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On Sequential Elimination Procecdures

by
Paymond J. Carroll®

Department of Statisiics
University of North Carolina at Chapel Hill

Sunwary

The asymptotic properiies of a general class of nonparametric sequential
ranking and sclection procedures which possess an elimination feature is
studied. If the correct selection probability is to be at least 1 - «
and the length of the indifference zone is A, different results are
obtained as o » 0 depending on whether one assumes A fixed or A + 0.

A Tonte-Carlo study confirms the superiority of elimination procedures.

* This research was supported by the Air Force Office of Scientific Research
under Grant Ho. AFOSR-75-2796.
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Intreduction

In the large literature on sequential ranking and selection (Bechhofer,

Kiefer and Sobel (1968)), surprisingly little work has been devoted to
procedures which are asymptotically nonparametric in nature and which ;
eliminate obviously inferior populations early in the experiment (see
Swanepoel (1976) for a recent approach). It is the purpose of this paper
to propose and study a general class of sequential eliminating procedures
which includes as special cases Swanepoel's rule as well as a competiter
to a noneliminati:y rule mentioned by Wackerly (1975).

¢ take the indifference zone approach that the best and second
best populations are p (2 A 2 0) units apart and attempt to guarantee
a correct selection (CS, the selection of the best population) with proba-
bility at least 1 - a. Suppose N is the number of stages in the experiment.
As a sample of our results, we show (Theorem 1) that a normed version of I
looks very much like a linear combination of the "mean'’ and '‘variance' on
which the selection is based. Surprisingly, the conclusions differ as
o + 0 depending on the cases u fixed or u - 0, which eventually leads
us to the conclusion that there truly is a cost of ignorance in estimating

the variance. The class proposed includes many procedures in the literature,

including one which asymptotically takes at most % the observations
needed by the Robbins, Sobel and Starr (1968) procedure. The theory
is investigated in a convincing .ute-Carlo study.

In the general problem, we have k populations Mys wee aTg and

a sample Xil’ xiZ’ wus  LTOM ™ with distribution function Fi ,




Statistics Tin are formed from Xil’ S O

P and for some constants

2 3 5 b 2 .
My 0{’ n"(Tin - i)/oi is asymptotically normal. Consistent estimates

Oin ©Of 07 are assuned to be availailc. Assume without loss of generality

that Mp S ee Sy and that it is desired to select the populaticn with

tiie largest value of My - The indifference zone approach adopted here

assures iy - Wp_p 2 A. Let h be a civen nonnegative function. Then,
ik - - th .

we propose to eliminate population m, at the n™ stage of the experiment

if there is a population 5 still in contention at the n*" stage for

wnich

T > n)(o2 + 02 )%/n!i - A
in = * in jn :

: TEh 2 - . .
The experiment stops at the (I stage when only one population remains.

As we will show, these elimination stopping rules contain those proposed
by Swanepoel (1976), and Swanepoel and Geertsema (1976), as well as
an elininating version of Yackerly's (1975) mude.

ihen k = 2, the nunber of stages in the experiment becomes

= & 2 !
Ty~ (giy) 2 ho,m) (0f #0 ) ¥/m - 8 - (e

4y = infinzl: or 3
To=Tq.~( -1)<—P(an)(02+0‘2)%/n1/2"'13‘( “Ys)
o s | L By R R U2 My
G ¥ i o DRl 2
Letting d= 45 % uz - ],ll » Tn L Tzn = ‘-ln & (Uz'lll) and O'n = O'ln + 0211 s
this is {
" 1 Lﬁ 2
I, = h(e,n)o /n® - d
”1 = infi{n21: or .
T, $ -hla,n)o /n™ + 28 - d
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We are going to investigate N1 as a,d » 0, and in Lenma 3 we present
conditicns under which Pr{CS}+1 as a-+0 (a,d -+ 0). Thus, for
purposes of computing the distribution of Ny and finding constants

n for which Nl/n 2, 1, it will suffice to consider

1
W=1inf{n 21 : T, 2 h(ou,:f‘-.)cn/lfi - d}.

Asymptotic ilormality of i

The standinc assumptions of this section are that (n‘/"l"n, nli(cxrzx - 02))
are jointly asymptotically normal, wniformly continuous in probability
(Anscombe (1952)), and n!"r e 0(10g2n) (a.s.). These conditions hold
for the sample mean, !’-estimators and linear functions of order statistics
(ani their variance esstimates) under a variety of conditions (Carroll

(1575)).
Theoren 1 Suppose as o + 0,

(2.1a) h(a,NJ » » (a.s.)
2.1b) h(a,N) - h(a, K-1) + 0 (a.s.)

(2.1c) There exist constants na(d) for which N/na(d) B, i
Tnen for some constant A(F,d), as o -+ 0,
] 1 g
@2.2) (o%a,i) - o%) (4aln (@) 7% = Mi( - aGof - oP)/207) + 0, )

(2.3) (%2, - a%) (4a’n (@) 7 L w0, AG,D).

i e R 5 am -
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Proof of Theorem 1 By (2.1a), N+« (a.s.) so that

(2.4) he (o, l)/N + (@/0)° (a.s.).

1 s
Now, by definition, oh(a,lN) - d° < N"’I‘“. - h(a,N) (ON ~ 0). Also,
h(a, #-1oy ; = (F1)%(T, ; + d), so a little algebra together with the
fact that uniform continuity and (2.1c) irmly 2-«1f’(T: P N-l) B, 0,

1.
Moy - oy 1) 2, 0 yields

:f'brz\, = h(a,) (o - 0) < oh(a,N) - a? + oy.1heM (A - 1/0) 7% - 1)
+ (1 - 1/ oy (ale, N-1) - h(a,i) + 0, (1)
= ch(a,ll) - aif + 0,(1) (by (2.1b) an (2.4)).

Now, (2.1c), (2.4) and the umiform continuity of B show that

h(o,1) (o - 0) - df*(ef - oP)/20% = 0,(1), yielding

-

oa(o,H) - diff = N¥(T, - d(o} - o?)/20)) + 0,(1).

1
ilence oh(a,ll) - dii? is asymptotically normal and (2.1c) and (2.4) thus
show

ch(a,N) - & = (o%hi (0,1 - a’N) (aehn (@))% + 0, (1),
cormpleting the proof. 0

The choice of h(a,n) below is suggested by Swanepoel and Geertsema
for the normal case with o% = ,,., = 0}2( = og (known). They show that,

if w, - w28, PriCs}z1-a,

Lema 1 Let h(a,n) = (Bﬁ +clogn)?, wiere ¢ 20 and Ba satisfies

1- 0(8,) + £.0(8) *+ ¢°(5)/4(8,) = o Define n () = (8,0/d)° .
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Then, as o -+ 0, N/na(d) =+ 1 and

2.5 W - n @)/ (2, @7d) = WHaeh - P2t - 1) + 0, (1)

Further, if «,d - 0 1in such a way that (log d)/eOl + 0, the result
still holds.

Through the case d fixed, Lema 1 plainly shows the effect of estimating

-
o“ , an effect disguised in the case ¢ + 0. For example, if X, XZ’

&g - 2 -1 -
are i.i.d. N(0,1), LS S g (n-1) ZI; (Xi - ,\n)z , then
d(N-nQ(d)) L
———— — N(0,1) (d~0 orsetting o, =0 )
2n_(4)*
s ]
Lo, 1+d%2) (4 fixed, o° unknown).

Ifwe fix ¢ =2 and let o = 0, we see that the lack of knowledge of
2
o” triples the variance of N. LHence, there is a 'cost of ignorance'

5 - ‘ 2
due to estimating o

Proof of Lerma 1 Recall T = 0(n” log,n) (a.s.). Since

<1
2

‘\'},’rl‘-l(sé + ¢ log N) %, Gy * dN}’(Bé + c log N)
and the opoosite holds if N 1is replaced by i - 1, we have
(2.6) (Bi + ¢ log N)oz/d?'N +1 (a.s.).

If d is fixed, this shows na(d) = (Bao/d)" is the right choice in

Theorem 1. If d + 0, we rust show

(2.7 (los :z)/ei + 0 (88.)
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low, if Jor sone scquence B&/dZN -+ 0, then (2.6) shows (log N)/Bé + o, E
%

But with probability approaching one, (62 + cﬂ‘)ozl(dzN) > 1, which ?

would imply co’/ (dz;*f % > 1 and hence that

e

(log ﬂ)/ei < (log co® - 2 log d)/Bi +. 0,

This contradiction shows that there exists €4 > 0 for which (Bﬁ/dZN) > €4
e
(a.s.) as a,d - 0. This gives log N/B; < (log Bi - log e*dz)/si + 0, so

; : p . : it
that A/na(d) = 1. Now, if d 1is fixed or d -+ 0, the proof of Theoren

1 gives
2.7 3 =} 1
(1 - o%n’(a,i0/6%) (an (@/aD) % = NH(a(o? - oP)/20® - T) + 0,(1).
Since 1log N/Ba~2+ 0, this completes the proof. |

The next choice of h(a,n) is notivated by the normal case with
uninown variance. let b =1+ (cd/c)2 ; Swanepoel and Geertsema choose

c2 = 2,

1/n

Lerma 2 Define h(a,n) = n%{(tan) - 1}%/0, where ¢ > 0, C 1+ a2)2/2

and % - (arctan a)/m + a/(1+az)n = of2. Then mao -4 ac a + 0. Let

na(d) = log tallog b. Then for d fixed
g 2 -1 g 4 2
(2.8) o™ (@) *(log b) (il - n (d))/2dc” =+ N(0, A(F,d)/b7).

17 as «a,d + 0 there exists € > 0 for which d(-log a)%'e -+ o, then

(2.3) still holds with the conversence to N(0, A(F,0)).

Proof of Lemma 2 First consider d fixed. Then, clearly N + «;, h(a,N) +

and h(cx,N)/‘.J;i + d/c (all a.s.). Thus, ti/N +b (a.s.). Multiplying and




dividing by h(a, H-1) + h(a,N), (2.1b) will follow if

e

)l/N-l /1

N (e, 0-1) PR S e

This last tem is given by
:-fi[(tai-s)l/”((l YL
l+ (e, 1) (0 - ¢ VNE-L)
+ (ta(u_l))1/,1\1—1((1,,_1)-1/1*101-1) - 1)),

/N N
How, ti/” +b (a.s.), ﬂl/“ + 1 (a.s.) and one shows by L'Hospital's

1/n

rule that for u > 0, n*@™ - 1) + 0, giving (2.1b). Since

(log H)i/log t, 2, 1, Theoren 1 tells us that with na(d) = (log ta)/log b,

(2.9) na(d)"ﬁ[c'zoz((taN)l/ A dz]/Zd

1 )
= 131, - d(oi-0%)/20%) + 0p(1), i.e.,

o’ (@) 2((e MY - b)/2ec? Ly wi(o, ack,a).
e 3 " e
Since HN(M -1)/log N +1 (a.s.) and o t, = 0(1) we see that as

loing as (-log d)z/-log e+ 0,

Sree /B AN . D
na(d)z((taN) t )/d £+ 0,
so that

~

2.10) n @ %Py - 1 - 21 =185, - a(d - D/2e?) + 0,(1).

Py Lehmann (1959, page 274) and a little algebra,

o’n (&) (log t_ - 1 log b)/2ac? L (o, Ak, )47,
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which gives the result. If d -+ 0, we nced only verify (2.9) above.

i

First, since T+ 0, tim +1 so that (log t.a)/Ii + 0. Since o,4ta = 0(1),
o 1

this gives (-log a)/t - 0. Since d(-log a)!“’ €ao, we get dil*/(log N)z -+ o

so by the Law of the Iterated Logarithm, TN/d + 0 (all statements above

being a.s.). Taus, d (0" - 13> et e,

=2

a1 1/

ARG AN .
e o 0y s g TR gy et

Since the second term of this last equation is of the order (log N)/Hd2 +> 0

(a.s.), we have »",'z{tgl/N - 1} » c¥/6® . From here, the stens of Theoren 1

gc through, although the algebra is a bit more complicated. a
UDenoting the centering constants in Lerma 1 by n(gn (¢) and those

in Lerma 2 by ncEZ) (d), ve see that for c- = 2,

Lin 2 @nM @) = 2/0) 1001 + 200/ .

Thus, the two choices of h(a,n) are not eqguivalent.

1
Lemma 3 Define IN* = inf{n: < -h(a,n)/n? - (u-0)}. Then, using either

n

of the h(a,n) in Lemmas 1 and 2, &6s d=u + A~ 0,

PriN* > N} + 1.

Proof of Lemma 3 Define M* = inf{n: Tn < -h(a,n)/nl/z + d/2}. Then

% 2 1%, Under Lemma 1, IM*/N P> 4 - iile under Levma 2, /N 24, O

The upshot of Lerma 3 is that Pr{CS} +1 when N+ (a.s.) and

d=u+A2 d() , while if d » 0, the same holds for the choices h(a,n)

in Lemmas 1 and 2.
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The Nanking Problam

Returning to the ranking problem, the results of the previous section
will be illustrated for arbitrary X. lle assume throughout the rest of

hi Y 1 e i L= g
this paper that By oS .. < P T Y > A, and define dl A+ R

A

£. <1) and ilet s = s(A) be the smallest

Suppose dk_l/di > £. (0 i

a
integer i < k-1 such that E:i = 1. Assume
- kL S5 0 AN U ST 2 2\ . % 4
(3.1) S<1]:.i;t-l n (u(oni £l - o » o )/2ey * o) - (T - Tos - 4 “i))

L F,

The distribution of [N, the number of observations taken on the selected

ropulation, will be computed in the following cases.
Lemma 4 Under the conditions of Lemma 1,

(i - nm(d))/mm(d)'”é L g

vroof of Lerma 4 If Ny is the time it takes for population k to

eliminate nopulation i, Lenmas 1 and 3 show Pr{N = max HN.} + 1.
- s<ic<k-1
But for s < i < k-1, Ni/N ~ 1. A multivariate extension of Anscombe's

Theorem 1 and (2.5) conplete the proof. 0

3
Lerra 5 Define G(x) = F(bx), where b =1 + c“dz/c2 . Under the conditions

of Lerma 2,

9 = ;
o’n(d) *(log b) (it - n (&)}/2ac? L c.




————

11

Proof of Lemma 5 By (£.10) and the argument of Lerma 4 we obtain

1 N 7
n (@%?N - v)s2ac? L k.
(¢ (o]
By a Taylor expansion,

n, (@)% (og 2N - 1og b)/2dc? Lv g,

1
o

which with a little algebra completes the proof. O

Other Choices ef h(a,n)

The selectior in Lemmas 1 and Z by no means exhaust the possibilities
for the function h(a,n). For example, one could define h(a;n) =
(x/n)* gu(n/r), where

1
2}’5 a

£,(t) = (t + %) Hlog(t + %) + 87

"ﬁ (N

A

and where 1 = 1/A% (1 =a<2). This is the choice suggested by Swancpoel
and Carroll for the case o fixed, d = 0. The analysis is essentially as
in Lemma 1.

Another possibility arises fror the recent work of Wackerly (1975)
on noneliminating sequential procedures. = . idea is that there is a
vector n(a,A,p) of fixed sample sizes needed to guarantee a probability
cecuirement wxder the condition that the distributions are known up to
location parameters. The goal is to define a vector [J of observations
which satisfy e'N e'g(a,A,g) P,1 as a~ 0, where e' = (1,1,...,1).
ile is only partially successful in that the convergence is to c(A,u) 21

with equality if and only if My = oeel Ty T - A The following




=
o~

e TN

remarks sketch very briefly an elimination rule which satisfies the original
goal.
We assume F.(x) is symmetric ai . and define V.. =X. - X. .
e assume l(.rc) is syrmetric about y; and cefine ’ijn Xm jn
Then large ceviation theory shows that for i > j,

I

[ - -1 -1 -
limn = log Pr . <O = AR, 1), §
s e ’nzl s i |
L A(E.8) = log mf{c*,:p(ts/Z)E exp{t(‘,'ijl et uj)}}.
t

Thus, if the wmarinl error probability desired is o and Bi/ ~log a+ 1,

the correct sample size for fixed y to eliminate LA is

Z
nfa, 4, uk-ui) £ Ba/'A(F» uk-ui)-

I

Define H:_ = max(a, |n"t

i
s I Yipl) and H}; = max(a, lug=w ). Wackerly

et

1
ined the natural estimate of A({F,§) wnich, for some fimction v,
satisfies (if 123 )

b 1 { Y] (\f

ii o~13

E | s * = 1N
AL, !ijn) AR, Hij) n

e =By *us) - Ew(Yijl =4y * uj}

ijp J

+ 0 (n—’/a) (a.s.).

=1

The proof of this fact follows along the lines of Carroll (1976) and
the details are omitted for the sake of brevity. The elimination stopping
rule elirinates m, at stage n if for some m; still in contention,

% ) - Z T o Y
n pzl Yijp <0 and n 2 Ba/-An(,E, ‘:;jn)? i.d.; if

(B, Hyg) - A 1)) 2 han/n® - ¢,

< - 2 !/2 L A f
h(a,n) = Ba/n , d= AL, ng).
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If one wishes to analyze the number of stage N as « + 0, since Pr{CS} - ; B

merely replace i and j in the above by kX and X - 1 and then Theorem 1

applies.

bMomants of 1!

le present a simple nroof that Ei/n (d) -1 (confer Swanepoel
and Geertsema (1976)). Consider the ranking problem with %X =2 and
define 1[I = inf{n: hz(a,n)(cin + °§n) < nAZ}. Then il <™ since if
N > @i were truc, ..ien

L 2 2 \4
Topg = Ty < h(a,LD(cln + Gmi) +A<0

1
Tyg - Ty > h(@I) (0F; + 050 - 8 <o,

the final inequalities following frcm the definition of 14 Thus EN/na(d) =
if LVna(d) is vniformly inteprable. By Rickel and Yahav (1968), it suffices

to show that for some ay > 0,

(5.1) Y sup Pr{iyn (d) > p} < =,
n=1 O<a<ac




Assume (or%n + ogn) has boundec rth monents for n large (call this

bound €y ) then (5.1) is bownded by (setting n = pna(d) )

(e

Y sup Pr{hz(a,n) (Oi; s og‘_n) > mAz}
p=1 0<a<a0 2
o coh”(a,pn () r
%ok S0 { v, } .
pn,, (@)

p=1 O<a<a 0

PROPOSITION 1 If r>1 and hz(a,n) = (Bi + ¢ log n), then (5.1) holds.

PROPOSITION 2 If r 22 and h(a,n) is given in Lemma 2, then (5.1)

holds.
l/na(d)

a

Proof of Pronosition 2 t + b so an application of L'Hospital's

rule shows that if n <1,

h{hz(a,pna(d))} 3
PY———g—t
pna(d)A

uniforrly in a.

Estimation by Sample feans

In the one-sided rule of Section 2, we have implicitly shown that

SE T -pu+TH-p+om™® snd I yX) - BpOL) ¢ o™ and M
> hg s TS i B | 1

is the stopping rule for T} , then I and N will typically have the

same asymptotic distributions. One might conjecture than that 14 - N B, 0.
orz1 = 1, and we neglect

1f 3-8 0, hle,n) =8, ~ (-21oga)?,




overshoot, we obtain

gl TR O+ )T, - T8 ~ oG- 1) Ba o, e,

N(Ty, - TH) 0,

the last following from the fact that Jii/g. has a limit. If one defines
a

Tn to be the Huber l-estimate (the solution to 2111 P*® (Xi - Tn) = (0 ), one
can show by Taylor expansions that n(Tn - Tfl) L, F, where F is non-
degenerate. This shows that 14 - I £y 0 1is probably not true, although

E(GT - N) - 0 may hold.

‘onte-Carlo

A simulation experiment was performed ( k = 2, o = .10, 200 iteration:)

when the sampling distribution for m; was F(J) x - ui) , where

F(l) (x) = 9(x) (the standard normal)
FD(x) = .9500x) + .050(x/3)
) ) = .850(x) + .156(x/3).

In all cases, My - uz =A (= .25, .375, or .50) and the two cases

My = My = 0 (slippage configuration) and My - U = A (equally spaced

means) were consicered. The statistics 'I'n were either the sample

i’ %ni

mean ana variance or a 10% trimmed mean and its winsorized variance estimate.
5 ARE

h(a,n) = (Bg + (1.05)(log n) " "7 , where m = 10 was the initial number of

observations !4 taken being tabulated. 'Ratio to RSS' denotes the ratio

of [i to the expected total number of observations taken by tlie Robbins,
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Sobel and Starr procedure.

The results are clear. First, the elimination rule attains (and
usually exceeds) .90 =1 - a, its predetermined Pr{CS}. Second, the |
rule is much superior to the nonelimination rule, the superiority tending
to be more pronounced as A decreases. Third, the trimmed mean is more |
robust than the sample mean to heavy tails (this is the situation F(S) ) -
the rules using the trimmed mean tending to take less than 75% of the

nurber of observations needed by the sarple mean.

TABLE 1
The Monte-Carlo experiment for ¢(x).
# of Observations Total # of ‘
Pr(CS) on s Observations = 11 Ratio to RSS ;
Hy~uy=0, A=.50 .95 20 53 .89
=A .86 17 46 =i
=0, A=.375 95 33 84 79
=A .96 27 67 .63
=0, A=.25 874 61 156 .63
: ; =A .98 54 130 .54
j . 10% Trimmed liean
My~Hy=0, 4=.50 .96 21 57 .85
=A «97 18 47 5 &
=0, A=.375 .93 31 82 .69
=A .95 28 70 59
=0, A=.25 .94 63 164 .62
' =A .96 57 136 .51
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: TABLE 2
The lonte-Carlo experiment for .956(x) + .056(x/3).
# of Ohservations Total # of
Pr(CS) on 1T Ouservations = [{ Ratio to RSS
Sarple lean
HymHy=0, 4=.50 .93 25 €4 77
=A .95 23 58 .69
=0, A=.37S «92 39 102 .09
=A .95 36 83 .59
=0, A=.25 .92 75 1595 .58
=A .94 73 171 .51
10% Trirmed lean
p;-ul=0, =.50 .92 24 64 =i
=4 .99 19 50 +99
=0, A=.375 ks 34 29 .68
=4 .96 30 76 .57
=0, A=.Z5 .94 76 1898 .64
=4 .94 56 133 A7




=
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TABLE 3 E
The Monte-Carlo experiment for .&52(x) + .156(x/3). ?
# of Observations Total # of E
Pr(CS) on . Observations = (i Ratio to RSS i
My 1y =0, A=.50 .94 o8 87 .66
=A .96 31 77 .59
=0, A=.375 .91 60 155 .66
=4 .94 50 123 -9
=0, A=.25 91 115 297 57
=A .98 105 252 43
108 Trirmed l'ean
My"up=0, 4=.50 .97 27 70 .78
=A 97 25 €3 70
=0, A=.375 .94 46 118 74
=A .95 36 €9 56
=0, A=,25 &4 39 233 .65
=A .95 79 171 47
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