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/ THE STATUS OF THE NONLINEAR THEORY OF DRIFT
j AND TRAPPED PARTICLE INSTABILITIES

This note is a short appraisal of the status of nonlinear theories
for drift waves and trapped particle instabilities as seen by the author.
Such instabilities are thought to play a crucial role in the energy
confinement capability of tokamaks.¥ First I will discuss some of the

phenomenological® and strong turbulence theories?if’and then go on to
the more quantitative weak turbulence theories,® 4f4< o,

o R T :
Of the phenomenological theories, the mos§ widely used general g ¢/¢?
concept® is that saturation occurs when the drift wave or trapped v
particle instability induced radial density gradient, ~k_ én is com-

parable to the main density gradient no/L . When this is so, according

to conventional wisdom, the wave no longe% sees the gradient which drives

it, and therefore saturates. This argument may not make any sense at

all. Even if the argument is potentially sound, it cannot really be

applied quantitatively to a tokamak plasma.

On the first point, it is important to realize that the wave
induced density gradient oscillates at the wave frequency. Thus if
VM ~n /L at one point in the oscillation cycle, so that there is no
density gradient, then half an oscillation later, V. .én ~ -n,/Ln, so
that the density gradient is twice as big and the plasma is twice as
unstable. To this author, the most reasonable thing seems to be that
the wave will somehow average over these fluctuations in gradient scale
length and pick out some average value (i.e. nearly the original density
gradient). 1In any case, while linear theory may break down when
vr6n~n°/Ln, this does not mean saturation will occur at the breakdown
point. It is worth pointing out that such an argument fails for a
current driven ion acoustic instability. If the current velocity is
V., one might argue that when the oscillating velocity of an electron
at V_, is of order V_, these electrons do not see the current, so the
inscgbility should saturate. This argument would give ep/To~ (V. /Ve)a.
In fact, theory and simulations of ion acoustic instabilities consistently
indicate saturation by ion trapping at much larger values of ew/Te.

Even if one buys the concept of wave induced gradients cancelling
ambinet gradients, it is not clear how one applies the theory. For
instance trapped electron instabilities are driven principally by electron
temperature gradients.

Note: Manuscript submitted September 3, 1976.
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Should not the stabilization condition then be V éTe it /LT? 1f so, much
larger fluctuation amplitudes are indicated because generglly <L, ad
also é're/'l‘e << Gn/no as a result of the good thermal conduction along field
lines. Andther important point is that V_ of the fluctuation is not known
since the radial structure of the mode is still not well understood. Ome
could suppress the coupling of radial and azimuthal structure,>so that the
radial dependence is a normal shear eigenfunction exp ~ (—=2) , where r_ is
the position of the mode rational surface, ¢ = p, (L_/L )192 and L is the
shear length. Even accepting all this, what does oné t3ke for v_7° It varies
from zero on the mode rational surface to infinity far away. With so many
fudge factors available, it is not at all surprising that theory can 'explain'
experiments.

We now discuss the strong turbulence theories.®=5 The basic assumption
here is that when wave amplitudes become large, and the spectrum is highly
turbulent the ion orbits are grossly perturbed. Instead of linear orbits, the
ions diffuse across the field with diffusion coefficient D. Putting this addi-
tional diffusion in the ion continuity equation, it is a simple matter to show
that it gives rise to a damping term k®D. Thus, when D ~ (y/k2),,., every wave
in the spectrum will be stabilized and one has the anomalous ionué§ffusion
coefficient.

This simple and appealing strong turbulence picture also has many problems.
First of all, if one adds -k®D to the growth rate of each wave; whea the last
wave has been stabilized, all other waves have negative growth rate. Therefore
the spectrum would quickly collapse into a single wave and viclate the initial
assumption of a turbulent spectrum. I believe that this conceptual problem
must be faced and resolved in a convincing way before the strong turbulence
theory can be used legitimately.

Secondly, the hypothesis that ion orbits diffuse is assumed and not proved.
One can in fact give a very simple counterexample, a nonlinear drift wave.

For a drift wave, the ion fluid is described by cross field E x B drifts

® = x'-:';z
B ke B L e (1)
where B = B, If the electrons are Maxwellian,
ed
ne(x) = no(x) exp T, (2)

as they are for a drift wave, and the plasma is quasi-neutral,
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ne'nian) (3)

one can easily manipulate Eqs. (1) - (3) to give

> (efa\_ eT, Sa (x) [ e el ()
3¢t Te/ eBno(§7 Ox ey \Te

Notice that Eq. (4) has two remarkable properties. First, it is linegr in @ |
even though no linearization was assumed. Second, it involves only even
though the spectrum was assumed to be fully two dimensional in x and yz Notice
that not only is there no diffusion term or dissipation term of any kind, there
is not even a vortex production term (i.e. a term involving derivatives ia both
x and y). Also, it is worth pointing out that instead of Eq. (2), one could

have allowed n, to be any function of @ and still ended up with a one dimensionzal
linear equation. Thus it appears that ions can diffuse at large wave amplitude
only because of corrections to Eq. (2), which are usually small. The strong
turbulence theory has to resolve this difficulty in a convincing way. Even if
the ions do diffuse, it is the electron thermal conduction and not the ion
diffusion which seems to be the most relevant transport effect for tokamaks.

Thus the ion diffusion must be related to electron thermal conduction. Finally
it is worth pointing out that just as one shows from the fluid equations that
ion diffusion is a stabilizing effect, one can also show that electron thermal
conduction i3 a destabilizing effect. Implications of this for the strong
turbulence theory are still unclear.

Another qualitative concept, is that of free emergy.®~*! A drift insta-
bility is assumed to be driven by expansion free energy in the plasma. For
instance the authors of raference 12 assume that the free energy is that energy
released by a plasma in adiabatjcally expanding to uniform density over a distance
of the shear induced radial extent of the unstable wave. As the plasma expands,
free energy is converted to wave energy. An upper bound to the wave energy
therefore occurs when all free energy is converted to wave energy.

1f the free energy and all constraints are properly calculated, such an
argument is valid for an isolated plasma which expands freely. However, it
is difficult to see how the argument can be applied to a tokamak plasma which
is not isolated, but is in steady state. It is continuously receiving energy
from the external circuit and losing it to the external environment. Thus as
free energy is converted to expansion energy, it is simply replaced by the 3
external circuit. If free energy arguments are to make any sense for tokamak
plasmas, these arguments must be formulated for plasmas coupled to thair eaviron-
ment, not for isolated systems.

I would now like to discuss the more quantitative turbulence theories °~° :
starting with mode coupling. NRL has solved several mode coupling problems}®-1S 4

and several similar problems have been worked out for parametric instabilities
at other laboratories.>”,*®




The basic idea is that each mode amplitude C(k) obeys an equation

dCc(k)

T = (v(k) + iw(k)C(k) + E, M(k,k“)C(k”)C(k-k") (5)

where v(k) is the linear growth rate, M(k,k') is the coupling coefficient and
w(k) is the frequency of the mode with wave number k. The system of equations
(5) can then be solved numerically for a large number of modes.

For those k’ which have

w(k) = w(k-k") + w(k’) (6)

the mode coupling terms drive the mode at k at its own resonant frequency. It
is at such k that the effect of mode coupling maximizes. If. Eq. (6) is
satisfied only for a small part of the spectrum, one can show*® that Eq. (5)
simplifies and reduces to a series of equations involving |C(k)|2, that is all
phase information drops out. On the other hand, if Eq. (6) is satisfied, or
nearly satisfied for all waves in the spectrum, no simplification can be made
and Eq. (5) must be solved as is, retaining all phase information. For drift
waves and trapped electron instabilities

w(k) = KV + ba(k) (7)

where Mw << w for kP, << 1, Thus Eq. (6) is nearly satisfied for all k. 1If
tw(k) were zero, Eq.” (6) would be exactly satisfied for all k.
There are two general subcategories to Eq. (5). On one hand, the mode

coupling terms may not dissipate energy, but only transfer the energy around
in k space. That is

Z x(k,k')c*(k) c(k’) C(k-k”") = 0. (8)
kkl

On the other hand the mode coupling terms may dissipate energy, or




Z M(k,k”) C*(k)C(k")Cc(k-k”) * 0. (9)

kk

An example of the former type of mode coupling is the steepening of a sound
wave, An example of the latter is nonlinear Landau damping. It is worth
pointing out that if Eq. (9) is satisfied, there is no reason a priori to
assume the nonlinear terms give rise to damping. They may well give rise to
growth,

Only the former, Eq. (8), has been investigated so far in tokamak context.
From Eq. (&) one can easily show that in steady state

Z v(k)|c(k)]2 = 0. (10)

L4

k.

Therefore in order for a steady state to form, there must be damping as well
as growing waves,

While a growth rate spectrum like that shown in Fig. la cam in principle
give rise to a wave spectrum satisfying Eq. (10), our own experience with
numerical solutions of Eq. (5) shows one cannot expect stabilization in this
case. Rather the growth rate spectrum must have the form shown in Fig. 1b.

The presence of dispersion (a2 non zero Aw(k) in Eq. (7)) makes the situation
even worse. For the cases studied in Ref. 8, 15, we found that with dispersion
present, the growth rate spectrum must look more like that plotted in Fig. lc.
Solving Eq. (5) numerically with and without dispersion can easily mean an arder
of magnitude change in anomalcus transport coefficient.

Thus nondissipative mode coupling only appears to be a viable stabilization
mechanism if one is not far from instability threshold. In our own work® on the
dissipative trapped electron mode, we found nonlinear stabilization only if drift
resonances®® were neglected. If drift resonances are included, the growth rate
spectrum does not look like that shown in Fig. lc and one does not find stabili~
zation by nondissipative mode coupling. At this point, the theory must be
regarded as a failure. In the similar Princeton work’ on the trapped ion insta-
bility, dispersion was neglected even though some of the modes involved in the
coupling have frequency not much less than the ion bounce frequency. Thus,
this theory, as it is now, is at best highly questionable. Even taking its
results at face value, one finds viable stabilization only at quite low tempera-
ture. The transport coefficient scales as T'°/2 far from marginal stability,
and gives reasonable values only below about a kilovolt.
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It is possible that by including the dissipative effects of mode coupling,
Eq. (9), some of the difficulties of mode coupling may be resolved. This has
not yet been done. However it seems clear that in future papers in this
area, a reader has a right to know just where the dissipation is coming from. Do
the nonlinearities simply form a bridge between linear growth and damping, or do
the nonlinearities provide some or all of the necessary dissipation?

Another quantitative theory which has proven to be a failure is electro-
static trapping. Since electrostatic trapping is such a potent stabilization
mechanism for beam plasma, and ion acoustic instabilities, it is natural to
suspect that electrostatic t-zpping along a magnetic field line could also
stabilize a trapped electron Instability. For the case of a single unstable
wave in a square magnetic potential, the nonlinear calculation is actually
quite straightforward. We have investigated this problem® and have found. no
stabilization until e¥/T, approachs totally unrealistic values (ey/T ~100€ ).

The basic difficulty seems to be that trapped particles don't much care whether
they are trapped magnetically or electrostatically. They still drive instability.

I would conclude that the whole area of anomalous transport through non-
linear theory is not in very good shape at all. While there may be good
experimental bases for various scaling laws for electron thermal transport from
tokamaks, there is no solidly based theory. The multiple regime transport co-
efficients in WASH 1295 just cannot be taken seriously.

With nonlinear theories in such bad shape, the best remedy is lively and
frank discussion by as many interested parties as possible. One obstacle to
this is that many nonlinear theories are bewilderingly complex with theorists
at their wits end. I think it is fair to say that most nonlinear theorists do
not understand most nonlinear theories. What then is an outsider, say an
experimentalist or contract monitor, to do? My feeling is that there are
certain bases which a nonlinear theory ought to touch which nearly any scientist
can understand, and also, there are certain well posed problems in existing
theories. I hope this letter sets out some of these bases and conceptual
problems so that other scientists can understand more easily what nonlinear
theorists are trying to do. Conversely, I hopé it encourages nonlinear theorists
to touch these basas and address these problems in their own publication

Finally, my own feeling is that if tokamaks are to play an important part
in this country's energy supply, research in this area should become more
broadly based. It is the authors hope that this note will help to broaden
the base in the area of nonlinear theory.
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Fig. 1 — Schematic of the sort of growth rate spectrum for which mode coupling
is not (A and B) and is (C) a viable stabilization mechanism
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