
[P *o A031 “55 GENERAL RESEARCH CORD SANTA BARBARA CALIF r~s 911STRUCTURED DROSRAMMPIG TRANSLATORS. VOLUME II. STRUCTRAN—t USER——ETC (u)
AUS 76 0 N ANDREIS. R A MELTON. N .1 URBAN 130602—75—c—o2’ss

UNCLASSIFIED RADC—tR—fl—fl3evOI..—a ML

.Ai4L
t9I! :hIrniI___

END
DATE

FILMED

_ _ _ a


~~~ RADC-TR-76-253, Vol II (of five)
~~~~~~~~ Final Technical Report 

1
~~p_1,_

~~~ August 1976

STRUCTURED PROGRA*IING TRANSLATORS
STRUCTR.A~ —l User ‘a Manual

General Research Corporation

Approved for public release;
distribution unlimited.

D D C

ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND

BRIFFISS AIR FORCE BASE, NEW YORK 13441

- 
_ _ _ _ _ _ _ _ _  

-



This report consist, of the following volumes :

I — Final Report
II - STRUCTRA1~—l User’s ManualIII — STRUCTRAN—l System Design and Implementation Manual
IV - STRUCTRAN—2 User’s Manual
V - STRUCTRAN— 2 System Design and Implementation Manual

This report has been reviewed by the RADC Information Office (01)
and is releasable to the National Technical Information Service (NTIS) .
At NTIS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and approved for publication.

APPROVED: 
/ i 4gZ~’

,.*’ ~~~~~~~~
DONALD L • MARK
Proj ect Engineer

APPROVED : ~~~~~ ~~~ROBERT D. XRUTZ, Col USAP
Chief , Information Sciences Division

~~~2 I ~~~~~~FOR THE COtO(ANDER : 
4
~~~~~~IlPILøI~~t/...#. ~~~~~~~~~~~~~~

JORN P. BUSS
Acting Chief , Plan. Office

Do not ~~turn this copy . R.tain or destroy .

- ~~~



MISSION
of

Rome Air Development Center

RA1~ plans and conducts research, exploratory and advanced
develop aent pr ograsw in ccemand, control , and comeunications
(C3)  activities, and in the C3 areas of inf oriitat icn sciences
and intelligence. The principal technical mission area s
are ccemwiicatioras, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handl ing, inf ormation system technology,
ionospheri c propagation, solid state sciences, aicrosf sve
p hysics and electronic reliability, maintainability and
ccmpatibility. 

—-——. . - -.- . - -



__________________

_____ 1JN~L&SSIF1ED
3E CURl I~~ C ~ • F I ~

- 
~ 1?ON or rwu ~ ~ 5O~ *~~.., fl~ .. - n~ r r . j )

(~~~~REPORT DOOJMENTA11ON PAGE ~~~~~~~~~~ ~~~~~~~

~~~~~~~~~~~~ 

~~~~~~

O ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

j~~J1 IL 1 .d  ~~ KiT iI..~ -- ~~~~~~~~~ ~
1.- .- - r~fl ~~~

.( ~~~ STRUCTURED FROG R AMMING TRAN SLATORS ’ V~) I : J p, -C _ IE.~ Fina1/echnica1,*ep~~t. ~sTRucTiW~-l User ’ s ~janual .. 
- - J ~ay ~~~ ___________—

-— _____ ~~~~~~~~~ S S S N

L —~~~~~~~~~~~TT~~~~~~~~_ _ _ _ _  _________________
7. AUIPQRL&L S CG~~~ N A C ~ ~~~~ G R A N T  ~~~~~~~

~~~~ ~~~~~~~ 
F~Of~ 2-75-C-,~245 I —

~~~R. J.
/
Urb4fl.......___~

_1 
- 

-I PER ORMING O R G A N I Z A T I O N  NAM E AND ADDRESS I.  - 
r~ ruEp -~ I’k . : F . . T Y~~~~ .’

~II N IMOF N’
General Research Corporation
P. 0. Box 3587 32010314
Santa Barbara CA 93105 ____________________________

II. CONTROLLING OFFICE N A M E  AN D ADDRESS

Rowe Air Development Center (ISIS) Aug..t
Grif f iss AFE NY 13441 GE S

_____________________________________________________________ 21
14 MONITOR ING A G E N C Y  4A M E A A DDRESS4II If.,... CantroIt n4 Off .~•) IS. SECURITY CLASS.  (of thE. ~Ap.,,I)

Same UNCLASSIFIED

- IS.. DECI..ASSI cICATION DOWNGRADING

_____________________________________________ N/A
6, DISTRISUTION S’V A TEM ENT (of S R I  R.po,tf)

Approved for public release; dis ribut unlimited.

17. OISTR,SUTICN STATEMENT (of SR. ab.tr.c I .05.5.0 to Block 30. at dSt?.,.n I two.. R.9051)

Same

A . I UPPLEMINT ARY NOTE S
RADC Project Engineer: DI4AAC Project Engineer:
Donald L. Mark (ISIS) Ms. Opal Paver

IA. KEY WOR OS (Co.tf.su. 1 er.vi • .td. If ..e....v a,d gOonSt fp by block ,. .b r)

Structured Progr~~~ ing
Precompi lers
Translators
Sof tware Tools

ASSIRAC T (COnlI~~.S ,sw.... .id. SI nsc•11 y o.d lOentSfr by bloc n.o.b i)

The STRUCTRAN— 1 User ’s Manual describes the various structured constructs
and state men t syntax of DMATRAN , a structured extension to FORTRAN . I~ also
de tails the use of the STRUCTRAN—1 preprocessor, which translates DMATRJIN
into pure FORTRAN. Procedur~. for uaing either the machine independent or
Univac 1108 adapted versions of STNUCTRAN— l are included.

DO ~~~~~~~ 1473 EDI’,ON O’ ’ WOV SS I$ OS$OLETE UNCLASSIFIED
S E C U R I t Y  C L A ’ .Ir I C A T I ~ ’ E. C ’  1,415 PAG!  (SS~..n ~~~~ En....,

.
4 -

, 

_ _ _

~~~~~~~~~~~~~~~~


UNCLA SSIFIED
SECURIT~ C LA S S I F I C A T I O N OF 1441$ PAGE(Wh .n 0.5. Enist.d)

UNCLASSIFIED
SECURITY CLA SI IF ICATIOPS or THIS PAGE(*R.n Data Enwo,.d)

~~~~~~~~~~~~~~~~

_  IJ1~~~
.
:~~ 

_  

- : ‘



CONTENTS

SECTION _______________________________________________________ PAGE

INTRODUCTION 1

2 DMATRAN CONSTRUCTS 2

2.1 IF..  .THEN . . .ELSE. . .END IF 2
2.2 DO WHI LE.. .END WHILE 3
2.3 CASE OF. ..CASE...CASE ELSE ...END CASE 4
2.4 DO UNTIL.. .END UNTIL 6
2.5 BLOCK.. .END BLOCK and INVOKE 6

3 USING STRUCTRAN—1 11

3.1 STRUCTRAN—l Input 11
3.2 STRUCTRAN—1 Indented Listing 12
3.3 FORTRAN Output 13
3.4 Default Parameter Modification 13
3.5 Error Messages 15

4 STRUCTRAN— 1 Guide Lines 16

APPENDIX A STRUCrRAN-1 ON THE UNIVAC 1108 17

INDEX 20

_ _ _ _ _ _ _ _ _  /
PTI$ 5~sj $~ t~~ ~~

kfl~~~ m ~J ‘~~~ ‘
~~A SSO ~I~CU LI L...) ~~~

I! 

- U NOV 2 ~9?8
COI~

~ AVA I L  an~ T~J[,~:L1 L1 ~D

iii

_ _ _ _



ILLUSTRAT IONS

NO. PAGE

2.1 STRUCTRAN— 1 Indented Listing for IF .. .THEN . ..ELSE.. .END IF
Construct 3

2.2 DMATRAN DO WHILE. . . END WHILE Construct 4
(a) Unindented DMATRAN Input Text
(b) Indented STRUCTRAN—1 Listing

2 .3  DMATRAN CASE OF.. .CASE.. .CA SE ELSE.. .END CASE Construct 5
(a) DMATRAN Source Input
(b) STRUCTRAN—1 Indented Listing

2.4 DMATRAN DO UNTIL.. • END UNTIL Construct 6
(a) DMATRAN Source Input
(b) STRUCTRAN— 1 Indented Listing

2.5 DMATRAN BLOCK. . .END BLOCK and INVOKE Constructs 10
(a) DMATRAN Source Input
(b) STRUCTRAN—1 Indented Listing

3.1 STRUCTRAN— 1 Input 11

3.2 STRUCTRAN—1 Indented Listing 12

3.3 STRUCTRAN— 1 Translated FORT RAN 14

iv 

..

~~~~

-

~~~~~~~~~

-

~~~~

-—-- --

~

1 INTRODUCTION

The techniques of Structured Programming are finding increasing applica-
tion in the computing community. Structured programs are, however, difficult
to wri te in programming languages that do not have the statement types neces-
sary to produce GOTO—free code. DMATRAN is a programming language that aug-
ments standard FORTRAN to permit its use as a basis for structured programming.
Five structured programming statement forms are provided for use in FORTRAN—
based software development. The STRIiCTRAN—1. preprocessor translates DMATRAN
into standard FORTRAN . It accepts as input modules containing both DMATRAN
and FORTRAN statements, and produces as output indented pure—FORTRAN modules
logically equivalent to the input modules. Features of STRUCTRAN~-l include
automatic indentation on structured listings, comprehensive error processing
to warn of improper statement forms, and warnings to indicate the presence of
unstructured FORTRAN control statements. The STRUCTRAN—l preprocessor is also
compatible with the output of STRUCTRAN—2, a system which converts unstructured
FORTRAN programs into structured form in DMATRAN .

The structured—programming statement forms implemented in STRUCTRAN—l
are described in Sec . 2 , with typical examples of FORTRAN modules and corres-
ponding DMATRAN modules. The use of the computer—independent version of
STRUCTRAN— 1 is discussed in Sec. 3; Sec. 3.5 elaborates on the STRUCTRAN—l
error diagnostics. Appendix A describes the use of STRUCTRAN—1 on the Univac
1108. STRUCTRAN—l guidelines are summarized in Sec. 4.

1

2 DMATRAN CONSTRUCTS

DMATRAN replaces FORTRAN control statements with the following control
statement constructs

• IF. . . THEN.. .ELSE. . .END IF——provides block structuring
of conditionally executable sequences of statments

• DO WHILE.. .END WHILE——permits iteration of a code seg-
ment while a specified condition remains true

• CASE OF.. .CASE.. .CASE ELSE. . .END CASE——allows multiple
choices for selecting program action

• DO UNTIL. . .END UNTIL——permits iteration until a speci-
fied condition becomes true

• BLOCK<aaxne> . . .END BLOCK (and corresponding INVOKE<NAME>
statement)——provide for top—down programming and in-
ternal subroutines

These statement forms can be intermixed with standard FORTRAN non—control
statements in the text stream which is processed by the STRUCTRAN—1 preproces-
sor. DMATRAN statements are converted by the preprocessor to their FORTRAN
equivalents , and the resulting file can be compiled by the FORTRAN compiler in
the normal manner.

A structured GOTO—free program has a highly visible form which reveals
its intended function more readily than a FORTRAN program containing GOTO
statements,which has no apparent form . Well—defined blocks of code are exe-
cuted in a sequential, top—down manner. The possible sequences of blocks
which can be executed are well—defined . The following simple examples illus-
trate these concepts.

2.1 IF.. .TNEN.. .ELSE.. .END IF

The general form of the IF construct consists of three DMATRAN state-
ments:

IF(<logical—expression>) THEN

<block of statements>

ELSE
<block of statements>

END IF

where <logical—expression> is any legal FORTRAN logical expression. The
<logical—expression > is evaluated , and if it is true the statements following
the I? are executed until the ELSE is reached, where control passes to the
first statement after the END IF. The ELSE is optional . If the ELSE is
absent and the <logical—expression> is false , control passes to the first
statement after the END IF. If the ELSE is present and the <logical—expression>
is false , control passes to the statement following the ELSE so that the

2

statements after the ELSE are executed . The unindented source input for an
IF—construct is shown in Fig. 2.la. The indentation performed by STRUCTRAN—l
is indicated in Fig. 2.lb.

IF (IN.G(.1O) THEN IF (1N.GE.1O) THEN
OuT O • OUT~ Q
ELSE ELSE
OuT OUT~ 1 • OUT OUT•1
E’~.O 1F ENU iF

(a) (b)

DMATRAN Source Input STRUCTRAN—l Indented Listing

Figure 2.1. DMATRAN IF.. .THEN. . .ELSE. . .END IF Construct

2.2 DO WHILE. . . END WHILE

The general form of the DO WHILE construct consists of two DMATRAN
statements:

DO WHILE(<logical—expres sion>)

<block of statements>

END WHILE

where <logical—expression> is any legal FORTRAN logical expression. The DO
WHILE construct represents an Iteration In which execution occurs in the fol-
lowing manner :

(1) The value of <logical—expression> is found : if true, the state-
ments contained within the DO WHILE block are executed ; if false,
control passes to the statement immediately following the END WHILE.

(2) If the statements within the DO WHILE block have been executed ,
the value of <logical—expression> is checked again, with the same
consequences as in (1).

The iterative block in the DO WHILE.. .END WHILE may be executed zero or
more times. In general it is necessary to initialize the loop control variable

3

_ _

before entering the WHILE construct, and also necessary to modify it within
the WHILE construct. Figure 2.2a demonstrates the unindented source input for
a WHILE construct; the corresponding indented listing produced by STRUCTRAN—l
is shown in Fig. 2.2b.

1 1
DO WHILE (IN (I).NE.OUT •AND. I.Lf.50)

END WHILE
I URN

END

(a) DMATRAN Source Input

00 wHILE IN (I)•’E.OUT •ANU. I.LE.50)
• 121.1
END WHILE

(b) STRUCTRAN—l Indented Listing

Figure 2 . 2 . DMATRAN DO WUILE...END WHILE Construct

The IF const ruct and the DO WHILE construct are sufficient to express
the control portion of any algorithm which can be implemented in FORTRAN .
However , for greatest convenience in implementation of software systems with
structured programming techniques, some additional statement forms are highly
desirable. The CASE construct is a selection structure and the DO UNTIL is an
Iteration structure , while the BLOCK construct enhances modularity.

2.3 CASE OF.. .CASE.. .CASE ELSE.. .END CASE

The CASE statement provides a way to select which group of statements
will be executed. The general form of the CASE construct consists of the fol-
lowing DMATRAN statements:

CASE OF (<Integer—expression>)

CASE(ci>)

<block of statements>

CASE(<j>)

<block of statements>

CASE ELSE
<block of statements>

END CASE

4

_ _ _ ~1

<i> and <j> represent integers of positive value. They may be in any order ,
and there is no limit to how many Integers may be listed .

The <integer—expression> is computed , and if any of the specified inte-
gers in the CASE list are equal to the value of the expression , then the trans-
fer of control -is to the statements which follow that particular CASE. If
there is no such CASE, and the CASE ELSE statement is present , then the block
of statements following the CASE ELSE is executed ; otherwise, no block is exe-
cuted . ~f there are two CASE statements with the same CASE index, the first
occurring one is executed (if the CASE expression has that value). After the
block of statements selected has been executed , control transfers to the
statement after the END CASE.

Figure 2.3a is the unindented source input for a CASE construct. The
indented listing produced by STRUCTRAN—l is shown in Fig . 2.3b .

Cf~SE OF (I N)
CASE (10)
0111 1N
CASE (IS)
UIJI=IN—3
C A SE ELSE
Oh T = IN. 10
Et’~D CA SE
kE TURN
E P~D

(a) DMATRAN Source Input

CASE OF (IN)
CASE (1 0)
• OUT*IN
CA SE (15)
• OUT2IN—3
CASE ELSE
• OUT=IN .10
END CASE
RETURN
END

(b) STRU~TRAN—l Indented Listing

Figure 2.3. DMATRAN CASE OF . . .CASE. . .CASE ELSE...END CASE Construct

S

i t
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

‘H- ~~-~
.

2.4 DO UNTIL.. .END UNTIL

The general form of the DO UNTIL construct consists of two DMATRAN
statements:

DO UNTIL (<logical—expression>)

<block of statements>

END UNTIL

The statements enclosed within the DO UNTIL and the END UNTIL are always exe-
cuted once. Then the <logical—expression> is evaluated and, if false, itera-
tion and evaluation of the expression continue until it is true . At that time
execution of the statements following the END UNTIL begins.

Figures 2.4a and 2.4b indicate the DMATRAN source input and correspond-
ing STRUCTRAN—l indented listing for a DO UNTIL construct. After completion
of the DO UNTIL iteration, J will have the value 16 and I the value 11.
It is important to note that when using DO WHILE or DO UNTIL constructs , the
iteration variable must be initialized before entering the iteration and modi-
fied within the Iteration.

I~~1
J=6
DO UNTIL (1.61.10)
0hJT(J)~~IN(I)1=1.1
JzJ. 1
END UNTIL

I URN
END

(a) DMATRAN Source Input

I~~1

DO UNTIL (1.61.10)
• OUT (J).IN(1)

I~~1.1
• J•J•1
END UNTIL

(b) STRUCTRAN—l Indented Listing

Figure 2.4. DMATRAN DO UNTIL...END UNTIL Construct

2.5 BLOCK. . . END BLOCK AND INVOKE

The constructs described in the preceding paragraphs allow most program-
ming tasks to be done in a well—structured manner . However , they do not always
permit top—down programming. To implement this method, one must be able to
ref er to an action (such as “compute array element ”) before the code for it is
actually available.

6

r —

The usual method for doing this is calling subroutines. However, sub-
routines have certain disadvantages. The overhead involved in calling them is
often high. Additionally, those variables used in both a calling routine and
a called subroutine must either be placed in COMMON or passed as parameters .
those variables used in both a calling routine and a called subroutine must
either be placed in COMMON or passed as parameters.

In many cases, a subroutine uses only variables which are already in the
routine which calls it. Use of a subroutine internal to the calling routine
eliminates the need for any mechanism (such as parameters or COMMON blocks) for
referring to the variables required.

A facility for creating and using this type of subroutine has been added
to DMATRAN . This construct is called a BLOCK which may be defined as an
internal, parameterless procedure with all variables global. A BLOCK can be
called only from the individual routine (main program, subroutine, or function)
in which it is compiled ; it cannot be called from an external routine, nor can
it be passed as a parameter to another routine. A BLOCK is simply a segment
of the code of the routine which contains it. The BLOCK is exercised only if
it is invoked.

The general form of a BLOCK construct consists of two DMATRAN statements:

BLOCK (<block—name>)
<statements>

END BLOCK

where <block—name> is any string of characters (e.g., COMPUTE.INDEX or PRINT—
CURRENT-STATUS). The name of a BLOCK may be arbitrarily long, so that the
name can have mnemonic significance. However, the first six characters must
be unique.

A BLOCK is called by an INVOKE statement, whose format is:

INVOKE (<block—name’)

When an INVOKE statement is executed , control is transferred to the first
statement in the BLOCK; when the END BLOCK is reached, control goes to the
statement following the INVOKE of the BLOCK. Though BLOCKs can be nested
(one BLOCK completely inside of another), no recursion is allowed in the
calling of BLOCKS (i.e., a BLOCK cannot invoke itself). Also, the name of a
BLOCK is known throughout the entire routine in which it is contained.

The following are examples of the two major uses of the BLOCK construct:

7

1

1 i~~~
_
_ _ _ _ _

Example 1: Top—Down Programming

1—1

DO UNTIL (I .GT. N)

J—l

DO UNTIL (J .CT . N)

INVOKE (COMPUTE .ARRAY . ELENENT)

J—J+l

END UNTIL
I~ I+l

END UNTIL

and , at some place late r in the same routine :

BLOCK (COMPUTE .ARRAY . EL~ (ENT)

code to compute A(I,J)
A(I,J) — value computed

J—J+l

END BLOCK

The use of a BLOCK construct enhances readability and understandability of the
program.

Example 2: Internal Subroutine

S1 and S., in the following code represent two sets of statements.
The use of a BLOCK in Method 2 below eliminates the need for duplicating code.

Method 1:

IF(A) THEN
IF(C) THEN

S1
ELSE

S2
END IF

ELSE

IF(D) THEN
S2

ELSE

Si
END IF

END IF
8

~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~ 
-,

-
~~~~~~~

- .. —-
~~~

-- - . - . --------

____ - . L ..

Method 2:

IF(A) THEN
IF(C) THEN

INVOKE (BLOCK-A)
ELSE

INVOKE (BLOCK-B)
END IF

ELSE
IF(D) THEN

INVOKE (BLOCK-B)
ELSE

INVOICE (BLOCK-A)

END IF

END IF

where the BLOCKS are defined as:

BLOCK (BLOCK-A)

S]~
END BLOCK

and

BLOCIC(BLOC1C—B)

S2
END BLOCK

There is a maximum of 20 BLOCKS per module with a limit of 15 INVOKEs for any
one BLOCK . The overhead in time and space involved in using BLOCKS is less
than that of using subroutine calls.

Figure 2.5a indicates the BMATRAN source input for BLOCK constructs and
related INVOKE statements. The indented listing produced by STRIJCTR AN—l is
shown in Fig . 2.5b .

_
q
_____ - -_.

~
:..~~~~_

INV OKE (COMPUTE AREA)
INVOK E (PRINT AREA)
BLOCK (COMPUTE AREA)
A PEAZLENGIH*W IOTH
END BLOCK
BLOCK (PRINT AREA)
WR ITE (6,1)AR (A

1 FORMAT (10A ,I2 ~))END BLOCK

(a) DMATEAN Source Input

INVOKE (CO MPUTE AREA)
INVO KE (PRINT AREA)
BLOCK (COMPUTE AREA)
• AREA LENGTH’WIDTH
(NO BLOCK
BLOCK (PR INT AREA)
• WRITE (6 ,I)AREA

I • FORMAT (IOX ,120)
(P40 BLOCK

(b) STRUCTRAN—1 Indented Listing

Figure 2.5 . DMATRAN BLOCI(...ENI) BLOCK and INVOKE Constructs

10

— - - ~~~~~~~~~~~~~~~~~~~~~ —
~~~ 

________ ~ ~~~~t,t ~
. 

— —i-
__

_—_ 
—_______



3 USING STRuJCTRAN—l

3.1 STRUCTRAN-l INPUT

Figure 3.1 illustrates a DMATRAN source program ready for input to the
STRUCTRAN-l preprocessor • The DMATRAN source code has not been manually in-
dented in order to avoid the problem of updating indentation levels as the
program is modified . The f i rs t  card of the D14ATRAN text sets optional para-
meters (reference page 13). In this case a blank card indicates that default
pa rameter settings will be used . The last card of the STRUCTRAN—l input must
contain “END” in columns 1 through 3. More than one module may be processed
in each STRUCTRAN—l run. Site dependent modifications may alter the input
forma t indicated in Fig. 3.1. The Univac 1108 requirements are described in
Appendix A.

~RLANK CARD)
SUBROUTINE EXAM PL (INFO ,LENGTH) EXAMPL I

C £ X AM PL2
C ILL USTRATION OF DMAT RA N SYNTA X EXAP!PL3
C E XAMPL’.

I~ (INFO .LE.10 •A ND • 1(NGTH.GT.O)TH(N (XA MPLS
INFOSINFO.10 (XAMPL6
ELSE L XAM PL7
LFP4GTH~50 

EXAMPL8
(P40 IF EXAN PL 9
CASE OF (INFO .b) (XAMP L IO
C ASE U4) EXAMPL I)
LENGT PI .LENGTH—1NF O EXAM PLI?
CASE (17) EXAM PL I3
DO W HILE (INFO.LT.20) EXAMPLI4
DO UNTIL (LLNGTH .LE.INFO) EXAMPL.15
INVO KE (COMPUTE LENGTH) EXAM PL16
IF (L (NGT H.G(.30) THEN (XAMPLI7
I NVOKE (PRINT—RESULTS ) EXAM PL I8
(ND IF EXAMPL 19
END UNTIL EXAM PL2O
J N FO~ INFO .1 EXAMP L2 1
END WHILE (XAMPL2?
CASE ELSE (XAMPL2)
DO WHIL E (LENGTH.GT.O) (XAMPL24
I NVO KE (COMPUTE LENGTH) (XAMPL2S
END W HILE (XAHPI26
(NO CASE IXAM PL27
BLOC K (PRiNT—RESULTS ) LXAM PL28
W R ITE (6,l)INFO ,LENGTN EXAM PL2~

1 FOR MAT (10X.I5,20X ,I5) (XANPL3O
END BLOCK EXAM PL3 I
BLOCK (COMPUTE LENGTH) EXAM PL32
LFN~TH LENG TH —10 EXAM PL33
(ND BLOCK (XAMPL34
RETURN (XAM PL3S
END (X*MPL36

(NO

Figure 3.1. STRUCTRMI—l Input

11

_ _ _  - 

:~~r ~



3.2 STRUCTRAN—l INDENTED LISTING

Figure 3.2 illustrates the automatically indented DMATRAN listin g which
resulted from processing the input shown in Fig. 3.1. The heading contains
information from the first card of the module being processed, as well as the
page number. The leftmost column of numbers refers to the successive cards
of the DMATRAN source deck. The nesting depth of each statement is indicated
in parentheses. Structural vfsibility is enhanced by connecting related
OMATRAN statements with vertical dots. The dots make it easier to trace paths
through the program, help identify the card number for a given line, and aid
in debugging improperly formed DMATRAN control structures. Structural errors
are indicated by error diagnostics (see page 15) in the DMATRAN listing.
Sequence information on the original DMATRAN source cards is included in the
STRUCTRAN—l listing.

NO. (..)~~N (5TING DEPT H SUBROUTINE EXAM PI (INFO,LENGTH) PA(,~

1 SUBROUTINE EXAMPL (INfO,LENGT H) FXANP L !
2 C f~~ MPL?
3 C ILLUSTRATION OF DMA TRAN SYNTAX
4 C E X AM P L 4

S IF (INFO.L (.t0 •ANO . L (NGTH.GT.0)TH(N FX A M P~ S
6 ( I) • INFO*INFO .10 EX AM PL~’
7 ELSE E X AM PL 7
8 ( 1) • LLNGTH*S0 EXAM P IM
9 (ND IF EXAMPL9

10 CASE Of (IPIFO.6) EX aM PLI Q
11 CASE (14) EX A M P L I I
12 ( I) • LLNGTM ~LENG1 H INF O EX AMP L I ?
13 CASE (j7) EYAM P L1 3
14 ( I) • DO WH iLE (INFO.LT.20) EXA M PL I4
15 1 2) . . 00 UNTIL (L(NGTH.LE.INFO) EXA MP I 15
16 ( ~ ) . • . INVOKE (COMPUTE LENGTH) (XAM PLI6
17 ( 3) . . . IF (L (NGTH.GE .30) THEN EX A MP L1 7
18 I 4 )  . . . • INVOKE (PRINT—RESUL TS) EX AMPt ..I M
19 I 3) . . . END IF FXAMP(.19
20 ( ?) . • (NO UNTIL ~A A MPL?O
21 ( 2) • . INFO INFO .1 F XA M P L ? L
22 ( I) • (ND WH iLE EXA(4PL2?
23 CASE ELSE EXAM PL? ’3
24 I) • DO WH ILE (L(NGTH.GT.0) EXAM PL? 4
25 ( 2) . • INVOKE (COMPUTE LENGTH) EXAMP L .”,
26 I I) • END WHILE FXAM PL ?6
27 END CASE EX*MPI?7
28 BLOCK (PIU NT—RESULTS ) ~XAMP LPM
29 I I) • WRIT E (6,1)INFO ,L (Nf,TH FX*M PL? 9
30 I 1 ) 1 • FORMAT (iOA ,I5 ,~ OX ,i5) E*AM PL3O
31 (MD BLOCK E 1*N PL3)
32 BLOCK (COMPUTE LENGTH) EXA MP L3~?
33 ( I) • LENGTH • LENGTH — 10 EX &MPL33
34 (ND BL~ CK EXAM PL 34
35 RETURN EXAM PL35
36 END (x*MPL36

Figure 3.2. STRU~TRAN—l Input Indented Listing

12

- -



3.3 FORTRAN OUTPUT

Figure 3.3 illustrates the translated FORTRAN version of Fig. 3.1 pro-
duced by the STRUCTRAN—l preprocessor. This may be compiled and executed in
the normal manner. The translated FORT RAN is indented to reflect the struc-
ture of the original DMATRAN program. The sequence information in columns 73
through 80 refers back to the card number of the original DMATRAN statement.
This aids in relating FORTRAN error diagnostics to the DMATRAN source code to
be modified. The DMATRAN source code (not the resultant FORTRAN) is the code
which should be modified.

3.4 DEFAULT PARAMETER MODIFICATION

The first card input to STRUCTRAN—l can be used to modify any of the de-
fault parameter settings which are not appropriate. A blank field on this
card causes the default for the corresponding parameter to be used . This card
is always read from FORTRAN unit 5, even though the first parameter may specify
that the DMATRAN source input unit is other than 5.

COLUMN PARAMETER DEFAULT
(Right Justified
Within Column)

1—5 STRIJCTRAN-l input unit 5
(DMATRAN source)

6—10 STRLJCTRAN—l listing unit 6
(indented listing)

11—15 Translated FORTRAN unit 2
(to be compiled)

16—20 STRUCTRAN—l error diagnostics unit 6

21—25 Whether to perform automatic indentation for
DMATRAN indented listing (1 — YES; 0 NO) 1

26-30 Characters per indent level 3

31—35 Whether to indent comments 0
(1 — YES; 0 = NO)

36—40 Whether to left—adjust all statements 1
(1 — YES; 0 NO)

41—45 Lines per page 57

46—50 Initial generated label 99998

51—55 Characters per line on indented listing 132

56—60 Whether to include comments in FORTRAN file 0
(1 — YES; 0 — NO)

For example, a 4 in column 5 of the first input card will cause the DMATRAN
source to be read from unit 4, while all other parameters retain their default
values.

13

--



SUBROUTINE (XAMPL (1NFO ,L (NGTH) 1’
IF (INFO .Lt.10 •ANO . LENGTH .GT.O) GO TO 99998 5*
60 TO 99997 5’

99998 CONTINUE
IP4FO .INFO•10 6’

GO TO 99996 1*
99997 CONTINUE 7’

LENGTH’SO 8’
99996 CONTINUE 9*

199995’iNFO’é 10’
IF (199995.NE .(14)) 60 TO 99993 11’

LENGT HSL (NGTH INFO 12’
60 TO 99994 13’

99993 CONTINUE 13’
IF (199995.NL .(17)) 60 TO 99992 13*

99991 IF (INFO.LT .20) GO TO 99990 14*
GO TO 99989 14’

99990 CONTINUE 14’
GO TO 99988 15’

99987 IF (LENGTH.L .E .INFO) GO TO 99986 15’
99988 CONT INUE 15’

ASSiGN 99983 TO 199984 16’
GO TO 99984 16’

99983 CONTINUE 16*
IF ILEN G T H.GE.30) GO TO 99982 17’
GO TO 99981 17’

99982 CONTINUE 17’
ASS IuN 99979 TO 199980 18’
60 TO 99980 18’

99979 CONTINUE 18’
99981 CONT INUE 19*

60 TO 99987 20’
99986 CONTINUE 20’
99985 CONTINUE 20’

INFO ’INFO.l 21’
GO TO 99991 22’

99989 CONTINUE 22’
GO TO 99994 23’

99992 CONTINUE 23’
99978 IF (LENGTH.GT .0) GO TO 99977 24’

GO TO 99976 24’
99977 CONTINUE 24*

ASS IGN 99975 TO 199984 25*
GO TO 99984 25’

99975 CONTINUE 25*
GO TO 99978 26’

99976 CONTiNUE 26’
99994 CONTINUE 27’

GO TO 99974 28’
99980 CONTINUE 28*

WRITE (6.1)INFO ,LENGTII 29’
1 FORMAT I1O* ,1S.20X. I5)  30’

GO TO 199980,199979) 31’
99974 CONT INUE 31’

GO TO 99973 32’
99984 CONTINUE 32*

LENGTH • LLN(,TH —10 33*
60 TO 199984 ,499983.99975) 3~ •

9)973 CONTINUE 3~*
RE TURN 35’
END 36*

Figure 3.3. STRUCTRAN-l Translated FORTRAN

14

- i~~~___ . ,-~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
.

S ____

—
-—

~

--

3.5 ERROR MESSAGES

Error messages generated by STRLJCTRAN—1 are identified by number only
and are output to the same unit as the structured listing (default option is
6). For example, the following error message might be printed : “ERROR 321.”
An explanation of the meaning of STRUCTRAN— 1 error messages is presented in
Table 3.1.

TABLE 3.1

STRUCTRAN-l ERROR MESSAGE DEFINITIONS

Error Number Message Interpretation

1 Non—comment with punch in Col. 6 without a preceding state-
ment card

2 END IF before IF THEN or ELSE encountered
3 END WHILE bef ore DO WHILE encountered

6 END CASE before CASE OF, CASE , or CASE ELSE encountered

7 END UNTIL before DO UNTIL encountered

9 ELSE af ter ELSE
11 CASE after CASE ELSE

12 CASE ELSE af ter CASE ELSE
13 ELSE before IF encountered

14 CASE before CASE OF encountered

15 Structural/syntactic error in program, cause unknown*

17 CASE ELSE before CASE OF or CASE encountered

19 Character string too long in CASE statement

100 Program END without balancing blocks for each statement

321 Improperly nested DMATRAN statements
999 Cause unknown. Unrecognizable statement.

This occurs when the indentat±on level computed by STRUCTR AN-l would become
negative if the error was not detected . Possible causes are too many ELSE ,
END IF, END WHILE, END UNTIL, or END CASE statements.

15

— -

4 STRUCTRAN—1 GUIDELINES

Ttie following guidelines should be kept in mind when using STRUCTRAN—l:

1. A maximum of 20 cards per statement.

2. STRUCTRAN-1 generates FORTRAN GOTO statements and statement labels.
Statement labels in the DMATRAN inpu t sour ce (FORMAT statements) shou ld
not duplicate the labels appearing in the translated FORTRAN.

3. When the DO UNTIL.. . END UNT IL construct is used for iteration, it
is important to note that the statements contained within the
construct will be executed once before the logical expression is
evaluated.

4. All two word DMATRAN directives may be written as two separate
words or merged into one; e.g., DOUNTIL or DO UN1LL.

5. A maximum of 20 BLOCKs per module.

6. A limit of 15 INVOKEs for any one BLOCK.

7. INVOKE for the BLOCK must occur before the BLOCK code (suggest
BLOCKS be grouped at the end of the routine).

8. First six characters of the name of a BLOCK must be unique within
a module .

9. Maximum nesting level for indentation of FORTRAN output is 10.

10. The value of <integer—expression> in CASE statements must be
positive.

11. BLOCK constructs cannot contain labeled statements which are
referred to outside of the BLOCK.

12. A BLOCK cannot be entered by falling into it (as the next
executable statement).

16

APPENDIX A
STRUCTRAN—l ON THE UNIVAC 1108

Various modifications to the STRUCTRAN—l preprocessor have been made for
ease of use in the UNIVAC 1108 environment. DMATRAN programs are input to the
preprocessor by providing them as data in the run stream or by using the @ADD
capability to add program library elements to the run stream. When used with
a program library , the indented DMATRAN listing serves as the reference from
which corrections to program library elements can be made. The use of DMATR.AN
with card input will be described first, followed by suggested procedures for
use with a program library .

A.l CARD INPUT

The STRUCTRAN— 1 preprocessor acceots run stream data as input and out-
puts an indented source listing and invokes the FORTRAN V compiler to compile
the translated FORTRAN code . Each and every input routine being processed by
STRUCTRAN-1 must be proceeded by a DMATRAN control card containing the name
desired for the corresponding FORTRAN symbolic element . A typical deck
setup for compiling and executing DMATRAN Source cards follows :

Assign permanent file containing STRUCTRAN-l and use PF1
as its short name

@XQT PF1.STRUCTRAN1 (Executive card——blank if default parameters)

MAIN (DMATRAN control card)

DMATRAN source cards for main program

EXAI4PL (DMATRAN control card)

DMATRAN source cards for subroutine EXANPL

@XQT

Data for MAIN and EXAMPL
@FIN

A DMATRAN control card is required as the first card of the DMATRAI4 in—
out deck and after each FORTRAN END statement which is not the last statement
of the input deck. The above example generates I)MATRAN and FORTRAN Rource
listings . Additionally , it creates FORTRAN elements MAIN and PXAMPL and
relocatable elements MAIN and FXAMPL . It is recommended that the DMATRAN
control card. provide element names which corre spond to the subroutine names
of the DMATRAN module.. Since the DMATR AN control card information is used
for head ing. in the DMATRAN listing, this naming procedure assists in
maintaining mo alphabetically sorted listing of source rout ine..

17

- ~~~—S-—-—-—--— - -- - . _ -~~~~

A.2 PROGRAM LIBRARY

The @ADD capability allows larger DMATRAN programs to be conveniently
implemented and maintained on a program library. Extensive capabilities of
the ELT processor are then available for correcting/modifying the DMATRAN
source code. The following run stream will create a program library for MAIN
and EXAMPL:

Assign permanent files

@ELT ,I MAIN/STR
MAIN (DMAT RAN control card)

DMATRAN source text for main program
@ELT ,I EXANPL/STR
EXAMPL (DMATRAN control card)

DMATRAN source text for subroutine EXANPL
@XQT PF 1.STRUCTRAN1 (Execute STRUCTRAN-1)
@ADD MAIN/ STR
@ADD EXAMPL/STR

@COPY TPF$., PF2.

@XQT (Execute user ’s program)

Data for MAIN and EXANPL
@FIN

This run stream creates a program file in TPF$ containing DMATRAN source ,
FORTRAN source, and relocatable elements. The first card of each DMATRAN
source element is a DMATRAN control card . FORTRAN and DMATRAN source elements
cannot have the same element and version names and reside on the same program
file. It is convenient to give all DMATRAN source elements a version name of
STR to overcome this difficulty. The program library in TPF$ is saved by
copying it to PF2. A DMATRAN listing is also produced by the above run stream.
This listing should be saved so that it can be used to make modifications to
the program library elements. The leftmost column of numbers on the listing
are directly usable for making ELT modifications. This listing is more conve-
nient to refer to than an ELT listing because it is indented .

NOTE: PP2. in the above example will eonta~n the symbolic elements
MAIN/STh and F.XAMPL and the relocatable elements MAIN and
EXAMPL .

Once a DMATRAN program library has been created and saved, the follow-
ing run stream temporaril y updates it and tests the updates.

Assign per manent files

@COPY PF2. , TPF$.

18

~ELT,U MAIN/ STR

Main program corrections

@ELT ,U EX.AIIPL/STR

Subroutine EXAIIPL corrections

~XQT PF1.STRUCTRA141

@ADD MAIN/STR

@ADD A/Sm

@XQT

Data for MAIN and EXANPL

@PIN

This run stream results in an updated DMATRAN program library in TP!$. After
the updates have been ,found to be correct, the DMATRAN program file can he
permanently updated by copying TPF$ to PF2 . The DMATRAN listing of the cor-
rected elements should be saved fot making further corrections .

19

_____ — —

..

~

. /-

INDEX

Pa&e

Automatic Indentation 1,6,12,13

Blank Card 11,13
BLOCK 2 ,6—10
BLOCK, Examples 8—10
BLOCKS , Maximum Number of 9 ,16
<block -name> 6,16

Card , Blank 11,13
Card, Control 13,17 18
Card , Input 17
Card , Maximum Ni,unber per Statement 16
CASE 2 ,4—5
CASE ELSE 4—5
CASE , Examples of 4 ,5,12
Characters , per Indent Level 13
Characters, per Line 13
COMMENTs 13
Control Card 13,17—18

Default Parameters 13
Depth, Nesting 13,16
Diagnostics, Error 12,15
DO UNTIL 2,6
DO UNTIL , Examples of 6
DO WHILE 2 ,3—4
DO WHILE , Examples of 3—4

ELSE 2 ,3
END, in Columns 1,2,3 11
Error Messages 12,15

FORTRAN Extensions 1,2

IF()TR~~ 2,3
IF()TREN, Examples of 2,3,12
Indentation 12,13
Indentation of Comments 13
Indentation, FORTRAN 13
INVOKE 6—10
INVOKE, Examples of 6—10
INVOKE , Number of 9 ,16

20

— -

INDEX (Contd.)
Pag~

Label, Initial Generation of
13

Left Adjust
13

Level, Nesting
12

Lines per Page
13

Listing , FORTRAN 13,14

Listing, STRUCTRAN 1 12

Listing Unit, STRUCTRAN-1
13

Nesting Depth
12

Number of BLOCKS
9,16

Number of INVOKEs
9,16

Parameters, Default 13

Program Library
18

STRUCTRAN-l
1

STRUCTRAN-2
1

Structured Progrannuing
1,2,4

Top—Down Programming 8

21

~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

— 

---

~~~


