F/6 9/2

" AD-AD31 459

UNCLASSIFIED

F Ill Mé['
{276

GENERAL RESEARCH CORP SANTA BARBARA CALIF
STRUCTURED PROORANHIN@ TRANSLATO!S. VOLUME III. STRUCTRAN=1 SYS==ETC(U)
F30602-75~C-02“5

AUG 76 ‘D M ANDREWS: R A MELTON
RADC=TR=76=253=vO0L =3

DAT

———

ADAO31459

RADC-TR-76-253, Vol III (of five)
Final Technical Report
August 1976

STRUCTURED PROGRAMMING TRANSLATORS
STRUCTRAN-1 System Design and Implementation Manual

General Research Corporation

Approved for public release;
distribution unlimited.

GOPY AVAILALE TO DDC DOES MOT
PERMIT FULL{ LEGIGLE PRODUCTION

ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND

GRIFFISS AIR FORCE BASE, NEW YORK 13441

NOV 8 1976
COLE U (LU
D

_ sbima

This report consists of the following volumes:

I - Final Report

II - STRUCTRAN-1 User's Manual
III - STRUCTRAN-1 System Design and Implementation Manual
IV - STRUCTRAN-2 User's Manual

V - STRUCTRAN-2 System Design and Implementation Manual

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and approved for publication.

APPROVED: z Z / / W_

DONALD L. MARK
Project Engineer

APPROVED: BMD‘ @

ROBERT D. KRUTZ, Col, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: ‘;;;;ZLgézl-‘ﬁ:p;zzz:“L’

JOHN P. HUSS
Acting Chief, Plans Office

Do not return this copy. Retain or destroy.

ol gt

MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C3) activities, and in the ¢7 areas of information sciences
and intelligence. The principal technical mission areas

are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence

data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility. Q

%
o

qo\,UY l0~
&
«
3 z
¥ 2
(-3
) <
% &
1776101

e

SECURITY CLASS'FICATION OF THIS PAGE (Whan Data Entered)
X i

UNCLASSIFIED

READ [NSTRUCTIONS
BEFCRE COMPLETING FORM
P'FNT'S CATALOG NUMBER

) JREPORT DOCUMENTATION PAGE

REPO NDER 7 g VT ACCESSICN NO|
. -
RADC TR—76—253—V<1;@£ ;

S < RED

= i 4 SuBtitlal prasa
§IRUCTURED PROGRAMMING TRANSLATORS « Oltlrﬂ e III
STRUCTRAN-1 System Design and Implementation

ghnual.

Final Technical Repett.,
ay 75 =Jan 76 -
6. PERFORMIN Gl PORT NUMBER

e /A

7. AUT Ry i - 8. CONTRACT OR GRANT NUMBER(s) |

D. M./Andrews e T

R. A./Melton = F30602-75-C-245 |

S PER-ORMING ORGANIZATION NAME AND ADDRESS 10 BROCRAM ELEMENT, PROJECT, TASK
ARTA A WORK UNIT NUMBERS

General Research Corporation o

P. 0. Box 3587 32010314

Santa Barbara CA 93105 3

11. CONTROLLING OFFICE NAME AND ADDRESS . 12. REPORT
Rome Air Development Center (ISIS) /é/' August 1976 ! T
Griffiss AFB NY 13441 = Es 5

14 il

Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

14, MONITORING AGENCY NAME & ADDRESS(if dif]

Same

15a, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

N/A

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

.,ock_&w@jm‘_/(
|z2d143

17. DISTRIBUTION STATEMENT (of the abatract entered |
Same

|

18. SUPPLEMENTARY NOTES
RADC Project Engineer: DMAAC Project Engineer:
Donald L. Mark (ISIS) Ms. Opal Power

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Structured Programming

Precompilers

Translators

Sof tware Tools

ABSTRACT (Continue on reverse side If necessary and Identify by block number)
e STRUCTRAN~1 System Design and Implementation Manual provides a high-level
description of the processing performed by STRUCTRAN~1, defines STRUCTRAN-1 file
usage, and documents the use of common variables by STRUCTRAN-1. Appendix A
describes the function of STRUCTRAN~1 subroutines in detail-dk

\

FORM EDITION OF | NOV 65 IS OBSOLET
DD \inn W73 cacad i UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

4R TEY o

TSR trisn T W ——

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

B

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

CONTENTS

SECTION PAGE
1 INTRODUCTION 1

2 STRUCTRAN-1 PROGRAM OVERVIEW 2
2.1 STRUCTRAN-1 Program Organization 2

2.2 STRUCTRAN-1 Operacion 2

2.3 STRUCTRAN-1 File Usage 3

3 STRUCTRAN-1 VARIABLE DESCRIPTIONS 5
APPENDIX A STRUCTRAN-1 MODULE FUNCTION DESCRIPTIONS 8

soc
URARNOUNCED

e

JUSTIFICATION... e

Soff Sesties]
0O

BY.cniinin

1y

CISTRIBUTION/AVAILASILITY 00063
st AVAIL._and/or SPECIAL_

111

D DC
200 0P

it

NoV 2 1976 ||

GUU L
D

1 INTRODUCTION

The STRUCTRAN structured programming translators are tools for enabling
structured programming in FORTRAN-based software developments. An extension
of FORTRAN called DMATRAN replaces FORTRAN control statements with five state-
ment constructs that lend themselves to GOTO-free structured programming,
STRUCTRAN-1 translates programs written in DMATRAN into pure FORTRAN programs.
STRUCTRAN-2 translates programs written in FORTRAN into a structured form ex-
pressed in DMATRAN.

The STRUCTRAN-1 software has been developed on the Control Data Corpora-
tion (CDC) 6400 computer at the General Research Corporation (GRC) facility
in Santa Barbara, California. Following this software development phase,
STRUCTRAN-1 has been installed on the UNIVAC 1108 at the Defense Mapping
Agency Aerospace Center (DMAAC), St. Louis, Missouri. The software develop-
ment phase utilized the CDC FORTRAN run compiler, version 2.3, under the
GOLETA operating system for the CDC 6400. The installation phase utilized the
UNIVAC 1108 FORTRAN V compiler with the UNIVAC 1108 operating system.

This document describes the overall design of the STRUCTRAN-1 software
(Sec. 2) and the organization and contents of the STRUCTRAN-1 data base (Sec.
3). A narrative description of each module of STRUCTRAN-1 is included in
Appendix A. The detaiis of the STRUCTRAN-1 organization, intermodule dependen-
cies, and intramodule control structure are contained in the STRUCTRAN-1
Software Analysis Collection documentation.

2 STRUCTRAN-1 PROGRAM OVERVIEW

2.1 STRUCTRAN-1 PROGRAM ORGANIZATION

STRUCTRAN-1 is organized as a hierarchy of 50 subroutines and functionms,
each of which has a specific processing capability. STRUCTRAN-1 program
operation 1s described in Sec. 2.2, and input/output file usage is spelled
out in Sec. 2.3.

The code for all STRUCTRAN-1 modules was developed by GRC personnel
utilizing structured programming techniques throughout. STRUCTRAN-1 was also
implemented so as to avoid as many machine dependencies as possible. The
equivalent FORTRAN version of STRUCTRAN~1 was used to install STRUCTRAN-1 on
the UNIVAC 1108 at the Defense Mapping Agency Aerospace Center (DMAAC), in
St. Louis, Missouri.

2.2 STRUCTRAN-1 OPERATION

STRUCTRAN-1 performs the translation from DMATRAN to FORTRAN on a state-
ment-by-statement basis during a single pass through the DMATRAN source code.
To avoid any word size dependencies, all character strings are internally re-
presented in an Al format (one character per word). Due to the simplicity of
the structured syntax, STRUCTRAN-1 has to recognize only the various structured
statement forms and the FORTRAN END statement to perform the translation
process.

Figure 2.1 describes the sequence of operations performed by STRUCTRAN-1.
The initialization function is performed at the start of a STRUCTRAN-1 run.

PROCEDURE STRUCTRAN=] CONTRCL

INVOKE (INITIALIZE COUNTERS)

DO WHILE (END OF PILE ON DMATRAN INPUT NOT REACHED)

o INVOKE (GEY TNE NEXT STATEMENTY ON DMATRAN INPUT)

IF (END OF PILE NOT REACHED AND THE STATEMENT ISN#T BLANK) THEN
o INVOKE (FIND THE FIRSY AND LASY CHARACTERS IN STATEMENT)

L]

o o INVOKE (WRITE THE STATEMENTY ON FORTRAN QUTPUT AFTER TRANBLATION
1e o T0O FORYRAN IF REQUIRED)

o o INVOKE ¢ PRINT ORJIGINAL STATEMENT IN INDENTED STRUCTRAN LISTING)
o o IF (THE STATEMENTY 18 A PORTRAN END STATEMENT) THMEN

o o o JINVOKE (INITIALIZE COUNTERS FOR A NEW MOOULE)

o o o INVOKE (PAGE CONTROL)

e o END 1P

e o IF (END OF FILE REACHED ON DMATRAN INPUT) THEN

o o o INVOKE (TERMINATE THIS RUN)

s o END IP

s END IF

END mHILE

END

Figure 2.1 STRUCTRAN-1 Control

This includes modification of any of the default parameters (as described in
the STRUCTRAN-1 User's Manual). The following operations are performed on a
statement-by-statement basis until an end-of-file is encountered on the
DMATRAN input unit. The next complete statement is input; this may consist of
up to 20 card images. If the statement is not blank, its first and last char-
acters are identified. All statements are examined to see if tramslation to
FORTRAN is required. A DMATRAN statement translates into one or more FORTRAN
statements (the Final Report contains a complete description of the transla-
tion templates). Each original FORTRAN and translated FORTRAN statement is
written to the FORTRAN output unit. Also each original statement is included
in the indented listing produced by STRUCTRAN-1. If the statement is a
FORTRAN END statement then the counters are reinitialized for a new module

and page control skips to a new page. If the end-of-file on DMATRAN input

has been reached the STRUCTRAN-1 run is terminated.

2.3 STRUCTRAN-1 FILE USAGE

In performing its translation function, STRUCTRAN~1 utilizes the files
shown in Table 2.1. This is also summarized in Fig. 2.2. The DMATRAN
Source to be translated to FORTRAN is read in on unit LUNIN. STRUCTRAN-1
writes an indented listing on unit LUNOUT, and prints diagnostics about in-
valid constructs on LUNERR. These two unit names should normally refer to
the same physical unit. The translated FORTRAN source is written onto unit
LUNFOR. An example of each input and output format can be found in the
STRUCTRAN-1 User's Manual.

TABLE 2.1
FILES USED IN' STRUCTRAN-1 PROCESSING

File File Data Storage Record Recommended
Number Name Structure Mode Format Format Allocation
5 LUNIN DMATRAN BCD Sequential Card image System card reader
input
6 LUNOUT Reports BCD Sequential Maximum 132 System printer
characters per line
2 LUNFOR FORTRAN BCD Sequential Card image Scratch file
output
6 LUNERR Reports BCD Sequential Maximum 132 System printer

characters per line

USER'S
INDENTED
DMATRAN
SOURCE

LISTING

LUNOUT &
LUNERR

STRUCTRAN-1
PROGRAM
PACKAGE

MAIN STRUCTRAN-1
PROGRAM [<*—"™ SUBROUTINES

PURE
FORTRAN
DECK

| NORMAL FORTRAN
| COMPILATION |

___1___J

Figure 2.2. STRUCTRAN-1 File Activity

3 STRUCTRAN-1 VARIABLE DESCRIPTIONS

The following information indicates the common blocks which are used in
STRUCTRAN-1. For each common block, a description of the use of all variables
contained in it is included. For more information concerning STRUCTRAN-1 com-
mon blocks and variables, refer to the STRUCTRAN-1 Software Analysis Collection

documentation.

COMMO® 20 S OFT/ZLUNINLUINOUT o LUNFOR o LUNERK o

1

INUONeNINDONT o INDCOMe LADJUST oL INFER S

1 HLBLS oL TAwDT oK OMF TN
THIS 1S The LSER OPTIONS CUMMON,.
tININ LOGICAL UNIT FOR INPUT

L''NOUT = LOGICAL UNIT FOR UMATRAN QUTPUT.

FONFOR = LOGICAL UNIT #O~ FORTRAN OUTPUT

L UNERR = [OGICAL UNIT FOK ERROR OUTPUT

1"DON = 1 IF INDENTIN® REQUIREDs 0 IF NOT

NTNDNT = NUMBER OF SPACES TO INDLNT AT EACH LEVEL

1 'DCOM = 1 1F COMMENTS ARE TO BE INDEMYEDs © TIF NOT,

| ADJST = 1 IF STATEMENT TEXT IS TO BE LEFT ADJUSTFUs 0 IF NOT.

| INPER = NUMEE= OF DMATRAN LINES PER PAGE

NEKLS = NUMiBk~ AT wHICH TG START MAKING DMATRAN (ABLES

L TNWDT = UMATRAN OUTPUT LINE WIDTH

¥AMFTH =] IF COMMENTS ARE T0 HE PASSED T0O FORTRAN QUTPUT. 0 IF
tOT.

CoMaMicn TATUS/L CARUCBC) o« TEOF o NUMCRD

T+1S 1S Tk IN- 1T SPACE COMMON

' CARD
15 0F
NUMCRD

CARD IMAGE ARKAY IN Al FORMAT
I IF EMO OF DATA WAS SENSEDs 0 IF NOT.
INPUT CARD NUMBER

COMMOMNSTATE/LABEL(6) oL 1ST(1420) 9 ISEQ(B420) yNSTATF

1 LTHRES,

INFRUSLENGTHoMENGTHOLPOINTSLEVEL« TTYPESL TYPE

THIS 1S The ST+ feMENT COMMON

L AREL

I 1sT

1GEN

NSTATE
I INBEG

L INFND

LENGTH
MENGTH

LPOINT
| FVFL

ITYPF
LYYPE

ARWKAY Or & CHARACTER LABELS (IN Al FORMAT) FOR A
STATEMENT WITH UP TO 19 CONTINUES.

ARKAY OF A]l CHARACTERS FOR A 20~CARD STATEMENT Tf !
PLUS RESERVE SHACE FOR MAXIMUM INDENTATIAN DEPTH OF 100
CHAKACTERS

ARRPAY OF &-CHARACTER SEQUENCE NUMBERS FOr A 20=CARD
STATEMENT .

STATEMENT NUMBER

CHARACTER NUMBER WITHIN A STATEMENT FOR THE FIRST NON~
BLANK CHARACTER OF THE STATEMENT,

CHARACTF® NUMBER WITHIN A STATEMENT FOR THt LAST NON-
HILANK (-awACTER OF THE STATEMENT.

CINENO=-L INBEGe]

LENGTYH OF TEXT EXCLUSIVE OF OMATRAN 7 'MMANDe TE TEXY
FOLLOWING <IF(> IN AN IF STATEMENT

POINTS TO FIRST TexT CHARACTER AFTER DMATKAN rOMMAND
(SEE VEFINITION OF <MENGTH=)

INDENTATION LEVFL
CAATRAN STATEMENT TYPE
TYPE OF PREVIOUS DMATRAN STATEMENT

5

COMMON / INTENN/NL INES ol INWID o KSTMT oNFATER sNEWRTNsNCUMAS o K OMMAS (50)
THIS 1S ThE INTERNAL VARIABLES COMMON.
MIUINES = LINE NUMBER FOR PAGING

LINWID = LINE wIDTH FOR TEXT DMATKAN OLTPUT (LESS CARD NUMBER
LABEL AND SEQUENCE)

«x<TMT = NUMKHER OF LINES READ IN CURRENT STATEMENT

MEATER = NUMBER OF FATAL ERRORS ENCOUNTEKED.

CWRTN = | wHEN LABLING SHOULD BEGIN AT NLBLS

*.(OMAS = NUMpBE® OF COMMAS AT] LEVEL OF PARENTHESIS NESTING.
<(\MMAS = ARRAY OF l-LEVEL COMMA LOCATIONS IN ARRAY OF INPUT DaTA,

COAMMON/FORTRN/KABEL (6) sKENOGTHoKFTN(1420) +KFLAG

TvlS IS THE FORTRAN OUTPUT COMMON

“AREL = LABEL OF FORTRAN STATEMENT

*FNGTH = LENGTH OF FORTRAN STATEMENT

i TN = ARRAY OF FOKRTRAN CHARACTERS TO PLACE ON FORTRAN OUTPUT
UNIT.

xvLAS = LEFT JUSTIFICATION FLAG,

CAMMONZ/ACCTNG/NIFTRNINFORT sNCOMMT o NTOTIF oNTOTFRoNTUTCMNMODUL

T+ 1S IS THE ACCOUNTING COMMON

PAFTRN = NUMSER OF DMATRAN STATEMENTS PROCESSED 1n CUNKEENT MODULE
POORY = NUMRER OF FO KAN STATEMENTS PROCESSED IM CUPRENT MOLULE .
e UMMT = NUMbER OF COMMENT STATEMENTS PROCESSED In CURPENT MODULE .
STUTIE = TUTAL NUMBER OF DMATRKAN STATEMENTS SO FAR.

NTOTFR = TOTAL NUMBEKR OF FORTRAN STATEMENTS SO FAR.

NTOTCM = TOTAL NUMBEF OF COMMENT STATEMENTS SO FAR.

MMODUL = TOTAL NUMBER 0F MODULES PROCESSED.

COMMON/CONSTN/LBK
THIS IS THF COMMON FOR CUNSTANTS.

L HK = HOLLERITH BLANK

TOMMON/STACK/MBXSTK ¢ INSTAF ol STACK (4450)
THIS IS THE STACKING COMMO'v

MAXSTK = MAXIMUM NUMBER OF ENTRIES IM THE STACK
I1*'STAK = POINTER TO CURRENT POSITION IN STACK
LSTACK ()e=) = STATEMENT TYPE

LSTACK(29=) = LABEL1(POSITIVE INTEGER)

LSTACK (3y=) = LABEL2(PUSITIVE INTEGER)

LSTACK (49=) = LABEL3(POSITIVE INTEGER)

COMMON/RECNIZ/IRECEG(22) s IREC(15922)
THIS IS THE RECOGNITION COMMON

IPECLG = LENGT . OF NON=-BLANK KEY PART OF STATEMENT
1°€EC = ARNWAY OF KEY WORDS AND KEY STATEMENT BEGINNINGS

CAMMON/STYPE Z/TNDTYP (22) 4 IGRP (22) + IPARCK (22)
1S 1S THE STATEMENT TYPE CCOMMON

I*D? P = o] FOW INDENT NEXT STATEMENT, =1 FOR BRIMO IN THIS
STATEMENTs 0 FOR LEAVE ALONL.

STATEMENT GRNUP FUR FRROR CHECKING

1 FOR CHECK PARENTHESESy 0 OTHERWISE,

1ARP
1°2ARCK

¢ timasegy: ESE/NENTHY o« NwTRN
Tu1S COMMON SAVFS THE NUMBE: r ENTRY POINTS AND WETURNS

NFATWY = NUMBER OF ENTKRY POINTS
NOTR . = NUMHBER OF RETURNS

COMMON/TRACE/NALTEN
TH1S IS THE COMMON TO PRINT OUT STATEMENT NUMRERS

NALTER = CONTROLS OUTPUT OF STATEMENT NUMBERS WHICH WEFER
B4Cx TO THE DMATRAN COODE.

COMMON/WARN IN/ IWARN

Tels 1S THE COMMON TO KEEP TRACK OF UNSTRUCTURED FURTRAN STATEMENT

[WARN = FLAG SET TO 1 wHEN UNSTRUCTURED FORTRAN STATEMENT IS
ENCOUNTEREDs OTHERWISE EQUALS 0

C MMON/ IMVOKE /NOBE s NORLOK (20+6) s NAMEL (6) «NNTNV (20

T=ls T ~t IMNVYOKE COMMON

NORE NUMHBE - ¢ UNIQUE BLOCK NaME > ENCOUNTERED N INVOKE
STYaTEMer TS IN THE CURRENT MODULE,

NOBLOK = LIsT JUF A=CrnARACTER BLOCK NAMES (IN ORDER 0O} FNCOUNTER)
THAT ARE v THt CURKRENT MODULF

NAME] = 6 CHARACTER wOWK AREA FOW GENEWAL PURPOSF USE.

NATNY = THE NUMBER OF INVOKE STATEMENTS FNR FACH BLOCK

IN The SAME ORDER AS IN NOBLOK,

-

-

APPENDIX A
STRUCTRAN-1 MODULE FUNCTION DESCRIPTIONS

ACT1 is an accounting routine wnich is called at the end of the proces-

sing of each statement. It adds to the cumulative totals of either COMMENT,
DMATRAN, FORTRAN, ENTRY or RETURN statements for the current module.

ACT2 1is a second accounting routine. At the end of a module, the number
of COMMENT, DMATRAN, and FORTRAN statements accumulated by ACT1l accounting
is printed and then added to the totals so far for each type. If the number of
ENTRY or RETURNs is greater than 1, then those totals are also printed.

ACT3(IBEG) is the third accounting routine. If 1IBEG = 0 , the variables
in the accounting common are initialized to zero at the beginning of a
STRUCTRAN-1 run. At the end of a run, IBEG is set to 1 and the total number
of statements is printed out in addition to the DMATRAN, FORTRAN, and COMMENT
accumulated totals.

ASSIGN forms the statement, <NI><IVAR> = <TEXT> in the common block
FORTRN where <NI> = (LABEL(K),K=1,5) , <IVAR> = (IVAR(K),K=1,6) and <TEXT>
= (LIST(K),K=1,L) where L = 1420 maximum.

BGSCAN sets the common variable LINBEG to the number of the first non-
blank character of a statement.

CONT forms the statement, <NI> CONTINUE, in the output FORTRAN area.
<NI> is equivalent to (LABEL(K),K=1,5).

CONTRL is the principal STRUCTRAN-1 control routine. It directs the
processing by statement and by module. When an end-of-file is reached, it
calls ENDER to terminate the run. CONTRL is called from the MAIN program.

CPTIME(TIME) belongs to the implementation dependent section. At imple-
mentation/installation time, installer must provide a call to a subroutine
which produces the elapsed CP time in the variable TIME. Alternatively, TIME
may be set to 0.0 if internal performance measurement data printed at the end
of the STRUCTRAN-1 run is to be ignored. The output parameter, TIME, is
floating point and is in seconds.

ENDER belongs to the implementation dependent section. It terminates
the run. At implementation/installation time, installer must provide for con-
sequences of termination of operation if that termination is to be other than
to stop. The variable NFATER contains the number of fatal errors, if any,
found in error processing.

ERROR(N) prints an error message. The output parameter, N, is the error
aumber. The error messages are listed in Table 3.1 in the User's Manual.

-

FILCHK(LUNIT) is a functien which checks for either physical end-of-
file or END! in columns 1 through 3. If either is found, the returned function
value is 1; otherwise, 0.

FULCON(LABEL) calls CONT to create a continue statement whose label is
LABEL, if LABEL(I),I=1,5 is non-blank,

GENASS (ILABEL,IVAR) forms a statement according to the following example:
ASSIGN 99995 to 199996, where the array ILABEL contains the character string
99995 and the array IVAR contains the character string 199996.

GENGO (INDEX, IRVAR,INVLAB) is a subroutine to generate a statement of the
form: GO TO <RETURN VAR> (<LIST OF INVOKE LABELS:-) in the common block FORTRN.
The <LIST OF INVOKE LABELS> contains the label of the first statement following
each invocation of a particular BLOCK. The value of the <RETURN VAR> indicates
which of these labels in the list to go to. For example, in GO TO 199969,
(99994,99634,99429) if 199969 contained the value 99634 then transfer would be
to the statement with that label. This would be the first statement which
followed that INVOKE of the BLOCK.

GENLAB(N,LTARG) converts the positive integer N into character string
format to be used as a label for the additional FORTRAN statements which are
created by STRUCTRAN-1. N is the integer label and LTARG is the character
label which is the output parameter.

GENVAR(N,IVAR) generates a 6-character integer variable name which starts
with I followed by positive integer N: e.g., 199968. The variable name is
stored in (IVAR(I),I=1,6).

GETCRD is a subroutine which reads one card and checks for end of data.

GETINS belongs to the implementation dependent section. At implementa-
tion/installation time, installer can provide code to set options away from
default values pre-supplied here. This segment of code must be replaced if the
system implementor does not want the default options listed below. The twelve
basic options are read, at this point, from the first input card from unit D's
The format of this card is 12I5. Default values are supplied for each field
which is blank. The options are read in the following order:

Default
1. STRUCTRAN-1 input unit (DMATRAN source))
Z, STRUCTRAN-1 listing unit (indented listing) 6
3, Translated FORTRAN unit (to be compiled) 2
4, STRUCTRAN-1 error diagnostics 6
5. Whether to automatically indent (0 = NO; 1 = YES) 1
6. The number of characters per indent level 3
7 Whether to indent comments (0 = NO; 1 = YES) 0
8. Whether to left-adjust all statements first (0 = NO; 1 = YES) 1

Default
9. Number of lines per page 57
10. Number of initial generated label 99998
11, Number of characters per line 132

12. Whether to move comments to the FORTRAN file (0 = NO; 1 = YES) 0

GETSTM is a routine which brings in one statement at a time. If the
statement is FORTRAN or DMATRAN, ITYPE is set to 1; if it is a COMMENT, ITYPE
becomes 0. R

GOTO (LTARG) forms the statement, GOTO <TARGET>, in the common block FORTRN.
<TARGET> = (LTARG(K),K=1,5).

HOLLER(I) is called from IBALPR when an "H'" is encountered in the array
LIST(I). It determines whether the "H" indicates the presence of a Hollerith
string or if it is a character of a variable name. If a Hollerith field is
found, then I is incremented by the length of that field so that if a paren-
thesis is contained within the field, IBALPR will not assume it is the paren-
thesis for which it is searching.

IBALPR is a function which examines the common vector LIST starting at
LPOINT and returns the character position of the first balancing closing paren-
thesis; if none is found before LINEND, O is returned.

IFCASE (LAB, IVAR,MSTRNG,LIST ,LTARGT ,LPOINT) forms the statement <NI> IF
(<VAR>.NE. (<TEXT1>) .AND.<VAR>.NE. (<TEXT2>) .AND.... <VAR> ,NE.(<TEXTN>)) GO TO
<TARGET> in the FORTRAN output area where:

<NI> = (LAB(I1),I=1,5)
<VAR> = (IVAR(I),I=1,6)
<TEXT1> = (LIST(I),I=1,N1) where LIST(N1+l) = 1H, or end of text
<TEXT2> = (LIST(I),I=N1+2,N2) similarly
no more than 50 of these
<TARGET> = (LTARGT(I),I=1,5)

LPOINT is the character position of the start of LIST on the calling program.

IFEOF (LUN) belongs to the implementation dependent section. At implemen-
tation/installation time, installer must provide logically correct end-of-file
check operations if the code herein included is incompatible with that imple-
mented on his machine. This subroutine is called once for each statement, and
should return the value 0 unless an EOF is found. Alternatively, STRUCTRAN-1
makes a separate internal check of the first three columns of each input card.
STRUCTRAN-1 operations cease if those columns contain END. This function should
return a value of 1 when EOF or END is found on LUN. Otherwise, a 0 is re-
turned. Typical call:

IF(IFEOF (LUN) .EQ.1) THEN

10

The input parameter, LUN, is the logical unit to be tested. If DMATRAN
source on LUN is terminated by end file, this function must be adapted to
operate as described above. For example, the following code operates on CDC
machines:
IF (EOF,LUN) 10,20
10 IFEOF = 1
RETURN
20 IFEOF = 0
RETURN
END

If DMATRAN source on LUN is terminated with a card that contains the word
END starting in column 1, this routine is a dummy but must be included.

IFSO(LABEL,L,LIST,LTARG) forms the statement <NI> IF (<TEXT>) GO TO
<TARGET> in the common block FORTRN:

<NI> = (LABEL(K),K=1,5)
<TEXT> = (LIST(K),K=1,L) including 1 closing parenthesis
<TARGET> = (LTARG(K),K=1,5)

IGROUP(X) returns O for stack-error free, 1 for stack error, and 2 for
empty stack. It checks for top stack position in same group.

INDENT (NIN) indents a statement prior to STRUCTRAN-1 output.
INDLEV computes indentation level.

INITAL is called at the beginning of a STRUCTRAN-1 run to initialize com-
mon data.

ISEND is a function which is called by GETSTM to determine if the current
statement is an "ND statement, indicating termination of the current module.

IWITHN(X) function returns 0 for error-free, 1 for within group error,
and 2 for empty stack.

KEMPTY (LABEL) is a function that returns 1 if (LABEL(I),I=1,5) is all
blank; otherwise, it returns a O.

KLASS classifies a non-comment statement according to type and, if neces-
sary, resets the common variable ITYPE. The following is a list of the various
classifications:

11

-

ITYPE DATA RECOGNIZED ITYPE DATA RECOGNIZED
2 IF 11 DO UNTIL
3 ELSE 12 END UNTIL
4 END IF 13 THEN
5 DO WHILE 14 GOTO
6 END WHILE 15 INVOKE
7 CASE OF (16 BLOCK
8 CASE (17 END BLOCK
9 CASE ELSE 18 RETURN
10 END CASE 19 ENTRY

KLASS1 first calls KLASS to set the ITYPE. KLASS1l also allows the IF()
THEN structured syntax to be recognized, as well as the IF()GOTO
statement in standard FORTRAN. If it is the latter, the flag, IWARN, is set
to 1 so a warning message will be printed.

KCOMP(I,J) sets its function value to 1 if BCD character I is equal to
BCD character J; if not, it is set to 0. Typical call is:
IF (KCOMP(L,M) .EQ. 1) THEN

The input parameters I and J are the characters to compare.
LADJUS left-adjusts the text of a statement.

MAIN is the driver program which calls CONTRL to initiate the processing
of a STRUCTRAN-1 run.

MOVEWD (NWDS , IPOS, IARRY,1POS1,IARRY1) is a data transfer routine which
copies from IARRY(IPOS) to IARRY1(IPOSl). The input parameters are:

NWDS = number of words to be moved

IPOS = index in TARRY at which to start copying

IARRY = array containing words to be copied

IPOS1 = index to IARRY1l at which to start putting copied data

IARRY1l = array to which data is copied
When IARRY does not equal IARRY1l, either MOVEWD or MOVEWU may be used. How-

ever, when data is being copied from one position to another in the very same
array, then it is important to note the differences in these two routines.

When IPOS is greater than IPOS1, then MOVEWD is the appropriate routine
to use. For example, a typical move might be CALL MOVEWD(27,14,X,3,X), which
would move 27 words beginning with X(14) to X(3).

12

-

MOVEWU (NWDS, IPOS, IARRY , IPOS1,IARRY1) is the correct routine to call
when IPOS1 is greater than IPOS and IARRY is equal to IARRY1l, as in CALL
MOVEWU (27,3,X,14,X). The reason for this distinction between the two similar
routines, MOVEWD and MOVEWU, is to prevent overwriting of a part of an array
and the consequent loss of data before that data can be copied to its new
location in the array.

NAMOB(X) is a function which searches the array NOBLOK for a match with
the block name residing in <LIST> starting at <LPOINT>. It returns the index
in the array where found or O if not found.

NDSCAN sets the common variable LINEND to the number of the last non-
blank character of a statement.

NEWLAB(X) is a function which generates a positive integer label by
counting downward initially from the label which was stored in NLBLS in sub-
routine GETINS. Unless the default parameter is changed, NLBLS is first 99998;
and each time NEWLAB is called, 1 is subtracted from it.

NEWPAG controls paging on STRUCTRAN-1 output before writing one line.

PUTFTN(KOMT) writes a stzaiement on FORTRAN output, making each line a
comment if KOMT is 1.

PUTIF causes printing of a whole statement on STRUCTRAN-1 ouctput by
calling PUTIFT after first checking if it is necessary to left-adjust the text.

PUTIFT prints a statement on STRUCTRAN-1 output unit.
SPRYWD (NWDS , IVALUE, IPOS ,IARRY) sprays one data value into the designated
part of an array. A typical call is:
CALL SPRYWD(27,1H ,3,X)
It would blank 27 cells starting at X(3). The input parameters are:

NWDS = number of words to be filled with IVALUE.
IVALUE = the value to be placed
IPOS = index in IARRY at which to start putting value

The output parameter is:
IARRY = the array to be filled

STRUCT is the main routine which translates DMATRAN to the FORTRAN source
code which is accepted by the FORTRAN compiler.

If a statement 18 not a comment, then KLASS1 is called which in turn
calls KLASS to reset the variable, ITYPE, if necessary, thereby delineating
various words, most of which are structured forms. [A list of the ITYPEs and
the corresponding classifications may be found in the description of the
subroutine KLASS.]

13

R ——
- o Ik 1
A PO Ty
o Povesgia————— b is

When ITYPE is between 2 and 17, the current statement is moved to the
FORTRAN output unit and printed as a comment to improve understanding of the
code which is input to the FORTRAN compiler. Next the appropriate action is
implemented according to the ITYPE that has been delineated.

For example, if the statement is a DO WHILE (ITYPE = 5), then the LSTACK
pointer, INSTAK, is incremented; three new labels are generated and stored in
LSTACK at positions 2, 3, and 4; and ITYPE is entered at LSTACK(1l,INSTAK).

The necessary source code is generated with the labels (accessible in LSTACK)
inserted in the proper places in the FORTRAN statement.

If there is another DMATRAN control type within the DO WHILE, INSTAK
will be incremented again and new labels stored in the newly available loca-
tions. These will be used and then INSTAK will be decremented so that when
the END WHILE (ITYPE = 6) is reached, the stack pointer will be accessing the
labels which were generated for the DO WHILE. Then the GO TO and CONTINUE
statements, required for the translation into FORTRAN at the end of a DO WHILE
iteration, will have the correct labels.

Should an END IF, END CASE, END UNTIL, END WHILE, or END BLOCK be missing,
then an error will be detected and a reference to an error message will be
pointed out.

VERBAT moves a statement directly into FORTRAN output area verbatim.

WARN is called by PUTIFT when the flag, IWARN, has been set to 1. It
then transfers the warning message, UNSTRUCTURED FORTRAN STATEMENT, into LIST
so it may be printed out on the STRUCTRAN-1 output unit.

IWARN is set to 1 in subroutine STRUCT when it finds a FORTRAN GOTO
statement and in KLASS1 when an IF() GOTO construct has been established.
These two forms, being correct standard FORTRAN code, will be accepted and pro-
cessed correctly by the compiler. However, for uniformity, they should be
changed to the DMATRAN equivalent.

14

