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PREFACE

In this work, a previously developed solution, based on a higher
order finite element simulation, is extended to treat the problem of a
composite laminate containing an elliptical cavity. Loading conditions
consist of axial tension plus a uniform temperature change. This class
of problems is fundamental to an understanding of local failure mechanisms
which prevail in the vicinity of cutouts or cracks in composite laminates,
where the influence of lamination geometry must be recognized. Furthermore,
the inclusion of thermal stresses in the analysis allows the calculation
of curing stresses induced in the fabrication process. Computer program
listing and input data instructions for this stress analysis routine may
be obtained from Dr. N, J. Pagano (AFML/MBM), the project monitor for
this program.
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SECTION I
INTRODUCTION

One of the unique characteristics of laminated composite materials
is the delamination mode of failure that occurs at free edges. This behavior
has been investigated experimentally and by mathematical stress analysis
models for laminates with straight free edges. Experimental studies by

(1]*

Pipes, Kaminski, and Pagano have shown that the laminate stacking

sequence can affect the static strength of laminates. Similar effects of

(2]

stacking sequence were found by Foye and Baker for fatigue loading
conditions., Mathematical stress analyses of straight free edges of laminate
plates have shown that changes in stacking sequence can change the behavior

(3,4] have found

of the interlaminar stresses. 1In particular, investigators
that the sign of the transverse normal stress 0, changes from tension to
compression as the stacking sequence is changed. Furthermore, Pagano and

Pipes{6’7]

have shown that high tensile stresses are associated with the
decreased laminate strengths reported in References [1] and [2]. These
observations point to the importance of understanding the stress behavior
of laminates near a free edge. Through such an understanding, Lackman and
Paganols] have successfully reduced interlaminar stresses at the free edge
to alleviate the effects of the delamination mode of behavior,

While the straight free edge can be studied as a problem with
two-dimensional variations in stresses and displacements, the curved free
edge is inherently a three-dimensional problem. Thus, the circular hole
problem is more difficult to treat in terms of a stress analysis than the
straight free edge problem. Dana and Barker[gl
three-dimensional stress analysis of four-ply (0/90)s and (45/-45)8

laminates with circular holes and found that the sign and magnitude of the

have investigated the

0, distribution around the hole can change with changes in stacking sequence.
Rybicki and Hopperllo] have developed an analysis for the interlaminar stress
distributions for a six-ply symmetric laminate containing a circular hole.

(11]

Experimental investigations by Daniel, Rowlands and Whiteside on the
effects of stacking sequence on the strength of laminated plates with
holes indicated that variations in stacking sequence effected the laminate
strength and failure mode. Other studies for example by Grenzczuktlz],
1.[13], and Waszczuk and Crusellal have predicted failure

of a composite plate containing a hole and made comparisons with experimental

Waddoups, et a
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data. These studies are a first step toward understanding the behavior of
laminates containing a circular hole. The stress analyses for these studies
did not include interlaminar stresses. Two basic three-dimensional problems
that can provide insight into understanding laminate behavior near a curved
free edge are considered here. One problem is the state of stress that
exists around a circular hole. The other problem is the behavior around
a noncircular hole such as an elliptical hole.

In the following, a description of an analysis procedure to
treat stresses around a circular or elliptical hole in a laminated plate
due to a uniform loading distant to the hole is described. The analysis
procedures have been implemented into an existing three-dimensional finite

(10]

element stress analysis and numerical results for example cases are

presented.

SECTION II
METHOD OF STRESS ANALYSIS

The method of stress analysis is based on the equilibrium finite
element analysis described in Reference [10]. The details of the analysis
are given in that reference. A summary of the analysis is given here as
background information and extensions are described in detail.

In the analysis, each ply is modeled as a homogeneous orthotropic
material with linear stress-strain behavior. Symmetric laminates are
considered with applied stress loading conditions distant to the hole.

The analysis is based on a three-dimensional equilibrium finite element
representation for the stresses. Three Maxwell stress functions are associated
with each element to satisfy equilibrium exactly within each element,
Equilibrium between contiguous elements is satisfied exactly by equating
unknown coefficients between elements. All stress boundary conditions are
satisfied exactly. In the equilibrium approach, displacement boundary
conditions and compatibility are satisfied approximately.

The following sections contain a description of the extensions
of the existing analysis to treat an elliptical hole in a laminated plate.
The results of interest for the elliptical hole problem are the interlaminar

stresses,
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In Reference [15], Rybicki and Hopper examined an approach to
transform the problem of a plate containing an elliptical hole into a
problem of a plate containing a circular hole. This is accomplished by
starting with the conformal transformation for mapping an ellipse into a
circle. The transformation is applied to the governing equations of the
elliptical hole problem. The result is a description of an equivalent
circular hole problem with different material properties and loading
conditions. A transformation of the circular hole solution, back to
the elliptical hole problem, is obtained based on the inverse of the
original transformation. This approach was extended to the three-dimensional
case, The procedure is given in the following.

A typical lamina is shown in Figure 1. The stress-strain relations

for each lamina of the laminate have the form

L Sllcx + 512°y + 81302 + 816Txy 4 ulAT
T T e it ™ e o
: +
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where the Sij's are the compliance coefficients, 0's and T's are the stresses,
and aibT's are the strains due to temperature change. The stresses are
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FIGURE 1. PRINCIPAL MATERIAL DIRECTIONS (I, 2,and 3),
(x, y, and z), AND (r, 6, and z) COORDINATE SYSTEMS

FOR A TYPICAL LAMINA
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The first step is to express the strains of Equation (1) in terms
of the stress functions, Xi, by combining Equations (2) and (1). Next, the
compatibility equations are expressed in terms of the stress functions.

The transformation
x=x
y = By’ 3)
z=12z'

was applied to all the equations. One axis of the ellipse lies along the

x-axis. This axis has a length of 1.0. The value of B is then the length
of the axis of the ellipse in the y-direction. The (xl,y',z’) system
pertains to the equivalent laminate with a circular hole and different

material properties. For brevity, only the results of the transformation
are listed. The material properties for the circular hole problem (SiJ
and ai) are related to those for the elliptical hole problem (Sij and @§)

and to B as shown in the following equations.

4
4 =

s11 811/8
'

S22 = S22

'
S12 = 51278

'
$13 * 13
! =
S16 = S16/8

!
Sy3 = Sy3/8
! = 2] l‘)
Sy6 = S26/° (

2
'.1'1 L QI/B

’ =
S33 = S33/8
'
a, =, S36 = S36/8
2 ¢ ig
’

¢ = 06/8  S45 = S,/B

'
ey * Py
2
’ =
S66 = Se6/B

The stress functions are transformed as follows.




x|

X1 = X1
P
X3 = X3

where the primes denote the circular hole problem.

The relationship between the stresses for the circular hole
problem and the elliptical hole problem are

(5

2
ax-ox’/e /
o =o'
y X ;
B
o = cz/B (J
il 2 ?
(o TXZ/B
4
Tyei® Tyz/B

- !
Top Txy/B

where the primed stresses refer to the circular hole problem and the unprimed
stresses refer to the elliptical hole problem.

The stress boundary conditions around the elliptical hole were
transformed tc boundary conditions for the equivalent circular hole problem.

The algebra for this step is given in Appendix A while Appendix B summarizes

the constraint equations to satisfy the stress-free conditions at the
circular hole.

The procedure for including these transformations into the

computer program starts with the elliptical geometry, the material properties

and the loading conditions. Through Equations (4) and (6) the program

transforms the properties and stress boundary conditions to those of an

equivalent circular hole problem. After the solution is obtained, the

stresses for the equivalent circular hole problem are evaluated in the

rectangular (x',y',z') coordinate system. These stresses are transformed

to the stresses for the elliptical hole in the (x,y,z) coordinate system by

using Equations (6). Additional transformations of the Mohr's circle type

were included in the program to obtain the tangential and interlaminar
stresses around the elliptical hole.
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The stress analysis has the flexibility to include thermal stresses
and also to evaluate energy release rates &. This can be done by solving
the problems with different flaw lengths and evaluating & from the change
in stored energy of the system per unit area of extension in flaw. The
procedures for doing the thermal stress analysis and the energy release
rate calculations are outlined in Appendices C, D, and E. Appendix F contains

description of the input data for the computer progran.

SECTION III
RESULTS

Several problems were run wihh the equilibrium finite element stress
analysis program. These problems involve a four-ply (90/0)s laminate. The
configurations and loading conditions were a laminate containing a circular
hole under inplane loading and a laminate containing an elliptical hole
also with inplane loading.

The principal material properties for the plys are

E, = 30, E

1 =E, = 3.0

2 3

V,. =V = 0.336

T S A

23
and

G,, =G

52" %" @

g2 "t

The radius of the hole was 1.0. The thickness of each ply was
0.2 inch. Stress boundary and conditions were applied at a radius of
12 inches from the center of the hole. These stresses were evaluated
from a laminated plate theory representation for a uniform resultant stress
in one direction.

The first configuration was a (90/0)9 laminate containing a circular
hole and inplane loading in the x~direction. A reference solution for this
problem was obtained by three-dimensional displacement finite-element
computer program called SAP IV. The obtained solution and the reference
solution for the irterlaminar stress, O,, around the circular free edge
are shown in Figure 2, Figure 3 shows the e distributions along the
x and y directions for the equilibrium finite-element analysis.

A T e
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Next the problem of an elliptical hole in (90/0), laminate was
considered. The ratio of the minor axis to the major axis was 0.5. The
loading condition was inplane loading parallel to the minor axis as shown
in Figure 4. The interlaminar stress distribution for 0, at the midsurface

is also shown in Figure 4.

SECTION IV
SUMMARY AND DISCUSSION

The problem of the three-dimensional stress behavior around holes
in laminated plates is considered. This problem is inherently three-
dimensional and, as discussed in Reference [10], the characteristics of the
interlaminar stress, 0,, cannot be inferred from equilibrium considerations
alone as has been shown to be possible for the straight free edge problem.
Experimental studies and mathematical stress analysis studies addressing the
free edge problem are found in the literature. Experimental studies show
that stacking sequence has a pronounced effect on laminate strength and
fatigue life, indicating a dependence on the sign of the interlaminar stresses.
However, there is a need for a better understanding of the basic behavior
of the interlaminar stress distributions around holes in laminated plates.

Two problems that can provide insight into the behavior of the
interlaminar stress distribution near a curved free edge are considered
here. One problem is to determine the stresses around a circular hole. The
other problem pertains to a laminate containing an elliptical hole. A mathe-
matical stress analysis procedure, based on the three-dimensional finite
element equilibrium model of Reference [10], was developed to handle the
problems of an elliptical hole.

The first problem was that of a circular hole in a (90/0)s laminate
loaded with a uniform inplane extension in the direction of the x-axis.

Here a reference solution was available. The reference solution was obtained
by a three-dimensional compatible finite element stress analysis called

SAP 1V. The comparison of the interlaminar stress distributions around

the circular hole was good. The equilibrium element stress analysis gave
higher stress gradients and higher peak values of 0,, but both analyses
revealed a changing sign of 0, around the circular edge.

10
< T
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The next problem was that of (90/0)s laminated plate containing
an elliptical hole with a ratic of minor axis to major axis of 1/2. The
loading was in the direction parallel to the minor axis or in the y direction.
No reference solution was ava{lable, but the stress distribution for o,
around the elliptical hole appears reasonable if one considers this case is
similar to loading a (0/90)s laminate containing a circular hole with
inplane loading in the x direction.

The agreement between the solution generated here and the reference
solution gives a degree of confidence that the computer program for the
analysis is in working order. This program can be used to generate a
catalogue of solutions for various lay-up angles and stacking sequences
to provide a basis for a combined analytical/experimental program to obtain
a better understanding of the interlaminar stress and strain behavior in

laminates containing holes.

12




APPENDIX A

TRANSFORMATION OF BOUNDARY CONDITIONS BETWEEN
THE CIRCULAR AND ELLIPTICAL HOLE BOUNDARY

The transformation of stress boundary conditions between the circular

and elliptical hole problems can be represented by

E ¢ _
{o }NGZ = [c] {o }NeZ (A-1)
where
E o€
oN N
E c
%% %
UE UC
E s S L G Z
{0"lgez =7 E 3 {0 ez = ¢ .C
TNe NG
E c
Nz TNZ
LE c
L Toz ) [ Toz )

and [C] is a transformation matrix.
Let [T] represent the transformation matrix which relates stresses
in polar coordinates to stresses in cartesian coordinates. For the circular

hole,

c C C
0 ez = (T {0 dgyz » =R
and for the elliptical hole,
(01 gap = (11 [o%1yy : (A-3)
NOZ

The matrix [C] in Equation (A-1) can be derived from Equation (A-1),
Equation A-3, and the transformations which relate cartesian stresses of
the circular hole problem to cartesian stresses of the elliptical hole

problem. These transformations are

13




oy = GX/B ey ™ TXY/B
E 5 C c 2
Ny Txz = Txz/8
€. 2
g = (JZ/B Tyz = Tyz

From Equation (A-2),
C C,-1. C
{0 Y gyz = T7] “{o }YeZ

where

[Tc'l'1

and Ti denctes the {2 row of (11,
Using Equation (A-6) and Equation (A-3),

E E, . E
{0 ez = (T1 {07 yy,

Thus, |
(c] = [r%111¢ 171

From Equation (A-8) it can be shown that the boundary conditions

= (T5111° 17116%)

Ngz

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

for the elliptical hole problem are og(?,e,z) = ng(?,e,Z) = Tie(?,O,Z) =0

when the boundary conditions for the circular hole problem are cg(?,e,Z) =

Tho B18:2) * T, (7,0,2) = 0

14




APPENDIX B

SATISFYING STRESS BOUNDARY CONDITIONS BY
PRESCRIBING APPROPRIATE F{}) VALUES

The three-dimensional finite element model used in the analysis
of the laminated plate is shown in Figure B-1. The stress boundary conditions

applied to this model are listed below.

Table B-1
Location Boundary Conditions
T By ar(ro,e,l) = Tre(rO,O,Z) = Trz(to,e,Z) =0
rerg Uniform Stress Field
Z =0 rez(r,e,zo) = Ter(r,e,zo) =0
Z =g o,(r,8,2g) = Tez(r,e,zs) = Ter(r,Q,ZS) =0

e

The following sections describe how these boundary conditions are met by
(1)
ijk
for the stress functions, Xye These stress functions have the form

prescribing appropriate F coefficients which appear in the expressions

(1)
xy =ELE FijkPi/r)Qj(e)Rk(Z)

ijk

where I = 1, 2, or 3,

Boundary Conditions at R = R,

On the inner hole surface, Pl = P; = 1, while all other Py's

are zero. The expressions for orp(ry), T .q(ry), and T, ,(r,) and therefore

(1) (2) w2
ar(ro) =7 i {Fiijj k(1 cos e) + Fiijijcos e+

j (B-1)
1.2 (3)
FOR@/EDIR, + FD @ /R = 0

15
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(ro) = ? i { (Einchose *sinfg - gi&Qijcosesine +

(B-2)
g (3) ) PSR N
3jk(Qj/r)R + Fljk(Qj/r )Rkj |

Tez(fg) =L T { Fglin kSt 29 {;;(Qj/r)R cosf * sing +
jk

72

(B-3)
ljk(Qj/r)R cosh * sinp - ( )

2
3ijijcos Q} = 0 .

Setting the terms containing F(j; in Equations (B-1) and (B-2)
to zero gives

(3) (g (3)
Z z Fljk(Qj/ )R + ? z F3jk(Qj/r)Rk 2 2 (B-4)

(3) ;¢ £3) ot il
-§ i F3jk(Qj/r)Rk + Fljk(Qj/r )Rk 3 (B-5)

Two sets of constraint equations are generated by using symmetric

and antisymmetric Qj terms, respectively. For example, the expansion using
symmetric terms y = 1,3 5

3 0p eeeyhl 10
(1) (2) 2 (1) (1) (2)
{F33k Farpjcos @ + {‘F33k*'F35k*'F33 cos’s +

+ { pCD 4 gD L (D)

2)
35kt Fagut Fase) cos’0 + f §§i*‘F§éi*'F( 7 cos o + ot
+ {.F (1) (1) (2) {_ (1) (2) 12,
UF30k* F3 11,k Faguf cos'’0 + AT NN T e
k=124 .
Therefore,

the set of constraint equations is

16
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Q) ).
Fae* Panx "9

(1) (1) (2)

Fagpe ¥ Fagp * Py =0
G oatil .
Fask ¥ o ¥ Fagp = 0
(B-7)
T
Fak PP " Pann =% »
), (0 2 _
Tkt S st Tm"? -
(1) & - :
Ty e Wagpa ¥ TLKT RS T

The expansion using antisymmetric terms y = 2,4,6,...10 gives the

owing set of constraint equations.

(1) (1) (2)
Feo T Toop T T *9 5
5 S i
Fogx TP T T "V
(B-8)
ay , () oo
e "y iext T30

(1)
“F3,10,k

-F

i S

bl BTN R

k =1,2,3,4 -

Boundary Conditions at R = R,

The following conditions satisfy the uniform stress boundary
conditions at R = R¢.

Og %1l Ay, =0, and Txy = Txy

where 7_, gy, and Tyy are prescribed. By letting

y

N =

g 2 1l -
axRFsin e + 2 g R

X3 * y gcosze - ?xngcosesinB 3

the uniform stress requirement at R = Rp is met by prescribing the following

§(3)

1k values.

17
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(3) (3} o g (3) (3) 2k
Pau " F212 32 % Fair1 ™ Tar2 = %M
(3) (3) 1.2 - - (3) (3) o
Faa1 = Fa32 = 2 Rp@y9y) Fua1 = Fau32 = Rp@y=ay)
(B-9)
(3) 3) _ = L2 r(3) o g3 e
221 " Taz2 * T Faa1 = Fu22 = -2 Txy Bg
(3) (3)
Z]k Fijk =0 for k = 3,4
: (1) (2) .
The prescribed values of Fijk and Fijk are obtained by the same

analysis that was applied at the inner radius, except that at R = R¢, P2 = Pu =1

while all other P;'s and P;'s are zero. At R = R, the analysis gives the

following prescribed Fijk values and constraint equations.

Fi;; F;ii =0 for all j and k ,
Faow* oty =@ s Pt Tl "0
T Tt Tkt 0 Fug et Tua O
T Rt T m® 0 Faat Bimct et O (310

LAR). R L ) uti) oy WR8) o

are T Tann T Tan ’ a8kt Fa,10,k t Fask .

(1) (1) (2) (1) (2)

B R W W ™ el ! T e N ek
(1) (2)
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These equations and prescribed F{jk values apply to elements 2,4, and 6 of
the finite element model.
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Boundary Conditions at Z = 0

% = 1 while all other Rk's and
R/'s are zero. These conditions and the relationships
k

On the lower plate surface, R, =R

1t

p{ =Py , P{-- -Pé' : Q{ =Q'=0 , (B-11)

give the following prescribed conditions for elements 1 and 2,

Sale,
i} §>1, 1 =3,4,56 (B-12)
(D) _ D) (2)
¥113 * P21y 1 R

Boundary Conditions at Z = Z¢

, " Ré = 1 while all other Rk's and

Ré's are zero. These conditicus and Equation (B-11) give the following

On the upper plate surface, R

prescribed conditions for elements 5 and 6.

e R ey

nz “'az.o a7 L RS Bt

F{}Z . FSZ ’ F;;Z =0 ., §J>1, i=3,4,56
(B-13)

F{i; > Féf; ’ Fii; kS §>3, i=3,4,56

e " Ths » T "0 . 331, tedase

A comparison of the appropriate equations developed in this appendix

shows the specified F values to be compatible in elements which are

I
ijk
bounded by more than one surface.
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APPENDIX C
THERMAL STRESS ANALYSIS

This appendix describes how thermal stresses due to a constant
uniform temperature were included in the laminated plate analysis. The
procedure is listed in terms of the following three steps.

Step 1. Write the expression for the part of the

complementary energy density, uE, due to
thermal strains and obtain an expression
for the thermal strains in the (r,8,z)
reference coordinate system.
Step 2. Express uz in terms of the stress functions
and the thermal strains of Step 1.
Step 3. List the integrals of r, 8, and z that are
required and determine how to evaluate them.
In Step 1, the expression for the complementary energy density

due to the thermal strains is denoted by uz and can be written as

uz = e:gr + ezqg + ezaz + ygi By ygi s < y;z Tro (C-1)
The material is assumed to have three principal coefficients of thermal
expansion that coincide with the principal material directions. These are
denoted by o, o, and oy, Figure 1 shows the principal material directions,
the (x,y,z) and (r,9,z) coordinate systems for a typical lamina. Expressions
for the thermal strains in the (r,9,2) systems are needed for the analysis.
To obtain these expressions, the thermal strains are first transformed from
the (1,2,3) system to the (x,y,z) system and then to the (r,€,z) system.

Transforming the thermal strains from the (1,2,3) system to the

(x,y,z) system gives
2 2
eI = (alcos ® + azsin @) 4% 3 (C-2)

e: . (015*“2¢ + “2°°32°) AT , (€-3)
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[ o - e <
6, " a,AT (C-4)
G
ny = (2q1cosmsin¢- 2@2c03¢sin¢) AT 4 (C-5)
T i
and Ve ™ yyz =0 , (C-6)
where ¢ is shown in Figure 1 and AT is the temperature change. Since ¢,
AT, @y, @, and @3 are constants for any lamina, the strains in Equations (C-2)
through (C-6) are also constants for any lamina.
The result of transforming Equations (C-2) through (C-6) to the
(r,8,z) directions is
T T2 T2 T
" c, =em ¥ eyn % Yxy™® » (c-7)
L = eTn M Tmz - .
€g = &N tem -y mn (c-8)
T T
€Z - €z ’ (C-9)
z T & 2id i
Voi Mo Ze mn + 2eymn + (m -n") Vg ¥ (c-10)
T T
and R YBZ = . (c-11)
where m = cos f (C-12)
and n = sin @ " (c-13)
The strains in Equations (C-7) through (C-11) are functions of 8. Combining
Equations (C-7) through (C-11) with Equation (C-1) gives an expression for
the complementary energy due to the thermal strains in terms of stresses
and strains in the polar (n,8,z) coordinate system.
In Step 2, the stresses that are needed to evaluate uz in Equation
(C-1) are 0, 9, 9, and Tre’ The stresses Trz and Tez are not needed because
YEz = Ygz = 0 from Equation (C-11). The expression for ug in terms of the
stress functions and the thermal strains is obtained by expressing the stresses
{ 21
'
R - - — T
i b ana ‘?F':*’&' k. v




in Equation (C-1) in terms of the stress functions and substituting Equations

(C-7) through (C-13) into Equation (C-1). The result for a lamina is

F 4 g 2 T ;
uz = (€:C0528 + eysin o+ Yoy cos § sing) x

r (1) " +
E;i XFijk P, (r) Qj(ﬂ) R (2)

E%) P.(r) Q (8) R"(z) cos 9 +

g(2)

" 2
1Jk Pi(r) Qj(e) Rk(z) cos g +

€)  J
+ PO (R (0/EQ)(0) Ry(2) +

+ P (B0 Q)(0) R} +

2
+ (ez sin2 8 + 65 cos A - Y:y cos Asinp) x

zzz {F(‘) Py(r) Q;(8) RY(2) coe'g +

r(2)

+ jk

PL(X) Q(8) Ry(2) +

(2)

" - 2
- Fijk Pi(r) Qj(a) Rk(z) COSQ +

(3) pn T
+F{k PRI Q) R ()] + ¢ x

(1) pu
= {rilh I 0,0 R () +

i;a P"(t) Qj(e) R (z) cos e + ;
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+ zpf}"( (P{(0)/7) Q!(8) R (2) cospsing +

«

(1) "
+ jk (P (r)/r ) Qj(e) R (2) cos 9 +

+ (;; (B (5)/1) @ (®) R, (2) cas’s 4

= g;; (P (r)/r ) QJ(Q) R, (z) cos §sin g+

+ F(z) P"(r) Q.(a) R (z) cos e +

ijk 3
: iﬁ (B{(r)/r) Q}(a) Ry (2) cospsina+

+ F:i‘)‘ (Pi(r)/rz) Q'j'(g) R, (2) +

% iii (Pi(r)/rz) Q) (9) Ry () s +

i ii; (P (r)/r) Q;(0) R (2) +

T iii (R{(r)/r) Q;(0) R, (2) cos p +

X Eji (B, (£) /2% Qj(8) R, (2) cos gsin qj +

T T 2 T
+ (-2cx cos Asinpg+ Zey cos §sing - (2 cos e—l)yxy) X

(1)
Eﬁi Lpijk

- :jl): P (l’) QJ(‘)) R"(!) cos psinp+

P,(r) Qj(a) R"(z) ccs psin g+

-F) @l /e) Qo) R(2) +

Tisk j
E)
+ Py @ /%) Qo) R ()} (c-14)
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In Equation (C-14), Pj(r), Qj(e), and Rk(z) are the assumed functions for
the finite element representation of the three stress functions. The
Fi?;'s are the unknown coefficients for the stress functions associated
with Pi(r), Q’(n), Rk(z) and theaLth ?Eies; function. In solving thermal
stress problems, the value of ap(L) {Jjj ucdv}> must be evaluated and

ijk Vv

subtracted from the right-hand side of the system of equations. It can
be seen from Equation (C-14) that the following integrals are needed to

evaluate these terms.

e

J Pi(r)rdr "

-

rp r

TR () ? P, (r)

J 3 rdr = J g™,
r, ¥ r

1 1

>4

F Ror)

i

J r  Tdr = P(r)) - Pu(ry) ,
r

1
ks

" opn - ' 3 ' %
J Pi(r)rdr rzPi(rz) rlPi(rl) Pi(rz) + Pi(rl) 1

r

1

"

ICRGHOTIS

1

where f(g) = 1, cosze, sinze, cosag, cosze stnzo,
cos psing, cos A sin@,

A2

IEHOHOEI

%1

where g(g) = 1, cospsing, coaze, unze,
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JQj(a)h(e)da ,

%1 2 2
where h(gq) = 1, cosasina, cos /, sin 9 ,

s

I R, (2)dz ,

2

®2

and I RU(2)dz = RY(2,) = Ry (2)) !

"

The integrals in r can be evaluated by using the existing procedure for
jPi(r) Pz(r)f(r)rdr and setting Pz(r) =1, f(r) = 1. Values for the
integrals of @ can be obtained with the existing procedure for evaluating
J Dij(e)Qm(a)f(e)de by setting Qm(e) =1, f(8) equal to thi’exggessions
listed above for £(8), g(8), and h(g), and setting Dp =1, EE,:EI as
needed. Similarly, values for the z-integ:rals can be obtained with the
existing procedure for ij(z)Rn(z)dz with Rn(z) =1,

The effect of the thermal strains is to change the right-hand

side of the system of equations to be solved by subtracting the vector of
(L)
ijk

contribution to the right-hand side of the equations was written and added

values given by 3/3F {I&fuzdv}. A subroutine to evaluate the thermal
')

to the program,
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APPENDIX D

THROUGH CRACK PROBLEM

e

....

a through crack from a cricular hole. Two cracks of equal length, along

a diameter were considered. The approach taken here is to add the stress-free
boundary conditions for the crack faces and compute an energy release rate

for the configuration., The requirements for stress-free boundary conditions
are given in Appendix E. The energy release rate, ¢, is the amount of energy
per unit of length that the laminated plate would give up if the crack were

to extend a small amount. The expression for & is

P C+€gc-E C (-1)
AC*0

where C is the crack length, AC is an assumed change in crack length, E(C+AC)
and E(C) are the strain energies for the laminate with crack lengths C+AC
and C, respectively, and t is the laminate thickness.

For linear elastic materials, the strain energy is equal to the
complementary energy of the laminate. The expression for the complementary

energy of the laminate can be written as

Y
1 1 ‘12 ,
Me = 3 [F.F [ ; ]{ } (0-2)
P21 Sl

where F is the vector of unknown coefficients, Fp is the vector of prescribed
coefficients, and [Cij] is the symmetric flexibility matrix. Multiplying out
Equation (D-2) gives

T

e BB T T
e 2 LP cllF + 2F Clep + FpCZZFp.J (D-3)

The solution of the problem, F*, is obtained from the equation

e

Vel = CpyF* + CppF = 0 (D-4)
26
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In Equation (D-4) the term Clep is the right-hand side, RHS, of the
equations to be solved. Thus, from Equation (D-4)

CllF* = =-RHS (D-5)

Substituting Equation (D-5) into Equation (D-3) and putting the solution
F* for F gives

1[.,T T T. 1
m, =1 [p* (-RHS) + 2F " (RHS) + F_C,,F® |
or
o & [pa? T 1
e ™3 L,F* RHS + FPCZZFPJ (D-6)

The first term in Equation (D-6) is the vector product of the solution vector
and the right-hand side vector. The second term in Equation (25) is
contribution due to the prescribed coefficients Fp. This term can be
evaluated before the solution vector F* is solved for.

Since the strain energy E is equal to the complementary energy,
M., Equation (D-2) can be written as

ﬂC(C+AC)-nC(C)

tAC

4 = lim
AC*0
This procedure for evaluating 4 was included in the program.
A description of the computer program and the input data is given
in Appendix F.
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APPENDIX E

FORMULATION OF SEVEN CRACK PROPAGATION PROBLEMS
BY IMPOSING ADDITIONAL STRESS BOUNDARY CONDITIONS
ON ELEMENTS 1, 3, AND 5

A crack originating at the inner plate radius is included in the
finite element analysis by applying the boundary conditions

- T = 0
0 = 0° rele = 0° ez'e = 0°

6 = 180° e = 180° e = 180°

o =T

8

to elements at the crack location. For each of these elements, the above

boundary conditions reduce to

[p(1)p p(3pe
ijk 1 ijk Fi j ijk i k} g = 0°
8 = 180°
[_p(3) 3) 2
LEE (P /t)Q!R, + F (P4 /t¥)Q:R =0 (E-2)
ijk 1 ijk ik ijk j k} 6 = 0°
5 = 180°
(D
i j P P/OR e
6 = 180°
Where
’ ’ ’ ’
Pl = -P2 Rl = -Rz \
" " " ”
Pl = -Pz Rl = -R2
1 odd i values $
QJ|9 . 0° ” { 0 even j values (E-4)
9 = 180°
’ o { 1 even j values
Qj|e . 0° 0 odd j values ]
e = 180°
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Equations (E-1) through (E-4) give the following prescribed F:jk

values which are applied to each element at a crack location.

Fi?i «0 , k>3, all i and j
Fi;i . Fi}% J sll 1 and §

pigi -0 , all §and &, 123
piii -0 , 3.4 Y51
r{ia o vy all k
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APPENDIX F

INPUT DATA FOR THREE-DIMENSIONAL
EQUIL1BRIUM FINITE ELEMENT ANALYSIS

The analysis consists of four programs, PROA, PROB, PROC, and PROD.
PROA read in the data to describe the problem and generates the integrals
of the products of polynomials in the r and z directions. PROA also integrates
the theta modes and stores them on tape. There is an option not to evaluate
these integrals if they are already evaluated and stored on the tape. PROA
also identifies the prescribed, independent and dependent coefficients of
the stress functions.

PROB has no card input. Data is transferred to PROB from the tape.
The purpose of PROB is to set up the matrix and right-side for the system
of equations to be solved. PROC requires data to describe constraints or
independent coefficients that are associated with the same element., These
constraints arise from satisfying the stress-free boundary conditions at
the free edge around the circular or elliptical hole. Constraints also
arise in the case of the through-crack problem. The form of the constraints
is given in Appendices B and C. The purposes of PROC is to solve the system
of equations generated by PROB, This is done with extended core storage
or with mass storage.

PROD evaluates stresses and strains at selected points in the laminate.
These points are identified by input data. PROD also receives input data
from the tape.

30
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PROGRAM PROA
Variable
JKEY, NCP

JKEY = 1 for temperature problem, Y

NCP r 7 - through crack

§
| & « uo orach « If temperature problem is required, fead

TEMPC 10.6
TEMPC = Temperature change
and ALP1(3), ALP2(3), ALP(3)
ALP1(3), A2P2(3), A2P(3) are the coefficients of expansion 363F10.7/)
BETA
BETA = 1 for circular hole problem. Otherwise a/b. F134.9
OPT 13

OPTQ = 1 for the Q's to be generated. If Q's need to be generated,
read

NTRE 13
NTRE is the size of the Q matrix,

RNX, RNY, RNXY. These are estimated stresses. (3X, 3Fy.3)

IPRNT, ICHR, ICHZ 312

1f (IFRNT .NE.O) program prints check information. This is

used for checking operation of program and transfer of data.

ICHR and ICHZ determines whether the integrals of R and Z

should be recalculated. Both ICHR and ICHZ should have the

same value. If a problem with the same element R and Z sizes that
are on Tape 1 is being run, the integrals need not be recalculated
and ICHR = ICHZ = 0. Else set both = 1.

RB(1), A(1) 2F10.0

RB(2), A(2) 2F10.0

RB(1), A(!) = Inner radius and R length of inner elements
respectively. RB(2), A(2) = Irner radius and R length of
outer elements respectively. RB(2) = RB(1l) + A(l)

MMP(1), MMP(2) 212

MMP(1) and MMP(2) are minus the starting powers of R in the series
for the inner and outer elements raspectively. Generally
MMP(1l) = 2 and MMP(2) = 2 or O are used for circular holes.
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Variable Format
LNR (set equal to ze:o0) 12
NTZ (set equal to four) 12
MMR(1), MMR(2), MMR(3) 312

MMR(1), MMR(2) and MMR(3) are minus the starting powers of the
z-series terms going from the center to the outer plies respectively.

LNRZ (set equal to zero) 12

ZB(1), H(1l) 2F10.0
ZB(2), H(2) 2F10.0
ZB(3), H(3) 2F10.0

ZB and H are the starting local coordinates for the z-axis on the
element and the thickness of each ply (starting with the center
ply(l) and going to the outer ply(3)) respectively. If

MMR(I) .GT.0, then ZB(I) .GT.O.

The following data describes the theta terms in the series. In the
following description, the relation between N and the theta terms is

N > 1 and odd N > 2 and even
Q) = (cos V! Q(8) = (cos »" ! sin g

These data are read in for each stress function, and for the theta
varjation at (1) the hole, (2) between the inner and outer elements,
and (3) at the outer edge of the outer element.

The order is
Stress Function No. 1 $° varistien
Locacion A. Around the hole { ¢, variation
@y variation
® variation
Location B. Between inner and outer elements { @, variation
@ry variation

¢ variation
Location C. Outer edge of outer element { ¢, variation
’rr variation

Stress Function No. 2

Same order as Stress Function No. 1

Stress Function No. 3
Same order as above
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Variable Format

For each stress function and each location and each ¢, ¢ and ¢, two
cards are required. These are

NTV 12

NTV is the number of terms in the theta variation series.
NTV < 18 and (IDT (ISF,I,J), J = 1, NTV). 2412

IDT1 (ISF,I,J) is the value of N described in the preceding.
ISF = 1, 2, or 3. I goes from 1 to 6 and denotes ¢, @5 O B,
variations.

Thesc two data card formats will be repeated a total of 3ISF-s x
3 locations x 3 (variations on ¢, ¢,., or Prr) = 27 times.

The next set of data describes the strain-stress relations and the
ply singles. For each ply, starting with the center and working to
the outer ply, the following data are needed.

PHI F10.0

PHI is the ply angle. with respect to the § equals zero line.

PROGRAM PROB has no input data.
PROGRAM PROC

The data for PROC is to put constraints on the stress function
coefficients that could not easily be handled elsewise. These
constraints are of the form, X; = Yy + Z;, or X; = -Y;. Other
constraints of the form Aj = Bj are handled automatically within
the program. The data read in are (1) the number of equations of
the form Xy =Yy +Zj or X{ = -Yj, and (2) identifiers for Xj,

4+ ¥4, and + Z;. The input is as follows.

NEQ 12

NEQ is the number of equations of the form Xj = Y{ + Z{ or

Xy = -Y4 to be satisfied.

(J,DEP(K), IN1(K), IN2(K), K = 1, NEQ) 12,8X,3(16,4X)

J is not used by program. It is a means to number the input data

cards. DEP, INl, and IN2 have the value K + 10J + 1001 + 1000ISF

+ 10000 EL where the element number is EL, the stress function

number is ISF and the coefficient is FIJK of the term Fyjx Pr(R)Qs(8)Rg(2).

A minus sign in front of IN1 or IN2 indicates there is a negative
sign in the equation. DEP i{s always positive. INl may be positive or
negative but not zero. IN2 may be positive, negative or zero.
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Variable Format

PROGRAM PROD

IREAD, IPUNCH 212

IREAD = 1 if solution vector is supplied on cards, else
IREAD = 0. TIPUNCH = 1 if solution is to be punched out on
cards, else IPUNCH = O.

If IREAD = 1, then supply

NC 110

NC = Number of coefficients in solution

(SV(I), 1 =1, NC) (2X,4E16.8)
SV(I) = solutions vector.

Comment: The following is data describing locations in the laminate
that stresses are to be printed out.

L 12
L = Element No. 1 <L <6. If L =0, program stops.

NRBAR 12
NRBAR = Number of radii to calculate stresses at 1 < NRBAR < 11.

(RBAR(I), I = 1, NRBAR) 11F5.0

NTBAR 12
NTBAR = Number of thetas to calculate stresses at 1 < NTBAR < 21.
(TBAR(I), I = 1, NTBAR) 11F5.0
Values of theta, no more than 11 per card.

NZBAR 12
NZBAR = Number of Z locations to calculate stresses at 1 < NZBAR < 11.

(ZBAR(I), I = 1, NZBAR) 11F5.0
Z locations.

All six stresses are calculated at the each of the R, 9, and Z points
described by input., To compute stresses for another set of points,

repeat input, starting with L. Last card in data for PROD should be
a blank card.
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