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EVALUATIOW

Design specifications for a deductive inference system have been de-

livered under Contract P30602—74—C—0250. When implemented as an adjunct to

• an intelligence information system, an inferential system will Improve

analyst—data base interactive capabilities, i.e. , augmenting information

retrieval, reducing data storage requirements, providing interactive hypothesis

testing. Future application of inferential data analysis is planned for the

Scientific and Technical Information System (STIS) at the Foreign Technology

Division. This development is included as part of TPO #4 , Intelligence Data

Handling .

t~4 ~&J U~4~ROBERT N. RU3ERTI
Project Engineer
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SECTION I. INTRODUCTION

“An inference system derives cor~clusion s (inferences) from facts

and premises .” This Webster Dictionary definition is interpreted to include

inferences that are new facts , not heretofore assembled , and existing facts

available within a body of preassembled fact data,  ~bach of inferential log ic

in current literature deals with former , that ‘.a the generation of new

facts imp lied by a body of fact data and a set of premises. This is evident in

the areas of problem solving and theorem proving. However, in the arena of inf or—

nation systems , emphasis is upon the latter , that is, upon finding facts that

currently exist in an assembled body of fact data, or tha t may be genera ted upon
request by specialized fact generators (computer programs). The facts sought are

those that can satisfy an infoLmation qu~ry. The query may be a primitive direct

request as “have you any X , Y and Z facts?” ; or the query may be as complex

as “what facts have you that satis fy , . .  (an d a list of interrelated conditions
are stated)?” . The query may also be posed with conditions on the number

of answers desired and with qualifications on the answers (e.g. , precision ,

credibility).

If the fact data of an information system were organized ‘to be ~exp 1i—

citly responsive to every valid query, the logical (data relational) organization

1—1
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and the efficiency of fact base storage , in re2ard to r~’dundancy needs and

accessibility, would likely aquire a superstructure , which might be overwhelm-

ing even for a relatively small information system. As a practical matter , to

circumscribe such overhead , an information system is supplemented by rules that

reflect data relationships among facts of the fact base, so that not all infor—

nation need be explicit in the fact base. The rules may also provide repre—

sentation of fact relationships that are alternates to relationships explicit

in the fact base , to afford alternative , less costly , accesses to facts.

1—2 
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SECTION II. INFERENC E SY STEM CONCEPTS AND ARCHITECTUR E

An inference system is a subsystem within an informatio n system. It

lies between the information system Dialogue package and Fact Base , viti’ forma l

interfaces as ehown in Figure 2—1 . The primary components of the inference system

are
(1.) Query Ana lyzer
(2) Deduction Mechanism
(3) Deduc tion Rules
(4) Pact Search Mechanism
(5) Answer Responder .

A Performance History Analyzer component is included as a sixth component to

support the inference system in a learning or adaptive mode so that it may

cope with changing operationa l situations .

The Deduction Rules (or j ust Rules ) component contains (logical re—

lational descriptions (expressed in this report by the Predicate Calculus) that:

(I) characterize the fact base and its inter-relationships ,
(2) generate special data sets , and
(3) contain assertions , whose fact satisfiabil tty is not

necessarily assured .

2—1
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Figure 2-1. Infer encs Subsystem in an Information System

2.2 -



The Rules component is extendIble to includ e rules tha t trans-
late and enable alternate versions of a query . This permtts the same

requirement to be exppressed d i f ferent ly  by users , and may properly be

regarded as providing a query language translation capability within the
inference system.

The inference sys tem operates as follows . A user query is passed

to ~he inference system by the information systems Dialogue . The query is

then processed by the Query Analyzer , which prepares it in the proper logical

form for deduction processing. The Deductive Mechanisms of the inference

system attempt to ascertain the eatisfiabili ty of the query by f a er s  exist-
ing within the information syatem fact base , by f a c t s  generatab l ’  y specia l
generators , or by some of the Deduction Rules.

The Deduction Mechanism generates deductions by employ ing logical

inference techniques , that are well established in the l i terature;  see References ,
in Appendix F. The different approaches cited in the literature are generall y
equivalent in that they derive the same results , utilizing the logic of the

predicate calculus . There are variations among approaches designed to simplif y

operations for computer computation; and we have chosen and adapted , with this

purpose , the OL-Deduction approach described by Chan g and Lee , Reference I.
Given a workable deduction approach , a principle concern has been

to devise a strategy that helps to narrow the almost limitless range of pos-

sible deductions that may be generated in the search for useful, potentially

• satisfiable deductions. On this matter, there is little of substance ir.

the current literature, and very little in the way of practical experience,
see Reference 6. Four approaches, however, are identified and to various

extents practices. They are:

(1) Deduction Expression Characteristics. Presume success
probabilities (e.g., likelihood of a deduction being
satisfied or leading to another satisfiable deduction)
by correlating success probability values with certain
aspects of the deduction statement , such as , the number
of logical expressions in the statement. Chan g and
Lee , for example , enumerate 14 such content-independent
characteristics of a deduction statement.

2—3 
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This approach leaves much to be desired since it pres1~~~s ,
in effect, that the satisfiability of a deduction correlates
with the expression of a deduction rather than with the
“meaning” of the deduction in the context of an in f ormation
system. It suggests , for example , that short deduction
statements are more likely to be satisfied than long
deduction statements.

(2) Breadth versus Depth. Most deductive systems generate
deduction trees in which each node of the tree is a
potential deduction resolved from its parent nodes on
the tree . The deduction tree can be encouraged to
expan d depth-wise or breadth-wise, arbitrarily. Con-
tentions arise as to the merit of developing a tree
along its breadth prior to descending ii  tree depth ,
visa versa , or the myriad of in betweens . Deduction
development approaches based on breadth/depth con-
siderations are even more limited than (1) above in
regard to reflecting the content of deductions, and
tend to wander into meaninglessness as the deduction
tree expands .

(3) Success History. This a probabilistic approach in
which the likelihood (probability) of a successful
( i .e . ,  satisfiable) deduction or of leading to a
successful deduction is estimated on the basis of a
deduction ’s success history. The approach is , in
this sense , content related . This approach collects
statisfical performance data on logical expressions
appearing in deductions , to compute porbabilities.
The approach is presumed to work well in a a table
information system, tha t is , in one whose fact
base and rules change slowly in comparison with
usage.

(4) User Interactions. The user (inquirer ) is engaged in
this approach in directing deduction development. An
exchange is provided via the Dialogue of the information
system. For.practical operation, this approach does not
necessarily involve the user in evaluating each potential
deduction (since thousands of potential deductions could
be generated for diff icult  queries), rather , milestones
or conditions are set as criteria for engaging the user s
aid. Considerations relating to these are:

(a) shall a high probability deduction be p~z~eued
which has a predicted heavy computation load
compared to other potential deductions?

(b) shall the deduction process be pursued further,
having exceeded a prescribed computational budget
allotment?

2-4 
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(c) will the user wish to restate his query based on
partial results thus far achieved?

This approach is highly effective in that it brings the user
and the information system together , in a dialogue, for
answering queries. It does not , however, absolve the
inference system from doing its part to automate the query
answering service .

In this report we have placed our emphasis for the des ign of deduction
development upon the conten t related approaches , namely , the Success History
and User Interaction approaches, putting aside as incidential the other two.

At the outset , we had recognized that the heaviest computation burden

(use of resources) and processin g delays lay not in the Deduction Mechanism ,
but rather in the Fact Search Me..~hanism, (refer to Figure 2- 1). Whereas , the
Deduction Mechanism might generate a large quantity of deductions, these could

be computed very rapidly by high-speed computer; and , assuming low cost bulk

storage avai labi l i ty  and an overlay storage capability, a low cost could be

expected for computer storage and computing resources by the deduction process.

On the other hand , the Fact Search Mechanism , which generates specific facts

and collects selected fact da ta from the information system fact base ,

-
• entails extensive and expensive data retrieval and data manipulation operations.

Fact retrieval requests transmitted by the Fact Search Mechanism to the in-

formation systems fact base initiate large data search and retrieval operations

in that area of the information aystem, along with substantial delays associa ted
with the required searches through the fact base . For these rea sons , great
attention was given to the Fact Search Mechanism of the inference system, to

its assigned functions and to its design .

The Fact Search Mechanism (FSM) receives, from the Deduction Mechanism ,

potential deductions or parts of deductior s which may be sa t i s f iable  by fac ts

contained within , or genera table by, the information system. The FSM acquires

the desired facts from the information system , via forma l coimuunications. Re-

trieval requests are optimally organized and issued by the FSM to the information

system in a manner to minimize overall  search and coimnunications load. Fact data

received by the FSM are f i l tered of non-sat isfying facts  and the results are

assembled for query answering.

2-5
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It should be noted that , in much of the literature

by both retrieval from the fact base and through deductive generation are pro-

cedurally intermixed. There are two practical reasons why this is a generally
unworkable procedure.

(1) Fact data derived from the fact base or from special fact
• generators are not ininediately available for deduction

verif icat ion, requiring normally a retrieval tine inter-
val . Such delays hold up deduction development. It is
generally better to continue deduction development (to
a point~) without waiting for fact verification , even
though this risks generating some non-useful deductions.

(2) Determining facts within the deduction procedure , by
• generating a collection of deductions , each of which

is a derived fact , is inefficient (expands the number
of deductions and complicates the fact determination
procedure) compared to utilizing specialized fact gener-
ators (computer programs) or compared to retrieving the

• collection of facts , in batch node, from thn Fact Base.

While we have not excluded from the Deductive Mechanism the capability

of performing individual fact generation, we have designed the FSM to strongly

support fact determination and verification, on a batch basis, with facts derived

from the information systems Fact Base and from specialized fact generators.

A complement component to the Query Analyzer of the inference system

(see Figure 2-1) is the Answers Responder. This component has two functions :

(1) to prepare dialogues with users and convey results, via
the information system Dialogue ,

(2) to convey information to the Deduction Mechanism concerning
the satisfiabili ty of deductions.

With regard to the latter , the sooner the Deductive Mechanism can learn whether

or not a deduction is satisfiable, the better it can guide deduction develop-

ment.

The final major component of the inference system is the Performance

History Analyzer. This component collects success-failure data, processing

resource costs , and performance speed , and generates periodic probabil ity

data , needed to guide the Deduction Mechanism in its deduction development.

2-6
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2.1 PRELIMI NARY DISCUSSION OF RELATIONS, LITERALS. DEDUCTIONS. AND
QILERIES

2.1.1 The Literal

The smallest logical unit in the Inference System is the simple re-

lational statement, sometimes called an atom. A relational statement has the

form R(a1, a2, ... , as). We may say that the symbol R stands for an n-ary re-

lation when it takes n domain elements or terms , a1, ..., a~. For example

in the relational statement Location (Smith , Phi la),  Location expresses a

binary relation between the terms Smith and Phila. A literal Li is either a

relational statement (a tom) or its negation, and hence we speak of positive

or negative literals. If we have L
1 

— R(a ,b) and L2 ~ (a ,b ) ,  then L1 and L
2

are complementary li terala.  It is customary to refer to L
1 

as a positive and

L2 
(or L

1
) as a negative literal.

In the inference system all logical statements (propositions , rules ,

queries , etc .) will be put into a disjunctive normal form so that the scope

of each negation is a single relational statement (atom). Therefore, we can

treat all statements as a disjunction of literala . We call a disjunction of

literals a clause and customarily omit the logical operators in clauses so

that a statement such as

A(x,y) A B(y,z) ~~ A(x,z)

will appear as

~xy ~yz Axz

in clause form. This stands for the disjunctive normal form ~ (x ,y)v~~(y,z)v
A(x ,z). We further assume that all term variables in the clause are univer-

sally quantified , that is , true for all values of x ,y, and z , unless other-
wise del imited by the deductive system

2.1.2 Types of Literals

There are several types of literals in the inference system. One

• type identifies classes of facts in the fact base, and are denoted as fac t -
•

literals. These literals may be passed directly to the fact base for immediate •

2-7
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fact retrieval without further logical analysis of the literal. A second type

-• 
of literal is used primarily to inter-relate other literals , and , therefore ,

to construct inference rules and queries . This type of literal may also be

used to infer tacts or classes of facts that are neither available in the fact

base nor provided by the fact generators. These inferred facts are not verified

by the information system, and if accep ted , are accepted on faith. This is

discussed further in Section 2.1.3.

Rule , query, and deduction clauses may contain one or both literal

types. A rule containing only fact literals provides a means for defining

alternative literals for fact retrievals - an important feature of an inference

system concerned with optimal fact retrieval performance. The set of fact

literals is recognized and maintained by the inference system as “one-literal”

rules. Also maintained with each fact literal are certain statistical data

reflecting the fact domain of the literal, the cost of fact retrieval for

the literal, and other information useful in guiding deduction development;

see section 3, Deduction Development Strategy.

2.1.2.1 Type of Variable Domains

The variables in a clause are all formally universally quantified, that

is, the proposition expressed by the clause is to be satisfied for all values

of the variables. However , the type of entities , objects, etc. in the domain

of a given relation which make it semantically meaningful is often quite re-

stricted , and may be a small subset of all entities in the system. The Infer-

ence System will use this information to restrict the number of tests which

must be made to verify the validity of a proposition. For example, in the
rule P(X ,Y) AP(X ,Z) n~~ M(Y ,Z) (where P means paren t and M means mate),  people ,

animals and (some ) plants may be eubstituted for the X, Y and Z terms . The
meanings (types of allowable substitutes) for terms of each relation is recog-

nized and controlled by the inference system .

2.1.2.2 R an&e of Var iabl e Domains

In classic logic , the use of the quant i f ier  
~~~~~~~ 

means that the vari-

ables are unrestricted. In a real information system , the meaning of the
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quantifier 

~J~Jr~ 
is restricted to those entities available within the in f orma-

tion system. In a practical way, “all” is further restricted to those en-

titiea which are available within a budget of time and resources. A working

information sys tem ~ zat specify (or estimate) the domain of each term in a
• relation. In particular it must specif y (or estimate) the number of entities

in that domain. We call this quantity the range of the domain. For example,
in “all parents of people”, the range of the domain of parents to a single

child could be specified as two. The number of parents may be limited to a
current count of entries in a parent fact file, or a practical range limit
of , say, 10,000 may be set.

In a working information system , facts potentially satisfying queries

take time to derive, and may cone forward irreg ularly and in disorder , as

appropriate fact banks are searched. If the query is satisfied pr ior to

retrieving !J1 facts , search may be terminated before being ful ly  completed .

This is i l lustrated by the following query :

• Query: Find tvo workers in factory F that have skill in electronics.
(ax) (Works-at (x,F) Askill (x, Electronics))

Range (x) 2

Type (x) — people

Procedure: We might proceed to first find and generate a file of

~~~ workers Y in factory F, and then to select from this file a subfile
of all workers with electronics skills; and then to select the f i rs t  two of

this eubfile for the answer to our query. We might instead, however , search

the fac tory file one at a time, testing for an entry that has an electronics

skill, and continuing until two are found.

It should be noted that classical logic tends to express itself by

the first of these two procedures , taking advantage of the elegance of cx-

pression provided by the “all” concept. The second procedure may, on the

other hand , be more economical involving less search activity. In practice,

th. best method will sometimes be one or the other, depending on factors of fact

logical organizat~.on and physical storage, th. performance of fact retrieval
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mechanization , interdependency of literals of a query and the number of facts

requested by the query in relat ion to the number available within the inform-

ation system.

2 .1.3 Types of Deductions

A deduction is a logical statement generated by the inference system,
starting, for examp le , with a user query and a set of rules. There are two

general types of deductions. Each of these is characterized by the extent to

which the information system can supply information , that is real facts, that

sa t i s fy  the deduction .

(I) Verified deductions. These are deductions for which the in-
formation system supplie8 information , that is, concrete facts
that support the deduction . The user is supp lied these fac ts
and the deduction , as a response to his query. It is clear
that in this type of deduction , all literals of the deduction
are of the fact literal type.

(2) Inferred deduction s. These are deductions for which the
inference system does not supply facts from the fact base
or from fact generators, to support the deduction. The
deduction is taken on faith. This type of deduction occurs,
for example, when a set of rules that are applied to a query
ate accepted as representing “true” relations. As an th us-
tration , an inferrence might be that “every paid employee
has performed a measurable service”; a verified deduction
would require examining the accounting performance sunasary
f iles of paid workers in the information system.

Infered deductions are called inferences , and divide into
two sub-types: Those inferences that are verifiable by
facts from the information system , but have not been
verified; and those that are not verifiable within the
means of the information system. This divisio-i is use-
ful because a user recognizing the costs and delays
associated with fac t verificatior~ may feel satisfied with
partiall y verified results.

We note that the hiterals of non-verifiable inferred de-
ductjon s include at least one non-fact literal. The
literals of verifiable inferred deductions consist of
fact literals only.
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2. 1.4 Answers to Queries

The inference system generates deductions as a means of answer-

ing queries. Deductions may be classed into acceptable deductions and

unacceptable deductions. Unacceptable deductions are deductions which

are either not meaningful or are unacceptable to a user as a response to

his query. This is quite general and can even apply to verified deductions

if the supporting information does not meet “extra” user requirements - which

are conveyable to the inference system via a dialogue. Also , an acceptable
deduction may not necessarily fully satisfy a query. For example , if a
deduction satisfies a query with 10 facts , but at least say 20 facts are

desired , it will be necessary to continue the development of deductions in
the information system until the desired quantity of facts is derived - or

the search is aborted .

2.l.5 Interpretation of Formal Implication in an Information System 
• 

-

In our information system every logical statement is expressed as

a clause; that is, as a disjunction of literals. The clause may be equivalent

to an implication; for example, the clause

A(x) V ~ (x ,y) VC(x ,y)

is the sane as the implication

A(x) A B(x ,y) ~~~ C(x ,y). 4
The interpretation of the clause (an d therefore of the imp1i~ ation ) in our

in formation system is “find all values of x and y which satisfy the clause’ . The

:~.st4t will be n vectors :

Si = (Xi, Yi) ,  I = 1, 2, ... , n.

where the Xi and Yi are constants (entities) in the domains of
variables x and y respectively.

Each vector Si provides a single answer that satisfies the clause, and its

equivalent implication statement.

2—11 

—-5 —- - -.5-—- — -——-—5-. —5—--———



--
~~~
- 

~—~~--
---- ~~—~~~~

• 
~~~~~~~~~~~~~~~~~~ 5 . —  - . -~~~

In regard to the implication statement, this represen ts a more

general interpretation than the classic “true or false” interpretation,

that makes no distinction as to possible answers within subdomaths. Re-

stating this difference, we have in the classic logic that , a8aumthg univer-

sally quantified variables , A ( x ) A B ( x ,y) ~~~~. C(x ,y) is a true statement only
if it hold for all x and y. In the information system, A(x)AB (x y) ~~~ C(x ,y)
is a statement to be verified as true , by vectors (X i, Y i )  that can be dis-
covered within the information base of the system to satisfy the implication . It

may be curious to some logicians, that the null set may be , for some cases, the

only discovered answer to a universally quantified statement. More likely, some

non-null answers will be found. The classic conception of implication can be

highly effective in an abstract universe where inzm.itable laws govern the inter-

relationships of all objects. It can be appreciated , however , that an informa-
tion system is not an abstract universe. In an information system inimitable

laws governing information are scarce and information is acquired by examinations

of a multitude of non-universal r~ules and by an abundance of detailed fact search-

ing. The classic implication statement is not sufficient, therefore, for a “real”

information system and must give way to the more effective general implication

statement interpretation presented here.

2.2 DEDUCTION

2.2.1 Unification

Within the Deductive System, all logical statements in the predicate

calculus , e.g., queries , rules and deductions, are represented by “clauses”.
Symbolically, a clause C designates a disjunction of literals (L) by, C L~V’L2
...VL,~, where L.VL . means either Li 

or or both. The literals themselves

are expressions involving “terms”. Terms need not be logically defined to the

deduction mechanism beyond their uniqueness; theIr meaning, however , is that

they specify information that together with relational clauses, result in state-

ments of fact. Thus, for L(X), X are all terms satisfying the assertion L(X).

A literal L(X) is not the same as a literal L(Y), when X and Y refer to differ-

ent sets of terms (entities). When X and Y are not disjoint, a process called

“unification” can be applied. This involves a procedure of substitution and

occurs a great deal in deduction mechanisms because the terms of literals in
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the rules of an inference system tend to have wide domains. When the domain

of a term i~ universal, that is, it covers all facts, then the term may be

called a un ivers al variable. Generally, this is not the case and the domain

of each (variable) term mist be specified. For example , in L1
(X ,Y) and L

2
(U ,W ) ,  if Y~~U , we can identify L1

(X ,Y) and L2
(Y ,W) as two literals that

have been unified. This unification procedure is extendible to clauses with

coum~ n domains , and as we shall show , is appropriate to “resolution”, a pro- 
5

5

cedure for generating deductions from two parent clauses.

2.2.2 Resolution

Deductions are generated in our inference system by a method called

“Resolution”, illustrated by the following:

Given two clauses L
1

(X) V L2(Y) and t
1

(Z) Vt3(z). if 2 is a variable
term whose domain includes X, we may let Z take the values of X. We can then

“resolve” these two clauses to form s deduction (resolvent) by

[L1(x) V L2(Y)] A [t 1(x) V t3(X)] ~~~{L2(Y) V

In discussing resolution , we will limit ourselves to binary resolu-

tion , as illustrated in the preceeding example , and we wi l l  refer to the two

starting clauses as parents, and to the deduction clause as the resolvent

clause. We also make reference to the positive form of the literal of the

parents that does not appear in the resolven t , as the “resolution literal”.

In the preceedthg example , L1
(X) is the resolution literal. We will frequently

find it useful to retain in’ a resolven t clause the resolution literals associated -
with it , and will mark the resolution literals appropriately to distinguish them

from other literals in the clause. A deduction that is the result of a chain of -
resolutions can , therefore, display a number of these marked resolution literals , - -
one for each link in the chain.

2.2.3 Deduction Nets, Trees and Linear Chains

A deduction lattice network can be generated by utillzing starting

“clauses” (assertions and rule clauses), followed by resolvent clauses as well as
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startins clau- ,es as parents f new res~~Ivent c1aus~ s. A (partial )* deocct~ on

tre,. is a deduction net in  which  a t  l eas t  one of the p a r e n t s  if each resolvent

is a nun-resolven t clause (sometimes called an Inp u t  clause). A linear chain

L i c t i - ~ii is a path of a tree deduc tion . Thcs~ are illustrated in Figure

2—

i ~EUUC [ loL ~U:clL\L ~S:i

~e have  adopted  for  our e lu c t  i in echan i s :~ the method of ordered

1 i n e i r  de .~ u~ ion ~ ‘ — d , . i u L  t i on )  d e s c r i b e d  by Chang and Lee , R e f e r e n c e  1,

A t ~end i~ F.  Th e  h _ d e d u c t i o n  m e t h o d  ~ i e r ~~tes upon a p r o c e d u r e  in  which  the

n~~~~ i t i u i i  of ui .~~ser ~~i n  i s  a t t e m p t e d  to be r e f u t e d , when the nega t ion  of

an a s se r t i o n  i~ -,u ~ c e s s fu 1 l v  r e f u t e d , the  assertion is , thereb y, verified .

~~~ r e t u t o t i o n  rn  du r e  i f l i t i~~~L e~~ w i t h  a set of r u l e s  and an a ss e r t i o n

rese i t ~~u in egate d term f r  r e f u t a t  1 ) 11 .

2 .3 . 1  n e-red Linear  OL-Deduction Method

- ~ - d edu c t i o n  is a deduction tree developmen t procedure containin g

c e r t a i n  r e s t r i c t i o n s  on the const ruct ion  of deductions and on the representa t ion

of res 1v~r t and resolver deduct ion clauses . In th i s  report , OL-deduction

~rdering restrictions are as follows :

(U Two paren t clauses are used to generate , by the procedure of . -
resolution , a single deduction--resolvent clause. In OL-
deduction , a pair of parents may not have a coninon ancestor ,
that Is , the deduction graph may not have the form of a
general lattice. This restriction , in effect , means that
each parent pair must consist of one input clause (rule or
query clause) and one resolvent clause, except for initial
tree deduction s. This restriction is compensated by a
later operation called “reduction ”.

* We shall drop the term “partial” and use the expression “tree” in what follows.
The partial tree is really a limited lattice since an input clause may be
paren t to more than one deduction node of the tree.

2-14

-_____  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5 .—- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~



-- — ,~~~~~~~~~~~--

Starting Clauses (80,81, . . .B )
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Figure 2—2. Deduction Structures
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(2) Parent clause pairs have their resolution literals positioned
at opposite ends of their respective clauses. By convention
in OL-deduction , the resolven t parent clause has its resolution
literal at the right-most position of the clause.

(3) The resolution literal is retained in the generated resolven t
clause and marked_as such by a frame symbol , for post pro-
cessing, i.e.IL(X)~ means L(X) is a resolution literal .

(4) The relative positions of the resolution literals with respect
to the other literals are preserved in the resolven t clause .
Examp le ,
Reso lven t  P a ren t  I n p u t  Parent

L
1
L2L3 L3

L4L
5

L
1L~~~ JL4L5 t

~~e~~::~:r
L
5
L6L7 Input Parent

L
1

L~~~~ JL~~~~ JL 6
T

7

Next Generation Resolvent
Clause (deduction)

In this examp le, and are the resolution literals in

the bottom deduction .

(5) Resolution literals (i.e. framed literals) in resolvent
clauses are utilized in two ways.

(a) In post processing of a resolvent deduction to
simp l i f y  or el iminate  redundan t deductions.

(b) To identify those literals ff~ a deduction that are
to be fact determined , e.g. for which facts may be
searched in the fact base.

(6) When all literals of a deduction are resolution literals
(i.e. framed) the deduction is fully resolved and , therefore,
fully prepared to be fact detertnined .* The facts to be
determined are those that refute the framed literals. (We
must always remember that we are in a refutation procedure.)

*
Fact determination may be initiated upon any or all resolution literals of
a deduction at any time , even for non fully resolved deductions. The se-
lection of literals for fact determination is guided by a strategy that
minimizes fact retrieval costs and response delay.
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The mechanism of the OL-deduction procedure is such that all

resolvents reflect their ancestory chain . This is due to the ordering

at  literals and the retention of resolution literals in the resolvent clauses.

As a result , as long as all framed literals are retained and o r d e r i n g  of l i ter a l s

is preserved , one can recon struct from each resolven t its ancestral deduction chain. -

Fxamp le , L
I
L2L3\ / L3L4

L 1L~~~~~~4 

~~~~~ / 
L4L5

L6

LIL~~~~~~~jLS L6 \f
~
” 

,/
~L6L7

LlL
~~~~ f~~~ L&7 V

The advantages of the OL-deduction procedure are two-fold .

(1) It provides a straight forward and orderly procedure for
generating deductions , limiting the deduction procedure
to (partial) tree rather than a general lattice structure.

(2) I t  f a c i l i t a t e s  certain operations related to minimizing
the growth of non-usefu l deductions - these will be
referred to subsequently as deduction simplification
and elimination operations.

In limiting itself to the above tree structure , the OL-deduction

procedure is incomp lete , that is , not all possible deductions can be generated .

The completeness of the OL-deduction procedure , however , is assured by a

process cal led “reduction” that  is applied to resolvents ,see section 2.3.5.”Reduction”

in e f f e c t  permi t s  a resolvent  to be created of two parents with coimnon ancestry.

2.3.2 OL-Deduction Compatible with Set of Support Strategy

An added feature of OL-deduction is its relation to the set of

support strategy , which tends to avoid development of certain classes of

useless deductions.

The set of support strategy states that if within the set of potentially

unsatisfiable clauses (facts, rules and negation of query) there exists a subset
which is known to be satisfiable (facts and rules), in each resolution select
at least one parent clause from outside this satisfiable subset.
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In OL-deduction , ru le  clause parents  general ly provide a set of

support . Clauses taken from the set of negated query clauses are external

to the set  of support  as are  u n s a t i sf i s f iab l e  r e s o l v e nt  c l auses  s ince if a t

loast one parent of a resolvent clause is chosen from outside the satisfiable

set , then  the resolvent formed is also from outside tha t set.

2.3.3 Selective Negative Linear Resolution (S)~~~

For the first stage of implementation , the restrictions of SNL can

~~ incorporated . These restrictions , while limiting the scope of deduction ,

also eliminate the need for certain post-processing deduction elimination

-‘p e ra t ions .  SNL r e s t r i c t i o n s  include the fo l lowing:

(I) Input rule clauses are ordered Horn clauses . A Horn
clause is a clause containing at most one positive
literal . An ordered Horn clause places its positive
literal at an end (the left-most) position .

(2) The top (negated-query) clause of an OL-deduction chain is
completely negative , i.e., all literals are in negative
form .

As a result of these restrictions , all resolvents in SNL are com-

p letely negative . Furthermore , only Horn clauses with a (exactly one) positive

literal can enter the derivation since purely negative input clauses cannot

resolve with purely negative resolvents.

2.3.4 Paramodulation

Paramodulation is a specialized form of resolution which accepts

the equality literal as a special argument. When parainodulation is in effect,

there is no need to add explicitly the axioms of transitivity and syimnetry of

equality. Furthermore , resolution with paramodulation is more efficient than

use of explicit axioms. The following examples demonstrate paramodulation.

1) Zab ~~~~~~~~~~~~~~~~~ Yac

Zab~~~~~Xcb Yac
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2.3.5 Deduction Simplification and Elimination: Post Processin g Operations

When a resolvent clause has been created , a series of operations are

performed upon it to complete resolution , to remove redundancies and to eliminate

— the clause if it is totally redundant or subsumed by other clauses in the

deduction tree. These operations are described in the following:

(1) Factoring

When ~wo unframed unifiable literals of the same sign
appear in a deduction clause , it is sufficient to refute

• the less general of the two, since what refutes the less
general literal also refutes the more general one. Drop-
ping the less general literal is called factoring, and is
preceded in OL by unification.

Example: D3~ 
A 3x B3 A 3 ~3y and XC.Y produces 03x A3x B3 C3~

Factoring should always be applied to pairs of literals which
are identical. If factoring is forced , howevet , by fully
exploiting all possible unification opportunities , useless
deductions tend to be generated .

(2) Reduction without Unification (Not applicable under SNL)

Reduction is a process by which an unframed literal with—

in a deduction is resolved if it is unifiable with a com-

plementary (opposite signed) framed literal to the left
of it in the same deduction clause. Reduction without
unification is the resolution of a literal which Is identi—

cal. to the framed complementary literal in the clause.

Reduction is in effect resolution of a deduction with another
ances trally-related deduction followed by factoring. For
example , consider the clause 4jJYKZ. Reduction will reduce
this to X~~~4jJ. This can be Justified in ligh.t of the
structurt o~ the given clause which reveal-s an ancestor
clause XL Reduction in this example can be seen as a
resolution of the given clause with the ancestor XK as
follows:
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Example of Reduction (Without Unification)

— xII~ J y x z  x~~
— 

4, of literals
~~~

‘ 

Permissable reord ering

X K Y Z K
~~ .~~..~~
,
,Z

X X

xL~~
y z ~ J x

Xf~ IY z f ~J Factor X , drop right-most X.
We have thus resolved the
literal K.

(3) Tree Path Subsumption

One clause subsumes another clause if it is more general. If
an unframed literal is identical to a framed literal to its
left in a deduction clause of a deduction tree , it can be con-
cluded tha t this deduction is subsumed by a direct ancestor deduction.

Consider the clause X~~~Y~Z. The left side of this clause shows
a direct ancestor deduction XK that is mere genera l than the
given clause. Since XK subsumes xf~Jixz and is simpler to refute,
XK is retained and )4~ IfrKZ is discarded.

(4) Tautolqgy

A tautology is a claut.c containing two complementary un-
framed Iiterals (e.g. PvP), Is always true and , therefore ,
cannot be refuted . Further applications of facts and rules
can only lead to other true clauses and not to refutation ,
therefore , tautological deductions are discarded.

(5) Reduction with Unification (Not applicable under SNL )

For each substitution which unifies an unframed literal and
a previous complementary framed literal to its left in the
same clause, generate a new deduction clause by making
the necessary unification substitution and deleting the
unframed literal . (The given clause may be retained for other
possible resolution operations.)

Example:

~~~ 
A
3 

produces 811

Another form of reduction which can be performed at this
point comes from paramodulation as expressed in the following
examples :
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_ _1) [a ~~~ Fa produces r~
—
~ b I ~~~Fb

2) f~~~J ( a  b) produ ces~~~1Ja bIFb

Though reduction is defined as a post processing operation ,
it is , in reality, mere of a resolution operation and,
therefore , should be executed within the resolution pro-
cedure or prior to other post procesBing operations.

(6) Ordering

Literals to the right of the right-most framed literal are
free to be reordered . Reordering may not occur across
framed literals without special care.

2.4 FACT DET ERMINATION

OL-deduction , as has been stated , is a refutation procedure. A

questionable assertion, that is , a query, is presented in negated form to

the OL-deduction mechanism. Deductions are then generated and are sought

to be refuted . A refutable deduction implies the existance of a collection

of rules and facts (possibly a null collection) that refutes the negated query,
and consequently, satisfies the assertion of the query. It is the collection

of facts that is the answer to the positive query and that is provided by the

inference system.

A resolved deduction is a clause consisting of only resolution

literals ; that is , it is a deduction clause that has been fully resolved.

Each resolution (framed) literal in a resolved deduction clause

is a literal about which the information system can supply facts or is an

acceptable inferred literal. An inferred literal will often be a simple

binary propos ition , si~~ifying a yes or no; true or false; 0 or I value. In

the mere general case, where the framed literal is a complex predicate, the

• literal will tend to be a fact literal for which the information system will

supply all facts. For example , given [k(X.5) I where L(X,5) means “X” is a
worker in factory “5”, then the information system will search out all workers

in factory number 5 and supply these as facts satisf ying the literal. We call

• this procedure “fact determination” When fact determination is applied to

all of the fact literals of a completely resolved deduction , we then determ ine

a largest subset of these facts that can satisfy the deduction as an entirety.
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The size of t h i s  subset of facts is dependen t on the way in which the resolution

literals , and their terms, of the deduction clause are interrelated .

Example: IL l
(x.5)I 1t 2001 are two interdependent literals in a

deduction with the meanings

L
1

(X ,5) , X are men - o~ k i n g  in factory 5

L 2
(X ,< 4 5 ) ,  X are men under 45 year s of age

The set of facts refuting the deduction is the logical inter-

section of the st! ts  of f a c t s  r e f u t i ng  the two framed literals independently.

2.4.1 Suunary of Sources of Facts for Deduction Evaluation

The sources of facts for deduction evaluation are as follows:

(1) Fact Base of the information system. This is the primary
source of fact data . The fact base consists of data bases
and relational data sets .

(2) Fact Generator Algorithms. Algorithms that generate facts
range from simple to complex. Simp le algorithms are executed
by simple computer programs , some of which may be under
direct control of the inference system. Such algorithms
may perform simple range filtering, or selection tests for
some specific literals. (Fact Generator Algorithms are an
open area for further investigation and are only briefly
touched upon in this report.)

(3) Users. Users via dialogue may contribute facts to facilitate
the inference processing.

(4) Facts generated by deduction . These are inferred facts, not• verifiable (satisfiable) by the information system.

2.4.2 Deduction and Verification: A Two Stage Procedure

The deduction verification procedure may be viewed as consisting of

two parts , a deduction development stage called Stage I and a deduction veri-

fication or fact search stage called Stage 2. This is depicted in Figure

2-3.
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Stage I generates deduction s by resolving parent deduction s, queries ,

and ru les  from the ru le  base . Stage 2 acts to acquire facts that will satisfy

the resolved literals of a deduction .

Tli& f i r s t  -‘t a ~~ : p reserves  the interdependen~e ot literals ~.ithin

d e du c t i o n s . ThL s~~c~~n u  s t age  t akes  in to  account  t h i s  in t e rdependence  b y a

procedure of fact  “ i n t e r s e c t i o n” . For examp le , in the c lause  AxBx Cxy Dyz ,

a l l  of the  l i t e ra l s  ar ~ i n t e r - r e l a t e d  b y t h e i r  terms . I f  t h i s  deduc t ion

i,  in a fo rm for f a c t  base  i n s t a n t i a t i o n, then it proceeds to Stage I I  w h e r e

f a c t  i n s t a n c e s  (as many as are  r e q u i r e d )  a re  sought  t h a t  r e f u t e  i t .

The intersection operation could be a lengthy, costly procedure ,

since it involves information retrieval from the fact base and set inter-

section operations . To minimize the work involved in the intersection process

and to reduce the processing time , optimal intersection strategies may be

employed. We illustrate these two stages wi th  the fol lowing example .

Example:

(1) State  1 passes to Stage 2 the i n t e r — r e l a t e d  l i terals  of a

deduct ion Ax Bx Cxy Dyz , fo r  f a c t  re t r ieval  and intersect ion.

(2) Stage 2 requests and receives the following facts in data files

(A x ) ,  (Bx) , (Cxy) and (Dyz)

(3) Stage 2 computes the intersection domains x, y and z by

the following (or some other intersection) procedure.

[Xf)*— (A~
)t\(Bx_)A fCX_) .... intersection over subscript x only

(Y~~j~~(Cx.y~ fDyz) intersection over subscript y only

fz~ DY~~z

(4) Stage 2 then sends the domain values (xi), (YiJ)~ and fzij)
to Stage I
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STA GE 1 ]
AN SW E R S 

GENE RA TE DEi UCF1ON~-(DEDUCTIONS 
(APPLY DEDUCTION DEv~-:LoPN~-:NiAND FACTS ) 

S TRA T :-

1~FORM,\UO~ FOR CANDIDATE DEDUCT iONS FOR
P ; S  USE FACT SEARCH

STAGE 2

ACQUIRE FACTS
(WHICH REF UTE

__________ CANDIDATE DEDUCTIONS”

FACT RETRIEVA LS ACT RETRIEVA L REQ UESTS

L *
FACT BASE

Figure 2—3. Deduction and V e r i f i c a t i o n  Stage 1 — Sta te  2 Procedure
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2.4.3 Effect of Actual vs. Statistical Fact Data on Deduction Development

In the Stage 1 — Stage 2 operation, Stage 2 is able to withhold all

fact information from Stage I until the final returns for related literals

arrive fr om the fact base. Stage 2 can then perform its Intersection data

operations. Delays niay arise , out of Stage 2’s control due to fact retrie-
val delays. As a result, Stage I, which operates very rapidly , may have

generated a number of deductions beyond what was needed , since, had Stage

1 received fact data earlier , it might have been able to conclude its

operations earlier with possibly a smaller deduction tree. Also , Stage 1

does not require actual facts , but can procee~. simply with information about

the existence of facts . This information may precede actual arrival ef facts

from the information aystem, or may be available to the inference system

as locally maintained data, estimated on the basis of past system performance.

Thus , Stage 1 could proceed with little or no actua l facts from Stage 2 for
umst of its tree development. This , incidentally, also means that Stage 1,

prior to receiving actual fact data , genera tes the same deduction tree re-

gardless of changes in the fact base , so long as the information about the

facts (e.g., domains and performance statistics) have not been (substantially)

changed by an upda te . When Stage 1 receives current information about facts

from Stage 2 , it will develop its desuction tree usin g historical (performance

statistics) information . The extent that Stage 2 may delay , for the advantage

of efficient fact (batch) retrieval and intersections, must be traded against

the sluggisimess such delay causes in Stage 1 performance.
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SECTION. III. DEDUCTION DEVEL&L 4ENT STRATEGY

An objective of the Inference System is to minimize the likelihood

of generating a large number of  deduction s I n the search for a query refutation.

To meet this objective , the following operations are applied :

(I) Context Set Formation
(2) Deduction Selection/Ordering Strategy
(3) Deduction Tree Pruning

3.1 CONTEXT SETS

A Context Set in an inference system is a consistent set of related

axioms ( ru les  and facts) and queries. The axioms of an inference system form

one or more independent Base Context Sets. When a query clause is added to

the axioms of an inference system, a new context is formed consisting of the

query clause and all of the base context sets to which the query clause is

related. Clauses are related when they have coninon literals.
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Example :

(1) Base Context Sets 
{
BCS
} 
of the inference System :

Axy Bxz Cz Gxy Hxy Kxy Kxz Kzy

SCSI 
Bxz Cz BCS

11 ~~~ Ixy ~cs
111 Kxy Lxy

Cz Fz Ixy Lxy

Fz

(2) Query: Axy Bxz Gxy

(3) New Context Set: Query + BCS
1 

+ BCS
1~

When a query is to be refuted , it is not necessary to consider the

unre l a t ed  base con tex t  se ts  of the inference  system. Our mot iva t ion  in the

examination of context  sets is to determine how to minimize the size of con-

text sets (they can always be enlarged) in the expectation that the smaller

context sets provide a better (quicker , cheaper) solution to an inference

problem .

3.1.1 Context Set Formation

A context set is a set of axioms , query clauses and an associated

set of literals. The set of literals includes all literals in the axioms and

query clauses of the context set. Two context sets are independent if they

do not have literals in common. We define “base context sets” as context

sets containing axio:s only, and apply the broader expression “context set”

to include query clauses. A clause is understood to be a disjunction of one

or more literals.

We define a Context Set formally by:

Context Set = (LI U CA) where for each L
1
CL; and , A . and A

~K
CA , j#k;

CLi~~
A
J~~~

LiEAkJ holds.

where L refers to T iterals and A refers to axioms and query clauses.

In the inference system, we start with a set of axioms and generate

a set of independent base context sets. When a query clause Is entered into

the inference system , an independent context set is formed by combining those

basic (independent) context sets tlm t share ll,terals with the query, However,

_  J
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since the deduction mechanism operates on one query literal at a time (see

OL-deduction procedure), the deduction procedure will actually alternate from

one base context set to another base context set according to the context

membership of the query literal currently being resolved. The literals of a

query clause can, of course , be arranged in groups according to their base

context set membership to minimize context hopping.

3.1.2 Context Set Hierarchy 
- -~

A context set may be further subdivided into a collection of weakly

related context sets , in such a way as to form a hierarchy of related context

sets. The highest rated context set includes the query(s) to be refuted ; the

lower rated context sets of the hierarchy contain axioms only.

One way of creating a context hierarchy involves ascertaining and

assigning weight values to the literals with respect to any particular query.

The weight values are best determined and provided by the inquirer who may

have external luiowledge as to the relative importance of literals toward re-

solving his query. A secondary source of weights may be suppl ied by the
inference system, computed on the basis of operational statistics. Determin-

ation of weights for context formation is discussed in paragraph 3.1.5; weighted

context sets and context bridges are discussed in paragraph 3.1.3.

3.1.3 Context Set Weights and Bridges

When weights are assigned to the literals of a context set, they

may be used against a set of threshold values to subdivide the context set

into a hierarchy of two or more levels. The resulting context sets in the

hierarchy are linked by axioms, which we shall call axiom bridges, which

contain literals in more than one of the hierachy ’s context sets. The follow-

ing example illustrates the formation of a hierarchy of context sets.
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Example: Given a Context Set with the following literals,
weights and axioms.

Axioms Ri A B C D Literals A Weights High

R2 ’ B C D F  B High

R 3 = C E F  C High

R 4 = D G D High

R5 E F A E Med ium

R6~~~ F A B  F High

R 7 = G C F  G Low

U si ng  the th ree  weight  thresholds - High , Medium and Low - we generate the

three context s~ t divisions:

Context Sets (Divisirns ) Literals Axioms Weight

I A ,B,C ,D ,F Ri , R2 , R6 High

IL E R3 , R5 Medium

LII  C R7 ,R4 Low

In th is examp le , the axioms of context sets II and III include literals in

context set I. In general , each context set in the hierarchy bridges up-

wards , tha t  is , the set of axioms of any level (but the highest) will contain

one or more literals of one or more context sets above it. A good context

set hierarchy construction would display “narrow-weak” bridges (“narrow”

suggests few upward linkin g literals in the rules ; “weak” suggests that link

literals have low weights).

Note also that each literal is included in its axiom set or higher
level axiom set at least once in both its complemented and uncomplemented

form.

3.1.4 Application of Context Sets

When literal weights are available, context sets can be narrowed by

subdividing them into a hierarchy of context set levels. The highest level

context set is app lied first , and , when its possibilities have been exploited ,
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the next level context set is applied and so on, This progression expands

the context set from its top level to successive inclusions of its lower

levels. The expectation is that most applications will be satisfied within

the higher levels of the hierarchy.

3,1.5 Deriving Context Weights for Literala

The best way of acquiring literal context weights i8 by having

these supp lied by the inquirer , since he may have considerable knowledge
concerning the context of his query that is not contained in the inference

system. At the other end , the system can maintain statistical data for con-

puting probability weights. This data can be pre—c omputed  pe r iod ica l ly ,  based

upon actua l performance results and upon simulation runs designed to derive

these weights.

A simp le and straightforward method of deriving literal weights for

a context set hierarchy formation Is to tabulate the number of uses of each

literal of the context set over a period of time. A literal “use” can be

defined as an instance when the literal was involve d in a success path in

a deduction tree. An example is presented in Table  3—1.

3.2 DEDUCTION ORDERING AND SELECTION FOR DEDUCTION DEVELOPMENT

In this section we discuss the critr~ria used for deduction development.

We begin with the ordering of literala within a clause , since, in OL-deduction

the order of literals in a clause determines the order of resolution of that

clause with other clauses to form deductions. We then discuss the order of

selecting deduction clauses for deduction development .

3.2.1 Literal Orderini

In deduction refutation , all of the literals of a deduction clause are

to be refuted If the refutation procedure is to terminate . The order in which

these literals are to be refuted is not logically constrained. If the deduction

Is not refutable , it ~s best to learn this as soon as possible, suggesting, there-

fore , as a first criterion , that the literals be processed in the order of their

least likelihood of refutation .
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TABLE 3-1

EXAMPLE OF LITERAL WEIGHTS DERIVATI ON

Context Set Number of Thresholds
Literals Successes l o w < 1 O  < medium < 50 < high

Li 1 Low

L2 50 Medium

L3 100 High

14 2 Low

L5 30 Medium
L6 20 Medium

Li 100 High

L8 50 Medium
L9 79 High

LlO 5 Low

Context Hierarchy

Level Literais Weight

I L3, L7 , L9 High

2 L2 ,L5 ,L6 ,L8 Medium

3 Li , L4 , Lb Low

3—6
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A second criterion for literal ordering within a deduction for de-

duction refutation , is to attempt the easiest to refute literals first. This

criterion , following the first criterion, gives the beat (least cost) expecta-

tion of encountering a non-refutable literal.

A third criterion is to process literals of deduction in an order

that minimizes operations and computational burdens. As will be seen, this

criterion is particularly applicable to interdependent literais.

3.2.1.1 Least Likelihood of Refutation Criterion for Literal Ordering in
a Deduction

The first criterion for ordering literals in a deduction selected

for refutation , is to attempt the least likely to refute literais first.

The only prior knowledge leading to a recognition of the refuta-

bility of literals in a goal is probabilistic . Thus, probability values

can be assigned to each literal in the inference system that indicates

the likelihood of its refutability. The probability values could be user

supplied or could be computed on the basis of statistical performance data

involving the literal, over a period of time. The performance statistics

collected could include:

(A) Number of occurrences (uses) of the literal in deductions,
(B) Number of failures to resolve the literal in deduction

development,
(C) Number of failures to satisfy the literal with facts,
(Cl) Deduction clause characteristics : Number of literals;

Number of terms (max , avg),
(C2) Term characteristics : Constants; variable simple, complex.

A probability formula indicating the likelihood of refutability of

a literal may be defined by:

AL - 
B
L - 

C
L 

(C1,C2)
= 

A 
= Probabil ity of Literal

L L

The function cL
(C
l,
C
2) 
< CL, depends on the values of C1 

and C
2.

The statistical data collection is a background activity and, of
cour se, need only be updated periodically.
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The probability formula could be made more relevant by improving

statistics collected to show relationships among literals, for example,

replacing (A) and (B) by:

(A) Number of co-occurrences of La and Lb (b ~ a) in a deduction
when La and Lb are , in fact, related by their terms, e.g.,
Lxy Cy.

, /

(B) Number of failures to refute La under condition (A) above.

This would take into account,to a greater extent, the inter-dependency among

literals in a deduction .

The computed probabilities would also have computed confidence

levels that would , in effect , define the precision of the probability estimates.

The probability values would then be utilized as the first criterion for

ordering the literals of a deduction. The effectiveness of this criterion

depends upon the quantity and quality of the statistical data and the storage

cost for maintaining it. (The off-line processing cost should be a secondary

consideration.)

3.2.1.2 Easiest to Refute Criterion for Literal Ordering in a Deduction

The easiest to refute criterion for ordering the literals in a

deduction for refutation focuses on the work required to refute a literal.

This criterion is greatly clarified by the separation of the deduction

refutation procedure into two stages, described in 2.4.2. The first stage

deals substantially with deduction tree development and the second stage

deals substantially with fact determination.

3.2.1.2.1 Stage l, Deduction Development: Literal Ordering Criteria

(1) Fact Literals - First Criterion

Literals in the deduction which are only resolvable by the fact

base are given the highest priority since there is nothing that has to be

done with them in Stage I. Such literals are passed on to Stage 2.
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(2) Daduot.ion Devebo~~ent Effort - Second Criterion

Each literal in the system can have determined for it a merit
value rsprsaemting thç effort statistica lly associated with its refutati on.
High merit literal . are processed before literal. of lower merit . A literal ’s
merit (effort) value can be determined as a function of the average deduction
subtres aise statistically generated under the literal (as the root of the

subtree). over a period of time. The statistics and merit values can he com-
puted as a background process.

(3) Indspenden t Literala - Third Criterion

Here we may look ahead to Stage 2 , and organize the literals accord-
ing to interdependent sets . The set of liter~ls with the least interdependence
may be ordered into first position, on the presumption that where there is the
least interdependence we will have the least work in Stage 2 for instantiation.

(4) Prolected Fact Search - Fourth Criterion

An estimate can be made of the fact search effor t  associated with a
literal, based upon fact base statistics for the literal. This requjr es
maintaining statistics in the fact base on literala IL(x ,y, z.. .)) such as:

( I) Maximum number of entries in the domain L(x,y, z,..,,)
(2) Average number of entries in the lesser domains

L(— ,y,z,. ..
L (x , • , a,...,)
L(x,y,— ,...,)

The literals with the smallest range, presumed easiest to process,
are placed first in the remaining ordering of literals in a deduction.

(5) Interdependent Literals - Fifth Criterion

Literals with the least dependence in an interdependent group are
placed first. For example, Axy Bx3 rather than Bx3 Axy , where the right-most
is the f irs t posi tion. Also, Xxy3 Bxy Cz rather than Cz Bxy Axy3 or Bxy Xz
Axyz.

3.2.1.2.2 Stage 2. Fact Determthation~ Ordering for Fact Retrieval and Intersection

Stage 2 ordering applies to the “fact determination process” of
deduction refutation. Hsre w• are conc.rned with determining the domain of
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the literals available in the fact base, and their intersection for inter-

related literals of a deduction.

A special strategy and a general approach to determining the best

order for fact retrieval is shown in Figure 3—2. The special strategy

chooses the literal , of a clause of interdependent literals , with the least

cost to fact retrieve. This might well be the literal in the clause with

the least fact range. When this literal is fact retrieved , its domain will
be deterr’ined. In the example of Figure 3—2 , Axy is the first, least cost

estimated literal chosen; and the domain terms x , y are determined . This

information enables us to recompute more finely the costs for fact retrievals

of the remaining literals. A least cost literal is now chosen from each of

the remaining interdependent sets of literals, for fact retrieval. In this

example, the literals are Bxz and Cy, which are independent of each other.

The process is repeated until all of the literals of the original clause have

been fact retrieved. In this strategy, an intersection of facts is auto-

matically performed , while attempting to minimize the quantity and cost of

fact retrieval. This strategy, while appealing, is not optimal. An optimal

procedure involves full development of a decision tree, such as the and-tree

shown in Figure 3—2, and a cost estimate of each of the root to link tree

paths .  The least cost path is the best . As described thus far , this app~~ açh

provides a retrieval ordering plan that , of course, could turn out to be

suboptima l since It depends upon estImatcs of performance and retrieval

costs. It could be Improved by recomputing costs over the remaining
subdecision tree after each fact retrieval action ; or, more generally, by

restructuring, after each fact retrieval action, a full decision tree for the

remaining literals including using updated retrieval costs.

The general approach would be costly to compute for very large

clauses of interdependent literals, but not very costly for small clauses
(say less than 6 to 8 literals).

When Stage 2 receives requests from Stage I for literal fact re-

trievals, it may receive these literals one or more at a time. Stage 2 will

determine the way in which these retrieval requests will be passed on to the

fact base for the actual retrieval. Stage 2 may issue an order immediately

or wait a fraction of a second or more, in which time Stage 2 may receive
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from Stage 1 yet more literals scone of which may come from the same deductions

as the previous literals. In these latter instances , Stage 2 can perform

optimal retrieval strategies for related literals of the same deduction.

In all cases , Stage 2 will accept from the fact base lists of fact

data retrieved , and will retain this data for Stage 1, but will report to Stage 1.

summary information on the data received. Should Stage 2 receive two or more

lists of data for literals of the same deduction , this will also be noted and

passed on to Stage 1. For related lists of data , pertaining to related literals

of the same deduc tion , Stage 2 will also produce an intersection list which it

will maintain for each resolved deduction initiated by Stage 1.

It should be noted that Stage 2 may elect to execute any one of the

fact retrieval intersection strategies at its disposal . The decision factor

will depend upon service delays by the fact base, Stage 1 urgency indicators ,

indicators expressing Stage l’s jud gment that the order of retrieval should

be the order sent by Stage 1; and, estimates by Stage 2 of the cost of each

strategy - for example , the general approach strategy might be excluded for

large clauses.

It may be no ted tha t each strategy has two modes of execution ,

(I) execute the defined plan based only upon statistical data
available at the start of the plan ’s execution ,

(2)  update the plan at succeeding steps based on curren t data
derived from retrieval.

3.2.2 Deduc tion Selection

Starting with an initial deduction , the deduction refutation process

produces a collec tion (e.g. tree) of deductions that are candidates for refutation .

Since alternatives are possible , it is desirable to selec t deductions that lead

to a refutation in the shortest , least costly, way. To guide the best

selection , a merit function is computed for each deduction on the tree.

The merit function is computed to reflect the likelihood of a successfu l

refutation and expected labor (i.e., computational cost) associated with

refuting the deduction .

T.n previous sections , we discussed a probability of refutation ,

which was to be derived for each literal of the inference system. This data

could yield a refu tation probability for any deduction , i.e., the deduction

3—12
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refutation probability equals the product of the refutation probabilities of
its lit•rala. The most likely to succeed deduction (highest refutation prob-
ability), would be considered the most preferred deduction to develop.

Following this first criterion, deductions would be chosen on the
criterion of the least effort to process. Also , in a previous section, we

identified a mean s for estimat ing deduction development costs based on tree
development and projected fact search costs associated with literals . We
could use these costs to determine the costs of processing a deduction, i.e.,
expected cost of a deduction is the sum of the expected costs of processing

its constituent literals.

NOTE: A budget is established for the number of deductions to be
processed at each step of tree development. The budget is based upon con-
aideration of computer storage a~d processing availability at the time of

deduction selection . If n deductions are budgeted , then the first is highest

merit deductions are selected from the tree.

3.2.3 Rule Selection for Deduction Development

When a clause is selected for a further deductive development, it

is capable of spawning a number of deductions. The number of possible de-

ductions that can be spawned depends upon the number of different  rules and

facts in its context set, against which the deductions can be resolved . In
addition , several constraints may be applied including:

(1) budget for the deductions ,

(2) a limit on the number and constraints on the selection of
deduction literals to be resolved at each development attempt.

To determine which rules are to be resolved against, under a limited
budget , two considerations apply :

(1) selection of the deduction literal to be resolved,

(2) selection of the ruLes for read ying , where more than one
rule is applicable.
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The f i r~ t c o n s i der a t i o n wi l l  have alread y been taken care of in a preceeding

operation where deduction literal ordering is established. For the second

consideration , the applicable rules will have merit values associated with

them , and the first n highest merit valued rules are applied. Rule merit

values could be computed in the same manner and on the sane basis as described

above for deduction mer i t  funct ions except that the weight of the resolving

literal need not be included . The merit value of the newly generated deduction

is recomputed as the composite merit values of its parents minus the merit

value of the resolved l i t e r a l .  To g ive the most accurate value, the rule merit

is computed after the operation of unification. -

A final deduction merit value is determined after all operations

upon a deduction have been completed , since some of these operations drop

literals in the deduction (e.g., factoring) or otherwise modify them. Literal

ordering within a deduction is the final step in deduction processing. (In

the OL refutation procedure , only the augmenting literals need be ordered since

older literals in the deduction once ordered retain their order . )

A refinement of the above method of rule selection is to develop

merit values for a rule as a whole , with each merit value of the rule being

associated with a literal of the rule that might be used as a resolver. The

merit values of the rule could be defined for each of its literals used as

resolvers , as the ratio of the number of instance’s the rule was in a success

path divided by the number of times the rule was used , over a period of time.

3.3 DEDUCTION PRUNING

Pruning refers to deleting non-useful deductions on a deduction graph,

It is app lied whenever a non-useful deduction is derived . Pruning is applied
when merit values are ascertained to be below certain established thresholds.
It is also applied in deduction post-processing operations involving subsump-

tion determination , tautology , and where certain special deduction graph re-

lations arise.

3— 14
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S~ CTiON IV. PROGRAM DESIGN

4 1  PROGRAM IWULES A~Ø INFORMATION FLOW

Figure 4—1 present . the major flow of information among the progr am

modules of the inference system. Data sets and casusmications ar e presented
in the figure with th~ progr am modules . The pr inciple data sets are the
Deduct ion Tree (s) , Rules & Liter ala File , Fact Infor mation File , Answers
File and Per formance Statt at ical File. Co~~ .intcations data include query
co~~~~iicat ion , fact retrieva l orders • deduction developm ent order s and tr ee
pnmdn g ord ers .

Figure 4—2 presents flow chart conventions used to describe pro-

gram modules. Figure 4—3 to Figure 4—7 highlight the functions of the in-

dividual proeram modules.

4,1.1 Query Module

The Query Module , Figure 4—3, accepts a query input , translates

it into a re fut ati on form , initiat es a query job req uest to the Operating

System. Module, and then sets up (initializes) a deductio n tree with the

n.gat.d query clause as top node in the tree . The Query Module also eocepts

4-i
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Flow Chart Conventions 

-

These flow charts show process transactions between (or among) ~~~~
sets (f iles , tables, messages). Graphic elements of the flow charts are:

(1) trapezoid specified a data set

(2) i rectangle , Specifies a data transformation ,
I or process.

(3) —
~~~ 

directed flow line. Specifies data flow.

(4) 1 1 same as (2) above, except that functions
}.._ f1 [f~.) of the process are listed outside ofI— f 2 the rectangle

r—~3
‘— fn

(5)  _____________ same as above , except that data item [di)

1’ ~~a~~:o~~
t8 set are listed outside the

Figure 4—2 Flow Chart Conventions for Program Modules

4-3
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user data with user recommendation s on the context set and on the range value

and merits of literals in the query and in the context set. This information

is used to determine the query context set and to (re)compute literal merit

values. The Query module also intez-face8 with the user and the Answers file

to supply results and aid in user dialogues.

4.1.2 Deduction Tree Management Moduie (~rn~4)

The Deduction Tree Managemen t Module , Figure 4—4 , maintains all

deduction trees and performs a number of tree processing operations. These

include tree pruning operation s, such as deletion of inactive , low merit ,

and sub8utned deductions , tracing a tree from s?ecified tree leaves back to

the origin query (for report to user to display the deduction sequence),

collecting tree statistics (e.g., size , cost of deduction), and other opera-

tions for the computer management of the trees.

4.1.3 Deduction Development Module (DDM)

The Deduction Development Module , Figure 4—5 , determines the de-

velopinent of deductions. A Deducti-’n Merit Ranking Table in Figure 4—5

contains for each deduction tree , a list of all currently generated deductions

of the tree, in order of their highest to lowest merit. The DDM col~ ects

queries at initialization and iiewly generated (resolved) deductions from the

Deduction Resolution Module , computes their merits and sores them into the

ranking table. Upon execution , by the scheduler of the Operating System

Mod”le, the DDM selects the top m entries of the ranking table as candidates

for spawning new dedLctions (“m” is a quantity to be specified at initializa-

tion of the system). These are formed into a work order and sen t to the

Deduction Resolution Module for further deduction development. Supporting

these operations are various other system tables containing fact and literal

information.

When a deduction can no longer spawn new deductions, it is deleted

from the ranking table. Also , when new information is supplied to the 0DM

that affects  the merit of deductions in the ranking table (e.g., current fact

range information ) , these are recomputed and resorted into the ranking table.

When the ranking table gets too large , if it is not extended on disk

storage (by the DTMM), the lowest merit entries are deleted. When deleted

I

—~~~ -5 —— ~~~-
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entries have pending requests for fact base data, the associated fact base

orders are cancelled.

4. 1.4 Deduction Resolution Module

The Deduction Resolution Module is presented in Figure 4—6 (Pro-

cedural flow diagrams for the Deduction Resolution Module are also presented

in Appendix 0). The Deduction Resolution Module generates new deductions

from parent deductions. One parent of each new deduction is a member of

the Deduction Development Order Table generated by the Deduction Development

Module. The other parent is chosen from the Query Clause or the System Rules

Table. Up to m pairs of parent pairs may be formed for each Deduction Dc-

velopmen t Order entry. New deductions are created by the process of resolution ,
and are entered into the New Deductions Table. The resolution procedure is

augmented by procedu es of unification, tautology , factoring and reduction.

4.1.5 Fact Search Module

The Fact Search Module, Figure 4—i , accepts orders from the Deduction

Development Module to search for facts that will satisfy one or more designated

literals of deduction , These orders are passed to the Fact Search Module in

a Fact Search Order Table. The orders identify a deduction and the literals
of the deduction that are to be fact searched. The Fact Search Module deter-

mines a strategy for retrieving fact data based on the following factors:

(1) interdependency of the deduction literals
to be fact searched

(2) fact range statistics for these literals

(3) the expected cost of retrieval.

The Fac t Search Module sets up and passes a retrieval order to the Fact Base
or Fact Generator Algorithms of the information system. The information

system executes these orders and retrieves the facts and passes them as files,
to the Fact Search Module . The ret rieved fact files are maintained by the
Fact Search Module . It should be noted that the fact files may arrive at
uncertain t imes . Depte4ent fact  files related to interdependent literals of
a deduction are then intersected to form fact sub-files satisfying these

4—8
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inter-dependent literal a jointly. A directory is maintained by the Fact

Search Module that links all retained fact files to the literals and de-
duc tion s they satisfy.

The results of each fact search order are reported to the Deduct-

ion Developmen t Module , which uses this information to recompute merit values
of deductions and to delete deductions that cannot be satisfied by fact

search o~ tha t have been completed. When a deduction has all of its compo-

nent literals satisfied with the required quantity of fact data, fact search

is completed for that deduction, and the deduction and its associated fact

files are passed to the user , via the Answers file.

4.1.6 Fact Generation Algorithms

The information system provides algorithms that generate facts

when presented with certain literals or literal groups (sub-clauses). Opera-

tionally , these algorithms are treated in the same manner as a fact base.

The Fact Search Module issues orders to the appropriate algorithm and awaits

fact files. The remaining operations are the same as described in responding

to fact base files .

4.1.7 Other Modules

These include modules that perform merit performance data collection

and computation, context set determination, user dialogue , and the executive

module - to be developed.

4.2 DEDUCTION PROGRAM DATA DICTIONARY

This section describes tables required by the program modules of

the inference system. -:

4.2.1 Deduction (Tree) Table

This table contains general deduction tree informa tion and includes
the node linkages of the tree (for trace purposes), active/inactive status of

deduc tion for the tree , and summary deduction information.

4—11
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TABLE 4-1

DEDUCTION TREE ‘D.BLE

A. General Information

Comeept

1. Tree Id Each Query is identified

2. Query Clausss Each query clause , in refu ta t ion for*,
starts a deduc t ion tree .

3. User Input Information User supplied merit data, etc.
4. Node i Nodes are listed in thi, table in r.ados

order , since parent/child ~~de linkages
are maintained in each entry.

5. Parent Node Id of Node i
6. Node Tree Position

Tree level Levels from start of tree . Sometimes
called deapth of tree.

Sibling position Position with respect to othe r nodes
of the same parent.

No. of Siblings

7. Node Status
Active (But not fully

Resolved)
Dead Rejected Deduction

Completed (Fully Resolved) To be fact determined

Special Characteristics These designate special deduction

Recursive Node characteristics with regerd to developing
Other new--deduction s

8. Deduction Fact Determination Applies to partially or fully resolved
Status deductions engaged in tact search.

B. Deduction (Node) Information

Cotaaents

1. Node Id/Tree Id
2. Node Deduction Clause Merit Used to guide in deduction development .

Value
Probability of Success (O~~X~~l)
Load Expectation

3. Resolver Parent Id Rule Clause or System Fact Lite ra l
Paren t used to Resolve this deduction .

4—12
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TABLE 4—1 (Cont ’d.)

DEDUCTION TREE TABLE

C. Deduction Clause Description

1. No. of Literals In clause Each clause consists  of a Literals
— list and a Term list. -

2. List of Literals in clause Llterals are ordered right to left.

2.1 Literal ID

2.1.1 Literal Sign Negative or Positive Sign

2.1.2 No. of terms in Literal

2.1.3 Literal Type Types: Resolved ; fact search in
process , etc.

2.1.4 Links to terms (In Terms
List below)

2.1.4.1 Link to term 31

2.l.4n Link to term 3j

3. Term List This list contains the non redundant
set of terms in the deduction clause.

3.1 Term Id 1 Order is not relevant
3.2 Terin ld 2

3.2 Term Id n The terms are separated to facilitate -

the operation of term substitution in
resolution unification operations.

L 
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4 .2 .2  System Rules Tabke

This table is similar to Deduction Tree Table, Par t C, Deduction
Clause Description. This is because each rule is a clause , just as a

deduction is a clause. The Literal Type entry, however, may have different
designations . The Rules also contain merit entries , one for each rule.

4.2.3 Deduction Development Order Table

This table contains parents Bent to the Deduction Resolution Nodule

for new deduction generation.

1. Request Order Id

1.1 Deduction Id, Tree Id

1.2 Status

(I) Process stage initiated
(2) Process stage completed
(3) No. of deductions sired, and Max. Possible No.

1.3 Statistic s

Time In
Time Out

2. Request Order Id

4.2.4 System Literal Table

The literals within the system are listed in this table. A sub—

table is formed from this table corresponding to each particular context. This

table is used by the Deduction Resolution Nodule to select resolver parents,
once the resolver literal has been determined. It is also used to compute

merits of literals Various literal forms in the list provide different

literal merit values.

The table includes variants of a literal~ e.g., 1.1.3, 1.1.4,...

1.1.n in table below.
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TABLE 4—2

IV. SYSTEM LITERAL LIST

1. Base Context Set Id

1.1 Literal Id (Alphabetic Ordering of Literals)

1.1.1 Form 1 : L (t,t,. - . t)

(1) Fact Domain of literal. Total (all sources)
(2) Fact Domain of literal in Fact Base Only.
(3) Merit (Probability of Success)
(4) Merit Load Expectation - Time/Cost for: Deduction Phase;

Sea rch Phase
(5) No. of Rules as Resolvers
(6) No. of Rules containing this literal

1.1.1.2 Rule Resolvers (Ordered by Rule Merit)
(1) Rule Id

1

(n) Ri.~le Id

1.1.1.2 Form 2 : L(— ,t,. . - , t )

1.1.1.3 Form 3 : L(t,— ,t,lll ,t)

L.l.l.N Form N :

2 Base Context Set Id

1.2 Literal Id

4—15
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4.2.5 Deduction Merit Ranking Table (Active Nodes Only)

This Table contains: List of Tree node Deduction Id’s ordered by
Merit Probability of Success.

1. Node Idil Highest Merit

2. Node Idi2 Next highest Merit

N. Node 1dm Least Merit

4.2.6 Deduction Fact File Base (DF)~~~

This is a file collection of facts acquired from the Fact Base and

Fact Generators (computer programs). These files are maintained by the in-
ference for fact determination processing (e.g., fact intersecting) and for
providing answers to users on their queries.

This DFFB contains a directory of its files linked to active deductions

which are , and have been , fact searched. The following information is main- —

tam ed for each directory entry.

(DFFB) Directory Entries

1. Deduction Id

2. Resolved Literala Fact Searched

2.1 Literal Id
2.1.1 No. of Answers
2.1.2 DFFB location of Facts
2.1.3 Status of Search

- 2.1.4 Retrieval time interval
2.2 Literal 1d2

2.n Literal Idn

3. SU~ DarY Search Information —

I
4-16 
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4.2.7 Performance Informatlon Table (Statistics)

This table contains performance information on literals in relation

to a queries processing.

1. LIteral Id

1.1 Resolved by (Rule Id)

1.2 Average time for literal verification (full fact retrieved)

1.3 Size of deduction tree when literal was satisfied

1.4 Average no. of facts retrieved for literal

1.5 Average of facts satisfied deduction

2. Literal 1d2

4.3 SOME PROGRAMMING DESIGN TECHNIQUES

4.3.1 Resolution Unification Mechanism

This section presents a table structured mechanism for resolving

deductions (an optimized algorithm is presented In Appendix E).

Two parent clauses generate a deduction by resolving on a common

literal. The common literal is in positive form in one parent and is in

negative form in the other parent. Prior to resolution , the terms of the

resolving literals in the two parents may differ in their domains. A proces s

of unification is applied which finds a common domain, generally the greatest - -

common domain for the terms of the two resolving literals. Following this,

a proper substitution of terms in the non-resolving literals of the parents - -

is applied to maintain term consistency. This is illustrated by the follow—

ing example: - 

-
-

Paren t 1: L
1

(X) L
2

(X ,Y) L
3

(l)

Parent 2: L
4

(X ,Z) L
3

(Y) - -

Resolv ing Literals are : L3(i) and L3(Y)

Greatest Common Domain forces Y 1. This is unification.

I
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Unified Parents are:

Parent 1 L~(X) L2(X,l) L
3(l) Includes substitution into non—

— resolving literals.
Parent 2 L4(X ,Z) L3(l)

Resolved Deduction
L1(X) L2 (X , 1) [~3~ 1) J L4 (X ,Z)

The framed literal is the resolvent literal.

Table 4—3 illustrates how the resolution procedure is mechanized for
the following example.

Rule Parent : L4
(Z ,B,X) L

3
(C ,Y,Z) L2(Y,A ,Z) L

1
(Y,Z,X)

Deduc tion Paren t : L6(X,A ,Z) L5(C,Y,Z) L4
(Z,Y,C)

Resolvent Literals : L4(Z,B ,X) and L4(Z,Y,C), also BCY and CCX

Unification Substitution Y -
~~~ B, X + C

Child : L
6
(C,A ,Z) L

5
(C,B,Z) L4 (z ,B,c)-5I L3(C,B,Z) L2(B,A ,Z) L1(B,Z,C)

4.3.2 Factoring Mechanization

Factoring is a resolution operation which can be applied to eliminate

a literal in a clause when it appears repeatedly in the clause. For example,

L1(X) L2(Y) L1(X) factors to L1(X) L2(Y). Care must be exercised to no te
that factoring has been applied in the resulting clause; this is important to

later possible operations on the clause.

4—18
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TABLE 4—3

RESOLUTION UNIFICATI ON TABULAR EXAMPLE

Rule Clause Parent Deduction Clause

Litarals of Clause Literais of Clause
S4L4,

Type,TTh1,TTL2, TTL
3 

S6L6, Type,TTL1 ,TTL2, TTL
3

S3L3,
Type ,TTL4,TTL5, TTL1 

S
5L5,

Type,TTL4,TTL
5
,TTL

3
S2L 2, Type ,TTL51TTL 6, TTL 1 

S4L4, Type ,TTL3, TTL 5 ,TTL4
S1L1,Type,

TTL 5, TTL1,TTL 3
Terms of Clause Terms of Clause
TT1: Variable Z TT1: Variable X
TT2 : Constant B TT2: Constant A
fl3: Variable ~ TT3 : Variable Z
TT4 : Constant C TT4: Constant C
TT5: Var iable Y TT5 Variabl e Y
TT6 : Constant A

Child Deduction Clause
Literals of Clause
56L6, Type ,TTL4, TTL2, TTL

3
S5L5,Type ,TTL4, TTL1, iTL3
S4L4 

, TypED ,TTh3, TTL 
~ 

TTL
4

S3L3, type ,TTL4,TTL1, TTL3
S2L2,

type ,TTL1, TTL 2, TTL 3
S
1
L1,type ,TTL1,TTL3, TTL

4

Terms o f Clause
TT1: Constant B
TT2: Constant A
TT3: Variable Z
TT4: Constant C

Symbols: Sn Sign of Literal Lii
Li ith Literal in clause
Type — Designates character of the Literal , e.g.

means a resolvent Literal
TTi. A term of a Literal In the clause
TTLi A link to the term of a Literal in the clause
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Table 4—4 illustrates how this factoring is handled using the tab—

ular structure for clauses. Actually, only one simple change takes place

tha t is the “type” of the factored literal is changed to designate that the

literal has been factored .

Note that a unification operation can lead to a factoring operation.

For example , given A C Y , L1
(X ,Y)L2(Y,Z)L 1(X,A) can be unified to generate

a new deduction L1(X,
A)L

2
(A,Z)L

1
(X,A) which can be factored to L1 (X,A)L

2
(A,Z).
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TABLE 4-4

FACTORING OPERATION

Deduction Clause L
1

(X ,A) L
2

(A ,Z)L
3

(Y ,A)L
2

(A ,Z)
Literal List Literal Description

S2L2,
Type ,TTL3, TTL4 L2

(A,Z)
S3
L3, Type ,TTL2,TTL3 L3

(Y ,A)

-5 
S2L2, Type ,TTL3, TTL

4 
L2

(A ,Z)
S
1
L1,Type ,TTL1,TTL

3 
L
1

(X ,A)

Term List

TT1: Var iable X
TT2: Variable Y
TT3 : Constant A
TT4: Variable 2

Fac tored Deduction Clause = L
1

(X ,A )L 2(A ,Z)L
3

(Y ,A)
Literal List

S2L2 , Type Factor ,TTL3,TTL4
S3
L3, Typ e ,TTh 2 , I’TL3

S2L2 , Type ,TTL3, TTL4
S1L1,Type ,TTL1, TTL

3

Term List
TT1: Variable X
TT2 : Variable I
TT3: Constant A
TT4: Variable Z
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REAL AND INFERRED ANSWERS

A. Types of Deduction Answers

The Inference system makes available to the inquirer three types of
answers, in the form of deduction (disjunctive) clauses. They are,
in the framed notation of this report:

I. Complete and Real Deductions

Example Deduction: A N B C s”.J
)cy l yz r rtl

The frames mean that all literals have been resolved
by system inference rules, and the slash in the frame,

= I. e ., i:~~ means that the desired quantity of fact
data has been retrieved for each literal, either from
the fact base or from a computer fact generator.

II. Complete and Inferred Deduction

Example Deduction: IA B 
- I C S

LXy YZL r rt

This means that all literals have been resolved
by system inference rules, but that for literals
not in a slashed frame, the quantity of desired
facts have not been acquired from the fact base
or fact generators. As a result the deduction
is not verified by facts , rather it is affirmed
by the system inference rules. If a user analyst
accepts such a deduction, he in effect infers
the completion of the deduction.

III. lncomplete Deductions

Example Deduction [Axy~ 
B
Y>~ 

Cr J 3J
This means that not all literals of the deduction
have been resolved by system rules.

B. Premises of an Inferred Literal

A literal in a deduction may be interdependent with other literals in
the deduction if the domains of their terms overlap . For example in
the deduction: Axy Bx Cr Drs Et, Axy and B~ are interdependent, but
independent of the others . In connection with this, the literais upon
which an inferred literal is dependent are called its premises . In
the case of an Inferred Deduction , each inferred literal may have
real or other inferred literals as its premises. The concept of prem-
ises will have meaning to the user analyst, and also to the deduction
mechanism.

A—2
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- C. Mechanization of Premises

- Premise pointers are used to mechanize deduction derivation. Stored

- , with each inferred—framed literal are pointers to its premises. As
a literal becomes fac t satisf ied , premise pointers to it are dropped .

- When a literal no longer has any premise pointers it is recognized as
fully satisfied .
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A. GENERAL

In the OL—deduction procedure, a parent deduction (tree node) is

chosen and its rightmost literal is resolved by a parent node or auerv

clause to form a new deduction.

In seeking to satisfy a literal, a satisfying of the same literal
or a more general literal may already have been started in an ancestor de-

duction higher up in the deduction tree.

For example : (Rule parent. are not shown)

(2)~~~~ 

J4x
~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~3) ~~~~ ~~x ~4x

(5) I~~~J B4x~~~~ I (6)~~~~~~~~

(7) B4x Dxy X4y

In this deduction tree, we see that solutions (i.e., fac ts, derived
from a fact base) that satisfy the rightmost literal of node 1 are also solutions

to the rightmost literal of node 7. Any such solution to A4y that we can de-~
nyc trom node 7 is better derived under node 1; and it is useless to rederive

such answers to A4y at node 7. There is however a purpose in expanding the

tree at node 7, as a generator of answers.

Expanding the deduction tree at node 7 generates a duplication of

the parent tree starting at node 1. This Is illustrated by:

/ B-2 
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(7) A4x ~4x 
~~~ ~

xy A4y

(8) ~~~~ B4x ~~~~~~~~~~~~~ (1O)~~~~~~~4x ~~~~ fixy ~~~~ ~4y

(ll)~~~~~ J 
B4x Dxy B4y C4y

This mechanism, further described in the next section, creates a re-
cursive function or fact generator. We shall call such node pair situations

(e.g., modes 1 and 7 In the example) “recursive”. The descendant node of

the pair is referred to as the recursive node and the tree root node of the

pair is called the associated node.

B. RECURSIVENESS

Recursive nodes provide a mechanism for generating answers to satis-

fy deductions. The answers developed by this mechanism are created locally

and are not answers retrieved from the bact base.

The recursive deduction tree operation for generating facts is illus-

trated, by the following example: 

- - — - 5 — —  
_
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P

Star t Clause
T7x Rule Clause

7x yx 7y
Fact Base Search

On T yields7x
x - l

2 0
IT ixl P~~~~ T7y

4 JT~~~ 
~y1 ~7y

Fact Base Search on Unification on x — 1
P
1 

yields

y — 2
y — 3

or P31 and P21

T7~ 
P31 T73 

I T7

T72 and T73 are answers (inferred) tha t are generated by this procedure. T71,
F21, and F31, however , were fact base derived answers.

B-4 -1
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Node 3 is recursive with associated node 1, and can be resolved
with one or more answers already known to satisfy node 1. Suppose, now,
node 2, via a fact base search, acquires an answer x 1, and therefore
T71. This answer automatically also satifies node 1. The value x — 1 can

also be instantiated (a process implying unification) into node 3 such

that P),~( becomes 
~~~ 

in node 4. Upon a further fact base search, let us

assume as returns for P 1, the satisfying values x = {2 ,3}. With further In—

stantiation of these values with node 4 we derive two new answers, T72 and
- - T73 in nodes 5 and 6 respectively. This process can continue recursively

until no more facts are found, or we reach the maximum numbers of desired
answers.

Note: Recursive node answer generation is generally
started by at least one fact base answer.

B—5
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Almost all rules or classes of rules, when analyzed in depth , will
display characteristics that can be used to guide deduction tree development.

This section presents an analysis of one of these rule classes generally des-

cribed as a “partially transitive rule” class.

A. PARTIALLY TRANSITIVE RULES

A partially transitive rule has the disjunction clausal form:

~xy ~~~~~~ 
Ayz P or the implicative form: B

~~ A 
Axy=~~

A
yz~

A partially transitive rule can also be expressed by the form P

(Ar , Bs),  where

A = the shared relation of x and y to z

B — the relation between the terms x and y

r specifies the (1 or 2) position of term a in A

s — specifies the (1 or 2) position of term y in B

Thus,

(1) P (A
2
, B2
) or BxyAAxz~~~Ayz

(2) P (A1, B2) or BxyAAzx~~~Azy

(3) P (A 2, B1
) or ByxA Axz~~~Ayz

(4) P (A
1, 

B
1
) or ByxA Azx=~Azy

Notes:

(I) When B is symmetric , the subscript is dropped since rules
1 and 3 become identlcal as do rules 2 and 4.

(2) The pure trans4tive rule P(Ar~
A
5
) is a special case of the

partIally transitive rule.

A partially transitive rule is apt to produce a recursive deduction

tree . For example, application of the rule P (Xl, Z2) — 
~~~ 

to the

literal produces the recursive node

~3J 2xy X3x where x and y are equally general

This node while redundant for fact base searches can, however , be
applied as a recursive answer generator. For example, given a single value

of y,  it becomes possible to generate satisfying values of x; these can then

C—2
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be used recursively when the domain of x and y overlap . That is, to y may

be applied the new values of x, to further generate new values of x- This

recursive procedure stops when the values of x that are generated are not

new; that is, when the values of x that are generated have previously been

generated.

C. REDUNDANT DEDUCTIONS: A SPECIAL CASk

When two literals in the same node may be resolved by a similar

partially transitive rule, a great deal of redundancy may result. Two par-

tially transitive rules are similar when the rules have the forms P(Ar~
B
S)

and P(C
r~
Bw)i respectively.

Example: Similar Par tially Transitive Rules

P (Xl, 22) Zax ~ya X~~
P (Y2 , 21) — Z,~ Y~~, Yxy

and Yxb

(l)~~~~~Xyx Yxb

“

(~~~~~~~xyz 

~xb 

(

,

~~~~yb Xyx Zxz izb

(4)f~byJ 2Cyxt Xyz Zzx~~~j (5)~~~ j Xyx E i1Zxz 1~~ J

In this example, the literala X and Y each have a partially trans-

itive rule with the literal Z, they share a tens, and they are both members of

the seine deduction clause (see top node) . This structure allows the develop-

ment of a pair of nodes (4 and 5) whose remaining unresolved literals are

virtually the same. Also, the resolved literals requiring fact base retriev—

ale are the same. ConsequPn’lV, the work required on both deduc tions nodes

(4 and 5) is the same. In such situations we should restrict use of both

partially transitive rules in deduction operation

C—3 

-- _ -~~~~~~~~~~~ - - - -_~~~~~~~--~~~~~~~~~~ — - - - —-
~~~~~~~

-
~~~~~----— -5 -5- -- 5- j



_ — - - -5 - -  - ---- --5- - —_ - —~~ - -- - - ‘ - —_ _— - -
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I

This Appendix presents procedural ti.ow charts for the deduction resolu-

tion module.

Sections of the flow charts not app licable to SNL are denoted by the
following marking: i— ”—’ Sections involved with advanced concepts not

needed for a minimum system are denoted by: ~~~

Numbars in parentheses within the flow charts refer to notes found

at the end of this Append ix.

Certain concepts referenced in the flow charts such as “recursive

node” are explained in the other Appendices .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~
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NOTES

I. A list of deductions for further deduction tree development hao been
sent to this module from the Deduction Development Module. The list
may be the explicit nodes or pointers to the nodes in the tree.

2. No facts are requested at this point. The requests are made after
post-processing. In a later version of the system, there may be a
decision at this point whether or not to resolve with facts .

3. The NNT contain s a list of pointers to locations in the tree where
the new nodes are stored explicitly.

4. Includes paramodulation-reduction capability.

5. Resolution with rules includes paramodulation with rules.

6. Rules are stored either in the external rule base , or in a local
rule table.

7. Query clauses are not used as inputs under SNL restrictions. (See
Appendix F)

8. This restriction could be implemented by allowing complete rule
resolution and then inactivating those nodes that have teen created
with the illega l rules.

9. Once a deduction has been resolved with all possible input clauses ,
it is inactivated . This means that the deduction will never be
chosen for resolution. Other reasons for inactivation are:

• Tree Path Subsumption
• Tautology
• Partially Transitive Rule Restriction
• Recrusive node whose associated requires only one answer
• Pruning
• Fact Search fails

Deductions with fact retrievals request confirmation from the Fact
Search Nodule, i.e., verification that the fact requests are satis-
fiable. This information is used to improve the merit of the
deduction. However , merit is no longer useful to an inactive node,
so any confirmation requestes from inactivated nodes are cancelled .

10. An evaluatable literal is a fact literal.

11. At this point, we attempt to find a literal to the left which will
match the unframed literal (A) that we are working on, regardless
of whether the left literal (B) is framed , unframed , complementary,
or of the same sign; since we will take action in all cases.

State of Literal B Action

Unfra med , identical sign 1~ac torin g - drop A
Unframed, complement Tautology - inactivate the node
Framed , identical sign Chain Subs. - inactivate the node
Unfr amed , complement Reduction - drop A

D—lO
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12. All post-processing operations ( factor ing,  reduction , tree path
subsumption , tautology) require that terms of ‘A ’ and ‘B’ are
identical. If variable terms are different, then the only re-
maining possibility of interest is that the new node may be
recursive. (See Appendix E)

To be absolutely sure of a possible recursive node, the checks
should be made between the unframed literal A and the rightmost
literal of the root node of literal B.

13. Splitting is a procedure by which a node which contains multiple
instantiations is separated into two nodes. These 2 nodes are
identical to the first except for one or more constant terms.
The sum of the new nodes equals the old node.

The new nodes are created by altering the old node and creating —

one new one. The splitting is done by the intersection of one
constant list in the node with another list (constants in a rule
or fact or in a previous literal in the node). The new node re-
ceives the intersecting terms while the old node keeps only the
non-intersecting terms.

Example 1: J1\JsNJi\ _ f ~~J i\
A
~~A7~ 

I*
\27_

C~4
\
7)D(
\
2)C 

/l\ /1\
This node can be split by the intersection of (2 J and (2 I into 

—

\3/ \3/

New Node: 
I 

A)~~~~~ (~Jj ~~~~~~ (~)J ~~-(~~
)

~~~ and

Old Node: A39 I D3x I Cx9 I fl5x

The first node is factored into

~~~~~~~~~~ 
x J ~ x(~1j

Example 2:

Sometimes a constant is not yet defined due to pending fact lockup.
Splitting may still be done. e.g.:

JB lxI Al x IBc xj I~j~j is split into

New Node IBlxIAlxIBlx~~~~ and Old Node IBlxIAlxIBcxIDl�jc,&ll

The first node is immediately inactivated by tree path subsumption.

In this procedure, the old node is placed at the top of the NNT while
the new node continues post-processing.

D—ll
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14. Which operation applies depends on the framing and sign of literal
B as described in note 11.

15. A node is useful in the derivation of new lemmas if~

(1) A new real framed literal was added to this node, or

(2) There is an inferred-framed literal which , because of the
last resolution , now meeLs the following criteria :

a. No unframed literals to the right of it,

b. All premise literale satisfy criteria a and b.

This prevents the derivation of the same lemma more than once in

the same path .

p— 12
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This section describes a design for optimizing the program that im-

plements the Unification—Resolution Procedure. The design incorporates a table

structure for representing clauses in the unification resolution process that

consolidates common entries. While this design is more complex than the design

presented in the main body of this report, it offers a reduction in storage and

an improvement in processing speed

The design presented is an adaptation of the method described in

“Computational Logic : The Unification Computation” by J. A. Robinson. A

simpler , non-optimal design, is presented in the main text, section 4.3.1.

A. NODE REPRESENTATION

All nodes of a deduction tree are defined by four tables:

(1) Constant Table (CT),
(2) Node Table (NT),
(3) Literal Table (LT),
(4) Term Table (TT).

A . l  Constant Table (CTj

The CT contains all constants that are instances of terms appearing

in the literals of nodes in the deduction tree. The entries in the CT are

linked by pointers to these related terms in the Term Table (TT). Entries

may be single constants or arrays .

A.2 Node Table (NT)

The NT represents all nodes of the deduction tree . Each row of

the NT represents one node. Nodes enter the NT and are arranged in the table

in their order of creation. For each node, the table contains the following

information :

(0) ID number

(1) Number of literals in this node

(2) A list of pointers tha t link to entries in the Literal
Table (LT). This is an ordered list which denotes the
left-to-right order of the literals in this node.

For each pointer the following associated information is provided :

E—2 
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• The frame d or unframed status of this literal

• The fact retr1~ ved status of the literal (being looked
up in the fact base)

• Links to premise literals

(3) A pointer to a term table segment (which defines the terms
of the literals of this node).

(4) Other information about the node:

• Node Merit

• Active Status

• Pointer to Resolvent Parent Node (Resolvent Clause or
Top Clause of Deduction Tree)

• Pointer to Input Parent Node

A.3 Literal Table (LT)

LT represents the literals of the nodes of the deduction tree.

Each row of the LT represents a specific literal. Whenever new literals

(e.g. via rules) enter the deduction tree development they are added to the

LT. LT contains the following information :

(0) ID number (implicit or explicit)

(1) Literal ID

(2) Sign — positive or negative

(3) Arity - number of terms

(4) List of pointers that link to the literals terms which are
maintained as entries in segments of the term table.

— Note : The literal table can be augmented but not updated ,
i.e., once a row is created , it is not modified.

-5 

A.4 Term Table

The terms of the literals of the nodes of a tree are defined by a

segmented term table. Each node links to a segment. Each segment is ‘uf-

ficient to define the terms of one or more nodes.

Each row in the TT represents a term. The following information

is recorded for each term:

- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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(0) ID number (implicit or explicit)

(1) Term type - variable (V) or constant (C)

(2) Substitution value

• If the term is a constant, this field contains a
pointer to its value in the constant table.

• If the term is a variable, and has not been uni-
f ied , this field is empty.

• If the term is a variable and has been unified
to another term, this field contains a pointer
to that other term . (Unified terms are in the
same segment.)

A TT segment is crested for each node . Once created , it is not modified.

A.5 Example: The nodes (1): Axy C4x and (2) : Ax3 can be

represented as follows:

NT

Number of Pointers to Pointers to Term
ID Number Literals Literal Table Table Segment

1 3 1, ~ 1, 3 I

2 1 1 II

LT

ID Number Relation ID Arity Pointers to TT

1 A — 2 1 2

2 B — 2 3 1

3 1  C — 2 3 1

TT

Segment Term ID Term Typ~ Subst Value

I 1 V —

2 V -

3 C

II 1 V 
‘) pointa to
/ constant table

2 C 2
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ID Number Value

1 4

2 3

Looking solely at the term table pointers in the first entry in

the literal table (A), it cannot be determined which segmen t of the term

table these apply to. This determination must be traced through the NT.

The purpose of this structure is to facilitate passing essentially unchanged

literal relations from parent node to deacendent node with but at meat a

change in terms. Also, when the passed-on literal is not changed, even to

its term, it need not be duplicated in the tables.

The example in the following portions of this report are based

on the clauses represented above.

E-5 I
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B. RESOLUTION BY FACT REQUESTS

When a deduction is resolved, as a parent , to create one or more

new nodes, at least one new node term table segment is created , a new entry

is added in the node table for each new node, and an entry is added in the

literal table for each literal added by rule resolution.

In fact resolution, no new literals are added so the literal table

remains unchanged . No matter how many results are found in the fact base,

all the information can be expressed with one new node entry and one new

term table segment.

B(l) Mechanism

(1) Duplicate the term table segment of the parent .

(2) Add a new term into the TT for each instantiable term.
Designate its term type “Constant”. Set the subat value
of the new term to point to the constants location in
the CT. This location will probably no t be known at
the time of creation of this node. However, it will
eventually be supplied by the fact search module.

(3) Set the auba t value of the variable term being in-
stant iated to point to the new constant term .

(4) Create a new entry in the NT for this new node.

Example:

Suppose we decide to resolve node #1 with facts. The following
procedure is followed:

(1) Create segment III of the Term Table as a duplicate of
segment I of node I.

III 1. V —

2. V -

3. C 1

(2) The rightmost literal is C4x. There is one instantlable
term x 80 add one constant term with presently unknown
pointer.

III 1. V
2. V
3. C 1
4. C -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(3) Set subst. value of the instanti.able term, term #1,
to point to the new constant term, term #4.

Ill 1. V 4
2. V
3. . 1
4. C -

(4) Add a new node to the node table.

NT

ID# 3. 3 1 ~~~~ ~ III

The frame around the 3 denotes that literal #3 is being
fact searched. If there are no answers, this node is
inactivated. If answers exist, the FSM stores the
location of these answer(s) in the CT. At this point,
the literal~~]may be dropped .

The final alterations are:

rr
III l. V 4

2. V
3. C 1
4. C 3

- 

- NT

3. 2 1, ~~ III

B(2) Resolution With a Set of Rules

When resolving with facts, an entire set of related facts could

resolve with a node at once using only one term table segment and only one

entry in the node table. When resolving with rules, a related group of rules

can also resolve together using one term segment but producing different

entries in the node table.

B(3) Unification Cla~!~~

A group of rules may resolve simultaneously if they are of the

same unification class, i.e., their resolving literal is the same . When s

node is chosen for rule resolution, a number of applicable unification

classes are accessed.

E—7 ’
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A literal table, node table , and a term table with one segment are

developed for these rules. There is one set of tables for each unification

class. For example , suppose node 2 was chosen for rule resolution.

Node 2 ~~Ax3

A request would be made for all rules in all unification classes which can

resolve with this literal. Here are some sample rules:

Axy Axz Byr

Axy Axz Czy Unification Class #1 Axy

• Axy Dxz Ezy

Ax3 Dx3
— Unification Class #2 Ax3

Ax3 G3x

These rules would be placed in the following structures:

NT 1

• 1. 3 1, 2 , 3 1. 2 1, 2
2. 3 1, 2 , 4 2. 2 1, 3
3. 3 1, 5 , 6 2. 2 1, 3

No segment reference is necessary since there will only be one segment.

1. A + 2  1 2  1. A + 2  2 1
2. A — 2  1 3  2. D — 2  2 1
3. B — 2  2 3  3. G — 2  1 2
4. C — 2  3 2
5. D — 2  13
6. E - 2  3 2

1. V 1. C 2 (points to CT)
2. V 2. V
3. V

E—8
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Note: It may be convenient to maintain the rules in this format;  originally,
however, it is not required for this process.

These tables are  needed onl y temporaril y since resolution wil l

result in the appendage of these tables to the permanent tables . In order

to unify one of these Bets, we must unify the first literal of or

(A) wi th  the rightmost literal of the parent node #2, which is literal #1

of LT (A).

8(4) Mechanism for Rule Kesolution & Example

The following steps are done:

In the rules NT , delete the first lieral pointer (this is the
resolving literal which is dropped) and add to the remaining
pointers M = (number of li tetals in literal table 1).

Example (Refers  to tables NT 1, LT1
, and TT

1
)

M = 3 - l = 2  NT
1 becomes

1. 2 4, 5
2. 2 4, 6
3. 2 7, 8

In the rule LT add to the term pointers N = # of terms
presently in the term table of the parent.

1Example: N 2 LT becomes

1. A + 2  3 4
2. A - 2  3 5
3. 8 - 2 4 5
4. C - 2  5 4
5. D - 2  3 5
6. E - 2  5 4

Create a new segment of the term table by copy
ing over the TT

segment of the parent and appending the 
rules TT.

E-.9
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Example: Create segment IV of the TT.

IV 1. V
2. C 2
3. V
4. V
5. V

Unif y the terms of the first literal of the rules LT with the
terms of the rightmost literal of the parent node as follow8 :

• If the parent ’s term is a variable , link that term to
the rule ’s new term.

• If the parent ’s term is constant and the rule ’s term
is variable , link the rule ’s term to the parent ’s term.

. If both terms are constant , set both constant- pointers
to same location in constant table.

Example: Unify terms of 1st literal of LT
1 

= 3 , 4 with terms
of literal #1 in LT = 1, 2.

In TT segment 4
1 and 3 are both variable so link 1 to 3
2 is constant and 4 is variable so link 4 to 2

IV 1. V 3
2. C 2
3. V
4. V 2
5. V

Append the rules LT to permanent LT except for the f i r s t  entry
(conclusion).

For each entry in the rules NT, create a new entry in NT with
• the same literals as the parent node , with the last one framed,

followed by the added l i terals .  Set the term segment po inter
equal to the new segment.

NT (continued)

4. 3 1 4, 5 IV
5. 3 1 4 , 6 IV
6. 3 1 7 , 8 IV

I
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(continued)

4. A - 2  3 5
5. B - 2  45
6. C - 2  54
7 .. D — 2  3 5
8. E - 2  54

After applying the same procedure with the second unification class,
two additional nodes are created. The final structures describing
all B nodes are as follows:

NT

# of Lit. Pointers to LT Pointer to TT ae~~
1 3 l, f ~3, 3
2 1 1 II
3 2 III
4 3 LjJ , 4 , 5 IV
5 3 1,4 , 6 IV
6 3 ~J, 7 , 8 IV
7 2 tII, 9 v
8 2 1, 10 V

LT

ID# Relation Arity Pointer s to TT

1 A — 2 1 2
2 8 — 2 3 1
3 C - 2 31
4 A - 2 3 5
5 B - 2 45
6 C - 2 54
7 D — 2 3 5
8 E — 2 54
9 D - 2 43
10 G - 2 34

TT

Se~~ ent Term ID Term Type Subst Value

I 1. V
2. V
3. C 1

II 1. V
2. C 2

III I. V 4
2. V
3. C 1
4. C 3

IV 1. V 3 •

2. C 2
3. V
4. V 2
5. V

E—11
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V 1. V 4
2. C 2
3. C 2
4. V

This method has the benefit of automatically separating variables,

i.e., a variable in a resolving rule, which is not being unified, will never

match a variable ii the parent node.

8(5) Possible Optlmizations

(1) Instead of adding all terms from the rules TI’, jus t add the
new terms and change the old references. Furthermore, if
no new terms are added, no new TI’ segment need be created.

(2) As resolution proceeds and framed literala are dropped,
terms are lost. However , these terms are still kept in
the term table.

For example , on the previous page, look at node 3. Literal
#2 may be contracted. Once this happens, node 3 has only
one literal, number 1 which references two terms in segment
III — 1 and 2. In segment III , term 1 is linked to term 4.
However , there is no reference to term #3 in segment III.

Terms which are not referenced could be deleted from the
segment. This would, however, require explicit ID numbers
in the term table.

(3) After repeated resoluti.uns, it is possible to create a
number of levels of pointers, i.e., term 1 is linked to
term 4 which is linked to term 7, etc. This situation
can be improved by updating pointers, so that when term
4 is linked to term 7, all other terms which were pre-
viously linked to term 4 (e.g., term 1) are linked to
term 7 as well.

E—12
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