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~ti~ie’~. If the correct selection probability is to be at least 1 - a
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Intrr’riucticr i

In the large literature on sequential ranking and selection (Bechhofer ,

Kief~r and Sobel (l968))~ surprisingly little work has been devoted to

procedures which are asyr.~ptoticaily no~ ‘~~rw~ctric in nature and which

eliminate obviously inferior populations early in the experiment (see

Swanepoel (1976) fur a recent approach). It is the purpose of this paper

to propose and study a general class of sequential eliminating procedures
a 

which includes as special cases Swanepoel’s rule as well as a competitor

to a nonel aLi~
1 rule mentioned by Wackerly (1975).

take the indifference zone approach that the best and second

L ’ st populations arc p (� 
~ � 0) units apart and attempt to guarantee

a correct selection (CS, the selection of the best population) with proba-

~~iity  at least 1 - a. Suppose N is th e  number of stages in the experiment .

As a sa~iple of our results , we show (Theorem 1) that a nornied versiorL of i

looks very much like a linear combination of the “mean” and “variance” on

which the selection is based. Surprisingly, the conclusions differ as

a 0 depending on the cases p fixed or p -* 0 which eventually leads

us to the conclusion that there truly is a cost of i~~orance in estimat ing

t~ie variance. The class proposed includes many procedures in the 1iteraturc~
including one which asymptotically takes at most ¼ the observations

needed by the Pobbins , Sobel and Starr (1968) procedure . The theory

is investigated in convincing ~.tc-Car1o study.

In the general jn -oblem, we have k populations ir 1, ...
• a SaJrI~:ic X11, X~~, ... from with distribution function

I
- — ~~——-~~~-~~
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~~~~ is~: ics T~~ are for~ied f rori ... , ~md for soi~ constants

o~. I1
~~
(T

~~~ 
- is asynptotically normal . Consistent estimates

arc assuned to be ~iv~:i~ ,i~ , Ass’~rte without loss of generality

t :1d~ ~ 
z~n~ that it is ~~~irc~. to select the population with

the largest value of p
1 

. The ir~ i ~i~rew:e zone approach adopted here

~ui~es ~~ - p1: 1 � A. Let 1~ be a riven nonnegative function . Then ,

~.e ;•i o os~ to eliminate ~)opulation at tiie ~th stage of the experiment

a 

if there i~ a po~ui~~~o;~ still in contention at the stage for

- � h(a~n)(c~~ + o2 ) ½/n~ - I~.

The ~ r u~e~t stops at t~~ ~~~~ ~:hen only one ~or ul ition re:~ains .

~s ~‘e will show , these eli ’,ination ~to-~~ing rules contain those proposed

by Swanepoel (1976) , and Si’anepoel 2nd Geertse~na (l976)~ as well as

ai~ cIi~J:~atin~ version oE Thckcrly’s (1975) rule.

~n k = 2, the number of stages in the experiment becomes
1 2 2 ½ ½i 2r.Ti~~~ 2~~i

) � a(a 1n)(a1~~+a
2~~) /n - A - (p2 -p1)

~ inf n�l : or

� _~~(a ;~~)(~~~ +~J~ ) ½/~~ + A - (p2-p.~)

-, 2 2 2
~ ctt1f~g d = A + - = T2~ - L ln - 

~ 2~ ’l~ 
aIId an = 01n + a2n

t ’ is is

� h(a,n) a /n1 - d

= jnf :i�l : or

� ~~~~~~~~~ + 2A - ci

_ _ _ _  - -~~
-.—-~~~~~~~~—-—— .~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~e ore ~~in~’ to investigate N1 as a 1d 0 , and in Le~imu 3 we present

conditions under which Pr{CS} -
~~ 1 a~ a ÷ 0 (a,d -~ 0). Thus , for

purposes of computing tie distribution of and finding constants

n for wi’ich N1/n 2.÷ 1, it will suffice to consider

N = inf{n ~ 1 : T
11 

� h(a, :‘~ o~/n1 - dl.

~syr ptet i  c a rna l i ty  of

The sta.idin~ assumptions of this section are that (n½T~ , n½ (a~ - a2))

irn jointly asymptotically normal , uniforrri.y cont inuous in probability

(J’4nscombe (1952)), and ~~~ O(log2n) (a.s.).  These conditions hold

for the sample mean , i-estimators and l inear functions of order statistics

(arci their variance estimates) under a variety of conditions (Carroll

(l~ 75)) .

Theare~i i  Suppose as a + 0 ,

(2.la) h(ct,N~ (a.s.)

(2.lb) h(ct ,N) - h(a, N-i) 0 (a.s.)

(:~.lc) There exist constants fla(d) for which N/na(d) ~~~

Then for some constant A(F ,d), as a + 0,

(2.2) ~a
2h2(a ,~i) - J2:~) (4d

2na(d))~~ 
= - d(ci~ - a2)/2~

2
) + o~(l)

(2.3) (a
2h2(a,N) - d2N

~
(4d2na(d))~

•
~ 
!+ w(o , A(F ,d)). 

~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~
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Proof ~~‘~
‘ Theorer’. 1 ~y (2.la) , N + ( a . s. )  so that

(2.4) h2(a~~)/I + (/0)
2 (a.s.).

Now, by definition, ah(a ,b1) - d~I~ :i~T .  - h(a ;~’U (a.~ - a). Also,

h(a , N-l ) a.~~1 a (N-l)~ (TN l  + d), so a little algebra together with the

fact that uniform cont inuity and (2.ic) imply N1(T.~. - T~~1) 2+ o ,
- ~~~~~ 2.÷ 0 yields

- h(a,N)(ON - a) � ah(a,N) - dN~ + aN_ lh(a ,N) ((1 - l/N)~~ - i)

+ (1 — 1/~ J) — ½~ 
~ ~ (a , N- i) — h (a , N)) + o~ (1)

ah(a ,hI ) - + o~ (l) (by (2.lb) and (2.4)).

Now, (2.lc), (2.4) and the uniform continuity of show that

h(ci,~ )(a~, - a) - d~12 (0~ - 02)1202 = o,,(l ),  yielding

Oh(Ct,i’I ) - d1~ = N~ (T,~ - d(a~ - (5
2)/202) + o~ (l) .

hence ah(a,~) - dN~2 is asymptotically normal and (2.lc) and (2.4) thus

S’ ~~ 1

- d~I~ = (a2h2 (a ,N) - d1N) (4d2na (d))~~ 
+

completing the proof. U

The choice of h(a,n) below is suggested by Swanepoel and Ceertsema

for t’~e normal case with a~ ... = a~ = a~ (k~own) . They show that ,

if p 2 - p 1 � A ~ Pr {CS}�l-a .

Le~ria 1 Let h(cz,n) = (i3~ + c lc;, n)2 where c a 0 and Ba satisfies

1 - 
~(B~) + 

~aCP (Ba) + 

~
2 (~~)/4~

(0a) = a. Define na(d) =

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Then, as i C, N/n~(d) 
2~+ 1 Sflci

(2.5) (N - n (d))/ (2n (d)~/d) :.~
‘
~~(d(i~~~ - 02)/20 2 

- ‘
~

‘
~ ) + o~~(i) .

Further, if u,d -~~ 0 in such a way that (log d)/Ba + 0, the result

still holds .

Through the case d fixed , Leir~a 1 plainly shows the effect of estimating

an effect disguised in the case d + 0. For example, if X1, X2,

ire i.i.d. N(O,l), T~ = , a~ (n-i)4 ~ (X~ ;)
2 
, then

~i(:~— n Cd) ) La —+ 14(0 ,1) (d+ 0 or setting a~~~a)
2n (d)

-~~ i~(0 , l+d2/2) ( d fixed, ~2 unknown) .

I~ ‘ic fix d = 2 and let a + 0, we see tha t the lack of knowledge of

~ trihles the variance of :4. Eer.ce, there is a “cost of ignorance”

dUe to estimating

Pr~o’ of Lemma 1 Recall = O(n~ iog2n) (a.s.). Since

+ c log N) -½ 
~ 

0N * dN~ (B~ + c log N) ~

~~d the o~~~site holds if N is replaced by N - 1, we have

(2.6) (B~ 
+ c log N) 2/d2N + 1 (a.s.).

I~ d is fixed, this shows na(d) = (Ba0fdY~ is the right choice in

Theorem 1. If ~ ÷ 0, we must show

(2.7) (log N)/B~ + ‘
~ (a.s.).
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!ow, if or soue sc4uence B~/d
2N -‘- 0 , then (2.6) shows (log i!)/B~ -

~

But wi th probability approaching one , (B~ + cil~) ~~ (d2N) � 1, which

i’~ uld imply ca2! (d 2Ni) 1 arid hence that

(log N) /~~ � (log ca2 - 2 log d)/B~ 0.

Thi~: coritr~ hiction shows that there exists c~ > 0 for which (B~/d2N) a

(a.s .) as ~t ,d 0. This gives log fl/B~ � (log f3.~ - log c~d
2)/B~ + 0, so

that : /n~(d) ~~~ 1. Now , i f  is fixed or d + 0 , the proof of Theorem

1 ~iv~s

- h~(a )/L~)(4n (d)/d2)~~ = N1(d(a~ - 02)/202 - TN) + o~~(i) .

~:. jnce 1o~ i’ / l~ ~~~ 0 , this completes the proof. 0

The next choice of h(a ,n) is i.~ tivated by the normal case with

~r~no~v~ variance. Let b = 1 + (cdk) 2 ; Swanepoel and Geertsema choose

= 2.

Li-na 2 Define h(ct ,n) = n¼{(tan)lk - l}½/c , where c > 0, ta = (1 + a2)2/2

and ½ - (arct an a) /’rr + a/(l+a
2

)ir = c*/2. Then irac~. + 4 as a + 0. Let

= log ta/lOS b. Then for d fixed

(2.d) a2n (d)~~ (1og b) (U - fla (d))/2dC2 
~L N(0 , A(F ,d) /b2).

I~ as a,d ~ 0 there exists c > 0 for which d(-log a)~~~ .÷ ~~~, then

(2.3) still holds with the conv .rr~cnce to N (0, A(F ,0)).

Proof of Le~~a 2 First consider d fixed. Then, clearly N -.~ ~~~, h (cx ,N) +

and h (ct,N) / J~ + d/a (all a • s.). Thus, t~
’N + b (a. s.). Multiplying and

g
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C

~~~~~~~ by h(a , :.’- l )  + h(cz,N) , (2 .lb) will follow if

i ; j  (t (N-l)) 1”~~~ - ( t ) ~~’N } 0 (a.s.).

This last term is given by

N (t N) u/ :4 ((l - l/N) 1
~~ - i)

+ (t ~ ~
- 1)) 1/i’! - t~ ’-1P1 (N-l)~

+ (t (N-l))””~~(( f l ) 1 l )  
-

: :OU , t~ ”~ -
~~ b (a•s.), 1 (a.s.) and one shows by LtHospital ’s

flhiC that for ~~ > ~~, ~½~1~
l/n - 1) + 0, giving (2.lb). Since

(log h)N/log ta ~~~~~ 1, Theorem 1 tells us that with fla (d) = (log t~)/log b

(2.9) n (d)~~[c
2a2 ((t N) l~~ - i) - .2J/2d

= N ( T 1 - d(aj~-a
2)!2a2) + o~ (l)~ i.e.,

- b)/2dc2 ._L ~~ A(F,d)).

Since iI (N 1”~ - 1)/log N -‘~ 1 (a.s.) arid ct~ta = 0(1) we see that as
lor~ as (-log d) 2/-log a ÷ 0,

- t~”~)!d 
P+ o ,

so that

(2.10) na(d) ½ (c 202 (t~~~ - 1) - d2) /2 i  = - d(a~ - a2)/202) + o~ (l) .

Fy Lehn~mn (1959 , page 274) and a little algebra ,

a2n~(d~~~(log ta - N log b)/2dc2 ~~ N(0, A(F ,d) /b2),

-
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‘.‘hicn ~ i-.re~ t .~e result. If d -
~ 0, we need only verify (2. 9) above.

First, since T., -
~
- 0, t~

’N 
-
~ 1 so that ( 0 9 ta )/ N + 0. Since a4t~ = 0(1),

thi~; gives (-los a)/ i !  -
~ 0. Since d(-log a) 2 

+ ~~, we get d~1~/ (1og N)

so by t~e L~~.- ci the Iterated Lo~~ri.thn T d/d 0 (all statements above

being a.s.). 1~m, d 2{ (~~N)”~ - l} c2fa
2 
, i.e.,

- U + d t ~~
’
~{N~~ - .L} c2/d 2

~~~~~ 
-
~~~

-
~~ tci~ of this last c:y ~~tion is of the order (los N)/i1d + 0

(-~~s.) , ~‘e .:~ve 2{t~~~ 
- 1) ~ c

2/a2 • From here , the steps of Theorem 1

cc through , a!t c t~~ algebra is a b:~t i~~re complicated. 0

i;encti~~ the centering constants in Lecr~a 1 by n~
1
~ (d) and those

.n Ler r~.a 2 by n~
2
~ (d) , we see that for c” 2,

lii.-t n~
2
~ (d)/n~~~(d) = 2 (d/a)2{log(l + 2(d/a)2)Y’

Th-~s , the two choices of h(a ,n) are not equivalent .

Lcziima 3 DcfL~e N~ = inf(n ~ ~~(e ,n)/n½ 
- (~ -A) }. Then , using either

~f the h(a~n) in L~r~ as 1 and 2; ~.S (1 = 31 + A 0 ,

p.~~ -4* > ÷ 1.

~i~o~~of Ler~ima 3 Define ~~ = inf{n : ‘r~ � -h(a,n)/n1 + d/2}. Then

h” a 1~~. Under ~crma 1, ?~/N —* ‘~ ale under Lerina 2 , ~~/U ~~
—+ 4. 0

The upshot of Lem~ia 3 is t~. Pr{CS} ÷ 1 when N ÷ (a. s.) and

= + A a d0 while if d ÷ h , the same holds for the choices h(a,n)

in Le~~as 1 and 2. 

~~~~~~~~~ -~~~ -~~ —- ——— .~~ -— —- -,~~~~~~~~
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The ~~~king Prob 1~ ’n

~eturniiig to the rankiny prob1ei~ . the results of the previous section

will I;c illustrated for arbitrary k. ‘e asstr~e throughout the rest of

this pa~cr that ~ ... � - 31k a A , and define d. = A + 
~~~1 i~,. ~~- 

._ -1 1 ~<.

~~~~~~~ C~~~1/d j + -c~ (0 � � 1) and let s = s (A) be the smallest

i~ t~~~r j  � ‘-~-l such that 
~~~

. = 1. Ass~ rte

(3 .1) ~~~~~~~ n (d(a~~ + a~ , - - c~)/2( a~ + a~) - (T~~ - Tni - 31k + 

~•~)
S�1�~ - 1

1.
-+ F.

The distribution of i-~ - the ni.miber of observations taken on the selected

‘~~;~1ation , will be computed in the following cases.

hema 4 Under the conditions of Lert~a 1,

d(N - 

% 
1))/2fl a (d) ½ 

~~

Proof of _Lcrra 4 If is the tir~ it takes for pop~ilation k to

e1is.-in~ite nopulation i , Ler~mas 1 and 3 show Pr{N = max N~} -‘- 1.
s�i�k-l

Lnt for s � i s k-i, Ni/fl ~~—+ 1. A nultivariate extension of Anscombe’s

Theorem 1 and (2.5) complete the proof. 0

Ler-na 5 )ef~ne G(x) = F(bx)~ where b = 1 + c2d2
/0

2 
• Under the conditions

of Lemma 2,

a2n (d)~~(lo~’ b)(N - %(d))/2dc
2 L c~.

~~~~~~~~~~~ —
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Proof c~T Lema_5 P v (.~h l0) and the r~~:~ent of Lemma 4 we obtain

- b)/ ?hc 2 
-L r.

-~~ T :’,~1~~- e:.~pansion ,

~~(d) bo2 (log t~/N 
- log b)/2dc 2 

~~

whi 
~~~~ ‘~•‘ith a little algebra completes t~ic proof. 0

~t~ . . r i c ~ s~~~~~h(a ,n)

re selection in Lemmas 1 and 2 by no means exhanst the possibilities

for the f~nction h(’t,n). For exanple, one could define h(a ,n)

(r/n)~ g~(n/r) , where

1~a
(t) = (-t + ¼)~ {1c~g(t + ¼) +

znd where r = l,IAa (1 ~ a � 2). This is the choice suggested by Swanepoel

and Car-roll 2or the case it fixed, d -‘- 0. The analysis is essentially as

in Lenna 1.

~~ot1ier possibility arises fror the recent work of ~4acker1y (1975)

on noneli:i ina t ing secpiential procedures. idea is that there is a

vcctor n(- -
~,A ,p) of fixed sa~p1e sizes needed to g.iarantee a probability

r~inir:nonn c~~Tcr the condition that th ~ distributions are m own up to

location parameters. The goal is to define a vector 
~
j of observations

- -ihich satisfy e ’
~
(a,A,& ~~~ I as a + 0~ where e’ (1,1,... ,l).

~e is only partially successful in that the convergence is to c(A,& a 1

with ec~ality if cr,d only if = . • = 
~~~~~~~~~ 

= 

~k 
- A . The following

4
-

L -~~~~~~ --- ---—-—-~~~~~~ . . -~~~~~~~~~ _.-— ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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rcnnr~ s s~-:ctch very briefly an elij ninction rule which satisfies the original

goal.

~e assume F~(x) is syrr~etric ai~out and define = - X~~

T~..cn l~ r~-e deviat ion theory shows that for i >

. n~~ lo~ ~~~~~~~~~~~ 

~~ 

< 0) = A (~ ,

A(F ; 6) = ~cc~ f{exn(t~/2)E exp{t(y 1~1 - 

~i 
+

Thus , if the ~ni~ -1 error probability desired is a and c~~/-1og ~ 1,

the correct samnle size for fixed ~ to eliminate is

n (ct , A , 
~~~~~ 

‘~‘ 8~/-A(F~ ~k~ ’i~’

heEL-ic nax(A , In 1 

~ 
Y1~~ I )  and = nax(A , 

~~~~~~~~~~ 
Nacherly

r ined the natural estimate of A(F ,o) which , for some function i~,

s~’t isfies (if j � j  )

~~~~ i~~~~) - A(~~ u~ ) = 
~~~~~ 

~~~~~ 

- + 
~~~~) 

- 

~~~~~~ 
- +

+ O (n ~~~) (a.s.).

T~t~ proof of this fact follows along the lines of Carroll (1976) and

the details are omitted for the sake of brevity. The elimination stopping

rile elif inntc-s at stage n if for some TI .  still in contention,

~~ 
p~i ~~~~ 

< 0 and n a i.e., if

-(A1.~(~, ~~~~ 
- A(~. !I~~)) a h(a,n)/n~ -

h(cx ,rt) , ci A(~, ~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~ 
— - -- — — --— - _— ___ & .___ ______ ___ =--- .---- --_------ —_---- — -~-- ~~~~~~~~~~~~~ -
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If one wishes to analyze the number of stage N as a -. 0, since Pr{CS} -
~
. 1,

merely replace i and j in the above by k and k - 1 and then Theorem 1

applies.

!~oments of U

~e present a simple proof that Ei-l/n
~ 
(ci) ÷ 1 (confer &~anepoe1

and Geertsema (1976)). Consider the ranking problem with k = 2 and

define = inf{n ; h2 (a ,n) (o~ + 
~~~~~~) 

< ~~2) Then iT  � ~~~ since if
14> y ore tru~, • -~en

- < h(a,I-I)(c~~1 + + A < 0

T21 
- TL. > -h(it,Ih) (~~ . + a~ )i - ~ < 0,

the f inal inequalities following from the definition of 1-h Thus EN/n
~
(d)

if 
~

/n
~ (d) is uniformly integrable. By Bickel and Yahav (1968) , it suffices

to s:~nw that for some > 0,

(5.1) ~ s~~ Pr{i-Vn~ (d) > p} <~~~ .
p=l O~a<ar

-— — ---L - --.--~ -— 
- --

~~
-

~~~
-- - —--

~~ 
- - -
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Assume (o~~ + 4) has bounded rth mements for n large (call this

bound c0 ) ,  then (5.1) is bounded hy (setting ii = pn~(d) )

~ sup Pr{h2(an) (~2 + 02 )
p=l O<a<it -

0 (cOh
2
(a,pn

~(d))lrsup j 2p=l 0<ct<ct0 ‘- pn
~

(d)

PR0P 0SIT IO~i 1 If r > 1 and h2(a,n) = (~~~~ 
+ c log n) ,  then (5.1) holds.

PROPOSITIO~~2 If r � 2 and h(a,n) is given in Lemma 2, then (5.1)

holds.

l/n
~ Cd)Proof of Pro’osition Z t~ -‘- b so an application of L’Hospital ’s

rule shows that if ~ < 1,

1h
2 

~a ,pn~ (d)))
2 4 ÷ 0 ,

~ pn~(d)A ~

ur.ifornly in ci.

~Isti~~ti~ . by Sar.~ 1~ iie a~ s

In the one-sided rule of Section 2, we have implicitly shown that

i~ - + - ~.i + o(n~~) = n 1 
~~~~~ ~ (X 1) - E~ (X1) + o(n~~) and I’l

is the stooping rule for T~ , then i i  and N will typically have the

sane asyiit totic distributions. One might conjecture than that I’~ - N 0.

If - 
- N -

‘

~
-

~~ 0, h(ct~n) = 

~ 
(-2 log cI)½ , = 1, and we neglect

_______ - ~~~~ - ~~~~~~~— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~~

— —-
~~~

-
~~~~~~——— —— ~~~~~~~~~~~~~

-

~~~~~~~~~
- 

~~~~~~~~
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overshoot, we obtain

- T~) 
k~.+ 0,

t~ c list following fro~’- the fact that has a limit . If one def ines

T to be the Huber i~I-estiiaate (the solution to 
~~ 

p~~~ . - T~) 0 ), one

can show by Taylor expansions that n(I~ - T~) -L F, where F is non-

degenerate. This shows that - ~ -
~~

-
~~ 0 is probably not true, although

- N) + 0 may hold.

:onte-Cer1~

A simulation experiment was performed ( Ic = 2, it = .10, 200 iteratic:i - ’

w~-ien ttie sampling distribution for was F~~
3 (x - 31~)~ where

F~~~(x) = ~(x) (the standard normal)

F~
2
~(x) = .95~(x) + .05~ (x/3)

F~~~(x) = .85~ (x) + .15~ (x/3) .

In all cases, 313 
- = A (= .25, .375, or .50) and the two cases

- 

~l 
0 (slippage configuration) and 

~2 
- A (equally spaced

means) were considered. The statistics were either the sample

mean and variance or a 10% trinr~ed ne v’i and its winsorized variance esti~~te.

h(ct,n) 
(~~~~~ 

+ (1.O5)(log n~ 
-‘ 

, where m = 10 was the initial number of

observations ! taken being tabulated. ‘Ratio to RSS’ denotes the ratio
- 

1( of I to the expected total number of observations taken by the Robbins, 

--
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Sobel and Starr procedure.

The results are clear. First, the elimination rule attains (and

usually exceeds) .90 = 1 - a, its predetermined Pr~CS}. Second , the

rule is Luch superior to the nonelinination rule, the superiority tending

to be mere pronounced as A decreases. Third, the trii~ined mean is more

rotust than the sample mean to heavy tails (this is the situation F~
3
~ );

the rules using the triri~ed mean tending to take less than 75% of the

number of observations needed by the sample mean.

TA~i, 1

The ~4~nte-Carlo experiment for ~(x).

# of Observations Total # of
___________-______ Pr(CS) on 713 Observations = I-~ Ratio to RSS

Saz~ 1e : -iean

.95 20 53 .89

.96 17 46 .77

0, A=.375 .95 33 84 .79

.06 27 67 .63

=0. A=.25 .92 61 156 .63

.98 54 130 .54

10% Tr ir~ed T -~an

.9b 21 57 .85

.97 18 47 .71

=0, A=.375 .93 31 82 .69

.95 28 70 .59

0, M.25 .9~ 63 164 .62

=A .96 57 136 .51



‘2VTfl. -~~~ ___. -

l:~

T.~2L. 2

The 1:or .te-Carlo ri~:cr~L or .95~ (x) + .OS Q ( x13).

# ~f )dser~’~~ions Total # of
__________ 

Pr(C~) o~~~r.. O~sorvations = i -  ~atio to P~SS

5~T:,le LeT: ’

.~ .3 25 64 .77

.~ 5 23 58 .69

0~ A= .~~’~ .~ 2 39 102 .69

=A .~ S 83 .59

=0 , A= .~~ .32 7 T 193 .S~
.91 71 171 .51

lO~ i:t :~ d ~~j t

24 6~ .77

=
~~ .99 19 53 .59

=0~ A .375 .95 34 39 .6-

=A .96 33 76 .57

=
~~, A= .25 .94 75 l8~ .6~

.94 138 .47

_ _  _ _ _  -
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TABLE 3

The 1’bnte-Carlo experiment for .V.- (x) + .i5~ (x/3) .

# of Gb~erJ atio -.-3 Totoi # of
________________ 

Pr(CS) on ii~ Observations ~ TT atio to P.SS

~~ -1~ 1e Lean

e ,-i’1=5 , A . 0  .94 33 87 .66

.96 31 77 .59

=0 ,, A= .375 .01 60 155 .66

.34 50 123 .53

=0 , A .25 .91 115 297 .57

.98 lOS 252 .4~
i3~ Tn -~c3 1 ean

27 70 .78

.97 25 63 .70

=0 , A~.375 .94 46 113 .74

.05 36 C9 .55

~~~~~ -, A .25 . , 1 39 233 .63

.95 70 171 .47
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