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PREFACE
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staff. The work of this report was developed upon the foundation set in a
prior report entitled "Design Concept for an Augmented Relational Intelligence
Analysis System (ARIAS)", August 1973, by Dr, J. Sable, et al, Dr. J, Sable
was also the program manager for this report and provided valuable critical
and technical assistance. The support of Rome Air Development Center and

Mr. Robert Ruberti, the Technical Monitor is gratefully acknowledged.
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? EVALUATION

Design specifications for a deductive inference system have been de-

F livered under Contract F30602-74-C-0250. When implemented as an adjunct to

an intelligence information system, an inferential system will improve
analyst-data base interactive capabilities, i.e. , augmenting information

ta retrieval, reducing data storage requirements, providing interactive hypothesis
testing. Future application of inferential data analysis is planned for the
Scientific and Technical Information System (STIS) at the Foreign Technology
Division. This development is included as part of TPO #4, Intelligence Data

Handling.
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ROBERT N. RUBERTI
Project Engineer
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SECTION I. INTRODUCTION

"An inference system derives conclusions (inferences) from facts
and premises.," This Webster Dictionary definition is interpreted to include
inferences that are new facts, not heretofore assembled, and existing facts
available within a body of preassembled fact data, Much of inferential logic
in current literature deals with former, that s the generation of new
facts implied by a body of fact data and a set of premises. This is evident in
the areas of problem solving and theorem proving. However, in the arena of infor-
mation systems, emphasis is upon the latter, that is, upon finding facts that
currently exist in an assembled body of fact data, or that may be generated upon
request by specialized fact generators (computer programs). The facts sought are
those that can satisfy an information query. The query may be a primitive direct
request as "have you any X, Y and Z facts?"; or the query may be as complex
as "what facts have you that satisfy.,.. (and a list of interrelated conditions
are stated)Z". The query may also be posed with conditions on the number
of answers desired and with qualifications on the answers (e.g., precision,
credibility).

1f the fact data of an information system were organized ‘to be "expli-
citly responsive to every valid query, the logical (data relational) organization

1-1




and the efficiency of fact base storage, in regard to redundancy needs and
accessibility, would likely aquire a superstructure, which might be overwhelm~-
ing even for a relatively small information system. As a practical matter, to
circumscribe such overhead, an information system is supplemented by rules that
reflect data relationships among facts of the fact base, so that not all infor-
mation need be explicit in the fact base. The rules may also provide repre-

sentation of fact relationships that are alternates to relationships explicit

in the fact base, to afford alternative, less costly, accesses to facts.
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SECTION II. INFERENCE SYSTEM CONCEPTS AND ARCHITECTURE

An inference system is a subsystem within an information system. It

lies between the information system Dialogue package and Fact Base, with formal

interfeces as shown in Figure 2-1. The primaery components of the inference system

are:
(1)
(2)
(3)
(4)
(5)

Query Anslyzer
Deduction Mechanism
Deduction Rules

Fact Search Mechanism
Answer Responder.

A Performance History Analyzer component is included as & sixth component to

support the inference system in & learning or adaptive mode so that it may

cope with changing operational situations.

The Deduction Rules (or just Rules) component contains (logical re-

lational descriptions (expressed in this report by the Predicate Calculus) that:

(1)
(2)
(3)

characterize the fact base and its inter-relationships,
generate special data sets, and
contain assertions, whose fact satisfiability is not

necessarily assured.

2-1




INFORMATION SYSTEM

INFERENCE SUBSYSTEM FACT BASE
USER
(Relational Data
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Figure 2-1, Inference Subsystem in an Information System




The Rules component is extendible to include rules thet trens-
late and enable alternate versions of a query. This permits the same
requirement to be exppressed differently by users, and may properly be
regarded as providing a query language translation capability within the

inference system.

The inference system operates as follows. A user query is passed
to the inference system by the information systems Dialogue., The query is
then processed by the Query Analyzer, which prepares it in the proper logical

form for deduction processing. The Deductive Mechanisms of the inference

system attempt to ascertain the satisfiability of the query by farts exist-
ing within the information system fact base, by facts generatasbl: y special

generators, or by some of the Deduction Rules.

The Deduction Mechanism generates deductions by employing logical
inference techniques, that are well established in the literature; see References,
in Appendix F. The different approaches cited in the literature are generally
equivalent in that they derive the same results, utilizing the logic of the
predicate calculus, There are variations among approaches designed to simplify
operations for computer computation; and we have chosen and adapted, with this
purpose, the OL-Deduction approach described by Chang and Lee, Reference 1,

Given a workable deduction approach, a principle concern has been
to devise a strategy that helps to narrow the almost limitless range of pos-
sible deductions that may be generated in the search for useful, potentially
satisfiable deductions. On this matter, there is little of substance ir
the current literature, and very little in the way of practical experience,
see Reference 6. Four approaches, however, are identified and to various

extents practices. They are:

(1) Deduction Expression Characteristics. Presume success
probabilities (e.g., likelihood of a deduction being

satisfied or leading to another satisfiable deduction)
by correlating success probability values with certain
aspects of the deduction statement, such as, the number
of logical expressions in the statement, Chang and
Lee, for example, enumerate 14 such content-independent
characteristics of a deduction statement,




This approach leaves much to be desired since it presumes,
in effect, that the satisfiability of a deduction correlates
with the expression of a deduction rather than with the
"meaning" of the deduction in the context of an information
system, It suggests, for example, that short deduction
statements are more likely to be satisfied than long
deduction statements,

(2) Breadth versus Depth, Most deductive systems generate
deduction trees in which each node of the tree is a
potential deduction resolved from its parent nodes on
the tree, The deduction tree can be encouraged to
expand depth-wise or breadth-wise, arbitrarily., Con-
tentions arise as to the merit of developing a tree
along its breadth prior to descending ip tree depth,
visa versa, or the myriad of in betweens, Deduction
development approaches based on breadth/depth con-
siderations are even more limited than (1) above in
regard to reflecting the content of deductions, and
tend to wander into meaninglessness as the deduction
tree expands,

(3) Success History. This a probabilistic approach in
which the likelihood (probability) of a successful
(i.e., satisfiable) deduction or of leading to a
successful deduction is estimated on the basis of a
deduction's success history. The approach is, in
this sense, content related. This approach collects
statisfical performance data on logical expressions
appearing in deductions, to compute porbabilities. r
The approach is presumed to work well in a stable
information system, that is, in one whose fact
base and rules change slowly in comparison with
usage.

(4) User Interactions, The user (inquirer) is engaged in
this approach in directing deduction development, An
exchange is provided via the Dialogue of the information
system, For. practical operation, this approach does not
necessarily involve the user in evaluating each potential
deduction (since thousands of potential deductions could 1
be generated for difficult queries), rather, milestones 1
or conditions are set as criteria for engaging the users
aid. Considerations relating to these are:

(a) shall a high probability deduction be pursued
which has a predicted heavy computation load
compared to other potential deductions?

(b) shall the deduction process be pursued further,

having exceeded a prescribed computational budget
allotment?

B




(¢) will the user wish to restate his query based on
partial results thus far achieved?

This approach is highly effective in that it brings the user
and the information system together, in a dialogue, for
answering queries. It does not, however, absolve the
inference system from doing its part to automate the query
é answering service,

In this report we have placed our emphasis for the design of deduction
development upon the content related approaches, namely, the Success History

and User Interaction approaches, putting aside as incidential the other two,

At the outset, we had recognized that the heaviest computation burden
(use of resources) and processing delays lay not in the Deduction Mechanism,
but rather in the Fact Search Mechanism, (refer to Figure 2-1)., Whereas, the
Deduction Mechanism might generate a large quantity of deductions, these could
be computed very rapidly by high~speed computer; and, assuming low cost bulk
storage availability and an overlay storage capability, a low cost could be
expected for computer storage and computing resources by the deduction process.
On the other hand, the Fact Search Mechanism, which generates specific facts
and collects selected fact data from the information system fact base,
entails extensive and expensive data retrieval and data manipulation operations,
Fact retrieval requests transmitted by the Fact Search Mechanism to the in-
formation systems fact base initiate large data search and retrieval operations
in that area of the information system, along with substantial delays associated
with the required searches through the fact base. For these reasons, great
attention was given to the Fact Search Mechanism of the inference system, to

its assigned functions and to its design.

The Fact Search Mechanism (FSM) receives, from the Deduction Mechanism,
potential deductions or parts of deductions which may be satisfiable by facts
contained within, or generatable by, the information system. The FSM acquires
the desired facts from the information system, via formal communications. Re-
trieval requests are optimally organized and issued by the FSM to the information
system in a manner to minimize overall search and communications load. Fact data
received by the FSM are filtered of non-satisfying facts and the results are |

assembled for query answering.
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It should be noted that, in much of the literature

by both retrieval from the fact base and through deductive generation are pro-

cedurally intermixed. There are two practical reasons why this is a generally

unworkable procedure.

(1)

(2)

While we have not excluded from the Deductive Mechanism the capability

Fact data derived from the fact base or from special fact
generators are not immediately available for deduction
verification, requiring normally a retrieval time inter-
val. Such delays hold up deduction development, It is
generally better to continue deduction development (to

a point!) without waiting for fact verification, even
though this risks generating some non-useful deductions,

Determining facts within the deduction procedure, by
generating a collection of deductions, each of which
is a derived fact, is inefficient (expands the number
of deductions and complicates the fact determination
procedure) compared to utilizing specialized fact gener-
ators (computer programs) or compared to retrieving the
collection of facts, in batch node, from thz Fact Base,

of performing individual fact generation, we have designed the FSM to strongly

support fact determination and verification, on a batch basis, with facts derived
from the information systems Fact Base and from specialized fact generators.

A complement component to the Query Analyzer of the inference system

(see Figure 2-1) is the Answers Responder. This component has two functions:

(1)

(2)

With regard to the latter, the sooner the Deductive Mechanism can learn whether

to prepare dialogues with users and convey results, via
the information system Dialogue,

to convey information to the Deduction Mechanism concerning
the satisfiability of deductionms.

or not a deduction is satisfiable, the better it can guide deduction develop-

ment,

The final major component of the inference system is the Performance

History Analyzer. This component collects success-failure data, processing

resource costs, and performance speed, and generates periodic probability
data, needed to guide the Deduction Mechanism in its deduction development,

2-6
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2.1 PRELIMINARY DISCUSSION OF RELATIONS, LITERALS, DEDUCTIONS, AND

UERIES

2.1.1 The Literal

The smallest logical unit in the Inference System is the simple re-
lational statement, sometimes called an atom, A relational statement has the
form R(.l’ 8,5 eees a ). We may say that the symbol R stands for an n-ary re-
lation when it takes n domain elements or terms, 815 coey By For example
in the relational statement Location (Smith, Phila), Location expresses a
binary relation between the terms Smith and Phila, A literal Li is either a
relational statement (atom) or its negation, and hence we speak of positive
or negative literals, If we have L1 = R(a,b) and L2 = R(a,b), then L1 and L2
are complementary literals. It is customary to refer to L1 as a positive and

L2 (or il) as a negative literal,

In the inference system all logical statements (propositions, rules,
queries, etc,) will be put into a disjunctive normal form so that the scope
of each negation is a single relational statement (atom). Therefore, we can
treat all statements as a disjunction of literals, We call a disjunction of
literals a clause and customarily omit the logical operators in clauses so

that a statement such as

A(x,y) A B(y,z) % A(x,z)

will appear as
ny ﬁyz Axz

in clause form. This stands for the disjunctive normal form A(x,y)VvB(y,z)v
A(x,z), We further assume that all term variables in the clause are univer-
sally quantified, that is, true for all values of x,y, and z, unless other-

wise delimited by the deductive system

2,1.2 Types of Literals

There are several types of literals in the inference system. One
type identifies classes of facts in the fact base, and are denoted as fact

literals, These literals may be passed directly to the fact base for immediat

2-7
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fact retrieval without further logical analysis of the literal, A second type
of literal is used primarily to inter-relate other literals, and, therefore,

to construct inference rules and queries. This type of literal may also be
used to infer facts or classes of facts that are neither available in the fact
base nor provided by the fact generators, These inferred facts are not verified
by the information system, and if accepted, are accepted on faith, This is
discussed further in Section 2.1.3,

Rule, query, and deduction clauses may contain one or both literal
types. A rule containing only fact literals provides a means for defining
alternative literals for fact retrievals - an important feature of an inference
system concerned with optimal fact retrieval performance. The set of fact
literals is recognized and maintained by the inference system as ''one-literal"
rules, Also maintained with each fact literal are certain statistical data
reflecting the fact domain of the literal, the cost of fact retrieval for
the literal, and other information useful in guiding deduction development;

see section 3, Deduction Development Strategy.

2,1.2,1 Type of Variable Domains

The variables in a clause are all formally universally quantified, that
is, the proposition expressed by the clause is to be satisfied for all values
of the variables. However, the type of entities, objects, etc, in the domain
of a given relation which make it semantically meaningful is often quite re-
stricted, and may be a small subset of all entities in the system., The Infer-
ence System will use this information to restrict the number of tests which
must be made to verify the validity of a proposition. For example, in the
rule P(X,Y) AP(X,Z) % M(Y,Z) (where P means parent and M means mate), people,
animals and (some) plants may be substituted for the X, Y and Z terms, The
meanings (types of allowable substitutes) for terms of each relation is recog-

nized and controlled by the inference system,

2,1.2,2 Range of Variable Domains

In classic logic, the use of the quantifier all means that the vari-

ables are unrestricted. In a real information system, the meaning of the

2-8
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quantifier all is restricted to those entities available within the informa-
tion system, In a practical way, '"all" is further restricted to those en-
tities which are available within a budget of time and resources. A working
information system must specify (or estimate) the domain of each term in a
relation, In particular it must specify (or estimate) the number of entities
in that domain, We call this quantity the range of the domain, For example,
in "all parents of people", the range of the domain of parents to a single
child could be specified as two. The number of parents may be limited to a
current count of entries in a parent fact file, or a practical range limit
of, say, 10,000 may be set.

In a working information system, facts potentially satisfying queries
take time to derive, and may come forward irregularly and in disorder, as
appropriate fact banks are searched. If the query is satisfied prior to
retrieving all facts, search may be terminated before being fully completed.

This is illustrated by the following query:

Query: Find two workers in factory F that have skill in electronics.
(@x) (Works-at (x,F) ASkill (x, Electronics))
Range (x) = 2
Type (x) = people

Procedure: We might proceed to first find and generate a file of
all workers Y in factory F, and then to select from this file a subfile
of all workers with electronics skills; and then to select the first two of
this subfile for the answer to our query, We might instead, however, search
the factory file one at a time, testing for an entry that has an electronics
skill, and continuing until two are found.

It should be noted that classical logic tends to express itself by
the first of these two procedures, taking advantage of the elegance of ex-
pression provided by the '"all' concept, The second procedure may, on the
other hand, be more economical involving less search activity, In practice,
the best method will sometimes be one or the other, depending on factors of fact
logical organization and physical storage, the performance of fact retrieval

2-9
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mechanization, interdependency of literals of a query and the number of facts

requested by the query in relation to the number available within the inform-
etion system.

2.1.3 Types of Deductions

A deduction is a logical statement generated by the inference system,
starting, for example, with a user query and a set of rules. There are two
general types of deductions, Each of these is characterized by the extent to
which the information system can supply information, that is real facts, that
satisfy the deduction,

(1) Verified deductions. These are deductions for which the in-
formation system supplies information, that is, concrete facts
that support the deduction, The user is supplied these facts
and the deduction, as a response to his query, It is clear
that in this type of deduction, all literals of the deduction
are of the fact literal type.

(2) Inferred deductions, These are deductions for which the
inference system does not supply facts from the fact base
or from fact generators, to support the deduction, The
deduction is taken on faith, This type of deduction occurs,
for example, when a set of rules that are applied to a query
are accepted as representing ''true" relations., As an illus~
tration, an inferrence might be that "every paid employee
has performed a measurable service'"; a verified deduction
would require examining the accounting performance summary
files of paid workers in the information system,

Infered deductions are called inferences, and divide into
two sub-types: Those inferences that are verifiable by
facts from the information system, but have not been
verified; and those that are not verifiable within the
means of the information system. This division is use-
ful because a user recognizing the costs and delays
associated with fact verification may feel satisfied with
partially verified results.

We note that the literals of non-verifiable inferred de-
ductions include at least one non-fact literal, The
literals of verifiable inferred deductions consist of
fact literals only,




—pr——

2.1.4 Answers to Queries

The inference system generates deductions as a means of answer-
ing queries, Deductions may be classed into acceptable deductions and
unacceptable deductions, Unacceptable deductions are deductions which
are either not meaningful or are unacceptable to a user as a response to
his query. This is quite general and can even apply to verified deductions
if the supporting information does not meet "extra' user requirements - which
are conveyable to the inference system via a dialogue., Also, an acceptable
deduction may not necessarily fully satisfy a query., For example, if a
deduction satisfies a query with 10 facts, but at least say 20 facts are
desjred, it will be necessary to continue the development of deductions in
the information system until the desired quantity of facts is derived - or
the search is aborted.

215 Interpretation of Formal Implication in an Information System

In our information system every logical statement is expressed as
a clause; that is, as a disjunction of literals. The clause may be equivalent

to an implication; for example, the clause

A(x) V B(x,y) VvC(x,y)
is the same as the implication

A(x) A B(x,y) =3 C(x,y)-

The interpretation of the clause (and therefore of the implication) in our
information system is "find all values of x and y which satisfy the clause'.

wcswlt will be n vectors:
Si = (xi’ Yi)’ i=1’ 2’ eeey N
where the Xi and Yi are constants (entities) in the domains of

variables x and y respectively.

Each vector Si provides a single answer that satisfies the clause, and its

equivalent implication statement.
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In regard to the implication statement, this represents a more
general interpretation than the classic '"true or false' interpretation,
that makes no distinction as to possible answers within subdomains, Re-
stating this difference, we have in the classic logic that, assuming univer-
sally quantified variables, A(x) AB(x,y) =3 C(x,y) is a true statement only
if it hold for all x and y. In the information system, A(x) AB(x,y) =§ C(x,y)
is a statement to be verified as true, by vectors (Xi, Yi) that can be dis-
covered within the information base of the system to satisfy the implication. It
may be curious to some logicians, that the null set may be, for some cases, the
only discovered answer to a universally quantified statement, More likely, some
non-null answers will be found, The classic conception of implication can be
highly effective in an abstract universe where immutable laws govern the inter-
relationships of all objects. It can be appreciated, however, that an informa-
tion system is not an abstract universe, In an information system immutable
laws governing information are scarce and information is acquired by examinations
of a multitude of non-universal rules and by an abundance of detailed fact search-
ing., The classic implication statement is not sufficient, therefore, for a ''real"
information system and must give way to the more effective general implication

statement interpretation presented here,

2.2 DEDUCTION
2.2.1 Unification

Within the Deductive System, all logical statements in the predicate
calculus, e.g., queries, rules and deductions, are represented by ''clauses",
Symbolically, a clause C designates a disjunction of literals {L} by, C = Lf/Lz
or L, or both, The literals themselves

i 3

are expressions involving ''terms’”, Terms need not be logically defined to the

...V 1,, where LiVLj means either L

deduction mechanism beyond their uniqueness; their meaning, however, is that
they specify information that together with relational clauses, result in state~
ments of fact, Thus, for L(X), X are all terms satisfying the assertion L(X),

A literal L(X) is not the same as a literal L(Y), when X and Y refer to differ-
ent sets of terms (entities). When X and Y are not disjoint, a process called
"unification' can be applied. This involves a procedure of substitution and

occurs a great deal in deduction mechanisms because the terms of literals in
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the rules of an inference system tend to have wide domains. When the domain
of a term is universal, that is, it covers all facts, then the term may be
called a universal variable, Generally, this is not the case and the domain
of each (variable) term must be specified. For example, in LI(X,Y) and L2
(U,W), if YcU, we can identify LI(X,Y) and Lz(Y,W) as two literals that
have been unified, This unification procedure is extendible to clauses with ‘
common domains, and as we shall show, is appropriate to "resolution', a pro-

cedure for generating deductions from two parent clauses,

2:.2:.2 Resolution

Deductions are generated in our inference system by a method called
"Resolution", illustrated by the following: #

Given two clauses Ll(x) \Y) LZ(Y) and El(z) Vi3(z), if 2 is a variable
term whose domain includes X, we may let Z take the values of X. We can then
"resolve" these two clauses to forma deduction (resolvent) by

[Ll(x) v LZ(Y)] A [il(x) v Ia(x>] L0 v ‘is(x)]

In discussing resolution, we will limit ourselves to binary resolu-
tion, as illustrated in the preceeding example, and we will refer to the two
starting clauses as parents, and to the deduction clause as the resolvent
clause. We also make reference to the positive form of the literal of the
parents that does not appear in the resolvent, as the '"resolution literal®.

In the preceeding example, Ll(x) is the resolution literal. We will frequently

find it useful to retain in' a resolvent clause the resolution literals associated
with it, and will mark the resolution literals appropriately to distinguish them
from other literals in the clause, A deduction that is the result of a chain of

resolutions can, therefore, display a number of these marked resolution literals,

one for each link in the chain,

2,2.3 Deduction Nets, Trees and Linear Chains

A deduction lattice network can be generated by utilizing starting

"clauses" (assertions and rule clauses), followed by resolvent clauses as well as




starting clauses as parents of new resolvent clauses, A (partial)* deduction

tree is a deducticn net in which at least one of the parents of each resolvent
is a non-resolvent clause (sometimes called an input clause). A linear chain
deduction is a path of a tree deduction, These are illustrated in Figure

X

2o 3 DEDUCTION MECHANISM

We have adopted for our Deduction Mechanism the method of ordered
linear deduction (OL-deduction) described by Chang and Lee, Reference 1,
Appendix F. The OL-deduction method operates upon a procedure in which the
negation of an assertion is attempted to be refuted. when the negation of
an assertion is successfully refuted, the assertion is, thereby, verified.
I'he refutation procedure initiates with a set of rules and an assertion

presented in negated form for refutation.

Zaded Ordered Linear OL-Deduction Method

OlL-deduction is a deduction tree development procedure containing
certain restrictions on the construction of deductions and on the representation
of resolvent and resolver deduction clauses. 1In this report, OL-deduction

ordering restrictions are as follows:

(1) Two parent clauses are used to generate, by the procedure of
resolution, a single deduction--resolvent clause., In OL-
deduction, a pair of parents may not have a common ancestor,
that is, the deduction graph may not have the form of a
general lattice, This restriction, in effect, means that
each parent pair must consist of one input clause (rule or
query clause) and one resolvent clause, except for initial
tree deductions, This restriction is compensated by a
later operation called 'reduction',

We shall drop the term '"partial" and use the expression '"tree' in what follows.
The partial tree is really a limited lattice since an input clause may be
parent to more than one deduction node of the tree,
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(2) Parent clause pairs have their resolution literals positioned
at opposite ends of their respective clauses. By convention

in OL-deduction, the resolvent parent clause has its resolution

literal at the right-most position of the clause.

(3) The resolution literal is retained in the generated resolvent
clause and marked as such by a frame symbol, for post pro-
cessing, i.e. means L(X) is a resolution literal,

(4) The relative positions of the resolution literals with respect

to the other literals are preserved in the resolvent clause,
Example,

Resolvent Parent Input Parent

talyhs

LyLol,

Generated Resolvent
Clause (deduction)

—

L5L6L7 Input Parent

Next Generation Resolvent
Clause (deduction)

In this example, L3 and 5

the bottom deduction,

=i

are the resolution literals in

(5) Resolution literals (i.e. framed literals) in resolvent
clauses are utilized in two ways.

(a) In post processing of a resolvent deduction to
simplify or eliminate redundant deductions.

(b) To identify those literals i1 a deduction that are
to be fact determined, e.g. for which facts may be
searched in the fact base,

(6) When all literals of a deduction are resolution literals
(i.e. framed) the deduction is fully resolved and, therefore,
fully prepared to be fact determined.* The facts to be
determined are those that refute the framed literals. (We
must always remember that we are in a refutation procedure.)

Fact determination may be initiated upon any or all resolution literals of
a deduction at any time, even for non fully resolved deductions. The se-
lection of literals for fact determination is guided by a strategy that
minimizes fact retrieval costs and response delay,
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The mechanism of the OL-deduction procedure is such that all
resolvents reflect their ancestory chain, This is due to the ordering
of literals and the retention of resolution literals in the resolvent clauses,
As a result, as long as all framed literals are retained and ordering of literals

is preserved, one can reconstruct from each resolvent its ancestral deduction chain,

Example, LleL3 L3Lh

The advantages of the OL-deduction procedure are two-fold.

(1) It provides a straight forward and orderly procedure for
generating deductions, limiting the deduction procedure
to (partial) tree rather than a general lattice structure,

(2) It facilitates certain operations related to minimizing
the growth of non-useful deductions - these will be
referred to subsequently as deduction simplification
and elimination operations.

In limiting itself to the above tree structure, the OL~deduction
procedure is incomplete, that is, not all possible deductions can be generated,
The completeness of the OL-deduction procedure, however, is assured by a
process called '"reduction" that is applied to resolvents,see section 2.3.5."Reduction'

in effect permits a resolvent to be created of two parents with common ancestry.

7. T OL-Deduction Compatible with Set of Support Strategy

An added feature of OL-deduction is its relation to the set of
support strategy, which tends to avoid development of certain classes of

useless deductions,

The set of support strategy states that if within the set of potentially
unsatisfiable clauses (facts, rules and negation of query) there exists a subset
which is known to be satisfiable (facts and rules), in each resolution select

at least one parent clause from outside this satisfiable subset.
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In OL-deduction, rule clause parents generally provide a set of

support. Clauses taken from the set of negated query clauses are external
to the set of support as are unsatisfisfiable resolvent clauses since if at
least one parent of a resolvent clause is chosen from outside the satisfiable

set, then the resolvent formed is also from outside that set.

2.3.3 Selective Negative Linear Resolution (SNL)

For the first stage of implementation, the restrictions of SNL can

be incorporated. These restrictions, while limiting the scope of deduction,

also eliminate the need for certain post-processing deduction elimination

operations. SNL restrictions include the following:

(1) Input rule clauses are ordered Horn clauses. A Horn
clause is a clause containing at most one positive
literal. An ordered Horn clause places its positive
literal at an end (the left-most) position,

(2) The top (negated-query) clause of an OL-deduction chain is
completely negative, i,e,, all literals are in negative

form,

As a result of these restrictions, all resolvents in SNL are com-
pletely negative, Furthermore, only Horn clauses with a (exactly one) positive
literal can enter the derivation since purely negative input clauses cannot

resolve with purely negative resolvents,

Z2:3.4 Paramodulation

Paramodulation is a specialized form of resolution which accepts

the equality literal as a special argument, When paramodulation is in effect,

there is no need to add explicitly the axioms of transitivity and symmetry of

equality., Furthermore, resolution with paramodulation is more efficient than

use of explicit axioms. The following examples demonstrate paramodulation,

1) Zab Xab \\\\\////,(a=c) Yac

Zab iéﬂ Xcb Yac
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2) (a#b) (a=c)

(c#b)

2.3.5 Deduction Simplification and Flimination: Post Processing Operations

When a resolvent clause has been created, a series of operations are
performed upon it to complete resolution, to remove redundancies and to eliminate
the clause if it is totally redundant or subsumed by other clauses in the

deduction tree, These operations are described in the following:

(1) Factoring

When two unframed unifiable literals of the same sign
appear in & deduction clause, it is sufficient to refute
the less general of the two, since what refutes the less
general literal also refutes the more general one. Drop-
ping the less general literal is called factoring, and is
preceded in OL by unification.

Example: D3x A3x B3x A3y C3y and XCY produces D3x A3x B3x C3x
Factoring should always be applied to pairs of literals which
are identical, If factoring is forced, however, by fully
exploiting all possible unification opportunities, useless
deductions tend to be generated.

(2) Reduction without Unification (Not applicable under SNL)

Reduction is a process by which an unframed literal with-

in a deduction is resolved if it is uynifiable with a com-

plementary (opposite signed) framed literal to the left 1
of it in the same deduction clause. Reduction without

unification is the resolution of a literal which is identi-

cal to the framed complementary literal in the clause. .

Reduction is in effect resolution of a deduction with another
ancestrally-related deduction followed by factoring. For
example, consider the clause Ze Reduction will reduce |
this to X(K}7Z[K]. This can be justified in light of the

structure of the given clause which reveals an ancestor

clause XK. Reduction in this example can be seen as a J
resolution of the given clause with the ancestor ¥K as |
follows: ]
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(3)

(4)

(5)

Example of Reduction (Without Unification)

x@yxz

XE[%ZK K
\

x[{y 2 E® x

|

XY Z Factor X, drop right-most X,
We have thus resolved the
literal K,

>

= € x|

Permissable reordering
of literals

Tree Path Subsumption

One clause subsumes another clause if it is more general, 1f

an unframed literal is identical to a framed literal to its

left in a deduction clause of a deduction tree, it can be con-

cluded that this deduction is subsumed by a direct ancestor deduction.

Consider the clause XYI-(Z. The left side of this clause shows
a direct ancestor deduction XK that is more general than the

given clause. Since XK subsumes and is simpler to refute,
XK is retained and is discarded.
Tautology

A tautology is a clause containing two complementary un-
framed literals (e.g. PvP), is always true and, therefore,
cannot be refuted. Further applications of facts and rules
can only lead to other true clauses and not to refutation,
therefore, tautological deductions are discarded.

Reduction with Unification (Not applicable under SNL)

For each substitution which unifiee an unframed literal and

a previous complementary framed literal to its left in the
same clause, generate a new deduction clause by making

the necessary unification substitution and deleting the
unframed literal. (The given clause may be retained for other
possible resolution operations.)

Example:

A13 le Ax3 produces A13 Bl1

Another form of reduction which can be performed at this
point comes from paramodulation as expressed in the following
examples:
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1) I-_‘a— producesla = blfl;
2) @(a = b)produceu Fb

Though reduction is defined as a post processing operation,

. it is, in reality, more of a resolution operation and,
therefore, should be executed within the resolution pro-

: cedure or prior to other post processing operations,

Literals to the right of the right-most framed literal are
free to be reordered. Reordering may not occur across
framed literals without special care,

* (6) Ordering

2.4 FACT DETERMINATION

OL-deduction, as has been stated, is a refutation procedure., A
questionable assertion, that is, a query, is presented in negated form to
the OL-deduction mechanism, Deductions are then generated and are sought
to be refuted, A refutable deduction implies the existance of a collection
of rules and facts (possibly a null collection) that refutes the negated query,
and consequently, satisfies the assertion of the query. It is the collection
of facts that is the answer to the positive query and that is provided by the

inference system,

A resolved deduction is a clause consisting of only resolution

literals; that is, it is a deduction clause that has been fully resolved,

Each resolution (framed) literal in a resolved deduction clause
is a literal about which the information system can supply facts or is an
acceptable inferred literal. An inferred literal will often be a simple
binary proposition, signifying a yes or no; true or false; 0 or 1 value, 1In
the more general case, where the framed literal is a complex predicate, the
literal will tend to be a fact literal for which the information system will
supply all facts, For example, given where L(X,5) means '"X" is a
worker in factory '"5'", then the information system will search out all workers
in factory number 5 and supply these as facts satisfying the literal. We call
this procedure "fact determination'" When fact determination is applied to
all of the fact literals of a completely resolved deduction, we then determine 3‘

a largest subset of these facts that can satisfy the deduction as an entirety. |
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The size of this subset of facts is dependent on the way in which the resolution

literals, and their terms, of the deduction clause are interrelated.

Example: IIOQS) Iz(x) are two interdependent literals in a

deduction with the meanings

-

E. Ll(X,S) » X are men working in factory 5

3 Lz(x,<:45), X are men under 45 years of age

The set of facts refuting the deduction is the logical inter-

section of the sets of facts refuting the two framed literals independently.

2.4.1 Summary of Sources of Facts for Deduction Evaluation

The sources of facts for deduction evaluation are as follows:

(1) Fact Base of the information system. This is the primary
source of fact data, The fact base consists of data bases
and relational data sets.

(2) Fact Generator Algorithms, Algorithms that generate facts
range from simple to complex, Simple algorithms are executed
by simple computer programs, some of which may be under
direct control of the inference system. Such algorithms
may perform simple range filtering, or selection tests for
some specific literals, (Fact Generator Algorithms are an
open area for further investigation and are only briefly
touched upon in this report.)

(3) Users, Users via dialogue may contribute facts to facilitate
the inference processing.

(4) Facts generated by deduction. These are inferred facts, not
verifiable (satisfiable) by the information system.

2.4.2 Deduction and Verification: A Two Stage Procedure

The deduction verification procedure may be viewed as consisting of
two parts, a deduction development stage called Stage 1 and a deduction veri-
fication or fact search stage called Stage 2, This is depicted in Figure
2-3.




Stage 1 generates deductions by resolving parent deductions, queries,
and rules from the rule base. Stage 2 acts to acquire facts that will satisfy

the resolved literals of a deduction,

The first stage preserves the interdependence of literals within
deductions. The second stage takes into account this interdependence by a
procedure of fact "intersection'", For example, in the clause AxBx Exy Byz,
all of the literals are inter-related by their terms. If this deduction
is in a form for fact base instantiation, then it proceeds to Stage II where

fact instances (as many as are required) are sought that refute it.

The intersection operation could be a lengthy, costly procedure,
since it involves information retrieval from the fact base and set inter-
section operations, To minimize the work involved in the intersection process
and to reduce the processing time, optimal intersection strategies may be

employed. We illustrate these two stages with the following example.

Example:

(1) State 1 passes to Stage 2 the inter-related literals of a

deduction Ax Bx Exy 5yz, for fact retrieval and intersection.

Stage 2 requests and receives the following facts in data files
{ax), (Bx), {Cxy) and {Dyz)

Stage 2 computes the intersection domains x, y and z by

the following (or some other intersection) procedure,

{Xi]é—-{Ax]/\[Bx_Jf\[Cx_]-... intersection over subscript x only

[Yij}\\[Cxiy] {Dyz]-----~... intersection over subscript y only

[zij]‘—{nyijz}

(4) Stage 2 then sends the domain values {xi}, {vij}, and {zij)
to Stagel .
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2,4.3 Fffect of Actual vs, Statistical Fact Data on Deduction Development

e

In the Stage 1 - Stage 2 operation, Stage 2 is able to withhold all
fact information from Stage 1 until the final returns for related literals
arrive from the fact base. Stage 2 can then perform its intersection data
operations, Delays may arise, out of Stage 2's control due to fact retrie-
val delays. As a result, Stage 1, which operates very rapidly, may have
generated a number of deductions beyond what was needed, since, had Stage E
1 received fact data earlier, it might have been able to conclude its
operations earlier with possibly a smaller deduction tree. Also, Stage 1
does not require actual facts, but can proceeu simply with information about

the existence of facts. This information may precede actual arrival of facts

from the information system, or may be available to the inference system

as locally maintained data,estimated on the basis of past system performance.
Thus, Stage 1 could proceed with little or no actual facts from Stage.2 for
most of its tree development. This, incidentally, also means that Stage 1,
prior to receiving actual fact data, generates the same deduction tree re-
gardless of changes in the fact base, so long as the information about the
facts (e.g., domains and performance statistics) have not been (substantially)
changed by an update. When Stage 1 receives current information about facts
from Stage 2, it will develop its deduction tree using historical (performance
statistics) information., The extenz that Stage 2 may delay, for the advantage
of efficient fact (batch) retrieval and intersections, must be traded against

the sluggishness such delay causes in Stage 1 performance,




SECTION III. DEDUCTION DEVELUIMENT STRATEGY

An objective of the Inference System is to minimize the likelihood
of generating a large number of deductions in the search for a query refutation.
To meet this objective, the following operations are applied:

(1) Context Set Formation
(2) Deduction Selection/Ordering Strategy

(3) Deduction Tree Pruning
3.1 CONTEXT SETS

A Context Set in an inference system is a consistent set of related
axioms (rules and facts) and queries, The axioms of an inference system form
one or more independent Base Context Sets. When a query clause is added to
the axioms of an inference system, a new context is formed consisting of the

query clause and all of the base context sets to which the query clause is

related, Clauses are related when they have common literals,




Example :

(1) Base Context Sets {BCS of the Inference System:

Axy Bxz Cz Gxy ﬁky Kxy Kxz Ezy
BCSI sz_Ez BCSII Hxy Ixy BCSIII Kxy Ixy

Cz Fz Ixy Lxy

Pz

(2) Query: Axy Bxz Gxy

(3) New Context Set: Query + BCSI + BCSII

When a query is to be refuted, it is not necessary to consider the
unrelated base context sets of the inference system. Our motivation in the
examination of context sets is to determine how to minimize the size of con-
text sets (they can always be enlarged) in the expectation that the smaller
context sets provide a better (quicker, cheaper) solution to an inference

problem.

3:.1:1 Context Set Formation

A context set is a set of axioms, query clauses and an associated
set of literals. The set of literals includes all literals in the axioms and
query clauses of the context set. Two context sets are independent if they
do not have literals in common. We define "base context sets' as context
sets containing axioms only, and apply the broader expression '"context set"
to include query clauses. A clause is understood to be a disjunction of one

or more literals.

We define a Context Set formally by:
Context Set = (L} (A} where for each L

(1 €8, 1 €8] notds.

cL; and, A, and AkcA, jitk;

i J

where L refers to Literals and A refers to axioms and query clauses,

In the inference system, we start with a set of axioms and generate
a set of independent base context sets. When a query clause is entered into
the inference system, an independent context set is formed by combining those

basic (independent) context sets that share literals with the query, However,




since the deduction mechanism operates on one query literal at a time (see
OL-deduction procedure), the deduction procedure will actually alternate from
one base context set to another base context set according to the context
membership of the query literal currently being resolved, The literals of a
query clause can, of course, be arranged in groups according to their base

context set membership to minimize context hopping.

ReYe2 Context Set Hierarchy

A context set may be further subdivided into a collection of weakly
related context sets, in such a way as to form a hierarchy of related context
sets, The highest rated context set includes the query(s) to be refuted; the

lower rated context sets of the hierarchy contain axioms only,

One way of creating a context hierarchy involves ascertaining and
assigning weight values to the literals with respect to any particular query.
The weight walues are best determined and provided by the inquirer who may
have external knowledge as to the relative importance of literals toward re-
solving his query. A secondary source of weights may be supplied by the
inference system, computed on the basis of operational statistics, Determin-
ation of weights for context formation is discussed in paragraph 3.1.5; weighted

context sets and context bridges are discussed in paragraph 3,1.3.

3.1,3 Context Set Weights and Bridges

When weights are assigned to the literals of a context set, they
may be used against a set of threshold values to subdivide the context set
into a hierarchy of two or more levels, The resulting context sets in the
hierarchy are linked by axioms, which we shall call axiom bridges, which
contain literals in more than one of the hierachy's context sets. The follow-

ing example illustrates the formation of a hierarchy of context sets,




Example: Given a Context Set with the following literals,

weights and axioms, l

Axioms Rl =ABCD Literals A Weights High

R2=BCD B High

R3 =CEF c High

R4 =D G D High

RS =EF A E Medium

R6 = F AB F High

R7=CCF G Low

Using the three weight thresholds - High, Medium and Low - we generate the

three context set divisions:

Context Sets (Divisions) Literals Axioms Weight
i A,B,C,D,F R1, R2, R6 High

II E R3, RS Medium
111 G R7, R4 Low

In this example, the axioms of context sets II and III include literals in
context set I. In general, each context set in the hierarchy bridges up-
wards, that is, the set of axioms of any level (but the highest) will contain
one or more literals of one or more context sets above it, A good context
set hierarchy construction would display "narrow-weak" bridges (''marrow"
suggests few upward linking literals in the rules; 'weak' suggests that link

literals have low weights),

Note also that each literal is included in its axiom set or higher
level axiom set at least once in both its complemented and uncomplemented

form,

3.1.4 Application of Context Sets

When literal weights are available, context sets can be narrowed by
subdividing them into a hierarchy of context set levels. The highest level

context set is applied first, and, when its possibilities have been exploited,
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the next level context set is applied and so on, This progression expands

the context set from its top level to successive inclusions of its lower

levels. The expectation is that most applications will be satisfied within :
the higher levels of the hierarchy.

3.1.5 Deriving Context Weights for Literals

The best way of acquiring literal context weights is by having
these supplied by the inquirer, since he may have considerable knowledge
concerning the context of his query that is not contained in the inference
system, At the other end, the system can maintain statistical data for com-
puting probability weights. This data can be pre-computed periodically, based
upon actual performance results and upon simulation runs designed to derive

these weights,

A simple and straightforward method of deriving literal weights for
a context set hierarchy formation is to tabulate the number of uses of each
literal of the context set over a period of time, A literal "use'" can be
defined as an {nstance when the literal was involved in a success path in

a deduction tree, An example is presented in Table 3-1.

3.2 DEDUCTION ORDERING AND SELECTION FOR DEDUCTION DEVELOPMENT

In this section we discuss the criteria used for deduction development.
We begin with the ordering of 1literals within a clause, since, in OL-deduction
the order of literals in a clause determines the order of resolution of that
clause with other clauses to form deductions. We then discuss the order of

selecting deduction clauses for deduction development.

o 5 & Literal Ordering

In deduction refutation, all of the literals of a deduction clause are
to be refuted if the refutation procedure is to terminate. The order in which
these literals are to be refuted is not logically constrained. If the deduction
is not refutable, it is best to learn this as soon as possible, suggesting, there=-
fore, as a first criterion, that the literals be processed in the order of their

least likelihood of refutation.




i

Context Set

Literals

L1
L2
L3
14
L5
L6
L7
L8
L9
L10

TABLE 3-1

EXAMPLE OF LITERAL WEIGHTS DERIVATION

Number of
Successes

50
100

30
20
100
50
79

Context Hierarchy

Thresholds

low < 10 < medium < 50 < high

Level Literals
1 L3, L7, L9
2 L2,L5,L6,L8
3 L1, L4, L10

Low
Medium
High
Low
Medium
Medium
High
Medium
High

Low

Weight

High
Medium

Low




A second criterion for literal ordering within a deduction for de-
duction refutation, is to attempt the easiest to refute literals first. This
criterion, following the first criterion, gives the best (least cost) expecta-

tion of encountering a non-refutable literal,

g A third criterion is to process literals of deduction in an order
that minimizes operations and computational burdens, As will be seen, this

criterion is particularly applicable to interdependent literals.

3.2.,1.,1 Least Likelihood of Refutation Criterion for Literal Ordering in
a Deduction

The first criterion for ordering literals in a deduction selected

for refutation, is to attempt the least likely to refute literals first,

The only prior knowledge leading to a recognition of the refuta-
bility of literals in a goal is probabilistic, Thus, probability values
can be assigned to each literal in the inference system that indicates
the likelihood of its refutability., The probability values could be user
supplied or could be computed on the basis of statistical performance data
involving the literal, over a period of time, The performance statistics
collected could include:
(A) Number of occurrences (uses) of the literal in deductionms,
(B) Number of failures to resolve the literal in deduction
development,
(Cc) Number of failures to satisfy the literal with facts,
(C1) Deduction clause characteristics: Number of literals;
Number of terms (max, avg),
(C2) Term characteristics: Constants; variable simple, complex.
A probability formula indicating the likelihood of refutability of
a literal may be defined by:
=B, =€, (C:5C,)
P, = AL L T e Probability of Literal

L AL

. <
The function CL(CI’CZ) < CL’ depends on the values of C1 and Cz.

The statistical data collection is a background activity and, of
course, need only be updated periodically. 3
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The probability formula could be made more relevant by improving
statistics collected to show relationships among literals, for example,
replacing (A) and (B) by:

(53 Number of co-occurrences of La and Lb (b # a) in a deduction
when La and Lb are, in fact, related by their terms, e.g.,

Lxy Cy.
7/ 7
(B) Number of failures to refute La under condition (A) above,

This would take into account,to a greater extent, the inter-dependency among

literals in a deduction,

The computed probabilities would also have computed confidence
levels that would, in effect, define the precision of the probability estimates,
The probability values would then be utilized as the first criterion for
ordering the literals of a deduction. The effectiveness of this criterion
depends upon the quantity and quality of the statistical data and the storage
cost for maintaining it, (The off-line processing cost should be a secondary

consideration,)

3:2. 8.2 Easiest to Refute Criterion for Literal Ordering in a Deduction

The easiest to refute criterion for ordering the literals in a
deduction for refutation focuses on the work required to refute a literal,
This criterion is greatly clarified by the separation of the deduction
refutation procedure into two stages, described in 2.4.2, The first stage
deals substantially with deduction tree development and the second stage
deals substantially with fact determination,

3,2,1.2.1 Stage 1, Deduction Development: Literal Ordering Criteria

(1) Fact Literals - First Criterion

Literals in the deduction which are only resolvable by the fact
base are given the highest priority since there is nothing that has to be
done with them in Stage 1. Such literals are passed on to Stage 2.

3-8




(2) Deduotion Development Effort - Second Criterion

Each literal in the system can have determined for it a merit
value representing the effort statistically associated with its refutationm,
High merit literals are processed before literals of lower merit, A literal's
merit (effort) value can be determined as a function of the average deduction
sybtree size statistically generated under the literal (as the root of the
subtree), over a period of time. The statistics and merit wvalues can he com-

puted as a background process.

(3) Independent Literals - Third Criterion

Here we may look ahead to Stage 2, and organize the literals accord-
ing to interdependent sets. The set of literpls with the least interdependence
may be ordered into first positions on the presumption that where there is the
least interdependence we will have the least work in Stage 2 for instantiation.

(4) Projected Fact Search - Fourth Criterion

An estimate can be made of the fact searcheffort associated with a
literal, based upon fact base statistics for the literal. This requires
maintaining statistics in the fact base on literals {L(x,y,z...)} such as:

(1) Maximum number of entries in the domain L(x,¥,Z,...,)
(2) Average number of entries in the lesser domains

L(’,y.Z,aoo.)
L(x.'.l,.oo,)
L(x.y.',‘oog)

The literals with the smallest range, presumed easiest to process,
are placed first in the remaining ordering of literals in a deduction.

(5) Interdependent Literals - Fifth Criteriom

Literals with the least dependence in an interdependent groyp are
placed first, For example, Axy Bx3 rather than Bx3 Axy, where the right-most
is the first position, Also, Xxy3 Bxy Cz rather than Cz Bxy Axy3 or Bxy Xz

Axyz,

3.2.1.2,2 Stage 2, Fact Determination; Orderipg for Fact Retrieval and Intergection

Stage 2 ordering applies to the "fact determination process" of
deduction refutation, Here we are concerned with determining the domain of

3-9




the literals available in the fact base, and their intersection for inter-

related literals of a deduction,

A special strategy and a general approach to determining the best
order for fact retrieval is shown in Figure 3-2. The special strategy
chooses the literal, of a clause of interdependent literals, with the least
cost to fact retrieve, This might well be the literal in the clause with
the least fact range. When this literal is fact retrieved, its domain will
be determined., In the example of Figure 3-2, Axy is the first, least cost
estimated literal chosen; and the domain terms x, y are determined. This
information enables us to recompute more finely the costs for fact retrievals
of the remaining literals. A least cost literal is now chosen from each of
the remaining interdependent sets of literals, for fact retrieval., In this
example, the literals are Bxz and Cy, which are independent of each other,
The process is repeated until all of the literals of the original clause have
been fact retrieved, In this strategy, an intersection of facts is auto-
matically performed, while attempting to minimize the quantity and cost of
fact retrieval. This strategy, while appealing, is not optimal, An optimal
procedure involves full development of a decision tree, such as the and-tree
shown in Figure 3-2, and a cost estimate of each of the root to link tree
paths. The least cost path is the best. As described thus far, this apprpach
provides a retrieval ordering plan that, of course, could turn out to be
suboptimal since it depends upon estimates of performance and retrieval
costs. It could be improved by recomputing costs over the remaining
subdecision tree after each fact retrieval action; or, more generally, by
restructuring, after each fact retrieval action, a full decision tree for the

remaining literals including using updated retrieval costs.

The general approach would be costly to compute for very large
clauses of interdependent literals, but not very costly for small clauses

(say less than 6 to 8 literals).

When Stage 2 receives requests from Stage 1 for literal fact re-
trievals, it may receive these literals one or more at a time. Stage 2 will
determine the way in which these retrieval requests will be passed on to the
fact base for the actual retrieval, Stage 2 may issue an order immediately

or wait a fraction of a second or more, in which time Stage 2 may receive
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from Stage 1 yet more literals some of which may come from the same deductions
as the previous literals. In these latter instances, Stage 2 can perform

optimal retrieval strategies for related literals of the same deduction.

In all cases, Stage 2 will accept from the fact base lists of fact
data retrieved, and will retain this data for Stage 1, but will report to Stage 1
summary information on the data received. Should Stage 2 receive two or more
lists of data for literals of the same deduction, this will also be noted and
passed on to Stage 1., For related lists of data, pertaining to related literals
of the same deduction, Stage 2 will also produce an intersection list which it

will maintain for each resolved deduction initiated by Stage 1,

It should be noted that Stage 2 may elect to execute any one of the ;
fact retrieval intersection strategies at its disposal. The decision factor
will depend upon service delays by the fact base, Stage 1 urgency indicators,

indicators expressing Stage 1l's judgment that the order of retrieval should

be the order sent by Stage 13 and,estimates by Stage 2 of the cost of each
strategy - for example, the general approach strategy might be excluded for
large clauses.

It may be noted that each strategy has two modes of execution,

(1) execute the defined plan based only upon statistical data
available at the start of the plan's execution,

(2) wupdate the plan at succeeding steps based on current data
derived from retrieval.

2.2 Deduction Selection

Starting with an initial deduction, the deduction refutation process

produces a collection (e.g. tree) of deductions that are candidates for refutation.
f Since alternatives are possible, it is desirable to select deductions that lead

4 to a refutation in the shortest, least costly, way. To guide the best

k selection, a merit function is computed for each deduction on the tree,

The merit function is computed to reflect the likelihood of a successful
refutation and expected labor (i.e., computational cost) associated with

refuting the deduction,

In previous sections, we discussed a probability of refutation,
which was to be derived for each literal of the inference system., This data
could yield a refutation probability for any deduction, i.,e., the deduction
? 3-12




refutstion probability equals the product of the refutation probabilities of
its literals. The most likely to succeed deduction (highest refutation prob-
sbility), would be considered the most preferred deduction to develop,

Following this first criterion, deductions would be chosen on the
criterion of the least effort to process, Also, in a previous section, we
identified a means for estimating deduction development costs based on tree
development and projected fact search costs associated with literals, We
could use these costs to determine the costs of processing a deduction, i.e.,
expected cost of a deduction is the sum of the expected costs of processing
its constituent literals.

NOTE: A budget is established for the number of deductions to be
processed at each step of tree development., The budget is based upon con=-
sideration of computer storage and processing availability at the time of
deduction selection, If n deductions are budgeted, then the first n highest

merit deductions are selected from the tree,

3.2.3 Rule Selection for Deduction Development

when a clause is selected for a further deductive development, it
is capable of spawning a number of deductions. The number of possible de-
ductions that can be spawned depends upon the number of different rules and
facts in its context set, against which the deductions can be resolved, In

addition, several constraints may be applied including:
(1) budget for the deductions,

(2) a limit on the number and constraints on the selection of
deduction literals to be resolved at each development attempt.

To determine which rules are to be resolved against, under a limited
budget, two considerations apply:

(1) selection of the deduction literal to be resolved,

(2) selection of the rules for resclving, where more than one
rule is applicable.




T

The first consideration will have already been taken care of in a preceeding
operation where deduction literal ordering is established. For the second
consideration, the applicable rules will have merit values associated with

them, and the first n highest merit valued rules are applied. Rule merit

values could be computed in the same manner and on the same basis as described
above for deduction merit functions except that the weight of the resolving
literal need not be included, The merit value of the newly generated deduction
is recomputed as the composite merit values of its parents minus the merit

value of the resolved literal. To give the most accurate value, the rule merit

is computed after the operation of unification.

A final deduction merit value is determined after all operations
upon a deduction have been completed, since some of these operations drop
literals in the deduction (e.g., factoring) or otherwise modify them, Literal
ordering within a deduction is the final step in deduction processing. (In
the OL refutation procedure, only the augmenting literals need be ordered since

older literals in the deduction once ordered retain their order.)

A refinement of the above method of rule selection is to develop
merit values for a rule as a whole, with each merit value of the rule being
associated with a literal of the rule that might be used as a resolver. The
merit values of the rule could be defined for each of its literals used as
resolvers, as the ratio of the number of instances the rule was in a success

path divided by the number of times the rule was used, over a period of time.

33 DEDUCTION PRUNING

Pruning refers to deleting non-useful deductions on a deduction graph,
It is applied whenever a non-useful deduction is derived, Pruning is applied
when merit values are ascertained to be below certain established thresholds.
It is also applied in deduction post-processing operations involving subsump-

tion determination, tautology, and where certain special deduction graph re-

lations arise,




SECTION IV. PROGRAM DESIGN

4,1 PROGRAM MODULES AND INFORMATION FLOW

Figure 4-1 presents the major flow of information among the program
modules of the inference system, Data sets and commmications are presented
in the figure with the program modules, The principle data sets are the
Deduction Tree(s), Rules & Literals File, Fact Information File, Answers
File and Performance Statistical File, Communications data include query
commmication, fact retrieval orders, deduction development orders and tree
pruning orders,

Figure 4-2 presents flow chart conventions used to describe pro-
gram modules. Figure 4-3 to Figure 4-7 highlight the functions of the in-
dividual program modules.

4,1,1 Query Module

The Query Module, Figure 4-3, accepts a query input, translates
it into a refutation form, initiates a query job request to the Operating
Systems Module, and then sets up (initializes) a deduction tree with the
negated query clsuse as top node in the tree. The Query Module also accepts

4-1




T

2

(MoTd B3IEQ ¥ SIINPON)
2an3093Tyoay weidoly T1-% 2IN31g

STVYALIT
soejIa3IuUT _ D anv
a8upyoxy ®IRQ SITNA
aInpoy weidoid = —H— ATNAON
WALSAS ;
13000 ONIIVNEO [N\ FINAOK
NOIINTOSEY

2N

e (8. ()

NOTILON
d0oTaAdd o Bmzama
NOILONAAd

\ﬂ H AN114J0
‘ FTNAOW

i WAISAS
! “ ATNAOR TTNAOR NOLIVOTVAZ
! sxiwi HOWVAS INTHAOTINEA (IT¥EN)
| 10vd FIUL FONVWHOI¥ad
| | SILovd S
NOTLVWIOANT
—_————a--Jd QEATTHIAY
4114 (S)dd¥L
MAMSNY NO110Naad 114
SOTISILIVIS
qASN _ FONVWNOA¥Ed
ASNOdSTY
& - ATAAON

INIWIOVNVI
KCICR-AA

o 4 TNAON
TA00 A¥AN0

SITId
CicR-AA

AL

4-2




e

s

Flow Chart Conventions

These flow charts show process transactions between (or among) data

sets (files, tables, messages). Graphic elements of the flow charts are:

(1) C7 trapezoid specified a data set

(2) ) rectangle, Specifies a data transformation,
or process,

(3) ———> directed flow line. Specifies data flow,

4) same as (2) above, except that functions
£q {fi} of the process are listed outside of
) the rectangle
£3
fn
(5) same as above, except that data item (di}
of the data set are listed outside the
trapezoid
o |
d2
dn

Figure 4-2 Flow Chart Conventions for Program Modules
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user data with user recommendations on the context set and on the range value
and merits of literals in the query and in the context set, This information
is used to determine the query context set and to (re)compute literal merit

values. The Query module also interfaces with the user and the Answers file

to supply results and aid in user dialogues.

4.1.2 Deduction Tree Management Module (DTMM)

The Deduction Tree Management Module, Figure 4~4, maintains all
deduction trees and performs a number of tree processing operations, These
include tree pruning opefations, such as deletion of inactive, low merit,
and subsumed deductions, tracing a tree from specified tree leaves back to
the origin query (for report to user to display the deduction sequence),
collecting tree statistics (e.g., size, cost of deduction), and other opera-

tions for the computer management of the trees.

4.1.3 Deduction Development Module (DDM)

The Deduction Development Module, Figure 4-5, determines the de-
velopment of deductions, A Deducti-n Merit Ranking Table in Figure 4-5

contains for each deduction tree, a list of all currently generated deductions

of the tree, in order of their highest to lowest merit. The DDM col%gcts
queries at initialization and newly generated (resolved) deductions from the
Deduction Resolution Module, computes their merits and sorts them into the
ranking table., Upon execution, by the scheduler of the Operating System
Module, the DDM selects the top m entries of the ranking table as candidates
for spawning new deductions ("m" is a quantity to be specified at initializa-
tion of the system), These are formed into a work order and sent to the
Deduction Resclution Module for further deduction development. Supporting
these operations are various other system tables containing fact and literal

information,

When a deduction can no longer spawn new deductions, it is deleted
from the ranking table., Also, when new information is supplied to the DDM
that affects the merit of deductions in the ranking table (e.g., current fact

range information), these are recomputed and resorted into the ranking table,

When the ranking table gets too large, if it is not extended on disk
storage (by the DTMM), the lowest merit entries are deleted, When deleted
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entries have pending requests for fact base data, the associated fact base

orders are cancelled.

4.1.4 Deduction Resolution Module

The Deduction Resolution Module is presented in Figure 4-6 (Pro-
cedural flow diagrams for the Deduction Resolution Module are also presented
in Appendix D). The Deduction Resolution Module generates new deductions
from parent deductions. One parent of each new deduction is a member of
the Deduction Development Order Table generated by the Deduction Development
Module. The other parent is chosen from the Query Clause or the System Rules
Table., Up to m pairs of parent pairs may be formed for each Deduction De-
velopment Order entry. New deductions are created by the process of resolutionm,
and are entered into the New Deductions Table, The resolution procedure is

augmented by procedures of unification, tautology, factoring and reduction,

Pl s Fact Search Module

The Fact Search Module, Figure 4-7, accepts orders from the Deduction
Development Module to search for facts that will satisfy one or more designated
literals of deduction, These orders are passed to the Fact Search Module in
a Fact Search Order Table. The orders identify a deduction and the literals
of the deduction that are to be fact searched. The Fact Search Module deter-

M e

mines a strategy for retrieving fact data based on the following factors:

1) interdependency of the deduction literals 3
to be fact searched

(2) fact range statistics for these literals ﬁ

(3) the expected cost of retrieval,

The Fact Search Module sets up and passes a retrieval order to the Fact Base
or Fact Generator Algorithms of the information system, The information

system executes these orders and retrieves the facts and passes them as files,

to the Fact Search Module, The retrieved fact files are maintained by the
Fact Search Module, It should be hoted that the fact files may arrive at

uncertain times. Depeedent fact files related to interdependent literals of
a deduction are then intersected to form fact sub-files satisfying these
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inter-dependent literals jointly., A directory is maintained by the Fact
Search Module that 1links all retained fact files to the literals and de-
ductions they satisfy.

The results of each fact search order are reported to the Deduct-
ion Development Module, which uses this information to recompute merit values
of deductions and to delete deductions that cannot be satisfied by fact
search or that have been completed. When a deduction has all of its compo-
nent literals satisfied with the required quantity of fact data, fact search
is completed for that deduction, and the deduction and its associated fact

files are passed to the user, via the Answers file.

4,1.6 Fact Generation Algorithms

The information system provides algorithms that generate facts
when presented with certain literals or literal groups (sub-clauses), Opera-
tionally, these algorithms are treated in the same manner as a fact base.
The Fact Search Module issues orders to the appropriate algorithm and awaits
fact files, The remaining operations are the same as described in responding
to fact base files.

4.1.7 Other Modules

These include modules that perform merit performance data collection
and computation, context set determination, user dialogue, and the executive

module - to be developed,

4.2 DEDUCTION PROGRAM DATA DICTIONARY

This section describes tables required by the program modules of

the inference system.

4.2.1 Deduction (Tree) Table

This table contains general deduction tree information and includes

the node linkages of the tree (for trace purposes), active/inactive status of

deduction for the tree, and summary deduction information.




E TABLE 4-1
DEDUCTION TREE TABLE

A. Genersl Information

Comment

1. Tree Id Each Query is identified

2. Query Clauses Each query clause, in refutation form,
starts a deduction tree.

3. User Input Information User supplied merit dats, etc.

4. Node i Nodes are listed in this table in rendom

order, since parent/child mode linkages
are maintained in each entry.

5. Parent Node Id of Node i
6. Node Tree Position

Tree level Levels from start of tree. Sometimes
called deapth of tree.
Sibling position Position with respect to other nodes

of the same parent.
No. of Siblings
7. Node Status
Active (But not fully

Resolved)
Dead Rejected Deduction
Completed (Fully Resolved) To be fact determined
Special Characteristics These designate special deduction

characteristics with regsrd to developing

Recursive Node ner-dedunetons

Other
8. Deduction Fact Determination Applies to partially or fully resolved
Status deductions engaged in fact search.

B. Deduction (Node) Information

Comments
1. Node 1d/Tree 1d
2. Node Deduction Clause Merit Used to guide in deduction development.

Value
Probability of Success (0£X%£1)
Load Expectation

3. Resolver Parent I1d Rule Cleuse or System Fact Literal '}
Parent used to Resolve this deduction.

4-12




2.
2.1
2.1.1
2.1.2
2.1.3

2.1.4

2.1.4.1

3.2
342

TABLE 4-1

(Cont'd.)

DEDUCTION TREE TABLE

Deduction Clause Description

No. of Literals in clause

List of Literals in clause
Literal ID

Literal Sign

No. of terms in Literal

Literal Type

Links to terms (in Terms
List below)

Link to term 31

Link to term 3j
Term List
Term Id 1
Term Id 2

Term Id n

Each clause consists of a Literals
list and a Term list. v

Literals are ordered right to left.

Negative or Positive Sign

Types: Resolved; fact search in
process, etc.

This list contains the non redundant
set of terms in the deduction clause.
Order is not relevant

The terms are separated to facilitate
the operation of term substitution in
resolution unification operations.




4.2.2 System Rules Table

This table is similar to Deduction Tree Table, Part C, Deduction
Clause Description. This is because each rule is a clause, just as a
deduction is a clause. The Literal Type entry, however, may have different

designations. The Rules also contain merit entries, one for each rule.

4.2.3 Deduction Development Order Table

This table contains parents sent to the Deduction Resolution Module

for new deduction generation.
i Request Order Id
1:3 Deduction 1d, Tree 1d
1.2 Status

(1) Process stage initiated
(2) Process stage completed
(3) No. of deductions sired, and Max. Possible No.

1.3 Statistics

Time In
Time Out

2. Request Order Id

4.2.4 System Literal Table

The literals within the system are listed in this table. A sub-
table is formed from this table corresponding to each particular context. This
table is used by the Deduction Resolution Module to select resolver parents,
once the resolver literal has been determined. It is also used to compute
merits of literals. Various literal forms in the list provide different

literal merit values.

The table includes variants of a literal, e.g., 1.1.3, l.lebdgiee

1.1.n in table below.




— ~

1.1
1.1.1

1.1.1.2

1.1.1.2

1.1.1.3

1.1.1.N

1.2

TABLE 4-2

IV. SYSTEM LITERAL LIST

Base Context Set Id
Literal 1Id (Alphabetic Ordering of Literals)

Form I ¢ L €€,€,0..8)

(1)
(2)
(3)
(4)

(5)
(6)

Fact Domain of literal. Total (all sources)

Fact Domain of literal in Fact Base Only.

Merit (Probability of Success)

Merit Load Expectation - Time/Cost for: Deduction Phase;
Search Phase

No. of Rules as Resolvers

No. of Rules containing this literal

Rule Resolvers (Ordered by Rule Merit)

(1)

(n)

Rule Id
|
|
|
Rule Id
n

1

Form 2 : L(=,t,...,t)

Form 3 : L(t,-,t,111,t)

Form N ¢ L(=,=,...5=)

Base Context Set Id i

Literal Id
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4.2.5 Deduction Merit Ranking Table (Active Nodes Only)

This Table contains: List of Tree node Deduction Id's ordered by
Merit Probability of Success.

1. Node 1dil Highest Merit

25 Node I1di2 Next h?ghest Merit
|
I |
| |

N. Node Idin Least Merit

4.2.6 Deduction Fact File Base (DFFB)

This is a file collection of facts acquired from the Fact Base and
Fact Generators (computer programs). These files are maintained by the in-
ference for fact determination processing (e.g., fact intersecting) and for

providing answers to users on their queries.

This DFFB contains a directory of its files linked to active deductions
which are, and have been, fact searched. The following information is main-

tained for each directory entry.

(DFFB) Directory Entries

1.
2,

Deduction Id
Resolved Literals Fact Searched

2.1 Literal 1Id

No. of Answers

DFFB location of Facts
Status of Search
Retrieval time interval
Literal 1d2

Literal Idn

BN
LN

Summary Search Information :

i o
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&s2.7 Performance Information Table (Statistics)

This table contains performance information on literals in relation

to a queries processing.

k. Literal Id

2.1 Resolved by (Rule Id)

1R Average time for literal verification (full fact retrieved)
1.3 Size of deduction tree when literal was satisfied

1.4 Average no. of facts retrieved for literal

2.5 Average of facts satisfied deduction

2. Literal Id2

4.3 SOME PROGRAMMING DESIGN TECHNIQUES

4.3.1 Resolution Unification Mechanism

This section presents a table structured mechanism for resolving

deductions (an optimized algorithm is presented in Appendix E).

g Two parent clauses generate a deduction by resolving on a common
literal. The common literal is in positive form in one parent and is in

negative form in the other parent. Prior to resolution, the terms of the

P RRNSRI e e o

resolving literals in the two parents may differ in their domains. A process
of unification is applied which finds a common domain, generally the greatest
common domain for the terms of the two resolving literals. Following this,

a proper substitution of terms in the non-resolving literals of the parents

is applied to maintain term consistency. This is illustrated by the follow-

ing example:

Parent 1: Ll(X) LZ(X’Y) L3(1)
Parent 2: LA(X,Z) L3(Y)
Resolving Literals are: L,(1) and i3(Y)

Greatest Common Domain forces Y = 1. This is unification.

R O NS TR RE
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Unified Parents are:

Parent 1 LI(X) Lz(x,l) L3(1) Includes substitution into non- :
e resolving literals. ;
Parent 2 La(x,z) L3(1)

Resolved Deduction

L, (X) L,(X,1) L,(X,2)

The framed literal is the resolvent literal.

Table 4-3 illustrates how the resolution procedure is mechanized for
the fecllowing example.

Rule Parent : 1 L, (2,B,X) Ly(C,Y,2) L,(Y,A,2) El(y,z,x)

Deduction Parent : L6(X,A,Z) LS(C,Y,Z) La(Z,Y,C)

Resolvent Literals : Ea(Z,B,x) and La(z,Y,C), also BCY and CCX

Unification Substitution Y > B, X = C

Child : L6(C,A,Z) LS(C,B,Z) L4(Z,B,C) LJ(C,B,Z) LZ(B,A,Z) LI(B,Z,C)

4.3.2 Factoring Mechanization

Factoring is a resolution operation which can be applied to eliminate
a literal in a clause when it appears repeatedly in the clause. For example,
LI(X) Lz(Y) Ll(x) factors to Ll(x) LZ(Y)’ Care must be exercised to note
that factoring has been applied in the resulting clause; this is important to

later possible operations on the clause.

4-18
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TABLE 4-3

RESOLUTION UNIFICATION TABULAR EXAMPLE

Rule Clause Parent Deduction Clause
Literals of Clause Literals of Clause
S4L6,Type,TTLl,TTL TTL3 S6L6,Type,TTL1,TTL2,TTL3
S4L4.Type, TTL,, TTL,, TTLy 8sLg,Type, TTL,, TTL ;, TTL,
L2,Type,TTL5,TTL6,TTLl SALQ,Type,TTLB,TTLS,TTL4
$,L,»Type, TTLg, TTL, , TTL,
Terms of Clause Terms of Clause

TTl: Variable
TT2; Constant
TT3: Variable
TT4: Constant
TTS: Variable
TT6: Constant

TT1: Variable
TT2: Constant
TT3: Variable
TT4: Constant
TT5: Variable

PO TN
<O N> X

Child Deduction Clause
Literals of Clause
86L6,Type »TTL, , TTL,, TTL,
5,Type ,TTL4,TTL1,1TL3
84 4,Type=[_—_] TTL,,TTL;, TTL,
3L3,type ,TTLA,TTLI,TTL3
Ssz,type ,TTLl, 3
1 l’type !TTLI: 3’ 4
Terms of Clause
TTl: Constant B
TT2: Constant A
TT3: Variable Z
TT4: Constant C

Symbols: Sn
Li

Sign of Literal Ln
ith Literal in clause

Type = Designates character of the Literal, e.g. E]
means a resolvent Literal

TTi = A term of a Literal in the clause

TTLi = A link to the term of a Literal in the clause




Table 4-4 illustrates how this factoring is handled using the tab-
ular structure for clauses. Actually, only one simple change takes place
that is the "type" of the factored literal is changed to designate that the

literal has been factored.

Note that a unification operation can lead to a factoring operation.
For example, given A C Y, LI(X,Y)LZ(Y,Z)LI(X,A) can be unified to generate
L a new deduction LI(X,A)LZ(A, Z)LI(X,A) which can be factored to LI(X,A)LZ(A,Z).
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TABLE 4-4

FACTORING OPERATION

Deduction Clause = LI(X,A)LZ(A,Z)L3(Y,A)L2(A,Z)

Literal List Literal Description
SZLZ,Type ,TTLa,TTL4 LZ(A,Z)
S3L3,Type sTTL,, 3 L3(Y,A)
SZLZ,Type ,TTL3,TTL4 LZ(A,Z)

SlLl,Type ,TTLl,TTL LI(X,A)

3

Term List

TTl: Variable X
TT2: Variable Y
TT3: Constant A
TT4: Variable Z

Factored Deduction Clause = Ll(x,A)Lz(A,z)L3(Y,A)
Literal List
SZLZ,Type = Factor, TTL TTL4

S3L3,Type ,TTLZ, 3
Ssz,Type 4
SlLl,Type ,TTL 3
Term List

TT1l: Variable X
TT2: Variable Y
TT3: Constant A
TT4: Variable 2
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REAL AND INFERRED ANSWERS TO QUERIES
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REAL AND INFERRED ANSWERS

Types of Deduction Answers

The inference system makes available to the inquirer three types of
answers, in the form of deduction (disjunctive) clauses.

in the framed notation of this report:

I. Complete and Real Deductions

Example Deduction:

A

Xy

N

B

yz

A

S

i =

The frames mean that all literals have been resolved
by system inference rules, and the slash in the frame,
i.e., [N means that the desired quantity of fact
data has been retrieved for each literal, either from
the fact base or from a computer fact generator.

II. Complete and Inferred Deduction

Example Deduction:

o

This means that all literals have been resolved
by system inference rules, but that for literals
not in a slashed frame, the quantity of desired
facts have not been acquired from the fact base
As a result the deduction
is not verified by facts, rather it is affirmed
by the system inference rules.
accepts such a deduction, he in effect infers

or fact generators.

B

yZ

C
r

S\

5

the completion of the deduction.

III. Incomplete Deductions

Example Deduction

This means that not all literals of the deduction

A

Xy

B

yz

C
r

Stt

have been resolved by system rules.

Premises of an Inferred Literal

A literal in a deduction may be interdependent with other literals in
the deduction if the domains of their terms overlap.
the deduction: Axy Bx Cr Drs Et, Axy and Bx are interdependent, but

In connection with this, the literais upon
which an inferred literal is dependent are called its premises.

the case of an Inferred Deduction, each inferred literal may have
real or other inferred literals as its premises.
ises will have meaning to the user analyst, and also to the deduction

independent of the others.

mechanism.

A~2

If a user analyst

The concept of prem-~

St

For example in

|
|
|
|




3 C. Mechanization of Premises

Stored
As

E
1 a literal becomes fact satisfied, premise pointers to it are dropped.
When a literal no longer has any premise pointers it is recognized as

fully satisfied.

Premise pointers are used to mechanize deduction derivation.
with each inferred~framed literal are pointers to its premises.

E RPN

1
§
|
]
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A. GENERAL

In the OL-deduction procedure, a parent deduction (tree node) is
chosen and its rightmost literal is resolved by a parent node or gquerv
clause to form a new deduction.

In seeking to satisfy a literal, a satisfying of the same literal
or a more general literal may already have been started in an ancestor de-
duction higher up in the deduction tree.

For example: (Rule parents are not shown)

(1) Abx

@ [ (%) [Rax] Eox
3) E!! B4x Chx

(5) ilox (6) T
-2 (7)li!!1§¢xiilifﬁw A4y

In this deduction tree, we see that solutions (i.e., facts, derived

from a fact base) that satisfy the rightmost literal of node 1 are also solutions

to the rightmost literal of node 7. Any such solution to A4y that we can de-

rive from node 7 is better derived under node 1; and it is useless to rederive

such answers to A4y at node 7. There is however a purpose in expanding the

tree at node 7, as a generator of answers.

Expanding the deduction tree at node 7 generates a duplication of
the parent tree starting at node 1. This is illustrated by:
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€

i-’ox I..)xy Zby

(8) [Aéx] B4x Dxy (10 [Rén] Béx Bxy Ry

(11) nt!.x Dxy B4y Chy

s
” [l
4 1

This mechanism, further described in the next section, creates a re-
cursive function or fact generator. We shall call such node pair situations :
(e.g., nodes 1 and 7 in the example) '"recursive'". The descendant node of !
the pair is referred to as the recursive node and the tree root node of the
pair is called the associated node.

B. RECURSIVENESS

Recursive nodes provide a mechanism for generating answers to satis-
fy deductions. The answers developed by this mechanism are created locally

and are not answers retrieved from the bact base.

The recursive deduction tree operation for generating facts is illus~
trated, by the following example:




R N

Start Clause

T

7x Rule Clause
T7x Pyx '1‘7y

Fact Base Search
On T7x yields

x =1

O @ Fyl T7y

Fact Base Search on Unification on x = 1

Pyl yields

y=2
y=3

or P and P

31 21

(&L

-
N
[

=]

7x 72

x| 31 %73 ’

T72 and T73 are answers (inferred) that are generated by this procedure. T71,

P21, and P31’ however, were fact base derived answers.




T

Node 3 is recursive with associated node 1, and can be resolved
with one or more answers already known to satisfy node 1. Suppose, now,
node 2, via a fact base search, acquires an answer x = 1, and therefore
T71. This answer automatically also satifies node 1., The value x = 1 can
also be instantiated (a process implying unification) into node 3 such
that P__ becomes P in node 4. Upon a further fact base search, let us

¥
assume as returns for Pyl’ the satisfying values x = {2,3}. With further in-

stantiation of these values with node 4 we derive two new answers, T72 and
T73 in nodes 5 and 6 respectively. This process can continue recursively
until no more facts are found, or we reach the maximum numbers of desired

answers.

Note: Recursive node answer generation is generally
started by at least one fact base answer.




APPENDIX C

PARTIALLY TRANSITIVE RULES
AND RECURSIVE DEDUCTION TREES




Almost all rules or classes of rules, when analyzed in depth, will
display characteristics that can be used to guide deduction tree development.
This section presents an analysis of one of these rule classes generally des-

cribed as a "partially transitive rule" class.

A. PARTTIALLY TRANSITIVE RULES

A partially transitive rule has the disjunction clausal form:

Bxy sz Ayz’ or the implicative form: Bxy/\ Axy::;>Ayz.

A partially transitive rule can also be expressed by the form P
(Ar, Bs), where

A = the shared relation of x and y to z

B

the relation between the terms x and y

r = specifies the (1 or 2) position of term z in A

s = specifies the (1 or 2) position of term y in B
Thus,

1) P @&, B, or Bxy A Axz=>DAyz

(2) P (Al, Bz) or BxyAAzx=Azy

3) P (Az, Bl) or ByxAAxz=>Ayz

(4) P (Al, Bl) or ByxA Azx=pAzy

Notes:

(1) When B is symmetric, the subscript is dropped since rules
1 and 3 become identical as do rules 2 and 4.

(2) The pure transitive rule P(Ar’AS) is a special case of the
partially transitive rule.

A partially transitive rule is apt to produce a recursive deduction
tree. For example, application of the rule P (X1, Z2) = Xzy ixy izx to the

literal i3y produces the recursive node

x3y ny X3x where x and y are equally general

This node while redundant for fact base searches can, however, be
applied as a recursive answer generator. For example, given a single value

of y, it becomes possible to generate satisfying values of x; these can then

C-2
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be used recursively when the domain of x and y overlap. That is, to y may
be applied the new values of x, to further generate new values of x. This
recursive procedure stops when the values of x that are generated are not

new; that is, when the values of x that are generated have previously been

generated.

C. REDUNDANT DEDUCTIONS: A SPECIAL CASE

When two literals in the same node may be resolved by a similar
partially transitive rule, a great deal of redundancy may result. Two par-
tially transitive rules are similar when the rules have the forms P(At,B )

s

and P(cr’Bw)' respectively.

Example: Similar Partially Transitive Rules

P (X1, 22) = 2, X, Xox
P2, =2 % T

1) iyx Yxb

Xyz

@ Rye Zox (5> [ayt] o [T) 2o

In this example, the literals X and Y each have a partially trans-
itive rule with the literal Z, they share a term, and they are both members of
the same deduction clause (see top node). This structure allows the develop-
ment of a pair of nodes (4 and 5) whose remaining unresolved literals are

virtually the same. Also, the resolved literals requiring fact base retriev-
als are the same. Consequentlv, the work required on both deductions nodes
(4 and 5) is the same. In such situations we should restrict use of both

partially transitive rules in deduction operation

C-3
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APPENDIX D
DEDUCTION RESOLUTION MODULE-PROCEDURAL FLOW CHARTS




This Appendix presents procedural tlow charts for the deduction resolu-

tion module.

Sections of the flow charts not applicable to SNL are denoted by the
following marking: LMAMMWYML gecrions involved with advanced concepts not
needed for a minimum system are denoted by: b0 |

Numbers in parentheses within the flow charts refer to notes found
at the end of this Appendix.

Certain concepts referenced in the flow charts such as "recursive

node" are explained in the other Appendices.
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10.

11.

NOTES

A list of deductions for further deduction tree development ha< beenk
sent to this module from the Deduction Development Module. The list
may be the explicit nodes or pointers to the nodes in the tree.

No facts are requested at this point. The requests are made after
post-processing. In a later version of the system, there may be a
decision at this point whether or not to resolve with facts.

The NNT contains a list of pointers to locations in the tree where
the new nodes are stored explicitly.

Includes paramodulation-reduction capability.
Resolution with rules includes paramodulation with rules.

Rules are stored either in the external rule base, or in a local
rule table.

Query clauses are not used as inputs under SNL restrictions. (See
Appendix F)

This restriction could be implemented by allowing complete rule
resolution and then inactivating those nodes that have lLeen created
with the illegal rules.

Once a deduction has been resolved with all possible input clauses,
it is inactivated. This means that the deduction will never be
chosen for resolution. Other reasons for inactivation are:

Tree Path Subsumption

Tautology

Partially Transitive Rule Restriction

Recrusive node whose associated requires only one answer
Pruning

e Fact Search fails

Deductions with fact retrievals request confirmation from the Fact
Search Module, i.e., verification that the fact requests are satis-
fiable. This information is used to improve the merit of the

deduction. However, merit is no longer useful to an inactive node,
so any confirmation requestes from inactivated nodes are cancelled.

An evaluatable literal is a fact literal.

At this point, we attempt to find a literal to the left which will
match the unframed literal (A) that we are working on, regardless
of whether the left literal (B) is framed, unframed, complementary,
or of the same sign; since we will take action in all cases.

State of Literal B Action

Unframed, identical sign Factoring - drop A

Unframed, complement Tautology - inactivate the node
Framed, identical sign Chain Subs. - inactivate the node
Unframed, complement Reduction - drop A

D-10
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12. All post-processing operations (factoring, reduction, tree path
subsumption, tautology) require that terms of 'A' and 'B' are
identical. If variable terms are different, then the only re-
maining possibility of interest is that the new node may be
recursive. (See Appendix E)

To be absolutely sure of a possible recursive node, the checks
should be made between the unframed literal A and the rightmost
literal of the root node of literal B.

13. Splitting 18 a procedure by which a node which contains multiple
instantiations is separated into two nodes. These 2 nodes are
identical to the first except for one or more constant terms.
The sum of the new nodes equals the old node.

The new nodes are created by altering the old node and creating
one new one. The splitting is done by the intersection of one
constant list in the node with another list (constants in a rule
or fact or in a previous literal in the node). The new node re-
ceives the intersecting terms while the old node keeps only the
non-intersecting terms.

= [T

1 1
This node can be split by the intersection of (2) and (2) into

vew vode: | 5[ (] 5(2)fox L] 5}« ana

01d Node: lA_39 J D3x [ Cx9 J D5x

The first node is factored into

2RGI ) = (&L

Sometimes a constant is not yet defined due to pending fact lockup.
Splitting may still be done. e.g.:

E lflxlxlxliéx Dlc] is split into

New Node [glx le]ilx[Sl}i and 01d Node ‘Elx Alx EExlBlc'ctll

The first node is immediately inactivated by tree path subsumption.

In this procedure, the old node is placed at the top of the NNT while
the new node continues post-processing.

D~11




14. Which operation applies depends on the framing and sign of literal
B as described in note 1l.

13, A node is useful in the derivation of new lemmas if:

(1) A new real framed literal was added to this node, or

(2) There is an inferred-framed literal which, because of the
last resolution, now meeis the following criteria:
a. No unframed literals to the right of it,
b. All premise literals satisfy criteria a and b.

This prevents the derivation of the same lemma more than once in
the same path.

B
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APPENDIX E

OPTIMIZED PROGRAM DESIGN FOR UNIFICATION - RESOLUTION PROCEDURE
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This section describes a design for optimizing the program that im- |
plements the Unification-Resolution Procedure. The design incorporates a table
structure for representing clauses in the unification resolution process that : {
consolidates common entries. While this design is more complex than the design
presented in the main body of this report, it offers a reduction in storage and

an improvement in processing speed

The design presented is an adaptation of the method described in

"Computational Logic: The Unification Computation" by J. A. Robinson. A

simpler, non-optimal design, is presented in the main text, section 4.3.1.

A. NODE REPRESENTATION

All nodes of a deduction tree are defined by four tables:

(1) Constant Table (CT),
(2) Node Table (NT), ;
(3) Literal Table (LT), ]
(4) Term Table (TT).

A.l Constant Table (CT)

The CT contains all constants that are instances of terms appearing

in the literals of nodes in the deduction tree. The entries in the CT are
linked by pointers to these related terms in the Term Table (TT). Entries

may be single constants or arrays.

A.2 Node Table (NT)

The NT represents all nodes of the deduction tree. Each row of

the NT represents one node. Nodes enter the NT and are arranged in the table
in their order of creation. For each node, the table contains the following

information:

(0) ID number
(1) Number of literals in this node

(2) A list of pointers that link to entries in the Literal
Table (LT). This is an ordered list which denotes the
left-to-right order of the literals in this node.

For each pointer the following associated information is provided:

E=2
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The framed or unframed status of this literal

The fact retrieved status of the literal (being looked
up in the fact base)

e Links to premise literals

(3) A pointer to a term table segment (which defines the terms
of the literals of this node).

(4) Other information about the node:
e Node Merit
e Active Status

e Pointer to Resolvent Parent Node (Resolvent Clause or
Top Clause of Deduction Tree)

e Pointer to Input Parent Node

A.3 Literal Table (LT)

LT represents the literals of the nodes of the deduction tree.
Each row of the LT represents a specific literal. Whenever new literals
(e.g. via rules) enter the deduction tree development they are added to the

LT. LT contains the following information:

(0) ID number (implicit or explicit)
(1) Literal ID

(2) Sign - positive or negative

(3) Arity - number of terms

(4) List of pointers that link to the literals terms which are
maintained as entries in segments of the term table.

Note: The literal table can be augmented but mnot updated,
i.e., once a row is created, it is not modified.

A.4 Term Table

The terms of the literals of the nodes of a tree are defined by a
segmented term table. Each node links to a segment. Each segment is suf-

ficient to define the terms of one or more nodes.

Each row in the TT represents a term. The following information

is recorded for each term:
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(0) 1ID number (implicit or explicit)
; (1) Term type - variable (V) or constant (C)
| (2) Substitutton value

i e If the term is a constant, this field contains a
pointer to its value in the constant table.

e 1f the term is a variable, and has not been uni-
fied, this field is empty.

@ If the term is a variable and has been unified
i to another term, this field contains a pointer
to that other term. (Unified terms are in the
same segment.)

A TT segment is created for each node. Once created, it is not modified.

A.5 Example: The nodes (1): ny C4x and (2): Ax3 can be *‘

represented as follows: }

NT 4
Number of Pointers to Pointers to Term ;
ID Number Literals Literal Table Table Segment
1 3 Yy AoF, 3 1
2 1 1 II
LT
ID Number Relation ID Sign Arity Pointers to TT
1 A - 2 di552
2 B - 2 31 4
31 c . 2 & 4 ' ;
54
7 Segment Term ID Term Type Subst Value i
P I 1 v -
2 v -
3 c 1
A A L > eri;::n?uue
2 c 2
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ID Number Value
1 4
2 3

Looking solely at the term table pointers in the first entry in
the literal table (A), it cannot be determined which segment of the term
table these apply to. This determination must be traced through the NT.

The purpose of this structure is to facilitate passing essentially unchanged
literal relations from parent node to descendent node with but at most a
change in terms. Also, when the passed-on literal is not changed, even to

its term, it need not be duplicated in the tables.

The example in the following portions of this report are based

on the clauses represented above.




B. RESOLUTION BY FACT REQUESTS

When a deduction is resolved, as a parent, to create one or more
new nodes, at least one new node term table segment is created, a new entry
is added in the node table for each new node, and an entry is added in the

literal table for each literal added by rule resolution.

In fact resolution, no new literals are added so the literal table
remains unchanged. No matter how many results are found in the fact base,
all the information can be expressed with one new node entry and one new

term table segment.
B(1) Mechanism

(1) Duplicate the term table segment of the parent.

(2) Add a new term into the TT for each instantiable term.
Designate its term type 'Constant''. Set the subst value
of the new term to point to the constants location in
the CT. This location will probably not be known at
the time of creation of this node. However, it will
eventually be supplied by the fact search module.

(3) Set the subst value of the variable term being in-
stantiated to point to the new constant term.

(4) Create a new entry in the NT for this new node.

Example:

Suppose we decide to resolve node #1 with facts. The following
procedure is followed:

(1) Create segment III of the Term Table as a duplicate of
segment I of node 1.

it . Vv -
2. Ve
3 0 -1

(2) The rightmost literal is C4x. There is one instantiable
term x so add one constant term with presently unknown

pointer.

7 R 1 \'/
s v
3. C 1
4, C -
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; (3) Set subst. value of the instantiable term, term #1,
to point to the new constant term, term #&.

) 13 5.

v 4
20 N
3. Gl
4. g =

(4) Add a new node to the node table.

NT
ID# 3. 3 IR - PR R

The frame around the 3 denotes that literal #3 is being
fact searched. 1If there are no answers, this node is
inactivated. If answers exist, the FSM stores the
location of these answer(s) in the CT. At this point,
the literaID]my be dropped.

The final alterations are:

I
TII 1. "V 4
25 ¥
3. T
4. - € 3
NT
3. 2 RS B |
B(2) Resolution With a Set of Rules

When resolving with facts, an entire set of related faccs could
resolve with a node at once using only one term table segment and only one
entry in the node table. When resolving with rules, a related group of rules

can also resolve together using one term segment but producing different

entries in the node table.

B(3) Unification Classes

A group of rules may resolve simultaneously if they are of the

same unification class, i.e., their resolving literal is the same. When a
node is chosen for rule resolution, a number of applicable unification

classes are accessed.

s S st o e M
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A literal table, node table, and a term table with one segment are
developed for these rules. There is one set of tables for each unification

class. For example, suppose node 2 was chosen for rule resolution.
Node 2 = Ax3

A request would be made for all rules in all unification classes which can

resolve with this literal. Here are some sample rules:

Axy Axz Eyz
Axy Axz Ezy Unification Class #1 Axy
Axy Dxz Ezy

Ax3 Dx3

= Unification Class #2 Ax3
Ax3 G3x

These rules would be placed in the following structures:

nr! nr’
) & 3 g 2ye3 3 [ 2 Is 2
2z 3 ) A e 25 2 153
5 5 3 Vith.6 2. 2 s 3

No segment reference is necessary since there will only be one segment.

L1t g
1 A+2 12 1. A+2 21
2 A~32 L3 2 D=2 2L
3. B~2 23 3 G 2 A2
4. C~2 32
5. D=2 13
6. E=2 32

.m.l 1,1,_2
1. v 1. C 2 (points to CT)
2. \' =4 v
3 v

t
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Note: It may be convenient to maintain the rules in this format; originally,
however, it is not required for this process.

These tables are needed only temporarily since resolution will
result in the appendage of these tables to the permanent tables. In order
to unify one of these sets, we must unify the first literal of LT or LT
(A) with the rightmost literal of the parent node #2, which is literal #1
of LT (K).

B(4) Mechanism for Rule Kesolution & Example

The following steps are done:?

In the rules NT, delete the first lieral pointer (this is the
resolving literal which is dropped) and add to the remaining
pointers M = (number of literals in literal table 1).

1
Example (Refers to tables NTl, LTl, and TT )

M=3=-1=2 NT1 becomes

1. 2 4,5
2 204,56
3. AT

In the rule LT add to the term pointers N = # of terms
presently in the term table of the parent.

Example: N = 2 LII becomes

1.  K+2 3§
2o K ®:7 3.5
PR b
4. C-2 54
S ((Duwtd 35
6. B=2 54

ew segment of the term table by copying over the TT

ate a n
i nding the rules TT.

segment of the parent and appe
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Example: Create segment IV of the TT.

) 4 1 v
2. 02
RN
4. \
5 v

Unify the terms of the first literal of the rules LT with the
terms of the rightmost literal of the parent node as follows:

® 1f the parent's term is a variable, link that term to
the rule's new term.

® If the parent's term is constant and the rule's term
is variable, link the rule's term to the parent's term.

® If both terms are constant, set both constant. pointers
to same location in constant table.
Example: Unify terms of lst literal of LT1 = 3, 4 with terms
of literal #1 in LT = 1, 2.

In TT segment &4
1 and 3 are both variable so link 1 to 3
2 is constant and 4 is variable so link 4 to 2

i3’ s 1% ¥ e
2. Groi2
3. \Y
4. Vi
5. v

Append the rules LT to permanent LT except for the first entry
(conclusion).

For each entry in the rules NT, create a new entry in NT with
the same literals as the parent node, with the last one framed,
followed by the added literals. Set the term segment pointer
equal to the new segment.

NT (continued)

R Yo T
- (O e T
e T

own &
S ogiiegh
www
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LT (continued)

& A=~ 2 38
S5 B-=2 45
6: C=2 54
y P B
8. E -2 5‘.

After applying the same procedure with the second unification class,
The final structures describing

two additional nodes are created.

all 8 nodes are as follows:

In# # of Lit.
1 3
2 1
3 2
4 3
5 3
6 3
7 2
8 2

ID# Relation
1 A
2 B
3 C
4 A
5 B
6 C
7 D
8 E
9 D

10 G

Segment Term ID

I 1.
2.

3o

Il 10
2,

111 1.
2

3.

4'

1v 1.
2.

3.

4.

NT

Pointers to LT

1, .21, 5
1

2

4

[ I S

LT
si

IT
Term Type

v
\
c
v
c
v
\
c
c
v
c
v
A\
'/

@ o wn

Arity

NN

i Ko s s b 2 ,w

Pointer to TT seg.

q
11
II1
Iv
IV
v
v
v

Pointers to TT

N W= ES I -

N

WCHhPLnLULPpsLLWLME
FLPFPLPLULEMND

Subst Value
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This method has the benefit of automatically separating variables,

i.e., a variable in a resolving rule, which is not being unified, will never

match a variable ir the parent node.

B(5) Possible Optimizations

(1)

(2)

(3

Instead of adding all terms from the rules TT, just add the
new terms and change the old references. Furthermore, if
no new terms are added, no new TT segment need be created.

As resolution proceeds and framed literals are dropped,
terms are lost. However, these terms are still kept in
the term table.

For example, on the previous page, look at node 3. Literal
#2 may be contracted. Once this happens, node 3 has only
one literal, number 1 which references two terms in segment
III - 1 and 2. In segment III, term 1 is linked to term 4.
However, there is no reference to term #3 in segment III.

Terms which are not referenced could be deleted from the
segment. This would, however, require explicit ID numbers
in the term table.

After repeated resolutiuns, it is possible to create a
number of levels of pointers, i.e., term 1 is linked to
term 4 which is linked to term 7, etc. This situation
can be improved by updating pointers, so that when term
4 is linked to term 7, all other terms which were pre-
viously linked to term 4 (e.g., term 1) are linked to
term 7 as well.
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