
—I ,
—

— ____

—
- AD— *O3 1 ‘e59 GE N E RAL RESEARCH CORP SANTA BAROARA CALIF FIS Wi

STRUCTEJREO PROGRAMMING TRANSLATORS. V04.UME ft. STRUCTRAN—1 SYS——ETCU))
AUG 76 0 N ANOflWS. R A NELTON 130602—75—C—02’a

UNCLASSIFIED RADC tR 76fl53—VOL.’3 ~1L

~~~~~~PuIEU __

a _ _ _ _ _



RADC-TR-76-253, Vol III (of five)

~~~ ~~~~~~~~~~~ 
Report

STRUCTURED PROGRN4IING TRANSLATORS
STRUCTRAN— l Syst~~ Design and Impl~ nentation Manual

General Research Corporation

Approved for public release;
distribution unlimited.

~~~~~ TO U~C DCES ~0T~~r r ~~p e~PERMIT FELL LECICLE PROO~CTIO~4

ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND

GRIFFISS AIR FORCE BASE, NEW YORK 13441

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


This report consists of the following volumes :

I — Final Report
II — STRUCTRAN— l User ’s Manual

III — STRUCTRAN— l System Design and Implementation Manual
IV - STRUCTRAN— 2 User ’s Manual
V - STRUCTRAN— 2 System Design and Implementation Manual

This report has been reviewed by the RADC Information Office (01)
and is releasable to the National Technical Information Service (NTIS).
At NT IS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and approved for publication.

APPROV ED :
, ~~ie~f ,k’ ,:cd.cl~:~
DONALD L. MARK
Project Engineer

APPROVED : ,e*~JD~I ~~~
ROBERT D. KRUT Z , Col, USAF
Chief, Information Sciences Division

FOR TH~ C(*IMANDER:

JOHN P. RUS S
Acting Chief , Plans Off ice

Do not return this copy . Retain or destrOy .

~~~~~~~



I

MISSION
of

Rome Air Development Center

RA~~’ pl ans and conducts research , exploratory and advanced
development programs in co mnand, control , and cosinunications
(C3) activities, and in the C3 areas of inf ormation sciences
and intelligence. The principal technica l mission area s
are cozanunications, electromagnetic guidance and control ,
surveillance of ground and aerospace objects, inteJ ligance
data collection and handling, inf ormation system technology,
ionospheric p rop agation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

?1
~6 ~91e

-



r - 
-

UNCLASSIFIED
~ECu R IT’~ CI. ‘sS ’ r~~ STION OF tI4I ~ °&O~ W’,.., fleta ~inIo,.d)

\ (I~~JREPORT DOCUMENTATION PAGE RF~’D ~4STRUCTIONS -—

BEFC~F~t COMPLET ING FORM
VT AC CE SSION NO . 3 .~~~~~~~ c r I~~T” CATALOG N UMPER

~ ~~~ 
— 

__________ I
’

~~~~~~.I ~~~~~T C WE fl p50
~~~~~~~~~ RADC R—76—253 Vo ______________

inal . fecbnica1 .~~~~~~~~jSTRUCTURED PROG RM~4ING TRM~SLATORS 0

STRUCTR~~-l System Design and Implementation ~ay 75 — Jan 7

ITL__ (~~d __________________________________

Manual ~ - 6. DE~~~ O~~~~IN~~~~~~~~~~~~~~0RT N J M B E f l

C CON1 PA C T  0’S G R A N T  NUMBE R(.I 
- —

I A~~T~ 4ORL~~

R. A. /Me lto~~~\ 

- - 

~~~~~~~~~~~~~~~~~~~ _-
~~

/
~

y D. M./Andrews

—

~ PER~~ORMlNG ORGAN I ZATION N A M E AND ADDRESS IO WP OCP*M ~~LEMENT , PROJECT . TA Sp~A~~ ’A A W OR K UN IT NUMBERS
General Research Corporat ion

P. 0. Box 3587 32010314
Santa Barbara CA 93105

_____________ ___________

U REPORTII . CONTROLL IN G OFFICE NAME AND ADDRESS

Rome Air Development Center (ISIS) ~~~~~~~~~~~~ -- — -.
Griff iss AFB NY 13441
__

14

14 MONITORING A G E N C Y NAME & A ODRESS(U dli 11 rollS OllIc.) IS. SECURITY CLASS. (of ibla capon)

UNCLASSIFIEDSame

IS.. OECLAS SIFI CAT IO N ’ DOWNGRAD ING
SCHEDULE

__________ __________________________________
N/A

16. D I S T R I B U T IO N S T A T E M E N T (of IPSo R.pocl)

Approved for public release; distri ~~1OtI unlimited3~~~7
II. DI S T R I B U T I O N S T A T E M E N T (of IA. .b.ft.cl .ot cad S leek 20 II dIfl.r.n t ft.., R 1

Same

I S S U P P L E M E N T A R Y NOTES

RADC Project Engineer: DMAAC Project Engineer:
Donald L. Mark (ISIS) Ms. Opal Power

IS KEY WORDS (Co,, th,o. o,, ,.e.,.e old. If n.e.a.~~y wd ld ntlSy by block numb r)

Structured Programming
Precompilers
Translators
Software Tools

A B S T R A C T (Conllnu. .,, ,.w na. .ld. SI n•c.a.ary ~ td ld•nISIy by block n.au b.r)

1!he STRUCTRAN-l System Design and Implementation Manual provides a high—level
description of the processing performed by STRUCTRAN—1 , defines STRUCTR.AN—1 file
usage, and documents the use of common variables by STRUCTRAN—1. Appendix A
describes the function of STRUCTRAN—1 subroutines in detail

DO JAN I 1473 EDItI ON OF I NOV 65 II OBSOL ETE UNCLASSIFIED
UCURITV CLASSIFICATION OF tH IS PADS (ni.. D..a Bnl.esd)

L

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGC(WSi. ,, Data InI.,.d)

.o,r.~
,.

UNCLASSIFIED
SECURITY CLA SSIFICATION OF tHIS PAGI(Im.. D~~. m,.... ~~

CONTENTS

SECTION ___

1 INTRODUCTION 1

2 STRUCTRA~-1 PROGR.AN OVERVIEW 2

2.1 STRUCTRAN—l Program Organization 2
2 .2 STRUCTRAN— 1 Operacion 2
2.3 STRUCTRAN— 1 File Usage 3

3 STRUCTRM~-1 VARIABLE DESCRIPTIONS 5

APPENDIX A STRUCTRAN-1 MODULE FUNCTION DESCRIPTION S 8

¶~ r.cwto. w
—

I ITII PISs U~~~SS

Ix WVISSN ri
W*SNO~NCEI

-...—.—--- D D C
ST~1IUTWN /ATAILAItLIfl U c~ 1E~U r -’rF .

~cIrTTE~
~~~~~~~~~~~~~ T~~~~~~~~~~~ ILIJT

’

iii

_Si_____j,~
__ J~~TT~~ —-

~~~~~~~~~~~~~ 

~~~~ 

-



1 INTRODUCTION

The STRUCTRAN structured programming translators are tools for enabling
structured programming in FORTRAN—based software developments. An extension
of FORTRAN called DMATRAN repi,aces FORTRAN control statements with five state-
ment constructs that lend themselves to GOTO—free structured programming .
STRUCTRAN—l translates programs written in DMATRAN into pure FORTRAN programs.
STRUCTRAN—2 translates programs written in FORTRAN into a structured form ex-
pressed in DMATRAN .

The STRUCTRAN— l software has been developed on the Control Data Corpora-
tion (CDC) 6400 computer at the General Research Corporation (CRC) facility
in Santa Ba rbara , California . Following this software development phase,
STRUCTRAN — 1 has been installed on the UNIVAC 1108 at the Defense Mapp ing
Agency Aerospace Center (DMAAC) , St.  Louis , Missouri. The software develop-
ment phase utilized the CDC FORTRAN run compiler, version 2.3, under the
GOLETA operating system f or the CDC 6400. The installation phase utilized the
UNIVAC 1108 FORTRAN V compiler with the UNIVAC 1108 operating system .

This document describes the overall design of the STRLJCTRAN—l software
(Sec. 2) and the organization and contents of the STRUCTRAN—1 data base (Sec.
3). A narrative description of each module of STRUCTRAN—l is included in
Appendix A. The detaijs of the STRUCTRAN—l organization, intermodule dependen—
d es , and intramodule control structure are contained in the STRUCTRAN—l
Software Analysis Collection documentation.

1.

~~~~~~~~~~ -


2 STRUCTRAN-l PROGRAM OVERVIEW

2.1 STRUCTRAN-1 PROGRAM ORGANIZATION

STRUCTRAN—l is organized as a hierarchy of 50 subroutines and functions,
each of which has a specif ic processing capability. STRUCTRAN—l program
operation is described in Sec. 2.2, and input/output file usage is spelled
out in Sec. 2.3.

The code for all STRUCTR.AN—l modules was developed by CRC personnel
utilizing structured programming techniques throughout . STRUCTRAN—l was also
implemented so as to avoid as many machine dependencies as possible . The
equivalent FORTRAN version of STRUCTRAN—l was used to install STRUCTRAN—l on
the UNIVAC 1108 at the Defense Mappin g Agency Aerospace Center (DMAAC) , in
St. Louis, Missouri.

2.2 STRUCTRAN-l OPERATION

STRUCTRAN—l performs the translation from DMATRAN to FORTRAN on a state-
ment-by-statement basis during a single pass through the DMATRAN source code .
To avoid any word size dependencies, all character strings are internally re-
presented in an Al forma t (one character per word). Due to the simplicity of
the structured syntax, STRIJCTRAN—1 has to recognize only the various structured
statement forms and the FORTRAN END statement to perform the translation
process.

Figure 2.1 describes the sequence of operations performed by STRUCTRAN— 1.
The initialization function is performed at the start of a STRUCTRAN—l run.

PROCEDURE $YRUCTR AN .1 CONTROL .
INVO KE C INITIALI ZE COUNT LR3)
DO WH ILE C END OF P I L E ON OMATRAN INPUT NOT REAC HED)
• INVO KE C GET THE NUT STATEM ENT ON DMATRAN INPUT 3
• IF C END OF FILE NOT REA CHED AND THE STAT EMENT I$NØT BLA N K) THEN
• • INVOK E C F IND THE FIR ST AND LA ST CHARAC TERS IN STATEME NT 3

• , INVOKE C R ZTE THE STATEM eN T ON FORTR AN OUTPUT AF TER TRANS LATI ON
• TO FORT RAN IF REQU IRED 3

• • INVOKE C PRINT OR IGINA L STAT EMENT jP4 INDENTED $TRUCTRAN LIST ING 3
• . IF C THE ST ATEM ENT II A FORTR AN END STATEMENT) THIN
• • • INVOKE C INITIALIZE COUNTERS FOR A NEW NODULE 3
• • , INVOKE C PAGE CONTRO L I
• • (ND IF
• • IF C END OF P11,1 REACHED ON OMAT RAN INPUT 3 THEN
• • • INVOKE C TERM INATE THIS RUN I
• • (ND IF
• END IF
(ND PHILE
(P40

Figure 2.1 STRUCTRAN—1 Control

2

- — - —

This includes modificat ion of any of the default parameter s (as descr ibed in
the STRUCTRAN— 1 User ’s Manual) . The following operations are performed on a
statement—by—statement basis until an end—of—file is encountered on the
DMATRAN input uni t . The next complete statement is input; this may consist of
up to 20 card images. If the statement is not blank , its f i rs t and last char-
acters are identified . All statements are examined to see if translation to
FORTRAN is required . A DMATRAN statement translates into one or more FORT RAN
statements (the Final Report contains a complete description of the transla-
tion templates). Each original FORTRAN and translated FORTRAN statement is
written to the FORTRAN output unit. Also each original statement is included
in the indented listing produced by STRUCTRAN—l. If the statement is a
FORTRAN END statement then the counters are reinitialized for a new module
and page control skips to a new page. If the end—of—file on DMATRAN input
has been reached the STRUCTRAN—l run is terminated.

2.3 STRUCTRAN—l FILE USAGE

In performing its translation function, STRIJCTRAN—l utilizes the files
shown in Table 2.1. This is also summarized in Fig. 2.2. The DMATRAN
source to be translated to FORTRAN is read in on unit LUNIN. STRUCTRAN—1
writes an indented listing on unit LUNOUT, and prints diagnostics about in-
valid constructs on LUNERR. These two unit names should normally refer to
the same physical unit. The translated FORTRAN source is written onto unit
LUNFOR. An example of each input and output format can be found in the
STRUCTRAN—]. User ’s Manual.

TABLE 2.1

FILES USED IN STRUCTRAN—1 PROCESSING

File File Data Storage Record Reco~~ended
Number Name Structure Mode Format Format Allocation

S LUNIN DMATRAN BCD Sequential Card image System card reader
input

6 LUNOUT Reports BCD Sequential Maximum 132 System printer
characters per line

2 LUNFOR FORTRAN BCD Sequential Card image Scratch file
output

6 LUNERR Reports BCD Sequential Maximum 132 System printer
characters per line

3

LUN IN

(‘~~~DMAT RAN
SOURCE
DECK

__________________ STRUCTRAN-1
I PROGRAM

I PACKAGE
—

~ 1

~~~~ PURE
FORTRAN
DECK

LUN FOR

[NoR~~L FORTRAN I
COMP ILATIOti I 

J

Figure 2.2. STRUCTRAN—l File Activity

4

~~~~~~ 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~ ~~~~~~~~~~~~~~~~~ :~~~~



3 STRUCTRAN-1 VARIABLE DESCRIPTIONS

The following information indicates the common blocks which are used in
STRLJCTRAN—1. For each common block, a description of the use of all variables
contained in it is included . For more information concerning STRUCTRAN-1 com-
mon blocks and variables, refer to the STRUCTRAN—l Software Analysis Collection
documentation .

0” T /L UN kr , . Lt IN O UT ‘LUM- OR ,L NEW ~~.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
N1 ’lj. S.L INwOl .,‘o~.’r TN

T- ~IS I S 7 ‘~~~L~~ o P T I O N S CUMMON.

LO G ICA L uNIT FO N INPUT
I NGOT LLu ICA L UNIT FOR L)MATRAN OUTPUT.

t’.FOP = LO (lCA t ;N11 tO~ FORTRAN OUTPUT
LOGIC A L ~JNI T FO~ IPROP OUTPUT

~~
. >(~~ = I IF 1NUENI I~* REOLjIRLI), 0 IF NOT

~JTM)NT = NUM r~E~~ OF SPACES TO INDLNT AT EACH LEVE L
!~~0COM I lF LOMMLNT c A~ E TO 3E INDENTED. 0 ~~ r~nT .

f)J~,T I I F STA TIMENT TEA T IS TO BE LEFT AOJUSTFU, 0 If NOT.
I ‘NP~~’ = NuMbI~~ iF D R A T RA N LINF S PEP PAGE
~~‘ = “iU~DiL’ AT WH ICH TU STA RT MAP (ING O MA IPA N t A B L E S
I ‘ N W I)T ,jNATRAN OUT.~’JT LINE WIDT H

~M FT~ I IF LOUMENTS APE 10 BE PASSED TO FO RTRAN OuTPUT. 0 IF
,
~OT .

~~~~ ‘ ~~-L ’ ~~ / (  L A ~d O ( M C I  • I L O F  ,NUMC ~~I)

T ” I S  IS 1~ ’L IN’- .1 s~’A C€ COMMON

(API) CARD IMAGE ARRAY IN A l FORMAT
I ror I IF tNt) (if DATA WAS SENSED, 0 IF NOT .

INPUT CA R D NUMBER

r ..Mr),J ’sTA rE/ L A B EL fo),tlST (l~.?0),ISE O (8,20),NS1ATF
I ,I. T N” F~~

... I’.INu .L t f 4 G T$ . MF N G T P I . L PO I P JT , L EV E L. l T Y P E , L I Y P E

T~~ iS IS T~-’c. SI’- ~I’~t.NT COMMON

t ’i4EL A OOA ~ (~~ ‘ CHARACTER LAB FLS (IN A l FORMAT) FOP A
ST A TEM EN I Wi Th UP TO 19 CONTINUES.

l IST = A~?PAY Of Al CHARACTERS FOR A 20—CARD S T A T t J 4 L N T  TF~~ ’
PLUS MESERVE SPACE FOP MAXIMUM INUEN1ATION DEPTH OF 100
CHAR ACTERS

= AR PAY OF b—CHARACTER SEQUENCE NUMBERS FOw A ?fl— CAWD
ST ATEMENT.

~J~ TAT F STATEMENT NUMBER
(Nt4EG = CHA RAC TER NUMBER WITHIN A STATEMENT FOR THE FIRST NON—

BL ANP ( CHARACT ER OF THE STATEMENT.
I INEND CHAMA CTFu NUMBER WIT H IN A STATEMENT FOP THE LAST NON—

HI ANI~ (—a.~A (.TfQ OF IRE STATEMENT.
L1NEN.~-t I NIic (.j

= t EN(,I” Of Ttx T EXCLUS IVE OF OMAT RAN ‘ MMANU . IE TEX T
FOLLO WINt, ‘IF (> IN AN IF’ STATEMENT

L~~OJ NT = POIN TS TO FIRST TEXT CHARACTER AFTER OMAT RAN fOMI4ANI)
(SEE DEFINITION OF —MENGTH— )

I rVEL = INDENTAT ION LEVEL
h yPE s tPATPAP~ STATEMENT T YPE
YvPE TYRE OF PREVIOUS UMATRAN STATEMENT

5

=~- Y _



COMMOF~/T NTLwN/NL IN€S,i 1NWID .KSTMT,NFATEP,NEWRTN,NCUMAS.KOMMAS (S0)

1-115 IS THE INTERNAL VARIA BLE S COMMON.

NI 1NF~ = LINE NUMBEP FOR PAf,ING
TFJ W I’ -I LiNE wI DTH FOR TEXT UMAT RAN ONTRUT ( LESS CARl) NUMBER

LABEL AND SEQUENCE )
.ccT MT = NUMI-ER OF LINES READ IN CURRENT STATEMENT

~“ ATEP = NUMBER OC FATAL ERRORS ENCOUNTERED.
I W H E N  LA BLING SHOULD BEGIN AT NLBLS

• .IO MA S = P4UW ~j(k OF COMMAS AT I LEVEL OF PARENTHESIS NESTING.
. (~MMAS ARRAY OF 1—LEVEL COMMA LOCATIONS IN ARRAY Of INPUT DATA .

(“MMO N/FORT ,IcABEL (6),KENGTH,KFTN (14?0),KFIA (,

I T S  IS TI-C F G P T H A r ,  OUTPUT COMMON

= LABEL OF FORTRAN STATEMENT
;
~~GTH = LENGTH OF FOP TRAN STATEMENT

~~ ; TN = A RR AY OF FORTRAN CHARACTERS TO PLACE ON FORTRAN OUTPUT
(JNI 1.

—‘ I A ,  = LEF T JUSTIFI CAIION FLAG .

CflI,MON/ACCTNG/NIFTRN,NFOWT,N (o)~4MT,NT~’TIF.NTOTFk ,NTUICM.NMOOUL

i~ j c  i s  THE ACCOUNTING COMMON

- NUM’iF~ iF U MA T RA N  S T A T E M E N T S  PROCISSI D I~ , CU PIF NT MI)UULF
NUM~~El. I)F f 0 PAN S T A T F M ( N 1  S PPUCL5SFL) 1~i CURRENT Mfl()OLF
NUMHF .~ III COMMENT STATEMENTS RROCESSED IN CUPPENT M~ OULF .

= T U T A L  ~ UMR[R OF O MAI RAN S T A T E M E N T S  SO FAQ .
NIOTFP = TOTAL NUMBER OF FORTRAN STATEMENTS 50 F A R .
NT OTCM = TOTAL WUMBL I OF COMMENT STATEMENTS SO FAR .

~i’- OOUL = TOTAL NUMBER 0’ MODuLES PROCESSED.

C IIMMO N/CONSTN/LBK

TuT S IS THF COMMON FOP t. NSTANTS.

HOL LEI.~ITH BLAN K

rr~MMON ,STACK /MA~ STk,l NSIAl~,t ST ACK (~.,5O)

THIS I~ THE STAC~cING COMMO~

UAXST K = MAXIMUM NUMBER OF ENTRIES IN THE STACK
PISTAK = POINTER TO CURRENT POSITION IN “‘ACK
LcTACK(I.— ) STATEMENT TYPE
LSTACK (2,—I = LABE LI (POSITIVE INTEGER)
lcT*Cr (3,— J = LABEL2 (POSITIVI. INTEGE R)
LSTACM (~.,) LAB(L3 (POSITIVE INTEGER)

COM MON/RECNI//IRECLG (22) ,IREC (I5,22)

TMIS IS THE RECOGNITION COMMON

TPFCIG = LEN’~ - OF NON—BL ANK I~(Y PART OF STATEMENT
IcEC = API’S’ OF KEY WORDS ANt) KEY STATEMENT BEG !NNINC,S

6

~:‘ ~
- 

~~~~~ ~i I

—~~~~~~~

r.’MUON/STYPI / INOTYP (?2) • IGRP (~~~) • IPARCK (22)

IS IS THE STATEMENT TYPE COMMON

.1 FOR INL)ENT N PXI STATEMENT, —I FOR BRING IN THIS
STATEME NT. I) FOP LEAVE ALONE .

T ,
~RP = STATEMENT GROUP FOR ERROR CHECKING

1o ARC~ = 1 FOP CHECK PAWENTHESLS, 0 OTHERWISE .

“..1 ESL/NF~1TPY.Nw1RN

T .I~ COMMON SAVES THE NUMBI ,P ENIRI PO1i~I S AND PtTIJRP’IS

= NUMbER OF ENTRy POINTS
WUIR . = ,4LI MFIER O~

’ RETURNS

C(~MMON/TRAC1/NAL TER

T’-~IS IS THE COMMON TO PRINT OUT STATEMENT NUMBERS

“JAITE R = CONTPOLS OUTPUT OF STATEMENT NUMBERS WHICH SJEFER
HACK TO THE OMAT RAN COLIC .

CCIUM OFJ/WAPN IN/ IwARN

T”I’, I~ DiE. COMMON TO KEEP TRACK OF UNSTRUCTURED FURTPAN STATEMENT

= FLAG SET TO I WHE N I)NjTRUCTUREI) FORI PAM SIA TFM ENT IS
F ’JCOUNT (RED. OTHIPWISI EQUALS 0

—

~~~~ C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

T—I’ ~ I’ —I INVOKE COMMON

•~“Mf ‘~UMBF . 1 UNIQUE. BLOCK NL’~E ENCUUNTtRLD IN !NVOKF
S T ’ . ! I M L F , T S  IN IPsE. CURRENT MOLJIJLI.

N”RLOK L 1. f ii ~-~~‘APA CTLR BLOCK NAMES (IN ORDER 01 PNCOIJNTER)
THAT API ~~. Ttq (URWEN) MODUL E

= b CHAWA LTIW WOWK ARE A row GENERAL PUPPOSF USE .
NrIFI V THE NUMBE~ OF INVOKt. ST ATEMENTS ~~~ •ACH BLOCK

IN T.~t SAME ORD ER A 5 IN NOBLO~

I ~ 
- — 

~1- 
- - 

-- -‘-



APPENDIX A

STRUCTRAN—l MODULE FUNCTION DESCRIPTIONS

ACT1 is an accounting routine w!ich is called at the end of the proces-
sing of each statement. It adds to the cumulative totals of either COMMENT ,
DMATRAN , FORTRAN , ENTRY or RETURN statements for the current module.

ACT2 is a second accounting routine . At the end of a module , the number
of COMMEN T , DMATRAN , and FORTRAN statements accumulated by ACT1 accounting
is printed and then added to the totals so far for each type. If the number of
ENTRY or RETURNs is greater than 1, then those totals are also printed .

ACT3(IBEG) is the third accounting routine . If [BEG = 0 , the variables
in the accounting common are initialized to zero at the beginning of a
STRUCTRAN—l run. At the end of a run , IBEG is set to 1 and the total number
of statements is printed out in addition to the DMATRAN , FORT RAN ,and COMMENT
accumulated totals.

ASSIGN forms the statement , <NI><IVAR> <TEXT> in the common block
FORTRN where <NI> = (LABEL (K),K=l,5) , < IVAR> = ( I VAR(K) ,K=l ,6) and <TEXT>
= (LIST(K) ,K=l,L) where L = 1420 maximum.

BGSCAN Sets the common variable LINBEG to the number of the first non—
blank character of a statement.

CONT forms the statement , <NI> CONTINUE, in the output FORTRAN area.
<NI> is equivalent to (LABEL(K),K 1 ,5).

CONTRL is the principal STRUCTRAN—1 control routine. It directs the
proce ssing by statement and by module . When an end—of—f ile is reached , it
calls ENDER to terminate the run. CONTRL is called from the MAIN program.

CPTIME(TIME) belongs to the implementation dependent section. At imple-
mentation/installation time , installer must provide a call to a subroutine
which produces the elapsed CP time in the variable TIME. Alternatively, TIME
may be set to 0.0 if internal performance measuremen t data printed at the end
of the STRUCTRAN—l run is to be ignored . The output parameter , TIME , is
f loat ing point and is in seconds .

ENDER belongs to the implementation dependent section . It terminates
the run . Ai implementation/installation time , instal ler  must provide for  con-
sequences of termination of operation if that termination is to be other than
to stop. The variable NFATER contains the number of fatal errors , if any ,
found in error processing.

ERROR(N) prints an error message. The output parameter , N , is the error
number. The error messages are listed in Table 3.1 in the User ’s Manual .

8

- - _ _ _ _ _ _ _ _ _ _ _



FILC1IK(LUNIT) is a function which checks for either physical end—of—
f i le  or END in columns 1 through 3. If either is found , the returned function
value is 1; othe rwise , 0.

FULCON(LABEL) calls CONT to create a continue statement whose label is
LABEL , if LABEL(I) , I=l ,5 is non—blank .

GENASS(ILABEL ,IVAR ) forms a statement according to the following example:
ASSIGN 99995 to 199996 , where the array ILABEL contains the character string
99995 and the array IVAN contains the character string 199996.

GENGO(INDEX,IRVAR ,INVLAB) is a subroutine to generate a statement of the
form: GO TO <RETURN VAR> (<LIST OF INVOKE LABELS-) in the common block FORTRN.
The <LIST OF INVOKE LABELS> contains the label of the first statement following
each invocation of a particular BLOCK. The value of the <RETURN VAR> indicates
which of these labels in the list to go to. For example, in GO TO 199969,
(99994 ,99634 ,99429) if 199969 contained the value 99634 then transfer would be
to the statement with that  label . This would be the f i r s t  statement which
followed that INVOKE of the BLOCK.

GENLAB(N ,LTARC) converts the positive integer N into character string
format to be used as a label for the additional FORTRAN statements which are
created by STRUCTRAN—l. N is the integer label and LTARG is the character
label which is the output parameter.

GENVAR(N,IVAR) generates a 6—character integer variable name which starts
with I followed by positive integer N: e.g., 199968. The variable name is
stored in (IVAR(I),I=l ,6).

GETCRD is a subroutine which reads one card and checks for end of data.

GETINS belongs to the implementation dependent section. At implementa-
tion/installation time, installer can provide code to set options away from
default values pre—supplied here. This segment of code must be replaced if the
system implementor does not want the default options listed below. The twelve
basic options are read, at this point , from the first input card from unit 5.
The format of this card is 1215. Default values are supplied for each field
which is blank. The options are read in the following order:

Default

1. STRUCTRAN-l input unit (DMATRAN source) 5

2. STRUCTRAN—l listing unit (indented listing) 6

3. Translated FORTRAN unit (to be compiled) 2

4. STRUCTRAN—1 error diagnostics 6

5. Whether to automatically indent (0 — NO; 1 — YES) 1

6. The number of characters per indent level 3

7. Whether to indent comments (0 — NO; 1 — YES) 0

8. Whether to left—adjust all statements first (0 — NO; 1 YES) 1

9

_ _-  

.~j ’
T -

~~~~ .;


Default

9. Number of lines per page 57

10. Number of initial generated label 99998
11. Number of characters per line 132

12. Whether to move comments to the FORTRAN f i l e (0 = NO; 1 YES) 0

GETSTM is a routine which brings in one statement at a time . If the
statement is FORTRAN or DMATRAN , ITYPE is set to 1; if it is a COMMENT , ITYPE
becomes 0.

GOTO (LTARG) forms the statement , GOTO <TARGET> , in the common block FORTRN.
<TARGET> = (LTARG (K) ,K-l,5).

HOLLER(I) is called from IBALPR when an “H” is encountered in the array
LIST(I) . It determines whether the “H” indicates the presence of a Hollerith
st ring or if it is a character of a variable name . If a Hollerith field is
found , then I is incremented by the length of that field so that if a paren-
thesis is contained within the field , IBALPR will not assume it is the paren-
thesis for which it is searching.

IBALPR is a function which examines the common vector LIST starting at
LPOINT and returns the character position of the first balancing closing paren-
thesis; if none is found before LINEND, 0 is returned .

IFCASE(LA B,IVAR ,MSTRNG ,LIST ,LTARGT ,LPOINT) forms the statement <NI> IF
(<VAR> .NE .(<TEXT1>).AND.<VAR> .NE.(<TEXT2>).AND.... <VAR> .NE.(<TEXTN>)) GO TO
<TARGET> in the FORT RAN output area where :

< NI> = (LAB(I),I=l ,5)
< VAR> — (IVAR(I) , I=l,6)
< TEXT1> = (LIST(I),I=l ,Nl) whe re L I S T (N l + l) = 1H , or end of text

<TEXT2> = (LIST(I),I—Nl+2,N2) 8imilarly

no more than 50 of these

<TARGET > — (LTARCT(I) ,I—l ,5)

LPOINT is the character position of the start of LIST on the calling program.

IFEOF(LUN) belongs to the implementation dependent section. At implemen-
tation/installation time, installer must provide logically correct end—of—file
check operations if the code herein included is incompatible with that imple-
mented on his machine. This subroutine is called once for each statement , and
should return the value 0 unless an EOF is found . Alternatively, STRUCTRAN-1
makes a separate internal check of the first three columns of each input card .
STRUCTRAN—l operations cease if those columns contain END. This function should
return a value of 1 when EOF or END is found on LUN. Otherwise , a 0 is re-
turned . Typical call:

IF(IFEOF(LUN).EQ.1) THEN

10

• — —
.-

~~

~

. -
~~~



The input parameter, LUN , is the logical unit to be tested. If DMATR.AN
source on LUN is terminated by end file, this function must be adapted to
operate as described above. For example, the following code operates on CDC
machines:

IF (EOF ,LUN ) 10,20

10 IFEOF — 1

R ETURN

20 I F E O F — 0
RETU RN

END

If DMATRAN source on LUN is terminated with a card that contains the word
END starting in column 1, this routine is a dummy but must be included.

IFSO (LABEL ,L ,L1ST ,LTARG) f orms the statement <NI> IF (<TEXT>) GO TO
<TARGET> in the common block FORTRN:

< N I>  — (LABEL(K) ,K—l ,5)
<TEXT> — (LIST(K) ,K—1,L) including 1 closing parenthesis
<TARGET> — (LTARG(K) ,K-l ,5)

IGROUP (X) returns 0 for stack—error free, 1 for stack error , and 2 for
empty stack. It checks for top stack position in same group.

INDENT(NIN) indents a statement prior to STRUCTRAN—l output.

INDLEV computes indentation level .

INITAL is called at the beginning of a STRUCTRAN— 1 run to initialize com-
mon data.

ISEND is a function which is called by GETSTM to determine if the current
statement is an N0 statement , indicating termination of the current module.

IWITHN(X) function returns 0 for error—free , 1 for within group error ,
and 2 for empty stack .

KaIPTY(LABEL) is a function that returns 1 if (LABEL(I),1 l ,5) is all
blank ; otherwise, it returns a 0.

KI ASS classifies a non—comment statement according to type and, if neces-
sary , resets the common variable ITYPE. The following is a list of the various
classifications :

11

~~~~~~~~~~~~~~~~~~~~ ~ ~~~ -

— ~~ ‘~~~ -~~ --

I— -
~

ITYPE DATA RECOGNIZED ITYPE DATA RECOGNIZED

2 IF 11 DO UNTIL

3 ELSE 12 END UNTIL

4 END IF 13 THEN

5 DO WHILE 14 GOTO

6 END WHILE 15 INVOKE
7 CASE OF (16 BLOCK

8 CASE (17 END BLOCK

9 CASE ELSE 18 RETU RN
10 END CASE 19 ENTRY

KLASS1 first cal1~ IU. ASS to set the ITYPE. KLASS1 also allows the IF()
THEN structured syntax to be recognized , as well as the IF()GOTO
statement in standard FORTRAN . If it is the latter , the flag, IWARN , is set
to 1 so a warning message will be printed .

KCOMP(I,J) sets its function value to 1 if BCD character I is equal to
BCD character J; if not, it is set to 0. Typical call is:

IF (KCOMP(L ,M) .EQ . 1) THEN
The input parameters I and .1 are the characters to compare .

LADJUS left—adjusts the text of a statement .

MAIN is the driver program which calls CONTRL to initiate the processing
of a STRUCT RAN-l run.

MOVEWD (NWDS,IPOS ,IARRY ,1P0S1,IARRY 1) is a data transfer routine which
copies f rom IARRY(IPOS) to IARRY 1(IPOS 1) . The input parameters are:

NWDS — number of words to be moved
IPOS — index in tARRY at which to start copying

tARRY — array containing words to be copied

IPOS1 = index to IARRY1 at which to start putting copied data

IARRY1 — array to which data is copied

When tARRY does not equal IARRY1, either MOVEWD or MOVEWU may be used. How-
ever , when data is being copied from one position to another in the very same
array , then it is important to note the differences J.n these two routines.

When IPOS is greater than IPOS1, then MOVEWD is the appropr iate routine
to use. For example, a typical move might be CALL !4OVEWD(27 ,14 ,X ,3,X), which
would move 27 words beginning with x(l4) to x(3).

12

_ _

_ A
~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~~~:

~~ ~~~ ,



- -

MOVEWU (NWDS ,IPOS ,IARRY ,IPOS 1,IARRY1) is the correct routine to call
when IPOS1 is greater than IPOS and LARRY is equal to IARRY1, as in CALL
MOVEWU (27 ,3 ,X,l4 ,X). The reason for this distinction between the two similar
routines, MOVEWD and MOVEWU, is to prevent overwriting of a part of an array
and the consequent loss of data before that data can be copied to its new
location in the array .

NANOB(X) is a function which searches the array NOBLOK for a match with
the block name residing in <LIST> starting at <LPOINT>. It returns the index
in the array where found or 0 if not found.

NDSCAN sets the common variable LINEND to the number of the last non—
blank character of a statement .

NEWLAB(X) is a function which generates a positive integer label by
counting downward initially from the label which was stored in NLBLS in sub-
routine GETINS. Unless the default parameter is changed, NLBLS is first 99998;
and each time NEWLAB is called, 1 is subtracted from it.

NEWPAG controls paging on STRUCTRAN—l output before writing one line.

PUTFTN(KOMT) writes a st~~ement on FORTRAN output , making each line a
comment if KOMT is 1.

PUTIF causes printing of a whole statement on STRUCTRAN—l output by
calling PUTIFT after first checking if it is necessary to left—adjust the text.

PUTIFT prints a statement on STRUCTRAN-l output unit.

SPRYWD (NWDS,IVALUE ,IPOS ,IARRY) sprays one data value into the designated
part of an array . A typical call is:

CALL SPRYWD(27 ,lH ,3,X)
It would blank 27 cells starting at X (3) .  The input parameters are :

NWDS — number of words to be filled with IVALUE.

IVALUE — the value to be placed

IPOS — index in lARRY at which to start putting value

The output parameter is:

tARRY — the array to be filled

STIWCT is the main routine which translates DMATRAN to the FORTRAN source
code which is accepted by the FORTRAN compiler .

If a statement is not a comment , then KLASS1 is called which in turn
calls KLASS to reset the variable, ITYPE, if necessary , thereby delineating
var ious words , most of which are structured forms . (A list of the ITYPEs and
the correspond ing classifications may be found in the description of the
subroutine KLASS.)

13

• 
.— 

—--

,

~~~ -~ -

..‘—

When ITYPE is between 2 and 17 , the curr ent statement is moved to the
FORTRAN output unit and printed as a comment to improve unders tanding of the
code which is input to the FORTRAN compiler. Next the appropriate action is
implemented according to the ITYPE that has been delineated .

For example, if the statement is a DO WHILE (ITYPE 5), then the LSTACK
pointer , INSTAK, is incremented ; three new labels are generated and stored in
LSTACK at positions 2, 3, and 4; and ITYPE is entered at LSTACK(1,INSTAK).
The necessary source code is generated with the labels (accessible in LSTACK)
inserted in the proper places in the FORTRAN statement.

If there is another DMATRAN control type within the DO WHILE, LNSTA.K
will be incremented again and new labels stored in the newly available loca-
tions. These will be used and then INSTAK will be decremented so that when
the END WHILE (ITYPE — 6) is reached , the stack pointer will be accessing the
labels which were generated for the DO WHILE. Then the GO TO and CONTINUE
statements, required for the translation into FORTRAN at the end of a DO WHILE
iteration , will have the correct labels.

Should an END IF, END CASE, END UNTIL, END WHILE , or END BLOCK be missing,
then an error will be detected and a reference to an error message will be
pointed out.

VERBAT moves a statement directly into FORTRAN output area verbatim.

WARN is called by PUTIFT when the flag, IWARN , has been set to 1. It
then transfers the warning message, UNSTRUCTURED FORTRAN STATEMENT, into LIST
so it may be printed out on the STRUCTRAN—l output unit.

IWARN is set to 1 in subroutine STRUCT when it finds a FORTRAN GOTO
statement and in IQASS1 when an IF() GOTO construct has been established.
These two forms, being correct standard FORTRAN code, will be accepted and pro-
cessed correctly by the compiler. However, for uniformity , they should be
changed to the DMATRAN equivalent .

14

