AD-A031 495 STANFORD UNIV CALIF THERMOSCIENCES DIV F/G 20/4 MOMENTUM AND ENERGY TRANSPORT IN THE ACCELERATED FULLY ROUGH TUETC(U) MAR 76 H W COLEMAN, R J MOFFAT, W M KAYS N00014-76-C-0532 HMT-24 NL												
	I OF 2 ADA031495					THE ACCESS OF A DESCRIPTION OF A DESCRIP	The second		7 ***** (
										Antonio antoni		
					ر کار در							-
<text><text><text><text><text></text></text></text></text></text>				$\label{eq:product} \begin{array}{l} & 1 \\ & 1 $			<text><text><text><text><text></text></text></text></text></text>		<text><text><text><text></text></text></text></text>			
							Add design of the second secon					
					Mante	1 Million				NN		
								1		1.		
1									te più			1

MOMENTUM AND ENERGY TRANSPORT IN THE ACCELERATED FULLY ROUGH TURBULENT BOUNDARY LAYER

By

1)

H. W. Coleman, R. J. Moffat and W. M. Kays

Report No. HMT-24

Prepared with Support from

The Office of Naval Research N00014-67-A-0112-0072-76-C-0532

Thermosciences Division Department of Mechanical Engineering Stanford University Stanford, California

March 1976

Copy available to DDC does not permit fully legible reproduction

The

I

MOMENTUM AND ENERGY TRANSPORT IN THE ACCELERATED FULLY ROUGH TURBULENT BOUNDARY LAYER

By

H. W. Coleman, R. J. Moffat and W. M. Kays

Report No. HMT-24

Prepared with Support from The Office of Naval Research N00014-67-A-0112-0072_

76-60532

Thermosciences Division Department of Mechanical Engineering Stanford University Stanford, California

March 1976

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. A RECIPIENT'S CATALOG NUMBER HMT-24 E OF REPORT & PERIOD COVERED Momentum and Energy Transport in the Accelera-Interim Repert. ted Fully Rough Turbulent Boundary Layer. PERFORMING ORG. REPORT NUMBER 6. HMT-24 CONTRACT OR GRANT NUMBER(.) Hugh W. Coleman, Robert J. Moffat, and N00014-67-A-0112-0072 ne William M. Kays 766 0532 PROGRAM ELEMENT. PROJECT, TASK PERFORMING ORGANIZATION NAME AND ADDRESS Department of Mechanical Engineering NR094-368 Stanford University Stanford, California 94305 CONTROLLING OFFICE NAME AND ADDRESS ----Office of Naval Research Mar 1 2076 Code 473 NUMBER OF P Arlington, Virginia 22217 150 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) SECURITY CLASS. (of this report) Office of Naval Research, Resident Rep. Unclassified Room 165, Durand Building 15. DECLASSIFICATION DOWNGRADING SCHEDULE Stanford University Stanford, California 94305 16. DISTRIBUTION STATEMENT (of this Report) DISTRIBUTION STATEMENT A Unlimited Approved for public release; Distribution Unlimited 17. DISTRIBUTION STATEME Block 20 If dill 00014-76-0-053 Unlimited 18. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. dissertation of Hugh W. Coleman: same title. 19. KEY WORDS (Continue on reverse eide il necessary and identify by block number) Heat transfer Roughness Rough surfaces Boundary layer Turbulence structure Turbulence ABSTRACT (Continue on reverse side if necessary and identify by block number) The behavior of the fully rough turbulent boundary layer subjected to favorable pressure gradients was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Measurements of profiles of mean velocity, mean temperature and the components of the Reynolds stress tensor are reported for both unblown and blown layers. Stanton numbers were determined from energy balances on the test surface and skin friction coefficients from measurements of the Reynolds shear stress and mean velocity. DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified S/N 0102 LF 014 6601 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 71973

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

A new acceleration parameter, K_r , for fully rough layers is defined and shown to be dependent on a characteristic roughness dimension but independent of molecular viscosity. For K_r constant and the blowing fraction, F, constant and greater than or equal to zero, it is shown that the fully rough turbulent boundary layer reaches an equilibrium state in which profiles of the mean velocity and the Reynolds stress tensor components are similar in the flow direction and skin friction coefficient, momentum thickness, boundary layer shape factor, and the Clauser shape factor and pressure gradient parameter all become constant. The thermal data indicate the possibility that such a layer, with wall temperature constant, may approach a state of equilibrium in the thermal sense, also. Such a state would be characterized by Stanton number becoming constant, enthalpy thickness approaching an asymptote, and temperature profiles exhibiting similarity in the flow direction.

For fully rough turbulent flow, acceleration causes an increase in Stanton number compared to zero pressure gradient values at the same enthalpy thickness, Reynolds number, or position. For the present range of accelerations, these increases were approximately ten and twenty percent for the unblown and blown cases, respectively. Data for variable test surface temperature cases show that nondimensionally equivalent positive axial gradients of freestream velocity and temperature potential across the boundary layer have identical effects on Stanton number. The fully rough Stanton number behavior observed in this study is contrary to that previously reported for unblown accelerated smooth wall layers.

Acceleration of a fully rough layer decreases the normalized turbulent kinetic energy and makes the turbulence field much less isotropic in the inner region (for F equal zero) compared to zero pressure gradient fully rough layers. The values of the Reynolds shear stress correlation coefficients, however, are unaffected by acceleration or blowing and are identical with values previously reported for zero pressure gradient smooth and rough wall flows. Increasing values of roughness Reynolds number with acceleration indicate that the fully rough layer does not tend toward the transitionally rough or smooth wall state when accelerated.

An integral prediction method is presented which successfully describes Stanton number behavior in a fully rough turbulent flow with variable velocity, wall temperature, and blowing using only a kernel function determined from zero pressure gradient flow with an unheated starting length.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ACKNOWLEDGMENTS

This research was made possible by support from the Office of 76 c 0 532 Naval Research, Contract N00014-67-A-0172-0072. The experimental apparatus was constructed during an earlier contract from the Department of the Navy, Contract N00123-71-0-0372. The authors wish to thank Dr. W. H. Thielbahr, Mr. James Patton, and Dr. Ralph Roberts for their support.

The first author also gratefully acknowledges financial support from Sandia Laboratories during the research program.

The authors also wish to thank Dr. Marcos Pimenta for his invaluable contributions during the initial phases of this project and Mr. Robin Birch, whose skill in constructing and repairing probes contibuted greatly to the success of the program.

ABSTRACT

The behavior of the fully rough turbulent boundary layer subjected to favorable pressure gradients was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Measurements of profiles of mean velocity, mean temperature and the components of the Reynolds stress tensor are reported for both unblown and blown layers. Stanton numbers were determined from energy balances on the test surface and skin friction coefficients from measurements of the Reynolds shear stress and mean velocity.

A new acceleration parameter, K_r , for fully rough layers is defined and shown to be dependent on a characteristic roughness dimension but independent of molecular viscosity. For K_r constant and the blowing fraction, F, constant and greater than or equal to zero, it is shown that the fully rough turbulent boundary layer reaches an equilibrium state in which profiles of the mean velocity and the Reynolds stress tensor components are similar in the flow direction and skin friction coefficient, momentum thickness, boundary layer shape factor, and the Clauser shape factor and pressure gradient parameter all become constant. The thermal data indicate the possibility that such a layer, with wall temperature constant, may approach a state of equilibrium in the thermal sense, also. Such a state would be characterized by Stanton number becoming constant, enthalpy thickness approaching an asymptote, and temperature profiles exhibiting similarity in the flow direction.

For fully rough turbulent flow, acceleration causes an increase in Stanton number compared to zero pressure gradient values at the same enthalpy thickness, Reynolds number, or position. For the present range of accelerations, these increases were approximately ten and twenty percent for the unblown and blown cases, respectively. Data for variable test surface temperature cases show that nondimensionally equivalent positive axial gradients of freestream velocity and temperature potential across the boundary layer have identical effects on Stanton number. The fully rough Stanton number behavior observed in this study is contrary to that previously reported for unblown accelerated smooth wall layers.

Acceleration of a fully rough layer decreases the normalized turbulent kinetic energy and makes the turbulence field much less isotropic in the inner region (for F equal zero) compared to zero pressure gradient fully rough layers. The values of the Reynolds shear stress correlation coefficients, however, are unaffected by acceleration or blowing and are identical with values previously reported for zero pressure gradient smooth and rough wall flows. Increasing values of roughness Reynolds number with acceleration indicate that the fully rough layer does not tend toward the transitionally rough or smooth wall state when accelerated.

An integral prediction method is presented which successfully describes Stanton number behavior in a fully rough turbulent flow with variable velocity, wall temperature, and blowing using only a kernel function determined from zero pressure gradient flow with an unheated starting length.

v

TABLE OF CONTENTS

!

I

T

Π

1

Π

Π

1

and a

I

		Page				
Acknow	ledgments	. iii				
Abstract ,						
Table (of Contents	. vi				
List o	f Figures	. viii				
Nomenc	lature	. xi				
Chapte	-					
1	INTRODUCTION	. 1				
	1.1 Background	. 2				
	1.2 Objectives	. 4				
	1.4 General Organization	. 5				
2	THE FOULL IRRUM FULLY ROUGH TURRITENT BOUNDARY					
-	LAYER WITH PRESSURE GRADIENT AND TRANSPIRATION	. 10				
	2.1 Previous Studies of Equilibrium Turbulent Boundary					
	Layers	. 11				
	2.2 Conditions for Equilibrium in the Fully Rough Tur-					
	Transpiration	. 13				
	2.3 Choice of Length Scale in Acceleration					
	Parameter K_r	. 16				
3	EXPERIMENTAL RESULTS	. 19				
	3.1 Zero Pressure Gradient Data	. 20				
	3.2 Data with Acceleration	. 24				
	3.2.2 Mean Velocity and Temperature Profiles	. 29				
	3.2.3 Reynolds Stress Tensor Components	. 33				
	3.2.4 Turbulent Prandtl Number and Related	70				
	3.3 Heat Transfer Predictions and Supplementary St	• 39				
	Data	. 44				
4	EFFECTS OF ACCELERATION ON THE FULLY ROUGH TURBULENT					
	BOUNDARY LAYER	. 81				
5	CONCLUSIONS	. 87				
Referen	ices	. 90				
Appendi	ces					
I	DESCRIPTION OF EXPERIMENTAL APPARATUS AND MEASURE-					
	MENT TECHNIQUES	. 96				
II	QUALIFICATION TESTS	. 105				

vi

Appendices Page III INDUCED TRANSPIRATION EFFECTS ON ACCELERATION DATA DATA 108 IV TABULATION OF EXPERIMENTAL DATA 110

Π

LIST OF FIGURES

T

Tung

1

R without

I

Long H

T

-

Ĩ

Ĩ

Ĩ

Figure		Page
1-1	Schematic of the Experimental Apparatus	8
1-2	Closeup Photograph of the Rough Test Surface	9
3-1	Zero Pressure Gradient Stanton Number Data	49
3-2	Zero Pressure Gradient Skin Friction Coefficient Data	49
3-3	Typical Mean Velocity Profile for Fully Rough, Zero Pressure Gradient Flow	50
3-4	Components of Turbulent Kinetic Energy for Fully Rough, Zero Pressure Gradient Flow	50
3-5	Summary Data for $K_r = 0.15 \times 10^{-3}$, $F = 0$ Equilibrium Acceleration Case	51
3-6	Summary Data for $K_r = 0.29 \times 10^{-3}$, $F = 0$ Equilibrium Acceleration Case	52
3-7	Summary Data for $K_r = 0.29 \times 10^{-3}$, $F = 0.0039$ Equilibrium Acceleration Case	53
3-8	Summary Data for $K = 0.28 \times 10^{-6}$, $F = 0$ Nonequilibrium Acceleration Case	54
3-9	Comparison of Enthalpy Thickness Data and Solution for Equilibrium Enthalpy Thickness Behavior	55
3-10	Equilibrium Acceleration Stanton Number Data vs. (Enthalpy Thickness/Sphere Radius)	55
3-11	Skin Friction Coefficient Data vs. (Momentum Thickness/Sphere Radius)	56
3-12	Thermal and Velocity Boundary Layer Thicknesses Variation with Axial Distance	57
3-13	Enthalpy Thickness Variation with Axial Distance	58
3-14	Roughness Reynolds Number Variation with Axial Distance	59
3-15	Mean Velocity Profiles Illustrating Similarity in Flow Direction $(K_r = 0.15 \times 10^{-3})$	60
3-16	Mean Velocity Profiles Illustrating Similarity in Flow Direction $(K_r = 0.29 \times 10^{-3}, F = 0)$	60
3-17	Mean Velocity Profiles Illustrating Similarity in Flow Direction $(K_r = 0.29 \times 10^{-3}, F = 0.0039) \dots$	61
3-18	Mean Velocity Profiles Illustrating Lack of Similarity in Flow Direction $(K = 0.28 \times 10^{-6})$	61
3-19	Mean Velocity Profile Plotted Using Shifted Wall Position $(K_r = 0.15 \times 10^{-3})$	62

viii

Figure

Figure		Page
3-20	Mean Velocity Profile Plotted Using Shifted Wall Position $(K_r = 0.29 \times 10^{-3}, F = 0) \dots \dots \dots \dots$	62
3-21	Comparison of Blown and Unblown Mean Velocity Profiles at Same Axial Position $(K_r = 0.29 \times 10^{-3})$	63
3-22	Nondimensional Mean Temperature Profiles Illustrating Similarity in Flow Direction $(K_r = 0.15 \times 10^{-3})$	63
3-23	Nondimensional Mean Temperature Profiles Illustrating Similarity in Flow Direction ($K_r = 0.29 \times 10^{-3}$, F = 0).	64
3-24	Nondimensional Mean Temperature Profiles Illustrating Similarity in Flow Direction, $K_r = 0.29 \times 10^{-3}$, F = 0.0039)	64
3-25	Nondimensional Mean Temperature Profiles for Non- equilibrium Acceleration Run $(K = 0.28 \times 10^{-6}) \dots$	65
3-26	Nondimensional Mean Temperature Plotted versus Non- dimensional Mean Velocity $(K_r = 0.15 \times 10^{-3}) \dots$	65
3-27	Comparison of Blown and Unblown Nondimensional Mean Temperature Profiles at Same Axial Position $(K_r = 0.29 \times 10^{-3}) \dots \dots$	66
3-28	Profiles of Turbulent Kinetic Energy Components Illus- trating Similarity in Flow Direction $(K_r = 0.15 \times 10^{-3})$.	66
3-29	Profiles of Reynolds Shear Stress Compared at Two Axial Positions $(K_r = 0.15 \times 10^{-3}) \dots \dots \dots \dots$	67
3-30	$\overline{u'^2}/U_T^2$ Profiles Compared for $K_r = 0$ and $K_r = 0.15 \times 10^{-3}$	67
3-31	Profiles of Components of Turbulent Kinetic Energy Compared for $K_r = 0$ and $K_r = 0.15 \times 10^{-3} \dots$	68
3-32	Profiles of Components of Turbulent Kinetic Energy Compared for $K_r = 0$ and $K_r = 0.29 \times 10^{-3}$, $F = 0$	68
3-33	Profiles of Components of Turbulent Kinetic Energy Compared for $K_r = 0$ and $K = 0.28 \times 10^{-6}$	69
3-34	Profiles of Components of Turbulent Kinetic Energy Compared for $K_r = 0$, $F = 0.0039$ and $K_r = 0.29 \times 10^{-3}$, F = 0.0039	69
3-35	Comparison of Blown and Unblown Profiles of $\overline{u'^2/U_{\infty}^2}$ for Unaccelerated $(K_r = 0)$ and Accelerated $(K_r = 0.29 \times 10^{-3})$ Cases	70
3-36	Comparison of Reynolds Shear Stress Profiles for $K_r = 0$ and $K_r = 0.15 \times 10^{-3} \dots \dots \dots \dots \dots$	70
3-37	Distribution of Reynolds Shear Stress Correlation Coefficients through the Boundary Layer	71
3-38	Comparison of Turbulent Prandtl Numbers Measured by Pimenta ⁽²⁾ and Calculated by Present Method for $K_r = 0$.	72

Figure

[]

[]

1

3-39	Turbulent Prandtl Number Distributions for the Acceler- ation Cases of the Present Study
3-40	Mixing Length Distributions for the Equilibrium Acceler- ation Cases of the Present Study
3-41	τ^+ and Q ⁺ Distributions for the K = 0.29 × 10 ⁻³ , F = 0 and F = 0.0039 Runs
3-42	Comparison of the Unblown $\overline{v't'}/U_{\tau}T_{\tau}$ Profiles for the Equilibrium Accelerations of the Present Study with the Unaccelerated Profiles for Smooth and Rough Wall Layers 75
3-43	Calculated Distribution of the Nondimensional Turbulent Kinetic Energy Production for $K_r = 0$ and $K_r = 0.15 \times 10^{-3} \dots 10^{-3} \dots 10^{-3}$
3-44	Comparison of St Data and Interpolation Expression for U_{∞} , T_{W} and F Constant
3-45	Comparison of Unheated Starting Length St Data with Results of Kernel Solution for $\rm U_{\infty}$ and F Constant 77
3-46	Comparison of St Data and Prediction for a Bilinear Variation of T_w with U_∞ Constant, $F = 0 \dots 78$
3-47	Comparison of St Data and Predictions for $K = 0.28 \times 10^{-6}$, $F = 0$ Run Both With and Without an Unheated Starting Length
3-48	Comparison of St Data and Prediction for $K_r = 0.50 \times 10^{-3}$, $F = 0$ Run with T_w Constant
3-49	Comparison of St Data and Predictions for Arbitrary U_{∞} Variation with Steps in F, F Variable and T_{W} Constant
3-50	Comparison of St Data and Predictions for Arbitrary U Variation with Steps in F, F Variable and a Step in \tilde{T}_{W} in the Blowing Region
I-1	Cross-Section of Typical Test Plate Casting Configuration
I-2	Schematic of the Horizontal Hot-Wire Probe Configuration . 103
I-3	Schematic of the Rotatable Slant Hot-Wire Probe Configu-
	ration

NOMENCLATURE

I

-

1

T

(numbers)

^B h	Blowing parameter, F/St				
° _f /2	Skin friction coefficient, $\tau_w^{}/(\rho U_\infty^2)$				
с _р	Specific heat of fluid				
E	Turbulent kinetic energy, $\rho q^2/2$				
e'	Fluctuating voltage				
F	Blowing fraction, $\rho_W^{} ~ v_O^{} / \rho_\infty^{} ~ U_\infty^{}$				
G	Clauser shape factor, Equation 2.1				
Н	Shape factor, δ_1/δ_2				
I	Total enthalpy referenced to freestream, (i + $U^2/2$) - (i _{∞} + $U^2_{\infty}/2$)				
i	Static enthalpy				
k	Thermal conductivity				
k _s	Equivalent sand grain roughness				
К	Smooth wall acceleration parameter, $(\nu/U_{\infty}^2)(dU_{\infty}/dx)$				
K _r	Fully rough acceleration parameter, $(r/U_{\infty})(dU_{\infty}/dx)$				

l	Mixing length
l	x-position of step in wall temperature
р	Mean pressure
p'	Fluctuating pressure
Р	Turbulent kinetic energy production, Equation 3.27
Pr _T	Turbulent Prandtl number, $\epsilon_M^{\prime}/\epsilon_H^{\prime}$
q''	Heat flux
q ²	$\overline{u'^2} + \overline{v'^2} + \overline{w'^2}$
Q ⁺	ἀ''/ἀ _₩
r	Radius of spheres comprising test surface
Rek	Roughness Reynolds number, $k_{\rm S}^{}~U_{\rm T}^{}/\nu$
Re ₆₂	Momentum thickness Reynolds number, $\delta_2^{}~U_{\rm w}^{}/\nu$
Re _{A2}	Enthalpy thickness Reynolds number, ${\rm A_2}~{\rm U_{\infty}}/{\rm v}$
R _{uv}	$-\overline{u'v'} / \sqrt{\overline{u'^2} \overline{v'^2}}$
R _q 2	$-\overline{u'v'}/q^2$
St	Stanton number, $\dot{q}_{w}^{\prime\prime}/[\rho_{\infty} U_{\infty} C_{p} (T_{w} - T_{\infty,0})]$
Sto	Stanton number for U_{∞} , T_{W} , F constant
t'	Fluctuating temperature

Т	Mean temperature
Tw	Wall temperature
T _{∞,0}	Total freestream temperature
ΔΤ	$(T_w - T_{\infty,0})$
Τ _τ	(ΔT) St/ $\sqrt{C_f/2}$
u	Instantaneous longitudinal velocity
u'	Longitudinal velocity fluctuation
^u eff	Instantaneous effective velocity sensed by the hot wire
U	Mean longitudinal velocity
U _∞	Freestream velocity
υ _τ	Friction velocity, $U_{\infty} \sqrt{C_f/2}$
v	Instantaneous velocity normal to surface
v'	Normal velocity fluctuation
v _o	Velocity of transpired fluid at the wall
w	Instantaneous transverse velocity
w'	Transverse velocity fluctuation
x	Longitudinal coordinate
у	Coordinate normal to surface

-

to a set

[]

[]

Π

Π

I

I

Δу	y-coordinate shift
Z	Transverse coordinate
α	Thermal diffusivity
β	Pressure gradient parameter, Equation 2.2
Δ	Thermal boundary layer thickness, $(T_w - T)/(T_w - T_{\infty}) = 0.99$
Δ ₂	Enthalpy thickness, $\int_{0}^{\infty} \frac{\rho U}{\rho_{\infty} U_{\infty}} \left(\frac{T - T_{\infty}}{T_{W} - T_{\infty}} \right) dy$
δ	Momentum boundary layer thickness, $\mathrm{U/U}_{\infty}$ = 0.99
δ ₁	Displacement thickness, $\int_{0}^{\infty} \left(1 - \frac{\rho U}{\rho_{\infty} U_{\infty}}\right) dy$
⁸ 2	Momentum thickness, $\int_{0}^{\infty} \frac{\rho U}{\rho_{\infty} U_{\infty}} \left(1 - \frac{U}{U_{\infty}}\right) dy$
ε _H	Eddy diffusivity for heat, Equation 3.21
€M	Eddy diffusivity for momentum, Equation 3.20
к	Karman constant
ν	Kinematic viscosity
ρ	Density
τ	Shear stress
τ+	τ/τ _w

xiv

Subscripts

W

and the second second

[]

[]

[]

--+

a	Position where K or K_r becomes constant
w	Wa11

Freestream 00

Superscripts

Mean (time-averaged) value

CHAPTER 1. INTRODUCTION

Although turbulent flow has been a prime area of both theoretical and experimental research for the past several decades, the present understanding of the behavior and basic mechanisms of tubulence fields is rather tenuous, at best. Experimental data on turbulent boundary layers is either very limited or nonexistent for many classes of boundary conditions. With the recent advent of more sophisticated prediction schemes and turbulence models, requirements for more detailed data on the turbulence field have increased. Measurements of skin friction, Stanton number, and mean temperature and velocity fields no longer provide a sufficient data base from which turbulence behavior may be examined. Additional measurements of the turbulence quantities (fluctuations, correlations) are required.

An experimental study of the effects of roughness on the fluid dynamics and heat transfer in the turbulent boundary layer has been in progress at Stanford for the past several years. Results of this investigation for zero pressure gradient flows have been reported previously [1,2]. The present study considers the effects of acceleration on a turbulent boundary layer in the fully rough state. This subject was investigated not only because of its importance in the flow in nozzles and over turbine blades and reentry vehicles, but also to provide more information on the nature of turbulence by observing the response of the turbulence field to the imposed perturbations (roughness and acceleration).

1.1 Background

Discussions of the literature on turbulent flows over rough surfaces have been presented previously by Healzer [1] and Pimenta [2] and will not be repeated here. In this section a brief introduction on the effects of roughness on a turbulent boundary layer will be made, followed by brief reviews of the zero pressure gradient results reported previously for the present rough surface, the results of accelerated smooth wall turbulent boundary layer studies, and the few previous investigations of accelerated turbulent flow over rough surfaces.

The influence of surface roughness on turbulent flows is usually divided into three regimes, which are characterized by the magnitude of the "roughness Reynolds number," Re_k , where

$$\operatorname{Re}_{k} = \frac{k_{\rm s} U_{\rm T}}{v} \tag{1.1}$$

The equivalent sand grain roughness parameter, k_s , is a commonly used, singlelength-scale descriptor of rough surfaces determined by comparison with Nikuradse's [3] classic rough pipe flow experiments. For $\text{Re}_k \leq 5$, the roughness elements are contained entirely within the viscous sublayer and the flow is termed "smooth." For $5 < \text{Re}_k < 55-70$ some of the elements protrude through the sublayer, and the flow is called "transitionally rough". For $\text{Re}_k > 55-70$ the viscous sublayer is effectively destroyed, and the flow is termed "fully rough".

In general, skin friction coefficients and Stanton numbers are greater in a turbulent boundary layer influenced by roughness than in a smooth wall layer at the same Reynolds number. This causes larger temperature and velocity defects through the layer and hence thicker boundary layers, since more freestream fluid is entrained. Experimental results for zero pressure gradient turbulent boundary layers on the present rough surface were reported by Healzer [1] and Pimenta [2]. Healzer constructed the present experimental apparatus and reported $C_f/2$ and St data both with and without blowing for several velocities which included the transitionally rough and fully rough flow regimes. He confirmed that, for fully rough flow over the present surface, both $C_f/2$ and St were independent of Reynolds number, i.e.

$$C_{f}/2 = f\left(\frac{\delta_{2}}{r}, F\right)$$
(1.2)
St = $g\left(\frac{\Delta_{2}}{r}, F\right)$ (1.3)

Pimenta [2] reported results of an extensive investigation of the fluid dynamics and heat transfer in both transitionally rough and fully rough zero pressure gradient layers both with and without blowing. His observations on the fully rough state included:

- The effect of roughness on the turbulence field structure extends over most of the layer.
- (2) Blowing makes the layer behave as if the surface has physically larger roughness elements.
- (3) For very large enthalpy thicknesses, the Stanton number appears to converge to an asymptotic value.
- (4) Reynolds shear stress correlation coefficients are unchanged from the values reported for smooth wall flows.

The response of smooth wall boundary layers to acceleration is discussed in the summary report by Kays and Moffat [4]. Briefly, smooth wall layer accelerations are characterized by the acceleration parameter, $K = \frac{v}{U^2} \frac{dU_{\infty}}{dx}$. Above a certain value of K, the turbulent layer develops toward a state resembling laminar flow. For a given Reynolds number, Stanton number decreases with increasing K, and the profiles of u'^2/U_{∞}^2 are lowered with acceleration [5]. In a constant K flow, the smooth wall turbulent boundary layer reaches an asymptotic state where mean profiles are similar, $\operatorname{Re}_{\delta_2}$ and $C_f/2$ are constant, and boundary layer thickness decreases.

Previously published studies of the combined effects of acceleration and roughness on the turbulent boundary layer have reported only values of wall heat flux. Reshotko, et al. [6], and Banerian and McKillop [7] investigated nozzle wall flows, while Chen [8] cited experimental results for flow over hemispheres. No boundary layer information was obtained in any of these studies.

1.2 Objectives

This investigation was undertaken to determine the effects of acceleration on the fluid dynamics and heat transfer in the fully rough turbulent boundary layer. Specific objectives were:

- (1) To define and experimentally verify the conditions required for equilibrium in the fully rough turbulent boundary layer with pressure gradient and transpiration.
- (2) To obtain a comprehensive fluid dynamic and thermal data set for both equilibrium and nonequilibrium accelerations of the fully rough turbulent boundary layer.
- (3) To examine the behavior of the mean and turbulence fields in the accelerated fully rough turbulent boundary layer.
- (4) To investigate the effect of blowing on the equilibrium accelerated layer.

1.3 The Experiment

A brief description of the experimental apparatus and measurement techniques will be given in this section. Additional information is provided in Appendix I.

The Stanford Roughness Rig (Figure 1-1) is a closed-loop wind tunnel using air as both the primary and transpiration fluids. Air temperature is controlled using water-cooled heat exchangers in both the primary and transpiration loops. The eight-foot long, 20-inch wide test section is four inches high at its entrance. A flexible plexiglass upper wall (constructed in five sections connected by thin plexiglass joints) can be adjusted to give the desired variation in U_{m} .

The test surface consists of 24 plates each four inches in the axial direction. The plates (Figure 1-2) are 0.5 inch thick and uniformly porous. They are constructed of 11 layers of 0.050-inch diameter Oxygen-Free High Conductivity (OFHC) copper spheres packed in the most dense array and brazed together. This configuration produces a rough test surface which is uniform and deterministic.

Each plate has individual electrical power and transpiration air controls and thermocouples for determining plate temperature. Stanton number is determined by subtracting the plate losses (known from energy balance qualification tests) from the measured power input. Uncertainty of the St data is within \pm 0.0001 Stanton number units (i.e., if St = 0.00200, the uncertainty is within \pm 5%).

The Stanton number data reported here were taken with a wall-tofreestream temperature difference of approximately 30°F to maintain a constant property boundary layer. Unless specifically stated otherwise, all St data presented are for constant wall temperature. The freestream

velocity at the test section inlet was a nominal 88 ft/sec, and all data were taken with a 1/2" wide, 1/32" high phenolic trip installed three inches inside the nozzle exit. The turbulent boundary layer was in a fully rough state for all cases reported.

Mean temperature profiles were measured with a 0.003-inch diameter, butt-welded, Chromel-constantan thermocouple mounted in a traversing probe holder. The design was similar to that of Blackwell [9].

All velocity measurements were made in an isothermal flow using linearized, constant temperature hot-wire anemometry. Measurements of U and $\overline{u'}^2$ were obtained using a horizontal wire, while measurements of $\overline{v'}^2$, $\overline{w'}^2$ and $\overline{u'v'}$ were made with a rotatable, 45° slant wire.

The physical size of the Roughness Rig and the porosity of the plates imposed limitations on the strengths of the accelerations which could be investigated. The height of the tunnel (four inches at the nozzle exit) limited both the length and severity of the acceleration region since interference of the top wall boundary layer with that on the test surface was carefully avoided. Also, since the plates were porous, the pressure gradient in the axial direction induced flow through the plates even with the transpiration supply valves closed. An analysis and discussion of this effect is presented in Appendix III. No effects of the induced transpiration were apparent in the data. It was concluded that the quantitative effect of the induced transpiration was negligible, certainly for the mildest and also the blown acceleration runs, and that the qualitative trends in all the data (and the conclusions drawn from them) were unaffected.

1.4 General Organization

The general organization of the results presented in the following chapters is described below. In Chapter 2 the concept of "equilibrium" in turbulent boundary layers is discussed, and the requirements for establishing equilibrium in the fully rough turbulent boundary layer with pressure gradient and transpiration are developed. The experimental data are presented in Chapter 3, and characteristics and trends are discussed. An integrated discussion of the effects of acceleration on the fully rough turbulent boundary layer is given in Chapter 4, and Chapter 5 contains the conclusions of the study.

Additional information and tabular data listings are contained in Appendices I - IV.

Figure 1-2. Closeup Photograph of the Rough Test Surface

1111

I

I

CHAPTER 2

THE EQUILIBRIUM FULLY ROUGH TURBULENT BOUNDARY LAYER WITH PRESSURE GRADIENT AND TRANSPIRATION

The definition of conditions for which a turbulent boundary layer becomes similar in the flow direction in some non-dimensional sense has been a subject of interest for a number of years. Such similar behavior is usually termed an "equilibrium" flow in the literature. The term "equilibrium" flow is sometimes used in the sense of similarity of properly normalized mean velocity profiles; however, truly equilibrium turbulent flow exhibits similarity not only in mean profiles, but also in the turbulence quantities themselves.

The analytical and experimental work in equilibrium layers has been prompted in part by the desire to follow the systematic method of fixing as many variables as possible in a given problem. This allows one to obtain a better understanding of the sensitivity of the problem to the uncontrolled variables. In the specific case addressed here, that of the fully rough turbulent boundary layer, the approach described above is the logical one to follow. If the behavior of the fully rough turbulent boundary layer subjected to pressure gradient and transpiration can be examined in the equilibrium case, one can then proceed to an examination of the more realistic non-equilibrium cases with more confidence and understanding.

In this chapter the previous work in describing and establishing the conditions for which equilibrium exists in turbulent boundary layers is

discussed. Following this, an analysis of the fully rough layer is presented. The analysis yields a definition of the proper acceleration parameter for fully rough flows and a description of the conditions required to establish equilibrium in the fully rough turbulent boundary layer with pressure gradient and transpiration.

2.1 Previous Studies of Equilibrium Turbulent Boundary Layers

In 1950 Rotta [10] presented an examination of the conditions which would yield a smooth wall turbulent boundary layer in which the velocity profile is distorted only affinely in the flow direction. He termed such flows similar and showed that, neglecting the viscous wall region, the equations describing the flow become ordinary differential equations if $C_f/2$ = constant and U_{∞} = ax^m , where a and m are constants. For a layer where the friction coefficient is almost independent of x, similar solutions exist which depend only on m and $C_f/2$, and the boundary layer thickness increases linearly with x.

In 1954 Clauser [11] presented experimental verification of the existence of similar turbulent boundary layer flows on smooth walls for two different adverse pressure gradients. He termed such behavior "equilibrium" and defined it as the case where both

$$G = \left(\frac{H-1}{H}\right) \left(\frac{1}{\sqrt{C_{f}/2}}\right)$$
(2.1)

and

$$\beta = \frac{\delta'}{\tau_w} \frac{\mathrm{d}P}{\mathrm{d}x}$$

were independent of x. In a later paper, Clauser [12] showed that the correct choice of the length scale δ' was the displacement thickness, so that

$$\beta = \frac{\delta_1}{\tau_w} \frac{dP}{dx} . \qquad (2.2)$$

It should be noted that Clauser's definition of the shape parameter G is identical with that presented earlier by Rotta [10,13]. Additional theoretical treatments of equilibrium turbulent boundary layers were presented by Townsend [14] and Coles [15].

The most definitive work on equilibrium turbulent boundary layer flow was presented by Rotta [16] in 1962. He showed that the conditions required for exact equilibrium behavior (reduction of the equations of motion to an ordinary differential equation) are:

$$C_{f}/2 = \text{constant}$$

$$\frac{d\delta_{1}}{dx} = \text{constant}$$

$$= \frac{\delta_{1}}{\tau_{y}} \frac{dP}{dx} = \text{constant}$$
(2.3)

and

Two flows obeying these constraints exactly were shown to be flow over a smooth wall with $U_{\infty} \sim \frac{1}{x_0 - x}$ where $x_0 > x$ and flow over a uniformly rough wall with $U_{\infty} \sim \exp\left(\frac{x}{U_{\infty}}\frac{dU_{\infty}}{dx}\right)$. Other variations of U_{∞} were shown to either require a given roughness variation with x or not to satisfy exactly the conditions required above.

β =

There are indications based on experimental rough wall studies that exact equilibrium cases exist for conditions not corresponding to the velocity and roughness criteria above. Perry, et al. [17], found that a zero pressure gradient turbulent boundary layer developing over a twodimensional cavity type roughness of constant height conformed to Rotta's conditions for precise self-preserving flow. Pimenta [2] also found indications in his work on zero pressure gradient flow over the rough surface used in this study that the boundary layer was approaching such an equilibrium state.

2.2 Conditions for Equilibrium in the Fully Rough Turbulent Boundary Layer with Pressure Gradient and Transpiration

In order to determine the conditions for which equilibrium will be obtained in the fully rough turbulent boundary layer with pressure gradient and transpiration, consider the two-dimensional momentum integral equation

$$\frac{C_{f}}{2} + F = \frac{d\delta_{2}}{dx} + \delta_{2}(2 + H)\frac{1}{U_{m}}\frac{dU_{m}}{dx}$$
(2.4)

where the variation of ρ_{∞} with x has been neglected, as have the normal Reynolds stresses. For the zero pressure gradient fully rough state, it has been shown [1,2] that the skin friction is independent of Reynolds number and can be functionally represented as

$$C_{f}/2 = f\left(\frac{\delta_{2}}{r}, F\right)$$
 (2.5)

where r is a length scale characteristic of the roughness elements.

For the present deterministic rough wall where height and distribution are describable by a single length scale, r is taken as the radius of the spheres comprising the surface. In the most general case, of course, one length scale describing height and one describing distribution in addition to a parameter describing roughness element form are necessary for the description of a rough surface. Most investigators in the past have used the "equivalent sand grain roughness" scale, k_s , determined by comparison with Nikuradse's [3] classic pipe flow experiments, in order to obtain a single length scale description of roughness.

One condition necessary for equilibrium is that $C_f/2$ be constant. Additionally, consider only the case for constant F and assume that the functional form of Equation (2.5) will remain valid for flows with pressure gradient. Under these conditions, δ_2 is constant and Equation (2.4) becomes

$$C_{f}/2 + F = (2 + H) \frac{\delta_{2}}{U_{\infty}} \frac{dU_{\infty}}{dx} = \text{constant}$$
 (2.6)

Defining a pressure gradient parameter for fully rough flow as

$$K_{r} \equiv \frac{L}{U_{\infty}} \frac{dU_{\infty}}{dx}$$
(2.7)

where L is a length scale yet to be specified, Equation (2.6) can be written as

$$K_{r} = \frac{(C_{f}/2 + F)}{(2 + H)(\delta_{2}/L)} = \text{constant}$$
(2.8)

for an equilibrium condition.

The choice of the proper length scale L to use in (2.7) is not immediately obvious. One might use an integral scale of the flow $(\delta, \delta_1, \delta_2)$ or a roughness scale (r, k_s). The roughness element radius, r, will be used in this development. A discussion of the arguments for this choice will be deferred to a later section. Thus,

$$K_{\mathbf{r}} \equiv \frac{\mathbf{r}}{U_{\infty}} \frac{dU_{\infty}}{d\mathbf{x}}$$
(2.9)

For a fully rough flow with constant F and K_r , the layer could be expected to exhibit an equilibrium state for which $C_f/2$, δ_2 , H, and β are all independent of x. This expectation has been experimentally verified in the present investigation for positive K_r and F. For $K_r < 0$ (adverse pressure gradients) Equation (2.8) indicates equilibrium flow is possible only for F < 0 (suction). Fully rough flows with K_r constant are equilibrium flows in the strictest sense since all of the conditions of (2.3) are satisfied.

The freestream velocity variation required for an equilibrium flow is found by integration of Equation (2.9) with K_r = constant to be

$$\frac{U_{\infty}}{U_{\infty,0}} = e^{K_{r}(x-x_{0})/r}$$
(2.10)

where the subscript o indicates the position at which the velocity variation begins. This agrees with Rotta's [16] result, but from the development above it is clear that fully rough flow is required for the velocity variation (2.10) to give an equilibrium flow. For transitionally rough flow, $C_f/2$ is a function not only of δ_2/r and F, but also of U_{∞} . Thus, a constant K_r flow would not be an equilibrium flow for a transitionally rough turbulent boundary layer.

For F and K_r constant, it can also be shown that

$$\beta = -\left(\frac{H}{H+2}\right)\left(\frac{C_{f}/2 + F}{C_{f}/2}\right)$$
(2.11)

and

$$C_f/2 = (H + 2) K_r(\delta_2/r) - F$$
 (2.12)

The definition of K_{r} for fully rough flows is analogous to that of the smooth wall acceleration parameter

$$K = \frac{v}{U_{e}^2} \frac{dU_{\infty}}{dx}$$
(2.13)

An accelerating turbulent flow on a smooth wall with K = constant yields a boundary layer with $\operatorname{Re}_{\delta_2}$ constant that is equilibrium in the sense that mean velocity profiles become similar and G and β are constant. Such a flow is not truly an equilibrium flow in the sense of equations (2.3) since $\frac{d\delta_1}{dx} \sim \frac{1}{U_{\infty}^2} \neq$ constant. A comparison of the asymptotic accelerated states for smooth wall and fully rough turbulent boundary layers is presented in Table 2.1.

2.3 Choice of Length Scale in Acceleration Parameter K

The choice of the correct length scale to be used in the fully rough acceleration parameter K_r is not obvious from the development in Section 2.2. A scale based on roughness size (r, k_s) or a local scale of the boundary layer $(\delta, \delta_1, \delta_2)$ could be chosen. The near wall scale used in smooth wall layers, $\frac{\nu}{U_{\tau}}$, should not be considered because the turbulence field of the fully rough layer is independent of viscous effects, at least for regions outside the roughness elements [2].

One requirement which should be imposed is that when K_r is constant, an equilibrium condition should result. This requirement leads to the choice of roughness size as the proposed scale. Define:

$$K_{r} = \frac{r}{U_{\infty}} \frac{dU_{\infty}}{dx}$$
(2.9)

$$K'_{r} = \frac{\delta_{1}}{U_{\infty}} \frac{dU_{\infty}}{dx}$$
(2.14)

and

$$K_{\mathbf{r}}^{\star} = \frac{\delta_2}{U_{\infty}} \frac{dU_{\infty}}{d\mathbf{x}}$$
(2.15)

for convenience in the discussion to follow. If the fully rough flow is in an equilibrium state, δ_1 and δ_2 are both constant and thus K_r , K_r' , and K_r^* are all constant and meet the requirement above. However, consider a case where a non-equilibrium acceleration is imposed on a surface of constant roughness. It is possible, in principle, that an acceleration could be imposed such that the product of $\left(\frac{1}{U_{\infty}} \frac{dU_{\infty}}{dx}\right)$ and δ_1 or δ_2 would be constant. Thus, in principle, K_r' or K_r^* could be maintained constant in a non-equilibrium fully rough flow. Therefore, it appears that a local scale of the layer is not suitable for use in defining K_r .

In choosing a roughness length scale for use in K_r , one is assuming that if r (or k_s) is doubled, then $\left(\frac{1}{U_{\infty}}\frac{dU_{\infty}}{dx}\right)$ must be halved to achieve the same effect for both the cases $r = r_1$ and $r = 2r_1$. Confirmation of this behavior must await further experimental work. However, it is obvious that some wall scale effect must be included in K_r , otherwise the smooth wall parameter, K, would adequately describe rough wall accelerations.

Since the equivalent sand grain roughness of the present rough surface according to Schlichting [18] is 1.25 r, the conversion of the K_r values reported to values based on k_s is easily made if desired.

Table 2.1

COMPARISON OF ASYMPTOTIC ACCELERATED STATES FOR SMOOTH AND FULLY ROUGH TURBULENT BOUNDARY LAYERS

	Smooth	Rough
Acceleration Parameter	$K = \frac{v}{U_{\infty}^2} \frac{dU_{\infty}}{dx}$	$K_{r} = \frac{r}{U_{\infty}} \frac{dU_{\infty}}{dx}$
Re _{s2}	Constant	Increases
δ2	Decreases	Constant
U _∞ /U _{∞,0}	$\frac{1}{1 - \frac{KU_{\infty,0}}{v} (x - x_0)}$	e ^{-K} r ^{(x - x} o)/r
β	$-\left(\frac{\mathrm{H}}{\mathrm{H}+1}\right)\left(\frac{\mathrm{C}_{\mathrm{f}}/2+\mathrm{F}}{\mathrm{C}_{\mathrm{f}}/2}\right)$	$-\left(\frac{H}{H+2}\right)\left(\frac{C_{f}/2 + F}{C_{f}/2}\right)$
C _f /2	$\frac{\delta_2(H+1)}{U_{\infty}} \frac{dU_{\infty}}{dx} - F$	$\frac{\delta_2(H+2)}{U_{\infty}} \frac{dU_{\infty}}{dx} - F$

I

1

Note: Subscript o indicates point where acceleration begins.
CHAPTER 3

EXPERIMENTAL RESULTS

The experimental data obtained in this study will be presented in this chapter and trends, similarities, and comparisons will be noted and discussed briefly. An integrated discussion and description of the effects of acceleration on the fully rough turbulent boundary layer will be presented in Chapter 4.

The experimental program covered five different cases:

(1)	$K_r = 0$	F = 0	
(2)	$K_r = 0.15 \times 10^{-3}$	F = 0	(equilibrium)
(3)	$K_r = 0.29 \times 10^{-3}$	F = 0	(equilibrium)
(4)	$K_r = 0.29 \times 10^{-3}$	F = 0.0039	(equilibrium)
(5)	$K = 0.28 \times 10^{-6}$	$\mathbf{F} = 0$	(non-equilibrium)

Case 1 was run as a baseline set and to compare the present data with those of Pimenta [2] for identical conditions. Cases 2, 3, and 4 are equilibrium acceleration runs for the fully rough turbulent boundary layer. In Case 5 the smooth wall acceleration parameter $K = \frac{v}{U_{\infty}^2} \frac{dU_{\infty}}{dx}$ was maintained constant. This represents a non-equilibrium run for the fully rough layer.

In setting up each of the equilibrium runs, the value of K_r and the x-position at which the acceleration was begun were matched with the δ_2 , H,

and $C_f/2$ data taken at that position for $K_r = 0$, using Equation (2.8). Thus, the boundary layer entered the region of acceleration near the equilibrium state for the K_r applied, and the length of the equilibrium flow established was maximized.

Measurements included Stanton numbers and profiles of T, U, $\overline{u'^2}$, $\overline{v'^2}$, $\overline{w'^2}$, $\overline{u'v'}$. These data allowed calculation of skin friction coefficient $C_f/2$, turbulent Prandtl number Pr_T , mixing length l, and profiles of Q⁺ and τ^+ . The profile measurements were obtained using two hot wires--one horizontal and one rotatable 45° slant--and a butt-welded thermocouple probe similar in design to that used by Blackwell [9]. Details of the measurements and techniques used are presented in Appendix I.

In the following sections the $K_r = 0$ baseline data will be presented first. The four cases with acceleration will then be described with presentation of the data in the following order:

- · Summary graphs for each case
- Integral quantities (St, $C_f/2$, δ , Δ , etc.)
- Mean velocity and temperature profiles
- Reynolds stress tensor components
- Turbulent Prandtl number and related quantities

The final section of this chapter will describe a Stanton number prediction technique and some supplementary Stanton number data, including cases with steps in wall temperature, variable wall temperature, and variable blowing with acceleration.

3.1 Zero Pressure Gradient Data

and the All

The data for zero pressure gradient were obtained both to provide a baseline set of measurements taken using the same techniques used in

E I

acquiring the accelerated data and also to demonstrate the compatibility of the data with the results of Pimenta [2] for the same conditions and test surface.

Stanton number data are shown in Figure 3-1 for both F = 0 and 0.0039. The data of Pimenta for an untripped layer are also plotted, and the comparison between the two sets is excellent for large $\frac{\Delta_2}{r}$, being well within the data uncertainty of ± 0.0001 Stanton number units. The correlations proposed by Pimenta for interpolation of his data are also shown. These correlations are:

St = 0.00317
$$\left(\frac{\Delta_2}{r}\right)^{-0.175}$$
 (3.1)

for F = 0 and 4 < $\frac{\Delta_2}{r}$ < 15 and

$$\frac{St}{St_{o}}\Big|_{\Delta_{2}} = \left[\frac{\ln(1+B_{h})}{B_{h}}\right]^{1.175} (1+B_{h})^{0.175}$$
(3.2)

for 0 < F < 0.0040, where:

 St_{0} is the Stanton number for F = 0 and the same $\mathrm{\Delta}_{2}$

 $B_{h} = F/St$ is the blowing parameter.

Figure 3-2 presents the skin friction coefficients obtained for F = 0 by Healzer [1], Pimenta [2], and the present author. Healzer differentiated his momentum thickness measurements to obtain $C_f/2$, while Andersen's [19] shear stress method for skin friction determination was used in this study and also by Pimenta. The results of Pimenta and the present author show good agreement, while the data of Healzer deviate slightly from the others at the larger values of δ_2/r . The correlation of Pimenta for F = 0 and $1.0 < \frac{\delta_2}{r} < 10.0$

$$C_{f}/2 = 0.00328 \left(\frac{\delta_2}{r}\right)^{-0.175}$$
 (3.3)

is also plotted.

All of the skin friction coefficients in this study were calculated using

$$\begin{aligned} U_{\infty}^{2} C_{f}^{\prime} / 2 &= \sqrt{\frac{\partial U}{\partial y}} \Big|_{y_{1}}^{\prime} - \overline{u^{\dagger} v^{\dagger}} \Big|_{y_{1}}^{\prime} - U_{\infty}^{\prime} U_{y_{1}}^{\prime} F \\ &- \left[\left(\int_{0}^{y_{1}} \left(\frac{U}{U_{\infty}} \right)^{2} dy \right) - \frac{y_{1}}{2} \right] \left[\frac{U_{\infty}^{2}}{\rho_{\infty}} \frac{d\rho_{\infty}}{dx} + \frac{2U_{\infty}^{2}}{r} K_{r} \right] \\ &+ \left[\int_{0}^{y_{1}} \frac{U}{U_{\infty}} dy \right] \left[\frac{U_{\infty}^{\prime} U_{y_{1}}}{\rho_{\infty}} \frac{d\rho_{\infty}}{dx} + \frac{U_{y_{1}}^{\prime} U_{\infty}}{r} K_{r} \right] \end{aligned}$$
(3.4)
$$- U_{\infty}^{2} \frac{d}{dx} \left[\int_{0}^{y_{1}} \frac{U^{2}}{U_{\infty}^{2}} dy \right] + U_{y_{1}}^{\prime} U_{\infty} \frac{d}{dx} \left[\int_{0}^{y_{1}} \frac{U}{U_{\infty}} dy \right] \end{aligned}$$

The derivation of (3.4) is straightforward. Briefly, the momentum equation (incorporating the usual boundary layer assumptions but allowing $\rho_{\infty} = \rho_{\infty}(x)$) and the continuity equation are integrated from the surface to a position y_1 in the boundary layer. Then, measurement of successive velocity profiles in the x-direction and $\overline{u'v'}$ at $y = y_1$ for each x-position allows calculation of $C_f/2$ versus x, using (3.4). The position y_1 was always 0.130" in this study, since the rotatable slant hot wire used to measure $\overline{u'v'}$ was limited to y > 0.125".

A typical velocity profile is plotted versus $(y + \Delta y)/\delta_2$ in Figure 3.3. Since the normal coordinate y is referred to the tops of the spherical elements comprising the test surface, the "wall shift" Δy gives the location of the "apparent wall" for the mean velocity. This wall shift has been a topic of much discussion by previous workers in roughness and will be discussed in more detail later in this chapter. It is shown in the figure that the present data follow Schlichting's [18] expression for fully rough flow

$$\frac{U}{U_{\tau}} = \frac{1}{\kappa} \ln \frac{y}{k_{s}} + 8.5$$
(3.5)

Note that the value of k_s used (0.031") is determined from Schlichting's tabulated values and not by back-fitting Equation (3.5). The smooth wall "law of the wall" is also shown for reference.

Measurements of the three components of the turbulent kinetic energy normalized by U_{∞}^2 are shown in Figure 3-4 plotted versus y/δ . The present measurements agree with those of Pimenta within the data uncertainty. Comparison of the fully rough data with the $\overline{u'}^2$ data of Klebanoff [20] for a smooth wall shows several important characteristics of fully rough flow (which were noted by Pimenta [2]). First, for fully rough flow the peak in $\overline{u'}^2$ is moved out from the wall, lowered, and spread over a greater portion of the layer than is the case for smooth wall flows. Second, the effect of the roughness is felt across practically the entire layer in the form of increased turbulence energy. Blake [21] also observed this behavior in his fully rough flow data. Thus, the assumption made by some authors [8,17] that the effect of roughness is confined to the near wall region is not valid for the turbulent kinetic energy components. Pimenta showed that this effect was not due to the greater freestream turbulence (≈ 0.4 %) in the present tunnel as compared with that of Klebanoff (≈ 0.02 %). He also showed that

the use of U_{τ}^2 as a normalizing velocity did not collapse the smooth and rough wall results, as was suggested by Hinze [22] based on the measurements of Corrsin and Kistler [23] over 2-D roughness elements.

3.2 Data with Acceleration

Summary graphs for the four cases of accelerated flow investigated are shown in Figures 3-5 through 3-8. The purpose of these plots is to show the variation of K_r and the integral quantities $C_f/2$, δ_2 , and H which are indicators of equilibrium flow according to the discussion in Chapter 2. The Stanton number variation is also plotted to illustrate the integral behavior of the thermal field. In each figure, the data are plotted versus distance along the test section, x. In the discussion which follows, F = 0 unless specifically stated otherwise.

Data from the $K_r = 0.15 \times 10^{-3}$ run are presented in Figure 3-5. This run had the longest region of K_r constant (x = 44" to 88"), with the velocity increasing from approximately 88 to 115 ft/sec. As seen in the figure, δ_2 , H and $C_f/2$ all become constant in the region of K_r constant, indicating that equilibrium flow was established. Stanton numbers in the acceleration region are about 10% larger than for the $K_r = 0$ case and appear to be approximately constant within the data uncertainty. The behavior is different from that observed for accelerated smooth wall layers, where Stanton number is unaffected for small K, then decreases in comparison to the unaccelerated case at the same Reynolds number or same x-position as K increases [4,24,25,26].

Data for $K_r = .29 \times 10^{-3}$ are shown in Figures 3-6 and 3-7 for F = 0 and F = 0.0039, respectively. In both these cases, K_r is constant from x = 24" to 52", U_{∞} increases from 88 to 129 ft/sec, and δ_2 , $C_f/2$, and H all reach constant values in the acceleration region. Stanton number shows the

same behavior as seen in Figure 3-5 in the region of acceleration, then decreases immediately to the $K_r = 0$ baseline data when the acceleration is removed.

The summary data for the K = .28 x 10^{-6} , nonequilibrium case are presented in Figure 3-8. The smooth wall acceleration parameter K is constant from x = 24" to 52", U_{∞} increases from 88 to 150 ft/sec, and K_r varies from .25 - .50 x 10^{-3} in this region. The shape parameter H decreases along the entire test section, while δ_2 increases as the layer is entering the region of acceleration, then levels off and finally decreases. This δ_2 behavior is similar to that observed in the asymptotic accelerated smooth wall layer [27,28]. Skin friction coefficient shows very little variation, and appears to remain about constant. This is not surprising considering the small variation of δ_2 in the acceleration region. Stanton number shows the same increase over $K_r = 0$ values observed in the equilibrium cases and recovers immediately to unaccelerated baseline values when the acceleration is removed.

It was noted above that Stanton number appears to be approximately constant within the data uncertainty in regions of K_r constant. However, it is impossible to reach a firm conclusion in this regard due to the inherent uncertainty in the data and the relatively short regions of acceleration. An argument that Stanton number for $K_r > 0$ varies as $\Delta_2^{-0.175}$ (as in the $K_r = 0$ case) or some similar weak function of Δ_2 could also be supported by the present data.

If, for the sake of argument, one assumes that St is constant in a region of constant K_r , then the behavior of Δ_2 in such a region can be determined. The 2-D energy integral equation for F = 0, constant properties, and constant wall to freestream temperature difference may be written as [29]

$$St = \frac{d\Delta_2}{dx} + \frac{K_r}{r} \Delta_2$$
(3.6)

If St and K_r are constant from a position x_c to x, then (3.6) can be integrated to yield

$$\Delta_2 = \frac{St_c^r}{K_r} + \left[\Delta_{2_c} - \frac{St_c^r}{K_r}\right] e^{-K_r(x-x_c)/r}$$
(3.7)

Thus the enthalpy thickness will approach an asymptotic value (St_cr/K_r) if a flow is established such that St and K_r are constant.

Equation (3.7) was evaluated for the $K_r = .15 \times 10^{-3}$ case assuming $x_c = 58$ " and $St_c = 0.00242$. The results are shown in Figure 3-9 and compared with the enthalpy thicknesses computed from the mean velocity and temperature profiles. The agreement between the measured values and calculated values assuming St = constant is excellent, thus supporting the observation that Stanton number, if not a constant, is at most a weakly varying function of Δ_2 in an equilibrium accelerated fully rough turbulent boundary layer with constant wall temperature.

As shown in Figure 3-9, for the $K_r = .15 \times 10^{-3}$ run the approach of Δ_2 to the indicated asymptotic value is very slow. In fact, Δ_2 would reach 99% of the asymptotic value only after $(x-x_c) \approx 60$ feet. Since δ_2 is constant in the equilibrium case, the ratio Δ_2/δ_2 would therefore increase for an appreciable distance.

3.2.1 Integral Quantities

The Stanton number data in the accelerated region for the three equilibrium runs are shown versus Δ_2/r in Figure 3-10 compared with unaccelerated data for F = 0 and 0.0039. The accelerated data increase

over the $K_r = 0$ data by ~ 10% for F = 0 and ~ 20% for F = 0.0039. As discussed in the previous section, the Stanton number data in the constant K_r region can be argued to be either approaching a constant value or at the very least to be a weaker function of enthalpy thickness than in the unaccelerated case.

Skin friction coefficients in the acceleration region are plotted versus δ_2/r in Figure 3-11 and compared with the unaccelerated cases. The $K_r = 0$ data for F = 0.0039 are from Pimenta's study. For the three equilibrium cases, both $C_f/2$ and δ_2 are constant in the acceleration region and thus only a single data point for each case appears in these coordinates. In the unblown cases, it appears that acceleration causes a slight increase (~ 5%) in $C_f/2$ over the baseline data. It should be noted that this is within the uncertainty (~ 10%) of the $C_f/2$ data, however. In the blown case (F = 0.0039), the acceleration data point lies approximately 30% above Pimenta's $K_r = 0$ data. In smooth wall flows acceleration also leads to an increase in $C_f/2$ compared with zero pressure gradient values for the same Reynolds number [27,28].

Figure 3-12 shows temperature and velocity boundary layer thicknesses (Δ and δ , respectively) for the five cases investigated. No temperature profiles were taken in the present study for $K_r = 0$, so Δ is not shown for the baseline case. In the three equilibrium accelerated cases, the rate of growth of both δ and Δ decreases in the acceleration region. From the equilibrium conditions developed earlier for the fluid dynamics, one would expect δ to eventually assume a constant value for $K_r = \text{constant}$, and it does appear from Figure 3-12 that δ is approaching an asymptote in the region of K_r constant. After the acceleration is removed in the two $K_r = 0.29 \times 10^{-3}$ runs, the boundary layer thicknesses Δ and δ resume a rate of increase with x similar to that observed for the $K_r = 0$ case. The data for the nonequilibrium

 $K = .28 \times 10^{-6}$ run exhibit behavior similar to that observed in smooth wall accelerated flows [24,25,27,28]. Both δ and Δ begin to decrease near the end of the acceleration region. In all four acceleration cases, the temperature boundary layer thickness Δ is greater than δ for all x, but the two thicknesses show the same trends in the acceleration and recovery regions.

A comparison of enthalpy thicknesses obtained from integration of temperature and velocity profiles and from integration of the constant property energy integral equation in the form

St + F =
$$\frac{1}{U_{\infty}(T_{w}^{-}T_{\infty,0})} \frac{d}{dx} \left[\Delta_2 U_{\infty} (T_{w}^{-}T_{\infty,0}) \right]$$
 (3.8)

using measured Stanton numbers is shown in Figure 3-13 for the four acceleration cases. Reasonable agreement is found between the two methods, with the maximum discrepancy being about 10%. The behavior of Δ_2 is similar to that observed for Δ in Figure 3-12.

Figure 3-14 presents the variation of roughness Reynolds number with x for all five cases, where

$$\operatorname{Re}_{k} = \frac{k_{s} U_{\tau}}{v}$$
(3.9)

and k_s was taken as 0.031", as noted previously, for the present surface. The roughness Reynolds number increases with acceleration since U_{τ} (= $\sqrt{C_f/2} U_{\infty}$) increases and $\frac{k_s}{v}$ remains constant.

These results have important implications. The utility of the roughness Reynolds number lies in its magnitude relative to the viscous sublayer thickness. Following the traditional argument, for $\text{Re}_k < 5$, the roughness elements do not penetrate the sublayer and the flow retains its smooth wall characteristics. For $5 < \text{Re}_k < 55$ to 70 (depending on the data and/or author) the flow is "transitionally" rough, and for $\text{Re}_k > 55$ to 70 the flow is fully rough. These ranges are all for F = 0. Since Re_k increases in the acceleration region, the roughness elements protrude further out into the layer (in a nondimensional sense) in this region. There is no viscous sublayer present in the fully rough layer, so the increase in Re_k with acceleration can be viewed as making it more difficult for a viscous sublayer to form.

This observation is important when one considers the behavior of accelerated smooth wall flow. Kays and Moffat [4] note that experimental evidence indicates acceleration of a smooth wall turbulent boundary layer causes an increase in the viscous sublayer thickness. Also, it is well known from the results of many investigations that acceleration of a smooth wall turbulent layer causes the layer to develop toward a state resembling laminar flow. Consideration of these smooth wall accelerated flow characteristics might lead one to expect a fully rough turbulent boundary layer subjected to a favorable pressure gradient to develop first transitionally rough, then finally smooth wall characteristics. The present results indicate that this is not the case. To the contrary, acceleration makes a fully rough flow appear "rougher" in the sense that the roughness elements protrude further, nondimensionally, into the turbulent layer.

3.2.2 Mean Velocity and Temperature Profiles

Figures 3-15 through 3-18 present mean velocity profiles for the four acceleration runs plotted as U/U_{∞} versus y/δ_2 . In these and subsequent figures, x_a denotes the x position at which the relevant acceleration parameter (K_r or K) becomes constant.

In the graphs for the three equilibrium runs (3-15 through 3-17) the profiles are similar, as expected, after the layer is a sufficient distance into the acceleration region. The similarity extends down to the first point from the surface (y = 0.006"). The nonequilibrium data (Figure 3-18) do not exhibit similarity.

Figures 3-19 and 3-20 present profiles from the $K_r = 0.15 \times 10^{-3}$ and unblown $K_r = 0.29 \times 10^{-3}$ cases, respectively, plotted as $U/U_\tau vs (y + \Delta y)/\delta_2$. The smooth wall "law of the wall" and Schlichting's [18] expression for fully rough flow (Equation 3.5) are also shown for comparison. As noted previously in this chapter, the wall shift Δy locates the apparent or virtual location of the surface below the tops of the roughness elements.

The wall shift was determined by the same technique used by Pimenta [2], i.e., the method suggested by Monin and Yaglom [30]. Briefly, if it is assumed that a logarithmic law of the wall region exists in the velocity profile, it can be shown that

$$\frac{U}{U_{T}} = \frac{1}{\kappa} \ln\left(\frac{y + \Delta y}{z_{o}}\right)$$
(3.10)

where

$$\kappa$$
 = Karman constant (\approx 0.41)
 z_0 = constant
 Δy = constant

The proper wall shifts were determined using a form of (3.10) - Δy was varied until a value was determined for which z_0 was constant.

It was found that $\Delta y = 0.006$ " for all the profiles in the present unblown data. Since this is the same value found by Pimenta for his zero pressure gradient data, it can be concluded that, for the K_r range of this study, Δy is unaffected by favorable pressure gradients and does not vary with x. This result is quite different than that reported by Perry, et al. [17], who investigated turbulent boundary layer flow over 2-D roughness elements for both zero and adverse pressure gradients. They found that Δy varied with x, and in fact, was actually larger than the roughness height under some adverse pressure gradient conditions.

Comparison of the present profiles with Schlichting's expression shows that the constant would have to be increased from 8.5 to approximately 9.1 to match the accelerated data. The reason for this shift is not known. The decrease in the value of $\Delta U/U_{\tau}$ between the smooth wall law of the wall and the present data when acceleration is imposed should not, in the author's opinion, be taken as an indication the flow is tending toward the transitionally rough state. The $\overline{u'}^2$ profiles to be presented later in this chapter exhibit none of the transitionally rough characteristics described by Pimenta [2] for this surface. In addition, the increase of Re_k in the acceleration region indicates a trend away from, rather than toward the transitionally rough state (see Section 3.2.1).

A comparison between the blown and unblown velocity profiles for $K_r = 0.29 \times 10^{-3}$ is presented in Figure 3-21. The behavior is as expected - the injection of low momentum fluid at the wall lowers the mean velocity compared to the unblown case.

Temperature profiles for the three equilibrium acceleration cases are plotted in Figures 3-22 through 3-24 in $(T_w^-T)/(T_w^-T_\infty)$ vs y/ Δ_2 coordinates. Similarity of the profiles is observed in all cases and extends to the closest data point from the surface (y = 0.013"). Temperature profiles for the K = 0.28 x 10^{-6} non-equilibrium run are shown in Figure 3-25. The apparent similarity observed here is surprising but can be explained by reference to the behavior of the thermal boundary layer thickness Δ and enthalpy thickness Δ_2 for this case shown in Figures 3-12 and 3-13, respectively. Both Δ and Δ_2 vary little in the acceleration region - they appear to be approaching maxima, and a decrease is actually observed in the data for Δ at the end of the acceleration region. Thus the combination of approximately constant Δ and Δ_2 and approximately constant Stanton number (Figure 3-8) in the region of acceleration leads to similarity in the temperature profiles. This similarity would probably not be maintained if the region of K constant were extended.

Temperature profiles for the $K_r = 0.15 \times 10^{-3}$ run are plotted in Figure 3-26 in $(T_w^-T)/(T_w^-T_w)$ versus U/U_w coordinates. Pimenta [2] found these coordinates useful since $K_r = 0$ data are linear when plotted in this manner. The present profile at x = 34" (prior to the acceleration region) exhibits this linearity. The two profiles in the acceleration region, however, are not linear and do not exhibit similarity in these coordinates. It should be noted that the accelerated profiles, if extrapolated to $U/U_w = 0$, still show the temperature "jump" condition discussed by Pimenta, indicating that the apparent wall position is different for the temperature and velocity fields.

A comparison of the blown and unblown temperature profiles for $K_r = .29 \times 10^{-3}$ is shown in Figure 3-27. The results are as expected, with the injection of fluid at the wall temperature resulting in higher temperatures in the near wall region.

3.2.3 Reynolds Stress Tensor Components

The behavior of the turbulence quantities will be examined in this section. Due to the physical limitations of the apparatus, only in the $K_r = 0.15 \times 10^{-3}$ run was an acceleration region of sufficient length established to investigate the similarity of the turbulence quantities in the flow direction. The data from this run will form the primary basis for the discussion of the effects of acceleration on the turbulence field. Data from the other runs will be presented as additional support for the points presented; however, a direct comparison of the exact magnitudes between the data of different accelerations is not particularly meaningful due to the variation in the values of $(x-x_a)/\delta$ at which the profiles of the different runs were taken.

In the following discussion, the similarity of turbulence profiles in the flow direction is examined first. Comparisons are then made between the acceleration profiles and those for $K_r = 0$, and finally a comparison of the Reynolds shear stress correlation coefficients for the different runs is presented. A comparison of correlation coefficients between the different acceleration runs is valid due to the demonstrated insensitivity of the coefficients to the boundary conditions imposed.

Figure 3-28 presents, for $K_r = 0.15 \times 10^{-3}$, the three components of the turbulent kinetic energy nondimensionalized by U_{∞}^2 and plotted versus y/δ_2 for $(x-x_a) = 22$ and 42 inches. Excellent similarity is observed in the u' component, and the agreement in the v' and w' components is within the uncertainty of the data (~ 10%). The Reynolds stress profiles at the two positions are compared in Figure 3-29. The difference between the two profiles is on the order of the data uncertainty. The results shown in Figure 3-28 and 3-29 demonstrate that a state of similarity is being

approached by the turbulence quantities, with the data indicating that $\overline{u'v'}$ possibly requires a greater distance to become truly similar than do the other quantities.

Profiles of $\overline{u'^2/U_{\tau}^2}$ versus y/δ are shown in Figure 3-30 for the $K_{r} = 0$ and .15 x 10^{-3} cases. The decrease in longitudinal turbulence intensity with acceleration is quite evident and similar to the behavior observed with accelerated smooth wall flows [5]. When the profiles in Figure 3-30 are compared with the same two profiles in Figure 3-31 (where the data are normalized by U_{∞}^2), one observes that the peaks in $\overline{u'^2}$ nearly coincide when U_{∞}^2 scaling is used but are displaced in level if U_{τ}^2 scaling is used. This near-coincidence of the $\overline{u'^2}$ peaks when normalized by U_{∞}^2 provides a convenient reference level when comparing the profiles, and all fluctuation data to follow are presented in this form.

The three components of the turbulent kinetic energy for the $K_r = 0$ and 0.15×10^{-3} cases are compared in Figure 3-31 as $\overline{u_i^r}/U_{\infty}^2$ versus y/ δ . As stated above, the level of the u' component in these coordinates is changed very little by acceleration for y/ $\delta < 0.1$. The v' and w' components are substantially lower than the $K_r = 0$ data in the region y/ $\delta \approx 0.1$, while in the outer region (y/ $\delta \ge 0.2$) all three components are lowered on the order of 40% compared to the $K_r = 0$ values. Thus, when compared with the unaccelerated data, acceleration decreases the level of turbulent kinetic energy over the entire layer and makes the turbulence structure much more anisotropic in the inner region. Unfortunately, no measurements of the v' and w' components in a smooth wall accelerated layer are known to the author, so no comparison of rough and smooth wall behavior with acceleration is possible.

Consideration of the turbulent kinetic energy equation and the equations for the energies in the three components allows some insight into

the behavior observed in Figure 3-31. The time averaged turbulent kinetic energy equation for stationary flow and no body forces can be written as [30,31]

$$\frac{\partial}{\partial x_{i}} \left(E U_{i} + \frac{1}{2} \rho \overline{u_{j}^{\dagger} u_{j}^{\dagger} u_{i}^{\dagger}} + \overline{p' u_{i}^{\dagger}} - \overline{u_{j}^{\dagger} \sigma_{ij}^{\dagger}} \right) = \frac{\partial U_{j}}{\partial x_{i}} - \rho \overline{\sigma_{ij}^{\dagger} \frac{\partial u_{j}^{\dagger}}{\partial x_{i}} - \rho \overline{u_{i}^{\dagger} u_{j}^{\dagger}} \frac{\partial U_{j}}{\partial x_{i}}}$$
(3.11)

where

$$E = \frac{1}{2} \rho \, \overline{u_{i}^{!} u_{i}^{!}} = \frac{1}{2} \rho q^{2}$$

and

 $\sigma'_{ij} = \rho v \left(\frac{\partial u'_i}{\partial x_j} + \frac{\partial u'_j}{\partial x_i} \right)$

The terms on the left side of (3.11) are, respectively, the spatial transfer of E by the mean motion, by the turbulence fluctuations, by the "pressure diffusion", and by the viscous shear stresses of the turbulence field. The terms on the right hand side are the dissipation of E by molecular viscosity and the production of E by the interaction of the Reynolds stress tensor with the mean velocity gradients.

The equations [30] for the three components of E contain terms similar to those in (3.11) and, in addition, the terms $\overline{p'} \frac{\partial u'}{\partial x}$, $\overline{p'} \frac{\partial v'}{\partial y}$, and $\overline{p'} \frac{\partial w'}{\partial z}$ appear on the right hand side of the $\overline{u'^2}$, $\overline{v'^2}$, and $\overline{w'^2}$ equations, respectively. Since these three additional terms sum to zero by continuity, they do not appear in the equation for the total turbulent kinetic energy. Thus these pressure fluctuation-turbulence field interaction terms transfer energy among the components of E, but play no direct role in the spatial transfer of turbulence energy.

In the flows of this investigation, all the terms of the production $\overline{u_1'u_j'} \quad \frac{\partial U_j}{\partial x_i}$ are negligible except $\overline{u'v'} \quad \frac{\partial U}{\partial y}$ (see Section 3.2.4). Therefore the entire turbulent kinetic energy production goes into the $\overline{u'}^2$ component of E, and the $\overline{v'}^2$ and $\overline{w'}^2$ components receive energy only through the pressure fluctuation-turbulence field interaction terms described above. Since the effect of acceleration is to make the fully rough layer much more anisotropic in the inner region, acceleration must decrease the sum of the pressure fluctuation transfer (source) and dissipation (sink) terms in the $\overline{v'}^2$ and $\overline{w'}^2$ equations. This argument can be carried further only if one assumes the dissipation is affected only slightly by acceleration--under this assumption, it would have to be true that the correlations between p' and $\frac{\partial v'}{\partial y}$, $\frac{\partial w'}{\partial z}$ are decreased significantly by acceleration.

Profiles for the components of q^2 are presented in Figures 3-32 and 3-33 for the K_r = 0.29 x 10⁻³, F = 0, and K = 0.28 x 10⁻⁶ cases, respectively. The behavior observed in each case is similar to that already shown in Figure 3-31 for the K_r = 0.15 x 10⁻³ data.

The effects of acceleration on the components of q^2 in a fully rough layer with blowing are shown in Figure 3-34. The data points are for the $K_r = 0.29 \times 10^{-3}$, F = 0.0039 case of the present study, while the solid lines for $K_r = 0$, F = 0.0039 are from Pimenta [2]. Compar son of the two sets of data yields several important points. First acceleration decreases all components of q^2 in the outer region much as it does in the unblown layers. However, the behavior in the inner region is quite different from that in the unblown cases. The degree of anisotropy in the accelerated data is about the same at $y/\delta \approx 0.2$ as in the zero pressure gradient data.

Unfortunately, the probe size restrictions prevented acquisition of v' and w' data for $y/\delta < 0.1$ and the trends inside this region are undetermined.

In the unblown cases, the general shapes of the profiles with and without acceleration were similar. However, in Figure 3-34 one sees that in the blown layer acceleration alters the basic shape of the profiles. The curvature of the $\overline{u'}^2$ profile in the outer region is completely changed, and the peaks in the $\overline{v'}^2$ and $\overline{w'}^2$ profiles for $K_r = 0$ are suppressed. In fact, the profiles from the blown accelerated layer look much more like the unblown $K_r = 0$ profiles than the profiles from the blown $K_r = 0$ case. This can be seen in Figure 3-35 where the $\overline{u'}^2$ component is shown.

The Reynolds shear stress nondimensionalized by U_{τ}^2 is shown in Figure 3-36 for the $K_{\tau} = 0$ and 0.15 x 10^{-3} cases. The behavior of $\overline{u^*v^*}$ with acceleration is similar to that calculated for the smooth wall accelerated layer [25]. No measurements of this term in the smooth wall accelerated layer have been published to the knowledge of the author. The observed decrease in $-\overline{u^*v^*}/U_{\tau}^2$ with acceleration would lead one to expect a probable decrease in the production of turbulent kinetic energy with acceleration (in a nondimensional sense). This point will be expanded in the following section.

Figure 3-37 presents the measured correlation coefficients $R_{\mbox{uv}}$ and $R_{\mbox{q2}}$ where

$$R_{uv} = - \overline{u'v'} / \sqrt{u'^2} \sqrt{v'^2}$$
(3.12)

and

$$R_{q^2} = - \overline{u'v'}/q^2$$
 (3.13)

The measured values for all four acceleration cases are in excellent agreement with those ($R_{uv} \approx 0.45$, $R_{q2} \approx 0.15$) reported for both smooth wall layers [32,33,34] and zero pressure gradient rough wall layers [2]. It thus appears that the relationship between the Reynolds shear stress and the diagonal components of the tensor is truly universal and independent of boundary conditions.

Since the turbulent shear and turbulent kinetic energy are primarily generated during periods of bursting [35,36,37], it is logical to propose that the universal values of R_{uv} and $\mathrm{R}_{\mathrm{q}2}$ observed result from a universal attribute of the bursting and decay process itself. Grass [38], who reported results of a hydrogen bubble technique investigation of a turbulent water channel flow over a pebble-type rough surface, observed that the bursting process appeared more vigorous in the fully rough than the smooth wall case. The inrushing fluid interacted with the fluid among the roughness elements (which is more energetic than that in the viscous sublayer on a smooth wall), and in the ejection phase of the process the fluid moved almost vertically upward. These results are consistent with Pimenta's results of higher turbulence energy throughout the layer in the fully rough state. Thus, the levels of shear stress and energy are influenced by the vigor of the bursting process and, by extension, the boundary conditions. However, it appears from all the data available that in any flow where the level of turbulence is generated and maintained by the bursting process, the relationship between the components of the Reynolds stress tensor is fixed by some basic attribute of the bursting and decay mechanisms and is independent of boundary conditions.

3.2.4 Turbulent Prandtl Number and Related Quantities

The results discussed in this section were obtained from calculations using St, $C_f/2$, U, and T data and the energy, momentum, and continuity equations integrated to a position y_1 in the boundary layer. These integrations yield

$$= \tau_{W} + \rho_{\omega} U_{\omega} UF + \left(U_{\omega}^{2} \frac{d\rho_{\omega}}{dx} + \frac{2\rho_{\omega} U_{\omega}^{2}}{r} K_{r} \right) \left[\left(\int_{0}^{y_{1}} \left(\frac{U}{U_{\omega}} \right)^{2} dy \right) - \frac{y_{1}}{2} \right]$$

$$- \left(U_{\omega} \frac{d\rho_{\omega}}{dx} + \frac{\rho_{\omega} U_{\omega}}{r} K_{r} \right) \left(U \int_{0}^{y_{1}} \frac{U}{U_{\omega}} dy \right)$$

$$+ \rho_{\omega} U_{\omega}^{2} \frac{d}{dx} \left[\int_{0}^{y_{1}} \left(\frac{U}{U_{\omega}} \right)^{2} dy \right]$$

$$- \rho_{\omega} U_{\omega} U \frac{d}{dx} \left(\int_{0}^{y_{1}} \frac{U}{U_{\omega}} dy \right)$$
(3.14)

for the shear stress distribution and

q'

$$\begin{aligned} \mathbf{y}'\dot{\mathbf{q}}_{\mathbf{W}}'' &= 1 + \frac{\tau \mathbf{U}}{\dot{\mathbf{q}}_{\mathbf{W}}''} + \frac{F}{St} \left(1 - \frac{\mathbf{I}}{\mathbf{I}_{\mathbf{W}}}\right) \\ &+ \left(\frac{\mathbf{I}}{\dot{\mathbf{q}}_{\mathbf{W}}''} \int_{0}^{\mathbf{y}} 1 \frac{\rho \mathbf{U}}{\rho_{\infty} \mathbf{U}_{\infty}} \, dy\right) \frac{\mathbf{d}}{\mathbf{dx}} \left(\rho_{\infty} \mathbf{U}_{\infty}\right) \\ &+ \left(\frac{\mathbf{I}}{\dot{\mathbf{q}}_{\mathbf{W}}''} \rho_{\infty} \mathbf{U}_{\infty}\right) \frac{\mathbf{d}}{\mathbf{dx}} \left(\int_{0}^{\mathbf{y}} 1 \frac{\rho \mathbf{U}}{\rho_{\infty} \mathbf{U}_{\infty}} \, dy\right) \\ &- \left(\frac{1}{\dot{\mathbf{q}}_{\mathbf{W}}''} \int_{0}^{\mathbf{y}} 1 \frac{\rho \mathbf{U}\mathbf{I}}{\rho_{\infty} \mathbf{U}_{\infty} \mathbf{I}_{\mathbf{W}}} \, dy\right) \frac{\mathbf{d}}{\mathbf{dx}} \left(\rho_{\infty} \mathbf{U}_{\infty} \mathbf{I}_{\mathbf{W}}\right) \\ &- \left(\frac{\rho_{\infty} \mathbf{U}_{\infty} \mathbf{I}_{\mathbf{W}}}{\dot{\mathbf{q}}_{\mathbf{W}}''}\right) \frac{\mathbf{d}}{\mathbf{dx}} \left(\int_{0}^{\mathbf{y}} 1 \frac{\rho \mathbf{U}\mathbf{I}}{\rho_{\infty} \mathbf{U}_{\infty} \mathbf{I}_{\mathbf{W}}} \, dy\right) \end{aligned}$$

for the heat flux distribution. Since the fluid dynamics data were taken under isothermal conditions, Equation (3.14) assumes $\rho = \rho_{\infty}(x)$, while Equation (3.15) retains $\rho = \rho(x,y)$. (Although these variations were included in the analysis, numerically they were insignificant in all cases.)

The shear stress and heat flux contain both turbulent and laminar contributions and may be written as

$$\tau = -\rho_{\infty} \overline{u'v'} + \rho_{\infty} v \frac{\partial U}{\partial y}$$
(3.16)

and

and

where

$$\dot{q}'' = \rho C_p \overline{v't'} - k \frac{\partial T}{\partial y}$$
(3.17)

If the turbulent contributions are modeled using eddy diffusivities for momentum and heat, Equations (3.16) and (3.17) become

$$\tau = \rho \left(\varepsilon_{\rm m} + \nu\right) \frac{\partial U}{\partial y} \tag{3.18}$$

$$\dot{q}'' = -\rho C_p (\varepsilon_H + \alpha) \frac{\partial T}{\partial y}$$
 (3.19)

$$-\overline{u'v'} = \varepsilon_{m} \frac{\partial U}{\partial y}$$
(3.20)

and
$$-\overline{v't'} = \varepsilon_H \frac{\partial T}{\partial y}$$
 (3.21)

Alternatively, if the turbulent shear stress is modeled using the mixing length approach, a mixing length & may be defined as

$$\varepsilon_{\rm m} = \ell^2 \left| \frac{\partial U}{\partial y} \right| \tag{3.22}$$

or, using Equation (3.20)

$$\ell = \sqrt{-\overline{u'v'}} / \left| \frac{\partial U}{\partial y} \right|$$
(3.23)

The turbulent Prandtl number is defined as the ratio of the eddy diffusivities for momentum and heat:

$$\Pr_{\mathrm{T}} = \varepsilon_{\mathrm{m}} / \varepsilon_{\mathrm{H}}$$
(3.24)

In order to demonstrate the consistency of the Pr_T results calculated using the method outlined above with the Pr_T data obtained by Pimenta [2] from measurements of $\overline{u'v'}$, $\overline{v't'}$, and dT/dU, values of Pr_T were calculated using the present method for the unaccelerated, unblown $U_{\infty} = 89$ ft/sec case reported by Pimenta. Results of this calculation are compared in Figure 3-38 with the measured values of Pr_T reported by Pimenta. The two methods give results which agree well in the inner region. The calculated data are very uncertain in the outer region where $\frac{\partial U}{\partial y}$ and $\frac{\partial T}{\partial y}$ approach zero since the uncertainty in the numerical calculations of the derivatives approaches infinity as $y + \delta$. Pimenta avoided this increase in uncertainty by calculating dT/dU from the linear $(T_w^-T)/(T_w^-T_{\infty})$ vs. U/U_{∞} plots discussed previously. Calculated values of Pr_T for the four acceleration cases of this study are presented in Figure 3-39. Also shown are the bounds on the smooth wall acceleration data reported by Kearney for $K \le 2.5 \times 10^{-6}$ and the calculated data for Pimenta's $K_r = 0$ case. The rough wall data lie at the lower edge of the smooth wall data range. It appears from the present data that the use of a constant $Pr_T = 0.7 - 0.8$ would be a reasonable assumption in a prediction method modeling accelerated flow over the present rough surface. Comparison of the present data with those of Pimenta indicates that for fully rough flow the turbulent Prandtl number is decreased slightly by acceleration.

Mixing lengths calculated using Equation (3.23) are presented in Figure 3-40. In the determination of ℓ , values of $\overline{u'v'}$ calculated from Equations (3.14) and (3.16) were used since comparison with the measured values showed agreement within a few percent and the calculations yielded values of $\overline{u'v'}$ closer to the surface than were possible to obtain with the probes. The plot shows that in the inner region $\ell/(y+\Delta y)$ is slightly lower than the unaccelerated values of 0.40 - 0.41 found by Pimenta. The behavior of ℓ/δ in the outer region is in agreement with that observed by Pimenta for $K_r = 0$.

Calculations of the nondimensional shear stress, τ^+ , and nondimensional heat flux, Q^+ , are presented in Figure 3-41 for the $K_r = 0.29 \times 10^{-3}$, F = 0and 0.0039 runs. The trends observed are similar to those for smooth wall accelerated flows [25], indicating that the effect of roughness on these nondimensional distributions is small. The turbulent contributions to τ^+ and Q^+ are also shown (denoted with the subscript T). Comparison of the total values with the turbulent ones shows that the laminar contribution to both shear stress and heat flux was extremely small throughout the region of measurement.

Also plotted in Figure 3-41 are Couette flow approximations calculated using

$$\dot{q}_{c}^{"} = \dot{q}_{w}^{"} + \tau U + \frac{F\dot{q}_{w}^{"}}{St} (1 - I/I_{w})$$
 (3.25)

and

$$\tau_{c} = \tau_{w} + F \rho_{\infty} U_{\infty} U - \frac{y}{2} \left(U_{\infty}^{2} \frac{d\rho_{\infty}}{dx} + \frac{2\rho_{\infty} U_{\infty}^{2}}{r} K_{r} \right)$$
(3.26)

The expression for $\dot{q}_{C}^{"}$ is the one normally found by assuming all $\frac{\partial}{\partial x}$ terms to be zero. However, in Equation (3.26) for τ_{C} only the first two terms on the right hand side are the ones normally retained for the Couette flow approximation. The additional term can be viewed as a correction term for the effects of the pressure gradient. Thus the expression for τ_{C} might be more accurately labeled a "near-wall" approximation rather than a Couette flow approximation. In any case, it can be observed from the figure that Equations (3.25) and (3.26) provide accurate representations of the behavior of τ^{+} and Q^{+} in the region very near the wall.

Values of $\overline{v't'}$ for the two unblown equilibrium runs calculated from Equations (3.15) and (3.17) are shown in Figure 3-42 as $\overline{v't'}/U_{\tau}T_{\tau}vs y/\delta$. Comparison of these values with the unaccelerated data measured by Pimenta [2] and Orlando [34] on rough and smooth walls, respectively, indicates that the distribution of $\overline{v't'}/U_{\tau}T_{\tau}$ is independent of acceleration and surface condition, at least within the ranges of the data available.

Figure 3-43 shows results of calculation of the turbulent kinetic energy production for Pimenta's [2] zero pressure gradient data and the present $K_r = 0.15 \times 10^{-3}$ data. From Equation (3.11), the production term can be written (using the standard boundary layer assumptions) as

$$P = -\overline{u'v'} \frac{\partial U}{\partial y} - \overline{u'^2} \frac{\partial U}{\partial x} + \overline{v'^2} \frac{\partial U}{\partial x}$$
(3.27)

The second and third terms are normally neglected in zero pressure gradient flows. In the calculations presented in Figure 3-43, the last term in Equation (3.27) was neglected since measurements of $\overline{u'}^2$ were made much closer to the wall than those of $\overline{v'}^2$. Thus the results shown present an upper bound on the effect of the pressure gradient through the $\frac{\partial U}{\partial x}$ terms.

In a boundary layer subjected to a favorable pressure gradient, the second term in (3.27) is negative and thus appears as a sink for turbulent kinetic energy. Hinze [22] notes that one should expect a decrease in q^2 as a result. Such a decrease in turbulence energy was noted in the present accelerated data (see Figure 3-31, for example). However, the results shown in Figure 3-43 indicate that for the present data the production is decreased with acceleration primarily because of changes in the distributions of $-\overline{u^{*}v^{*}}$ and $\frac{\partial U}{\partial y}$, while the sink term remains of negligible magnitude.

3.3 Heat Transfer Predictions and Supplementary St Data

The Stanton number data discussed in previous sections were all for constant F, constant T_W boundary conditions. In the period following the investigation reported by Pimenta [2] and in the course of the present study, additional St cases were run for conditions of variable of T_W and F. A prediction method for rough wall heat transfer with variable velocity, wall temperature and blowing was developed using these data. In this section, the prediction method is described and some typical comparisons of data and predictions are presented. Additional cases of St with variable boundary conditions, not presented in the Figures, are tabulated in Appendix IV.

For smooth walls the variable wall temperature case was dealt with by Reynolds, et al. [39], using superposition based on a kernel function describing the downstream effects of a step change in wall temperature. Whitten [40] extended this to include variable blowing and Orlando [34] used this same method for variable wall temperatures in adverse pressure gradients. However, Orlando found that smooth wall Stanton numbers were not affected by the adverse pressure gradients investigated when presented in enthalpy thickness coordinates.

It was shown by Healzer [1] and Pimenta [2] over a range of free stream velocities that for a fully rough turbulent boundary layer flow on the present surface, with constant U_{∞} , T_{w} and F

$$St = f(\Delta_2/r, F)$$
(3.28)

from which it follows that

$$\Delta_2 = f(x/r,F) \tag{3.29}$$

where r is the radius of the spheres comprising the test surface. Thus there is a unique curve of St vs x/r for each value of F, so long as both U_{∞} and $T_{\rm w}$ are uniform. The present data for constant U_{∞} and ΔT confirm this, being well represented by the interpolation expression

$$\log_{10} \text{St}_{0} = \text{A} + \text{B} \log_{10}(x/r) + \text{C} \log_{10}^{2}(x/r)$$
(3.30)

where

A = -1.36 + 48.2 F B = -0.61 - 57.4 FC = 0.0675 + 3.69 F

for $0 \le F \le 0.004$. Figure 3-44 shows the St_o data and interpolation curves from Equation (3.30) for three values of F. The F = 0.002 data are from Pimenta's [2] study and were untripped, while the data for F = 0 and 0.0039 are from the present study which did use a boundary layer trip.

Now consider the case of an unheated starting length with constant F and U_{∞} . Reynolds, et al. [39], showed that for turbulent flow over a smooth wall with F = 0 the Stanton number downstream of a step increase in wall temperature could be predicted by

$$\frac{\mathrm{St}}{\mathrm{St}_{\mathrm{O}}} = \left[1 - \left(\frac{\ell}{\mathrm{x}}\right)^{\mathrm{m}}\right]^{\mathrm{n}} \qquad \mathrm{x} > \ell \qquad (3.31)$$

where ℓ is the x-position of the temperature step, m = 9/10 and n = -1/9. This expression was then used as the kernel function in a superposition integral for predictions with arbitrarily varying ΔT , as follows:

$$\frac{\mathrm{St}_{\mathrm{X}}}{\mathrm{St}_{\mathrm{O}}} = \frac{1}{\Delta \mathrm{T}_{\mathrm{X}}} \int_{\mathrm{O}}^{\mathrm{X}} \left[1 - \left(\frac{\xi}{\mathrm{X}}\right)^{\mathrm{m}} \right]^{\mathrm{n}} \frac{\mathrm{d}[\Delta \mathrm{T}(\xi)]}{\mathrm{d}\xi} \,\mathrm{d}\xi \qquad (3.32)$$

A kernel function of the same type can be developed for the present rough wall unheated starting length results, and the data are well represented using m = 1 and n = -0.22. Thus, for fully rough turbulent flow with unheated starting length and U_{∞} , F and ΔT constant

$$\frac{\mathrm{St}_{\mathrm{x}}}{\mathrm{St}_{\mathrm{o}}} = \left[1 - \left(\frac{\vartheta}{\mathrm{x}}\right)\right]^{-0.22} \quad \mathrm{x} > \vartheta \tag{3.33}$$

where St_0 is evaluated at the same F and x as St_x . Figure 3-45 shows the unheated starting length St data and curves evaluated using Equation (3-33) for two cases with F = 0 and one case with F = 0.0039.

As shown previously, for a fully rough turbulent boundary layer a positive value of dU_{∞}/dx gives a higher Stanton number than the constant velocity case at the same x or Δ_2 . Thus, the response of Stanton number to positive dU_{∞}/dx is the same as to positive values of dT_w/dx . Also, consideration of the energy integral equation (with constant properties) in the form

St + F =
$$\frac{1}{U_{\infty}\Delta T} \frac{d}{dx} (\Delta_2 U_{\infty}\Delta T)$$
 (3.34)

shows that the variables U_{∞} and ΔT always appear in the product form as $(U_{\infty}\Delta T)$. (Of course, Equation 3.34 is a conservation equation obeyed by both smooth and rough wall flows. The different response of smooth and fully rough layers to positive dU_{∞}/dx is evidently related to the effect of the viscous sublayer present in smooth wall layers on the rate equations.)

These observations lead to the following proposed prediction method for cases of variable U_{∞} , ΔT and F in a fully rough flow:

$$\frac{St_{x}}{St_{o}} = \frac{1}{(U_{\infty}\Delta T)_{x}} \int_{0}^{x} \frac{1}{(1-\xi/x)^{22}} \frac{d}{d\xi} [U_{\infty}(\xi) \Delta T(\xi)] d\xi \quad x > \xi \quad (3.35)$$

where St_0 is evaluated at the same x and F as St_x . The predictions which follow were obtained by numerically integrating Equation (3.35). For these calculations, the integral was expanded to a sum of two integrals and the $dU_{\infty}(\xi)$ term was approximated by assuming a linear variation of U_{∞} with ξ across each integration step.

It was found that Equation (3.35) worked well except in cases where there were steps in F. Obviously, St cannot change instantaneously after a step; therefore, modification of the method is required to account for the "lag" in St after such a step. A simple and satisfactory approach is to define a new St_0 which is modified by the kernel function, giving

$$St_{o}^{\star} = St_{o} - \sum_{i=1}^{N} \Delta St_{o_{i}} \left[1 - \left(1 - \frac{\ell_{i}}{x} \right)^{0.22} \right] \quad x > \ell_{i}$$
(3.36)

where $St_{o_i} = St_o(l_i^+) - St_o(l_i^-)$ and l_i is the position of the ith step. Thus, when there are steps in F, use of St_o^* in place of St_o in Equation (3.35) accounts for the "lag" in St caused by the step.

Figure 3-46 presents data and predictions for constant U_{∞} , F = 0 and a bilinear variation of wall temperature; Figure 3-47 shows cases for the K = .28 x 10⁻⁶ nonequilibrium run both with and without unheated starting length; and in Figure 3-48 data and predictions for an unblown, $K_{\rm r}$ = .50 x 10⁻³ equilibrium run are presented. In all three figures the agreement between the data and predictions is very good.

Figures 3-49 and 3-50 present data from two cases designed to provide a test of any prediction method proposing to calculate heat transfer in the fully rough turbulent boundary layer. The flow is accelerated arbitrarily and subjected to a step in F, followed by a variable F and then a step back to F = 0. Figure 3-49 presents the ΔT constant case, while Figure 3-50 shows results when a step in ΔT is imposed in the region of variable F. In both figures the dashed line is the prediction using Equation (3.35), while the solid line shows the prediction including the modification for the steps in F (Equation (3.36)). It is evident that the lag introduced by the steps in F must be taken into account, but once this is done the present predictions are in excellent agreement with the data.

Figure 3-1. Zero Pressure Gradient Stanton Number Data

[]

[]

[]

1

Figure 3-3. Typical Mean Velocity Profile for Fully Rough, Zero Pressure Gradient Flow

And the second second

T

1

1

ちょうか

1

[]

1-----

T

Figure 3-7. Summary Data for $K_r = 0.29 \times 10^{-3}$, F = 0.0039 Equilibrium Acceleration Case

-

Figure 3-9. Comparison of Enthalpy Thickness Data and Solution for Equilibrium Enthalpy Thickness Behavior

1

Trank a

I

Figure 3-10. Equilibrium Acceleration Stanton Number Data vs (Enthalpy Thickness/Sphere Radius)

Figure 3-11. Skin Friction Coefficient Data vs (Momentum Thickness/Sphere Radius)

in the

T-1-a

North R

T

Figure 3-13. Enthalpy Thickness Variation with Axial Distance

Figure 3-15. Mean Velocity Profiles Illustrating Similarity in Flow Direction ($K_r = 0.15 \times 10^{-3}$)

Figure 3-16. Mean Velocity Profiles Illustrating Similarity in Flow Direction ($K_r = 0.29 \times 10^{-3}$, F = 0)

Figure 3-17. Mean Velocity Profiles Illustrating Similarity in Flow Direction ($K_r = 0.29 \times 10^{-3}$, F = 0.0039)

Figure 3-18. Mean Velocity Profiles Illustrating Lack of Similarity in Flow Direction (K = 0.28×10^{-6})

Figure 3-19. Mean Velocity Profile Plotted Using Shifted Wall Position ($K_r = 0.15 \times 10^{-3}$)

Conserved of

Figure 3-22. Nondimensional Mean Temperature Profiles Illustrating Similarity in Flow Direction ($K_r = 0.15 \times 10^{-3}$)

Figure 3-23. Nondimensional Mean Temperature Profiles Illustrating Similarity in Flow Direction ($K_r = 0.29 \times 10^{-3}$, F = 0)

Figure 3-24. Nondimensional Mean Temperature Profiles Illustrating Similarity in Flow Direction ($K_r = 0.29 \times 10^{-3}$, F = 0.0039)

Figure 3-25. Nondimensional Mean Temperature Profiles for Nonequilibrium Acceleration Run (K = 0.28×10^{-6})

Figure 3-26. Nondimensional Mean Temperature Plotted versus Nondimensional Mean Velocity ($K_r = 0.15 \times 10^{-3}$)

Profiles of Turbulent Kinetic Energy Components Illustrating Direction ($K_r = 0.15 \times 10^{-3}$)

18.

-

T

I

[]

True

I

I

Figure 3-29. Profiles of Reynolds Shear Stress Compared at Two Axial Positions ($K_r = 0.15 \times 10^{-3}$)

Figure 3-30. $\overline{u'^2}/U_{\tau}^2$ Profiles Compared for $K_r = 0$ and $K_r = 0.15 \times 10^{-3}$

Figure 3-31. Profiles of Components of Turbulent Kinetic Energy Compared for $K_r = 0$ and $K_r = 0.15 \times 10^{-3}$

Figure 3-32. Profiles of Components of Turbulent Kinetic Energy Compared for $K_r = 0$ and $K_r = 0.29 \times 10^{-3}$, F = 0

--- W

A

1

front.

1 ----

I

I

Figure 3-33. Profiles of Components of Turbulent Kinetic Energy Compared for $\rm K_r$ = 0 and K = 0.28 x 10^{-6}

Figure 3-34. Profiles of Components of Turbulent Kinetic Energy Compared for $K_r = 0$, F = 0.0039 and $K_r = 0.29 \times 10^{-3}$, F = 0.0039

Figure 3-35. Comparison of Blown and Unblown Profiles of u'^2/U_{∞}^2 for Unaccelerated (K_r = 0) and Accelerated (K_r = 0.29 x 10⁻³) Cases

Figure 3-36. Comparison of Reynolds Shear Stress Profiles for $K_r = 0$ and $K_r = 0.15 \times 10^{-3}$

1

1

town of

TH

Figure 3-37. Distribution of Reynolds Shear Stress Correlation Coefficients through the Boundary Layer

Figure 3-39. Turbulent Prandtl Number Distributions for the Acceleration Cases of the Present Study

The second

-

1

Contract of

Figure 3-40. Mixing Length Distributions for the Equilibrium Acceleration Cases of the Present Study

•

I

tre

-

1

Figure 3-43. Calculated Distribution of the Nondimensional Turbulent Kinetic Energy Production for $K_r = 0$ and $K_r = 0.15 \times 10^{-3}$

T

torn of

Figure 3-44. Comparison of St Data and Interpolation Expression for $\rm U_{\infty},~T_{W}$ and F Constant

Figure 3-45. Comparison of Unheated Starting Length St Data with Results of Kernel Solution for $\rm U_{\infty}$ and F Constant

and the second se

Figure 3-46. Comparison of St Data and Prediction for a Bilinear Variation of T_w with U_∞ Constant, F = 0

0

U

0

Π

AD-A031 495 UNCLASSIFIED		STANFORD UNIV CALIF THERMOSCIENCES DIV F/G 20/4 MOMENTUM AND ENERGY TRANSPORT IN THE ACCELERATED FULLY ROUGH TUETC(U) MAR 76 H W COLEMAN, R J MOFFAT, W M KAYS N00014-76-C-0532 HMT-24 NL												1
	2 _{0F} 2 ADA031495			$\label{eq:approximate} \begin{split} & \mathbf{P}_{ij} = \mathbf$					AT 40.		The second			
	And the Country of Cou			<text><text><text><text><text></text></text></text></text></text>										
The second secon				1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -						A state of the sta		THE SP THE SP TH		
			Classie											
													TSPACEA A	
ESTRUTA.		END ^{DATE} FILMED 12 - 76			-									
			a 30							(

CHAPTER 4

EFFECTS OF ACCELERATION ON THE FULLY ROUGH TURBULENT BOUNDARY LAYER

In the previous chapter the various sets of data taken in this study were presented and some details of the boundary layer behavior indicated by the data were discussed. A more general, integrated discussion of the effects of acceleration on the fully rough turbulent boundary layer is presented in this chapter.

In smooth wall turbulent boundary layers, a viscous sublayer develops which, in a sense, provides a "buffer" between the surface and the more energetic turbulent fluid in the outer portion of the layer. For flow on a rough surface, once the boundary layer is in the fully rough state the viscous sublayer has been effectively destroyed, at least above the crests of the roughness elements. The outer flow, therefore, interacts with nearwall fluid of higher momentum, energy and vorticity than in the smooth wall case. Thus, the fully rough flow near the wall is characterized by shorter time scales and larger velocity scales than for a smooth wall flow and is unaffected by molecular viscosity down to the tops of the roughness elements. Among the elements, the pressure fluctuations are thought to be more important than the viscous forces [2]. Blake [21] found that pressure fluctuation intensity near the wall increased with roughness and scaled with the wall shear stress when compared to smooth wall values.

In view of these characteristics, it is not surprising that the proper acceleration parameter for fully rough flow $\left(K_{r} = \frac{r}{U_{\infty}} \frac{dU_{\infty}}{dx}\right)$ is independent 81

of molecular viscosity and contains a length scale dependent on the wall roughness elements. As shown in Chapter 3, imposition of a K_r = constant acceleration on a fully rough flow with F constant and ≥ 0 results in a boundary layer which approaches an asymptotic condition for which $C_f/2$, δ_2 , H, β , and G are all constant with x. This type of boundary layer satisfies the conditions found by Rotta [16] for an exactly equilibrium flow, i.e.,

 $C_f/2 = constant$

$$d\delta_1/dx = constant (=0)$$

and

$$\beta = \frac{\delta_1}{\tau_w} \frac{dP}{dx} = \text{constant}$$

In the equilibrium accelerated fully rough layer, the mean velocity profiles become similar, and the profiles of the Reynolds stress tensor components also approach a similar behavior. The roughness Reynolds number, Re_k , increases throughout the acceleration region, indicating an evolution toward a "rougher" layer rather than a transitionally rough or smooth behavior. This is opposite to the behavior of the accelerated smooth wall turbulent boundary layer, which evolves toward a state resembling laminar flow. These differences in behavior are consistent with the Stanton number trends observed with acceleration. In the fully rough layer, Stanton numbers are increased with acceleration compared to unaccelerated values at the same x, ℓ_2 , or $\operatorname{Re}_{\Lambda_2}$. In the smooth wall layer, however, Stanton numbers are either unchanged or are decreased (depending on the strength of the acceleration) compared with unaccelerated values at the same position or Reynolds number. The virtual position of the wall, found using the method suggested by Monin and Yaglom [30] and based on the mean velocity profiles, is unaffected by either acceleration or axial position x. The wall shift, Δy , reported by Pimenta [2] for the present surface with $K_r = 0$ remained valid under all conditions investigated in this study.

Although the accelerated $(T_w^-T)/(T_w^-T_w)$ vs U/U_w data do not exhibit the linearity observed in $K_r = 0$ data [2], a temperature "jump" at the extrapolated $U/U_w = 0$ point is still indicated. Therefore, there are different apparent wall positions for the mean velocity and mean temperature profiles in both zero pressure gradient and accelerated fully rough flows, with the virtual wall indicated by the mean temperature profiles being further below the crests of the roughness elements than the apparent wall determined from the mean velocity profiles.

The turbulence field is dramatically affected when a fully rough turbulent boundary layer is accelerated. The nondimensionalized turbulent kinetic energy $(q^2/U_{\infty}^2 \text{ or } q^2/U_{\tau}^2)$ is substantially reduced over the entire layer compared to the unaccelerated case. This is the same trend that can be inferred from the data for accelerated smooth wall layers. Although no measurements of $\overline{v'}^2$ and $\overline{w'}^2$ in accelerated smooth wall layers are known to the author, $\overline{u'}^2/U_{\infty}^2$ profiles are decreased by acceleration [5], and a decrease in bursting has been noted with acceleration [36]. The present data also show that an accelerated fully rough layer is much more anisotropic in the inner region than is a $K_r = 0$ fully rough layer. This is probably due to the influence of acceleration on the pressure field-velocity field interaction terms $\left(\overline{p'}, \frac{\partial v'}{\partial y}, \overline{p'}, \frac{\partial w'}{\partial z}\right)$ which transfer energy from the u' to the v' and w' components of q^2 .

In the accelerated layer with blowing investigated in this study, the decrease in q^2/U_{∞}^2 in the outer region observed in the unblown cases was noted, but the increased anisotropy in the inner region observed for F = 0 was not seen for F = 0.0039. This trend was also noted in the $K_r = 0$ fully rough data of Pimenta [2], who found that blowing produced a more isotropic turbulence field than that of an unblown layer. It thus appears that, in the present data, the effects of acceleration and blowing on the turbulence field in the inner region of the layer are approximately equal and opposite.

The values of the Reynolds shear stress correlation coefficients found in this study are in agreement with the values ($R_{uv} \approx 0.45$, $R_q^2 \approx 0.15$) previously reported for smooth wall [32,33,34] and $K_r = 0$ rough wall [2] turbulent boundary layers. This observation indicates a universal mechanism in the bursting and decay process. Although the <u>magnitudes</u> of the components of the Reynolds stress tensor are dependent on surface condition, blowing and pressure gradient, the constancy of the correlation coefficients indicates a universal and constant relationship among these components.

There are indications from the present data that in a fully rough turbulent boundary layer with K_r , F, and T_w constant, the layer approaches an equilibrium state in the thermal sense also. Unfortunately, the range of the present thermal data is not large enough to allow a definitive conclusion in this regard. It is proposed that in such an equilibrium state Stanton number would become constant, enthalpy thickness would approach an asymptote, and nondimensional temperature profiles would be similar in the flow direction. In the present data the fluid dynamic field (which is a major influence on the development of the thermal field) is in an equilibrium state described previously, and the mean temperature profiles are similar in the flow direction. However, due to the relatively small range of Δ_2 covered in the accelerating regions, it is not possible to show that the present Stanton number data are constant rather than weak functions of enthalpy thickness.

I

I

As in the case of the Reynolds shear stress correlation coefficients, the distribution of the turbulent heat flux correlation coefficient $\overline{v't'}/U_{\tau}T_{\tau}$ calculated from the data of the present study is identical with the profiles reported for zero pressure gradient rough wall [2] and smooth wall layers [34].

Results of turbulent Prandtl number calculations based on data of the present experiment indicate an approximately constant value of 0.7 - 0.8 across the layer. This value is lower than turbulent Prandtl numbers reported for the unaccelerated fully rough case [2], which vary from ~ 1.0 in the near wall region to ~ 0.7 - 0.8 in the outer region. The present values of Pr_T are in the lower range of the data reported by Kearney [25] for smooth wall accelerated layers.

As shown in Section 3.4, the response of Stanton number in fully rough flow to either acceleration or variable wall temperature can be represented using the same kernel function, $\left(1 - \frac{k}{x}\right)^{-0.22}$. This behavior is related to the absence of a viscous sublayer, which leads to greater turbulent mixing and more vigorous interaction between the wall region and outer flow [38,2]. By contrast, in a smooth wall layer the viscous sublayer damps or buffers the interaction between the wall and the fully turbulent layer, and the response of Stanton number is different for variations in velocity and wall temperature.

The fact that variations in velocity and temperature have equivalent effects on Stanton number and that the process can be modeled in the manner described above indicates that turbulent Prandtl number should be unity.

This information complements the results of the Pr_T calculations described above, since the calculated values are of order one.

CHAPTER 5. CONCLUSIONS

All statements in this chapter, unless otherwise indicated, refer to the flow of a fully rough turbulent boundary layer over a three-dimensional, densely packed, uniformly rough test surface such as that used in this study. Based on the discussion in the previous chapters, the important results and conclusions of the study are:

- 1. The proper acceleration parameter for use with fully rough flow is $K_r = \frac{r}{U_{\infty}} \frac{dU_{\infty}}{dx}$, where r is a characteristic roughness length.
- 2. In a constant K_r acceleration with $F \ge 0$ and constant, the fully rough layer develops toward an equilibrium state where $C_f/2$, δ_2 , H, β and G are all constant. Both mean velocity profiles and the components of the Reynolds stress tensor approach similarity in the flow direction.
- 3. Although inherent uncertainty in the Stanton number data and the restricted length of the acceleration region prevent a definite conclusion, the present thermal data indicate the possibility that a layer with K_r , T_w and $F(\geq 0)$ constant approaches an equilibrium state in the thermal sense, also. Such a state would be character-ized by Stanton number becoming constant, enthalpy thickness approaching an asymptote, and temperature profiles being similar in the flow direction.

- 4. Stanton numbers increase with acceleration compared to zero pressure gradient values at the same position or enthalpy thickness. This behavior is quite different from that of a smooth wall layer, where Stanton numbers are unchanged for small values of K and decrease with increasing K compared to zero pressure gradient data at the same position or Reynolds number.
- 5. Roughness Reynolds number increases in a region of acceleration, indicating that the fully rough layer does not tend toward the transitionally rough or smooth wall state when accelerated.
- 6. For F = 0, acceleration decreases the turbulent kinetic energy throughout the boundary layer, and in the inner region the turbulence is much more anisotropic than in the $K_r = 0$ layer.
- 7. In the blown layer, acceleration decreases the turbulent kinetic energy in the outer region of the layer and substantially alters the shape of the profiles of $\overline{u'^2}$, $\overline{v'^2}$, $\overline{w'^2}$ compared with the blown, unaccelerated boundary layer (Figure 3-34).
- 8. The values of the Reynolds shear stress coefficients obtained in this study are the same as those reported for smooth wall flows and $K_r = 0$ fully rough flows, indicating that these values are truly universal.
- 9. The profiles of $\overline{v't'}/U_{\tau}T_{\tau}$ calculated from the present accelerated data are in good agreement with those reported for smooth and rough wall zero pressure gradient layers. It thus appears that the turbulent heat flux profile, nondimensionalized in this manner, is independent of surface condition and favorable pressure gradient.
- 10. In a fully rough flow, the response of Stanton number to either variable wall temperature or acceleration can be represented using the same kernel function, $\left(1 \frac{k}{x}\right)^{-0.22}$.

- From (10) above one would expect a turbulent Prandtl number of approximately unity. The values of Pr_T calculated from the present data support this, having an approximately constant value of 0.7 -0.8 across the boundary layer.
- 12. The virtual origin of the wall (based on mean velocity profiles) is independent of acceleration and position in the flow direction.

[]
REFERENCES

- Healzer, J. M., Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer on a Rough, Porous Plate: Experimental Heat Transfer with Uniform Blowing," Report HMT-18, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1974.
- 2. Pimenta, M. M., Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer: An Experimental Study of the Transport of Momentum and Heat with the Effect of Roughness," Report HMT-21, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1975.
- 3. Nikuradse, J., "Stromugsgestze in rauhen Rohren," VDI Forschungsheft, No. 361, 1950, English Translation, NACA TM 1292.
- Kays, W. M., and Moffat, R. J., "The Behavior of Transpired Turbulent Boundary Layers," Report HMT-20, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1975.
- Badri Narayanan, M. A., and Ramjee, V., "On the Criteria for Reverse Transition in a Two-Dimensional Boundary Layer Flow," <u>Jn. Fluid Mech.</u>, Vol. 35, pp. 225-241, 1969.
- Reshotko, M. Boldman, D. R., and Ehlers, R. C., "Heat Transfer in a 60° Half-Angle of Convergence Nozzle with Various Degrees of Roughness," NASA TN D-5887, 1970.
- Banerian, G., and McKillop, A. A., "The Effects of Surface Roughness in Nozzles on Heat Transfer," Proc. of the Fifth International Heat Transfer Conference, V. II, pp. 234-238, 1974.
- 8. Chen, K. K., "Compressible Turbulent Boundary-Layer Heat Transfer to Rough Surfaces in Pressure Gradient," AIAA J., 10, pp. 623-629, 1972.
- Blackwell, B. F., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Heat Transfer Behavior with Adverse Pressure Gradients," Report No. HMT-16, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1972.
- Rotta, J., "Uber die Theorie der turbulenten Grenzschichten," Mitteilungen aus dem Max-Planck-Institut fur Stromungsforschung (Gottingen), No. 1, 1950. English translation NACA TM 1344, 1953.
- 11. Clauser, F. H., "Turbulent Boundary Layers in Adverse Pressure Gradients," Jn. Aero. Sci., Vol. 21, pp. 91-108, 1954.

- 12. Clauser, F. H., "The Turbulent Boundary Layer," Advances in Applied Mechanics, Vol. IV, pp. 1-51, Academic Press, New York, 1956.
- 13. Rotta, J. C., "Similar Solutions of Turbulent Boundary Layers," Jn. Aero. Sci., Vol. 22, pp. 215-216, 1955.
- 14. Townsend, A. A., "The Properties of Equilibrium Boundary Layers," Jn. Fluid Mech., Vol. 1, pp. 561-573, 1956.
- Coles, D., "Remarks on the Equilibrium Turbulent Boundary Layer," Jn. Aero. Sci., Vol. 24, pp. 495-506, 1957
- Rotta, J. C., "Turbulent Boundary Layers in Incompressible Flow," Prog. in Aero. Sci., Vol. 2, pp. 1-219, Pergamon Press, 1962.
- 17. Perry, A. E., Schofield, W. H., and Joubert, P. H., "Rough Wall Turbulent Boundary Layers," Jn. Fluid Mech., Vol. 37, pp. 383-413, 1969.
- 18. Schlichting, H., Boundary Layer Theory, 6th Edition, McGraw-Hill Book Co., Inc., New York, 1968.
- Andersen, P. S., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Fluid Mechanics for Adverse Free-Stream Pressure Gradients," Report No. HMT-15, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1972.
- 20. Klebanoff, P. S. "Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient," NACA Report 1247, 1955.
- 21. Blake, W. K., "Turbulent Boundary-Layer Wall-Pressure Fluctuations on Smooth and Rough Walls," Jn. Fluid Mech., Vol. 44, pp. 637-660, 1970.
- 22. Hinze, J. O., Turbulence An Introduction to its Mechanism and Theory, McGraw-Hill Book Co., 1959.
- 23. Corrsin, S., and Kistler, A. L., "The Free Stream Boundaries of Turbulent Flows," NACA Tech. Note 3133, January 1954.
- Thielbahr, W. H., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer: Experimental Heat Transfer with Blowing, Suction and Favorable Pressure Gradient," Report No. HMT-5, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1969.
- Kearney, D. W., Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer: Experimental Heat Transfer with Strong Favorable Pressure Gradients and Blowing," Report No. HMT-12, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1970.
- Moretti, P. M., and Kays, W. M., "Heat Transfer to a Turbulent Boundary Layer with Varying Free-Stream Velocity and Varying Surface Temperature -An Experimental Study," Int. J. Heat Mass Transfer, Vol. 8, pp. 1187-1202, 1965.

- 27. Julien, H. L., Kays, W. M., and Moffat, R. J., "The Turbulent Layer on a Porous Plate: Experimental Study of the Effects of a Favorable Pressure Gradient," Report No. HMT-4, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1969.
- 28. Loyd, R. J., Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Fluid Dynamics with Strong Favorable Pressure Gradients and Blowing," Report No. HMT-13, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1970.
- 29. Kays, W. M., Convective Heat and Mass Transfer, McGraw-Hill Book Co., New York, 1966.
- Monin, A. S., and Yaglom, A. M., <u>Statistical Fluid Mechanics</u>, Vol. 1, The MIT Press, 1971.
- 31. Tennekes, H., and Lumley, J. L., <u>A First Course in Turbulence</u>, The MIT Press, 1972.
- 32. Townsend, A. A., The Structure of Turbulent Shear Flow, Cambridge University Press, 1956.
- 33. Bradshaw, P., "The Turbulence Structure of Equilibrium Boundary Layers," NPL Aero Report 1184, 1966.
- 34. Orlando, A. F., Moffat, R. J., and Kays, W. M., "Turbulent Transport of Heat and Momentum in a Boundary Layer Subject to Deceleration, Suction and Variable Wall Temperature," Report No. HMT-17, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1974.
- 35. Kim, H. T., Kline, S. J., and Reynolds, W. C., "The Production of Turbulence Near a Smooth Wall in a Turbulent Boundary Layer," <u>Jn. Fluid</u> Mech., Vol. 50, pp. 133-160, 1971.
- Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W., "The Structure of Turbulent Boundary Layers," <u>Jn. Fluid Mech.</u>, Vol. 30, pp. 741-773, 1967.
- Offen, G. R., and Kline, S. J., "Combined Dye-Streak and Hydrogen-Bubble Visual Observations of a Turbulent Boundary Layer," <u>Jn. Fluid Mech.</u>, Vol. 62, pp. 223-239, 1974.
- 38. Grass, A. J., "Structural Features of Turbulent Flow over Smooth and Rough Boundaries," Jn. Fluid Mech., Vol. 50, pp. 233-256, 1971.
- 39. Reynolds, W. C., Kays, W. M., and Kline, S. J., "Heat Transfer in the Turbulent Incompressible Boundary Layer with Arbitrary Wall Temperature and Heat Flux," Final Report - Part III, Dept. of Mech. Eng., Stanford University, 1957.
- 40. Whitten, D. G., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Plate: Experimental Heat Transfer with Variable Suction, Blowing, and Surface Temperature," Report No. HMT-3, Thermosciences Division, Dept. of Mech. Eng., Stanford University, 1967.

- 41. Hottel, H. C., and Kalitinsky, A., "Temperature Measurements in High-Velocity Air Streams," Jn. Appl. Mech., Vol. 12, pp. A25-A32, 1945.
- 42. Jorgensen, F. E., "Directional Sensitivity of Wire and Hot-Film Probes," DISA Information No. 11, 1971.
- Repik, Y. E. U., and Ponomareva, V. S., "The Effect of Proximity of Walls on the Readings of a Hot-Wire Anemometer in Turbulent Boundary Layers," <u>Heat Transfer - Soviet Research</u>, Vol. 2, No. 4, 1970.
- 44. Ligrani, P., private communication, Dept. of Mech. Eng., Stanford University, 1975.

APPENDICES

I

1

T

1

1

-

1

T

I

APPENDIX I

DESCRIPTION OF EXPERIMENTAL APPARATUS AND MEASUREMENT TECHNIQUES

The experimental apparatus and measurement techniques used in this investigation are discussed below. Since comprehensive descriptions of the design, construction, and basic qualification of the Roughness Rig have been reported by Healzer [1] and Pimenta [2], these details will not be repeated here. The interested reader is referred to the cited reports. Since some differences exist between the hot wire techniques used by Pimenta [2] and the present author, a more detailed discussion of this area is presented.

I.1 Experimental Apparatus

A schematic diagram of the Roughness Rig was presented previously in Figure 1-1 and a brief description was given in Chapter 1. Details of a typical plate and casting assembly are shown in Figure I-1 for reference. Each of the 24 plates which make up the rough test surface has its own plate power control, transpiration air control, and five thermocouples which are averaged to give an effective plate temperature.

Stanton numbers were determined from an energy balance on each plate. The energy gained by the transpired air while passing through the plate and the plate losses were subtracted from the measured plate power input to determine the wall heat flux, $\dot{q}_{W}^{"}$. Stanton number was then calculated from the definition

St
$$\equiv \frac{q''_{W}}{\rho_{w}U_{w}C_{p}(T_{W}-T_{w},0)}$$
 (I.1)

The plate losses considered were the radiative losses from the upper and lower surfaces of the plate, the conduction losses from the plate to the casting, and the conduction loss through the stagnant air below the test plate when there was no transpiration. The same models for these losses were used in this investigation as were used by Healzer [1] and Pimenta [2]. (See Appendix II for a discussion of qualification tests).

Based on the results of the qualification tests, the uncertainty of the Stanton number data is within \pm 0.0001 Stanton number units for the conditions of this investigation.

Two modifications were made to the Rig after completion of Pimenta's [2] zero pressure gradient study and prior to the present work. First, a 1/2" wide, 1/32" thick phenolic trip was installed with the front edge three inches inside the nozzle exit. This was done to insure stable conditions at the beginning of the acceleration region from run to run.

The second modification was to the top of the test section. The single-section plexiglass top wall was replaced by a top wall of 1/2" thick plexiglass constructed in five sections joined with plexiglass inserts. This wall allowed more precise control of the pressure gradient which was set along the tunnel length. The new top wall was actually a reworked version of the one used by Julien [28] and Thielbahr [24] in their smooth wall investigations.

I.2 Measurement Techniques

I.2.1 Pressure Measurements

Two Statham unbonded strain gauge differential pressure transducers were used - a model PM-5 with a 0 to 0.5 psi range and a model PM-97 with a 0 to 0.05 psi range. Each unit had a zeroing circuit and was

calibrated at the beginning of this investigation using a 30" Meriam Micromanometer (Model 34FB2) as a standard. The calibrations were linear for 10% to 80% of full scale for both units and were stable to within 0.001 inches of water. Signals from the transducers were integrated for ten seconds using a Hewlett-Packard Model 2401C integrating digital voltmeter (IDVM) with an external quartz crystal oscillator clock which provided 1, 10, and 100 second integrating period options.

The transducers were used to read the tunnel static pressures from the 0.040" diameter taps located 2" apart in the flow direction on the tunnel side wall. This gave a pressure reading at the front, middle, and rear of each 4" plate length. The value of the pressure gradient was calculated from a quadratic fit to the pressures measured at three adjacent taps.

Total pressures in the freestream were measured with a Kiel probe located in the potential flow region using the pressure transducers.

I.2.2 Temperature Measurements

Mean temperature profiles were measured with a 0.003" diameter, butt-welded Chromel-constantan thermocouple probe mounted in a traversing probe holder similar to that used with the horizontal hot wire (see Section 1.2.3). The probe was designed with a length of approximately 0.625" to minimize conduction errors (see Blackwell's [9] analysis), and was calibrated in an oil bath using a Hewlett-Packard Model 2801A Quartz Thermometer as a standard. Recovery factor for this probe was assumed to be 0.66 based on the work of Hottel and Kalitinsky [41].

The freestream temperature (for use in Stanton number runs and monitoring during hot wire data acquisition) was measured with a probe made of 0.004 inch iron-constantan wire welded into a bead. This probe was also calibrated against the quartz thermometer and a recovery factor of 0.86 was used.

Estimated accuracy of temperature measurements: + 0.15 °F.

I.2.3 Hot Wire Measurements

Two hot wire probes were used in this investigation: (1) a DISA 55P05 horizontal, boundary-layer-type probe of 5 micron tungsten wire with gold plated ends, and (2) a DISA 55F02 45° slant probe of 5 micron tungsten wire with gold plated ends. The wires were mounted in the same probe traversing mechanisms described by Pimenta [2] and which are shown in Figures I-2 and I-3 for reference. The slant wire could be rotated about the probe axis with stops positioned 45° apart ($\theta = n\pi/4$, where n = 0,...,7).

Two DISA 55M01 anemometers with CTA Standard Bridges were operated in the constant-temperature mode. Each of the two hot wires was paired with an anemometer. The anemometer output voltages were linearized using two TSI Model 1072 fourth order linearizers.

A DISA Model 55D15 true rms meter was used to determine the mean square values of the fluctuating voltages. The rms meter was calibrated against standard sine waves with known rms values. Resulting accuracy of the rms meter output was 1% of the measured value.

Mean velocities were determined by integrating the linearizer output for 10 seconds with the IDVM, while mean square values were determined by integrating the true rms meter output for 100 seconds with the IDVM. The rms meter was used with a 10 second time constant setting, and four time constants (40 seconds) were allowed to elapse before the 100 second integration was begun.

The hot wire probes were calibrated using the calibrator described by Pimenta. This consists of a length of 3" diameter PVC pipe with flow straighteners and screens at its inlet and is followed by a 20:1 contraction

ASME nozzle. The probes were placed in the free jet at the exit of the nozzle where the velocity is uniform across the central region of the jet. The air temperature was maintained constant and at the same temperature at which the data were taken in the tunnel (~ 68° F).

The directional sensitivity of a hot wire and the resulting equations have been widely reported in the literature and will be only briefly covered here. According to Jorgensen [42], the directional sensitivity of a hot wire can be written as

$$u_{eff}^2 = u_2^2 + k_1^2 v_2^2 + k_2^2 w_2^2$$
 (I.2)

where u_2 , v_2 , and w_2 are the velocity components in the wire coordinate system (Figure I-4) and k_1 and k_2 are constants which depend on wire and prong construction characteristics. For the DISA 55F02, the values are taken as $k_1 = 0.20$ and $k_2 = 1.02$.

Equation (I.2) can be rewritten in terms of u_1 , v_1 , w_1 , the velocity components in the laboratory coordinate system, as

$$u_{eff}^2 = Au_1^2 + Bv_1^2 + Cw_1^2 + Du_1v_1 + Ev_1w_1 + Fu_1w_1$$
 (1.3)

where

$$A = \cos^2 \phi + k_1^2 \sin^2 \phi$$

$$B = (\sin^2 \phi + k_1^2 \cos^2 \phi) \cos^2 \theta + k_2^2 \sin^2 \theta$$

$$C = (\sin^2 \phi + k_1^2 \cos^2 \phi) \sin^2 \theta + k_2^2 \cos^2 \theta$$

$$D = (1 - k_1^2) \sin 2\phi \cos \theta$$

$$E = (\sin^2 \phi + k_1^2 \cos^2 \theta - k_2^2) \sin 2\theta$$

$$F = (1 - k_1^2) \sin 2\phi \sin \theta$$

For a boundary layer flow where

$$u_{1} = U + u'$$

 $v_{1} = v'$
 $w_{1} = w'$

it can be shown [2,34] that

$$\overline{u_{eff}^{2}} = A \overline{u'^{2}} + \frac{D^{2}}{4A} \overline{v'^{2}} + \frac{F^{2}}{4A} \overline{w'^{2}} + D \overline{u'v'} + \frac{DF}{2A} \overline{v'w'} + F \overline{u'w'} + 0(3)$$
(I.4)

and

$$U_{eff} = \sqrt{A} U + 0(2)$$
 (I.5)

In a two-dimensional boundary layer, the $\overline{v^{\dagger}w^{\dagger}}$ and $\overline{u^{\dagger}w^{\dagger}}$ terms can be assumed zero by symmetry. In the present tests, it was verified that both these terms were essentially zero to within the accuracy of the rms meter (see Appendix II). With this information, U and $\overline{u^{\dagger}}^2$ can be measured with the horizontal wire, and measurements at three rotations of the slant wire allow determination of $\overline{v^{\dagger}}^2$, $\overline{w^{\dagger}}^2$, and $\overline{u^{\dagger}v^{\dagger}}$. In this investigation, slant wire measurements were taken at $\theta = 45^{\circ}$, 90°, and 135°. These angles were chosen after an initial investigation to determine typical values of $\overline{e^{\dagger}}^2$ at different θ^{\dagger} s. Solution for $\overline{v^{\dagger}}^2$, $\overline{w^{\dagger}}^2$, and $\overline{u^{\dagger}v^{\dagger}}$ involves finding small differences between large numbers. The choice of $\theta = 45^{\circ}$, 90°, and 135° was an attempt to maximize this difference and thus minimize the error involved. In addition, these values of θ minimize the effect of the velocity gradient in the 0° - 180° plane.

Estimated uncertainties in the indicated quantities are:

U: $\pm 2\%$ $\overline{u'^2}$: $\pm 5\%$ $\overline{v'^2}$, $\overline{w'^2}$, $\overline{u'v'}$: $\pm 10\%$

I

I

I

tor a

IJ

[]

Ĩ

Ţ

I

1

I

1

1

I

I

No wall proximity corrections were applied to the hot wire measurements, since by the criteria of Repik and Ponomareva [43] none were required for the conditions under which the measurements were made.

[]

Figure I-4. Coordinate Systems for Analysis of Slant Wire Directional Characteristics

APPENDIX II QUALIFICATION TESTS

II.1 Stanton Number Data

The original energy balance tests on the Roughness Rig were performed by Healzer [1], and the St data of Pimenta [2] were taken shortly after these tests. Since the present St data for $K_r = 0$, F = 0 and 0.0039 are in excellent agreement with those of Pimenta (see Figure 3-1) for large values of enthalpy thickness, it was concluded that the models for the energy losses were still valid.

This conclusion was confirmed when both blown and unblown energy balance tests were conducted several months after this investigation was completed. Results of these tests [44] were in excellent agreement with the original tests of Healzer.

II.2 Two Dimensionality Check

After installation of the boundary layer trip, a zero pressure gradient flow was established in the test section and velocity profiles were taken at x = 24" both on the centerline and 3 inches on either side $(z = 0, \pm 3 \text{ inches})$. Across this center 6" section of the tunnel, the variation of U_{∞} was less than 1% and the variation of momentum thickness was less than 2%.

When a favorable pressure gradient (acceleration) is imposed on a flow in a test section of finite size, a divergence of the streamlines is expected due to the thinning of the boundary layers on the smooth side and top walls. Since the accelerations applied in this investigation were milder (lower values of K) than those studied in the smooth wall layer investigations of Julien [27], Thielbahr [24], Loyd [28], and Kearney [25], the three-dimensionality induced by acceleration was anticipated to be negligible in this study. To check this effect on the turbulence measurements, the values of $\overline{v'w'}$ and $\overline{u'w'}$ were determined for each acceleration condition at the x-position where turbulence profiles were taken. In every case, $\overline{v'w'}$ and $\overline{u'w'}$ were essentially zero within the accuracy of the rms meter, and in no case were they greater than 2% of $\overline{u'v'}$. It was concluded that the accelerated boundary layers of this investigation could be considered two-dimensional with negligible loss of accuracy.

II.3 Sensitivity of Calculated Data to Origin of Wall

The sensitivity to the assumed origin of the wall of all accelerated data calculated by integration of profiles outward from the wall was considered. All calculated quantities reported in this thesis were determined assuming y = 0 at the crests of the spherical roughness elements.

Additional calculations were made considering the origin of the wall to be 0.006 inches below the crests of the roughness elements. Typical results, presented as the percentage change due to the 0.006" wall shift, were:

$$\delta \rightarrow 1\%$$

$$\delta_{1} \rightarrow 4\%$$

$$\delta_{2} \rightarrow 1\%$$

$$H \rightarrow 4\%$$

$$\Delta \rightarrow 1\%$$

$$\Delta_{2} \rightarrow 1\%$$

$$Pr_{T} \rightarrow 3\%$$

$$C_{f}/2 \rightarrow 2\%$$

II.4 Hot Wire Measurements

Great care was taken when hot wire measurements were being made to insure that the wire calibration and instrument calibrations were maintained. Periodic checks of wire calibration were made in the freestream by comparison with measurements of U_{∞} obtained with a Pitot probe and the calibrated pressure transducers. The calibration settings of the linearizers, rms meter, and IDVM were checked after every one or two profiles to insure that these instruments had a minimum of drift. The temperature of the flow was maintained constant within $\pm 0.5^{\circ}$ F during measurement periods by monitoring the output of a thermocouple in the freestream on an auxiliary digital voltmeter.

APPENDIX III

INDUCED TRANSPIRATION EFFECTS ON ACCELERATION DATA

Imposition of a pressure gradient, dP/dx, along the test section results in an induced flow through the porous plates for a nominal F = 0 condition. When there is blowing through the plates, the nominal distribution of F along the test section is altered by the flow induced by the pressure gradient. This section presents an analysis which quantifies these effects.

A cross-section diagram of a typical plate and casting assembly was shown in Figure I-1. In the following analysis it will be assumed that, for F = 0, the preplate is impermeable since its porosity is much less than that of the test plate. Static pressures on the front edge, center, and rear edge of the test plate will be denoted by P_1 , P_2 , and P_3 , respectively. For a linear variation of pressure along the plate, the pressure in the plenum between the preplate and test plate is assumed to be $(P_1 + P_3)/2$ for F = 0. Under the favorable pressure gradients of this study, for a nominal F = 0condition there is suction on the front half of the plate and blowing on the rear half.

The pressure drop versus flow rate characteristics of a typical plate were determined experimentally. The pressure differential across a test plate was measured for 11 different settings of the transpiration control valve (while there was no mainstream flow). It was found that the data follow the relationship

$$\dot{m} = 25.58 \ \Delta P^{0.942}$$
 (III.1)

where \dot{m} is the flow rate (ft³/min) through the 0.5 ft² plate area and ΔP is the pressure drop across the test plate (inches H₂O). This expression is valid for ΔP from 0.019 to 0.56" H₂O and \dot{m} from 0.58 to 14.68 ft³/min.

Calculations were made using Equation (III.1), the assumptions stated above, and assuming negligible induced flow axially in the test plate due to the longer flow path in that direction than in the direction normal to the plate surface. Results are shown below, where F_{min} and F_{max} are the blowing fractions at the leading and trailing edges of the plate, respectively. Maximum induced suction occurred at the leading edge, maximum induced blowing at the trailing edge, and the value of F induced at the middle of the plate was zero.

Run	(x-x _a)	Fnominal	F _{max}	F _{min}
$K_r = 0.15 \times 10^{-3}$	22	0.0	0.0005	-0.0006
	42	0.0	0.0006	-0.0006
$K_{\rm r} = 0.29 \times 10^{-3}$	10	0.0	0.0010	-0.0010
	22	0.0	0.0011	-0.0012
$K_r = 0.29 \times 10^{-3}$	10	0.0039	0.0046	-0.0031
	22	0.0039	0.0049	-0.0030
$K = 0.28 \times 10^{-6}$	10	0.0	0.0013	-0.0014
	22	0.0	0.0019	-0.0021

APPENDIX IV

Tabulation of Experimental Data

This appendix provides tabular listings of the experimental data of this investigation. Data are presented in the following order: (1) Stanton numbers, (2) mean temperature profiles, (3) mean velocity profiles, and (4) Reynolds stress tensor component profiles.

Abbreviations used in the listings are:

[]

town it

RUN	Date (month, day, year)	
TINFO	Freestream total temperature	(°F)
TDB	Dry bulb temperature	(°F)
TWB	Wet bulb temperature	(°F)
PL	Plate number	
x	Axial position from nozzle exit	(In.)
ST	Stanton number	
DEH2	Enthalpy thickness, Δ_2	(In.)
REDEH2	Enthalpy thickness Reynolds number, $\operatorname{Re}_{\Delta_2}$	
F	Blowing fraction	
UINF	Freestream velocity	(ft/sec)
TW	Wall temperature	(°F)
TINF	Freestream static temperature	(°F)
KR	Fully rough acceleration parameter, K_r	
K	Smooth wall acceleration parameter, K	

DEH	Thermal boundary layer thickness, Δ	(In.)
DE	Velocity boundary layer thickness, δ	(In.)
DE2	Momentum thickness, δ_2	(In.)
PT	Point number in profile	
Y	Distance normal to test surface	(In.)
Т	Mean static temperature	(°F)
TBAR	$(T_{w} - T)/(T_{w} - T_{\infty})$	
CF/2	Skin friction coefficient, $C_{f}/2$	
UTAU	Friction velocity, U_{τ}	(ft/sec)
DE1	Displacement thickness, δ_1	(In.)
Н	Shape factor, δ_1/δ_2	
G	Clauser shape factor	
BETA	Pressure gradient parameter, $\beta = (\delta_1/\tau_w) (dP/dx)$	
REDE2	Momentum thickness Reynolds number, $\operatorname{Re}_{\delta_2}$	
REK	Roughness Reynolds number, Rek	
U	Mean velocity	(ft/sec)
UP2/UI2	$\overline{u'^2}/U_{\infty}^2$	
VP2/UI2	$\overline{v'^2}/U_{\infty}^2$	
WP2/UI2	$\overline{w'^2}/U_{\infty}^2$	
-UV/UI2	$-\overline{u'v'}/U_{\infty}^2$	
Q2/UI2	q^2/U_{∞}^2	
RUV	$-\overline{u'v'}/\sqrt{{u'}^2 {v'}^2}$	
RQ2	$-\overline{\mathbf{u'v'}}/\mathbf{q}^2$	

	NTON	NC. RUN	- KR=0.	F=0					
RUN	=	040975	TOB	= 70.00					
TIN	FC =	66.60	TWB	= 57.00					
PL	×	ST	DEH2	REDEHZ	F	UINF	TW	TINF	K
1	2	.00531	.011	484.	0.0000	88.08	92.2	66.0	0.
2	6	.00372	.029	1308.	0.0000	88.08	92.3	66.0	0.
3	10	.00327	.043	1945.	0.0000	88.08	92.4	66.0	0.
4	14	.00301	.055	2517.	0.0000	88.08	92.4	66.0	0.
5	18	.00285	.967	3052.	0.0000	88.08	92.3	66.0	0.
6	22	.00263	.078	3552.	0.0000	65.05	92.3	66.0	0.
7	26	.00263	.088	4032.	0.0000	88.08	92.3	66.0	0.
8	30	.00248	.099	4498.	0.0000	88.08	92.4	66.0	0.
9	34	.00242	.109	4945.	0.0000	88.08	92.3	66.0	0.
10	38	.00238	.118	5384 .	0.0000	88.08	92.4	66.0	0.
11	42	.00238	.128	5818.	0.0000	88.08	92.3	66.0	0.
12	46	.00236	.137	6249.	0.0000	88.08	92.2	66.0	0.
13	50	.00233	.147	6677.	0.0000	85.05	92.3	66.0	0.
14	54	.00225	.156	7095.	0.0000	88.08	92.4	66.0	0.
15	58	.00222	.165	7502.	0.0000	88.08	92.5	66.0	0.
16	62	.00221	.173	7907.	0.0000	88.08	92.4	66.0	0.
17	66	.00222	.182	8311.	0.0000	88.08	92.5	66.0	0.
18	70	.00219	.191	8713.	0.0000	88.08	92.5	66.0	0.
19	74	.00218	.200	9112.	0.0000	88.08	92.4	66.0	0.
20	75	.00214	.209	9506 .	0.0000	88.08	92.5	66.0	0.
21	82	.00210	.217	9893.	0.0000	88.08	92.4	66.0	0.
22	86	.00212	.225	10277.	0.0000	68.08	92.5	66.0	0.
	90	.00212	.234	10663.	0.0000	88.08	92.4	66.0	0.

 STANTON NO. RUN - KR=0, F=0 - FIRST 6 PLATES UNHEATED

 RUN = 040975
 TDB = 70.00

 TINFC = 67.50
 TWB = 57.00

[]

[]

[]

I

I

[]

PL	x	ST	DEH2	REDEH2	F	UINF	TW	TINF	KR
1	2	0.00000	0.000	0.	9.0000	88.16	67.9	66.9	0.
2	6	0.00000	0.000	0.	0.0000	88.16	67.7	66.9	0.
3	10	0.00000	0.000	0.	0.0000	88.16	67.5	66.9	0.
4	14	0.00000	0.000	0.	0.0000	88.16	67.3	66.9	0.
5	18	0.00000	0.000	0.	0.0000	88.16	67.5	66.9	0.
6	22	0.00000	0.000	0.	0.0000	88.16	68.4	66.9	0.
7	26	.00455	.009	414.	0.0000	88.16	93.3	66.9	0.
8	30	.00335	.025	1133.	0.0000	88.16	93.3	66.9	0.
9	34	.00314	.038	1724.	0.0000	88.16	93.2	66.9	0.
10	38	.00297	.050	2280.	0.0000	88.16	93.4	66.9	0.
11	42	.00284	.062	2808.	0.0000	88.16	93.0	66.9	0.
12	46	.00278	.073	3319.	0.0000	88.16	93.1	66.9	0.
13	50	.00270	.084	381 8.	0.0000	88.16	93.0	66.9	0.
14	54	.00259	.095	4299.	0.0000	88.16	93.1	66.9	0.
15	58	.00253	.105	4765.	0.0000	88.16	93.2	66.9	0.
16	62	.00250	.115	5223.	0.0000	88.16	93.1	66.9	0.
17	66	.00247	.125	5675.	0.0000	88.16	93.2	66.9	0.
18	70	.00244	.135	6121.	0.0080	88.16	93.2	66.9	0.
19	74	.00240	.144	6561.	0.0000	88.16	93.2	66.9	0.
20	78	.00235	.154	6993.	0.0000	88.16	93.3	66.9	
21	82	.00229	.163	7416.	0.0000	88.16	93.4	66.9	0.
22	86	.00230	.172	7834.	0.0000	88.16	93.4	66.9	0.
23	90	.00230	.181	8253.	0.0000	88.16	93.4	66.9	0.

RUN	=	040975	108	= 70.00					
TIN	F0 =	67.20	TWB	= 57.00					
PL	x	ST	DEH2	REDEHS	F	UINF	TH	TINF	KR
1	2	0.00000	0.000	0.	0.0000	88.13	67.9	66.6	0.
2	6	0.00000	0.000	Q.	0.0000	88.13	67.6	66.6	0.
3	10	0.00000	0.000	0.	0.0000	88.13	67.3	66.6	0.
4	14	3.30000	0.000		0.0000	88.13	67.2	66.6	0.
5	18	0.00000	0.000	0.	0.0000	88.13	67.4	66.6	0.
6	22	0.00000	0.000	0.	0.0000	88.13	67.3	66.6	0.
7	26	0.00000	0.000	0.	0.0000	88.13	67.3	66.6	0.
8	30	0.00000	9.000	0.	0.0000	88.13	67.2	66.6	0.
9	34	0.00000	0.000	0.	6.0000	88.13	67.2	66.6	0.
10	38	0.00000	0.000	٥.	0.0000	88.13	67.1	66.6	0.
11	42	0.00000	0.000	0.	0.0000	88.13	67.3	66.6	0.
12	46	0.00000	0.000	0.	0.0000	88.13	68.1	66.6	0.
13	50	.09427	.009	369.	0.0000	88.13	93.4	66.6	0.
14	54	.00320	.024	1069.	0.0000	88.13	93.4	56.6	0.
15	55	.00304	.036	1638.	0.0000	88.13	93.5	66.6	0.
15	62	.00292	.048	2191.	0.0000	88.13	93.3	66.6	0.
17	66	.00283	.059	2704.	0.0000	88.13	93.4	66.6	0.
18	70	.09276	.071	3212.	0.0000	85.13	93.3	66.6	0.
19	74	.00269	.081	3708.	0.0000	88.13	93.5	66.6	0.
20	79	.00250	.092	4189.	0.0000	58.13	93.5	66.6	0.
21	82	.00252	.102	4655.	0.0000	88.13	93.5	66.6	0.
22	86	.00251	.112	5113.	0.0000	88.13	93.5	66.6	0.
23	90	.00250	.122	5569.	0.0000	88.13	93.4	66.6	0.

STANTCN NO. RUN - KR=0, F=0 - FIRST 12 PLATES UNHEATED RUN = 040975 TOB = 70.00 TINFO = 67.20 TWB = 57.00

STANTON NO. RUN - KR=0, F=0 - LINEAR TWALL VARIATION RUN = 041075 TDB = 70.00 TINFO = 64.20 TWB = 56.00

PL	×	51	DEH2	REDEHS	F	UINF	TW	TINF	KR
1	2	.00529	.011	485.	0.0000	88.05	102.0	63.9	0.
2	6	.00371	.029	1308.	0.0000	88.05	102.1	63.9	0.
3	10	.00327	.043	1947.	0.0000	88.05	102.1	63.9	0.
4	14	.00301	.055	2538.	0.0000	88.05	101.8	63.9	0.
5	18	.00251	.068	3114.	0.0000	88.05	101.2	63.9	0.
6	22	.00260	.080	3669.	0.0000	88.05	100.5	63.9	0.
7	26	.00259	.092	4212.	0.0000	88.05	99.9	63.9	0.
	30	.00243	.104	4746.	0.0000	88.05	99.2	63.9	0.
9	34	.00237	.116	5292.	0.0000	88.05	98.5	63.9	0.
10	38	.00231	.127	5819.	0.0000	88.05	97.9	63.9	0.
11	42	.00228	.139	6374.	0.0000	88.05	97.1	63.9	0.
12	46	.00225	.151	6906.	0.0000	88.05	96.5	63.9	0.
13	50	.00223	.163	7475.	0.0000	88.05	95.8	63.9	0.
14	54	.00211	.175	8032.	0.0000	88.05	95.1	63.9	0.
15	58	.00209	.188	8621.	0.0000	88.05	94.4	63.9	0.
16	62	.00207	.201	9196.	0.0000	88.05	93.7	63.9	0.
17	66	.00205	.214	9785.	0.0000	88.05	93.1	63.9	0.
18	70	.00202	.227	10414.	0.0000	88.05	92.3	63.9	0.
19	74	.00 200	.241	11020.	0.0000	88.05	91.7	63.9	0.
20	78	.00194	.255	11682.	0.0000	88.05	91.0	63.9	0.
21	82	.00190	.270	12361.	0.0000	88.05	90.3	63.9	0.
22	86	.00189	.284	13013.	0.0000	88.05	89.7	63.9	0.
23	90	.00189	.300	13727.	0.0000	88.05	89.0	63.9	0.

113

STA	NTON	NC. RUN	- KR=0,	F=0 - EI	LINEAR T	WALL VAR	INTION		
TIN	F0 =	64.30	THR	= 56.00					
PL	x	51	OEH2	REDEH2	F	UINF	TW	TINF	ĸ
1	2	.00529	.011	485.	0.0000	88.06	102.2	64.0	0.
2	6	.00371	.029	1309.	0.0000	88.06	102.2	64.0	0.
3	10	.00327	.043	1949.	0.0000	88.06	102.2	64.0	0.
4	14	.00303	.055	2525.	0.0000	88.06	102.2	64.0	0.
5	18	.00278	.069	3146.	0.0000	88.06	100.9	64.0	0.
6	22	.00257	.083	3779.	0.0000	88.06	99.4	64.0	0.
7	26	.00253	. 196	4393.	0.0000	88.06	98.0	64.0	0.
8	30	.00237	.110	5011.	0.0000	88.06	96.8	64.0	0.
9	34	.00226	.124	5677.	0.0000	88.06	95.3	64.0	0.
10	38	.00223	.139	6343.	0.0000	88.06	94.0	64.0	0.
11	42	.00214	.155	7089.	0.0000	88.06	92.5	64.0	0.
12	46	.00209	.171	7836.	0.0000	88.06	91.1	64.0	0.
13	50	.00205	.169	8668.	0.0000	88.06	89.7	64.0	0.
4	54	.00187	.207	9454 .	0.0000	88.06	88.5	64.0	0.
15	58	.00208	.205	9372.	0.0000	88.06	89.7	64.0	0.
16	62	.00217	.202	9261.	0.0000	88.06	91.1	64.0	0.
17	66	.00223	.200	9161.	0.0000	88.06	92.6	64.0	0.
.8	70	.00228	.200	9132.	0.0000	88.06	94.0	64.0	0.
19	74	.00228	.200	9130.	0.0000	88.06	95.5	64.0	0.
20	78	.00228	.200	9166.	0.0000	88.06	96.8	64.0	0.
?1	82	.00227	.201	9198.	0.0000	88.06	98.2	64.0	0.
22	BE	.00231	.202	9263.	0.0000	88.06	99.6	64.0	0.
23	90	.00233	.204	9328.	0.0000	88.06	101-0	64.0	0.
						00.00	10110		
STA	NTON	NO. RUN 841775	- KR=0, TD9	F=0.0039 = 71.50					
STA RUN FIN	NTON = F0 =	NG. RUN 841775 67.30	- KR=0, TD9 TW8	F=0.0039 = 71.50 = 57.00					
STA RUN FIN	NTON = FO = X	NO. RUN 041775 67.30 St	- KR=0, TDB TWB DEH2	F=0.0039 = 71.50 = 57.00 REDEH2	F	UINF	TW	TINF	ĸ
STA RUN FIN PL 1	NTON = F0 = X 2	NO. RUN 041775 67.30 ST .00353	- KR=0, TDB TWB DEH2 .015	F=0.0039 = 71.50 = 57.00 REDEH2 677.	F .0039	UINF 87.98	TH 97.7	TINF 66.9	K 9.
STA RUN FIN PL 1 2	NTON = F0 = X 2 6	NO. RUN 041775 67.30 ST .00353 .00213	- KR=0, TD8 TW8 DEH2 .015 .342	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899.	F .0039 .0039	UINF 87.98 87.98	TH 97.7 97.7	TINF 66.9 66.9	¢. 9.
STA RUN TIN PL 1 2 3	NTON = F0 = X 2 6 10	NO. RUN 841775 67.30 ST .00353 .00213 .00162	- KR=0, TD8 TW8 DEH2 .015 .342 .065	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948.	F .0039 .0039	UINF 87.98 87.98 87.98	TH 97.7 97.8	TINF 66.9 66.9 66.9	s. 9. 9.
TA UN IN 2 3 4	NTON = F0 = X 2 6 10 14	NO. RUN 041775 67.30 ST .00353 .00213 .00162 .00142	- KR=0, TD9 TW8 DEH2 .015 .342 .065 .087	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949.	F .0039 .0039 .0040 .0040	UINF 87.98 87.98 87.98 87.98	TH 97.7 97.7 97.8 97.7	TINF 66.9 66.9 66.9 66.9	0. 0. 0.
TA UN 1 1 2 3 4 5	NTON = F0 = X 2 6 10 14 18	NO. RUN 041775 67.30 ST .00353 .00213 .00162 .00142 .00139	- KR≈0, TO9 TW8 DEH2 .015 .342 .065 .087 .108	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918.	F .0039 .0039 .0040 .0040	UINF 87.98 87.98 87.98 87.98 87.98	TH 97.7 97.7 97.6 97.7 97.8	TINF 66.9 66.9 66.9 66.9 66.9	к 9. 9. 0. 0.
STA RUN IN 123456	NTON = F0 = X 2 6 10 14 18 22	NO. RUN 041775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121	- KR=0, TD9 TWB DEH2 .015 .042 .065 .087 .108 .130	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875.	F .0039 .0039 .0040 .0040 .0040 .0040	UINF 87.98 87.98 87.98 87.98 87.98 87.98	TW 97.7 97.8 97.7 97.8 97.8 97.7	TINF 66.9 66.9 66.9 66.9 66.9 66.9	8. 0. 0. 0. 0.
TANIN 1234567	NTON = F0 = X 2 6 10 14 18 22 26	NO. RUN 041775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121 .00117	- KR=0, TD9 TW8 DEH2 .015 .342 .065 .087 .108 .130 .150	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796.	F .0039 .0039 .0040 .0040 .0040 .0039 .0039	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98	TW 97.7 97.8 97.7 97.8 97.7 97.8 97.7	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9	С. 0. 0. 0. 0. 0.
TA RUN 12345678	NTON = F0 = X 2 6 10 14 18 22 26 30	NO. RUN 041775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121 .00117 .00105	- KR=0, TD9 TW8 DEH2 .015 .342 .065 .087 .108 .130 .150 .170	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701.	F .0039 .0039 .0040 .0040 .0040 .0039 .0039 .0039	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98	TW 97.7 97.7 97.8 97.7 97.8 97.7 97.8 97.7	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	0. 0. 0. 0. 0. 0. 0.
TANN L 123456789	NTON FO = x 26 10 14 18 22 50 34	NO. RUN 041775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121 .00117 .00105	- KR=0, TD% TWB DEH2 .015 .042 .065 .087 .108 .130 .150 .170 .190	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614.	F .0039 .0039 .0040 .0040 .0040 .0039 .0039 .0039 .0039	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98	TW 97.7 97.7 97.8 97.7 97.8 97.7 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	C. 0. 0. 0. 0. 0. 0. 0. 0.
TANN L 1234567890	NTON FO = X 26 10 14 18 22 30 34 38	NO. RUN 041775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121 .00117 .00105 .00105	- KR=0, TOS TWB DEH2 .015 .342 .065 .087 .108 .130 .150 .170 .190 .210	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534.	F .0039 .0039 .0040 .0040 .0039 .0039 .0039 .0039	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98	TH 97.7 97.6 97.7 97.8 97.7 97.8 97.7 97.8 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	с. 0. 0. 0. 0. 0. 0. 0. 0.
TANNEL 123456789011	NTON = FO = X 26 10 14 18 22 30 34 34 34 34	NO. RUN 041775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121 .00117 .00105 .00105 .00099 .00100	- KR=0, TO9 TWB DEH2 .015 .342 .065 .087 .108 .130 .150 .170 .190 .210 .230	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420.	F .0039 .0039 .0040 .0040 .0040 .0039 .0039 .0039 .0040 .0039	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98	TH 97.7 97.7 97.8 97.7 97.8 97.7 97.8 97.7 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	K 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TANNEL 12345678900112	NTON = FO = 2 6 10 14 18 22 30 348 46	NO. RUN 041775 67.30 ST .00353 .00162 .00142 .00139 .00121 .00117 .00105 .00105 .00198	- KR=0, TO9 TWB DEH2 .015 .342 .065 .087 .108 .130 .150 .170 .190 .210 .230 .249	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293.	F .0039 .0039 .0040 .0040 .0040 .0039 .0039 .0039 .0040 .0039 .0039	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98	TH 97.7 97.7 97.8 97.7 97.8 97.7 97.8 97.7 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	K 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TANNEL 12345678901123	NTON = = FO = 2 60 14 122 250 34 84 60 34 84 60	NO. RUN 041775 67.30 ST .00353 .00213 .00162 .00139 .00121 .00117 .00105 .00195 .00098 .00095	- KR=0, TO% TWB DEH2 .015 .042 .065 .047 .108 .130 .150 .170 .190 .210 .230 .249 .269	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293. 12183.	F .0039 .0039 .0040 .0040 .0039 .0039 .0039 .0039 .0040 .0039 .0040 .0039 .0040	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98	TW 97.7 97.8 97.7 97.8 97.8 97.8 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	K 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TANNAL 12345678901234	NTON = = FO = 2 10 14 18 22 33 42 55 4 55	NO. RUN 041775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121 .00117 .00105 .00199 .00199 .00098 .00098	- KR=0, TD% TW8 DEH2 .015 .042 .065 .087 .108 .130 .150 .170 .190 .210 .230 .249 .269 .288	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293. 12183. 13047.	F .0039 .0039 .0040 .0040 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98	TW 97.7 97.8 97.7 97.8 97.7 97.8 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	K 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TANN 123456789012345	NTON = = FO x 260148225048265548554558	NC. RUN 041775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121 .00105 .00105 .00099 .00100 .00098 .00082 .00094	- KR=0, TD9 TW8 DEH2 .015 .342 .065 .087 .108 .130 .150 .170 .190 .210 .230 .249 .269 .288 .307	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293. 12183. 13047. 13936.	F .0039 .0039 .0040 .0040 .0039 .0039 .0039 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0039 .0040 .0039 .0039 .0040 .0039 .0039 .0039 .0040 .0039 .0039 .0039 .0039 .0039 .0039 .0040 .0039 .0040 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98	TW 97.7 97.8 97.7 97.8 97.8 97.8 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	C. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TANN L 1234567890123456	NTON = = FO X 2604826048260482604826055862	NC. RUN 841775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121 .00105 .00105 .00099 .00100 .00098 .00095 .00094 .00094	- KR=0, TD% TWB DEH2 .015 .342 .065 .087 .108 .130 .150 .170 .210 .230 .249 .269 .288 .307 .326	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293. 12183. 13047. 13936. 14802.	F .0039 .0039 .0040 .0040 .0040 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0040 .0040 .0039 .0039 .0040 .0040 .0040 .0039 .0039 .0039 .0040 .0040 .0040 .0039 .0039 .0039 .0039 .0040 .0040 .0039 .0039 .0039 .0039 .0039 .0040 .0039 .0039 .0039 .0039 .0039 .0039 .0040 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0040 .0039 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0039 .0040 .0039	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98	TW 97.7 97.7 97.8 97.7 97.8 97.7 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	
TANN L 12345678901234567	NTON = = 260482604654826046548260	NC. RUN 641775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121 .00105 .00099 .00100 .00098 .00094 .00085	- KR=0, TD% TW8 DEH2 .015 .342 .065 .087 .108 .130 .150 .170 .210 .230 .249 .269 .288 .307 .326 .345	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293. 12183. 13047. 13936. 14602. 15663.	F .0039 .0039 .0040 .0040 .0039 .0039 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040	UINF 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98 87.98	T W 97.7 97.7 97.8 97.7 97.8 97.7 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	K 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TUI L 123456789012345678	NTON== X 260482604826558 260482604826048260 558260	NC. RUN 041775 67.30 ST .00353 .00213 .00162 .00142 .00121 .00117 .00105 .00105 .00099 .00100 .00098 .00094 .00085 .00085	- KR=0, TO% TWB DEH2 .015 .342 .065 .087 .108 .130 .150 .170 .190 .210 .230 .249 .269 .288 .307 .326 .345 .366	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293. 12183. 13047. 13936. 14802. 15663. 16586.	F .0039 .0039 .0040 .0040 .0039 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039	UINF 87.98	TH 97.7 97.7 97.8 97.7 97.8 97.7 97.8 97.7 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	K 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TANN 1234567890123456789	NTON== X 260482604826055826074	NO. RUN 041775 67.30 ST .00353 .00162 .00142 .00139 .00121 .00117 .00105 .00105 .00105 .00098 .00085 .00085 .00085 .00085 .00085	- KR=0, TO9 TWB DEH2 .015 .342 .065 .087 .108 .130 .150 .170 .190 .210 .249 .269 .288 .307 .326 .345 .366 .385	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293. 12183. 13047. 13936. 14802. 15663. 16586. 17466.	F .0039 .0039 .0040 .0040 .0039 .0039 .0039 .0040 .0039 .0040 .0039 .0039	UINF 87.98	TH 97.7 97.6 97.7 97.8 97.7 97.8 97.8 97.8 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	K 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TANN 12345678901234567890	NTON== X 2604826048260482607748	NC. RUN 041775 67.30 ST .00353 .00162 .00142 .00139 .00121 .00117 .00105 .00195 .00098 .00098 .00094 .00085 .00085 .00085 .00085	- KR=0, TO% TWB DEH2 .015 .342 .065 .947 .108 .130 .150 .170 .190 .210 .249 .249 .249 .249 .249 .249 .249 .249	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293. 12183. 13047. 13936. 14802. 15663. 15663. 15664. 17466. 18365.	F .0039 .0039 .0040 .0040 .0040 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0039 .0040 .0039 .0039 .0040 .0039 .0039 .0040 .0039 .0039 .0039 .0040 .0039	UINF 87.98	TH 97.7 97.8 97.7 97.8 97.7 97.8 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	K 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TANN 123456789011234567890011234567890112345678901123456789011234567890112345678901123456789011234567890112345678900123456789000000000000000000000000000000000000	NT 0 X 2604826048260482604826048260482604826048	NC. RUN 041775 67.30 ST .00353 .00213 .00162 .00139 .00121 .00117 .00105 .00099 .00082 .00082 .00084 .00085 .00085 .00085 .00085 .00082 .00078	- KR=0, TD% TWB DEH2 .015 .042 .065 .047 .108 .130 .150 .170 .190 .210 .210 .249 .269 .249 .269 .249 .269 .249 .269 .345 .366 .345 .365 .405 .423	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293. 12183. 13047. 13936. 14802. 15663. 15866. 17466. 18365. 19182.	F .0039 .0039 .0040 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0039 .0039 .0040 .0039 .0040 .0039 .0039 .0040 .00400 .0040 .00400 .00400 .0040 .0040 .0040 .0040 .0040 .00	UINF 87.98	TW 97.7 97.8 97.7 97.8 97.8 97.8 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	K 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
TANN 123456789011234567890122	NT 0 X 2604826048260778886	NC. RUN 841775 67.30 ST .00353 .00213 .00162 .00142 .00139 .00121 .00105 .00105 .00099 .00100 .00098 .00094 .00094 .00094 .00094 .00094 .00085 .00076 .00078 .00078	- KR=0, TD% TW8 DEH2 .015 .042 .065 .087 .108 .130 .150 .170 .190 .210 .230 .249 .269 .249 .269 .249 .269 .249 .269 .307 .326 .345 .365 .405 .423 .441	F=0.0039 = 71.50 = 57.00 REDEH2 677. 1899. 2948. 3949. 4918. 5875. 6796. 7701. 8614. 9534. 10420. 11293. 12183. 13047. 13936. 14802. 15663. 16586. 17466. 18365. 19182. 20022.	F .0039 .0039 .0040 .0040 .0039 .0039 .0039 .0039 .0039 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0040 .0039 .0039 .0040 .0039 .0040 .0039 .0039 .0040 .0039 .0040 .0039	UINF 87.98	TW 97.7 97.8 97.7 97.8 97.8 97.8 97.8 97.8	TINF 66.9 66.9 66.9 66.9 66.9 66.9 66.9 66.	K 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

[]

[]

0

0

I

I

I

I

314	NUN	NU. RUN						O FLATES	UNNEA	IEU		
RUN	=	041/75		105	-	/1.50						
TIN	FO =	66.90		INB		57.00						
PL	×	ST	1	DEH2	RE	DE H2	F	UINF	TH	TINF		KR
1	2	0.00000	. /	.008		356.	.0039	87.95	68.2	56.5	0.	
2	6	8.00000		.025	1	141.	.0039	87.95	68.0	66.5	0.	
3	10	0.00000		.048	2	156.	.0040	87.95	67.8	66.5	0.	
6	14	0.00000		.080		64.8.	.0040	87.95	67.7	66.5	0.	
-		0.00000		067			0040	87 05	68 0	66.5		
é	22	0.00000		64.0		270	0030	.7 .05	5.	66 5		
	22	0.00000			-	230.	.0039	47 05	00.0	66.5		
-	20	.00245		.023	1	049.	.0039	07.95	97.0	00.5		
	30	.00100		.047	-	121.	.0039	07.95	91.9	00.5		
	34	.00148		.069	-	114.	.0040	07.95	91.9	00.5	0.	
10	38	.00133		.090	4	085.	.0039	87.95	97.9	66.5	0.	
11	42	.00127	1.1	.111	5	055.	.0040	87.95	97.1	56.5	0.	
12	46	.00121		.132		987.	.0039	87.95	97.8	66.5	0.	
13	50	.00116		.153	e	931.	.0039	87.95	97.7	66.5	0.	
14	54	.00102		.173	7	848.	.0040	87.95	97.7	66.5	0.	
15	58	.00112		.193		1739.	.0039	87.95	97.8	66.5	0.	
16	62	.00110		.213	9	9663.	.0039	87.95	97.8	66.5	0.	
17	66	.00101		.232	10	1538.	.0039	87.95	97.9	66.5	0.	
18	70	.00098		.252	11	422.	.0039	87.95	37.9	66.5	0.	
19	74	.00092		.272	12	2333.	.0039	87.95	97.8	66.5	0.	
20	78	.00094		.290	13	5174.	.0039	87.95	97.9	66.5	0.	
21	82	.00089		.310	14	070.	.0040	87.95	97.9	66.5	0.	
22	96	.00091		.329	14	952.	.0040	87.95	97.9	66.5	0.	
23	90	.00091		.349	15	.050	.0039	87.95	97.9	66.5	C .	
STA	NTON =	NO. RUN 041775	- 1	KR=C. TDB	F=(71.50	- BILIN	EAR TWALL	VARIA	TION		
	-0 -	67.30		1.40	-	51.00						
PL	×	ST		DEHS	RE	DE H2	F	UINF	TN	TINF		KR
1	2	.00355		.015		678.	.0039	87.98	97.6	66.9	0.	
2	6	.00215		.042	1	905.	.0039	87.98	97.7	66.9	0.	
3	10	.00165		.065	2	957.	.0040	87.98	97.8	66.9	0.	
4	14	.00145		.088	3	967.	.0040	87.98	97.7	66.9	0.	
5	18	.00136		.113	5	5101.	.0040	87.98	96.5	66.9	0.	
6	22	.00116		.138	6	. 085	.0039	87.98	95.2	66.9	0.	
7	26	.00111		.166	7	544.	.0039	87.98	93.8	66.9	0.	
8	30	.00095		.195		862.	.0039	87.98	92.4	66.9	0.	
9	34	.00095		.226	10	1243.	.0040	87.98	91.1	66.9	0.	
10	38	.00086		.261	11	846.	.0039	87.98	99.5	66.9	0.	
11	42	.00085		.295	13	366.	.0040	87.98	38.4	66.9	0.	
12	46	.00076		.337	15	5303.	.0039	87.98	86 . 8	66.9	0.	
13	50	.00082		.383	17	375.	.0039	87.98	85.4	66.9	0.	
14	54	.00047		.427	10	352 .	.0040	87.98	84.3	66.9	0.	
15	-	.00086		.417	1	1924 .	.0039	87.98	85.5	66.9	0.	
16	62	. 00092		.408	1	506.	.0039	87.98	86 . 8	66.9	0.	
17	66	.00044		.401	1.0	179.	.0040	87.98	88.1	66.9	0.	
1.	70	.00095		.396	11	94.2	.00.30	87.94	89.5	66.9	0.	
19	74	.00045		.391	17	733.	. 0039	87.98	90.9	66.9	0.	
20	78	.00000		.349	17	54A.	.0039	87.98	92.2	66.9	0.	
21	82	.00093		.386	17	512.	.0040	87.98	93.4	66.9	0.	
22	86	.00186		. 388	17	619.	.0040	87.98	95.0	66.9	0.	
23	90	.00084		.388	17	607.	.0039	87.98	96.4	66.9	0.	
	_											

STANTON NO. RUN - KRED. FED.0039 - FTPST & PLATES UNMEATED

STA	NTON	NG. RUN	- KR=0.	15E-3, F=0	D				
RUN	=	040175	TDB	= 73.00					•
TIN	F0 =	67.20	TNB	= 56.00					-
PL	×	ST	DEH2	REDEH2	F	UINF	TH	TINF	KR
1	2	.00 527	.011	482.	0.0000	88.46	93.6	66.7	0.
2	6	.00372	.029	1302.	0.0000	86.10	93.6	66.7	123E-04
3	10	.00329	.043	1940.	0.0000	88.00	93.5	66.7	600E-05
4	14	.00304	.055	2516.	0.0000	88.00	93.5	66.7	.179E-05
5	18	.00287	.067	3055.	0.0000	88.03	93.6	66.7	.538E-05
6	22	.00268	.078	3560.	0.0000	88.12	93.6	66.7	.335E-05
7	26	.00267	.089	4047.	0.0000	88.17	93.5	66.7	140F-06
8	30	.00252	.099	4520.	0.0000	88.11	93.6	66.7	112E-05
9	34	.00247	.109	4975.	C. COOO	88.09	93.5	66.7	-532E-05
10	38	.00244	.119	5422.	0.0000	A8.31	93.5	66.7	.332F-04
11	42	.00247	.128	5872 .	0.0000	89.13	93.5	66.7	-101E-03
12	46	.00250	.135	6335.	0.0000	91.05	93.5	66.7	-144F-03
13	50	.00251	.141	6813.	0.0000	93.32	93.5	66.7	-151E-03
14	54	.00245	.148	7297.	0.0000	95.53	93.5	66.6	- 143E-03
15	58	.00242	.154	7783.	0.0000	97.76	93.5	66.6	.147E-03
16	62	. 00242	.160	A277.	0.0000	100.02	93.4	66.6	14 25 - 03
17	66	. 00242	.166	ATAT.	0.0000	102.47	93.4	66.5	15 35-03
1.4	70	.01263	172	5 35 0	0.0000	104.87	93.5	66.5	1435-03
19	74	.00242	178	0833	0.0000	107 31	07 6	66 E	1415-03
20	78	.00236		10368	0.0000	107.51	03.6	66 1	1565-03
21	82	00232	189	10006.	0.0000	147 68	93.0	66 1	11.75-03
22		00232	107	11450	0.0000	112.00	93.0	66 4	1705-07
22	00	00232	108	1 201 3	0.0000	117.10	93.0	66.7	·1396-03
								00.0	.1072-03
STA RUN TIN	NTON = F0 =	NG. RUN 032575 66.10	- KR=0.1 Tob Twb	15E-3, F=0 = 71.00 = 58.00) - FIRST	T 6 PLATE	S UNHE	TED	
STA RUN TIN PL	NTON = F0 = X	NO. RUN 032575 66.10 ST	- KR=0.1 TOB TWB DE H2	L5E-3, F=0 = 71.00 = 58.00 REDEH2) - FIRSI F	T 6 PLATE	S UNHEA	TED	KR
STA RUN TIN PL	NTON = F0 = X	NO. RUN 032575 66.10 St	- KR=0.1 TDB TWB DE H2	L5E-3, F=0 = 71.00 = 58.00 REDEH2) - FIRSI F	T 6 PLATE	S UNHEA	TED	KR
STA RUN TIN PL 1	NTON = F0 = X 2	NO. RUN 032575 66.10 ST 0.00000	- KR=0.1 TDB TWB DE H2 0.000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0.) - FIRS F 0.0000	UINF	TW 66.7	TINF	KR 241E-04
STA RUN TIN PL 1 2	NTON = F0 = X 2 6	NC. RUN 032575 66.10 ST 0.00000 0.00000	- KR=0.1 TDB TWB DE H2 0.000 0.000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0.) - FIRS F 0.0000 0.0000	UINF 88.28 87.94	TW 66.7	TINF 65.7 65.8	KR 241E-04 143E-04
STA RUN TIN PL 1 2 3	NTON = F0 = X 2 6 10	NO. RUN 032575 66.10 ST 0.00000 0.00000 0.00000	- KR=0.1 TDB TWB DE H2 0.000 0.000 0.000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0.	F 0.0000 0.0000 0.0000 0.0000	UINF 88.28 87.94 87.79	TW 66.7 66.4 66.3	TINF 65.7 65.8 65.8	KR 241E-04 143E-04 583E-05
STA RUN TIN PL 1 2 3 4	NTON = F0 = X 2 6 10 14	NO. RUN 032575 66.10 ST 0.00000 0.00000 0.00000 0.00000 0.00000	- KR=0.1 TDB THB DE H2 0.000 0.000 0.000 0.000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0.	F 6.0000 0.0000 0.0000 0.0000 0.0000 0.0000	UINF 88-28 87-94 87-79 87-75	TW 66.7 66.4 66.3 66.1	TINF 65.7 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05
STA RUN TIN PL 1 2 3 4 5	NTON = FO = X 2 6 10 14 16	NO. RUN 032575 66.10 ST 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	- KR=0.1 TDB THB DEH2 0.000 0.000 0.000 0.000 0.000 0.000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0.	F 6.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	UINF 88.28 87.94 87.79 87.75 87.84	TW 66.7 66.4 66.3 66.1 66.2	TINF 65.7 65.8 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05 .591E-05
STA RUN TIN PL 1 2 3 4 5 6	NTON = F0 = X 2 6 10 14 18 22	NO. RUN 032575 66.10 ST 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000	- KR≈0.1 TDB TWB DE H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0.	F F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	UINF 88.28 87.94 87.79 87.75 87.84 87.90	TW 66.7 66.4 66.3 66.1 66.2 67.3	TINF 65.7 65.8 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05 .591E-05 .246E-05
STA RUN TIN PL 1 2 3 4 5 6 7	NTON = FO = X 2 6 10 14 18 22 26	NC. RUN 032575 66.10 ST 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	- KR=0.1 TDB TWB DE H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LSE-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 417.	F F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	UINF 88-28 87-94 87-79 87-75 87-75 87-84 87-90 86-00	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05 .591E-05 .246E-05 277E-05
STA RUN TIN PL 1 2 3 4 5 6 7 8	NTON = FO = X 26 10 14 18 22 26 30	NC. RUN 032575 66.10 ST 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	- KR=0.1 TDB TWB DE H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LSE-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 417. 1140.	F F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 87.82	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7 92.7	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05 .591E-05 .246E-05 277E-05 330E-05
STAN RUN TIN PL 123456789	NTON = F0 = X 26 10 14 16 22 26 30 34	NC. RUN 032575 66.10 ST 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00461 .00340 .00319	- KR=0.1 TDB TWB DE H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 .025 .039	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 417. 1140. 1735.	F F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	UINF 88.28 87.94 87.79 87.75 87.75 87.84 87.90 88.00 88.00 87.82 87.88	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7 92.7 92.6	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05 .591E-05 .246E-05 277E-05 330E-05 .935E-05
STANTIN PL 12345678910	NTON = FO = X 26 10 14 18 226 30 34 38	NC. RUN 032575 66.10 ST 0.000000	- KR≈0.1 TDB TWB DEH2 0.000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 417. 1140. 1735. 2297.	F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	UINF 88-28 87-94 87-79 87-75 87-84 87-90 86-00 87-82 87-88 88-08	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7 92.7 92.6 32.8	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8 65.7 65.8 65.8 65.7 65.8 65.7	KR 241E-04 143E-04 583E-05 .163E-05 .591E-05 .246E-05 277E-05 330E-05 .935E-05 .320E-04
STA RUN TIN PL 12345678910	NTON = FO = X 26 10 14 16 226 30 34 38 42	NC. RUN 032575 66.10 ST 0.000000	- KR=0.1 TDB TWB DE H2 0.000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 417. 1140. 1735. 2297. 2843.	F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 88.00 87.82 87.88 88.08 88.08	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7 92.7 92.6 92.8 92.7	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8 65.7 65.8 65.7 65.7	KR 241E-04 143E-04 583E-05 .163E-05 .246E-05 277E-05 320E-05 .320E-05 .320E-04 .103E-03
STA RUN TIN PL 1 2 3 4 5 6 7 8 9 10 11 12	NTON = FO = X 26 10 14 16 226 30 34 38 46	NO. RUN 032575 66.10 ST 0.000000	- KR=0.1 TDB TWB DE H2 0.0000 0.0000 0.000000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 88.00 87.82 87.88 88.08 88.08 88.08	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7 92.7 92.6 92.7 92.7 92.7	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.7 65.8 65.7 65.7 65.7	KR 241E-04 143E-04 583E-05 .163E-05 .246E-05 277E-05 330E-05 .320E-05 .320E-04 .103E-03 .142E-03
STA RUN TIN PL 1 2 3 4 5 6 7 8 9 10 11 12 13	NTON = = X 2 60 10 14 82260 33482460	NC. RUN 032575 66.10 ST 0.000000	- KR=0.1 TDB TWB DE H2 0.0000 0.0000 0.000000	LSE-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 88.00 87.82 87.88 88.08 88.87 90.88 92.99	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7 92.6 92.7 92.6 92.7 92.7 92.7 92.7	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05 .246E-05 277E-05 330E-05 .320E-04 .103E-03 .142E-03 .149E-03
STARUN RUN 1 2 3 4 5 6 7 8 9 10 11 12 13 14	NTON = = FO = 2 10 14 226 34 82 45 54	NC. RUN 032575 66.10 ST 0.000000	- KR=0.1 TDB TWB DE H2 0.0000 0.0000 0.0000 0.000000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F 0.00000 0.0000 00	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 88.00 87.82 87.88 88.08 88.08 88.87 90.88 92.99 95.28	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7 92.7 92.6 92.7 92.7 92.7 92.7 92.7 92.7 92.8	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05 .291E-05 277E-05 330E-05 .320E-04 .103E-03 .142E-03 .149E-03 .145E-03
STAN RUN PL 123456789 1011123 1345 15	NTON = = FO X 260482604554	NC. RUN 032575 66.10 ST 0.000000	- KR=0.1 TDB TWB DEH2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 .025 .039 .051 .062 .073 .063 .092 .101	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000 0.00000 0.00000000	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 87.82 87.88 88.08 88.87 90.88 92.99 95.28 97.45	TW 66.7 66.4 56.3 56.1 66.2 67.3 92.7 92.7 92.6 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.8 92.8	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05 .291E-05 .277E-05 330E-05 .320E-04 .103E-03 .149E-03 .149E-03 .145E-03 .147E-03
STANDEL 123456789101112314516	NTON = = FO X 2604826045582	NC. RUN 032575 66.10 ST 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00461 .00340 .00319 .00303 .00297 .00292 .00282 .00275 .00273	- KR=0.1 TDB TWB DE H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 .025 .039 .051 .062 .073 .063 .092 .101 .110	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 417. 1140. 1735. 2297. 2843. 3389. 3944. 499. 5050. 5605.	F 0.00000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	UINF 88.28 87.94 87.79 87.75 87.84 87.90 86.00 87.82 87.88 88.08 88.08 88.87 90.88 92.99 95.28 97.45 99.73	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05 .246E-05 330E-05 .320E-04 .103E-03 .142E-03 .145E-03 .147E-03 .143E-03
STANDEL 1 23 4567891011121314516	NTON = = FO X 2601482604826048558266	NC. RUN 032575 66.10 ST 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00461 .00340 .00319 .00303 .00297 .00292 .00282 .00275 .00273 .00269	- KR=0.1 TDB TWB DE H2 0.0000 0.000000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F 0.00000 0.0000 0.00000 0.00000 0.00000000	UINF 88.28 87.94 87.79 87.75 87.84 87.90 86.00 87.82 87.88 88.08 88.08 88.87 90.88 92.99 95.28 97.45 99.73 102.13	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	TINF 65.7 65.8 65.8 65.8 65.8 65.8 65.8 65.7 65.7 65.7 65.7 65.7 65.7 65.6 65.6	KR 241E-04 143E-04 583E-05 .163E-05 .246E-05 277E-05 330E-05 .320E-04 .103E-03 .142E-03 .145E-03 .145E-03 .143E-03 .143E-03 .152E-03
STUNN PL 1234567890111231456718	NTO X 260482604826048260	NC. RUN 032575 66.10 ST 0.00000 0.00230 3.00297 .00292 .00275 .00292 .00275 .00292 .00275 .00292 .00295 .00292 .00200 .00200	- KR=0.1 TDB TWB DE H2 0.0000 0.0000 0.000000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F 0.0000 0.0	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 88.00 87.82 87.88 88.08 88.87 90.88 92.99 95.28 97.45 99.73 102.13 104.62	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7	TED TINF 65.8 65.8 65.8 65.8 65.8 65.8 65.7 65.7 65.7 65.7 65.7 65.7 65.6 65.7 65.6 65.5	KR 241E-04 143E-04 583E-05 .163E-05 .246E-05 277E-05 320E-05 .320E-05 .320E-04 .103E-03 .142E-03 .142E-03 .143E-03 .143E-03 .143E-03 .143E-03 .146E-03
STANN PL 12345678901112131451671819	NTON== X 2604826048260 118260482604826074	NC. RUN 032575 66.10 ST 0.000000	- KR=0.1 TOB TWB DE H2 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.0000 0.003 0.00000000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F 0.00000 0.00000 0.00000 0.0000000 0.00000 0.00000 0.00000 0.00000 0.00000000	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 88.00 87.82 87.88 88.08 88.87 90.88 92.99 95.28 97.45 99.73 102.13 104.62 107.08	TW 66.7 66.4 66.3 66.1 66.2 67.3 92.7 92.6 92.7 92.7 92.8 92.7 92.7 92.8 92.7 92.7 92.8 92.7 92.7 92.7 92.7 92.7 92.7	TED TINF 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8	KR 241E-04 143E-04 583E-05 .163E-05 .246E-05 277E-05 330E-05 .320E-04 .103E-03 .142E-03 .145E-03 .145E-03 .146E-03 .145E-03 .145E-03
STANN PL 123456789101121314516718920	NTO = = 2604826048260778	NC. RUN 032575 66.10 ST 0.00000 0.00297 .00296 .00297 .00296 .00292 .00265 .00295 .00265 .00275 .00265 .00265 .00265 .00275 .00265 .00265 .00265 .00265 .00275 .00265 .00265 .00265 .00265 .00275 .00265 .00265 .00265 .00275 .00265 .00265 .00265 .00265 .00265 .00265 .00265 .00265 .00265 .00265 .00275 .00275 .00275 .00265 .00255 .00265 .00255 .00255 .00255 .002555 .0025555555555	- KR=0.1 TDB TWB DE H2 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.0000 0.0000 0.000000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F 0.00000 0.0000 00	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 87.82 87.88 88.08 88.08 88.87 90.88 97.45 99.73 102.13 104.62 107.08	TW 66.7 66.4 66.3 66.2 67.3 92.7	TED TINF 65.8 655.8 655.8 655.8 655.8 655.8 655.7 655.7 655.7 655.7 655.5 655.5 655.5 655.5	KR 241E-04 143E-04 583E-05 .163E-05 .246E-05 .246E-05 277E-05 330E-05 .320E-04 .103E-03 .142E-03 .145E-0
STAN PL 1 2 3 4 5 6 7 8 9 10 11 2 1 4 5 6 7 10 11 2 1 1 4 5 6 7 10 11 2 1 1 4 5 6 7 10 9 2 1	NTON== FO X 2604826048260482604826048260482604826048	NC. RUN 032575 66.10 ST 0.000000	- KR=0.1 TDB TWB DE H2 0.0000 0.0000 0.0000 0.000000	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F C.0000 C.0	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 87.82 87.88 88.08 88.08 95.28 97.45 99.73 102.13 104.62 107.08 109.77 112.37	TW 66.7 66.4 56.3 56.1 66.2 67.3 92.7 92.8 92.7 92.7 92.8 92.7 92.7 92.8	TED TINF 65.8 65.8 65.8 65.8 65.8 65.8 65.7 65.7 65.7 65.7 65.7 65.7 65.5 65.5	KR 241E-04 143E-04 583E-05 .163E-05 .991E-05 .277E-05 330E-05 .935E-05 .320E-04 .103E-03 .149E-03 .149E-03 .145E-03
STANN PL 123456789011123145671902122	NTO = = 26048260482604826077828	NC. RUN 032575 66.10 ST 0.000000	- KR=0.1 TDB TWB DE H2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 .025 .039 .051 .062 .039 .051 .062 .073 .063 .092 .101 .110 .126 .133 .140 .147 .154	L5E-3, F=0 = 71.00 = 58.00 REDEH2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	F 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	UINF 88.28 87.94 87.79 87.75 87.84 87.90 88.00 87.82 87.88 88.08 88.87 90.88 92.99 95.28 97.45 99.73 102.13 104.62 107.08 109.77 112.37 114.91	TW 66.7 66.4 66.3 66.4 66.3 66.2 67.3 92.7	TED TINF 65.8 655.8 655.8 655.8 655.8 655.7 655.7 655.6 655.5 655.5 655.5 655.5 655.5 655.5 655.5 655.5 655.5 655.4 4	KR 241E-04 143E-04 583E-05 .163E-05 .291E-05 .277E-05 330E-05 .320E-04 .103E-03 .145E-03

a sources

[]

D

[

E

-

I

I

1

1

I

1

RUN		022575	TOB	=	73.00					
TIN	F0 =	66.10	TWB	=	60.00					
PL	×	ST	DEHS	R	EDEH2	F	UINF	TW	TINF	KR
1	2	.00523	.011		472.	0.0000	87.24	93.4	65.7	с.
2	6	.00370	.028		1277.	0.0000	86.99	93.4	65.7	549E-05
3	10	.00327	.042		1906.	0.0000	87.08	93.3	65.7	. 312E-05
4	14	.00302	.055		2473.	0.0000	87.08	93.3	65.7	631E-06
5	18	.00287	.067		3005.	0.0000	87.35	93.5	65.7	.722E-04
6	22	.00278	.076		3523.	0.0000	89.51	93.4	65.7	.238E-03
7	26	.00284	.084		4055.	0.0000	93.53	93.4	65.6	.292E-03
8	30	.00272	.091		4606.	0.0000	97.94	93.4	65.6	.285E-03
9	34	.09271	.098		5168.	0.0000	102.30	93.2	65.5	.279E-03
10	38	.00263	.104		5746.	0.0000	106.93	93.2	65.4	.280E-03
11	42	.03265	.110		6343.	0.0000	111.97	93.4	65.3	.280E-03
12	46	.00261	.115		6966.	0.0000	117.32	93.3	65.3	.289E-03
13	50	.00260	.120		7612.	0.0000	122.79	93.4	65.2	.301E-03
14	54	.00244	.125		8264.	0.0000	128.44	93.3	65.1	.166E-03
15	58	.00233	.134		8897 .	0.0000	129.19	93.2	65.0	184E-05
16	62	.00231	.143		9515.	0.0000	128.80	93.2	65.1	170E-04
17	66	.00225	.152	1	0121.	0.0000	129.02	93.3	65.1	.210E-04
18	70	.00224	.161	1	0721.	0.0000	129.34	93.3	65.0	.179E-04
19	74	.00221	.169	1	1315.	0.0000	129.52	93.4	65.0	107E-04
20	78	.00215	.178	1	1898.	0.0000	129.52	93.4	65.0	.415E-05
21	82	.00212	.187	1	2468.	0.0000	129.42	93.2	65.0	924E-05
22	85	.00210	.196	1	3031.	0.0000	129.22	93.3	65.0	176E-04
23	90	.00214	.205	1	3594.	0.0000	128.49	93.3	65.1	358E-04

STANTON NO. RUN - KR=0.29E-3, F=0.0039 RUN = 030875 TOB = 71.00 TINFO = 66.90 TWB = 59.00

STANTCH NO. RUN - KR=0.29E-3, F=0

PL	x	ST	DEH2	REDEH2	F	UINF	TH	TINF	KR
1	2	.00356	.015	667.	.0039	87.00	98.0	66.5	0.
2	6	.09212	.042	1871.	.0039	86.87	98.1	66.5	244E-05
3	10	.00167	.065	2906.	.0039	86.80	98.2	66.5	240E-05
4	14	.00145	.087	3882.	.0039	86.80	98.2	66.5	124E-04
5	18	.00145	.105	4840.	.0039	86.82	98.0	66.5	. 55 2E-04
6	22	.00134	.126	5800.	.0039	88.82	98.1	66.5	.239E-03
7	26	.00133	.141	6777.	.0039	92.98	98.2	66.4	.296E-03
8	30	.00125	.155	7789.	.0039	97.49	98.1	66.3	.294E-03
9	34	.00129	.168	8848.	.0039	102.09	98.1	66.3	.284E-03
10	38	.00125	.181	9958.	.0039	106.83	98.1	66.2	.279E-03
11	42	.00132	.193	11125.	.0039	111.71	98.0	66.1	.300E-03
12	46	.00125	.204	12347.	.0039	117.42	98.0	66.0	.295E-03
13	50	.00122	.215	13613.	.0039	122.96	97.9	65.9	.299E-03
14	54	.00116	.225	14923.	.0039	128.72	98.0	65.8	.195E-03
15	58	.00110	.243	16252 .	.0039	130.10	98.0	65.8	.669E-05
16	62	.00103	.263	17571.	.0039	129.95	98.1	65.8	158E-04
17	66	.00096	.282	18876.	.0039	129.83	98.0	65.8	.854E-05
18	70	.00086	.301	20158.	.0039	129.92	98.0	65.8	197E-05
19	74	.00098	.321	21442.	.0039	129.84	98.1	65.8	863E-05
20	78	.00086	.340	22731.	.0039	129.81	98.1	65.8	291E-05
21	82	.00080	.359	23994 .	.0039	129.89	98.1	65.8	.628E-05
22	86	.00071	.378	25236.	.0039	129.74	38.2	65.8	526E-05
23	90	.00079	.396	26476.	.0039	129.76	98.2	65.8	.789E-05

0

0

-

STA	NTON	NC. RUN	- K=0.2	= 74.00					
TIN	F0 =	67.30	TWB	= 58.00					
PL	x	ST	DEH ?	REDEH2	F	UINF	тн	TINF	к
1	2	.00523	.011	470.	0.0000	87.09	95.1	66.9	121E-0
2	6	.00369	.028	1270.	0.0000	86.90	95.1	66.9	549E-0
3	10	.00326	.042	1890.	0.0000	86.92	95.2	66.9	389E-0
4	14	.00301	.055	2451.	0.0000	86.82	95.2	66.9	154E-0
5	18	.00287	.067	2967.	0.0000	86.56	95.3	66.9	.54 0E-0
6	22	.00279	.076	3482.	0.0000	88.75	95.3	66.8	.216E-0
7	26	.00288	.084	4015.	0.0000	93.36	95.3	06.8	.272E-0
8	30	.00277	.090	4590.	0.0000	98.65	95.1	66.7	.278E-0
9	34	.00277	.096	5171.	0.0000	104.41	95.1	66.6	.272E-0
10	39	.00270	.101	5779.	0.0000	110.80	95.1	66.5	.276E-0
11	42	.09274	.105	6416.	0.0000	118.43	95.2	66.4	.294E-0
12	46	.00270	.108	7109.	0.0000	127.87	95.2	66.2	.294E-0
13	50	.00275	.111	7853.	0.0000	138.33	95.2	66.0	.282E-0
14	54	.00247	.113	8681.	0.0000	149.90	95.0	65.8	.153E-0
15	58	.00233	.121	9391.	0.0000	151.26	35.1	65.8	845E-0
16	65	.00230	.132	10116.	0.0000	149.95	95.1	65.8	264E-0
17	66	.00226	.141	10776.	0.0000	149.21	95.2	65.8	549E-0
18	70	.00225	.150	11465.	0.0000	149.16	95.2	65.8	.511E-0
19	74	.00221	.159	12134.	0.0000	149.55	95.3	65.8	.233E-0
20	78	.00218	.167	12792.	0.0000	149.93	95.3	65.8	.738E-0
21	82	.00214	.175	13488.	0.0000	150.25	95.2	65.8	.136E-0
22	86	.00215	.184	14167.	0.0000	150.85	95.2	65.8	.133E-0
			•• ••	1400 /1					
RUN	NION =	NC. RUN	- K=0.2	= 74.50	- FIRST	6 PLATES	UNHEA	150	
TIN	F0 =	67.40	THB	= 58.00					
PL	X	ST	DEH2	REDEHZ	F	UINF	TW	TINF	к
1	2	0.00000	0.000	0.	0.0000	87.10	68.6	67.0	121E-0
2	6	0.00000	0.000	Ο.	0.0000	86.91	68.4	67.0	549E-0
3	10	0.00000	0.000	0.	0.0000	86.93	68.1	67.0	389E-0
4	14	0.00000	0.000	0.	0.0000	86.84	68.0	67.0	154E-0
5	18	0.00000	0.000	0.	0.0000	86.57	68.2	67.0	.540E-0
6	22	0.00000	0.000	0.	0.0000	88.78	69.1	67.0	.216E-0
7	26	.00490	.010	471.	0.0000	93.39	95.0	67.0	.272E-0
8	30	.00369	.026	1315.	0.0000	98.67	95.1	66.9	.278E-0
9	34	.00349	.039	2075.	0.0000	104.43	94.9	66.8	.272E-0
LO	38	.00328	.050	2820.	0.0000	110.82	95.0	66.7	.276E-0
11	42	.00321	.059	3579.	0.0000	118.45	95.0	66.6	.294E-0
12	46	.00313	.067	4376.	0.0000	127.89	95.1	66.4	.294E-0
13	50	.00311	.074	5238.	0.0000	138.33	95.1	66.2	.282E-0
14	54	.00280	.080	6122.	0.0000	149.92	95.0	66.0	.153E-0
15	58	.00261	.090	6949.	0.0000	151.28	95.1	65.9	845E-0
16	62	.00255	.101	7725.	0.0000	149.97	95.1	66.0	264E-0
17	66	.00247	.111	8492.	0.0000	149.24	95.1	66.0	549E-0
18	70	.00245	.121	9233.	0.0000	149.18	95.2	66.0	.511E-0
19	74	.00238	.1 30	9961.	0.0000	149.57	95.2	66.0	.233E-
20	78	.00533	.139	10696.	0.0000	149.96	95.2	66.0	.738E-0
	82	.00229	.149	11433.	0.0000	150.27	95.1	66.0	-136E-0
21									
22	86	.00228	.157	12109.	C.0000	150.88	35.2	66.0	.133E-0

[]

[]

[]

[]

[]

[]

STA	NTON	NO. RUN	-	KR=0.5	SOE.	- 3	, F	=0								
RUN	=	050875		TOB	=	7	5.0	0								
TIN	F0 =	66.90		TNB	=	6	1.0	0								
PL	X	ST		DEH2	R	EDI	EHZ			F		UI	NF		TINF	KR
1	2	.00525				4	53.	0	. 0	0.0	0	83	. 69	95.6	56.5	200E-05
2	6	. 00 372		.028		12	27.	0		000	a	83	. 84	95.5	66.5	265E-05
3	10	.00328		.042		1 8	30.	0	. 0	00	0	83	.73	95.6	66.5	345E-05
4	14	.00302		.055		23	77.	0	. 0	000	0	63	.74	95.5	66.5	703E-05
5	18	.00288		.067		2 8	80.	0	. (000	0	83	. 69	95.6	66.5	.920E-04
6	22	.00284		.076		33	90.	0	. (000	0	86	.57	95.5	66.5	.350E-03
7	26	.09296		.082		39	32.	0	. 0	000	0	93	.19	95.5	66.4	.498E-03
8	30	.00286		.047		45	21.	0	. 0	000	0	101	. 34	95.5	66.3	.515E-03
9	34	.00284		.091		51	48.	0	. 0	000	0	109	.75	95.4	66.2	.487E-03
10	38	.00274		.095		58	00.	0	. 0	000	0	118	.58	95.5	66.0	.490E-03
11	42	.00275		.099		64	93.	0	. 0	000	0	128	.33	95.5	65.9	.468E-03
12	46	.00264		.103		72	32.	0	. (000	0	137	.29	95.5	65.7	.363E-03
13	50	.00265		.108		79	67.	0	. 0	000	0	144	. 65	95.6	65.5	.329E-03
14	54	.00243		.112		87	55.	0	. 0	00	0	152	. 43	95.6	65.4	.183E-03
15	58	.00231		.122		95	30.	0	. 0	00	0	153	.19	95.5	65.4	987E-05
16	62	.00228		.132	1	5 0	58.	0	. 0	000	0	152	.30	95.5	65.4	266E-04
17	66	.00225		.141	1	0 9	25.	0	. 0	00	0	151	. 91	35.6	65.4	130E-05
18	70	.01224		.150	1	16	77.	0	. 0	00	0	152	.09	95.4	65.4	.747E-05
19	74	.00221		.158	1	23	28.	0	. 0	000	0	152	.34	95.5	65.4	.879E-05
20	78	.00218		.167	1	30	44.	0	. 0	001	0	152	. 64	95.5	65.4	.110E-04
21	82	.00215		.176	1:	37	53.	0	. 0	00	0	153	.10	95.4	65.4	.174E-04
22		.00216		.184	1	44	46.	0	. 0	00	0	153	.46	95.4	65.4	.920E-05
23	90	.00550		.192	1	50	78.	C	. 0	000	0	153	.61	95.5	65.3	.964E-05
STA	NTON	NO. RUN 051475	-	VARIA TDB	E =	U. 7	INF 7.0	,F		st	EPS	IN	F	- TWALL	CONSTANT	
TIN	F0 =	65.10		TWB	=	6	2.0	0								
PL	×	ST		DEH5	R	EDI	EHZ			F		UI	NF	TW	TINF	KR
1	2	.00521		.010		4	77.	0	. 0	000	0	87	.78	90.5	64.7	0.
2	6	.00367		.028		12	92.	0	. 0	00	0	87	.77	90.3	64.7	566E-06
3	10	.00325		.042		19	21.	0	. 0	000	0	87	.75	90.4	64.7	340E-05
4	14	.00301		.655		25	31.	0	. 0	000	0	87	.68	90.3	64.7	109E-04
5	18	.00287		.067		30	35.	0	. 0	000	C	87	.56	90.3	64.7	.653E-04
6	22	.03276		.076		3 5	51.	0	. 0	000	0	89	.74	90.4	64.7	.249E-03
7	26	.00191		.088		43	24.		• 0	003	7	94	.58	90.6	64.6	.342E-03
8	30	.00165		.104		54:	17.		• 0	003	5	99	.99	90.6	64.6	.343E-03
9	34	.00164		.118		64	90.		. 0	03	3	105	. 47	90.6	64.5	. 343E-03
10	38	.00158		.131		75	50.		. 0	03	1	111	. 53	90.6	64.4	.350E-03
11	42	.00160		.142		87			• 0	03	0	117	.87	90.6	64.3	.322E-03
12	40	.00160		.154		98	48.		• •	201	8	123	. 61	90.5	64.2	.204E-03
15	50	.00150		.105	1	0 9	51.		• •	502		128		90.5	64.1	·250E-03
14	54	.00150		.1/5	1	21	74.		• •	102	6	133	.04	90.4 00 E	67.0	1225-03
10	63	.00150		100	1	200			• •	102	5	170	. 50	00.5	67.0	1055-03
17	64	.00142		206	1	54	10.			102	0	144	.71	90.0	63.9	-1096-03
1.	00			.200	1			0	• •		0	141		50.7	00.0	1092-03
10	70	. 00 200		217	4	5.4	71		. 0	100	n	144	.06	Qn . E	63.8	-102F-07
19	70	.00200		.213	1	58	71.	0	. 0	000	0	144	.06	90.5	63.8	.102E-03
19	70 74 75	.00200		.213	1	58	71.	0	.0		0	144 146 147	.06	90.5	63.8 63.8 63.7	.102E-03 .793E-04
19 20 21	70 74 75	.00200 .00204 .00204		.213 .217 .223	1	58	71.	0000	.0.0		0 0 0	144 146 147 149	.06	90.5 90.6 90.6 90.5	63.8 63.8 63.7 63.7	.102E-03 .793E-04 .671E-04 .612E-04
19 20 21 22	70 74 75 82	.00200 .00204 .00204 .00202 .00202		.213 .217 .223 .229 .235	111111	58 64 70 77 83	71.	000000000000000000000000000000000000000	.0.0		000000000000000000000000000000000000000	144 146 147 149	.06 .26 .82 .25	90.5 90.6 90.6 90.5 90.5	63.8 63.8 63.7 63.7 63.7	.102E-03 .793E-04 .671E-04 .612E-04 .377E-04
19 20 21 22 23	70 74 75 82 86 90	.00200 .00204 .00204 .00202 .00202 .00202		.213 .217 .223 .229 .235 .243	1 1 1 1 1 1	58 64 70 77 83 89	71.	000000000000000000000000000000000000000			000000000000000000000000000000000000000	144 146 147 149 150	.06 .26 .82 .25 .59 .32	90.5 90.6 90.5 90.5 90.6 90.5	63.8 63.8 63.7 63.7 63.7 63.6	.102E-03 .793E-04 .671E-04 .612E-04 .377E-04 .209E-04

STA	NTCN	NC. RUN	- VARIAS	BLE UNIF.	F - STEP	S IN F.T	WALL		
RUN	=	051475	TOB	= 77.00					
TIN	F0 =	65.00	TWB	= 62.00					
PL	×	ST	DEHS	REDEHS	F	UINF	тн	TINF	KR
1	2	.00515	.010	471.	0.0000	87.78	90.7	64.7	e.
2	6	.03364	.028	1278.	0.0000	87.76	90.6	64.7	566E-06
3	10	.00323	.042	1908.	0.0000	87.75	90.6	64.7	340E-05
4	14	.00300	.054	2477.	0.0000	87.68	90.6	64.7	109E-04
5	18	.00284	.066	3004.	0.0000	87.56	90.6	64.7	.653E-04
6	22	.03274	.075	3524.	0.0000	89.73	90.6	64.7	.249E-03
7	26	.00186	.087	4293.	.0037	94.58	90.8	64.6	.342E-03
8	30	.00159	.103	5375.	.0035	\$9.99	90.8	64.5	.343E-03
9	34	.00161	.118	6445.	.0033	105.46	90.8	64.4	.343E-03
10	38	.00154	.130	7535.	.0031	111.52	90.8	64.4	.350E-03
11	42	.00155	.141	8633.	.0030	117.86	90 - 8	64.3	.322E-03
12	46	.00153	.152	9735.	.0028	123.61	90.8	64.2	.264E-03
13	50	.00196	.124	8269.	.0027	128.60	100.3	64.1	.250E-03
14	54	.00173	.136	9449.	.0026	133.84	100.5	64.0	.205E-03
15	58	.00165	.150	10640.	.0026	137.03	100.5	63.9	.122E-03
16	62	.00154	.163	11759.	.0025	139.49	100.7	63.9	.105E-03
17	EF	.00210	.172	12640 .	0.0000	141.72	100.8	63.8	.109E-03
10	70	.00217	.179	13350.	0.0000	144.05	100.6	63.8	.102E-03
19	74	.00220	.184	13957.	0.0000	146.25	130.7	63.7	.793E-04
20	78	.00217	.191	14637.	0.0000	147.82	100.7	63.7	.671E-04
21	82	.00214	.195	15285.	0.0000	149.25	100.7	63.7	.612E-34
22	86	.00213	.205	15968.	0.0000	150.58	100.7	63.6	. 377E-04
23	90	.00216	.213	16696.	0.0000	151.32	100.6	63.6	.209E-04

I

Ĩ

(interest

1

0000 RUN	.00242	1.147	.149	1.061	.127	147E-03		TBAR	.434	144.	.459	174.	. 502	.522	.549	.576	.601	.625	. 645	.670	*69	.725	.763	+61·	.823	660	068.	.921	946.	695.	066.	\$66.	1.000	1.000	1.000
F=0.1		4	"		"	"		-	60.46	00.10	11.91	20.43	78.59	78.04	77.31	76.55	75. 68	75.20	74.65	73.58	73.31	72.48	71.44	70.56	69.78	63.76	67.52	67.09	66.38	65.77	65.19	15.49	64.51	16.49	15.49
=0.15E-3,	S1	UEH	DEHZ	30	0E2	e X		V/DE2	.102	.126	.157	197.	.276	. 354	.472	.630	. 827	1.024	1.220	1.496	1.772	2.165	2.756	3.346	3.937	4.724	5.512	6.299	7.087	7.874	9.055	10.236	11.417	12.598	13. 790
ILE - KR	5110	15	58	7.97	2.39	4.91	0000	Y /DEH2	.087	.107	.134	.168	.235	.302	.403	.537	.705	.872	1.040	1.275	1.510	1.846	2.349	2.852	3.356	4.027	4.698	5.369	6.040	6.711	7.718	8.725	9.732	10.738	11.745
A PROF	+0 =			•		"	••	*	.013	.016	.020	.025	.035	.045	. 360	.080	.105	.130	.155	.190	.225	.275	.350	.425	.500	. 600	002.	. 300	006.	.000	.150	. 300	.450	. 600	. 750
TMEAN	RUN	PLATE	×	UINF	HL	TINF	ĸ	Tq	1	2	m	4	5	9	1	•	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23 1	24	25 1	26 1	27 1
0000 RUN	17200.	. 843	.103	.806	.113	. 532E-05		TBAR	.473	.492	.511	. 532	.556	.581	.608	.635	.653	.678	. 705	.728	.759	.788	.814	.838	. 873	.906	. 935	016.	166.	1.000	1.000				
F=0.	"		"			"		+	67.61	78.55	78.43	77.86	77.23	76.53	19.51	15.08	74.44	73.89	73.16	72.55	71.69	20.53	70.22	15.69	68.61	67.72	16.99	65 . 59	65.41	65.16	65.16				
.0.156-3.	12	DEH	DEH2	DE	062	KR		¥1052	.124	.158	.230	.301	.389	.531	.738	.929	1.150	1.372	1.681	1.991	2.434	2.076	3.319	3.761	4.425	5.038	5.752	6.637	7.522	8.407	9.292				
FILE - KR=	40175	6	34	88.28	92.32	65.16	.0000	X/DEH2	.136	.134	.252	.330	.427	£83·	111.	1.019	1.262	1.505	1.645	2.184	2.670	3.155	3.641	4.126	4.854	5.583	6.311	7.282	8.252	9.223	10.194				
O'dd N	0 =	"	"	"	"	"	"	*	.014	.019	.026	.034	++0.	.060	.080	.105	.130	.155	.190	.225	.275	.325	.375	.425	.500	.575	.650	. 750	. 850	.950	1.050				
THEA	RUN	PLAT	×	UINF	H	TINF	L	PT	-	~	m	•	5	ø	~	•	6	10	11	12	13	14	15	16	17	16	19	20	21	22	53				

I

[]

Ū

[]

[]

1----

I

1000 RUN	.00242	1.280	.170	1.144	.130	1416-03		TBAR	.420	* 2 *	.444	.457	484.	. 504	.529	.555	.583	. 605	.627	.653	.675	.705	.740	.773	.603	.840	.071	006.	.927	676.	.976	166.	166.	1.000	1.000
F=0.0		н	"					۰	91.04	80.65	80.37	80.00	75.97	79.72	78.02	17.31	76.51	75.92	16.91	74.60	73.98	73.15	72.17	71.27	79.44	69.42	63.55	67.75	67.01	66.39	65.65	65.22	65.07	64.58	64.58
=C • 1 5E • 3	ST	DEH	DEHS	96	052	A R		¥/062	.100	. 123	. 154	. 192	. 269	346.	.462	.615	. 808	1.000	1.192	1.462	1.731	2.115	2.692	3.269	3.846	4.615	5.385	6.154	6.923	7.692	8.846	10.000	11.154	12.338	13.462
ILE - KR:	0175	19	74	7.55	2.66		0000	Y/DEH2	.076	*60.	.118	.147	.206	.265	.353	117.	.618	.765	.912	1.118	1.324	1.618	2.059	2.500	2.941	3.529	4.118	4.706	5.294	5.882	6.765	7.647	8.529	9.412	10.294
N PROF	+0 =			= 10			.0 =	*	.013	.016	.020	.025	.035	.045	.060	.080	.105	.130	.155	.190	.225	.275.	.350	.425	. 500	. 600	.700	. 800	006.	1.000	1.150		.450	.600	. 750
THEAL	RUN	PLATI	×	UINF	H	TINF	u	F	1	~	m	4	5	9	~	•	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	52	26 1	27
0000 RUN	.00242	1.217	.159	1.119	.131	1536-03		TBAR	.422	.436	. 454	.468	.489	.515	. 535	. 564	• 594	.615	.637	. 663	.683	.713	.751	.784	.812	. 850	.881	116.	.935	.960	.983	.995	1.000	1.000	1.600
f = 0.		"	"	"	"			-	61.08	54.00	15.61	19.94	78.96	73.26	17.71	76.92	76.09	75.53	74.93	74.22	73.66	72.83	71.82	70.50	70.15	69.11	68.24	67.44	66.79	66.11	65.47	65.13	65.01	65.01	65.01
.0.15E-3,	ST	DEH	DEH2	DE	9E2	X		¥1062	660.	. 122	. 153	.191	.267	.344	.458	.611	. 602	266.	1.193	1.450	1.718	2.099	2.672	3.244	3.817	4.590	5.344	6.107	6.870	7.634	6.779	9.924	11.969	12.214	13.359
ILE - KR=	0175	17	66	2.70	2.32	5.01	0000	X/06H2	.082	.101.	.126	.157	.220	.283	.377	. 503	.660	. 818	516.	1.195	1.415	1.730	2.201	2.673	3.145	3.774	4.403	5.031	5.660	6.2.89	7.233	8.176	9.119	10.063	11.006
PROF	+0 =			= 10		9	.0 .	*	.013	.016	.020	.025	.035	.045	.060	.080	.105	.130	.155	.190	.225	.275	.350	.425	.500	.600	.790	. 900	006.	000.1	1.150	1.300	1.450	1.600	1.750
THEAP	RUN	PLATE	×	UINF	TH	TINF	L	Id	1	2	•	3	5	•	1	•	6	10	11	12	13	14	15	16	11	1.	19	20	21	22	23	54	52	52	27

- KR=0.29E-3, F=0.000 RUN THEAN PROFILE

.00265 .702 .098 .658 .077 - KK=0.29E-3, F=0.0000 RUN TBAR 51 764 0542 95 88 Y/052 Y/DEH2 = 022575 = 111 = 111.98 = 93.04 = 64.60 = 0.0000 THEAN PROFILE > PLATE PLATE X UINF TM TINF Ta .00271 .639 .091 .642 .642 .078 TBAR 79.85 73.46 51 064 0642 062 062 Y/0E2 .143 .176 .209 .253 .297 .293 .297 .604 .604 .714 .714 .934 Y/DEH2 660. = 022575 = 34 = 102.31 = 92.94 = 64.74 = 0.0000 > PLATE X UINF TINF 4

PLATE		12575	ST DEH		.00261 .740	PLATE		22575 19 74	ST JEH		.00221
UINF		7.33	30		. 668	UINF		45.94	DE		.989
H		16.2	062		.077	H		33.94	062	"	.133
TINF		4.56	X	"	.2896-03	TINF	+	60.40	AR		.107E-04
	.0 .	0000				L	0	0000			
Id	*	X/DEH2	Y/052	-	TBAR	PT	*	Y/DEH2	¥/062	-	TBAR
-	.013	.125	.169	80 · 08	.455	1	.014	.086	.105	91.02	.415
2	.016	.154	.208	79.66	.468	2	.017	.105	. 128	80.78	+24.
M	610.	.183	. 247	64.61	+14.	n	.020	.123	. 150	80.50	. 433
5	.023	.221	. 299	79.15	.486	*	.025	.154	. 188	80.25	244.
5	120.	.260	135.	18.50	\$64.	5	.035	.216	.263	79.54	.466
9	.031	962·	£04°	78.71	. 502	9	.045	.278	.330	10.61	.483
-	.037	.356	.451	78.28	.517	1	.060	.370	.451	78.37	-507
•	540 .	.433	.584	77.76	. 535	•	.080	464.	.602	11.17	.528
6	.055	.529	.714	77.32	.551	6	.103	.617	. 752	77.15	6 4 5 *
10	.065	.625	. 844	76.66	.567	10	.130	.002	116.	76.40	.575
11	· 075	.721	+26.	76.39	.583	11	.170	1.049	1.278	75.52	.605
12	.085	. 817	1.104	76.05	• 596	12	.220	1.356	1.654	74.65	.635
13	.100	• 962	1.299	15.53	.614	13	.270	1.567	2.030	73.80	. 665
14	.115	1.106	1.494	75.03	.632	14	.320	1.975	2.406	73.05	.691
15	.130	1.250	1.668	74.62	.646	15	· 395	2.438	2.970	12.97	.728
16	.150	1.442	1.948	74.03	.667	16	.470	2.901	3.534	70.88	.766
17	.175	1.683	2.273	73.32	.692	17	.570	3.519	4.286	69.55	.611
18	.200	1.923	2.597	72.73	.712	18	.670	4.136	5.038	68.23	.857
19	.225	2.163	2.922	72.14	.733	19	562.	106.4	116.5	66.67	.911
50	. 250	2.404	3.247	71.58	.753	20	.920	5.679	6. 517	65.36	956.
21	512.	2.644	3.571	71.05	.771	21 1	.070.	6.605	8.045	64.46	.987
22	.310	2.981	4.026	10.34	161.	22 1	.220	7.531	9.173	64.15	866.
23	058.	3.365	4.545	65.69	.823	23 1	.370	8.457	10.301	64.09	1.000
54	004.	3.846	5.195	69.69	.854	24 1	. 520	9.383	11.429	64.09	1.000
52	054.	4.327	5.844	67.92	.882						
26	.500	4.808	464.3	67.12	.910						
27	055.	5.288	7.143	14.39	.933						
5.9	.600	5.769	7.792	16.59	.952						
62	.650	6.250	5442	51.29	026.						
30	.750	7.212	9.740	08.46	166.						
31		8.173	11.039	95.49	1.000						
32	056.	9.135	12.338	95.49	1.000						

[]

1

1

[]

0

[]

TMEAN PROFILE - KR=0.29E-3, F=0.0039 RUN

T

[]

0

D

0

[]

[]

[]

1

1

1

a series and the series of the

THEAN PROFILE - KR=0.29E-3, F=C.0039 RUN

= 030875 ST = .00145 RUN = 030 = 5 DEH = .766 PLATE = = 18 DEH2 = .108 X =	ST = .00145 RUN = 030 5 DEH = .766 PLATE = 0502108 X =	ST = .00145 RUN = 030 DEH = .768 PLATE = DEH2 = .108 X =	= .00145 RUN = 030 = .768 PLATE = 032 2 = .108 X = =	.00145 RUN = 030 .766 PLATE = .108 X =	RUN = 030 PLATE = X =	E = 030	0	875 9 34	9EH DEH		.06129 1.047 .164
= 87.00 DE = .747 UINF = = 97.67 DE = .117 TW =	DE = .747 UINF =	DE = .747 UINF = DEV = .747	= .747 UINF =	-747 UINF =	UINF =		10	12.31	0E		.130
= 65.93 KR = .552E-04 TINF = .0039 KR = .552E-04 F	KR = .552E-04 TINF	KR = .552E-04 TINF	= .552E-04 TINF	.552E-04 TINF	TINF			0039	A N		. 284E-03
Y Y/DEH2 Y/DE2 T T8AP PT	JEH2 Y/DE2 T TBAR PT	Y/DE2 T T84P PT	T TBAR PT	TBAP PT	14		*	A / DEH2	¥1062	-	TBAR
.013 .120 .111 86.81 .342 1	120 .111 86.81 .342 1	.111 56.81 .342 1	86.81 .342 I	. 342 1	1		.013	610.	.100	87.58	. 322
.016 .144 .137 86.37 .356 2	144 .137 86.37 .356 2	.137 86.37 .356 2	86.37 .356 2	.356 2	2		.016	960.	. 123	57.19	.334
.020 .185 .171 85.90 .371 3	185 .171 85.99 .371 3	.171 85.90 .371 3	85.90 .371 3	. 371 3	m		.019	.116	. 146	96. 19	.343
.025 .231 .214 95.39 .387 4	.231 .214 55.39 .387 4	. 214 55.39 .387 4	35.39 .387 4	.387 4	\$.023	.140	.177	96.59	. 352
.032 .296 .274 84.83 .404 5	296 .274 84.83 .404 5	.274 84.83 .404 5	84.83 .404 5	. 404 5	J.		.027	.165	.208	86.35	.363
.040 .370 .342 84.21 .424 6	370 .342 84.21 .424 6	.342 84.21 .424 6	84.21 .424 6	.424 6	9		.032	.195	.246	85.61	.377
.050 .463 .427 83.55 .445 7	463 .427 83.55 .445 7	.427 83.55 .445 7	83.55 .445 7	. 445 7	~		.039	.238	.300	85.15	162.
.065 .602 .556 82.69 .472 8	602 .556 82.69 .472 8	.556 82.69 .472 8	82.69 .472 8	.472 8	•		.046	.260	.354	84.88	.406
.055 .787 .726 51.74 .502 9	787 .726 81.74 .502 9	.726 81.74 .502 9	61.74 .502 9	.502 9	6		.055	.335	.423	84.28	.425
105 .972 .897 80.53 .527 10	972 .897 80.93 .527 10	01 223 .527 10	80.53 .527 10	.527 10	10		.065	.396	. 500	83.71	244.
.130 1.204 1.111 79.91 .559 11	204 1.111 79.91 .559 11	1.111 79.91 .559 11	11 625. 19.67	.559 11	11		.075	154.	115.	83.29	.456
.155 1.435 1.325 79.10 .585 12	435 1.325 79.10 .585 12	1.325 79.10 .585 12	79.10 .585 12	.585 12	12		180.	.530	.669	82.66	.475
.185 1.713 1.581 78.11 .616 13	713 1.581 78.11 .616 13	1.581 78.11 .616 13	78.11 .616 13	.616 13	13		.100	.610	.769	82.06	£67°
.225 2.083 1.923 77.03 .650 14	083 1.923 77.03 .650 14	1.923 77.03 .650 14	77.03 .650 14	.650 14	14		.115	.701	. 885	81.57	605.
.275 2.546 2.350 75.67 .693 15	546 2.350 75.67 .693 15	2.350 75.67 .693 15	75.67 .693 15	. 693 15	15		.130	. 793	1.000	81.08	. 524
.325 3.009 2.778 74.35 .734 16	009 2.778 74.35 .734 16	2. 778 74.35 .734 16	74.36 .734 16	.734 16	16		.150	.915	1.154	80 · 36	.547
.375 3.472 3.205 73.17 .772 17	472 3.205 73.17 .772 17	3.205 73.17 .772 17	73.17 .772 17	.772 17	11		.170	1.037	1.308	79.76	.566
.425 3.935 3.632 72.04 .807 10	935 3.632 72.04 .807 16	3.632 72.04 .807 16	72.04 .807 16	.807 10	18		.195	1.189	1.500	79.12	.586
•475 4.396 4.060 7J.54 .842 19	.396 4.060 70.54 .842 19	4.060 70.54 .842 19	70.54 .842 19	.842 19	19		.220	1.341	1. 692	78.45	.606
							300	2002 1	206.1	76.72	1990.
.625 5.787 5.342 67.54 .937 22	787 5.342 67.54 .937 22	5.342 67.54 .937 22	67.54 .937 22	.937 22	22		.340	2.073	2.615	75.78	.690
.675 6.250 5.769 67.17 .961 23	250 5.769 67.17 .961 23	5.769 67.17 .961 23	67.17 .961 23	.961 23	23		062.	2.378	3.000	74.72	.723
.725 6.713 6.197 66.56 .980 24	713 6.197 66.56 .980 24	6.197 66.56 .980 24	66.56 .980 24	.980 24	24		0 1 1 .	2.683	3.385	73.80	.752
.775 7.176 6.624 66.20 .991 25	176 6.624 66.20 .991 25	6.624 66.20 .991 25	66.20 .991 25	. 991 25	25		067.	2.988	3.769	72.89	.780
.025 7.639 7.051 66.02 .997 26	639 7.051 66.02 .997 26	7.051 66.02 .997 26	66.02 .997 26	.997 26	26		.550	3.354	4.231	15.17	.811
.475 8.102 7.479 55.56 .999 27	102 7.479 55.96 .999 27	7.479 55.96 .999 27	55.96 .999 27	12 666.	27		.625	3.811	4.838	70.71	.848
.025 A.565 7. CA6 65. C3 1.000 28	565 7. CAK 65. C3 1.000 28	7. CA6 65. C3 1.000 28	65. c3 1.000 28	1.000 28	28		.700	4.268	385	69.61	. 883
									121 2	30 93	200
				00			0.06.	00+	0.900	1.10	106.
12	IE	31	31	31	31		1.000	6.0.98	1.692	66.40	.983
32	32	32	32	32	32		1.100	6.707	8.462	66.03	+66·
33	33	33	33	33	33		1.250	7.622	9.615	65.85	1.000
32	36	36	34	34	34		1.400	8.537	10.769	65.65	1.000
35	35	35	35	35	35		1.500	9.146	11.538	69 . 85	1.000
.00125 1.167 1.097 1.049 .131 THEAN PROFILE - KR=0.29E-3, F=0.0039 RUN TBAR -51 06H 06E 062 88 . 122 . 122 . 122 . 127 Y/052 V/DEH2 = 030875 = 117.67 = 97.98 = 65.75 = 0039 > PLATE PLATE VINF TINF a .00132 1.141 .186 .186 1.019 1.019 .131 THEAN PROFILE - KR=0.29E-3, F=0.0039 RUN TBAR 65.65 65.56 65.56 86.70 86.31 86.31 85.33 85.33 85.33 85.32 853.32 855.20 855.20 85 80.40 91.50 92 88.06 87.70 87.34 37.64 -. . ST 06H 06H2 06H2 Y/062 Y / DEH2 030875 11 42 42 42 42 95 65 65 PLATE PLATE X UINF TM TINF Ta

127

0

1

0

0

- KR=0.29E-3, F=0.0039 RUN THEAN PROFILE

funda

Î

1

-.154E-07 - K=0.28E-6, F=0.0000 RUN .00301 TBAR 76.60 75.16 75.46 79.27 78.67 79.12 79.12 -. . . ** ** ** 51 06H 06H2 06 06 062 Y/052 Y /DEH2 87.36 94.21 65.821 0.0000 050275 THEAN PROFILE . . --> PLATE PLATE X UINF TM TINF 1d .00098 1.761 .316 1.576 ..853E-35 TBAR -# # 11 11 44 51 06H2 06H2 06C2 Y/0E2 .057 .074 .1300 .1330 .1330 .13311 .1331 .1331 .1331 .1331 .1331 .1331 .1331 .1331 .1331 .1331 .133111 .13311 .13311 .13311 .13311 .133111 .13311 .13311 .1331 .0061 .0073 .0073 .0073 .174 .130 .0073 .0 Y /DEH2 030875 19 130.12 97.98 65.46 65.60 > . . -PLATE PLATE X UINF TH TINF Ta

RUN	10277	.673	.009	.626	.073	90 - 3		BAR	160	480	864	517	525	560	585	617	648	619	202	741	769	807	940	118	912	846	716	066	966	000	000	000
00						272		-		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	-	-
F= 0.00			"					-	80.08	80.30	81.61	79.23	78.71	78.01	72.77	76.35	75.46	12.41	73.61	72.79	35.17	70.89	69.93	69.63	67.86	66.82	66.05	65.59	65.37	65.31	65.31	65.31
.28E-6.	ST	0EH	DEH2	30	062	¥		¥/0E2	.178	. 233	.301	.394	614.	.616	. 822	1.096	1.438	1.781	2.123	2.603	3.032	3.767	4.452	5.137	6.164	7.192	8.219	1.2.6	10.274	11.301	12.329	13.356
LE - K=0	275	6	34	\$6.	.15	. 31	000	Y/DEH2	.146	.191	142.	.315	.393	.506	.674	668.	1.180	1.461	1.742	2.135	2.528	3.090	3.652	4.213	5.056	5.899	6.742	7.584	8.427	9.270	10.112	10.955
PROFI	= 050		"	= 104	+6 =	= 65	= 0.0	*	.013	.017	.022	.026	.035	. 045	.060	.080	.105	.130	.155	.190	.225	.275	.325	.375	.450	. 525	.600	.675	. 750	. 825	. 900	\$16.
THEAN	RUN	PLATE	×	NIN	H	TINF	L	Id	1	2	M		5	•		•	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54
-	-			-																												
00 RUN	.00281	.63	.081	.58.	.076	272E-06		TBAR	014.	06 **	·506	.530	.557	.578	.600	.623	• 659 •	.690	.721	. 756	.796	.831	.863	106.	176.	116.	. 993	1.000	1.000			
F=0.00	"	•			"	•		-	80.76	80.18	19.61	79.03	78.25	77.64	10.11	76.34	15.31	24.42	13.54	72.53	11.37	70.35	69.43	63.16	67.03	66.17	65.71	65.50	65.50			
0.285-6.	31	HEO	DEH3C	30	JE2	¥		¥1062	.171	. 224	.289	.392	.500	.632	. 789	186.	1.316	1.711	2.105	2.632	3.289	3.947	4.605	5.592	6.579	7.566	8.553	9.539	10.526			
ILE - K=	0275		26	3.93	4.28	65.5	0000	Y/06H2	.160	.210	.272.	.358	694.	263.	141.	.926	1.235	1.605	1.975	5 * 469	3.086	3.704	4.321	2+2+2	6.173	660.1	8.025	8.951	9.877			
PROF	= 05	"		"	6 =		.0 .		.013	.017	. 022	.029	.036	.048	.060	.075	.100	.130	.160	.200	. 250	.300	.350	.425	. 500	.575	.650	.725	. 800			
THEAN	RUN	PLATE	×	UINF	TH	TINF		14	-	~	•	*	5	•	-	•	6	10	11	12	13	14	15	16	17	18	19	50	21			

IJ

0

(range)

1

1

J

1

Ì

Torrest R

It D50275 ST $=$ 00274 RUN $=$ 05275 ST $=$ 0610 ST $=$ 0617 ST $=$ 0617 ST $=$ 0617 ST ST $=$ 0617 ST ST $=$ 0610 ST DEH $=$ 0610 DEH DEH <t< th=""><th>AN</th><th>PRO</th><th>FILE - K=</th><th>0.29E-6.</th><th>F=0.00</th><th>DO RUN</th><th>THEAN</th><th>PRO</th><th>=X - 371:</th><th>0.28E-6.</th><th>F=0.00</th><th>DO RUN</th></t<>	AN	PRO	FILE - K=	0.29E-6.	F=0.00	DO RUN	THEAN	PRO	=X - 371:	0.28E-6.	F=0.00	DO RUN
E = 11 11 $0EH$ -697 $PLATE$ 12 $0EH$ $0H$ $0EH$ $0H$ $0EH$ $0H$ <td< th=""><th></th><th>-</th><th>50275</th><th>ST</th><th>,,</th><th>.00274</th><th>RUN</th><th>.0</th><th>50275</th><th>15</th><th></th><th>.00270</th></td<>		-	50275	ST	,,	.00274	RUN	.0	50275	15		.00270
119.12 $0ER2$.619 $VINF$ 129.460 $0ER2$ 94.13 92.413 E .610 $VINF$ 129.460 $0E2$ 94.13 92.413 E .610 $VINF$ 129.460 $0E2$ 94.13 113 1137 1133 1137 1133 1133 1133 1137 1137 1137 1137 1137 1137 1137 1137 1137 1137 1137 11071 110171 110171 110171 110171 110171 110171 110171 110171 110171 110171 110171 110171 110171 110171 110171 1101171 110171 110171	w		11	DEH	,,	169.	PLATE	H	12	DEH		.635
$ \begin{array}{c} 119.12 \\ = 119.12 \\ = 0.0000 \\ = 0.000 \\ = 0.0000 \\ = 0.0000 \\ = 0.$		"	42	DEH30	"	560.	×		46	DEH30	"	960.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	19.12	30	"	.610	JNIN	= 12	09.60	30	11	. 603
= 64.99 K = $2946-06$ TINF = 64.79 K = 0.0007 F = 0.0007 K = 0.0007 K 0.0007 K 0.0007			94.15	5E2	*	.069			94.18	062	"	.065
= 0.0000 F = 0.0000 Y Y Y F F 0.0000 Y Y Y Y Y Y Y Y Y 0117 .1179 .246 00.37 .472 3 .017 .113 .262 9416 0127 .2179 .246 00.37 .472 3 .017 .173 .266 .431 7 0128 .295 .406 73 .472 5 .017 .173 .262 .337 .266 .431 7 0128 .295 .406 73 .612 733 .459 .612 .538 .262 .633 .753 .633 .612 .633 .612 .633 .612 .633 .612 .633 .612 .633 .612 .633 .612 .633 .612 .633 .612 .633 .612 .613 .612 .613 .612 .613 .612 .613 .612 .613 .613 .612 .613 .613 .613			64.98	¥		2946-06	TINF		61.40	¥	•	294E-06
VV/DEH2V/DEH2 $V/DER2$ T TBAAPT V $V/DEH2$ $V/DER2$ $V/DER2$ 0113.1137.10600.00.456.472.4561173.20000113.1179.214600.00.472.472.2017.1173.20000127.2137.10679.76.472.5107.206.4431.70127.235.51079.76.540.540.7.565.4431.70135.474.652.51079.76.512.357.533.7533.70155.477.556.517.5487.0045.4459.632.6320164.632.61777.616.1.2317.0357.5336.6330151.1051.52275.54.605.111.113012317.033711551.1051.566.776.616.1.33.2.001.612.1.231711961.1051.566.776.606.111.1.557.2.001.612.1.231711971.1051.566.776.795.1071.1.677.2.001.612.1.231711961.1051.566.776.775.2006.612.2.056.612.7.231711971.5661.72.606.776.795.105.612.2.0137 <td< td=""><td></td><td>"</td><td>0000.</td><td></td><td></td><td></td><td>L</td><td></td><td>0000</td><td></td><td></td><td></td></td<>		"	0000.				L		0000			
013 .137 .168 00.03 .456 1 .017 .173 .266 .431 017 .179 .246 60.37 .472 .2 .017 .173 .266 .431 022 .232 .319 79.79 .492 3 .022 .224 .336 .265 .336 .265 .431 .7 .266 .431 .7 .266 .431 .7 .557 .553 .7 .553 .7 .537 .537 .537 .538 .633 .7 .616 .431 .7 .633 .615 .615 .615 .615 .613 .615 .615 .613 .615 .615 .613 .7 .616 .612 .633 .7 .633 .6		*	Y/DEH2	¥/0E2	-	TBAR	Ы	*	Y/DEH2	¥/0E2	-	TBAR
017 .179 .246 61.37 .472 2 017 .173 .262 .338 .338 .431 7 .262 .431 7 .536 .431 7 .536 .537 .536 .537 .538 .633 .632 .431 7 .562 .431 7 .566 .431 .556 .510 7 .656 .632 .637 .536 .537 .536 .537 .538 .537 .538 .533 .633 .633 .637 .536 .537 .533 .737 .533 .537 .533 .737 .533 .737 .533 .737 .533 .737 .533 .737 .533 .731 .731 .737 .510 .731 .737 .731 .737 .731 .7415 .7465 .757 .7465 .7465 .7465 .7465 .7465 .747 .745 .7465 .7465 .7465 .747 .767 .7415 .7465 .7465 .7465 .7465 .7465 .7465 .7465 .7465 .7465		.013	.137	.186	60.63	.456	1	.013	.133	.200	\$5.08	154.
022 $.232$ $.319$ 79.79 $.492$ 510 7 $.625$ $.526$ $.431$ 7 075 $.575$ $.510$ 79.26 $.510$ $.526$ $.431$ 757 $.538$ 737 015 $.474$ $.652$ 79.26 $.512$ $.537$ $.537$ $.538$ 7337 016 $.474$ $.652$ 78.17 $.548$ 6 $.045$ $.459$ $.632$ 106 $.647$ $.652$ 77.43 $.573$ 7 $.060$ $.612$ $.9237$ 105 $.105$ 1.105 1.105 1.158 1.071 1.612 77 110 1.156 1.844 74.73 $.666$ 110 $.113$ 1.327 2.010 110 1.366 1.894 74.73 $.666$ 112 $.190$ 1.071 1.615 1.227 2.095 3.261 77.66 $.757$ 113 $.225$ 2.386 3.462 77 2.75 2.3695 3.266 77.66 $.757$ 113 $.225$ 2.923 77 2.75 3.261 77.66 $.757$ 113 $.225$ 2.926 3.462 77 2.75 3.266 77.66 $.757$ 113 $.225$ 2.923 77 2.75 3.467 606 112 $.177$ 0100 014 0100 2.755 3.947 0.776 0.726 0.926 0.776 2.755 3.946 0100 <		110.	.179	.246	15.00	.472	2	.017	.173	.262	50.53	.465
026 $.295$ $.406$ 79.26 $.510$ $.525$ $.525$ $.526$ $.431$ 7 015 $.474$ $.652$ 75.47 $.525$ 5.27 $.537$ $.537$ $.536$ $.453$ 016 $.642$ $.1071$ 1.159 7.473 $.573$ $.632$ 7.377 $.537$ 016 $.642$ $.1050$ 1.159 7.473 $.573$ $.632$ 773 016 $.642$ 1.994 74.73 $.566$ $.045$ $.0416$ 1.231 110 1.105 1.527 75.47 $.506$ $.612$ $.923$ 7 110 1.360 1.994 74.73 $.666$ 110 1.371 1.231 7 110 1.360 1.914 74.73 $.666$ 111 1.527 2.026 3.462 7 275 2.095 3.261 77.65 111 1.577 2.010 7 275 2.095 3.266 $.776$ 112 1.939 2.923 7 275 2.095 3.266 $.776$ 112 1.372 2.926 3.462 275 2.995 3.426 112 1.375 1.327 2.926 3.462 275 2.995 3.476 112 1.375 1.237 2.923 7 275 2.995 3.476 112 1.375 1.237 2.923 7 275 2.916 6.776 6.925 6.726 6.923 <td< td=""><td></td><td>.022</td><td>.232</td><td>.319</td><td>79.79</td><td>564.</td><td>m</td><td>.022</td><td>.224</td><td>. 338</td><td>80.00</td><td>.483</td></td<>		.022	.232	.319	79.79	564.	m	.022	.224	. 338	80.00	.483
035 $.368$ $.507$ 78.82 $.525$ $.525$ $.527$ $.5316$ $.737$ $.233$ $.7462$ $.737$ $.7462$ $.737$ $.7462$ $.737$ $.7462$ $.737$ $.7462$ $.737$ $.7462$ $.737$ $.7462$ $.737$ $.2355$ $.2.366$ $.3.462$ $.737$ $.2355$ $.2.316$ $.7275$ $.2366$ $.3.462$ $.737$ $.2355$ $.2.316$ $.7275$ $.2.326$ $.2.316$ $.7275$ $.2.316$ $.7275$ $.2.316$ $.7275$ $.2.316$ $.7275$ $.2.756$ $.3.462$ $.737$ $.2.756$ <t< td=""><td></td><td>.028</td><td>\$62.</td><td>905.</td><td>79.26</td><td>.510</td><td>4</td><td>820.</td><td>.266</td><td>154.</td><td>79.56</td><td>.498</td></t<>		.028	\$62.	905.	79.26	.510	4	820.	.266	154.	79.56	.498
045 474 -652 78.17 -548 6 -045 -459 -652 -923 7 0160 -642 -606 8 -000 -612 -923 7 1105 1.105 1.527 55.47 -606 8 -000 -612 -923 7 1105 1.105 1.9527 75.54 -6533 10 1.071 1.617 1.231 7 1105 1.105 1.952 75.54 6565 11 1.307 1.071 1.615 77 2.010 77 2.010 77 2.010 77 2.010 2.754 77 2.010 2.754 7265 1.231 77 2.010 77 2.010 77 2.010 77 2.010 77 2.010 1.727 2.010 67 77 5.759 3.462 77 5.759 3.462 77 5.759 5.756 5.750 6923 77 5.750 6923 7657		.035	.368	105.	78.82	.525	5	.035	135.	.538	79.03	.516
		540.	474.	.652	78.17	.548	9	.045	.459	269.	78.28	.541
.000 .042 1.159 76.47 .606 0 .0105 1.071 1.615 7.231 7 .115 1.152 75.54 .633 9 .105 1.327 2.030 7 .155 1.522 75.54 .633 9 .105 1.327 2.030 7 .155 1.632 2.246 73.69 .695 .11 .157 1.327 2.030 7 .155 1.632 2.754 72.95 .726 .726 .2335 7 .175 1.615 1.257 1.275 1.293 2.923 7 .275 2.895 3.986 77.266 .776 11 .155 1.933 2.462 7 .275 2.895 3.986 77.266 .7726 .795 14 .275 2.296 3.462 7 .755 3.462 6 7 .756 5.769 6 .7462 7 .756 5.769 6 .7452 5.769 6 .7452 5.769 6 .7455 5.769 <td></td> <td>.050</td> <td>.632</td> <td>.870</td> <td>77.43</td> <td>.573</td> <td>1</td> <td>.060</td> <td>.612</td> <td>£26·</td> <td>77.53</td> <td>.567</td>		.050	.632	.870	77.43	.573	1	.060	.612	£26·	77.53	.567
.105 1.105 1.522 75.54 $.633$ 9.105 1.327 2.010 71 .156 1.634 74.73 $.666$ 11 $.151$ 1.327 2.010 77 .155 1.632 2.754 72.96 $.726$ 112 11.327 2.010 77 .155 1.632 2.754 72.96 $.726$ 112 1190 1.327 2.923 72 .275 2.365 3.3261 72.96 $.776$ 112 $.190$ 1.939 2.923 72 .275 2.895 3.3261 72.96 $.776$ 112 $.190$ 1.939 2.923 72 .275 2.896 3.3462 7726 122 1226 2.923 72 .275 2.896 3.462 7726 122 2.796 3.462 77 .275 2.896 3.462 7726 12 $.275$ 2.296 3.462 7769 .375 3.447 5.413 66.70 $.941$ 116 $.375$ 3.462 6.923 6.923 .575 5.526 7770 996 17 $.450$ 4.592 6.923 6.923 6.923 6.923 6.923 6.923 6.923 .575 5.526 7.105 9.694 6.923 6.923 6.923 6.923 6.923 6.923 6.923 6.923 6.923 6.923 6.923 6.923 6.923 6.923 6.923 6.923 6.923 <		. 080	248.	1.159	76.47	.606	•	.080	. 816	1.231	76.62	.598
.130 $1.36.6$ $1.4.73$ $.666.$ 10 $.137$ 1.327 2.010 7 .155 1.632 2.754 73.69 $.695$ 11 $.155$ 1.582 2.335 73 .190 2.754 72.96 $.726$ 12 1191 1.939 2.923 73 .275 2.366 3.266 7756 12 1191 1.939 2.923 73 .275 2.366 3.266 77.66 $.7757$ 1399 2.923 73 .275 2.895 3.947 60.99 $.663$ 11 $.1575$ 2.2966 3.462 73 .275 3.947 6.706 $.7757$ 190 1.939 2.923 75 7316 5.7696 61 .375 3.947 6.706 963 16 117 $.450$ 4.592 6.923 61 .575 5.526 7.509 66.70 $.941$ 119 15.769 6.923 6177 .575 5.526 7.509 66.70 $.946$ 11.336 6.923 <		.105	1.105	1.522	15.54	.639	6	.105	1.071	1.615	75.65	.631
.155 1.632 2.246 73.69 .695.11.155 1.939 2.335 7 .190 2.700 2.754 72.96 $.726$ $.726$ 2.335 7.462 7 .275 2.366 3.261 72.96 3.462 7.75 2.923 7 .275 2.356 3.261 72.96 7.755 2.926 7.452 7.452 .275 2.396 7.766 6.726 $.7757$ 2.966 4.231 7 .275 2.947 5.436 70.57 $.795$ 114 $.275$ 2.906 4.231 7 .375 3.947 5.436 9.637 $.830$ 16 $.375$ 3.327 5.100 6.231 7 .375 3.947 5.435 60.92 $.930$ 0.63 16 $.737$ 5.700 6.923 6 .375 5.526 7.509 6.772 $.9906$ 17 $.450$ 4.592 6.923 6 .500 6.316 $.970$ $.996$ $.975$ 0.122 9.231 6 9.776 .516 6.316 $.976$ 0.1097 6.925 6.923 6.923 6 9.776 .500 6.316 9.793 65.11 $.996$ 2.7 1.750 7.653 11.536 6 .795 7.495 6.921 $.996$ 2.7 $.910$ 9.184 12.645 6 .791 9.474 13.0456 6.923 6.923 6.923 <		.130	1.368	1.894	74.73	.666	10	.130	1.327	2.000	74.74	.661
.190 2.000 2.754 72.56 $.726$ $.726$ 3.462 7.3462 7.462 7.75 .275 2.3695 3.261 72.06 $.757$ 13 $.225$ 2.923 7862 .275 2.395 3.261 72.06 $.757$ 13 $.225$ 2.923 77 .275 2.395 3.947 69.95 $.795$ 114 $.275$ 2.906 3.462 77 .275 3.947 69.95 $.830$ 12 114 $.275$ 2.906 5.000 61 .375 3.947 6.726 69.95 $.830$ 1663 117 $.450$ 4.592 6.900 .575 5.526 7.609 66.70 $.941$ 118 $.525$ 5.357 3.077 61 .576 5.526 7.609 66.70 $.941$ 118 $.525$ 5.357 3.077 61 .576 5.526 7.609 66.70 $.9966$ 221 $.750$ 7.653 11.536 6177 .579 5.759 5.526 7.000 65.11 $.9966$ 221 $.750$ 7.653 11.536 6177 .750 7.105 9.733 65.611 $.9966$ 221 $.750$ 7.653 11.5692 6923 6142 13.642 6925 .750 7.495 10.975 9.449 13.84 13.8462 6926 61642 12.642 6926 616666 12.000 61666666 71666666666666666		.155	1.632	2.246	73.89	•695	11	.155	1.582	2.395	74.00	.687
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.190	2.000	2.754	12.96	.726	12	.190	1.939	2.923	15.51	.724
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.225	2.368	3.261	72.06	151.	13	.225	2.296	3.462	72.01	.755
.375 3.421 4.710 69.45 $.830$ 15 $.325$ 3.316 5.000 66 .375 3.947 5.435 66.99 $.863$ 16 $.375$ 3.827 5.769 61 .450 4.737 6.522 67.72 $.906$ 17 $.450$ 4.592 6.923 61 .575 5.526 7.609 66.70 $.941$ 18 $.525$ 5.357 3.077 61 .600 6.316 9.696 65.87 $.970$ $.941$ 19 $.600$ 6.122 9.231 61 .675 6.316 9.696 65.38 $.970$ $.996$ 21 $.750$ 7.653 11.536 61 .770 7.952 7.973 696 21 $.996$ 21 $.750$ 7.653 11.536 61 .770 7.952 7.9105 9.733 696 22 $.8418$ 12.692 61 .770 9.474 11.957 64.98 1.000 23 $.900$ 9.184 13.766 61 .975 10.263 14.130 64.98 1.000 24 $.975$ 9.949 15.000 6		.275	2.895	3.986	19.01	.795	14	.275	2.806	4.231	70.00	. 796
.375 3.947 5.435 68.99 .86316.375 3.827 5.769 61 .450 4.737 6.522 67.72 .906 17 .450 4.592 6.923 61 .525 5.526 7.609 66.70 .941 18 525 5.357 3.077 61 .600 6.316 9.696 65.238 .970 0.977 61 6.122 9.231 61 .610 6.316 9.696 65.38 .996 20 21 7.653 11.536 61 .675 7.495 11.957 65.011 .996 22 8.418 12.692 61 .825 8.684 11.957 65.011 .996 22 8.418 12.692 61 .910 9.474 13.043 64.98 1.000 23 .900 9.184 13.646 61 .975 10.263 14.130 64.98 1.000 24 $.975$ 9.949 15.000 6		.325	3.421	4.710	55 . 69	. 830	15	.325	3.316	5.000	11.69	.831
.450 4.737 6.522 67.72 .906 17 .450 4.592 6.923 6.92 .525 5.526 7.609 66.70 .941 18 .525 5.357 3.077 61 .600 6.316 3.696 65.70 .971 18 .525 5.357 3.077 61 .610 6.316 3.696 65.17 .970 19 .600 6.122 9.231 6 .675 7.105 9.773 65.38 .996 21 .760 7.653 11.536 6 .750 7.495 10.870 65.01 .996 21 .760 7.653 11.538 6 .750 7.495 10.970 65.01 .999 22 .675 6.465 6 .750 9.474 13.043 64.98 1.000 23 .900 9.446 13.766 5.000 6 9.949 15.000 6 7.010 6 7.010 6 7.010 6 7.010 6 7.010 6 7.465 <td< td=""><td></td><td>.375</td><td>3.947</td><td>5.435</td><td>66.99</td><td>. 663</td><td>16</td><td>375</td><td>3.827</td><td>5.769</td><td>68.80</td><td>.864</td></td<>		.375	3.947	5.435	66.99	. 663	16	375	3.827	5.769	68.80	.864
.525 5.526 7.609 66.70 .941 18 .525 5.357 3.077 61 .600 6.316 9.696 65.87 .970 19 .601 6.122 9.231 61 .675 7.105 9.773 65.37 .970 19 .601 6.122 9.231 61 .675 7.105 9.773 65.38 .996 20 .675 6.886 11.385 61 .750 7.495 11.957 65.611 .996 21 .750 7.653 11.538 61 .750 7.495 11.957 65.611 .999 22 .825 9.445 13.645 61 .900 9.474 13.043 64.98 1.000 24 .975 9.949 15.000 6 .975 10.263 14.130 54.98 1.000 24 .975 9.949 15.000 6		054.	4.737	6.522	67.72	906.	17	.450	4.592	6.923	67.47	606 .
.600 6.316 9.696 65.87 .970 19 .600 6.122 9.731 65 .675 7.105 9.733 65.38 .996 20 .675 6.886 1(.385 65 .750 7.495 10.870 65.11 .996 21 .750 7.653 11.538 66 .750 7.495 10.870 65.11 .996 21 .750 7.653 11.538 66 .750 7.495 10.977 65.01 .999 22 .855 8.418 12.692 67 .900 9.474 13.043 64.98 1.000 23 .900 9.184 13.846 67 .975 10.263 14.130 54.98 1.000 24 .975 9.949 15.000 6		. 525	5.526	7.699	66.70	146.	18	. 525	5.357	9.077	66.42	.945
.675 7.105 9.733 65.38 .996 20 .675 6.888 1(.385 61 .750 7.495 10.870 65.11 .996 21 .750 7.653 11.538 61 .750 7.495 10.870 65.11 .996 21 .750 7.653 11.538 61 .825 8.684 11.957 65.01 .999 22 .825 8.418 12.692 61 .900 9.474 13.043 64.98 1.000 23 .900 9.184 13.846 64 .975 10.263 14.130 54.98 1.000 24 .975 9.949 15.000 6		.600	6.316	9.696	65.87	016.	19	.600	6.122	9.231	65.59	.973
.750 7.495 10.870 65.11 .996 21 .750 7.653 11.538 6 .825 8.684 11.957 65.01 .9999 22 .825 8.418 12.692 6 .900 9.474 13.043 64.98 1.000 23 .900 9.184 13.846 6 .975 10.263 14.130 54.98 1.000 24 .975 9.949 15.000 6		.675	7.105	9.793	65.38	.986	20	.675	6.888	1 (. 385	65.13	. 988
.825 8.684 11.957 65.01 .999 22 .825 8.418 12.692 6/ .900 9.474 13.043 64.98 1.000 23 .900 9.184 13.846 6/ .975 10.263 14.130 54.98 1.000 24 .975 9.949 15.000 6		. 750	266.1	10.870	65.11	966.	21	.750	7.653	11.538	64.52	966 .
.900 9.474 13.043 64.58 1.000 23 .900 9.184 13.846 6 ⁴ .975 10.263 14.130 54.98 1.000 24 .975 9.949 15.000 6		.825	9.684	11.957	65.01	666.	22	.825	8.418	12.692	64.82	666.
•975 10.263 14.130 54.98 1.000 24 .975 9.949 15.000 6		006.	424.6	13.043	64.98	1.000	23	006.	9.184	13.846	61.49	1.000
		.975	10.263	14.130	64.98	1.000	54	.975	6*6*6	15.000	64.79	1.000

UMEAN	PRO	SFILE - KR	=0.F=0 RU	z		UMEAN	PROF	ILE - KR	=0 .F=0 RI	N	
RUN		619875	051	,,	619.	RUN	"	110875	051		.113
PLATE		•	062	"	640.	PLATE		5	062		.072
×	=	10	I		1.61	×		10	I	•	1.57
UINF	"	86.70	9	"	6.79	UINF	n	96.90	0		6.67
CF /2		.00308	BETA	"	0.00	CF/2	*	76200	BETA	"	0.00
UTAU	"	4.81	REDEZ		2199.	UTAU	*	4.71	REDE		3230.
	"	0.0000	REK		77.	L	#	0000	REK		15.
DE	"	. 342	¥,	. 0.		DE	"	167.	¥,		
PT	*	Y/0E2	Y/DE	•	U/UINF	PT	*	Y/0E2	Y/DE	>	U/UINF
1	.006	.122	.018	28.86	.333	1	.006	.003	.012	20.97	.333
~	.00.	.143	.020	42.62	.337	2	700.	760.	.014	29.68	.342
m	.00.	.184	.026	31.60	.364	m	600.	.125	.018	31. 41	.361
t	.012	545.	.035	34.12	. 394	3	.012	.167	.024	33.41	.384
5	.016	327	240.	36.54	.426	5	.016	.222	.032	35.64	.410
9	.020	604.	.059	39.11	.451	9	.021	262.	240.	37.67	.436
-	.025	510	.073	41.30	124.		.028	.369	.056	40.55	.467
•	.030	.612	.088	43.33	. 500	•	.035	.486	.070	42.49	684.
6	.037	755	.108	45.56	.525	6	.045	. 625	.0 91	45 . 03	.518
10	640.	816. 1	.132	47.73	.551	10	.057	262.	.115	47.31	+++5 .
11	.055	1.122	.161	50.18	.579	11	.070	516.	141.	15.64	.570
12	.067	1.367	.196	52.87	.613	12	.085	1.181	111.	51.90	165.
13	.080	1 1.633	.234	55.38	.639	13	.100	1.389	.201	54.10	.623
14	666.	1.939	.278	58.11	.679	14	.115	1.597	.231	55.96	.644
15	.110	1 2.245	.322	60.60	.699	15	.130	1.806	.262	56.00	.667
16	.130	2.653	.360	64.66	.739	16	.150	2.083	.3 02	60.29	+69.
17	.150	3.061	.439	66.93	. 772	17	.175	2.431	.352	63.02	.725
18	.170	3.469	164.	69.78	. 805	18	.200	2.778	.4 02	14.55	.753
19	.190	3.978	.556	72.52	. 836	19	. 230	3.194	.463	63.46	.785
23	.210	1 4.236	.614	24.98	.865	20	.260	3.611	.523	71.22	. 620
21	.23	361.4 8	.687	78.00	006.	21	062.	4.028	.584	73.80	648.
22	.260	1 5.306	.760	80.56	.929	22	.325	4.514	.654	76.56	.661
23	.295	5.816	. 833	92.76	.955	23	.360	5.000	.7 24	79.26	.912
54	.310	1 6.327	· 9 06	84.53	.975	24	. 400	5.556	.8 05	61.66	546.
52	.340	6.939	*66 .	85.81	066*	25	.450	6.250	·905	84.39	126.
56	.380	1 7.755	1.111	86.55	866.	26	. 500	6.944	1.006	86.01	066.
27	.430	9.776	1.257	86.70	1.000	27	.550	7.639	1.107	86.65	166.
58	.430	961.6 1	1.404	86.70	1.000	28	.600	8.333	1.207	86.90	1.000
						29	.650	9.028	1.308	96.90	1.000

[]

[]

1

П

[]

Ū

0

1

[]

Π

T

I

NN		010875	051	"	.144	RUN	"	110875	061	"	.207
LATE		1	052	"	£60·	PLA	= 31	12	DE2		.139
		26	I	"	1.55	×	"	46	I	11	1.50
INF		86.97	9		6.87	NIN	"	86.62	9		6.73
513		.00269	BETA	u	0.00	CF/	- 2	100244	9514		0.00
TAU		4.51	REDE	= 2	4136.	UTA	= n	4.28	REDE	- 2	6173.
		0.0000	REK	"	72.	L		0000	REK	"	68.
-		.646	ĸĸ	= 0.		DF.		1.015	кĸ	.0.	
-	*	Y/062	Y/DE	Э	UZUINF	PT	*	X10E2	Y/DE	∍	N/NIN/N
	00.	6 . 165	600.	25.46	. 293	1	.006	.043	.006	25.23	.291
2	00.	7 .075	.611	26.23	.363	~	.007	.050	100.	26.11	.301
m	00.	160. 6	.014	28.01	. 332	m	600.	.065	600.	28.24	.326
*	.01	2 .129	.019	31.21	.359	4	.012	.086	.012	30.36	.350
5	.01	6 .172	.025	33.77	.389	5	.016	.115	.016	32.58	.376
9	20.	1 .226	.033	36.11	.410	9	.021	.151	.021	34.59	+0+.
-	20.	301	.043	38.59	+++.	1	.028	.201	.028	37.50	. 433
	.03	5 .387	.056	15.04	.471	•	.036	.259	.035	39.61	.457
	46.	+8+. 5	010.	43.14	164.	٥	.045	.324	++0.	41.56	084.
	.05	165. 2	.0.85	15.44	.517	10	.055	.396	.054	43.44	.502
1	.06	7 .720	.104	47.12	.542	11	.067	.482	.066	45.36	.524
2	.0.	0 .860	.124	50.64	. 565	12	.080	.576	.079	46.51	.542
•	60 .	5 1.022	141.	50.89	.566	13	560°	.683	*60 .	48.47	.560
*	.11	0 1.183	.170	52.67	.606	14	.112	. 806	.110	50.21	.580
5	.13	0 1.398	.201	54.79	.631	15	.130	· 935	.125	51.96	.600
9	.15	0 1.613	.232	56.73	.653	16	.155	1.115	.153	53.86	.622
-	.17	5 1.682	112.	59.12	.681	17	.185	1.331	.182	56.11	. 648
	.20	0 2.151	.310	61.22	.705	13	.220	1.533	.217	58.26	.673
6	.23	0 2.473	.356	63. 60	. 734	19	.260	1.871	.256	60.42	.698
0	.26	5 2.849	.419	66.40	.764	20	.310	2.230	.303	63.11	.729
1	.30	5 3.280	514.	54.69	·799	21	.370	2.662	.365	66.04	.762
2	.35	3.763	-542	72.47	•834	22	.445	3.201	.433	69.39	.801
2	04.	0 4.301	.619	15.54	. 670	23	.520	3.741	.512	72.58	. 838
	.45	0 4.839	169.	78.50	+06.	54	.595	4.281	.586	75.34	.870
5	.50	0 5.376	+11.	80.03	.932	52	.675	4.856	. 565	78.08	.901
9	.55	0 5.914	156.	83.33	.959	26	.775	5.576	.764	91.24	. 938
1	29.	5 6.720	196.	65.58	.985	27	.875	6.295	.862	83.64	.966
	.70	0 7.527	1.984	46.57	166.	28	1.000	1.194	-985	85.58	. 988
6	11.	5 8.333	1.200	96.87	1.000	59	1.125	*60.8	1.103	86.45	966 .
0	.85	0 9.140	1.316	86.07	1.000	30	1.275	5.173	1.256	86.62	1.000

	•						•	010076	• 50	,	101
2		61901	110	"	• 400	NON	•	CIGATA	100	•	120.
ATE	"	17	052		.182	PLAT	"	22	052		.223
	"	99	I	"	1.46	×		96	I	H	1.44
INF		86.53		"	6.53	UINF		86.60	9		6.44
		72200	RFTA	"	0.00	CF/2	"	.00226	BETA	-	0.00
TAU		.19	DEDE2		A0.1.	UTAU		4.12	REDE		. 5066
2	0 =	0000	REK		67.		"	0.0000	REK		66.
		1.352	¥			JO		1.698	ĸĸ	•	
-	*	¥1062	30/1	5	U/UINF	Id	*	7/052	A/DE	•	U/UINF
	900	.033	+00.	23.67	.276	1	.00	.027	*00 *	24.44	.282
2	100	.030	.0 05	25.06	. 290	2	.00.	.031	+00.	25.25	262.
	600	640.	.007	27.03	. 312	•	.010	045	.006	27.76	.321
	012	.066	600.	29.26	.338		.014	.063	.008	30.36	135.
5	016	.0.98	.012	31.77	.367	\$.02	060. 1	.012	32.99	.381
	120	.115	.016	33.66	.391	9	.027	.121	.016	35.43	604.
	028	.154	.021	36.54	.422		.03	.157	.021	37.72	.436
	036	.198	.027	36.73	8+4.	•	. 04	.202	.327	39.95	.461
. 6	940	.253	.034	40.62	.469	6	.057	.256	+26.	42.00	.485
	090	.330	.044	43.08	\$64.	10	.070	.314	140.	40.44	. 589
	210	.423	.057	45.62	.527	11	.08.	361	.050	45.50	. 525
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	560	.522	.070	47.42	.548	12	.10	114. 1	.062	47.85	.553
	115	.632	560.	49.59	. 573	13	.130	583	110.	49.70	. 574
*	130	.714	.096	50.07	.588	14	.16	740	160.	21.50	. 599
5	155	.852	.115	52.62	.608	15	.210	246. 1	.124	54.56	.630
9	190	1.044	.141	54.70	.632	16	. 26(	1.166	.153	57.23	.661
~	240	1.319	.179	57.52	. 665	11	.31	1.390	.183	58.87	.680
	300	1.648	.222	60.02	.694	18	.39	1.726	.227	61.44	602.
. 6	375	2.060	.277	62.07	.127	19	.47	2.108	.277	63.78	.736
. 0	450	2.473	.333	65.72	.763	20	.570	2.556	.336	66.54	.768
1	550	3.022	104.	68.41	.793	21	.671	1 3.004	366.	69.06	161.
2	675	3.709	664.	72.50	.638	22	. 77.	3.453	£54°	71.36	.824
	000	4.396	-592	75.60		23	.920	1 4.126	- 542	74.73	. 863
4	056	5.220	.703	07.61	.918	54	1.070	861.4	.630	77.55	. 895
5 1.	100	6.044	.814	82.42	.953	25	1.220	1 5.471	.71A	90.27	.927
6 1.	250	6.86.9	.925	84.68	616.	56	1.420	6.368	.036	83.01	.959
7 1.	450	7.95.7	1.072	86.06	. 995	27	1.620	1 7.265	.954	85.19	*96 ·
8 1.	650	9.066	1.220	86.39	. 998	28	1.820	8.161	1.072	96.23	966 .
9 1.	020	10.165	1.369	86.53	1.000	29	2.020	9.050	1.190	86.60	1.000
0 2.	020	11.264	1.516	86.53	1.000	30	2.120	105.6 1	1.249	86.60	1.000

UMEAN	PRO	FILE - KR	=0.15E-3.		NUN BOD	UMEAN	PRO	. ILE - K	x
RUN	"	033175	061		.127	RUN	"	33175	
PLATE		9	052		.083	PLATE		0	
×	"	22	I	"	1.54	×		34	
JNIN		67.92	9	"	6.71	UINF		87.30	
CF12	,,	.00276	BETA	=	10	CF/2	"	00 250	
ULAU		4.62	950E2	"	3740.	UTAU	-	4.37	
	,,	0.0000	REK		74.		"	00000	
30		115.	КR		780E-05	DE		.806	
PT		1052	V/DE	•	UZUINF	Ъ	*	Y/062	
-	.006	510. 1	.010	83.65	.331	1	.006	.053	
~	.008	960. 1	.014	31.13	• 354	2	.00.	.070.	
•	.011	.133	.019	33.46	.381	R	.011	.096	
4	.014	169	.024	35.20	00 **	4	.014	.123	
5	.018	112. 1	.031	37.25	.424	5	.019	.167	
9	E 20 .	175. 1	0 * 0 *	39.10	.445	9	.026	.226	
	.030	.361	.052	27.14	124.	1	+£0.	.298	
	.040	. 482	.069	44.16	.502	8	.044	.386	
6	.050	.602	.087	46.20	.525	0	.060	. 526	
10	.065	.783	.113	25.84	.556	10	.080	.792	L
11	.0.65	1.024	.147	11.12	.585	11	.105	.921	
12	.105	1.265	.182	12.45	.617	12	.130	1.140	
13	.130	1.566	.225	57.38	.653	13	.155	1.360	
14	.155	1.867	.269	11.65	.679	14	.190	1.667	
15	.180	1 2.169	.312	62.39	.710	15	. 225	1.974	
16	.216	1 2.530	.364	64.55	.739	16	.275	2.412	-
17	.240	266.2	.416	67.41	.767	17	. 325	2.851	
1.	.275	3.313	.477	67.01	.802	18	.375	3.289	
19	.325	3.916	.563	74.25	.845	19	.425	3.728	
20	.379	5 4.518	.650	73.67	. 833	20	. 500	4.336	
21	624.	5.120	.737	16.08	.921	21	515.	5.044	
22	.479	5.723	.823	83.59	.951	22	.650	5.702	
23	.529	6.325	.910	35.65	.974	23	. 750	6.570	
54	.600	1 7.229	1.040	87.32	. 993	54	. 850	7.456	
25	.675	8.133	1.170	87.52	1.000	25	0 56 .	8.333	
26	. 779	9.337	1.343	87.52	1.000	26 1	.050	9.211	

28.15 33.45 33.45 33.45 33.55 33.55 33.55 54.40 20 55.55 55.55 55.55 55.55 55.55 55.55 55.55 55.55 75.55 55.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.55 75.

KR=0.15E-3. F=0.0000 RUN

ľ

1114 1114 1152 6.84 6.84 5106 5106 70.

=

U/UINF

5

7/DE

.178 .127 5.66 5.66 6.39 6318. .1446-03 KR=0.15E-3, F=0.0000 RUN U/UINF 34, 01 34, 01 35, 90 37, 90 37, 90 37, 90 37, 90 37, 90 37, 90 37, 90 38, 90 38, 90 38, 90 38, 90 38, 90 38, 90 39, 90 39, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31, 90 31 ) ..... DE1 DE2 H G Beta Rede2 Kr Y/DE Y/DE2 033175 15 97.06 5.00 0.0000 1.061 . UMEAN PROFILE . . . ... > PLATE VINF CF/2 CF/2 DE F .182 .126 1.45 6.12 6.12 6.12 5909 .143E-03 RUN U/UINF F=0. 0060 30.82 5 . . 11 KR=0.15E-3. Y/DE 0.0530.0530.0790.10790.10790.12590.17560.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.3730.373Y/0E2 . 033175 12 91.34 91.34 0.00258 .953 .963 UMEAN PROFILE . . . > . . . . PLATE PLATE VINF UTAU DE DE

135

.

Id

Tu

T

UMEAN PROFILE - KR=0.156-3, F=C.0000 RUN

and the second se

[]

1

Barren B

T

I

I

 RUN	
F=0.0000	
 KR=0.15E-3.	
 FROFILE	
 UMEAN	

.182		.130	1.40	5.62	41	7193.	87.	1456-03	U/UINF	.339	1352.	.374	165.	.417	.437	.461	664.	. 527	.559	.596	.632	.662	.684	.718	.739	.769	+09.	.834	.862	. 892	.916	046.	. 958	+26.	066 .	866.	1.000	1.600
H			"	"	11	- 2	"	•	5	36.40	36.33	40.16	42.62	44.78	46.55	67.64	53.52	56.61	60.00	64.00	67.81	71.01	73.42	77.02	79.29	82.54	86.24	05.98	92.52	95.69	96.35	100.92	102.66	104.59	106.31	107.11	107.33	107.33
11		UEC	I	9	8574	REDE	AEX	ĸĸ	1011	.005	100.	600.	110.	.014	.017	.022	.031	.039	.052	010.	.092	.114	.135	.166	197.	.240	.3 06	.372	.437	.524	.612	b6 9.	.787.	.874	1.005	1.135	1.267	1.399
3175		14	74	17.33	10257	5.44	0000	1.144	Y/DE2	.046	.062	120.	.100	.123	.154	.192	.269	.346	297.	.615	. 808	1.000	1.192	1.462	1.731	2.115	2.692	3.269	3.846	4.615	5.385	6.154	6.923	7.692	8.846	10.000	11.154	12.308
				= 10		"	.0 =		*	.006	.008	.010	.013	.016	.020	.025	.035	·045	.060	.080	.105	.130	.155	.190	.225	.275	.350	.425	.500	.600	.700	. 800	006.	.000	.150	.300	.450	.600
RUN	14.4	L'AIE	×	UINF	CF/2	UTAU	u	DE	Id	1	2	ñ	t	Ŀ	9	1	80	6	10	11	12	13	14	15	16	17	18	19	50	21	22	23	54	25 1	26 1	27 1	28 1	1 62
.133	121	101.	1.40	5.58	0.4	6854.		1465-03	U/UINF	.336	.356	.373	.395	.415	. 437	.461	.496	.524	.558	• 592	.630	.661	.681	.710	.735	.765	.801	.832	. 859	.890	.916	046.	.961	116.	.993	. 997	1.000	1.000
"	•		"	"	"	"	"	•	Ð	34.26	36.29	36.11	40.31	42.33	44.62	66.94	50.63	53.42	05 . 95	60.41	64.24	67.41	69.52	72.44	75.01	79.02	81.72	84.52	87.66	59.06	63.43	25.58	93.06	99.65	01.20	01.72	02.C4	40.20
061	00.2	220	I	0	BETA	REDES	REK	¢X	2014	.005	100.	600.	.012	.014	.018	.022	.031	040.	•150.	120.	460.	.116	.139	.170	.201	.246	.313	.380	1447.	.536	.626	.715	.804	<b>*68</b> .	1.029 1	1.162 1	1.296 1	1.430 1
33175	17		99	102.04	.00266	5.26	00000	1.119	Y/062	.046	.061	.076	660.	.122	.153	191.	.267	.344	. 458	.611	. 802	266.	1.183	1.450	1.718	660.2	2.672	3.244	3.817	4.580	5.344	6.107	6.870	7.634	8.779	426.6	11.069	12.214
"	•						"	"		.006	.008	.010	. 913	.016	.020	.025	.335	540.	.060	.080.	.105	.130	.155	.190	.225	.275	.350	.425	.500	.600	.700	. 800	006.	.000	1.150	.300	057.1	. 600
RUN	DIATE		×	UINF	CF/2	UTAU		30	ta	1	2	5		5	9	1		6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25 1	26 1	27 1	28 1	59 1

0000 RUN	100.	150.	1.61	6.72	+0	2317.	.0.8	.364E-05	U/UINF	.329	.355	.385	.410	.431	.451	.475	664.	. 525	.545	+25.	. 605	.633	.664	169.	.733	.769	. 806	.844	.878	.910	.938	.963	.982	\$66.	1.006	1.000		
. F=C.	"		"		"	= 2	"	"	>	29.97	31.26	33.99	36.11	37.58	39.76	41.89	43.96	46.32	48.08	50.64	53.31	55.85	58.56	14.19	64.63	67.79	71.03	74.41	77.38	80.25	82.74	84.98	86.63	87.76	88.18	88.13		
=0.29E-3	051	052	I	9	BETA	REDE	REK	ж Х	A/DE	.017	.023	.032	040.	640.	.057	.072	690.	.109	.129	.156	.193	.230	.273	.322	.374	.431	. 503	.575	.647	.715	062.	.862	.948	1.063	1.207	1.351		
ILE - KR	20675	F	10	68.18	00315	4.95	0000.	. 348	Y/DE2	.118	.157	.216	.275	.333	.392	064.	.608	.745	. 582	1.076	1.314	1.569	1.863	2.196	2.549	2.941	3.431	3.922	4.412	206.4	5.392	5.882	6.471	7.255	8.235	9.216		
PROF	•				•	*	0		*	900	800	011	014	110	020	025	.031	038	540	055	190	080	560	112	130	150	175	200	225	250	275	300	330	370	420	014		
UMEAN	RUN	PLATE	×	UINF	CF/2	UTAU	4	DE	PT	1	~	•	4	5	9	•	•	٩	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	26	27		
1000 KUN	.181	.131	1.38	5.41	38	7643.	93.	139E-03	UVUINE	.350	.368	.384	504.	.424	.446	174.	.505	. 534	.567	. 605	.639	.668	+69 .	.721	. 745	.773	608.	. 939	. 863	. 693	.917	626.	.957	.972	786.	566.	1.000	1.000
. F=G.0000 RUN	= .181	= .131	= 1.38	= 5.41		7643.	= 93.	= .1396-03	U U/UINF	39.84 .350	41.86 .369	43.72 .384	46.09 .405	48.33 .424	50.77 .446	53.64 .471	57.50 .505	60.86 .534	64.53 .567	68.86 .605	72. 60 .639	76.11 .668	169. 83.674	82.16 .721	84.85 .745	<b>58.61 .773</b>	92.15 .809	95.58 .839	98.27 .963	101.73 .693	104.42 .917	. 36. 89 . 939	105.96 .957	110.67 .972	112.36 .987	113.29 .995	113.89 1.000	113.69 1.000
=0.15E-3, F=C.0000 RUN	061 = .181	052 = .131	H = 1.38	6 = 5.41	BETA =36	REDE2 = 7643.	REK = 93.	KP = .139E-03	Y/DE U U/UINF	.005 39.84 .350	.007 41.86 .369	.008 43.72 .384	.011 46.09 .405	.013 48.33 .424	.017 50.77 .446	.021 53.64 .471	.029 57.50 .505	.039 60.86 .534	.050 64.53 .567	.067 68.86 .605	.038 72.60 .639	.109 76.11 .668	+69° 29.68 .69+	.159 82.16 .721	.189 84.85 .745	.231 98.61 .773	.294 92.15 .809	.357 95.58 .839	.419 98.27 .863	.503 101.73 .693	.587 104.42 .917	.671 196.89 .939	.755 108.96 .957	.839 110.67 .972	.955 112.36 .987	1.091 113.29 .995	1.216 113.89 1.000	1.342 113.69 1.000
ILE - KR=0.15E-3, F=G.0000 RUN	33175 DE1 = .181	22 052 = .131	96 H = 1.30	13.89 6 = 5.41	00263 BETA =30	5.64 REDE2 = 7643.	.0000 REK = 93.	1.192 KP = .139E-03	V/DE2 Y/DE U U/UINF	.046 .005 39.84 .350	.061 .007 41.86 .368	.076 .008 43.72 .384	.099 .011 46.09 .405	.122 .013 48.33 .424	.153 .017 50.77 .446	.191 .021 53.64 .471	.267 .329 57.50 .505	.344 .033 60.86 .534	.458 .050 64.53 .567	.611 .067 68.86 .605	.802 .038 72.50 .639	.992 .109 76.11 .668	1.183 .130 79.68 .694	1.450 .159 82.16 .721	1.718 .189 84.85 .745	2.099 .231 88.61 .773	2.672 .294 92.15 .609	3.244 .357 95.58 .839	3.917 .419 98.27 .863	4.580 .503 101.73 .693	5.344 .587 104.42 .917	6.107 .671 196.89 .939	5.870 .755 108.96 .957	7.634 .839 110.67 .972	8.779 .955 112.36 .987	9.924 1.091 113.29 .995	11.069 1.216 113.89 1.000	12.214 1.342 113.69 1.000
PROFILE - KR=0.15E-3, F=6.0000 RUN	= 033175 DE1 = .181	= 22 052 = .131	= 96 H = 1.38	= 113.89 6 = 5.41	= .00263 BETA =38	= 5.64 REDE2 = 7643.	= 0.0000 REK = 93.	= 1.192 KP = .139E-03	Y Y/DE2 Y/DE U U/UINF	.006 .046 .005 39.84 .350	.008 .061 .007 41.86 .368	-010 -076 -008 43.72 -384	.013 .099 .011 46.09 .405	.016 .122 .013 48.33 .424	.020 .153 .017 50.77 .446	.025 .191 .021 53.64 .471	.035 .267 .329 57.50 .505	.045 .344 .035 60.86 .534	.069 .458 .050 64.53 .567	.030 .611 .067 68.86 .605	.105 .802 .038 72.60 .639	.130 .992 .109 76.11 .668	.155 1.183 .130 79.08 .694	.190 1.450 .159 82.16 .721	.225 1.718 .189 84.85 .745	.275 2.099 .231 88.01 .773	.350 2.672 .294 92.15 .809	.425 3.244 .357 95.58 .839	.500 3.517 .419 98.27 .863	.600 4.580 .503 101.73 .893	.700 5.344 .587 104.42 .917	.803 6.107 .671 196.89 .939	.900 5.870 .755 108.96 .957	.000 7.634 .839 110.67 .972	.150 8.779 .955 112.36 .987	.339 9.924 1.091 113.29 .995	.450 11.069 1.216 113.89 1.000	.600 12.214 1.342 113.69 1.000

1

[]

1

-

[]

0

[]

UMEAN PROFILE - KR=0.29E-3, F=0.0000 RUN

		1.0.	1.49	5.92	42	3773.		 261E-03	ULUINF	.327	.352	.375	.396	.414	.435	.453	127.	684.	605.	.530	+55.	.578	.606	.632	.656	.675	.692	.716	542.	.764	.793	.829	148.	.874	906.	.935	096.	616.	166.	866.	1.000	1.000
H			"		"			•	Э	30.75	33.02	35.21	37.15	36.88	£1.04	42.57	44.21	96 . 34	47.79	49.79	52.07	54.31	26.95	59.32	13.18	63.39	64.97	57.27	11.69	71.79	74.47	77.04	15.61	32.12	80° 58	97.84	90.14	55.16	61.69	93.73	33.92	33.52
120		230	I	9	BETA	REDE	DEK	 ¥	Y/DE	.010	.014	.017	.021	•024	620.	.035	040.	-047	.055	.067	160.	.098	.121	.147	.173	661.	.225	652.	.302	.345	165.	.458	.518	185.	.674	.760	. 846	.933	1.019	1.105	1.192	1.279
1675			26	3.92	0309	5.22	0000	• 579	× 1062	.078	.134	.130	.156	.182	.221	.260	• 2 9 9	.351	.415	905.	.610	.740	606.	1.104	1.299	1.494	1.688	1.948	2.273	2.597	2.987	3.442	3. 896	4.416	5.065	5.714	5.364	7.013	7.662	8.312	8.961	9.610
		"	"	"		"		"	*	.006	.008	. 010	.012	.014	.017	.020	. 023	.027	.032	.039	1+0.	.057	.070.	.085	.100	.115	.130	.150	.175	. 200	.230	.265	.303	.340	.390	0 + + .	067.	045.	065.	0 79 .	.690	042.
NIId		PLAIF	×	UINF	CF /2	UTAU	u	 DE	14	1	~	m		w	•	•	•	6	10	11	12	13	14	15	16	17	1.6	19	20	21	22	23	54	25	26	27	28	56	30	31	32	33
.115		6/n.	1.57	6.93	10	3386.	75.	 •786E-05	U/UINF	.324	.347	.372	. 394	.412	.430	.451	.473	964.	.514	.536	.557	.580	.604	. 635	. 665	.693	.725	. 756	.782	. 806	.835	659.	.883	. 903	.931	. 958	.982	566.	666.	1.000	1.000	
	•	•	"	"	"		"	"	•	28.76	30.02	33.01	34.56	36.57	39.14	40.00	41.95	40.44	45.62	47.59	64.64	97 . 15	53.62	56.37	58.59	61.55	64 . 38	67.08	44.69	72.57	74.10	76.24	78.36	80.19	82.65	65.48	97.13	98.32	88.69	88.76	68.75	
DF1		nce	I	9	BETA	RCDE2	RFK	XX	Y/DE	.012	.015	.022	.028	.034	040.	.050	.062	.076	060.	.103	.125	.152	.180	.220	.259	.309	.359	60 7.	.459	60 5.	655.	.609	.659	.7 09	.778	.658	\$56.	1.059	1.156	1.257	1.357	
0675		•	18	38.76	573	4.64	0000	 . 501	Y/062	.082	.110	.151	.192	.233	+12.	.342	.425	.521	.616	.740	178.	1.041	1.233	1.507	1.781	2.123	2.466	2.808	3.151	3.493	3.836	4.178	4.521	4.963	5.342	5.890	6.575	7.260	7.945	9.630	9.315	
-	•						-			.006	.008	. 011	.014	.017	.020	.025	.031	.036	540.	+50.	• 064	.076	060.	.110	.130	.155	.180	.205	.230	. 255	.280	.305	.330	.355	.390	.430	.480	.530	.580	.630	.680	
		P			-	-	-																																			

UMEAN PROFILE - KR=0.296-3, F=C.0000 RUN

---

T.

-

Protect of

I

- KR=0.295-3, F=0.000 RUN -2582-03 U/UINF 101.16 103.65 105.62 107.24 108.64 666 - 28 668 - 61 70 - 68 72 - 63 77 - 63 77 - 63 77 77 - 63 77 77 79 - 63 64 82 - 61 87.32 89.52 91.57 95.36 95.38 58.05 99.32 63.39 45.63 56.53 56.53 56.53 85.00 110.50 110.77 110.77 109.54 ) 9614 65062 Rek Kr 000 1105 .603 .763 .835 .140 .584 .98. .532 262. .104 9.740 1.039 2.338 4.286 6.494 7.143 7.792 8.442 Y /DE2 (22275 11 42 42 110.77 00377 0.14 0.0000 . 658 PROFILE 00. . . . PLATE X UMEAN CF/2 UTAU F UINF PT .112 .078 .078 5.56 5.56 4.154 4.154 .279E -03 - KP =0.295-3. F=C. C036 RUN U/UINF 93.69 95.98 97.97 99.73 99.73 191.73 75.95 1101.73 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 1102.65 100.65 100.65 100.65 100.65 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 100.55 1 34 . 43 36 . 13 88 . 60 70.85 80.23 68.52 91.04 2 . . . . ..... .. 0012 0012 66 8651A 8651A 8851A 88 2011 Y/DE2 022275 34 102.61 .00316 5.68 .642 UPEAN PROFILE . . . --.. ... -PLATE X UINF CF/2 UTAU NNN 1 d

139

Langer and

-

[]

0

IJ

1 - 4

I

I

.134	060.	1.49	6.71	10	5984.	101.	.397E-05	UVUINE	. 320	3 .343	.3 .363	615. 0.	. 393	114. 1	18 .423	8 48	1 .465	067. 1	1 .516	1 .540	. 563	586. 5	· • • 10	****	166. 8	564. 2	5 .717	8 .743	6 .779	661. 6	1 .92:	4 .961	0 . 667	0 .922	956. 1	096. 5	£66· +	9 1.000	9 1.000			
"	"		"	- 4	12 =	"	u	Ð	41.1	44.1	46.5	49.7	53.4	52.8	54.3	51.5	2.65	63.0	66.4	69.4	72.3	1.51	1.5.				92.1	95.4	3.66	102.6	106.5	110.7	114.1	118.5	122.9	126.0	127.7	128.5	128.5			
0-1	052	I	0	951	RED	A LA	KX KX	7105	.009	.011	.014	.016	.019	.023	.027	•034	140.	.050	.061	• 10.	.033	101.	.122	.141.	176	203	.233	+92.	.304	.352	.406	.474	.541	.643	. 778	.913	1.049	1.184	1.319			
020675	15	5.8	129.59	.00238	6.27	0.000.0	. 739	V 10E2	.067	.089	.111	.133	.156	.189	.222	.278	.333	.411	.500	.611	.722	. 856	000.1	1.16/	1. 533	1.667	1.889	2.167	2.500	2. 489	3.333	3.889	1 1 1 1 1	5.278	6.389	1.500	8.611	9.722	10.933			
	•				"	"		*	.006	A 00.	010.	.012	.014	.017	.020	.025	.030	.037	540.	.055	.065	110.	060.	501.	021.		170	.195	. 225	.260	.300	.350	• 400	.475	.575	.675	511.	. 975	615			
RUN	PLATE	×	UINF	CF/2	UTAU	u.	30	Id	1	~	m	t	5	4	1	8	•	10	11	12	13	11		21		0	50	21	22	23	54	25	26	27	28	59	30	31	32			
.110	.077	1. 43	5.33	0.4	4732.	106.	297E-03	NUNE	.375	.398	.417	144.	.462	.476	66 **	.519	.532	. 551	.576	.598	.621	119.		000.		.743	.769	.789	. 611	.630	. 645	.867	649.	+16.	· 935	.952	.967	616.	186.	166.	1.000	1.000
11	μ	u		"	"		•	∍	44.03	46.65	48.91	51.60	54.15	68 . 55	15.85	60.84	62.37	64.61	67.56	12.01	72.56	1	01	5. 5	91.10	12.74	12.06	42.54	95.13	92.38	93.50	01.72	91 10	07.26	09.68	11.71	13.42	14.84	15.85	16.93	117.33	117.33
061	052	I	9	BETA	REDE 2	A30	¥8	20/1	600.	.012	.015	.019	.024	.028	.034	040.	.046	.055	.067	.082	160.	112	121.		105	225	.262	662.	.337	.374	.412	. 464	.524	665.	.674 1	. 749	. 828.	868.	\$26.	1.123 3	1.272	1.422
2275	12	16	7.33	0315	65.5	0 0 0 0	• 664	¥1062	.078	.104	.130	.169	.208	.247	662.	.351	£03.	184.	.584	.714	448.	416.	1.104	662.1	****	876-1	2.273	165.5	2.922	3.247	3.571	4.026	4.545	:195	5.844	6.494	7.143	7.792	8.442	9.740	11.039	12.338
= 02			= 11			.0		*	900	800	010	513	016	610	820	120	120	037	570	550	590.	510.	540	001	411.	150	175	202.	522	052.	215	310	350	1004	120	005.	055.	.600	.650	150		055
									•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	-		•				-	•						-	-	-		

1039 RUN	.132	.075	1.17	11.00	.02	3343.	- 22.	572E-05	NINI	.228	.249	.277	.305	.331	.360	.389	.420	844.	624.	.519	.553	.583.	.621	.660	.700	.751	.806	.872	. 925	016.	.993	1.000	1.000			
. F=0.0	"	"	"	"	"	"		:	5	19.70	21.54	23.96	26.35	28.63	31.16	33.64	36.34	38.78	41.40	16.44	47.86	50.08	4L . 25	57.11	60 · 54	65 . 49	69.76	75.45	80.25	93.91	95.52	86.52	86.52			
=0.29E-3	051	DE2	I	9	BETA	REDE	REK	ĸx	Y/DE	.013	-017	+20.	.032	540.	.056	.076	160.	.123	.151	·194	.236	.281	+324	.378	.432	.508	<b>*65</b> .	.702	.610	.910	1.026	1.134	1.242			
LE - KR=	5240	m	10	6.52	0157	3.43	0039	. 463	Y/062	.080	.107	.147	.200	.267	.360	.467	.600	.760	.933	1.200	1.467	1.733	2.000	2.333	2.667	3.133	3.667	4.333	5.000	5.667	6.333	7.000	7.667			
PROFI	= 03			•			•		*	.006	.008	.011	.015	020	027	.035	540.	.057	010	060.	110	130	150	175	200	.235	.275	325	375	425	475	525	515			•
UMEAN	RUN	PLATE	×	UINF	CF/2	UTAU	L	30	Id	-	~	m	\$	5	9		•	6	10	11	12	13	14	15	16	17	18	19	50	21	22	23	54			
000 RUN	.200	.133	1.50	6.78	00	8847.	102.	900E-06	U/UINF	.266	.311	.329	.344	.357	.371	.390	.411	. 445	.473	.503	• 540	.570	.602	.642	.679	. 716	.745	.785	. 524	.870	.911	.951	096.	966.	1.000	1.000
f = 0.0	"							•	•	36.96	39.90	42.23	44.15	12.53	47.71	50.16	52.87	57.24	60.74	69.49	69.36	73.28	77.31	45.56	87.30	91.50	92.28	01.32	05.52	11.83	17.08	22.25	25.96	20.05	29.50	28.50
·0.29E-3,	DE1	062	I	9	BETA	REDE2	REK	КR	A/DE	.006	.00.	.010	.012	.014	.017	.020	.025	.035	.046	.061	.081	101.	.131	.172	.222	.273	.324	1 662.	.475 1	.576 1	.677 1	04. 1	.930 1	1.082 1	1.234 1	1.385 1
FILE - KR=	020675	19	14	128.59	.00243	6.33	0.0000	696.	Y/062	.045	.060	.075	060.	.105	.128	.150	.138	.263	.338	154.	.602	.752	116.	1.278	1.654	2.030	2.406	2.970	3.534	4.286	5.038	116.5	6.917	8.045	9.173	10.301
PRO					"				*	.006	.006	.010	.012	.014	.017	.020	.025	.035	.045	.060	.080	.100	.130	.170	.220	.270	.320	368.	.470	.570	.670	.795	.929	.070	.220	016.1
UMEAN	RUN	PLATE	×	JNIN	CF/2	UTAU		30	Id	-	~	•		5	9	1	•	6	10	11	12	13	14	15	16	17	16	19	20	21	22	23	54	25 1	26 1	27 1

[]

[]

UMEAN	ad	OFILE - KR	=0.29E-3.	F=0.1	1039 RUN	HI	AN FR	OFILE -
NUN		030475	DE1		.205	RUN	u	030475
PLATE		5	DE2	"	111.	PLA	- 31	2
×		10	I		1.76	×		26
UINF		57.07	9		11.71	NIN		92.64
CF/2	"	.00136	BETA	"	14	CF	"	.00164
UTAU		3.21	REDE2		5264.	UTA	- 0	3.75
		ec00.	REK		52.	L.		.0039
30		141.	KR	"	.680E-04	30		.876
ta	*	¥ /0E2	1/05	•	U/UINF	14	*	Y/0E
-	.00	150. 8	.008	18.35	. 211	1	.00	•0• 9
~	00.	8 .068	.011	20.12	.231	2	.00	90. 8
-	10.	.085	.013	21.23	.244	F	.01	10. 0
	.01	3 .111	.017	22.95	.264	4	.01	3 .10
5	10.	6 .137	.021	24.24	.278	5	.016	6 .12
9	20.	111. 0	.027	25.78	.296	9	.021	0 .15
~	20.	5 .214	.033	27.38	. 314	•	.02	5 .19
	.03	2 .274	.043	29.32	.337	•	.03	2 .24
6	+0.	342	.054	31.25	.359	6	.04	. 31
10	.05	124. 0	.067	33.22	. 382	10	.050	.36
11	90.	5 .556	.087	35.97	.413	11	.06	5 .50
12	.06	5 .726	.114	38.78	.445	12	.00.	5 .65
13	.10	168. 5	141.	41.40	.475	13	.10:	5 .81
14	.13	0 1.111	.174	44.13	.507	14	.130	1.00
15	.15	5 1.325	.207	46.50	. 534	15	.155	5 1.20
16	.18	1.501 2	.248	54.64	.568	16	.185	5 1.43
17	22.	5 1.923	.301	53.40	.613	11	.22.	5 1.74
10	12.	5 2.350	.368	57.69	.663	16	.275.	5 2.13
19	32	5 2.778	.435	61.93	.711	19	.325	5 2.51
20	.37	5 3.205	.502	66.01	.758	20	.375	5 2.90
21	24.	5 3.632	.569	15.69	.804	21	.450	3.48
22	14.	5 4.060	.636	73.72	.847	22	.525	5 4.07
23	25.	5 4.487	.703	71.17	. 886	23	.600	1 4.65
54	15.	5 4.915	011.	50.33	.923	54	.675	5.23
52	.62	5 5.342	.837	82.52	.952	52	. 750	1 5.81
56	19.	5 5.769	706.	85.03	116.	56	.82	6.39
27	. 72	5 6.197	126.	86.12	696.	22	. 906	16.91
82	11.	5 6.624	1.037	86.70	966.	59	. 16.	5 7.55
59	28.	1 10.1 2	1.104	67.00	666.	62	1.056	3.14
30		5 7.479	1.171	87.07	1.000			
31	26.	905 1 5	1.235	87.07	1.000			

224.022 224.022 225.74 225.74 225.74 225.74 225.74 225.74 225.74 233.67 225.74 233.67 225.74 233.67 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.05 255.050

·208 •129 •1.61 9•34 •1•44 6196• 6196• UMEAN FROFILE - KR=0.29E-3, F=C.0039 RUN DE1 062 062 8614 8614 8614 86514

U/UINF

>

Y/DE

Y/052

. . 11

-

I

1

- marine

1

[]

[]

1

1

.131 1.50 9.35 -1.44 7524. UMEAN PROFILE - KR=0.29E-3, F=0.0039 RUN . 197 .294E-03 U/UINF L. 600 30 . 33 32 . 20 33 . 64 36 . 24 38 . 20 39 . 27 39 . 27 42.13 102.68 105.72 108.28 109.68 111.25 2 Y/DE .540 .7 .65 .613 .687 .981 1.374 1.200 1.200 1.200 1.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2.200 2. Y/062 1.145 030475 111.255 111.255 00161 4.466 1.019 . 900 1.000 1.250 1.250 . . . PLATE X UINF CF/2 UTAU BE id • 200 • 130 • 54 • 92 • 1 • 45 6843• UMEAN PROFILE - KR=0.29E-3, F=0.0039 RUN U/UINF .2786-03 101.16 88.09 94.27 97.46 99.73 91.38 3 051 052 6 6 867 86062 867 86062 2014 7.692 8.462 9.615 5.385 4.808 6.923 Y/062 101.66 .00154 .0039 .0739 030475 PLATE PLATE VINF CF/2 UTAU 30 2

1

0

0

[]

-

0

[]

-

1-1

I

I

I

ł

UMEAN	PRO	FILE - KR	=0.29E-3	. F=C.0	1039 RUN	UMEAN	PROF	ILE - KR	=0.296-3	. F=0.0	1039 RUN
RUN	"	030475	061	"	.195	RUN		30475	061	"	.239
PLATE	"	12	DE2		.131	PLATE		15	052	"	.155
×		94	I	11	1.49	*			I	"	1.54
UINF		116.62	9	"	16.1	UINF		29.19	9	H	11.27
CF/2		.00171	BETA	"	-1.36	CF / 2		16000	9514	"	21
UTAU			REDE	" 2	7888.	UTAU		3.99	9029	" 2	10251.
		.0039	REK	"	78.	u		.0039	REK	"	64.
30		1.046	ĸĸ		297E-03	30		1.220	53		2106-04
14	*	A/DE2	A/DE	Þ	UVUINF	PT	*	Y/062	105	•	UVUINE
-	.006	.046	.006	32.10	.275	1	.006	939.	.005	31.29	.244
~	.00.	.061	.008	34.09	.292		.005	.052	.007	33.67	.25.
	.010	.076	.010	36.26	. 311	m	.010	.065	.008	34.91	.272.
	.013	660. 1	.012	39.45	. 330	t	.013	100.	.011	36.95	.288
5	.016	.122	.015	40.57	. 351	5	110.	.110	.014	40.14	.313
9	.019	1 .145	.019	42.53	.365	9	.022	.142	.018	42.51	. 332
1	.023	1 .176	.022	44.76	.384	1	.030	.194	.0 25	46.35	. 362
•	.027	.206	.026	46.67	.402	•	0+0.	.258	.033	50.11	.391
•	.032	.244	.031	46.76	.418	6	.052	.335	.043	54.18	. 423
10	.039	962. 6	.037	52.07	.446	10	.065	.419	.053	\$6.12	.452
11	. 046	152. 1	** 0 *	53.92	.462	11	.080	.516	.066	61.46	627.
12	.055	.420	.052	56.36	. 483	12	560.	.613	.078	65.07	.508
13	.065	967. 5	.062	20.65	.506	13	.110	.710	060.	68.06	.531
14	.075	\$ .573	.072	61.21	. 525	14	.130	.839	.107	72.44	.557
15	.087	664	.0.83	64.27	.551	15	.155	1.600	.127	75.15	.586
16	.105	1 .763	560.	66.74	.572	16	.135	1.194	.152	79.11	.617
17	.11.	5 .876	.110	+0 - 69	-592	11	.225	1.452	.184	63.29	. 650
1.0	.130	266. 0	.124	20.89	.608	18	.275	1.774	.225	87.82	. 685
61	.150	1 1.145	.143	73.83	.633	19	.325	2.097	.266	11.26	.724
50	.171.	1.296	.162	76.49	. 656	20	375	2.419	.307	96.51	153
12	.195	1.489	.186	79.14	.679	21	.450	2.903	.369	101.56	561.
22	.221	1 1.679	.210	81.56	669.	22	.525	3.387	.430	105.71	.825
23	.255	1+6-1 5	.243	84.24	.722	23	.600	3.871	26 % .	109.501	158.
54	.295	5 2.252	.281	61.78	.753	54	002.	4.516	+25.	114.18	168.
25	. 340	1 2.595	.324	47 . 06	.776	25	. 800	5.161	.656	117.52	.920
26	.391	779.5 6	.372	93.72	.804	26	.925	5.96 8	.758	121.63	056.
27	44.	3.359	.420	96.59	.828	27 1.	.050	6.774	.861	124.53	516.
28	164.	3.740	.468	48.84	. 648	28 1.	.200	7.742	466.	126.71	696.
52	.550	1 4.198	.525.	101.59	.871	29 1.	.350	8.710	1.107	127.54	566.
30	.62	117.4 2	.596	104.89	660.	30 1.	005 .	9.677	1.230	127.68	. 998
31	.700	1 5.344	.668	107.53	.922	31 1.	. 650	10.645	1.352	128.18	1.000
32	. 800	1 6.107	.763	110.53	. 948	32 1.		11.613	1.475	128.15	1.000
33	.900	0 6.870	658.	113.00	.969						
34 1	.000	1 7.634	* 954	114.88	.985						
35 1	.100	19.397	1.050	115.95	<b>*66</b>						
36 1	.250	9.542	1.193	116.62	1.000						

.097 .062 1.57 6.85 6.85 .02 2013. .153E-07 U/UINF .371 .371 .371 .575 .577 .5775 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5575 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .5775 .57755 .5775 .5775 .5775 .5775 .5775 .5775 .575 F=0.0000 2 . . UMEAN PROFILE - K=0.28E-6, Y/DE Y/062 87.63 .00280 .00280 .00280 043075 . . . --. -PLATE X VINF UINF CF/2 UTAU DE Ta .372 .230 1.62 12.11 12.11 12.11 15263 .99 U/UINF JMEAN PROFILE - KR=0.295+3, F=0.0039 RUN 108.49 114.24 119.46 119.46 124.77 124.77 127.59 128.68 128.68 28.56 30.75 33.43 43.43 .13 103.31 . 48 10. .45 69 97.55 2 12 .... -= 53 Y/DE Y/062 128.68 128.68 128.68 1.0799 1.576 030475 .... PLATE VINF CF/2 UTAU RUN à 

RUN

1

1

0

0

0

1

UMEAN	PRO	FILE - K=	0-285-6.	F=0.000	0 RUN	UTEAN	10×1	ILE - K=	U. 285-6,	100.0=4
RUN		510240	DE1		.111	RUN		43075	DE1	
PLATE			DE2	"	.076	PLATE		6	052	"
×		56	I	"	1.46	×		34	I	
UINF	"	93.37	U		5.83	UINF		04.02	9	
CF/2	"	.00295	BETA	"	64	CF /2	•	50£00	BETA	"
UTAU		5.07	REDE2	"	3681.	UTAU		5.74	REDE	
		0.000	REK		61.	L	0 =	.0000	REK	¥
30	"	. 583	¥	= .2	70E-06	DE		. 626	¥	
ta	*	Y/062	YZDE	∍	UZUINF	14	*	Y /0E2	30/A	Э
-	.006	.079	.010	33.37	.357	-	900	.082	.010	36.74
~	.006	.105	.014	36.04	.366	2	800.	.110	.013	41.24
•	.010	.132	.017	38.00	.407		010	.137	.016	43.32
	.013	.171.	.022	14.04	. 433		510	.178	.021	45.35
•	110.	.224	.029	42.78	.458	5	.017	.233	.027	48.52
	.022	.289	.038	45.36	. + 86	•	022	.301	.035	51.71
~	.029	.382	.050	46.12	.515		820.	.384	.045	54.69
•	.038	.500	.065	45.05	.546	•	935	614.	.056	57.39
•	840.	.632	-082	53.59	.574	6	540	.616	.072	60.51
10	.060	.789	.103	56.12	.601	10	090	. 822	960.	64.42
11	.075	.987	.129	58.80	.630	11 .	080	1.096	.129	68.65
12	.100	1.316	.172	62.32	.667	12 .	105	1.438	.169	72.58
13	.130	1.711	.223	62.29	.705	13	130	1.781	.208	75.85
14	.160	2.105	+22.	68.72	.736	14 .	155	2.123	.248	78.91
15	.200	2.632	.343	72.25	.774	15 .	190	2.603	.304	82.28
16	.250	3.239	.429	76.05	.815	16 .	225	3.082	.359	85.25
11	.300	3.947	.515	19.40	. 650	17 .	515	3.767	•439	88.79
18	.350	4.605	.600	83.68	.886	18	325	4.452	.519	92.03
19	.425	5.592	.7 29	86.81	.930	19 .	315	5.137	665.	94.82
02	. 500	6.579	.858	90.12	.965	20	450	6.164	.719	93.20
21	.575.	7.566	996.	15.29	. 986	21 .	525	7.192	.639	100.91
22	.650	8.553	1.115	93.11	166.	22	600	8.219	.958	102.57
23	.725	9.539	1.244	18.56	1.000	23	675	9.247	1.078	103.53
54	. 800	10.526	1.372	93.37	1.000	24	150	10.274	1.198	103.62
						25	828	11.301	1.319	104.02
						26 .	006	12.329	1.439	104.02

0000.0

RUN

.105 .073 1.43 5.44 3933. .2726-06 .2726-06

I

Number of Street of Street

[]

Π

-

Ĩ

28E-6. F=0.0000

and a state of the second state of the second

RUN

.091 .065 1.40 5.09 5.09 4242. 113.

......... DE1 DE2 DE2 BETA RECE2 RECE2 U/UINF

2

RUN	PROF	ILE - K=	C. 29E-6	F=0.00	00 RUN	UMEAN	PROF	ILE - K=	0.256-6
PLATE	•	43075	051	"	.098	RUN		43075	061
-		11	052	"	.069	PLATE		12	053
×		42	I		1.42	×		46	I
UINF		17.61	9	"	5.33	UINF	"	26.72	9
CF/2		50200	8511	"	57	CF/2	•	£1£00	861
UTAU		6.50	REDE	. 2	4189.	UTAU	"	1.09	REC
-	-	0000.	REK	"	104.			.0000	RE
DE		.610	×		292E-06	DE		. 603	¥
1 d	*	Y/DE 2	101	∍	U/UINF	14	*	Y/0E2	1105
	900	.087	.010	46.11	.392	1	.006	260.	.010
~ ~	800	.116	.013	16.14	.408	2	.00.	.123	610.
	010	.145	.016	50.09	.426	•	.010	.154	.017
+	013	.169	.021	52.07	.450	*	.013	.200	.022
5	110	.246	.028	56.29	624.	5	110.	.262	.028
. 9	220	.319	.036	59.67	.507	9	.022	.338	.036
	820	.406	.046	63.28	.538	1	.028	.431	.046
	035	105.	.057	66.28	.564	•	.035	.538	.058
. 6	540	.652	.074	71.05	-597	6	540.	.692	.075
10 .	960	. 870	860.	74.56	. 634	10	.960	.923	.100
11 .	080	1.159	.131	19.40	.675	11	.080	1.231	.133
12 .	105	1.522	.172	83.91	.713	12	.105	1.615	.174
13 .	130	1.884	.213	37.65	.745	13	.130	2.000	.216
14	155	2.246	.254	91.25	.776	14	.155	2.305	152.
15	190	2.754	.311	94.85	.806	15	.190	2.923	.315
16 .	225	3.261	.369	98.23	. 835	16	.225	3.462	.373
17 .	275	3.986	154.	102.19	.869	17	\$12.	4.231	.456
18 .	325	4.710	.533	105.53	768.	1.8	. 325	5.000	. 539
19 .	375	5.435	.615	108.48	.922	19	.375	5.769	.622
20 .	450	6.522	.739	111.89	.951	20	.450	6.923	.745
21 .	525	7.609	.861	114.47	.973	21	. 525	8.077	.071
22	600	8.696	486.	116.23	. 988	22	.600	9.231	.995
53	675	9.783	1.107	117.16	. 996	23	.675	10.385	1.119
24	150	10.870	1.230	117.41	866.	54	.750	11.538	1.244
25	825	11.957	1.352	117.61	1.000	25	.025	12.692	1.368
26	006	13.043	1.475	117.61	1.000	26	006.	13.846	1.493

50.02 53.05 53.05 53.05 53.05 53.05 53.05 54.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55.05 55

1

1

1

REVNOLES STRESS TENSOR COMPONENTS - KR=0, F=0 RUN

1

[]

[]

the second

Π

-

I

1

RUN	=	011175	CF/2	=	.00	234	DE1	=	.26€	BETA	=	0	.00	
PLATE	=	17	UTAL	=	4	.24	DE2	=	.182	REDE2	=	80	81.	
X	=	66	F	=	0.0	000	н	=	1.46	REK	=		67.	
UINF	=	87.73	DE	=	1.	352	G	=	6.53	KR	=	0.		
۲		Y/DE	U	UPZ	UIZ	v	P2/U12	WF	2/012	-UV/UI2		02/012	RUV	RQZ
.009		. 007	27.59	. 0	0780									
.020		.015	34.11	. 0	0812									
.030		.022	37.53	. 0	1841									
.045		.033	41.08	. 0	891									
.060		.044	43.67	. 0	1916									
.080.		.059	46.74	. 0	935									
.100		.074	48.86	. 01	1939									
.130		.096	51.32	. 01	935		.00309		00505	.00221		.01749	.411	.126
.165		.122	53.79	. 01	910		.00330		00469	.00227		.01709	.414	.133
.200		.148	56.28	. 01	884		.00318		00466	.00226		.01667	.427	.136
.300		.222	61.33	.0	0801		.00302		00435	.00217		.01538	. 441	.141
. 400		. 296	64.86	. 01	715		.00305		00408	.00198		.01428	. 424	.139
.600		. 444	71.48	. 0	1572		.00254		00337	.00167		.01162	.438	.144
. 800		.592	76.92	. 0	1433		.00181		00256	.00124		.00870	.443	.143
1.100		.814	83.74	. 0	216		.00105		00113	.00057		.00434	.379	.131
1.400	1	1.036	87.21	. 0	0041		.00036		00026	.00011		.00103	.287	.10 €
1.800	:	1.331	87.73	. 01	005									

REVNCLOS STRESS TENSOR COMPONENTS - KR=0.15E-3, F=0.0000 RUN

RUN	=	040375	CF/2	=	.00	2 66	DE1	=	.183	BETA	=		. 40	
PLATE	=	17	UTAL	=	5	.19	DE2	=	.131	REDE2	=	685	54.	
X	=	56	F	=	0.0	000	н	=	1.40	REK	=		84.	
UINF	=	100.71	DE	=	1.	119	G	=	5.58	KR	=	.146E	-03	
۲		YIDE	U	UP2	/012	v	P2/UI2	WF	2/012	-UV/UI2		92/012	RUV	RQZ
.006		.005	33.47	.0	0737									
.010		.009	37.60	.0	0 307	•								
.020		.018	44.09	.0	0873									
.035		.031	50.04	.0	0936									
.045		.040	53.06	. 0	0950	1								
.060		.054	56.44	.0	0961									
.080		.071	59.97	.0	0967									
.105		.094	63.55	. 0	0942									
.130		.116	66.46	. 0	0909		.00224		00366	.00214		.01499	.474	.143
.155		.139	6 8. 80	.0	0 8 7 3		.00234		00351	.00210		.01458	.465	.144
.190		.170	71.75	. 0	0818		.00198		00332	.00196		.01348	.487	.145
.225		.201	74.46	.0	0754		.00202		00312	.00146		.01268	.477	.147
.275		.245	77.47	. 0	0679	1	.00167		00282	.00173		.01148	.486	.151
.350		.313	80.92	. 0	0566		.00185		00263	.00151		.01014	.467	.149
.425		. 380	84.16	. 0	0481		.00163		00229	.00131		.00873	.468	.150
.500		. 447	86.79	. 0	0410		.00153		00204	.00115		.00767	.459	.150
.700		. 626	92.56	.0	0259		.00108		00133	.08074		.00500	. 442	.148
.900		.804	96.95	. 0	0143	1	.00065		00064	.00038		.00272	.394	.140
1.150	-	1.025	100.06	. 0	0032									

RUN	=	040375	CF/2	=	.00	263	DE1	=	.181	BETA	=		.38	
PLATE	=	22	UTAU	=	5	. 85	DE2	=	.131	REDE2	=	76	43.	
X	=	86	F	=	0.0	000	н	=	1.35	REK	=		93.	
UINF	=	114.07	DE	=	1.	192	G	=	5.41	KR	=	.139E	-03	
۲		Y/OE	U	UPZ	1012	•	P2/U12		2/012	-01/012		22/012	RUV	RQ2
.006		.005	40.05	. 01	0740									
.008		.007	42.11	. 01	0773									
.018		.015	49.34	. 01	0874									
.033		.028	56.11	. 0	933									
.045		.038	59.86	. 01	957									
.060		.050	63.70	. 00	962									
.080		. 967	67.39	. 01	963									
.105		.088	71.58	. 01	939									
.130		.109	74.94	.01	0907		.00195		00365	.00202		.01467	. 480	.138
.155		.130	77.49	. 01	0 969	1	.00200		03329	.00191		.01398	.458	.137
.190		.159	80.85	. 01	0803		.00204		.00317	.00184		.01324	. 455	.139
.225		.189	83.61	. 01	0750	1	.00207		00289	.00176		.01246	.447	.141
.275		.231	87.26	. 01	0672		.00195		00266	.00162		.01133	. 448	.143
.350		.294	91.03	. 01	0 563		.00164		00242	.00138		.00969	. 454	.142
.425		. 357	94.71	. 01	1475		.00155		00215	.00123		.00845	.453	.146
.500		.419	97.39	. 01	397	•	.00148		00183	.00105		.00728	. 433	.144
.700		.587	103.54	. 0	0241		.00099		00124	.00067		.00464	. 434	.144
.900		.755	108.02	. 01	0139	1	.00059		00065	.00038		.00263	.420	.144
1.150		.965	111.49	. 0	0044									

REYNOLDS STRESS TENSOR COMPONENTS - KR=0.15E-3, F=0.0000 RUN

REYNOL	.cs	STRESS	TENSOR	COMPON	ENTS	- KR=	0.2	9E-3,	F=0.0000	RL	IN		
RUN	=	022275	CF/2	= .00	307	0E1	=	.111	BETA	=		.41	
PLATE	=	11	UTAU	= 6	. 14	DE 2	=	.077	REDE2	=	44	66.	
x	=	42	F	= 0.0	000	н	=	1.43	REK	=		99.	
UINF	=	110.77	DE	= .	658	G	=	5.46	KR	=	.282E	-03	
Y		Y/DE	U	UP2/UI2	VP	2/UI2	WF	2/012	-UV/UI2		Q2/UI2	RUV	RQZ
.008		.012	43.70	.00770									
.013		.020	48.22	. 00842									
.019		.029	52.31	.00899	1								
.023		.035	54.53	.00924									
.027		.041	56.51	.00939	1								
.031		.047	58.05	.00953	5								
.037		.056	60.70	.00958	1								
.045		.068	63.39	.00966	1								
.055		.084	66.28	.00966	,								
.065		.099	68.61	.00951									
.075		. 114	70.88	.00939									
.100		.152	74.84	.00885									
.130		. 198	79.48	.00815		00241		00382	.00209		.01438	.472	.14
.150		. 228	82.01	.00767	•	62200		00357	.00192		.01353	. 458	.142
.175		.266	85.00	. 00712		00218		00318	.00183		.01248	. 464	.141
.200		. 304	87.32	.00648		00204		00304	.00168		.01156	.462	.14
.225		. 342	89. 52	.00593		00182		00273	.00151		.01048	.460	.144
.275		. 418	93.38	.00487	•	00154		00230	.00129		.00871	.471	.148
.350		.532	96.32	.00359		00117		00174	.00096		.00650	. 468	.140
.450		.684 1	03.65	.00224		00079		00109	.00061		.00412	.459	.148
.600		.912 1	08.64	.00077		00039		00041	.00020		.00157	.365	.121
. 75 0	4	. 160 1	16.50										

1

]

1

I

1

REYNOLDS STRESS TENSOR COMPONENTS - KR=0.295-3, F=0.0039 RUN

RUN	=	030675	CF/2	=	.00:	161	OE1	=	.197	BETA	=	-1	.44	
PLATE	=	11	UTAU	=	4	. 44	DE2	=	.131	REDE 2	=	75	24.	
×	=	42	F	=	.01	39	H	=	1.50	REK	=		72.	
UINF	=	110.67	DE	=	1.	019	G	=	8.35	KR	=	.294E	-03	
۷		Y/DE	U	UPZ	UIS	V	P2/UI2	WP	2/012	-01/012		22/012	RUV	RQZ
.008		.008	33.06	. 01	0836									
.013		.013	36.92	. 0	889									
.023		.023	42.63	. 01	969									
.032		.031	46.28	. 0:	1031									
.046		.045	50.88	. 0 :	1088									
.065		.064	56.16	. 0:	1135									
.075		.074	58.21	. 0 :	1141									
.087		.085	60.64	. 0	1147									
.100		.098	62.89	. 0:	1145									
.115		.113	65.44	. 0 :	1136									
.130		.128	67.73	. 0:	1117		.00318		00525	.00271		.01960	.455	.138
.150		. 147	70.15	. 0:	091		.00301		00513	.00269		.01905	.469	.141
.195		. 191	74.68	. 0 :	1000		.00304		00463	.00261		.01767	.473	.148
.295		.289	82.75	. 0	0813		.00270		00381	.00224		.01464	.478	.153
.390		. 383	88.60	. 01	1667		.00215		00314	.00186		.01196	. 4 91	.15 E
.550		.540	96.44	. 01	1452		.00167		00233	.00133		.00852	.484	.156
.700		. 687	102.38	. 01	1297	-	.00118		00158	.00089		.00573	.475	.155
.900		. 883	107.80	. 01	122		.00070		00065	.00037		.00257	.400	.144
1.100	1	1.079	110.24	. 0	0024		.00024		00015	.00007		.00063	.292	.111

REVNOLDS	STRESS	TENSOR	COMPONENTS	-	K=0.28E-6,	F=0.0000	RUN	

RUN	=	050375	CF/	2 =	.003	05	DE1	=	.098	BETA	=		.57	
PLATE	=	11	UTA	U =	5.	42	OE 2	=	.069	REDE2	=	418	89.	
x	=	42	F	=	0.00	00	H	=	1.42	REK	=	10	04.	
UINF	=	116.23	DE	=	.6	10	G	=	5.33	ĸ	=	. 292E -	-06	
۲		Y/DE	U	UP2	21012	VP	2/012	WP	2/012	-04/012		Q2/UI2	RUV	RQZ
.006		.010	45.74	. (	0768									
.010		.016	50.22	. (	0801									
.017		.028	56.04	. 0	0865									
.028		. 146	52.70	. (	0922									
.035		.057	65.95	. (	0932									
.045		. 074	69.77	. (	0931									
.060		.095	74.29	. (	0911									
.080		.131	79.03	. (	0869									
.105		.17?	83.47	. (	8080									
.130		.213	87.43	. (	0742		00208		00309	.00185		.01259	.471	.147
.155		. 254	90.56	. (	0677		00175		00282	.00164		.01134	.476	.145
.190		.311	94.55	. (	0581		00156		00249	.00145		.00986	.482	.147
. 225		. 369	97.68	. (	0494		00159		00219	.00131		.00872	. 467	. 150
.275		. 451	101.69	. 0	0391		00128		00181	.00102		.00700	.456	.146
. 325		. 533	104. 58	. (	0306		00097		00144	.00080		.00547	. 464	.146
.375		.615	107.51	. (	0236		00082		00109	.00063		.00427	.453	.148
.450		.738	110.82	. (	0156		00053		00067	.00040		.00276	. 440	.145
. 525		.861	113.34	. (	0087		00040		00043	.00024		.00170	.407	.141
.600		. 984	114.85	. (	0041									