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> ABSTRACT

Strain energy expressions are obtained for rings of
rectangular, T- and I- section. The expressions are intended
for use in the dynamic analysis of ring stiffened cylindrical
shells. The approach is essentially a generalization of the
convertional, approximate analysis of straight beams, i.e.
the influence of shear stresses, and of direct stresses at

right angles to the axis of the beams is neglected.
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1. INTRODUCTION

The results obtained in this study will facilitate the
determination of the modes of free vibation and/or of the
dynamic response of ring~stiffened cylindrical shells.
Expressions for the potential energy of the stiffeners in
their most general state of displacement will be derived.

The strain energies are obtained on the basis of "beam theory,"
i.e. the expressions are generalizations of those conventionally
used for straight beams when shear effects and stresses at

right angles to the axis of the beam are ignored. The approach
is similar to the treatment of straight beams of thin-walled
section in Ref. 1, Chapter 5, where the sections are considered
to be built up from a number of flat plates for each of which
the strain energy from elementary beam theory is known. Making
the assumption that the shape of the cross section does not
change, the energy in each plate can be expressed by the global
coordinates of the bar. Allowing for the continuity of strains
wherever two of the plates are jointed, strain energy expressions
and the location of the shear center are obtained.

In the present treatment the elements of which the bars
consist are either not flat, or not straight. The sections shown
in Figs. la, b, and ¢ will be treated. The ring in Fig. la is
of simple rectangular cross section; it is really a flat plate
of annular shape. 1In Fig. 1b the section is a T. The web is
again an annular flat plate, while the flange is a short segment
of a cylindrical shell. The third case, Fig. lc, consists of

three parts of similar nature. Expressions for the strain
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energies of the elements are derived in the Appendices, using
appropriately simplified relations available from plate and
shell theories. For deformation of the entire bar in the
plane of curvature a generalization of conventional beam theory
is used, which assumes that plane sections remain plane, and
also at right angles to the deformed center line.

The expressions in the Appendices could also be used to
treat nonsymmetric cases like U- or L- stiffeners, Figs. 14, e.
These cases are not included because their use seems rather
unlikely.

The strain energy expressions V obtained may be used
in various, fairly obvious ways. They may be utilized to
find the boundary conditions at the stiffeners for the a priori
known partial differential equations for vibrations of the shell

by using Hamilton's principle,

f(v - T)dt = extremum (1)

and applying calculus of variation with respect to the shell
coordinates x and ¢, Fig. 2. V and T are the strain energy
and the kinetic energy, respectively.

As an alternative, one can use a Raleigh-Ritz approach
and introduce appropriate approximation for the shell displace-
ments u, v, w, Fig. 3, into Eq. (1).

As a further alternative, one may introduce into Eq. (1)

the expressions




u = Un(x) cos (nt + a)
vV = Vn(x) sin(n$ + a) (2)
w =

wn(x) cos(nd® + a)

where a is a phase angle. This substitution reduces the partial
differential equations of the shell to three ordinary, simul-
taneous ones in U, V and W.

For either of the alternatives, a suitable expression

for the strain energy of the cylindrical shell may be found in

Ref. 2.
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II. STIFFENING RINGS OF RECTANGULAR CROSS SECTION, FIG. la
Fig. 4a shows a portion of the shell of thickness t and
radius a and an interior stiffener of depth d and thickness h.
The depth d is a nominal one, measured from the center surface
of the shell to the innermost edge of the stiffener, Fig. 4a.
This figure also shows the centroid O of the stiffener cross
section, and the radius RO of the centroidal circle. Fig. 4b

shows the original and the displaced center lines of shell

and stiffener, and the displacements Uys W of the centroid O

0]
as well as the rotation B. The out-of-plane displacement is
Vor but cannot be indicated in Fig. 4b.

Using Egs. (A-13) and (A-22) for the portions of the

strain energy of the stiffener in and out of the plane of

curvature, respectively,

o w 2 ov. 2
¥ow g (S (il vl i o) &
Rg 36 0 3¢
(3)
EI au GJ ou
0 0 2 0 (0] 3B, 2
2 gy (—7 o ROB) + 3 ( 3 RO B—d).) 1d¢
RO 99 RO
where
3 3 3
_ hd & _ h’d - h'd AR X - |
Z——lz, A = hd, Io———l, JO——3, R0 a 3 (4)

The value of Z is approximate, but suitable if d << a. The

displacementsxk),w and B can be expressed from geometry by

0
the shell displacements at point A, Figs. 4a, 4b,
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appears in Eq. (2) only in the form 5

To express this derivative, the equality of the strains in shell

and stiffener at point A, Fig. 4a, is used

1 ¥

a "

1
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ZaRO

(6)
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The left hand side of this equation is the membrane strain in

the shell at point A, while the right hand side is obtained

from Eq. (A-15) for n = 4/2. Noting the relation between a and RO
gives
v v, R, 3
- S Bl R
d¢ Z2a 3¢7 a ) (7)
Substitution into Eq. (3) gives the strain energy in the ring
stiffener in terms of Upe Va and War
2 2
aw aw R, 3V
o 1 s RS A EA d A "0 A2
Lt Bl o pwe Bl A oy G U a1
Ry ¢ (o} ¢
2 3
+ E§° (a B% + % - wg - R, 3;%)2 (8)
Ry ¢ 9x9¢
GJO auA azwA 2
+ g ( + a ) “1d¢
RO 9o 9::9¢
If desired, one could introduce the approximation R, ~ a, but

o

the resulting simplification is hardly worthwhile.




III. STIFFENING RINGS OF T-SECTION, FIG. 1lb

Figure 5a shows the shell and an interior stiffener
and all dimensions. The centroid of the stiffener is at a
distance e from the middle surface of the shell. Figures 5b
and 5c show the web and flange in their original and in
their displaced positions, respectively. Also shown are the
centroids Ow and 0l and their displacements.

The strain energy of the entire stiffener due to dis-

placements ) and Vo is

EZ w EA oV
L 0 0 2 (0] 0,2
V(Vo.wo) bl | f[—-g (——-7 + wo) bt 70 (wo + —5$) 1dé  (9)
RO 2¢ (0}
where 2_ = I_ and A_. are the moment of inertia and the area of

o (0] Q
the section, respectively.

The strain energies due to the displacement in the
x-direction and rotation for the web, Vw, and for the flange,

vl’ are according to Egs. (A-22) and (A-32), respectively,

a o

1 EIw 9 u, 2 GJw auw 38 2
w w
y i e e
Vl(uloB) - % f['—Rj ( : 5 + RIB) + ;5— (-_83; - Ry 3‘&)‘) 1d¢ (11)
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where the section properties are defined by

dh3 dh3 t.b bt

e s g S R TR g e D

The displacements w and u, can be expressed by the

gt ¥y

equivalent quantities at point A. The relations are

d My
Wy = Wps U, o, e g u; = u, - as, B % i (13)
avo
To express 56 ' the strain in the shell at point A, and the strain

in the web at the same point are equated

oV oV 82w

0 s o + w.) (14)

1
e L (w + ) - (
RO (0] 3o Ro(Ro+e) 3¢2 (0)

The right-hand side of this equation is Eq. (A-15) for n = e.

After simplification

v

>

R
A 0
= (15)

gl

The total strain energy is the sum of Egs. (9), (10) and

(11). After substitution of Egs. (13) and (15)
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This expression can be somewhat simplified, if desired,
by noting that d <<<a, and that for thin-walled sections

Iw <<< Il' Using also

one obtains
+ azwA % BzwA dv, 2
vV = JIEI(—= + w, )" +EA_(aw, +e +a s
2a§ 0 3452 A (0] A aq>2 36
(17)
i 3 2
3°u o w ow ou 3w
A A A, 2 A A 2
+EI, ( +d —a+—) "+ G(J +J.)( + a ) “lag
1 N? 3x3¢2 B w 1 EL) dx0¢




Iv. I-BEAM STIFFENING RINGS, FIG. 1lc
Figure 6a shows a cross section of the shell and of
the stiffening ring inside the shell. The centroid of the web
and of the entire stiffener is at O. The properties of the
web and its displacements will carry the subscript O. The

two flanges are of equal dimensions, b by t and their

ll

centroids are O respectively. The displacements of the

1'%
two centroids carry the subscripts 1, 2, respectively.
Just as in Sections I and II, the portion of the strain

energy V(wo,vo) is given by Eq. (A-13),

2
dw AV
1 EZ 0 2 EA 0,2
V(wo,vo) + 5 f[;j (—;—7 + wo) + — (wO + _§$) 1dé¢ (18)
0 (0 ()

where A and Z are the area, and the moment of inertia of the
entire section.

The portion V_ of the strain energy of the web due to

(0]

the displacements u. and B is according to Egq. (A-22)

(0]
po ek 82u0 g ST Wy 3B, 2
VO(UO,B) =-2- f["_j (——7 o ROB) ‘o T(—a—¢ = RO W) 1d¢ (19)
Ry 3¢ RJ
where
3 3
_ dh _ dh T
Io b ok JO =y RO = a e 3 (20)

The portions of the strain energy due to the displacements

of the two flanges uy and B are, respectively, from Eq. (A-32)
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where u,,u, are the displacements of the flanges 1 and 2,

respectively, and

I = % J = T R1 =a-e, RL,=a-e-4 (23)

Referring to Fig. 6b, the displacements, except Vi

can be expressed by the displacements of the shell at point A,

ow ow

e e WRRie | i d b
Yo" Ut P T T Uy = Uy-lg + o) B= ukilz + e) -
(24)

awA awA

u, = u, - ep = ua+<3—3; u, = uA -(d + e)B= uA+(d + e) =

The equality of the hoop strains at A in the shell and

in the stiffener, with n = e + d4/2 gives

2
v v d + ze a°w
A 1 0 0)

=(w, + —) = =—(w.+ ) - ( + w.)

s o0 L R R, (2R +d+2e) W

and after simplification
v d+ 2e 3%w, R dv
. g it
- 7 SR 3¢2 a 00 (25)
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Using Eqs. (24) and (25), the four Egs. (18),(19),(21)

and (22) become

~2 2
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o T A 2 , EA d+2e ° Ya 2a-d-2e Va2
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(26)

The entire strain energy V is the sum of the four terms,
Egs. (26). However, some approximations seem permissible. The

first term in the relation for VO contains the factor I0 = dh3/12,

which is very small in comparison to the similar terms in vy and V,,
where I = t1b3/12. For thin-walled sections the term multiplied

by I. is negligible. Further e = (t + tl)/2 is small compared to

0
d or R. Using @ ~ O is thus a reasonable approximation. Assuming

further that d <<< a, one may use approximately RO =R = R, ~ a.

2

The end result is
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V. SUMMARY

ﬂ‘ Strain energy expressions have been obtained for ring
stiffeners of the types shown in Figs. la, b and c¢. The results
are, respectively, given by Egs. (8), (17) and (27). The
stiffeners shown in Fig, 1 are all on the inside of the shell.
However the results obtained are also applicable to stiffeners
of the same type on the outside of the shell. 1In such cases the
quantities d and e occurring in Egs. (8), (17) and (27) must be
replaced by -d, - e, respectively.

Possible applications for the strain energy expressions
are indicated in the Introduction. The suggested uses require
an expression for the strain energy of shell panels adjoining
the stiffeners. Such an expression is available in Ref. 2.

Defining the shell displacements u,v and w as shown in Fig. 3,

T

the strain energy of a panel is

s E h 2.2 2 Yoty 2
U = ;71:;73 3 //1a ux+(v¢ + w) T+ 2avux(v¢ + Wi+ Z=(u, + av )“]dxd¢
sl M plhe o tind L Leli o i ? 28
24(1—v2) a’ XX ¢¢ i x¢ ¢ (28)
e sl N4 wx¢) + 2va wxx(w¢¢ - v¢)— 2a uxwxx]dxd¢

where t is the shell thickness, and the subscripts x or ¢ indicate
partial derivatives with respect to x or ¢. The double integrals

extend over the area of the shell panel.
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APPENDIX 1.

Strain energy of a circular curved bar due to deformation v, w

in the plane of curvature, Fig. A-1l.

Consider an element of a curved bar, Fig. A-2, the cross
section of which is symmetric to the plane of curvature. The
element is stressed by a moment M and a direct force N, both
in the plane of curvature. The small deflections of a point P
in the location ¢ can be described by the radial component w and
the tangential component v, Fig. A-1l. Figs. A-1 and 2 show I-beams
with unequal flanges, which are generalizations of the three
specific cases, Figs. la, b and c, needed in the body of the
report.

The approach used is a generalization of the siméle
Navier-Euler theory in straight beams, which assumes that only
stresses in the axial direction contribute materially to the
strain energy. Stresses in the radial direction and shear
stresses, both of which must exist, are thus assumed to con-
tribute only negligibly to the strain energy. The assumption
that plane cross sections remain plane and at right angles to
the deformed center line of the bar, leads to the distribution
of bending stresses as obtained in the classical treatment of
Winkler-Resal. The following is not concerned with a
re-derivation of the equations for the stresses, but with the
formulation of strain energy expressions in terms of derivatives
of v and w. Such expressions seem not to be available in the

literature.
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Consider an element of the bar of length ds in its
original and in its distorted shape, Fig. A-2. The centroidal
axis of original length ds will be lengthened by Ads, and the
angle between the two faces will change, as shown in the same

Ads

figure, by = Ad¢.

Considering an element dA at a radial distance n from
the centroid, one can compute strain and stress in the element

as function of Ads and Ad¢

Ads n Ad¢

39 + g = 36) (A-1)

= gL
o = E(R

As usual, the quantity Z is introduced

2

" n 2L ndA
Eabligis sy BN (A-2)

I1f the depth of the bar is small compared to the radius R, the
value of Z is practically identical to the moment of inertia I.
In the body of the report, it will be assumed that Z - I.
Comparing the resultants of the stresses given by Eq. (A-1),

and M and N, one can determine Ads and Adé¢,

3

g2 - 5

Ads _ R M
T " @ VR

(A-3)

The strain energy dV in the element of length ds = Rd¢
being equal to the work done by the forces M and N during the

distortion of the element, one finds

ot

, g e
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1 ,.BZ ,Ad$,% . EA ,Ads, 2
V = /dV Rd¢ = 5 f[—R- (-aT) + R (E—Q’—) 1d¢ (A-4)

The quantities %%? and %g;- are to be expressed in terms

of v and w, which are the components of the displacement of the
centroid O of the cross section. Figuare A-3 shows the original
and the distorted element superimposed on each other. Using
polar coordinates, p(¢) = R + w(¢), the curvature of the original
center line is 1/R, while the curvature l/R1 of the distorted

center line is, with p = R + w,

2 2
2 dp d
P +2(x=) =-p ——8—
foa) o P R R
R, g deAs T B (R+w) 2 a 2 (A-5)
(0%+(32 1

The approximate result is obtained by using the fact that

2
dw, ~ 2 3
(35) <<(R+w)”. Forming the expression l/R1 - 1/R, and allowing

for w<< R, and ds = Rd¢, one finds

2 2
1 1 w 1 d"w 1 dw
By . . R(R+w) (Réw)2 do2 R2 dp2

L o ond

In addition to above relation there is a geometric one
between R, Rl’ Ads and Ad¢, which can be read from Fig. A-3.
The total length of the distorted axis, ds + Ads, must equal the
new radius Ry multiplied by the angle a enclosed by the two

faces of the deformed element. Thus




o

: ds Ads
R, a R —ﬁ_)

1(7{ + Ad¢ + = As + Ads (A-7)

Rearranging and dividing by RlR d¢ gives

=
I
o)

B O T e T (n-8)
R R“Rdcb*'a'&e‘;?;—lRM
1

The approximation in Eq. (A-8) is permissible because (Rl-R)/R
is inherently a small quantity in comparison to unity. Equations

(A-6) and (A-8) furnish

Ad__ldw <
Tﬁ% = ﬁ(g;f + w) (A-9)

In conjunction with Eg. (A-3) this relation leads to the well-known
differential equation for the radial displacement w, see Ref. (3).
An additional geometric relation can be obtained from

Fig. A-4. The end points A and B of the element ds displace
to A' and B', respectively. The distances CA' and CB' follow
from Fig. A-4, where quantities which are small of higher order

are neglected.

CA® = dw - vap - dvd$ - dw - & vds
(A-10)
CBY = Rd$) + wdé + dv + dwdo ~ ds + % wds + dv
Further
e BB 52 ¢ A48 o 3 +‘_"+d_‘l)2+(§_“_'-!)2 (A-11)
ds . ds R ds ds R
Cme R
e .w;fs;té?x_ Ty ST © T
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Expanding the square root by the binomial law and neglecting

higher order terms gives

Ads _ dv -

Substitution into Eq. (A-4) gives finally the strain energy
expression

2 2 2
P+ ER e s Oy 1ap (A-13)

R> d¢ R de

It is noted that the second Eq. (A-3) and Eq. (A-12)

give the differential equation

av - 3 M -
i " B [N + R] (A-14)

o€
+

Conventional texts contain only an approximation of the equation
where the term M/R does not appear.

It will also be necessary to have an expression for the
strain in a location n, Fig. A-2. Using Egs. (A-1), (A-9) and

({A-12) one finds

2
=14ds ., n Ads _ 1 L N a‘w 2
€y = R8s * B ds " RUY 3 T Rm GF W (-19)
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APPENDIX 2.

Strain energy of a thin annular plate, displaced at right angles

to its middle plane, Fig. 5.

The web of a ring stiffener of a shell, Fig. la, b or c,
may be considered as an annular plate. An expression for the
strain energy of such a plate in polar coordinates can be found
in Ref. (4 p. 346, Eq. (0)). This expression is a double
integral over three major terms. The sum of the first two terms
can be recognized as due to the direct stresses, while the third
is due to the shear stresses. Let V =V

1 + V2, and using the

symbol u for the normal displacements of the plate,

2- - 2- 2
o B 3 1l 3u 1 9 r
Vl‘sz[(ar2+rar+r§ a¢2)
2=~ - 2- 2
9 1l 3Ju 1 3
-2(1-v) (— == +—= —=) lrdrdd (A-16a)
ax? T 9T g2 542
2~ 2- 2
ol s O SRR .
V2 -5 2(1 v) S S (r 350 ;7 3¢2) rdrd¢ (2-16Db)

Consistent with the assumption that the only stresses
contributing materially to the strain energy Vl of bending are
direct stresses O the term D in (A-1l6a) is to be evaluated
forv= 0, while the value v # O is retained in Eq. (16-b) for
shear effects. Further, as in elementary beam theory, it is
assumed that the radial axis of the cross section remains a

straight line




u(r) =

u(n)
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=u + np

(A-17)

where u is the displacement of the centroid and B the rotation

of the cross section. Using r = R + n, dr = dn, and Eq. (A-17),
one has the relations
8%— = 32“ = 0 ﬁg = QE = B
¢ riecery ” = =
Brz on % o
(A-18)
T ; 2’8 3 _ 9w, . 28 ¥ 5 . 38
T e _-I— N4 N4 T e T
a¢2 a¢2 a¢2 3¢ ¢ 90" 3ra¢ 3¢
After substitution of these relations into Egs. (A-16)

one can integrate with respect to n

r - R. Using the fact

that d/R is small compared to unity, the various integrals

can be approximated

plp L o A % g g; &
" 1-d/2R ~ r
P g; S 1 : 1
r 2(R+d/2)%  2(r-d/2)2
One obtains thus
3 2
vy =32 s 5 A2 re? as
12 i

R MREGY
o B
(A-19)
e
R
(A-20)
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and

5 1 ,3u
V‘E_IE’S(W R ==)" d¢ (A-21)

As a check on the adequacy of the simplifications made
in Egs. (19) consider a rigid body rotation of the annular plate

with respect to the axis ¢ =+ w2,¢ = - /2, where u = A cos ¢,

| >

B = cos ¢ and A is the displacement at ¢ = O. Substitution

into Egs. (A-20, 21) indicates that for this displacement

i

VvV, =V

1 0, as required for a rigid body displacement.

2
The total strain energy for out-of-plane displacements

is thus

3 2 2 3 2
> + RB)“ + 3 (-——- 5——) 1d¢  (A-22)

The two coefficients appearing in the integrand are the values
EI and GJ appearing in the equivalent expressions for a straight
beam. For R + =, Eq. (A-22) thus furnishes the conventional

value for V for a straight beam.
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APPENDIX 3.

Strain energy stored in the flanges of rings of T~ and I-Sections

Let the displacements of an arbitrary point P on the middle
surface of a flange, Fig. 7, be designated by the symbols
Up»Vp oWy while the displacements of the centroid O of the
undeformable, rectangular cross section are u,v,w and the rota-
tion is B.

Only sections which are symmetric to the plane of curvature
are treated so that the strain energy separates into the sum of

two terms
vV = Vl(w,v) + V,(u,B) (A-23)

one term depending only on w and v, the other on u and B. The
term V1 has already been obtained in Appendix 1, Eq. (A-13)
and the associated strain in Eq. (A-15).

The second term, Voo for T- or I-sections will be derived
in the body of the report, using an expression for the web alone
derived in Appendix 2, in conjunction with a relation to be
derived here, treating flanges of rectangular cross section,

b x t, as short pieces of cylindrical shells. See Fig. A-7.
Assuming that the cross section does not change its shape,
the displacements of a point P in the location n, z = O, Fig. A-7,

are

£
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(A-24)
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The strain energy Vz(u,B) can be divided in a portion

due to hoop strains ¢ and one due to shear strains

q’

Allowing again for the fact that direct stresses

YoV, = Vy 4 sz'
other than oy are negligible, the value of Poisson's ratio in
Ve is assumed to vanish

Vv, = % f1] e* dndz(R + z)d4 (A-25)

2¢ S

while the usual value of v is retained in

Vo = 5 IS y2andz(R + 2)d (A-26)

When evaluating Eq. (A-25) it is assumed that the bending
strains do not vary significantly through the thickness, t << 4,
t <<< R, so that

Naw = %} ffeg an(R + z)dp .~ LR sy - dnd¢ (A-27)

Sy €8

where the value €g at z = 0 is to be used. Reference [5, Eq. (5-b)

on p. 209] gives for z

0, after substitution of Egs. (A-24)

v w 2
] .. P n o u n
€ - + = - ——-B
L SN R% 362 R
Equation (A-27) gives thus finally
3 92
- i Etd 1 u 2 =
v2e—2—~12 fj- (-—-2+RB) d¢ (A-28)
R ¢
s
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The above integral vanishes, as required, for the rigid body

motion u = Acos ¢, B = A cos ¢.

R
To evaluate the integral in Eq. (A-26) use is made of

Ref. [5, Eg. (5-c)]. The value of the shear strain at an arbitrary

point A, Fig. A-7, is expressed by the values at points P on the

center plane

du AV 32w
e P Rtz P Pz 2
5 S 56 * i ® * 72 =2
R+z R 3o 9x9¢
Substitution of Egs. (A-24) gives
YA'-Y:‘Z~—2&E_2—$+Z——2“R_1§—B:_ZZ(%B_:.-}%8_%) (A-30)
R™ (R+2) R(R+2z) R

The approximation used utilizes the fact that max z = t/2 <<< a.

The value of the integral in Eg. (A-26) becomes thus

3
_ 1 Gbt S eSS e
Vay =5 5 I—R3 (5 - Reg” d¢ (A-31)

As necessary, this value vanishes for the rigid body motion
tested on Eq. (A-28).

The total value of Vz(u.B) is

3 2 3 2
_ 1 Etd ¥ 4% 2 Lghe .3 N o8
¢ R
(A-32)

In the limit, R » =, Eq. (A-32) furnishes the usual

expression for the strain energy of a straight bar.
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