results obtained with p = .9 and N
0 

= 1 are presented in Table 4.1 and

plotted in Fig. 4.1. It is obvious from the expressions (4.33) and (4.34)

V that the MSE decreases as M increases. The results obtained assume the

steady-state operation of the estimator. As indicated earlier in high

speed digital communication system applications, steady state operation of

the estimator is of interest and not the initialization period.

4.4. Estimator with Uncertain Observations

4.4.1. General

In the digital communication systems where the received signal

does not always contain the uncertain parameters to be estimated, the

I

~~~~~~i__ _ - V~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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+ N061~] = p 1. 
, i = l,...M (4.31)

and
- L  N 1 iE Y

J
[P IJ + N08~~] p , i = l,...M (4.32) —

In this example , MSE for the two estimators based on the assmuption of

error-free reception are obtained. Equation (4.29) can be employed to

obtain the MSE when the assumption of error-free reception is not valid.

M
MSE(~~) = 1 - 

~ ~~~~ (4.33)
i= 1

and
M iNSE (bk) = 1 - E V~P 

(4.34)
i=l V

The MSE was computed as a function of M, the memory length. The numerical

results obtained with p = .9 and N0 = 1 are presented in Table 4.1 and

plotted in Fig. 4.1. It is obvious from the expressions (4.33) and (4.34)

that the MSE decreases as M increases. The results obtained assume the

cteady-state operation of the estimator. As indicated earlier in high

speed digital communication system applications, steady state operation of

the estimator is of interest and not the initialization period.

4.4. Estimator with Uncertain Observations

4.4.1. General

In the digital communication systems where the received signal

- 
- 

does not always contain the uncertain parameters to be estimated , the

W.V -

I~~~~ [I
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Table 4.1

Memory length MSE

-~~ 
;-: I -

1 .5950

2 .4922 -

-
-

3 .4572

4 .4441

5 .4391

6 .4371 
V 

-
,

7 .4369

~ - 8 .4361

9 .4360

10 .4359 ~- 4

L

L
1

~~ll V

II
H
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~

Figure 4.1 MSE of the estimator with certain observations
versus memory length.
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I estimation algorithm described in the previous section needs to be modified .

In binary on-off keying systems, the received signal does not contain the

uncertain parameter to be estimated if a zero is transmitted. The esti-

mation problem with uncertain observations has been treated in the

1. literature recently E60-621. N~~i [60] developed an optimal ~~1SE linear

recursive estimator. His estimate was based on all the available data.

- 
The binary indicator random variables were assumed to be independent of

~
- )

~ each other. Jackson and Murthy [611 generalized the estimation algorithm to

- 
include limited dependence of the binary random variables characterizing the

V uncertainty. Sawaragi et al. [62] employed the Bayesian approach to obtain

- an approximate nonlinear estimator for sequential state estimation with

- - - interrupted observation mechanism.

In the present work, it is desired to derive an estimator with

uncertain observations which is used in conjunction with a detector for

digital data reception over channels with memory. The desired estimator

is a modified version of Nahi’s linear recursive estimator in that the

- filter memory is limited so as to avoid filter divergence. It is assumed

that the transmitted digits are independent of each other. A finite-state

Markov source could also be considered and an analysis similar to Jackson
1 - V

- 
and Murthy [61] may be used for estimator design. The presence of the

detector is utilized and a decision-directed scheme is derived in the

next section.

I., -J 
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4.4.2. Estimator Derivation

The objective is to derive MMSE limited-memory estimators with

decision-feedback and uncertain observations for the sequences of channel

uncertain parameters [ak) and (bk
). The means and the correlations of the

i, sequences are as defined previously in (3.4). The estimates and 
~k 

are

computed so as to minimize the MSE, i.e., E [(ak_ak
)
2
IZk
) and E[ (bk

_ b
k)
2 
IZk)~

The estimates are assumed to be linear functions of the observations and the

nonlinearity is introduced in the coefficients through the decision sequence

Zk
. The structure of the estimators is assumed to be the same as (4.15)

and (4.16). The estimator coefficients [
~~
.,y.) are evaluated so as to

minimize the MSE. It is assumed that all the decisions are error-free and, - —

therefore , (zk) represents the sequence of tr—rnsmitted digits. The set of

estimator coefficients for the linear problem is given by the orthogonality

conditions of (4.17) and (4.18). Proceeding in a similar manner as outlined

in the previous section, the equations which yield the coefficients

are obtained and are given by

V 

t (ZkjZkjRa
(
~~~

) + N
O6jj) ~~ 

Z~~~R~(J)~ j = 1,...M (4.35) 
- :

M
t (zk_ i zk j Rb i _ n + N Oo

i j
) y~ Zk .R.D(J), j = l,...M (4.36)

i=l

~-ti ce the difference between equations (4.21), (4.22), and (4.35), (4.36) —

due to uncertain observations. Equations (4.35) and (4.36) can be used to V

*nr,ute the esLimator coefficients. These equations are, however , data

~.p.n4 nt in that they depend upon the decision sequence Z
k
. An on-line

— V—-- - 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - V —. —
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V computation of the estimator coefficients is necessary which is not

attractive computationally. The equations are, therefore , averaged over

E all possible combinations of Zk. The estimator coefficients are computed

off-line from the resulting equations and stored for on-line applications.

The equations which yield the estimator coefficients (
~1

,y
1
) are given as

N
~~

T 

(p1
R (O)+N

0) 
~
j+

i~i 
P~R~(i~•Ji ) ~~ 

= ~~~~~~~ j = 1,...M (4.37)

i
~
&j

(p 1~~
(0)+ N0) ~~+ E  p~~~(i-j) ~~ 

= p1~~
(j), j  = 1,...M (4.38)

- i~j

V where p
1 denotes the probability that a one is transmitted. Under the

assumption of error-free decisions, p
1 

= .5.

In practice the assumption of error-free decisions is not valid.

If a wrong decision is reached , then the information provided by the

decision about the presence of the uncertain parameter in the observation

is not correct. Equations (4.37) and (4.38) can be extended to include

this decision uncertainty but they result in suboptimal estimators since

the orthogonality condition which yields optimal linear estimators does

not result in optimal estimators for this nonlinear problem. Equations

(4.37) and (4.38) when extended become

tPi 1
~P R a

0 + Nü) ~j
+E (P~

(l
~P)

2Ra(i~i)) ~~ 
=

i#j

j = l,...M (4.39)

~~~~~~~ 
(

~~
_
~

_z
~~
.

__
V_?~
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- 

_ _ _ _  
- - -



— 
~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~ 
5- ~~~~~~~~~~~~~~ 

—
5--”-,-
. — -

~~~~~~~~

-

~~~~~

- —I

— — - 
- 

. 

~-V---- - - ‘----5— -—- —-5- -- -

I ~ _ -

M —

(p 1(l-p)i~~(O)+N 0) Vj+ t C P~
(1_P)2Rb (i_J)) 

y~ = pl
(l_p)R

b(j),

i#j
- - 

j l,...M (4.40)

V where p denotes the probability of error and p1 is given by

- p1 = 

~[ S S  f O O (x ,yIll
~
,Zk

) dxd y

~k
X1d1 ~

1 + j J’ f 
~ l

(x ,y
~
H
~
,Zk
) dxdy] (4.41)

1. Thus, equations which can be used to derive the estimator coefficients

have been developed and in the next section the performance of the

estimators is considered .

4.4.3. Estimator Performance

The performance of the estimator is evaluated by computing the

MSE. For the class of estimators under consideration here, (4.26) still

~ ii holds and the MSE is obtained in an identical fashion as for the estimator

- with certain observations.

- 

MSE(âk) = E[(ak 
- a

k
)a
k)

¶ :~~~~~ N
* = R (0) - E ~j

ZkjR (i) (4.42)
a 

~~~~~ 
a

Similarly ,

- ,  M

~~~~~~~~~~ L MSE(bk) Rb(O) 
_ Z V jZk_jRb(i) 

(4.43)

~~h l l

fi
I — _-_  
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Equations (4.42) and (4.43) are based on the assumption of error-free

~ 1- .. -

decisions. I~n expression for the MSE when all the decisions are not

error-free can be obtained in a similar manner as (4.29). The performance

of the estimator is data dependent since it is based on the decision 
V

sequence Zk. Bounds on this conditional. MSE can be computed and they are

evaluated by computing the MSE under the best and worst operating conditions.

The worst case occurs when all of the M previously received digits are zeroes

and the MSE in this case is the upper bound (UB) on the estimator perform-

ance. From (4.42) and (4.43)

UB(ak) = R (O) (4.44)

UB (bk) = Rb (O) (4.45)

The lower bo-~nd (LB) is obtained by evaluating the MSE under the best

operating conditions which occurs when all the previously received digits

are ones. Again using (4.42) and (4.43)

N
LB(âk

) = R ~~ - E ~i
R (1.) (4.46 )

a i=l a

N
LB (bk) = R.D(0) -E  VjRb(i) (4.47)

i=l

The performance of the estimator as discussed above is conditioned

on the decision sequence Zk
. The MSE can be averaged over all the possible

sequences and an average MSE can als3 be evaluated. The expressions for

the average MSE are given by

H 

- -V-_
_ _  

_
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I MSE (&
k) = R (O) - E Pj~i

R
a
(i) (4.48) ~

i=l -L

- I  
~

‘ 
M 

~~~~i

V

~ 
MSE (b

k) R.,,(0) -t  P1V1. Rb(i) (4.49)
i=l — -

A numerical example is considered next. 4
‘4 -i

V 

~~~ _ _ _ _
4.4.4. Example ~ 

-
~

I For the numerical example, [ak) and [bk) are again assumed to be I
Markov sequences with correlation coefficient p. The means are assumed to

- - J be zero and variances are assumed to be one. The correlation functions are

-
- - I Ra

(k_L) = Rb
(k_L) = ~ f k-2 I (4.50)

I The decisions are assumed to be error-free. The set of equations which

yield the estimator coefficients [~~~~) and [v i) are- I
~ ~~~~~~~~~~ = Z

k j  p~~, j = l,...M (4.51)

- I  i-l 

. -  

-
-

i 
E Vj[Z k.iZk_j p

h 1 u I ÷N08~~
] = Zk_j p~ , j = l,...M (4.52)

In the present work, a simulation is not performed and two specific examples -

are solved. Therefore, the actual equations described by (4.51) and (4.52) --

~ I are employed for the evaluation of the estimator coefficients and not the

V equations given in (4.37) and (4.38). In practice, the estimator coefficients -
~~~

I will be evaluated off-line and equations (4.37) an4 (448). wU~. bç, employed.

The conditional MSE for both the estimators with the assumption of error-free -
-

I
~
V I I

J 
1___ 
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~ decisions is given by 

—

M

I - 
MSE(ak

) 1 - E 
~i
Zk_i p’ (4.53) ~ 

V

- i=l - -

-
~~~~~~ ~‘ 

N 
~ 

-

~ 

V MSE (bk) 1 - E YjZk .  P (4.54) - —
~ V i-=1

~ 

L The MSE for two decision sequences with different memory lengths are

I computed. Numerical results are obtained with p = .9 and N
0 

= 1. The ~

steady state operation of the estimator is assumed. The numerical results 
V

-

~ ~ 
for the memory length four are presented in Table 4.2 and plotted in Fig. 4.2. ~

~
, , The decision sequence Zk , i.e. [zk l ,  Zk 2 ,  Zk 3 ,  zk 4 ), was assumed to be

[1001). In the second example, the memory length is ten and the decision

t sequence Zk is [110 1111 001). The results are shown in Table 4.3 and

Fig. 4.3.

4.5. Discussion

I In this chapter , estimation algorithms for receivers with memory

are discussed. The basic goal of the combined estimator-detector structure

- j is signal detection. The estimation criterion which optimizes the receiver

is derived. Limited-memory estimators with decision-feedback are discussed .

L The estimates are assumed to be linear functions of the observations with

nonlinearity introduced through the coefficients which are functions of the

past decisions. Two cases are considered. Fi:st, when all the observations

contain the uncertain parameters to be estimated , and secondly when all the

observations do not contain the channel uncertain parameters. Decisions

4 - - V are assumed to be error-free but results are extended to include the case

~~~~~~ ~1L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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I Table 4.2

I Signalling Decision during MSE
Interval the signalling 4

interval

k 1 5329

k + l  1 .4922 
- 

~~~~~

1 .4572
I
V k + 3  0 .4441

E k+ 4  1 .5603

- k+ 5  1 .4901

1 k+ 6  0 .4655

k -s- 7 0 .5887

I k+ 8  1 .6668

k + 9 1 .5329

I k+ 1O  1 .4922

I ’ k + l l  0 .4572

- 
- 

k+12 1 .4441

J k+13 1 .4441

k+14 1 .4441I k+ 15  1 .4441
— -

V V
V -~~

U ~~~
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Figure 4.2 MSE of the estimator with uncertain observations
with memory length four.
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Table 4.3

Signalling Decision dur ing NSE
interval the signalling

interval

k 0 .4514

k +l  0 .5559

k + 2  1 .6403

k + 3  1 .5062

k+ 4  1 .4623

k+ 5  0 .4462
4

k+ 6  1 .4400

k + 7  1 .4376

k + 8  1 .4366

k + 9  1 .4362

k + 10 0 .5435 -V 
-

~~

[ k + l l  0 .6302

k+l2  1 .5031

E k +13  1 .4612

E 
k+14 0 .5637

- 

k+15 1 .4821

E k+ 16 0 .5807

k+ l 7  0 .6608

I k+l8 1 .5126

k+1 9 1 .4649

I
I
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Figure 4.3 MSE of the estimator with uncertain observations

II with memory length ten.
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1~ 

when all the decisions are not assumed to be correct, The performance of the

~ 
estimators is computed in terms of the NSE.

- In practice, the detector is expected to make errors and the

estimation problem is nonlinear. However, the average probability of error

for digital coninunication systems is expected to be low and the probability

r of N errors (N > 2) in M decisions for a reasonable size N can be assumed to

be negligible. Therefore, an estimator for this problem which is obtained by

- using the orthogonality condition is not optimal but is expected to be nearly

- ~- optimal due to the almost error-free decision sequence.

The estimation algorithms developed in this chapter may also be used

- in control -theory. One practical application could be tracking of a target

trajectory where the target return is processed at discrete intervals and V

— 

- I uncertain parameters are estimated. If observation mechanism breaks down,

for instance, due to misalignment of antennas etc. the observations do not

I. contain the parameters to be estimated and the estimation algorithm of

- 

~ r 
section 4.4 could be employed in such cases. Thus, the estimation algorithms

- 
developed may find applications in a variety of practical problems.

- r

•1 
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- 
i - 5 . MODELING OF DIGITAL CHANNELS

~ 
I 
~ 5.1. Introduction

V 
Modeling of digital channels is an important problem in the theory

- of digita l coninunications receiving considerable attention in the literature.

t F Analytica l models of digital channels find extensive use in the theoretical

~ 

V 

prediction of error-rate and other channel error statistics . These

~ I predicted values of error statistics assist in the comparative analysis

~ 
of differen t modems and also in the ana lysis and performance eva luation

L of various error-control techniques. It is desirable for a conmunication

- system designer to be able to predict the preformance before selecting the

system, i.e., the modem and the coding techniques. Digital channel models

I 
- 

also provide an insight into the clustering of errors and this may help

V 
- - 

in the development of more efficient an~ reliable communication techniques.

- 
Thus, the channel mode ling problem is j f curren t interest with potential

- applications in the design of data communication networks where it is

- .  essential that the data links be characterized accurately .

L There have been two basic approaches to the channel modeling

3 
problem. The first approach has been pursued by Bello and his colleagues

E at SIG~ATRON Inc. They consider the actual:physical processes present -

in the transmission media which are responsible for the channel behavior

observed in practice. Basic results from the electromagnetic propagation

theory have been used and the relationship between the random disturbance
--

processes and the actual antenna parameters of the communication links have

v
1 been derived. Bello [63) developed a mathematical model for the troposcatter

w 

I

——— 
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i: channel. Scattering and other related phenomena are used to derive the -

channel model. The transfer function is assumed to describe the channel

: and the statistics are completely determined by the time-frequency

V ~ E correlation function. The model has been employed to predict the error

- - rates and for the comparison of the performances of different modems [64-65).

L The model has also been used to predict the performance of various codes

~ • and coding techniques [66] by computing the probability of m errors in a

- -  block of length n. This error statistics provides a tool for the performance

-

V evaluation of block codes but does not give an insight into the actual

stochastic behavior of the channel error sequence.

The second class of channel models try to characterize the &iiput-

- output behavior of the channel. The actual physical processes present in

- - the channel are not taken into account and accurate stochastic models which

- represent the stochastic behavior of the channel error sequence are developed.

Three major types of input-output models have been proposed . The simplest

I of them all are the renewal models [67-69]. They assume that the error

~ 
sequence is a discrete renewal process and the occurrence of an error depends

~ L only on the time elapsed since the last error occurrence. The second group

consists of models which consider the bit-by-bit behavior of the error

sequence. Gilbert [70] proposed a two-state Narkov model which was later
-1~ I~ generalized by Fritchman [71] who discussed a partitioned Markov chain model.

Haddad et.al. [721 considered the statistical behavior of gaps and developed

- - I. the third class of models which are the Markov gap models. These models

r were later extended to include some additional memory which characterized the

I. — V

short-term error behavior more accurately [73,74]. The input-output models

— ~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ —- - 
~~~

- V-—-__- -

~~~~~~~~~~ 

V
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have been employed successfully to predict the performance of error-control

techniques. C1usterin~ of errors and the concept of multiga ps has been
- 

explored by Adoul f75].

It has been discussed above tha t the model developed by Bello

- 
considers the actual physical processes involved whereas the input-outpu t

3 models try to model the stochastic behavior of the error sequence . It

is expected that a model which incorporates both features would represent

a channel more exactly . It is, therefore, desirable to consider a unified

treatment of the channel modeling problem in that a description of the

- 
actual processes is utilized to model the input-outpu t behavior. En section V

- 
5.2, attention is focussed on some aspects of a unified treatment of the

- channel modeling problem. The main objective of this chapter , however , is

- to examine the relationship between receivers with memory and error clustering .

This fits into the general framework of the channel modeling problem since

the channel model depends upon the actual communication system in use and,

1 therefore , it depends upon the receiver . To examine the relationship of

- .  receivers and error clustering it is necessary to define some measures which

-. quantit-stively characterize this relationship. These measures would describe

the statistical behavior of errors in the channel error sequence . In section

5.3, thc measures are defined and numerical results are obtained in the

Li last section which represent the relationship of receivers and channel models V

quantitatively for special cases.

V

j  

_
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5.2. Channel Modeling Considerations

It has been indicated previously that a unified treatment of the

channel modeling problem will be briefly presented in this section.

Actual physical processes are taken into account while modeling the input-

output behavior of the channel. To accomplish this, it is essential

- to consider the actual communication system. The communication system

description would help in incorporating the knowledge about the ac tual

physical processes involved into the channel model. It is assumed that the

communication system described in Chapter three is under operation . The

memory in the channel is introduced by the pair of dependent random

1. variables (vk,~k
). The statistics and other description of these random

variables is employed in deriving a channel model.

First the basic framework and some terminology is introduced . The

1 channel is assumed to be as shown in Fig. 5.1. It consists of an information j.

source which generates the input sequence C x~). The channel corrupts the

transmitted information with noise and produces an output sequence

[ It is assumed that thenoise sequence , which is denoted by Cu1), is independent

of the input sequence [x1). The input and output symbols are the elements

of the Ca lois Field CF(q) with operation e, which is addition modulo q. The

output sequence is generated by the summation of Cx } and (n ) over GF(q).[ The channel error sequence [ei} 
is defined as a mapping ~ from the noise sequence

J tn1) 
onto the set [0,1) so that the value of e1 

is given by

0 ifn = 0

I e Ø(n ) { (5.1)1 1 1 otherwise

I
I 

-~- ~~~~~~~~~~~~~~~~~~~~~~~
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Thus, ~e~) is a discrete random process taking on values zero and one.

In the binary sequence tej3~ an occurrence of one indicates the presence of

an error. It is this discrete error sequence ~e~) whose stochastic behavior

is to be described.

• Digital channel models could be generated which utilize the

properties of the channel in representing the input-output behavior. The

generation of model requires the computation of probabilities of various

error clusters or configurations in the sequence ~e.}. The error sequence

is assumed to be stationary and ergodic so that the computation of the

statistics of any particular sequence does, indeed , yield the channel model.

An adequate description of a inemoryless channel is the average probability

of error. The models for channels with memory are obtained by evaluating

the probabilities of error clusters. For example , the Gilber t’s model could

be generated by computing the conditional probabilities P[(e =O)~~(e =0)),

U P((ek
O)t (ek_1 1)), P((ek l)I(ek_l =O)) and P((ek l)I(ek_ 1 1)) for any

pair of adjacent error bits. The expression for one of these four probabilities

is evaluated for illustration purposes.

P((ek l)I(ek l =l)) = PC (ek =l)fl(ek l =1))/P(ek l =l) (5.2)

The joint probability may be obtained from the following

P((ek
l)fl(ek l =l) )  = illS ~~ 

~. ~. ~. 1(u,v,
x,y)dudvdxdy i Ju 

~ko 
Xk.,I

Yk_1XkYk

II
+ ISIS ~ ~ ~ ~. 1

(u,v,x,y)dudvdxdy

Q01 ~~~l
Yk~l

XkYk II
I
_ _  

II 
-. - — 
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+ J’j’~$ f0 ~ 1 1(u ,v x ,y)dudvdxdy
~~~~~~~ Xk l Yk_lxkYk

+ 1155 o o o 0(u ,v,x,y)dudvdxdy (5.3)

• i a11 ~~~l
Y
k~l

Xk
Yk

.

~~~ 

where represents the optimum decision regions obtained using the appro-

} ~ priate detection scheme wh~.n the combination of the hypotheses is

true . If all the four conditiona l probabilities are evaluated it results

in the parameters required to characterize the Gilbert model. It does

not necessarily prove the validity of the model. Other more complicated

• 
models like the partitioned Markov chain models and the Markov gap models

which are based on the knowledge of the physical processes can be derived

1. in a similar manner but at the expense of a considerable amount of computa-

tiona l complexity. A receiver with or without memory could be employed and

the channel model obtained will correspond to that particular communication

system.

In the present work, the objective is not to genera te comp lex

channel models and, therefore , the subject is not pursued any further .

£ In this section , the approach to be used for the modeling of a communication

system has been indicated . The goal in this chapter is to examine the

relationship between the receivers with memory and error clustering. In

the next section, the measures which are used to achieve this goal are
VI defined and discussed. These measures try to characterize the statistical

I dependence of errors and are , thus, essential tothe understand ing of channels

with memory and their modeling.

I
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5.3. Measures of Channel Memory

In this section, an attempt is made to define some measures of

channel memory in terms of the input-output model. It is expected that

F these measures will have applications in modeling of channels and also

communication system design. These measures will also describe the

clustering properties of the error sequence of a communication system.

In other words, these measures provide information about the occurrence of

error events based on the past errors .

The channel error sequence (e~1 is assumed to be stationary wi th

~ Ce .=1) 
= p (5.4)

where p is the average error rate. Two measures are considered. The

first measure is obtained from statistical considerations and the other

derived from the information theoretic point of view. In statistics, the

correlation of two random variables is determined by means of the correlation

coefficient. A similar measure is defined here using the same concept

to describe the dependence of error events [e
i
).

I: Definition: The (n+l)-th order generalized correlation coefficient

~~÷1
(m 1,m2.. .mn) of the sequence of random variables [er) is defined as

E((e~ -p)(e~~~~-p). .(ek_m~~
p))

%+l 
(m
1 ,m2 

= 

~n+1 
(5.5)

L where ~2 p(l-p) is the variance of e~ . It is observed that = 0 and

the values of ~ , i > 1, can be computed from (5.5).

1
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The second measure is derived using the information theoretic

t .~~ approach. The depen~~ace of error events is considered and a measure in

Li terms of the mutual information [76] is described .

L Definition: The (n+l)-th order error clustering coefficient 
~~÷i

(m
i~
. ...m)

- 
is defined as

L. P((e
k

l)fl(e
k 

1)fl ... fl(ek =1)1

~n+i
(mi,m2,~~ 

.m
n
) £n P(e

k
i)P(ek m l) .. . P(e

k
l) (5.6)

1 n

This coefficient provides a quantitative measure of the dependence of

various error events. If 
~~+i

(m
i~

. ..m ) 0, the error events are independent.

A negative value of B ÷1
(mi,. . .mn) indicates negative correlation and a

positive value implies positive correlation. If the event [(ek_m l)fl...fl(ek_m~~
1)]

is denoted by E~ and the event (ëk_m l) by i~~, then B ÷i
(m1,...m ) can be 

n

expressed in terms of the mutual informations P

P( ~’ l E J PIY IE J
.m) = Ln P(’~’0) + Ln P(~’ )  +

P[’F IE I P[~ 
]

m-2 m-l m-l+ ~~~ P(’Y ) + Lu P(~ )
m-2 m-l

L t - = I(~0,E1) + I(~ 1,E2) + ... +

n-i
“~~ 1~ — E ICi?~~E +~ 

(5.7)
j—O i

I where ICV
~~

E
~+1) represents the mutual information of the two events and

I Ej+i 
Thus, 

~~+i(mi, m~) and 
~~+i

(m i, m )  define two measures which

El
a~~~ - —-~~~~~~~~ -—-- ---~~~~~- -~~~ - ~~——- —.—-~~~— - .-
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quantitative ly specify the dependence of various error events. These V V

measures can be employed to examine the relationshi p between receivers and

channe l models . I t  is expected that  a receiver which exploits the correlation

of the received data would alter the correlation properties of the error

sequence and thereby changing the channe l model. The measures can be

L~ 
computed for the ac tual  communication system in use if an appropr ia te  mode l

for the uncertain parameters of the channe l is assumed . In the next section ,

the computationa l procedure is i l lus t ra ted  by means of an example .

‘I5.4.  Receivers and Error Clustering

V In this section , the e f fec t  of the receivers on error clustering is

examined . The measures defined earl ier  provide an insight into the clustering

of errors.  The measures describing the corre lation properties of the error

sequence can be computed for d i f fe ren t  communication systems . In par t icular , ~ -~~

~

in this section the coeff ic ients  
~~+i

(m i , . .  . m )  and B
~~1 (m 1,. . . m )  are

i
computed for the communication systems using the receivers both with and

vithout  memory. As noted these coefficients provide quanti tat ive information

about the occurrence of errors conditioned on past errors . A higher va lue

of o~ (m , . .  .m ) and ~ (m , .  • .m ) provides more informat ion about then+l 1 n n+l 1 n V

occurrence of errors . Thus , the errors are more predictable for such

communication systems and it is expected that this may hel p in the development

of more efficient and reliable communication techniques.

The computation procedure is illustra ted by considering an example.

The coherent on-off  keying system example considered in chapter three is

fl pursued and the correlation and error c lustering coeff ic ients  are computed .

II
II
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In particular , 
~2
(1) and B

2
(1), the second order coefficients are evaluated .

Higher order coeff icients ~~÷i(m11 .. .m )  and B +i(m1,.~~m )  can be computed

R in a similar fashion. As special cases of (5.5) and (5.6),

E [(e k
_p) (ek_ l

_ p) } - 
V

= 
p(1-p)

I Pf (e 1)fl(e 
- 

1))-p
2

= 
k 

~ ( j )  
(5.8)

and

11 P((e 1)fl(e 
- 

1))

2 P(ek=l) P(ek_l l)

II p[(e =l)fl(e 
- 
=1)3 V

Ln k 
2 

k i  (5.9)I_I p

In order to be able to compute ~y2 
and B 2 it is necessary to eva luate the : 

- 

-

joint probabi lity PC (ek
=l)fl(e

k...l
=i)). For the example under consideration,

fl the joint probabi lity can be expressed as
Li -

*

11 P[(e
k
=1)fl(ek..l

z1)} = erfc(T
k

/N
0
2)Cerfc(T

k/N0
2) + 2 e r fE ( T k~~ k)/ ( N O+Ck

)2 J1

T
k
T
k 1 x2-2p + 2

+ 5 [2rr(N0+c)(l_P2)21 ’exp(_ 7 ~ )dxdy (5.10)
2(1-p )(N0

m)

The coefficients ry
2 

and B2 are computed as a function of signal to noise

ratio and the results are obtained for both the receivers i.e. the optimum

receiver without memory and the constrained receiver. These results are

presented in Tables 5.1 and 5.2 and in Fig. 5.2 and Fig. 5.3. It is
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Table 5.1

1. SNR Optima l receiver Constrained
without memory receiver with

memory
-~ V

1 .3020 .2901

10 .5050 .5066

io2 .5832 .6640

lO~ .5878 .7320

• J lO~ .5883 .7573

10~ .5884 .7662
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Table 5.2a
B2 - •

SNR Optimal receiver Constrained receiver
without memory with memory

1 .3418 .3328 
V

10 .8488 .8529

If io2 1.0545 1.3692

1.0633 1.6279

lO~ 1.0642 1.7314

ii 10~ 1.0643 1.7693 
V

U
II

Li

U

I —
— —-- •— ——- -V.— — ~~~~~~~~~~ --V -V -V 

—~~- — - 
~
-- —



—~~~ 
-
~~~ • . _ _ _  _ _ _ _

- - - - 
- 

* 
VV ~ 

-

I ~ 96 f
-: 

V

1.0 I I

- 0.8 — 
— 

___ __ ___ ___ _
~~~~~~~~ ——

a_ _ s V

O•4 : R i W i th tMemo
V 

- -——— Receiver With Memory
0.2 - -

0 
10 102 io3 tO5 4SNR

Figure 5.2 
~2 

for the receivers with and without memory.
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observed that the values of °
~2 

and B2 for communication system using the

receiver with memory are greater than the ones obtained when using the

receiver without memory. This indicates that more information about the

occurrence of errors is available and errors are more predictable when

using the receiver with memory. This is the reason that the performance

of receivers with memory is better and also the fact that the errors are

more predictable can be used to devise more efficient communication 
- 

V

techniques . The discrepancy in the behavior of 
~2
’ B2 for low SNR can be

- 

- 
attributed to the approximations made in the design of the receiver with

memory . The approximate design implied small error probabi lity which

certainly is not valid for the low SNR case.

5.5. Discussion

In this chapter, modeling of digital channels is considered. In the

- 
i past two different approaches to the channel modeling problem were proposed .

In the present work, a methodology for a unified treatment of the channel 
- -

modeling problem is described . The objective is to utilize the knowledge

of the actua l physical processes in characterizing the input-output behavior of

the channel more accurately . The emphasis is only on describing the method-

L ology and not on generating complex channel models. An attempt is made to

characterize the channel memory quantitatively. Two measures are defined

which quantitatively describe the clustering of errors in the channel error

fl sequence. Relationship of receivers with memory and channel models is examined.

Receivers with memory which utilize the correlation of the received data are

expected to alter the clustering properties of the channel error sequence.

~1~~~

1 I
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communication systems using a receiver with memory and without memory are

11 compared by computing the correlation measures . The errors generated by

a system using a receiver with memory are more predictable and occurrence of

an error provides more information about the occurrence of further errors.

The example considered illustrated these points.

y ~j
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6. SUMMARY AND CONCLUSIONS

In this thesis some aspects of digital communications over channels

V with memory have been studied. The basic objective was to model channels with

memory and to develop more efficient and reliable communication techniques over

such channels. In particular, the receiver design problem for channels with

memory was considered and also the relationship of receivers and channel models

is examined. In the receiver design problem, the source of channel memory was

assumed to be fading. Receivers with memory were derived for applications with

channels with memory. In Chapter two, a receiver with one-bit memory was con-

sidered. The optimal receiver was derived but it was too complex to implement

and, therefore , a suboptimal. decision-feedback receiver with one-bit memory

F was considered. The suboptimal receiver was shown to perform better than the

optimal receiver without memory. The emphasis in the second chapter was on

the investigation of the theoretical feasibility of receivers with memory

and not on actually deriving optimum but complex receivers.

A receiver with large memory was considered in the third chapter.

The receiver was assumed to consist of an estimator and a detector. The

estimator provided the information about the existing fading conditions to

the detector which adapted the decision rule accordingly. The memory length

was assumed to be large and asymptotic results were obtained. The design

criterion for the receiver was the minimization of the probability of error.

The performance of the receiver was measured in terms of the average probability

of error. Numerical results were obtained for a specific communication system

V 
and the performance of the constrained receiver with memory was compared to

that of the optimal receiver without memory. The results indicated a significant

I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- 
V 

improvement in the receiver performance when memory was introduced . In

Chapter four, the estimator design was described. A limited-memory decision-

feedback estimator was developed with applications both in communication and

j control theory. The performance of the minimum mean-squared error (MMSE)

i estimator was examined and numerical results were obtained . The results

for estimator with certain observations indicated that the MSE attains its

I minimum for a memory length of four . The numerical results for the MSE with

uncertain observations were also presented .

V 
In Chapter five, the modeling of digital channels with memory was

discussed . A unified treatment of the channel modeling problem was

considered . Actua l physical processes were employed to describe the input-
V 

output behavior of the channel. A methodology to be used for the development 
V

of such models was described and actual channel models were not derived .

The role of actual communication systems in the clustering of errors in the

channel error sequence was discussed. Two measures were defined which

quan t i t a t ive ly  characterize the - correlat ion of errors . These measures are

expected to have applications in the deve lopment of more efficient communica-

tion techniques . Finally, the effect of receivers on the correlation of

errors was considered . The coefficients ~ and B are computed for the
m m

- - cases when the optimum receiver without memory was used and when the con-

L strained receiver was employed . Numerica l results obtained indicate that if

the receiver with memory is employed in the communication system , the

- 

occurrence of an error provides more information about future errors. Thus,

the occurrence of errors could be predicted more accurately .
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Finally, the two major research problems which should follow the

V 
work presented here are indicated . The receiver design problem should be

pursued in the presence of both fading and interaymbol interference. The 
V

V unified treatment of the channel modeling problem should be considered

and channel models , which take into account the actual physical processes

involved while describing the input-output behavior of the channel should

• . be developed .
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APPENDIX A

] Derivation of Equations from Section 2.5.1

a
The objective here in this appendix is to present derivations of

- some of the expressions obtained in Section 2 .5 . 1.  The threshold for the

detection of the first bit , T1, is obtained by minimizing the probability

of error in the first bit, P(e
1

1). Note that this is also the

[ probability of error of the zero-~némory receiver. 
V

P(e
1

1) = 
~ F[2

1>T 1IH ~ } ~~~ ~~l
< T

1tH~
) (A.i)

V where L i is the decision statistic defined in (2.21). If the optima lV decision regions are denoted by C2o and 
~~~~~~

, the above can be written as

L P(e
1

l) = 

~~ ~X1,Y1IH~ 
(x ,y)dxdy

- + 

~ Si’ 
~ ~ lEt 1 (x ,y)dxdy 

V~ •
~:~

I’ l l

= 

~J’ (2fl)~~ exp( - (x 2 +y 2 )/2 }dxdy

V V

1 
+

~~ ~5 (2fl(l+~ ))~~exp(-(x 2 +y2 ) /2 ( l+~ )1dxdy . (A.2)

i-V
which when changed into the polar coordinate system results in

LI
II
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I.

L (T
1)~

P(e 1~~1) 
~ 
[j~ r exp(-r

2/2)dr + 
.
~~ r(l+ 11)~~ exp(_ r 2 /2( 1+f l) )dr ]

I . r ( T
1)~ 

r 0

~ exp(-T 1/2) + ~ C 1-exp(-T 1/2(1 +~1))3 (A.3)

[ The value of the threshold T1 which minimizes the right hand side of

(A.3) is given by

= - 

~ exp(-T 1/2) +~~ ( 1+~1)~~ exp(-T 1/2( l +1D ) = 0 (A.4)

- This results in (2.24), i.e.,

I T
1 

= 21 ’(1+~1)Ln(l+11) (A.5)

The thresholds T
k for the optima l scheme are determined by (2 .26)  and are

obtained so as to minimize the following conditional probability of error :

P(e
k~~

lIX.L(l,Yk .l) = 
~~~

+ P(L
k
)T

kIXk_l,
Yk..l,}LlO ) + P(L

k <TkIX,I(l,Yk l , HO1)

+ P(2k<T
kIXk_1,Yk_1,1111)J

[

V 

= 

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 .

~~~~~ 

+ SS f,~ y I X y H x ,y Iu ,v)dxdy 
V -

1 + SI ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I] 00

I~~~
V
~~~~V U

-— • - -
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a 

~ [ i ’5 (2~)~~exp(-(x
2 
+y

2
)f2)dxdy+55 (2~)~~exp(-(x

2 +y2)/2)dxdy

Cl1

+ II (2~ ( 1+~ )) 1eXp( (X2 +y 2 )/ 2( l ))dXdY I
+ II ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V

(A.6)

Denote the four integrals in (A.6) by I., j l ,2,3,4, in the order they are

listed. The integrals may be written in polar coordinates as

= 12 
= 5 r exp(-r2/2 ) dr = exp (

~
T
k
/2) (A.7)

r ( T  )
2 V

k

(T
k
)~

1
3 

= r r ( 1 +~~)
1
exp{ r

2/ 2 ( l +~fl)~ dr V - 

-

r=o 
V

~~
.
.

= I - ex p
~
_T
k
/2 ( l +

~
fl)} (A.8)

2~
14 5 ~ r{2r (l+ ~ )(1-p2 )1 1exp( - [ ( r cos~~~pu) 2 + ( r sin~~~pV) 2 ]

ø=o i.=o
/ 2 ( 1+ 1~)(l-P

2
))drd~

(T~~~
a 

r
~
0

k 
r((i. +1fl (l-p

2
)3 

1
exp[-(r

2 
+9 Lk ~

)/2~~ +11)(l_9
2
))

1
O
(Qr(Lk j

)2/(l+
~

) ( l 9
2))dT

1 (A 9)
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• [ We substitute from (A.7) - (A.9) into (A.6) and set the derivative with

E respect to T
k 

equal to zero to obtain (2.26).

For the suboptimal scheme, (2.29) is employed to compute the

threshold va lues 4 and R~ . These expressions for 4 and R~ are obta ined

-

~ V 

so as to minimize the conditiona l probabilities of error P(e2~
.l~Z1

0)

and P(e2 11Z1
l). Here the computation of 4 is illustrated by

V 

minimizing P(e2
= l~Z1

=0). R~ can be obtained in an identical fashion.

p(e
2 =l 1Z 1

=O) = ~ P(Z
2 1IZ 1

-.
~O,$) 

+~~ P(Z
2 0!Z1

0,14)

-

~~~ 

= ~ [P(Z
1
= 0)] ‘[P(Z 2

=l ,Z1
=O~H00) + P(z2

=l ,Z1 01H10)

+ P(Z
2 =0,z1

=01H01) + P(z2 =0 ,Z1=0 ~H01)] (A .lO)

~ [P(Z
1
0)] 

l is a constant as far as the computation of 4 is ‘~oncerned

so it is denoted by C
0 

and also 4 is denoted by T2 for convenience.

p(e
2 = 11Z 1

=0) = C
0
[P[L

2
>T

2 ,L 1
<T

11H 00) 
+

V + P(L
2

<T2,21< T
1IH01~ + P[22

<T2 , L1<T 11H 11
)]

I c0 [(l-e xp (-T 1/2) )exp(-T2 /2) + [l-ex p(-T1/2(1 +11))}

N exp(-T 2 /2) + C 1-exp( -T 1/2) H l -exp( -T 2 /2 ( 1 + T D ) )  
V

1 ~~~

I.? (T2)
2 ~~~ -

LI + 
.
~~ L2

( 1 + L 2
/2 (1+~1) 1Q t 2

(1+ ( 1 P ) ,

V B L2=0

T~(l +71)~~ ( l - p 2 ) 1) ] d L2 (A. 11)

J 
_ _ _ _ _ _ _ _ _ _ _ _  
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L The derivative of (A.ll) is set to zero to obtain (2.29a). Equation (2.29b)
V 

~~~~ 
can be derived in a similar manner.

~ 
‘ V

- 7
i Y

~ 1.

F L •

1’
‘V

I —

‘
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t ltJ

?~1

p 
1?
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~1APPENDI X B

Some Important Functions

In communication theory, some functions occur quite frequently.

A brief summary of the functions used in this thesis is presented in this

appendix. The first function is the error function which is defined as

x 2 V

erf(x) = 5 —  exp [- ~~
— )du (B.l)

and the comp lement of the error function is given by 
V

erfc (x ) 1 - er f (x)

2 V

= 5 -. exp[- 
~~~
- )du (B.2)

x~ J2n 2 V

The function has been tabulated in most of the standard books on ma thematical

• tables . For digital computer applications a rational approximation to the 
V

error function can be used [77].

e r f (x )  = 1 - (a
1
t+a

2
t
2 +a 3t

3 +a
4
t
4
+a

5
t5)exp (_x2) + ‘ c (x) (B.3)

where -

L t = ( 1+px) 1

r p .3275911

I_ a 1 
a .254829592 , a2 = - .284496736

~~~~~ 
83 

1.421413741, a4 
= - 1.453 152027 V

~~~~~~ ~~ 
V

~i~~
_ _ 

~ ( a~ 1.061405429 -

Li V
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I 
and the error 5 (x) satisfies the following bound

I€(x)l < 1.5 x 10~~

f The other major function of importance is the Marcum’s Q function

[78] which is defined as

L 
2 2

Q(c ~, 8)  ~ Z exp(- 
Z 

~~ 
10 (YZ )dZ (B.4)

8

where Io(.) is a modified Bessel function of the first kind . The Q function

has been tabulated by Marcutn [79). The integra l cannot be evaluated

ana lytically An asymptotic approximation to the Q-function is given by

2
- I ~ ‘B- u exp[- (b -c~) 

/2] - 
V

— Q(u ,B) ~ ~erfc (_) + — } (B.5) - -

. 
~/2

if 8 >> 1 , a’ >> 1 and 8 >> 8-o’ > 0. DiDonato and Jarnagin [80] have described

sn efficient numerica l technique for the computation of the Q—function .

~
- Ii

Their results are presented next . They define two functions V(K,c) and

P(R ,D) as

Br2 Ar2[ V(K ,c) = — 
,~
‘ exp( _ r) ‘

~ 
(—~—) r dr (B.6)

a~d

V -
~
,V - V

P(R ,D) = exp (-D
2/2 )  

~ 
exp(-R

2
/2) I (r D)r dr (B.7)

L 0

These two functions are related by

: 1 1
— --V.--- ~~~~~~~~~~~~~ V-V — - •.-

~~~~~~~
- 
—-V.--- -V —‘-V -V 

—-V —-
~
-

~~~
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I 
P(R ,D) = ~ [

i_exp (_ !1D ) to~~ D) + v(f R-DI~ 
IR- D l

)1
+ if R > D

V 
- if R < D  (B.8)

Recursive schemes are utilized to obtain the value of P. If 2RD < M

V where M is a positive constant , the following set of relations are employed

T !.~Lv 2RD
2n 

— 

~ 2n )~R
2+D2) 2n-2

- 
I R D 2

t (i + 2) S2n n> 1 (B.9)
R+D R+D

4”  - RD 2_
S2 

= (~) S 2~ _2 n 1 (B.10)

1’
The initial terms are given by

S0 
= exp( .- (R2+D2 ) / 2 )  (B. ll)

and

V 
R2 2

T
0 

- -D ( l S o ) (B .12)
L. R + D

The recursive scheme is continued until

~~~~
-:- t~ T < € an d S < e (€ > 0)

- 
- 2n 2n

— P(R ,D) is given by

11

- - ------V --V--.--- - - - ~~~~ 
__

~~~ 
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~ :~ P(R ,D)~~~f [l  ~~~~~~~~~~~~~~~~~~~~ 
(+) if R > D

~ ( — ) if R < D (B.l3)

~

- L The above value is given correctly to at least (Jlog 10i~ -l) decima l digits.

F’

• 
‘V

I
f

pV
~~ ~~~~~~~~~~
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V APPENDIX C

Derivation of Equations from Section 2.5.2

In this appendix , some of the equations in the Section 2.5.2 are

derived . The threshold for the detection of the first bit , T1, is

- computed by minimizing the probabil i ty of error in the first bit.

V 
P(e 1~ l) = ~ > T1~4) + ~ P(Y 1 < T1jH~)

T

= ~ (2~~)~~ exp (-y2 /2)dy + ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(C.l)

When the derivative of the right hand side of (C.1) is set to zero, it results

in (2.35), i.e.,

- ~ (2rr)~~ exp(-T~ /2 )  + ~ (2TT(l+’fl))~~exp(-T~/2(l+’T’~)) ~ 0 (C.2)

and this implies

F -! 
. 

T
1 

= [(l+fl)Ln(1+fl))~~~~ (C.3)

The thresholds T
k 

for the optimum decision rule are obtained by minimizing

1 the conditiona l probability of error

U P(ek=llY k l ~~) 
a 

~ ~~~~k
> TkIYk i ,HOO) + 

~~~~ 
> TkIYk l ~

HlO)

V 
+ 

~k 
< TkIY k 1, H01) + 

~~
‘
~k 

< TkIYk l , Hll )1
V 

T
I 1 2 k 1

~ [2 5 (2i)~~ exp(-y /2)dy + 5 (2n( 1+~ ))~~ exp ( -y 2 /~~( l+1~) )d y

~~~~~~ V :  ~
j Tk 

-Co

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (C 4)
I
~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~ --- - - - — - - - -~~
-- - -~ -- — - - ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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V 
The derivative of (C.4) is set to zero and it yields (2.36). To obtain (2.38)

I and (2.39), the expressions for the conditiona l probability of error

P(e2 llZ1 0) and P(e2=1!Z1
=l) are computed and the derivatives are set to

V zero. Here (2.38) is obtained and (2.39) can be obtair.ed similarly .

I P(e2=llZ1=0)~~-~ P(Z2
].JZ 1aO ,4) + ~ P(22”OIZ ].”0 ,14)

r 4P(Z=0) [P(z2=l ,z1=01H00) + P(Z2=1 ,Z1=01H10)
a. 1

+ P(z2=0 ,z1=0J H01) + P(Z
2
=0,Z1=01H11)J

- .  = C0C4 er f(T 1)er fc (02 ) + 4 er f (T 1(l+~D~~~)er fc (Q2 )

0 ‘ 1
+ 4 erf(Q2/(1+~~~

)er f ( T
1
) + 2(2T(l+~)5~~~~expf-B

2/2(l+T)~ 
1.

I. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(C.5)

1. Setting the derivative of (C.5) to zero results in (2.38). The equations

which yield the thresholds and R.,~ are similar to (2
q 38) and (2.39) and

are obtained in a similar fashion as outlined above. The steady state solutions

Q and R are obtained by setting ~~~ Q and R
~+l ~~ R. Approximate

- 
solutions are obtained by linearizing the equations. It is assumed that the

deviations ~Q and £R are small. The nonlinear functions are expanded itt

Taylor ser ies and only the l inear terms are kept , e.g.,

e~ i(~T) - 

~~ 
(
~Xp(-(~

2
T
2
/2) (C.6)
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and

- 
.
. 

exp[-7~(2 (1+’fl)~~
1
T
2 (1 +

~ exp( -1~(2(l+ 11))~~ T2 (l +

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (C.7)

Approximate values of terms which are similar to the terms shown in (C.6)

V 
- and (C.7) are substituted in the exact set of equations for Q and R , and it

results in the set of simultaneous linear equations (2.42 ) which are solved

-
- 

for the threshold values.

i i

H
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APP ENDIX n

Illustration of Theorem 2.1

In this appendix , theorem 2.1 is-verified for the Gaussian

f ading examp le. For convenience in il lus t ra t ion , the probabi lity of

error in the second bit using both the schemes is computed and compared . 
V

The expressions for the probabi lity of error for any arbitrary bit will be

I similar but a little more complicated . When r a 0, bo th the thresholds

- Q and R are equa l to the no memory threshold T and P(e)
n is given by

H
I P(e )

nm 
= (a+b)erfc (T) + (c+d)erfc(T) + c erf(T(l+Ti) 2)

1
- + (a +~ )erf(T(l+1\) 

2 )

‘- J.
L. = erfc(T) + erf(T(1+’71) 2 ) = P(e) (D.1)

Thus, the equality is attained for r = ~~~. Now , it 1: shown that even for

small r, P(e) < P(e) . It will then intuitively follow that the inequality

V 

holds for large r.

P(e
2
)
m 

= p((e2
l)fl(z

1 0))+
pC (e

2
=l)fl(z

1
=I)) (D.2)

V ‘ where
- V

L P((e =j)fl(Z =O)} a erf(T)erfc(Q) + erf(T(l+~) )erfc(Q)

+ :rf(Q(l+lfl )erf(T) 

2
+~~

. (2T~(l+’fl)) 
2 

çex~ (-8 /2(1+11))

8—0

.1. 1 ~~ 1

I terf((T_pS)(1+T!Y2(1_p )) erf((T+p8)(1-f~fl)~~ (1-p )
~~

))
(D.3)

II  
_ _ _ _ _

V.- - —  —— -s--— 
-V-— - ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

. -—— V



— - 
-

~~~~~ - V V -V - V - V V - V -V - --

- -- U V - - - . 
~~~~~~~~~~ 

-
~ - - - ~~~~~~~~~~~~~~~ 

- V __-

- I V

116

J and 

1
P((e

2
—1)fl(Z

1
=1)) — erfc(R)erfc(T) + erfc (R)erfc(T(l+fl) 2)

+ erfc(T)erf(R(1+1))~~ ) + ~

R 1

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(D.4)

For small r and , therefore , for small  p , linear approx imations for the error

functions are employed in (D.4) and (D.5).

j erf[(T~p8)(1+1)
2(l~p

2
)21 =

- p8(2n(l+’fl)(l-p
2))~~exp[-T

2
/2(1+71)(1-p

2)) (D.6)

erf[(T+p8)(l+11) 2(l~p
2

) 2 )  = er ffT( l+ 1D 2 (l~ p 2 ) 2)

L 1

+ P8(2TT(l+1i)(l_p
2)) 2expC _T

2/2 ( l~4~fl)(1_P
2
)) (D.7)

LV. 1 1 1 1
erfc [ (T_p8)( l+11Y~

2 (l_ ~
2 ) 21 = erfc[T(l+ 11) 2 ( l_ p 2 ) 2 )

2 -
~~ 2 2

- - + p8(21~(l+’fl)(l-p )) 2exp[-T /2(l+lfl(l-p )3 (D.8)

For small p ,  therefore (D.3) and (D.4) reduce to

P[(e
2

1)fl(z
1 0)3 

= [erf(T) + erf(T(l+11)2)erfc (Q)

- “- 2 - -i’- .1 V

~ 
+ ~erf(T) + erf(T(1+’fl) 

2(l-p ) 2flerf(Q(l+’Tl) 2
)

- -  1-. (D.9)
-

-

‘

~~~~~~ 
. P[(efl)fl(Z1

l)~ = (erfc (T) + erfc (T( l+T 1) 2 ) I er fc (R)

r + (erfc(T) + erfc(T(l+ 2(l~p
2
)~~ ))erffR(l+11) 2)

(D.l0)
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Therefore,

r P(e2)m 8i erfc(Q) ~~ 2 
erf(Q(1+~~~

2) 

-~~~ 
I -

+ (l-81
)erfc(R) + (l-82)erf(R(1+’fl) 

2 ) (0.11)

1

where = erf(T) + erf(T( 1+TD 2)
V - 

-~~ H
• 82 

= erf(T)  + e r f (T( l+f l) 2 ( 1_p ) 2 )

V 

• 

Utilizing the fact that

Q T + A Q

• R T + t l R

I - and that AQ and AR are small, the following approximations are obtained .

1

L 

erfc(Q) erfc(T) - AQ(2ii) 2exp(-T /2) (0.1.2)

erfc(R) = erfc(T) _ AR(2?~)
2exp(_T2/2 )  

2 

(D.l3)

erf(Q(l+1i) 2 ) = erf(T(1+1D 2 ) + AQ(2rt(l+T~))
2exp (-T /2(l+fl)) (0.14)

erf(R(1+’T1)2) = erf(T(l+Tl) 2 ) + AR(ZTT(l+11))2exp(_T
2
/2(j+11)) (D.15)

‘

~ 

‘- -

I ,  Substituting these approximate va lues into (D.1l), the resul t is

~~~2~m = erfc (T) - (2~T ) 2 f @
1AQ+ (l-B 1)AR3exp ( T2 /2) V

3 1
+ erf(T (1+fl)’) + (2~T(l+fl)) 2(8

2 ~~~~~ 
(1.i2)~R1

- exp(-T 2 /2 ( 1+1~))

p(e 2 ) + (2n) 2exp(_T2/2)((B2 Si)~~ 
- 

~~~~~~~~ 
(0.16)
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Since

P(e2 ) er fc(T)  + erf(T(l+ 11)~~ )

and

2 k 2(2rr ) 2 exp(-T /2) — (2rT(1+11)) 2exp(-T /2(1+71))

we have

P(e
2

) - P(e
2
) ( 22 exp (~T

2
/2)(82 B1

)(AR AQ) (D.17)

It was observed earlier that 82 ‘ and also ~R >  0, 6Q < 0 so tha t the

right hand side of (D.17) is positive and thus

I P(e2
) > P(e~ )~
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119p ~!. 1~APPENDIX E 
V

Central Limit Theorem for Dependent Random Variables

U.

- 
The central limit theorem for indpendent random variables has been

treated extensively in the literature. It has been shown that the central

~~

- limit theorem holds for dependent - random variables also under certain
1. 

conditions [51-53]. In this appendix,a brief exposition to the theorem

and the conditions under which it holds is presented. The material here

- 
follows the discussion on the subject in [52] very closely but is presented

i ~ here for completeness .

The sequence of dependent random variables is assumed to be Markov .

• Let U be a space of points x representing the possible observations at any

given fixed time. The possible events for which a probability is well

V 

defined are the elements of a c-field a of subsets of U. The transition

- 
probability function of the Markov process is denoted by P(x ,A ) .  It is

- 
assumed to be a-measurable and is defined as a function of x for each

event A in a and a probability measure on the a-field ~Z for each x in-U.
A probability measure P~ can be defined to describe the relative likelihood

j  I of observing the different possible trajectories w (x0,x1, ... ) of the
random system being studied through time . The observation on the system at

- 

time n is given by the n-tb coordinate function or random variable X~(w) = x

and the random process is written as Cx) = (x (w); n=0,1, ...). This random

- process C X )  has been :ssumed to be Markov above. The ~-fie1d generated by

the sets of the form -X A where A ca La denoted bya . C) — X U , U ~‘ U.
- t—o ~ t ~ t”0~~ 

t
— , A shift transformation ‘r corresponding to a forward time shift for

.
~~~~ Li

-V _ 
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= (x,~, . . .x  ) is def ined by V

- 
V 

u n
- 

~~~~ 
X
n+l (*~.l)

ç If for each event c e a
P (~rC) — P (C) (E .2)

3 then the Markov process is called stationary. The c-field a~ was constructed

1 so that it is exactly the c-field generated by the random variables (xc).
The a-field generated by a finite number of random variavles XK~ 

m < k < n,

- n
is denoted by am .

Suppose Y (w), n=0 ,1,... is a sequence of real-valued random

variables on the probability space of the Markov process CX ). The series

C~~) is called time-consistent if Y~(w) is measurable with respect to
an, n 0 ,l,... and stationary if Y (-rw) = n = O ,l,... where i is

the shift transfc-rmation defined above.

V 
The conditions to be imposed on the stationary Markov sequence

- (X) are considered next. The following proposition from ergodic theory

- is stated without proof. The proof is given in [81).

Proposition: Let ~ be a probability measure on the a-field a on U. If ~

is a measure-preserving mapping of a onto itself , then 0 is ergodic iff

H n
V u r n  i 

~~ ~.(Afl0
3B) = ~(A)~j.(B) (E.3)

f l-~~CS ~j=l

~ 
for each pair of sets A, B € a

In the case under consideration here , P is the probability

~ U measure and the measure-preserving shift transformation i is ergodic. Let

- -1 ~I 
us define

4 U

(1
U
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f I a(n) a sup 
k=1 

P(B fl TkF) - P(B)P(F)I (E.4)

V j
Fe~ 0

L where — ~~Cx~~ i < 0) is the a-field generated by X~, j < 0 and

— efx~, j ~ 0) is the a-field generated by X~, j > 0. The

stationary Markov sequence (X
nJ is called uniformly ergodic if a(n) 0 as

r.—’~ .

A property of the Markov sequence CXn
) is now discussed . This

property is stronger than what is actually needed for the work in this thesis.

Define

d(n) = sup I P ( B f l F )  - P(B)P(F)f (E.5)

V 

B€ I &0

F e~~n

The Narkov process is called strongly mixing if d(n)- O as n- ~~~. This term

strongly mixthg as defined here is different and somewhat weaker [52] than the

definition given in the standard literature on ergodic theory, e.g.,

Biilingsley [81] and Arnold and Avez [821.

r Let fy(r.) ka0,l ...) be a time consistent series. Such a series

- 1 is called uniformly asymptotically negligible if for each a > 0

L lim sup P[IY~~~(w)I >e] = 0
V 

- n-~ k

Define Y~’~~(s,t) = E ~ (n) (E.7)
k s  k

U

g
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1 :
The stationary Markov process [X

k
) is said to have centra l structure if for

any uniformly asymptotically negligib le stationary sequence 
~~~~~~ 

áf time

consistent series, any partial sums ?~~~ (s ,t), ~~ < 8
n < ~ < ~~~, are well

V 
approximated in distribution by a limiting distribution. The following

theorem is stated without proof.

Theorem: Let C X )  be a stationary Markov process. The process has central

- 1.’ structure iff it is uniformly ergodic. - - -

1
Final ly ,  the central limit theorem is stated.

.1
Theorem: Assume that [Xk

) is a stationary Markov process. Assume that . 
-
~

E[Xk) 
= 0 and the following conditions are satisfied

(i) E (tY~~~(s ,t )I2) ~~h(t~~s~)

as (t
n
_S
n) 

-. 
~~~, where h(2) 4 as £ -‘ - -

V

2+6 l~I~6/2
(ii) E[IY 

nJ (S ,~~ )I ) O(h(tn
_S
n
) )

r
as (t -s ) -. ~ for some 6 > 0.

L (iii) [
~~) is uniformly ergodic .

Then ~~~ (S ,t )  is asymptotically normally distributed .

The condition (iii) can be rep laced by the strong mixing condition

in the statement of the above theorem. As noted earlier strong mixing is a

[ more stringent condition than the uniform ergodicity~ 
V

IL II
V. 
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- 
The stationary Markov process (X

kJ is said to have centra l structure if for

any uniformly asymptotically negligible stationary sequence t”k~~~~ 
Of time

- consi stent series , any partial sums Y1
~
1
~~(sn)tn)) ~~ < 5

n < < ~~~, are well

j — 
approximated in distribution by a limiting distribution. The following

theorem is stated without proof.

- Theorem: Let Cx) be a stationary Markov process. The process has centra l

structure if f it is uniformly ergodic. V V

Finally , the central limit theorem is stated .

I Theorem: Assume that [X
k) 

is a stationary Markov process. Assume that

E{X k ) = 0 and the following conditions are satisf ied

(i) E~~Y
(n)

(S ,~~)~
2
1 h (tn~

Sn)

- as (t
n
_s
n) 

- 
~~~, where h(L) -9 as £

(ii) E [IY~~~(s ,t) J
2+6
) = o(h(t~~sn)

l
~~~

2
)

- as (t -s ) -4 
~ for some 6 > 0.n n

• (iii) [XK) is uniformly ergodic .

Then ~~~~~~
i) (S ,t ) is asymptotically normally distributed .

- 
The condition (iii) can be replaced by the strong mixing condition

LI /V 
V 

in the statement of the above theorem. As noted earlier strong mixing is a
~

more stringent condition than thc uniform ergodicity. V V
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