y

AD=AD31 458

UNCLASSIFIED

GENERAL RESEARCH CORP SANTA BARBARA CALIF F/6 9/2

STRUCTURED PROGRAMMING TRANSLATORS. VOLUME Il. STRUCTRAN=1 USER==ETC(U)

AUG 76 D M ANDREWS: R A MELTON: R J URBAN F30602=75=C=0245
RADC=TR=T76=253=y0L =2 NL

|

—_—

ADA ()

RADC-TR-76-253, Vol II (of five)
Final Technical Report
August 1976

STRUCTURED PROGRAMMING TRANSLATORS
STRUCTRAN-1 User's Manual

General Research Corporation

Approved for public release;
distribution unlimited.

NOV 2 1978
JJLL-L UG

ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND

GRIFFISS AIR FORCE BASE, NEW YORK 13441

N A OO RO O S
Acdfilon 0L

hina

_ sbima

This report consists of the following volumes:

I - Final Report
II - STRUCTRAN-1 User's Manual
IIT - STRUCTRAN-1 System Design and Implementation Manual

IV - STRUCTRAN-2 User's Manual
V - STRUCTRAN-2 System Design and Implementation Manual

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and approved for publication.

APPROVED: ,(fg . GV'SP;thqé

DONALD L. MARK
Project Engineer

o IAHEAD), l~n

ROBERT D. KRUTZ, Col, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: }wa Koas-

JOHN P. HUSS
Acting Chief, Plans Office

Do not return this copy. Retain or destroy.

B Lo 23 23 2 222 I 2l rd rd 3L

MISSION
of
Rome Awr Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(c3) activities, and in the ¢ areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intslligence
data collection and handling, information system technology,

ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility. 3
3
Ut
W .’;lo" 'o"’ﬁ}
i :
[f
1754.101®

Ak g PN

-

S,

é STRUCTURED PROGRAMMING TRANSLATORS - b
f STRUCTRAN-1 User's Manual, '

S T

UNCLASSIFIED
SECURITY C)QS'FI(ATION OF THIS PAGE ‘Whan Date tnteted)
- READ INSTRUCTIONS
EPORT DOCUMENTATION PAGE . BEFCRE COMPLETING FORM
~ REPO MDER —-J2 GOVT ACCESSICN NO. T YA CATALAG e

2.

w TAuﬂucv Continue on reverse side If y end Identify by block numb

Final Xechnical Kepett .
*iy_LS_;_Jfrl_Lﬁ
A

B8 CONTHACTY O GRANT NUMD® 7 8

——

F30602-75-C~0245 |

. MING ORGANIZATION NAME AND ADDRESS w 2 AN FLFMENMT PROJECT, TaSY
A A NCRK INIT NUMBERS
General Research Corporation

P. 0. Box 3587 32010314
Santa Barbara CA 93105

11. CONTROLLING OFFICE NAME AND ADDRESS
Rome Air Development Center (ISIS) // Augwet 1976 l

Griffiss AFB NY 13441 - GES
21
T4 MONITORING AGENCY NAME & ADDRESS(//, Controlling Office) | 15. SECURITY CLASS. (of this report)
Same i UNCLASSIFIED
15a. DECLASSIFICATION DOWNGRADING
SCHEDULE
N/A
6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; disgribut ‘unlimited.

JApF-2991L| 1% =20152]

A

”t

17. DISTRIBUTICN STATEMENT (of the abstract entered in Block 20, Il different from Report)
Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: DMAAC Project Engineer:

Donald L. Mark (ISIS) Ms. Opal Power
19. KEY WORDS (Continue on reverse side if y and ty by block ber)

Structured Programming

Precompilers

Translators

Software Tools

The STRUCTRAN-1 User's Manual describes the various structured constructs
and statement syntax of DMATRAN, a structured extension to FORTRAN. It also
details the use of the STRUCTRAN-1 preprocessor, which translates DMATRAN
into pure FORTRAN. Procedures ior using either the machine independent or
Univac 1108 adapted versions of STRUCTRAN-1 are included. \

DD an'ss 1473 €oimion oF 1 nov 68 18 oBsOLETE UNCLASSIFIED

SECURITY CLASKIFICATION CF THIS PAGE (When Data Entered

#o2 754

e —————————

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

o

CONTENTS

SECTION PAGE
l
1 INTRODUCTION 1
2 DMATRAN CONSTRUCTS 2
2.1 IF...THEN...ELSE...END IF 2
2.2 DO WHILE...END WHILE 3
2.3 CASE OF,..CASE...CASE ELSE...END CASE 4
2.4 DO UNTIL...END UNTIL 6
2.5 BLOCK...END BLOCK and INVOKE 6
3 USING STRUCTRAN-1 11
3.1 STRUCTRAN~1 Input 11
3.2 STRUCTRAN-1 Indented Listing 12
3.3 FORTRAN Output 13
3.4 Default Parameter Modification 13
3.5 Error Messages 15
4 STRUCTRAN-1 Guide Lines 16
APPENDIX A STRUCTRAN-1 ON THE UNIVAC 1108 17
INDEX 20
_ACCESSION far L/
¥T18 White Section
00e Wit Sectes [
UNAKNOUNCED o D D L
JUSTIFICATION. .cort oo . ==Y Y PN
(IR 2]
" NOV 2 1978 |

DISTRISUTION /AVAILABILITY GODES
_Bist. AVAIL and/ar SPECIAL

111

D

ILLUSTRATIONS
NO. PAGE
2.1 STRUCTRAN-1 Indented Listing for IF...THEN...ELSE...END IF
Construct
2.2 DMATRAN DO WHILE...END WHILE Construct 4

(a) Unindented DMATRAN Input Text
(b) Indented STRUCTRAN-1 Listing

2.3 DMATRAN CASE OF...CASE...CASE ELSE...END CASE Construct 5
(a) DMATRAN Source Input
(b) STRUCTRAN-1 Indented Listing

2.4 DMATRAN DO UNTIL...END UNTIL Construct 6
(a) DMATRAN Source Input
(b) STRUCTRAN-1 Indented Listing

2.5 DMATRAN BLOCK...END BLOCK and INVOKE Constructs 10
(a) DMATRAN Source Input
(b) STRUCTRAN-1 Indented Listing

3.1 STRUCTRAN-1 Input 11
3.2 STRUCTRAN-1 Indented Listing 12
3.3 STRUCTRAN-1 Translated FORTRAN 14
iv
"

™~ P

1 INTRODUCTION

The techniques of Structured Programming are finding increasing applica-
tion in the computing community. Structured programs are, however, difficult
to write in programming languages that do not have the statement types neces-
sary to produce GOTO-free code. DMATRAN is a programming language that aug-
ments standard FORTRAN to permit its use as a basis for structured programming.
Five structured programming statement forms are provided for use in FORTRAN-
based software development. The STRUCTRAN-1 preprocessor translates DMATRAN
into standard FORTRAN. It accepts as input modules containing both DMATRAN
and FORTRAN statements, and produces as output indented pure~FORTRAN modules
logically equivalent to the input modules. Features of STRUCTRAN~1 include
automatic indentation on structured listings, comprehensive error processing
to warn of improper statement forms, and warnings to indicate the presence of
unstructured FORTRAN control statements. The STRUCTRAN~1 preprocessor is also
compatible with the output of STRUCTRAN-2, a system which converts unstructured
FORTRAN programs into structured form in DMATRAN.

The structured-programming statement forms implemented in STRUCTRAN-1
are described in Sec. 2, with typical examples of FORTRAN modules and corres-
ponding DMATRAN modules. The use of the computer-independent version of
STRUCTRAN-1 is discussed in Sec. 3; Sec. 3.5 elaborates on the STRUCTRAN-1
error diagnostics. Appendix A describes the use of STRUCTRAN-1 on the Univac
1108. STRUCTRAN-~1 guidelines are summarized in Sec. 4.

2 DMATRAN CONSTRUCTS

DMATRAN replaces FORTRAN control statements with the following control
statement constructs:

@ IF...THEN...ELSE...END IF--provides block structuring
of conditionally executable sequences of statments

Y DO WHILE...END WHILE--permits iteration of a code seg-
ment while a specified condition remains true

° CASE OF...CASE...CASE ELSE...END CASE--allows multiple
choices for selecting program action

° DO UNTIL...END UNTIL--permits iteration until a speci-
fied condition becomes true

° BLOCK<name>...END BLOCK (and corresponding INVOKE<NAME>

statement)--provide for top-down programming and in-
ternal subroutines

These statement forms can be intermixed with standard FORTRAN non-control

statements in the text stream which is grocessed by the STRUCTRAN-1 gre roces-
sor. DMATRAN statements are converted by the preprocessor to their FORTRAN

equivalents, and the resulting file can be compiled by the FORTRAN compiler in
the normal manner.

A structured GOTO-free program has a highly visible form which reveals
its intended function more readily than a FORTRAN program containing GOTO
statements,which has no apparent form. Well-defined blocks of code are exe-
cuted in a sequential, top-down manner. The possible sequences of blocks
which can be executed are well-defined. The following simple examples illus-

trate these concepts.

2.1 1IF...THEN...ELSE...END IF

The general form of the IF construct consists of three DMATRAN state-
ments:

IF(<logical-expression>) THEN
<block of statements>
ELSE
<block of statements>
END IF 3

where <logical-expression> is any legal FORTRAN logical expression. The
<logical-expression> is evaluated, and if it is true the statements following
the IF are executed until the ELSE is reached, where control passes to the

first statement after the END IF. The ELSE is optional. If the ELSE is

absent and the <logical-expression> is false, control passes to the first
statement after the END IF. If the ELSE is present and the <logical-expression>
is false, control passes to the statement following the ELSE so that the

statements after the ELSE are executed. The unindented source input for an
IF-construct is shown in Fig. 2.la. The indentation performed by STRUCTRAN-1
is indicated in Fig. 2.1b.

IF (INJ.GE.10) THEN IF (IN.GE+10) THEN
ouT=0 ¢ OUT=0
ELSE ELSE
QUT=0UT+] s OUT=0UTe]
END IF END IF
(a) (b)
DMATRAN Scurce Input STRUCTRAN~1 Indented Listing

Figure 2.1. DMATRAN IF...THEN...ELSE...END IF Construct

2.2 DO WHILE...END WHILE

The general form of the DO WHILE construct consists of two DMATRAN
statements:

DO WHILE(<logical-expression>)
<block of statements>
END WHILE

where <logical-expression> is any legal FORTRAN logical expression. The DO
WHILE construct represents an iteration in which execution occurs in the fol-
lowing manner:

(1) The value of <logical-expression> is found: if true, the state-
ments contained within the DO WHILE block are executed; if false,
control passes to the statement immediately following the END WHILE.

(2) If the statements within the DO WHILE block have been executed,
the value of <logical-expression> is checked again, with the same
consequences as in (1).

The iterative block in the DO WHILE...END WHILE may be executed zero or
more times. In general it is necessary to initialize the loop control variable

™ P

before entering the WHILE construct, and also necessary to modify it within
the WHILE construct. Figure 2.2a demonstrates the unindented source input for
a WHILE construct; the corresponding indented listing produced by STRUCTRAN-1
is shown in Fig. 2.2b.

1=1

DO WHILE (IN(I) «NELOUT oAND. 1.LE«50)
I=1+1

END WHILE

RETURN

END

(a) DMATRAN Source Input

1=}

DO WHILE (IN(1)«NE.OUT «AND. 1.LE.50)
o I=1e]

END WHILE

(b) STRUCTRAN-1 Indented Listing

Figure 2.2. DMATRAN DO WHILE...END WHILE Construct

The IF construct and the DO WHILE construct are sufficient to express
the control portion of any algorithm which can be implemented in FORTRAN.
However, for greatest convenience in implementation of software systems with
structured programming techniques, some additional statement forms are highly
desirable. The CASE construct is a selection structure and the DO UNTIL is an
iteration structure, while the BLOCK construct enhances modularity.

2.3 CASE OF...CASE...CASE ELSE...END CASE
The CASE statement provides a way to select which group of statements
will be executed. The general form of the CASE construct consists of the fol-
lowing DMATRAN statements:

CASE OF (<integer-expression>)

CASE (<1>)
<block of statements>

CASE (<j>)
<block of statements>

CASE ELSE
<block of statements>

END CASE
4

w

<i> and <j> represent integers of pocsitive value. They may be in any order,
and there is no limit to how many integers may be listed.

The <integer-expression> is computed, and if any of the specified inte-
gers in the CASE list are equal to the value of the expression, then the trans-
fer of control is to the statements which follow that particular CASE. If
there is no such CASE, and the CASE ELSE statement is present, then the block
of statements following the CASE ELSE is executed; otherwise, no block is exe-
cuted. If there are two CASE statements with the same CASE index, the first
occurring one is executed (if the CASE expression has that value). After the
block of statements selected has been executed, control transfers to the
statement after the END CASE.

Figure 2.3a is the unindented source input for a CASE construct. The
indented listing produced by STRUCTRAN~1 is shown in Fig. 2.3b.

CASE OF (IN)
CASE(10)
ouT=IN
CASE(15)
OUT=IN=3
CASE ELSE
OUT=IN*10
END CASE

RE TURN

END

(a) DMATRAN Source Input

CASE OF (IN)
CASE(10)

e OUT=IN
CASE(1S)

e OQOUT=IN=3
CASE ELSE

e OUT=IN*10
END CASE
RETURN

END

(b) STRUCTRAN-1 Indented Listing

Figure 2.3. DMATRAN CASE OF...CASE...CASE ELSE...END CASE Construct

-

2.4 DO UNTIL,..END UNTIL

The general form of the DO UNTIL construct consists of two DMATRAN
statements:

DO UNTIL(<logical-expression>)
<block of statements>

END UNTIL

The statements enclosed within the DO UNTIL and the END UNTIL are always exe-

cuted once. Then the <logical-expression> is evaluated and, if false, itera-

tion and evaluation of the expression continue until it is true. At that time
execution of the statements following the END UNTIL begins.

Figures 2.4a and 2.4b indicate the DMATRAN source input and correspond-
ing STRUCTRAN-1 indented listing for a DO UNTIL construct. After completion
of the DO UNTIL iteration, J will have the value 16 and I the value 11.

It is important to note that when using DO WHILE or DO UNTIL constructs, the
iteration variable must be initialized before entering the iteration and modi-
fied within the iteration.

I=1

J=6

DO UNTIL (1.GT.10)
QUT(J)=INCI)

I=1e¢1

J=Je1l

END UNTIL

RETURN

END

(a) DMATRAN Source Input

I=]

J=6

DO UNTIL (1.67.10)
o OUT(JI=IN(D)

¢ 1I=]e]
o Jm=Je]
END UNTIL

(b) STRUCTRAN-1 Indented Listing

Figure 2.4, DMATRAN DO UNTIL...END UNTIL Construct

2.5 BLOCK...END BLOCK AND INVOKE

The constructs described in the preceding paragraphs allow most program- ‘
ming tasks to be done in a well-structured manner. However, they do not always
permit top~down programming. To implement this method, one must be able to
refer to an action (such as "compute array element') before the code for it is

actually available.

s

= P

The usual method for doing this is calling subroutines. However, sub-
routines have certain disadvantages. The overhead involved in calling them is
often high. Additionally, those variables used in both a calling routine and
a called subroutine must either be placed in COMMON or passed as parameters.
those variables used in both a calling routine and a called subroutine must
either be placed in COMMON or passed as parameters.

In many cases, a subroutine uses only variables which are already in the
routine which calls it. Use of a subroutine internal to the calling routine
eliminates the need for any mechanism (such as parameters or COMMON blocks) for
referring to the variables required.

A facility for creating and using this type of subroutine has been added
to DMATRAN. This construct is called a BLOCK which may be defined as an
internal, parameterless procedure with all variables global. A BLOCK can be
called only from the individual routine (main program, subroutine, or function)
in which it is compiled; it cannot be called from an external routine, nor can
it be passed as a parameter to another routine. A BLOCK is simply a segment
of the code of the routine which contains it. The BLOCK is exercised only if
it is invoked.

The general form of a BLOCK construct consists of two DMATRAN statements:

BLOCK (<block-name>)
<statements>
END BLOCK

where <block-name> is any string of characters (e.g., COMPUTE.INDEX or PRINT-
CURRENT-STATUS). The name of a BLOCK may be arbitrarily long, so that the
name can have mnemonic significance. However, the first six characters must
be unique.

A BLOCK 1is called by an INVOKE statement, whose format is:
INVOKE (<block~name>)

When an INVOKE statement is executed, control is transferred to the first
statement in the BLOCK; when the END BLOCK is reached, control goes to the
statement following the INVOKE of the BLOCK. Though BLOCKs can be nested
(one BLOCK completely inside of another), no recursion is allowed in the
calling of BLOCKs (i.e., a BLOCK cannot invoke itself). Also, the name of a
BLOCK is known throughout the entire routine in which it is contained.

The following are examples of the two major uses of the BLOCK construct:

™ .

Example 1: Top-Down Programming

I=1
DO UNTIL (I .GT. N)
J=1
DO UNTIL (J .GT. N)
INVOKE (COMPUTE .ARRAY . ELEMENT)
J=J+1
END UNTIL
I=1+1
END UNTIL

and, at some place later in the same routine:

BLOCK (COMPUTE . ARRAY . ELEMENT)
code to compute A(I,J)
A(I,J) = value computed
J=J+1

END BLOCK

The use of a BLOCK construct enhances readability and understandability of the
program.

Example 2: Internal Subroutine

S, and S, 1in the following code represent two sets of statements.
The use of a BLO&K in Method 2 below eliminates the need for duplicating code.

Method 1:

IF(A) THEN
IF(C) THEN
o |
ELSE
s
END IF

2

ELSE
IF(D) THEN
S
ELSE
S
END IF
END IF

2

1

-

Method 2:

IF(A) THEN
IF(C) THEN
INVOKE (BLOCK-A)
ELSE
INVOKE (BLOCK-B)
END IF
ELSE
IF(D) THEN
INVOKE (BLOCK-B)
ELSE
INVOKE (BLOCK~A)
END IF
END IF

where the BLOCKs are defined as:
BLOCK (BLOCK-A)

5
END BLOCK

and
BLOCK (BLOCK-B)

Sy
END BLOCK

There is a maximum of 20 BLOCKs per module with a limit of 15 INVOKEs for any
one BLOCK. The overhead in time and space involved in using BLOCKs is less
than that of using subroutine calls.

Figure 2.5a indicates the DMATRAN source input for BLOCK constructs and
related INVOKE statements. The indented listing produced by STRUCTRAN-1 is
shown in Fig. 2.5b.

INVOKE (COMPUTE AREA)
INVOKE (PRINT AREA)
BLOCK (COMPUTE AREA)
AREA=LENGTH®*WIOTH
END BLOCK
BLOCK (PRINT AREA)
WRITE (6+1)AREA

} FORMAT (10X,129)
END BLOCK

(a) DMATRAN Source Input

INVOKE (COMPUTE AREA)
INVOKE (PRINT AREA)
BLOCK (COMPUTE AREA)
e AREASLENGTH®WIDTH
END BLOCK
BLOCK (PRINT AREA)
e WRITE (641)AREA

1 « FORMAT (]0X+120)
END BLOCK

(b) STRUCTRAN-1 Indented Listing

Figure 2.5. DMATRAN BLOCK...END BLOCK and INVOKE Comstructs

10

T e I A

STRUCTRAN-1 preprocessor.

3 USING STRUCTRAN-1

3.1 STRUCTRAN-1 INPUT

Figure 3.1 illustrates a DMATRAN source program ready for input to the

The DMATRAN source code has not been manually in-

dented in order to avoid the problem of updating indentation levels as the

program is modified.
meters (reference page 13).
parameter settings will be used.
contain "END" in columns 1 through 3.
in each STRUCTRAN-1 run.
format indicated in Fig. 3.1.

Appendix A.

The first card of the DMATRAN text sets optional para-
In this case a blank card indicates that default
The last card of the STRUCTRAN-1 input must
More than one module may be processed
Site dependent modifications may alter the input

The Univac 1108 requirements are described in

(aNeNel

ENO

SBLANK CARD>
SUBROUTINE EXAMPL (INFOsLENGTH)

JILLUSTRATION OF DMATRAN SYNTAX

1IF (INFOSLE«10 <ANDe LENGTH.GT+0) THEN
INFO=INFO10

ELSE

LFNGTH=S0

END IF

CASE OF (INFQOeb)

CASE (14)
LENGTHSLENGTH=INFO
CASE (17)

DO WHILE (INFO.LT.20)
DO UNTIL (LENGTH.LE.INFO)
INVOKE (COMPUTE LENGTH)
IF (LENGTH.GE.30) THEN
INVOKE (PRINT=RESULTS)
END IF

END UNTIL

INFO=INFQe*1

END WHILE

CASE ELSE

DO WHILE (LENGTH.GT.0)
INVOKE (COMPUTE LENGTM)
END WHILE

END CASE

BLOCK (PRINT=RESULTS)
WRITE (641) INFOJLENGTH
FORMAT (10X9s1S920X915)
END BLOCK

BLOCK (COMPUTE LENGTH)
LENGTH = LENGTH =10
END BLOCK

RF TURN

END

Figure 3.1. STRUCTRAN-1 Input

11

e ot o By
- .

EXAMPL]

EXAMPL2

EXAMPLI]

EXAMPL4

EXAMPLS

EXAMPLE

EXAMPL7

EXAMPLS

EXAMPLY

EXAMPLL0O
EXAMPL])
EXAMPL]?2
EXAMPL]]
EXAMPL 14
EXAMPL1S
EXAMPLILG6
EXAMPLLY
EXAMPLILS
EXAMPL1S
EXAMPL20
EXAMPL2]
EXAMPL22
EXAMPL2D
EXAMPLZ24
EXAMPL2S
EXAMPLZ26
EXAMPL27
EXAMPL 28
EXAMPL 2D
EXAMPL30
EXAMPL 3]
EXAMPL 32
EXAMPL 33
EXAMPL 3G
EXAMPL3S
EXAMPLIG

3.2 STRUCTRAN-1 INDENTED LISTING

Figure 3.2 illustrates the automatically indented DMATRAN listing which
resulted from processing the input shown in Fig. 3.1. The heading contains
information from the first card of the module being processed, as well as the
page number. The leftmost column of numbers refers to the successive cards
of the DMATRAN source deck. The nesting depth of each statement is indicated
in parentheses. Structural visibility is enhanced by connecting related
DMATRAN statements with vertical dots. The dots make it easier to trace paths
through the program, help identify the card number for a given line, and aid
in debugging improperly formed DMATRAN control structures. Structural errors
are indicated by error diagnostics (see page 15) in the DMATRAN listing.
Sequence information on the original DMATRAN source cards is included in the
STRUCTRAN-1 listing.

NOe (oe)=NESTING DEPTH SUBROUT INE EXAMPL (INFO.LENGTH) PAGE 1
1 SUBROUTINE EXAMPL (INFOSLENGTH) EXaMPL)
e C EXAMPL?
3 C ILLUSTRATION OF DMATRAN SYNTAX
© C EXAMPL 4
S IF (INFOCLE«1Q0 «ANDe LENGTH.GT.0)THEN EXAMPLS
6 (1) e INFO=INFO*10 EXAMP &
7 ELSE EXAMPL T
8 (1) e LENGTH=50 EXAMPLA
9 END IF EXAMPLO

10 CASE OF (INFQe6) FXamMpPL_10
11 CASE (14) EXAMPL 11
12 (1) e LENGTH=LENGTH=INFOC EXAMPL]2
13 CASE (1 7) EXAamMPL]3
14 (1) e DO WHILE (INFO.LT.20) EXAMPL 1«
15 « 2) e o DO UNTIL (LENGTHGLE.INFO) EXAMPL]S
16 (3) e o o INVOKE (COMPUTE LENGTH) EXAMPLI16
17 « 3) . . . IF (LENGTH.GE.30) THEN EXAMPIL17
18 (&) e o o o INVOKE (PRINT=RESULTS) EXAMPL 1K
19 «) . . . END IF EXAMPL |9
20 (?2) e o END UNTIL ExXaMPLZ0
21 (2) e o INFOZINFO*l Examp 21
22 (1) e END WHILE ExamMpPL2?
23 CASE ELSE EXAMPL 2?3
26 (1) e DO WHILE (LENGTH.GT.0) EXAMPL 24
25 (2) e o INVOKE (COMPUTE LENGTH) EXAMPL?S
26 (1) e END WHILE EXAMPL 26
27 END CASE EXAMPL?T
28 BLOCK (PRINT=RESULTS) EXAMP_?H
29 (1) e WRITE (691) INFOJLENGTH EXAMP(29
30 (1) e FORMAT (10X915+20X+15) EXAMPL_3N
31 END BLOCK EXxamMp 3]
32 BLOCK (COMPUTE LENGTH) EXAMPL 32
3 ¢ e LENGTH = LENGTH =10 EXamMpL 33
36 END BLICK EXAMPL 36
35 RETURN EXAMPL IS
k[END EXAMP| 36

Figure 3.2. STRUCTRAN-1 Input Indented Listing

12

3.3 FORTRAN OUTPUT

Figure 3.3 illustrates the translated FORTRAN version of Fig. 3.1 pro~
duced by the STRUCTRAN-1 preprocessor. This may be compiled and executed in
the normal manner. The translated FORTRAN is indented to reflect the struc-~
ture of the original DMATRAN program. The sequence information in columns 73
through 80 refers back to the card number of the original DMATRAN statement.
This aids in relating FORTRAN error diagnostics to the DMATRAN source code to
be modified. The DMATRAN source code (not the resultant FORTRAN) is the code
which should be modified.

3.4 DEFAULT PARAMETER MODIFICATION

The first card input to STRUCTRAN-1 can be used to modify any of the de-~
fault parameter settings which are not appropriate. A blank field on this
card causes the default for the corresponding parameter to be used. This card
is always read from FORTRAN unit 5, even though the first parameter may specify
that the DMATRAN source input unit is other than 5.

COLUMN PARAMETER DEFAULT
(Right Justified
Within Column)

1-5 STRUCTRAN-1 input unit 5
(DMATRAN source)

6-10 STRUCTRAN-1 listing unit 6
(indented listing)

11-15 Translated FORTRAN unit 2
(to be compiled)

16-20 STRUCTRAN-1 error diagnostics unit 6

21-25 Whether to perform automatic indentation for
DMATRAN indented listing (1 = YES; 0 = NO)

26--30 Characters per indent level

31-35 Whether to indent comments 0
(1 = YES; 0 = NO)

36-40 Whether to left-adjust all statements 1
(1 = YES; 0 = NO)

41-45 Lines per page 57

46-50 Initial generated label 99998

51-55 Characters per line on indented listing 132

56-60 Whether to include comments in FORTRAN file 0

(1 = YES; 0 = NO)

For example, a 4 in colummn 5 of the first input card will cause the DMATRAN
source to be read from unit 4, while all other parameters retain their default
values.

13

TG 8 TR < R
o gt ?&qlllllll;§§;¥U1W;“ e

SUBROUTINE EXAMPL (INFO+LENGTH)
IF (INFO'LE<10 +ANDe LENGTH.GT.0) GO TO 99998
GO TO 99997
99998 CONTINUE
INFO=INFO*10
GO TO 99996
99997 CONTINUE
LENGTH=50
99996 CONTINUE
199995=INF0O*6
IF (199995«NE.(14)) GO TO 99993

LENGTHsSLENGTH=INFO
GO T0 99994

99993 CONTINUE
IF (199995.NE.(17)) GO TO 99992

99991 IF (INFO.LT.20) GO TO 99990

GO TO 99989
99990 CONTINUE
G0 TO 99988
99987 IF (LENGTHe.LE.INFO) GO TO 99986
99988 CONTINUE
ASSIGN 99983 TO 199984
GO TO 99984
99983 CONTINUE
IF (LENGTH,GE.30) GO TO 99982
GO TO 99981
99982 CONTINUE
ASSIGN 99979 TO 199980
GO TO 99980
99979 CONT INUE
99981 CONTINUE
GO TO 99987
99986 CCONTINUE
99985 CONTINUE
INFO=INFO+1
GO TO 99991
99989 CONTINUE
GO TO 99994

99992 CONTINUE
99978 IF (LENGTH.GT.0) GO TO 99977

GO TO 99976

99977 CONTINUE
ASSIGN 99975 TO 199984

GO TO 99984
9997S CONTINUE
GO TO 99978
99976 CONTINUE
99994 CONTINUE
6O TO 9997«

99980 CONTINUE
WRITE (691) INFOSLENGTH

1 FORMAT (10Xe15+20X915)
GO TO 199980 ,(99979)
99974 CONTINUE
GO YO 99973
99984 CONTINUVE
LENGTH = LENCTH =10
GO T0 199984 ,(99983999975)

99973 CONTINUE

RETURN
END
Figure 3.3. STRUCTRAN-1 Translated FORTRAN
14
» - s

1e
Se
Se
Se
68
3
7
8
on
10#
11+
12
13
13
13
l4®
14
14#
15
15+
15
16#
16#
16#
17
17+
17
18+
18+
18
19+
20
20%
20+
21
22+
22+
23e
23
24%
24
240
25¢
25
25
26¢
26%
27
28
28
29
30e
3le
31e
32e
32e
33e
40
34w
3se
36

3.5 ERROR MESSAGES

Error messages generated by STRUCTRAN-1 are identified by number only
and are output to the same unit as the structured listing (default option is
6). For example, the following error message might be printed: "ERROR 321."
An explanation of the meaning of STRUCTRAN-1 error messages is presented in

Table 3.1.
TABLE 3.1
STRUCTRAN-1 ERROR MESSAGE DEFINITIONS
Error Number Message Interpretation
1 Non-comment with punch in Col. 6 without a preceding state-
ment card
2 END IF before IF THEN or ELSE encountered
3 END WHILE before DO WHILE encountered
6 END CASE before CASE OF, CASE, or CASE ELSE encountered
7 END UNTIL before DO UNTIL encountered
9 ELSE after ELSE
11 CASE after CASE ELSE
12 CASE ELSE after CASE ELSE
13 ELSE before IF encountered
14 CASE before CASE OF encountered
15 Structural/syntactic error in program, cause unknown *
17 CASE ELSE before CASE OF or CASE encountered
19 Character string too long in CASE statement
100 Program END without balancing blocks for each statement
321 Improperly nested DMATRAN statements
999 Cause unknown. Unrecognizable statement.

*This occurs when the indentation level computed by STRUCTRAN-1 would become
negative if the error was not detected. Possible causes are too many ELSE,
END IF, END WHILE, END UNTIL, or END CASE statements.

15

4 STRUCTRAN-1 GUIDELINES

The following guidelines should be kept in mind when using STRUCTRAN-1:

1.

2,

10.

11.

12.

A maximum of 20 cards per statement.

STRUCTRAN-1 generates FORTRAN GOTO statements and statement labels.
Statement labels in the DMATRAN input source (FORMAT statements) should
not duplicate the labels appearing in the translated FORTRAN.

When the DO UNTIL...END UNTIL construct is used for iteration, it
is important to note that the statements contained within the
construct will be executed once before the logical expression is
evaluated.

All two word DMATRAN directives may be written as two separate
words or merged into one; e.g., DOUNTIL or DO UNT.IL.

A maximum of 20 BLOCKs per module.
A 1limit of 15 INVOKEs for any one BLOCK.

INVOKE for the BLOCK must occur before the BLOCK code (suggest
BLOCKs be grouped at the end of the routine).

First six characters of the name of a BLOCK must be unique within
a module.

Maximum nesting level for indentation of FORTRAN output is 10.

The value of <integer-expression> in CASE statements must be
positive.

BLOCK constructs cannot contain labeled statements which are
referred to outside of the BLOCK.

A BLOCK cannot be entered by falling into it (as the next
executable statement).

16

APPENDIX A
STRUCTRAN-1 ON THE UNIVAC 1108

Various modifications to the STRUCTRAN-1 preprocessor have been made for
ease of use in the UNIVAC 1108 environment. DMATRAN programs are input to the
preprocessor by providing them as data in the run stream or by using the @ADD
capability to add program library elements to the run stream. When used with
a program library, the indented DMATRAN listing serves as the reference from
which corrections to program library elements can be made. The use of DMATRAN
with card input will be described first, followed by suggested procedures for
use with a program library.

A.1 CARD INPUT

The STRUCTRAN-1 preprocessor accepts run stream data as input and out-
puts an indented source listing and invokes the FORTRAN V compiler to compile

the translated FORTRAN code. Each and every input routine being processed by
STRUCTRAN-1 must be proceeded by a DMATRAN control card containing the name

desired for the corresponding FORTRAN symbolic element. A t ical de
setup for compiling and executing DMATRAN source cggds follgﬁs:

Assign permanent file containing STRUCTRAN-1 and use PF1l
as its short name
@XQT PF1.STRUCTRAN1L (Executive card--blank if default parameters)
MAIN (DMATRAN control card)
DMATRAN source cards for main program
EXAMPL (DMATRAN control card)
DMATRAN source cards for subroutine EXAMPL
@XQT
Data for MAIN and EXAMPL
@FIN

A DMATRAN control card is required as the first card of the DMATRAN in-
put deck and after each FORTRAN END statement which is not the last statement
of the input deck. The above example generates DMATRAN and FORTRAN source
1istings. Additionally, it creates FORTRAN elements MAIN and FXAMPL and
relocatable elements MAIN and EXAMPL. It is recommended that the DMATRAN
control cards provide element names which correspond to the subroutine names
of the DMATRAN modules. Since the DMATRAN control card information is used
for headings in the DMATRAN listing, this naming procedure assists in
maintaining an alphabetically sorted listing of source routines.

17

A.2 PROGRAM LIBRARY

The @ADD capability allows larger DMATRAN programs to be conveniently
implemented and maintained on a program library. Extensive capabilities of
the ELT processor are then available for correcting/modifying the DMATRAN
source code. The following run stream will create a program library for MAIN
and EXAMPL:

Assign permanent files
@ELT, I MAIN/STR
MAIN (DMATRAN control card)
DMATRAN source text for main program
@ELT,I EXAMPL/STR
EXAMPL (DMATRAN control card)
DMATRAN source text for subroutine EXAMPL
@XQT PF1l.STRUCTRAN1 (Execute STRUCTRAN-1)
@ADD MAIN/STR
@ADD EXAMPL/STR
@COPY TPFS$.,PF2.
@xQT (Execute user's program)
Data for MAIN and EXAMPL
@FIN
This run stream creates a program file in TPF$ containing DMATRAN source,
FORTRAN source, and relocatable elements. The first card of each DMATRAN
source element is a DMATRAN control card. FORTRAN and DMATRAN source elements
cannot have the same element and version names and reside on the same program
file. It is convenient to give all DMATRAN source elements a version name of
STR to overcome this difficulty. The program library in TPF$ is saved by
copying it to PF2. A DMATRAN listing is also produced by the above run stream.
This listing should be saved so that it can be used to make modifications to
the program library elements. The leftmost column of numbers on the listing

are directly usable for making ELT modifications. This listing is more conve-
nient to refer to than an ELT listing because it is indented.

NOTE: PF2. in the above example will contain the symbolic elements
MAIN/STR and EXAMPL and the relocatable elements MAIN and
EXAMPL.

Once a DMATRAN program library has been created and saved, the follow-
ing run stream temporarily updates it and tests the updates.

Assign permanent files

@COPY PF2.,TPF$.

18

@ELT,U MAIN/STR

Main program corrections

@ELT,U EXAMPL/STR
Subroutine EXAMPL corrections

@XQT PF1.STRUCTRAN1
@ADD MAIN/STR
@ADD A/STR
@XQT
Data for MAIN and EXAMPL

@FIN

This run stream results in an updated DMATRAN program library in TPF$. After
the updates have been [found to be correct, the DMATRAN program file can bhe
permanently updated by copying TPF$ to PF2. The DMATRAN listing of the cor-
rected elements should be saved fot making further corrections.

19

-

5 ama

Automatic Indentation

Blank Card

BLOCK

BLOCK, Examples

BLOCKs, Maximum Number of
<block-name>

Card, Blank

Card, Control

Card, Input

Card, Maximum Nymber per Statement
CASE

CASE ELSE

CASE, Examples of
Characters, per Indent Level
Characters, per Line
COMMENTs

Control Card

Default Parameters
Depth, Nesting
Diagnostics, Error

DO UNTIL

DO UNTIL, Examples of
DO WHILE

DO WHILE, Examples of

ELSE
END, in Columns 1,2,3
Error Messages

FORTRAN Extensions

IF()THEN

IF()THEN, Examples of
Indentation

Indentation of Comments
Indentation, FORTRAN
INVOKE

INVOKE, Examples of
INVOKE, Number of

INDEX

20

Page
1,6,12,13

11,13
2,6-10
8-10
9,16
6,16

11,13
13,17-18

INDEX (Contd.)

Label, Initial Generation of

Left Adjust
Level, Nesting
Lines per Page
Listing, FORTRAN

Listing, STRUCTRAN-1
Listing Unit, STRUCTRAN-1

Nesting Depth
Number of BLOCKs

Number of INVOKEs

Parameters, Default

Program Library

STRUCTRAN-1
STRUCTRAN-2

Structured Programming

Top-Down Programming

21

Page

13
13
12
13
13,14

13
12

9,16
9,16

