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A

A model for the faulty behavior of digital networks realized using
integrated circuit devices is proposed. This model, the pin fault assumption,
is based on a study of the most frequently encountered failure mechanisms
for such networks, and the observation that previous fault assumptions model
a large number of faults which occur with low frequency. The basis for the
pin fault model, and an investigation of multiple fault detection using this
model is presented.

Fault detection for combinational modules is investigated, and it
is shown that multiple pin fault detection tests sets for such modules may
be quite easily generated. The computation required to generate such test
sets is independent of the circuit realization internal to the model, and
each test generated requires about the same amount of computation. The
computational complexity of test generation is greatly reduced compared to
that for previously studied fault models.

Pin fault detection experiments for sequential machines are
studied, and methods for designing such experiments are developed. These
design methods are compared to those under other fault assumptions, and a
substantial reduction is observed in the length of such sequences and the

computation required to produce them.
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1. INTRODUCTION

Reliability has been recognized as a primary engineering consi-
deration in the development of digital systems for quite some time. Unlike
most other electronic apparatus, failures in digital systems are in many
cases not readily apparent. Consequently, the problem of ensuring the
reliability of the computations produced by digital systems has been
actively studied. This area, which has come to be known as fault-tolerant
computing, has taken many directions, and has been studied from many

application viewpoints.

1.1. Fault-Tolerant Computing

It has been recognized that reliability is not a problem which
can be effectively dealt with after a system has been designed, but rather
must be faced from the inception of the system design. The various
approaches to the achievement of some degree of fault-tolerance may be
loosely classified into two categories: fault diagnosis with repair, and
fault masking.

The principle behind fault diagnosis and repair is that the
system is tested either periodically or continuously, and upon the
determination that a failure has occurred, computation is interrupted and
the system is restored to failure-free status through repair. If this

testing is done on a periodic basis, and a failure is detected during
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some diagnostic interval, then all of the computation performed since the
previous diagnostfc interval is suspect. It therefore becomes necessary
to repeat these suspected computations. If, on the other hand, the system
has been designed so that diagnosis takes place concurrent with normal
operation, failures are immediately detected, and the need to repeat a
potentially large amount of computation is eliminated. The primary trade-
off between these two approaches is that a significant amount of additional
circuitry is required to effect on-line diagnosis, whereas periodic
diagnosis requires little or no circuitry beyond that required to perform
normal computation. An exception to the latter statement is the case
where periodic diagnosis is an automated function of the system, and
repair is achieved through switching from faulty subsystem modules to
standby spares. The problem of generating a suitable set of diagnostic
tests has received much attention [1,2,3]. The development of systems
capable of currently testing themselves is a more recent development [4,5].
The possibilities for long range space exploration have prompted investi-
gation into the feasibility and implementation of self testing systems
with repair capability [6].

Fault-tolerance may also be achieved through the use of redundancy
introduced in a way which prevents failures from propagating to a point
where incorrect system operation would result. Redundancy which achieves
this fault masking effect may take several forms. Triple modular
redundancy [7] or the more general n-tuple modular redundancy [G] achieve
fault tolerance through replication of functional modules, the outputs of

which are compared, and the majority output propagated. Redundancy may
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be introduced at the logic level by a technique known as quadded logic [8].
Automatic repair may also be employed in modular redundancy schemes by
switching in standby spares to replace modules which produce minority

outputs [6].

1.2, Fault Detection in Digital Systems

Regardless of the particular design approach used to achieve
fault-tolerance, the ability to test the logic networks which implement
the system is essential. For example, in the totally self checking
approach [4,5], it is essential that the circuit be designed so that the
input code space includes a test set for the circuit. In cases where
modular redundancy is used to achieve fault masking, reliability enhance-
ment occurs only if it can be guaranteed that initially all the hardware
is functioning correctly. This requires a system checkout phase in which
the system is reconfigured so that the replicated modules may be
individually tested. Consequently, fault detection is a problem which is
central to the whole realm of fault-tolerant computing.

The fault detection problem may be stated as follows. Given a

digital network and a set of faults which can occur, derive a set of inputs

which can be applied to the network such that normal response to the test
set ensures that none of the faults in the fault set have occurred.

As this statement of the fault detection problem indicates, it
is first necessary to define an appropriate set of faults, This set of

faults represents an abstraction or model of the ways in which physical

AR 5, R N A 4 o S S,



failure phenomena effect the behavior of the network. The selection of a
fault model determines the effectiveness of the solution to the fault
detection problem, and is therefore a very important consideration. 1In

: addition, this selection also has direct impact upon the derivation and
analysis ~f suitable test sets.

The selection of a fault model represents a trade off between
completeness in terms of modeling all posvible physicai failures, and ease
of generating test sets based on the model. Each physical failure mode
i has some probability of occurrence. The ''coverage' of a fault model is the
conditional probability that given a failure has occurred, the failure
affects the network in the same way as one of the faults in the model.

- A good fault model is one which facilitates the analysis necessary to
derive test sets, but also has an acceptably high cowerage.

Existing fault models [9,10] are based on the assumptions that
faults are "logical' and '"permanent'" [9]. The term '"logical' means that
failures transform the logical network into another logical network. This
assumption is necessary in order to avoid having to analyze the voltage and
current waveforms in the electronic circuits which realize the network.
The term 'permanent'' means that once a fault has occurred that fault will
remain until it is repaired, although other faults may occur subsequently.
It is further assumed that failures may be modeled as permanent logical
constants occurring at gate inputs and outputs. This fault model is known
as the '"'stuck-line'" fault model because the faulty network behaves as if

certain gate inputs and outputs are 'stuck' at a logical 0 or 1. This

model is amenable to analysis because the gates which make up the network
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retain their logical properties. The stuck-line model has proven to be
quite effective in terms of fault coverage. Fault analysis under the
stuck-line fault model is dramatically simplified if it is assumed that at
most one gate input or output is stuck. This assumption is based on the
reasoning that if the system is relatively reliable, the probability of
more than one fault occurring between diagnosis intervals is acceptably
low. However, this implies that at some point the network is fault-free,
and further, that the network is diagnosed sufficiently often. Also it is
implied that the physical failures are adequately modeled as single stuck
faults. These assumptions are difficult to justify in many instances.
More recently attempts have been made to relax the single fault assumption
and consider multiple faults, i.e. faults made up of a set of gate inputs

and outputs stuck at logical constants [11,3].

1.3. The Pin Fault Model

State-of-the-art digital system design techniques rely heavily
on medium- and large-scale integrated circuit technologies which have
been developed in the past decade. This continuing trend has allowed the
implementation of digital systems of extremely high complexity. Existing
fault detection techniques have become increasingly difficult to apply to
such systems [12,13,14], since as gate counts increase, the single fault
assumption becomes increasingly difficult to justify, while the number of

multiple faults increases at an exponential rate.
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This thesis propcses a new fault assumption, the pin fault model,
which appears to retain an acceptable degree of fault coverage while
allowing fault analysis and test generation to remain within the realm of
computational feasibility. In this model, ''stuck-at' type faults are
assumed to occur only at input and output pins of integrated circuit
modules. This substantial reduction in the number of fault sites, in
addition to the implicit assumption that the logical network within the

integrated circuit boundaries remains fault-free, allows multiple faults

to be considered easily.

1.4. Outline of the Thesis

Chapter 2 inéroduces the pin fault model. Motivation for its
application and justification in terms of fault coverage is presented.

In Chapter 3, fault detection under the pin fault assumption is
examined for combinational circuits. Test sets for multiple pin fault
detection are investigated, and a test set generation algorithm is
developed.

Chapter 4 considers sequential circuits. The design of test
sequences capable of detecting all multiple pin faults for synchronous
and asynchronous circuits is studied.

Chapter 5 concludes the thesis. Design rules to enhance test
generation under this fault model are discussed. Conclusions about the

fault model are presented, and areas for further research are proposed.
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2. THE PIN FAULT MODEL

2.1. Introduction

Medium- and large-scale digital integrated circuit devices make
available single-package networks consisting of hundreds or even thousands
of equivalent gates. The use of such devices in digital system design has
become widespread because of the savings in cost, physical size, power
consumption, speed, and reliability. As indicated in the previous chapter,
the vast increase in the complexity allowed by such technologies has
created a dilemma in the testing of such systems. This thesis proposes
an alternative to existing testing methodologies which is based on a fault
model that results in a significant reduction in the number of modeled

faults.

2.2. The Proposed Model

A fault model is an assumption made about the behavior of
networks which have suffered physical malfunction in the electronic circuits
used to implement them. This assumed faulty behavior is the basis for
analysis of faulty networks, and the generation of fault detection tests.
Most previous work in the area of fault detection has been based on the
stuck-line fault model. The fault model to be defined in this section
retains the use of logical, permanent faults of the "stuck-at" type,

however the set of possible fault sites is reduced.
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In practice, integrated circuit modules which contain the
necessary logical functions are interconnected to implement the desired
network. The proposed fault model, called the pin fault model, assumes
that stuck-at type faults occur only on the input and output pins of the
integrated circuit modules of the network.

Figure 2.1 illustrates the fault sites for the stuck-line model
for a carry-save full adder circuit which occupies half of an integrated
circuit module. There are 33 such fault sites. Under the pin fault model,
the set of fault sites consists of input pins Cn’ B, and A, and output
pins Cn+1 and ., It can be seen that the reduction in the number of fault
sites under the pin fault model compared to the stuck-line model becomes
more pronounced as the ratio of internal lines to pins increases.
Integrated circuit fabrication technology is limited by the number of
chip leads which can be brought to the 'outside world'" (14-40 pins)
rather than the amount of internal logic. As a consequence, the types of
circuits which are integrated are typically those for which the pin fault
model leads to a large reduction in the number of fault sites. This
reduction in the number of fault sites has the potential for simplification
of fault analysis and test generation, however it also has the potential
for reducing the fault coverage. This implication is considered in the
next section.

The pin fault model assumes that multiple as well as single

stuck-at faults may occur on module pins. The desirability of the multiple

fault approach has long been recognized, however the difficulties encountered

in its application to the stuck~line fault model have been substantial.
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Figure 2.1.

@ stuck-at fault sites

Carry-save full adder circuit with fault sites.
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Subsequent chapters in this thesis show that the multiple fault approach
is more tractable under the pin fault assumption. This multiple fault
assumption greatly improves the fault coverage of the model. 1In addition
to failure mechanisms which directly effect module pins, the multiple pin

fault approach models many internal logical faults through fault equivalence.

2.3, Justification of the Pin Fault Model

In order for the pin fault approach to be valuable, it is necessary
that it provide adequate fault coverage. The evaluation of this quality
involves a statistical analysis of actual circuit failure modes in order to
determine what fraction of all failures are modeled by multiple pin faults.
The analysis of failure mechanisms is conducted primarily by semiconductor
manufacturers, and data is not generally available.

Available failure data for digital integrated circuits show the
dominant failure mechanism to be '"lead bond" failure. These failures occur
at the interconnection between the integrated circuit package pins and the
silicon chip itself [15,16). Such failures result from thermal and
mechanical shock and high humidity. Failures may also result from electrical
overload. For example, if the output pin of a TTL logic gate which is in
the high state is inadvertently shorted to ground, as by an oscilloscope
probe, the output transistors will fail. Another example is voltage
"overshoot'" on an input pin. Such electrical stress typically results in

a failure of input or output transistors.
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Overall system reliability depends on the reliability of the
interconnections between integrated circuits and the distribution of supply
voltages, in addition to the integrated circuit reliability. Present day
system packaging techniques utilize multi-layer printed circuit boards to
mount and interconnect the integrated circuit modules. The interconnecting
lines are deposited on the boards by photolithographic techniques, and the
integrated circuit modules are then soldered in place. These solder joints
must make connections between the integrated circuit pins and the printed
wires on interior layers. Studies have shown that these solder joints and
the printed circuit routing are typically less reliable than the integrated
circuit devices used in the system [16]. Therefore such failures represent
a dominant failure mode for the overall system.

The common logic families (TTL, ECL, MOS) are designed so that,
under normal operating conditions, the various parameters of the transistors,
diodes, and resistors are quite stable with respect to time. This is the
reason for the outstanding reliability of such devices (50 - 100 failures
per 109 hours [17]). Semiconductor manufacturers do extensive testing of
semiconductor chips during fabrication to eliminate devices whose parameters
do not fall within the design margins. These two facts suggest that
failure of some component within a silicon chip is highly unlikely,
especially compared to lead bond and solder joint failures.

All of the failure mechanisms discussed are suitably modeled by
the pin fault assumption, since they all result in logical behavior
characterized by input and output pins being stuck at logical constants.

Based on available data, the pin fault model appears to provide excellent
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fault coverage. This conclusion implies that although the classical stuck-
line fault assumption models more faults, most of these faults occur with

negligible frequency.
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3. FAULT DETECTICN IN COMBINATIONAL MODULES

3.1, Introduction

The most fundamental context for considering fault detection
strategies is at the level of the single-output combinational module.
Development of fault detection theory at this level is basic to all types
of digital systems.

The following nomenclature will be used throughout the remaining
chapters. X is an input vector consisting of £ coordinates designated by

subscripted variables, e.g. x, is the i-th coordinate of vector X.

i

Definition 3.1: Combinational function Z(X) is a nonvacuous function

of X = x.x such that

of X if there is no component Xy 1%9° %y

Z(xlxz...xi_1 0...xz) - Z(xlxz...xi_1 1...xL).

Except where noted, all combinational functions will be assumed
to realize nonvacuous functions of X. Figure 3.1 represents a combina-
tional module.

In this chapter the problem of constructing test sets for
combinational modules is considered. A theory for such testing is studied,
and a test generation algorithm is developed. The computational feasibility
of this algorithm for large modules is investigated. Finally minimum length

test sets and the extension to multiple-output functions are considered.
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Figure 3.1. Module M realizing function Z = f£(X).
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3.2, Preliminary Discussion

The following definitions are presented to simplify discussion of

the fault detection problem :

Definition 3.2: The multiple pin fault set, g is the set of all possible

MI
assignments of stuck-at-0, stuck-at-l, and normal (fault-free) values, except

the all-normal assignment, to the £ inputs and output of module M. The

all-normal assignment is denoted as 9.

When considering realizations of functions which may contain
faults, it is convenient to consider the output of the realization to be
a function of both the input vector and the fault condition of the
realization, This functional relationship is den.ted as Z(X,F) where F€3M

and M is the module which realizes Z(X) in the absence of faults.

Definition 3.3: T = {tl,tz,...,ts}, a set of input vectors, is a multiple

pin fault test set for module M if, for each F €3M, there exists at least omne

3

tiGT such that

2(t;,F,) # 2(t;,9).

j

The multiple pin fault set contains 31'+1

~1 elements, hence we
strive to avoid the consideration of faults from this set on an individual

basis. The following definitions are useful in discussing various faults.

Definition 3.4: A fault from the multiple pin fault set is comprised of

components. Each line which is assigned a non-normal value, i.e. stuck-

at~-1l or stuck-at-0, is a component of the fault. A multiple pin fault may
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be thought of as a set of single faults existing simultaneously, with each

single fault being a component.

Definition 3.5: A fault component is detected completely by some test

vector ti it

Z(ti,F ) # Z(ti,¢)

j

for all F, which contain the fault component.

j

One way to avoid consideration of all the elements in 3M is to
consider all of the possible fault components, and generate a test set which
completely detects each of these fault componénts. The following theorem

forms the basis of such a strategy.

Theorem 3.1: T = [tl,tz,...,ts} is a multiple pin fault test set for

module M realizing function Z(X) if for every input variable Xy there

, t, €T such that t, and t, differ only in

exists a pair of test vectors t Kk j K

3

coordinate i and Z(t,,9) # Z(tk,¢).

3

Proof: Any fault F which contains the output Z as a component will be

completely tested by the pair t If a component of some fault F is

j'tk'
input Xy stuck at either 1 or 0, the internal logic network of module M

will receive the same input vector for both t, and tk’ since tj and tk

]
differ only in coordinate i. Hence Z(tj,F) = Z(tk,F). Since

Z(tj,¢) # Z(t,,9) then either z(t,,F) # Z(tj,¢) or Z(tk,F) # Z(tk,¢)

J’
i

hence a fault component on line x, is completely detected by either t, or

]

£y - Q.E.D.
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Corollary: At most 2{ and at least £+1 tests are required to satisfy
Theorem 3.1, where £ is the number of input pins.
Proof: Obviously no more than 2{ tests are required; however fewer than

24 may be sufficient if it is possible to select test vectors so that some

vectors are common to 2 or more of the test pairs for some of the variables.

If maximal sharing is possible, then after the first variable is tested
with a pair of tests, each of the remaining £-1 variables may be tested
by using one of the previously selected test vectors plus one new test

vector thus requiring a total of L+l tests. 0.E.D.

Functions which can be tested in accordance with Theorem 3.1
and meet the lower bound given in the corollary are numerous. Obvious
examples are functions which are represented as a single minterm and
functions containing a minterm which is also a prime implicant. The test
sets for these functions contain the vector which is a prime minterm plus
the £ input vectors which are obtained from the prime minterm by comple-

menting one variable.

Theorem 3.2: Any module which implements a nonvacuous function of £
variables possesses a test set satisfying the hypothesis of Theorem 3.1.
Proof: If no such test set exists for function Z(X) which depends
nonvacuously on XpsXpseeesXy,y then there must be some variable, Xy for

which

z(allazi’ b "ai-l’o" vo’az) - Z(QI’QZ’...’I'...’at)
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for all possible assignments of 01,02,...,01_1,01+1,...,Ol. If this is so

then Z does nci depend upon x The theorem follows by contradiction.

i
Q.E.D.

Theorems 3.1 and 3.2 characterize a multiple pin fault test set
and establish that such a test set always exists. These concepts can be
formulated into a test generation procedure. A primary goal in the develop-
ment of this procedure is to minimize the computational complexity of the
procedure. In general, a function will possess several test sets of the
type defined by Theorem 3.1. The generation of a test set of minimum
size, i.e. one with the fewest test vectors, requires an examination of all
of the test sets which exist for a particular function. Minimization of
test generation complexity and minimization of test set size are therefore
conflicting goals. The number of module pins, £+1, is a parameter which is
primarily determined by integrated circuit technology. Manufacturers
strive to reduce the module pin count to the minimum in order to increase
manufacturing yields. Thus the number of inputs is limited to a relatively
small number. As a result, the reduction of ITI from 24 to something in the
range 4+1 < lTl < 24 1is of questionable value and the additional complexity
in generating a minimum or near minimum test set may not be justifiable
in many practical situations. Minimum test sets will be discussed later
in this chapter; however the main algorithm of this chapter has been
developed with the goal of minimum test generation complexity without
regard for reducing the size of the set below 24,

Before developing the details of a test generation algorithm,

it is necessary to make some assumptions about how modules are specified,
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since this information will be the input to the algorithm. Furthermore,
preprocessing of this input could become the dominating factor in

the running time of the algorithm. Since the trend toward more and more
automation of the design of digital systems will undoubtedly continue, it
is reasonable to further assume that module description will be available
from the automated design process. Many recent design automation systems
generate an irredundant cover of prime implicants at some point. We there-
fore assume that the input to the diagnostic test generation phase will
proceed from this type of module specification.

Throughout the thesis it will be convenient to use the '"'cube
representation' to discuss combinational functions. The universe of £
Boolean variables forms an £-dimensional space in which each coordinate
can take on the value 0 or 1. Each lattice point or vertex in this
L-dimensional cube represents one of the 2‘ possible input vectors. A
particular function may be represented in this space by specifying the set
of vertices (input patterns) for which the function takes on the value 1.
Such vertices are referred to as true vertices, and the set of all true
vertices of a function is called the ''ON set." Similarly, vertices which
are not true vertices are called false vertices, and make up the "OFF set.'

Every true vertex corresponds to a minterm of the function. A
collection of true vertices which forms a subcube corresponds to an impli-
cant of the function. Implicants may be represented very conveniently by
specifying an L-tuple vector, each element of which is "0," "1," or "u."

A "1" or a '"0" in position i means that input variable x; must be true or
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false respectively in order for an input vector to be a vertex of the
implicant; a '"u'" in position i indicates input variable X, may be 0 or 1,
i.e. the value appearing on input i is irrelevant to whether the input

vector is a vertex of the implicant.

Definition 3.6a: A specified variable of a cube is a variable which is

constrained to either a 0 or a 1 within the cube, i.e. all vertices of the

cube have the same value for that variable.

Definition 3.6b: An unspecified variable of a cube is a variable which is

not specified, i.e. the value of that variable is irrelevant to whether
or not a vertex is a vertex of the cube. If a variable is unspecified
for a cube, then half of the vertices of the cube will have a 0 in that

coordinate, and half will have a 1.

Example 3.1: Implicant (for a 4 variable function) cube notation
X Xy X EN 0010
X Xq ludu

Using this notation it is quite convenient to specify a Boolean

function as the set of cubes which imply the function.
Example 3.2:

Z(xl,xz,x3,xa) = x1x3Vx2x3x4V§1f2§3 = {lulu, ulll, 000u}

It is assumed that function specification in the form of a set

of prime cubes is available as input to the test generation algorithm.
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The following definitions will be useful in the discussion of

test generation:

Definition 3.7: A vertex vi is adjacent to a vertex v.1 in variable xi if

v, and v, are identical in all positions except position i.

i j

Definition 3.8: An alternating adjacency about variable x, is a pair of

i
and have the

vertices of the L-space which are adjacent in variable Xy
additional property that one of the pair is a true vertex while the other

is a false vertex.

Definition 3.9: An r-cube is an r-dimensional subcube of the £-cube, and

can be specified by an f£-element vector containing r unspecified and L-r

specified variables.

In order to generate a test set, it is necessary to find an
alternating adjacency for each input variable. 1In addition, it is desired
that the minimal amount of computation be required to accomplish this.

The following theorem, though quite obvious, is importent because it
indicates the usefulness of a given prime implicant in terms of test

generation.

Theorem 3.3: If P, is a prime implicant of Z(X), and P, is an r-cube, then

i i

there exists at l:ast one alternating adjacency about each of the £-r

specified variables of Pi'

Proof: Assume there exists a specified variable, x,, of Pi such that there

3

is no alternating adjacency about xj. Then since all vertices of the r-cube
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obtained by complementing x, in Pi are true, the (r+l)-cube consisting of

J
Pi and the r-cube obtained by complementing xj in P1 implies Z. Thus Pi
is not prime. The theorem follows by contradiction. Q.E.D.

3.3. The Test Generation Process

The significance of Theorem 3.3 to test generation is that given
a prime implicant of the function under consideration it is known that a
test can be generated for each of the specified (0 or 1) variables. Thus
the strategy will be to select a set of prime implicants which is sufficient
to generate alternating adjacencies for all of the input variables. This
selection is critical to reduction of computation, and requires the formation

of a "cover."

Definition 3.10: A covering set of prime implicants is a set of prime

implicants which has the property that for each variable, at least one

member of the set has that variable specified (either 0 or 1).

The existence of a covering set is assured since it is assumed that the
function depends nonvacucusly on all variables. A covering set of minimum
or near minimum size is desirable because this will reduce the number of
cubes which must be considered. Fortunately this covering problem is much
easier computationally than an arbitrary covering problem. Since a minimum

cover is not essential, an efficient heuristic algorithm can be used.

e
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Once a covering set has been generated, alternating adjacencies for each

of the inputs can be generated using only prime implicants which are members

of the covering set.

Consider a module which implements Z(X) = Z(P .,Pq) where

A
Pi is a prime implicant. Let C be a covering set for Z, and consider P, €C.

k
Permuting the variables for clarity, it is possible to write Pk as follows:
= o
Pk O PR 0r+1 7]
where
Q'1‘3(0.1)

P1 is an r-cube. An alternating adjacency for variable X4 {1 * r),
representing a test pair which completely detects the fault components

X, stuck-at-0 and X, stuck-at-1l, can be generated as follows. The r-cube
which is adjacent to Pk in variable Xy is given by:

i a
= o o o, o e, .
TR N -1 % Tt %
Theorem 3.4 guarantees that at least one vertex in Pi is a false vertex
(i.e. not a vertex of any of the other prime implicants of Z(X)). This

set of false vertices in Pi can be determined by performing the following

operation:

¥
Pk A Z.
The tests for X, are generated as follows:

let

v = 5152 "'Br L TR AT

where
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~

vepi ANZ
Sje(o,l)
then the test pair for Xy is given by
(8162. : .IBr X e '°z’3152"‘sr & Yy

In the above expressions, the @'s are fixed so that the test vectors are
in Py and p;, while the B's are selected to force the vertex in pi to be
an element of Z. The constraints which the B's are selected to meet may
not require specification of all of the r unspecified variables in p;. 1f
this is the case, then there are several choices for test pairs. The
following simple example demonstrates these ideas graphically using
Karnaugh maps.

As the above discussion suggests the test generation process
requires two main functions: the generation of a covering set, and the
determination of one false vertex within a subcube of the L-cube of the
function. It is convenient to examine these two functions as separate
problems, and then incorporate them into the main algorithm.

In the remainder of thié chapter, specific algorithms will be
discussed. The specification of these algorithms, which appear in this

section and in the Appendix, is given in '"Algol-like' notation. Key words

of the specification language, e.g. do, if, and begin, are underlined.

T e At et e ettt e e et e
T ' >
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10

00

D
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n JI(1]

N

S o

D

function: z(xl,xz,x3,x4) = Z{PI,PZ,P3]

= £{u100,01ul, lulu}

covering set: C = {Pl =ul00, P2 =0lul}

generate tests for xl:
use Py = Olul

1
P2 11lul

2
tests for x; = (1101 €Z, 0101¢2)
N o
ik 0 01 1

P~1 A Z = 1101 (indicated by the asterisk in the map below)
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The symbol "¢ '" denotes the assignment operator, while the symbol "="
denotes the relation '"equal to' which appears in predicates of conditional

statements. All algorithms are expressed in structured form. 1In these

algorithms, arrays are used to represent the various multi-element quantities,

and a particular element of an array is denoted by placing its subscripts

in parenthesis. The symbol " * " used as a subscript denotes a dimension
which is allowed to vary over its entire range. As an example, the set of
prime implicants [Pi] will be stored in the rows of two-dimensional array P.

The j-th element of prime implicant P, may be accessed in this array by

the specification P(i,j), and the entire prime implicant P, is accessed by

i
the specification P(i,¥*).

3.3.1. Covering Set Generation

The covering problem which is required for the test generation
algorithm may be stated as follows. Given a list of prime implicants, find
a subset of them such that each variable is specified in at least one
member of the set. An irredundant cover is desired, i.e. one in which each
member in the set covers a variable not covered by any other member of the
set. An irredundant cover guarantees that each prime implicant which is
examined will yield at least one alternating adjacency. As will become
apparent, small prime implicants, i.e. those with many specified variables,
are desirable because a large number of tests can be generated from them,
and because their adjacent cubes will intersect fewer other prime

implicants. The size property of a prime implicant can be used to assign

AT W
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a "cost" to it; the larger the prime implicant, the higher the cost of using
it to form the covering set. We then use the cost measure to generate a
"reduced cost" irredundant cover, which tends to favor usage of the smaller
prime implicants. Since small prime implicants contain more specified
variables, this cost objective is compatible with the objective of forming
a cover with minimal or near minimal number of members. The basis for the
cover generating strategy is a heuristic developed by Batni, et al. [19].

The following conventions will be employed throughout the
following discussion. For vectors v and w of the same dimension and relation
Re{=, <, <, >, >}, vRw if and only if v(i) R w(i) for all i, and vEw if
and only if v(i) R w(i) for some i. The transpose of vector v is v'.

Consider an £-variable function Z(x) which is represented by a
set of q prime implicants. Let P be a qX £ matrix which is used to store
this set of prime implicants. For the covering problem considered here,
variable i is covered by prime implicant j if the i-th component of j is
specified, i.e. either a 0 or a 1, and is not covered if the i-th component
is unspecified, i.e. "u." Let the symbol "s'" denote a 0 or a 1
specification. Thus P(i,j)t{s,u]. If P(i,j) = s then prime implicant
P(i,*) covers variable j, and if P(i,j) = u then P(i,*) does not cover
variable j.

The covering algorithm is more easily understood if the generation

of an irredundant cover without regard to cost is first considered.
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A weight is associated with each column of P. Vector W is an L-element
vector which stores this weight for each column. The weight for column j
is defined to be the minimum row index i such that P(i,j) = s. That is,
the weight is the index of the first prime implicant in the list which
covers that variable. The cover is formed in q-dimensional vector CS
where CS(i)e{0,1}. CS(i) = 1 if prime implicant i is a member of the

cover, and 0 otherwise.

Algorithm 3.1: Irredundant cover.

Begin Basic Cover

CS « (00...0) /* initialize cover to empty */
do for j =1 to £ /* form initial weight vector */
O i |

do while P(i,j) = u

L& 1%l
end
w() « i1
end
do until W =0 /* form cover */
k « max(W(1),W(2),...,W(L)]
CS(k) « 1 /* select an element for cover */
do i=1 to £ /* update weight vector */
if P(k,i) = s, then W(i) « O
end
end

end Basic Cover
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Algorithm 3.1 generates a cover which is irredundant because it
selects as the next element of the cover the row which has the highest
value in W. This row will be the only row which covers the variable
corresponding to the index of the highest weight in W. Because of the
manner in which the weight is defined, all rows which precede this row in P
have a u in that variable position. After the row is chosen, W is updated.
The next row selected will precede all previous rows selected. This
guarantees that for each row selected, there is a variable which is
covered by only that row. Thus each row in the final cover is essential to
the cover.

It is seen that Algorithm 3.1 favors selection of rows with low
indices. The cost constraint can therefore be introduced by ordering the
rows in matrix P by ascending cost. This ordering may be accomplished by
introducing a permutation of (1,2,...,q) which is stored in q-dimensional
vector R. Let C be a q-dimensional vector with C(i) containing the number
of unspecified variables of prime implicant i. Then R is formed such that
C(R(1)) < C(R(j)) if i < j. R is introduced into Algorithm 3.1 so that
rows are considered according to their position in vector R.

It is quite possible that the design algbrithms which produced
the function under consideration generated the prime implicant representa-
tion with a known ordering with respect to size. If this is the case, then
determining the cost permutation R is a simple matter. If such is not the
case, then a sort must be performed in order to determine R. Algorithm 3.2

encorporates these ideas to form a reduced cost irredundant covering set.
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Algorithm 3.2: Reduced Cost Covering Set

Begin COVER

c «[0,0,...,0] /* compute cost vector */
do i=1togq
do j=1 to#

if P(i,j) = s then /* cost for P(i,*) = # of s's */
C(i) « c(1)+1
end

do i=1¢togq
R(1) « i /* initialize R to the natural order */
end

SORT (1,q+l) /* form the permutation R so that
C(R()) < C(R(J)) if L < § */

do for j=1to £ /* form weight vector, considering */
i=1 /* rows in the order specified */
do while P(R(i),j) =u /* in R. */
1€ i+l
end
W(i) « 1
end
cs « [o0,0,...,0]
/* form cost reduced cover. */

do until w = [0,0,...,0]

k « max(W(1),W(2),...,W(2)]
CS(R(k)) « 1
do i=1¢to 4

if P(R(k),1) = s, then W(i) =0
end
end

end COVER
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Algorithm 3.2 calls subroutine SORT which produces the permutation

of indices corresponding to ascending cost.

the Appendix.

algorithm for the purpose of determining which prime implicants can be used

to generate tests for the various input variables.

This algorithm is incorporated into the main test generation

This subroutine is given in

If Algorithm 3.2 is

31

used as given above then later it is necessary to repeat some of the work

already done in order to determine which variables to test with a given
member of the covering set.
extension to Algorithm 3.2.

data structure tailored to the needs of the main algorithm.

This extra computation may be avoided by an

This modification results in a covering set

When an element of the cover is chosen and the weight vector is

updated to reflect this choice, those elements of the weight vector which

are nonzero, but which will be set to zero because this current choice
covers those variables, correspond to the variables which can be tested
by this prime implicant but could not be tested by any previously generated
member of the covering set.

element of the covering set is chosen, we avoid having to keep track of

By storing this information at the time each

which variables remain to be tested and which variables can be tested with

the next prime implicant.

of unspecified variables) of each member of the covering set. This

enumeration is also performed as a byproduct of forming a covering set.

Figure 3.2 illustrates a data structure designed to efficiently store

these items of information as they are generated.

v;{

i g

It is also required to know the size (i.e. number
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cs —.[ ELT | SIZE

LINK
-

RLINK

VAR

LINK

/
%
X

30 —1—0

o000 ——o

ELT: 1index into array P (set of prime implicants) of an element of

the covering set.

SIZE: number of unspecified variables in this member of the covering

set.

LINK: pointer to list of indices of variables covered by this element

of the covering set which are covered by no previous (in the
list) element of the covering set.

RLINK: pointer to list entry for the next element of the covering set.

VAR: 1index of a variable (1 < VAR < L) which is covered by element

of the covering set indicated by the parent list entry.

LINK: pointer to next entry in list of covered variables.

Figure 3.2. Data structure for storing covering set.
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The details of the modification to Algorithm 3.2 which builds the
data structure are given in the Appendix. Later in this chapter when the
test generation algorithm is discussed, it will be assumed that COVER

provides, as output, the structure of Figure 3.2.

3.3.2. Determination of a False Vertex

Test generation hinges on the determination of a false vertex
which is adjacent to some prime implicant. This problem may be stated in
a general way as follows. Given a cube of dimension m and a set of subcubes,
determine a vertex in this m-cube which is contained in none of the subcubes.
The m-dimensional cube is the cube adjacent to the prime implicant (of size
m), and the set of subcubes under consideration is the set of all non-null
intersections of the other prime implicants with this m-cube. This problem
is interesting from a computational viewpoint in its own right. In this
section we develop an algorithm called FALSE VERTEX which performs this
function. The basic algorithm will be developed in its general context
first and will then be adapted to take on the structure of a subprocedure
which is called from the main test generation algorithm.

The problem of determining a false vertex is basically a combina-
torial search of the vertices of the m-dimensional cube.

In many search problems, it is convenient to represent the elements
of the search domain as nodes of a tree such that the visitation of the
elements corresponds to a traversal of the tree. The search algorithm
determines which edge is followed from the node currently being visited.

The search tree corresponding to this problem has the m-dimensional
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universe (uu...u) as its root, and each node is a cube which represents a
partial solution. Each edge corresponds to the assignment of a 0 or 1 to
one of the unspecified positions of the preceding node. The terminal nodes
are cubes containing one vertex, that is cubes having every position
specified. The search terminates when a node, not necessarily terminal, is
found which is disjoint from every cube in the list of true cubes. The
position of a particular cube in the tree is of course determined by the
search strategy. In this section, two search strategies will be presented.
The first search is an exhaustive one and the second is a search by
bisection.

An exhaustive search may be systematically conducted using the
familiar "backtrack' or 'depth-first' approach. The initial partial solution
is the universal, uu...u. A pointer into the cube list is maintained, and
the "next" partial solution is generated from the previous one by specifying
(to be either 0 or 1) one of the u's so that the cube currently pointed to
is in conflict (the intersection is null) with the trial solution. The
pointer is then advanced to the next cube which does not yet conflict. If
none of the as yet unspecified variables in the solution may be specified
to create a conflict with the current cube, we backtrack to the previous
trial solution and try a different partial solution. Thus at every point
in the execution of the algorithm the current partial solution is disjoint
from every cube in the list whose index is less than the pointer. The
algorithm terminatez with a solution when the pointer has advanced past

the last entry in the cube list.

' l“‘: f‘:‘.
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Algorithm 3.3: False Vertex-exhaustive.
C(,j) 1is a list of v cubes of dimension m.
F(i) is the trial solution.
S is a stuck. Each element of the stack is a pair of indices.
i,j => S is a "push'" operation
i,j <= S is a "pop" operation
Begin FALSE VERTEX
F «(uu...u) /* initial partial solution */
&1 /* index into cube list */
do while i < v
if FNC{,*)— =9 then do
de1
do until (C(i,3)e{0,1})A (F(§) =u)
je3H
do while j > m /* backtrack */
i,j<=58
iy e
b Rl
end
end
F(3) « - CW,3) /* set F(j) so that FNC(i,*)=9¢ */
S <= {,j /* save for subsequent backtrack */
end
i€ 141
end
end FALSE VERTEX
AR e i o e -




i

—_—

PR— -

mr E N s s

36

In Algorithm 3.3, each time a previously unspecified variable is
specified, we advance to a lower node in the search tree. At the time this
next successor node is chosen, it is not known whether the subtree beneath
this node contains a solution. If it does the search will find one, however
if it does not the search will examine every node in this subtree and then
backtrack out of this subtree and enter a different subtree of the preceding
node.

By structuring the search in a slightly different way, it is
possible to determine whether or not a subtree contains any solutions without
having to search the subtree. If tais determination is made at each stage
of the algorithm, and the search procedure only enters a subtree known to
possess a solution, then the algorithm will proceed directly to a solution
without ever having to backtrack. To facilitate this process it is
desirable for the search to be organized so that the search tree is binary.
The result is a search by bisection, and we must only test one of the two
subtrees beneath each node for the existence of a solution. If the subtree
tested does not contain a solution, then it is assured that the other subtree
must contain a solution. This is guaranteed because when the current node
was entered the subtree consisting of this node and its two subtrees was
tested for a solution.

The search may be organized to result in a binary search tree by
restricting the choice of which variable position in the trial solution is
to be specified at each stage of the algorithm. One way to do this is to
require that the variables will be specified in a left-to-right order.

The resulting search tree will have the property that all nodes at level i

L R R
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will have the first i variable positions specified and the remaining
positions unspecified. Each node at level i will have two successors:
that with the (i+l)st position specified to be a 0, and that with the
(i+l)st position specified to be a 1. Each node of the tree represents
some subcube of the original m-cube, and the successor nodes correspond to
partitions of this cube.

In order to determine whether or not a successor subtree contains
a solution, it is necessary to enumerate the true vertices contained in
the subtree. If this number is less than the total number of vertices in
the subtree, then there must be at least one false vertex in the subtree.
This enumeration process is carried out by examining the cube list and
counting the number of vertices which are in both the cube list and the
partition of the m-cube corresponding to the subtree under consideration.

This enumeration process is nontrivial. First, the original cubes
in the cube list must be preprocessed to obtain a set of cubes which cover
the same vertices as the original list but which are mutually disjoint.

This is done so that when vertices are enumerated, each true vertex in the
subcube is counted only once.

A list of mutually disjoint cubes may be formed from an arbitrary
list of cubes as follows. Starting with the first cube in the list and
proceeding through the list, check for a nonnull intersection with each
subsequent cube. When such an intersection is found, replace this cube with
a list of cubes which covers all vertices not covered by the cube being
considered. When all subsequent cubes have been checked, repeat the process

for the next cube. The following example i1llustrates this process.
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Example 3.4:

Formation of disjoint cubes.

"\1"2
PN on o A

00
01
11

10

CIOC2 = 00u
= 000
#9

replace C2 i

c,nc

111Gy = 000

1 1) 1_| ¢, =00uu
1 1 1\ 02 = QuQu
1 1 1 C3 = u000
Ll/ Ct. = ylul
u 1 Qulu
u
n the list with C2 -Clr702 = QuOu - 000u
= 010u

0

replace C3 with C3 -leWC3 = u000 - 0000 = 1000

c,nc, =9

new cub

e list is  OOuu
010u
1000
ulul

Now compare 02 to subsequent cubes:

initial cube list

38

c, ﬂC3 =@
czrﬂca = 0101
replace c, with C, -Czﬂca = ylul - 0101
= ]1lul, x111
e ——R s
Y
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new cube list is: OOuu

010u

1000

1lul

ulll

comparing C3 to subsequent cubes:

N = =
C3 [CA C3(7C5 @

Comparing C,: C, NC, = 1111

4 4 5
Cs -04005 = 0111
"2
Xq%, 00 01 11 10
l C2 = (010u

01 1 1 | 1]
I C. = 1000 list of mutually
l 3 disjoint cubes

11 1 I@ 1
‘ Cl; = ]11ul

10 \1) C5-0111
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Since it may be necessary to create several new cubes to replace
a cube, this procedure is most easily implemented using list processing
techniques. The details of handling the various pointers results in a
fairly lengthy specification of the algorithm. This algorithm is therefore
presented in the Appendix.

The algorithm for determining a false vertex then proceeds using
as input this list of disjoint cubes. The solution vector is initialized
to uu...u. This vector is refined to yield a false vertex by specifying
the variables from left to right. At each position a 0 is tried first and
the subtree corresponding to this choice is tested to determine if a
solution exists. If one does, then the next variable is specified. If not
then a 1 is used instead of a 0. It is not necessary to test for a solution
in the subtree corresponding to this choice, because it is already known
from the test performed previously that either the 0 or the 1 subtree
contains a solution. When all variables are specified by this procedure,
the resulting vertex is guaranteed to be false. Every time a variable is
specified, the cube list can be shortened, which enhances the efficiency
of the algorithm substantially.

The algorithm which implements this strategy is a list processing
algorithm. The specification is given in detail in the Appendix; an

overview is presented here.
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Algorithm 3.4: False Vertex - Bisection (abbreviated ) (cubes contain
m positions).

Preprocess cube list to get a list of disjoint cubes.

F «(uu...u) /* F is the solution */

do for j =1 tom

count « 0

F(j) =0 /* try a zero in position j */

scan the cube list

if cube (j) = O /* cube € F */

count ¢« count + cube size

else if cube (j) =1 /* cube NF = @ */

move cube to alternate list

else /* cube (j) = u: cubeNF#¥@®, but & F */
move cube to alternate list
count ¢ count + cube size
end scan

if count = Zm-j then do
F(j) « 1
replace cube list with alternate list /* this is all cubes in

the F(j) =1 partition */
null the alternate list

end

else null alternate list /* F(J)=0 is o.k. The cube list has
been purged of all nonintersecting
cubes */

i e —
A
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In Algorithm 3.4, when the X, = 0 choice is made and the cube list

is scanned, any cubes which are properly contained in the x, = 1 partition

i
are removed from the cube list and placed in an alternate list. Any cube
with a u in Xy intersects both the x, = 0 and X, = 1 partitions of the

space. Such cubes are effectively split, and the X, = 0 portion remains

in the cube list while the X, = 1 portion is placed in the alternate list.
This process accomplishes two things. First, the cube list i3 purged of
cubes which do not intersect, thus the cube list becomes shorter and shorter.
Second, if the X, = 0 choice is wrong, then the alternate list contains

all cubes in the " 1 partition and can be used to replace the cube list

in subsequent variable selections.

3.3.3. Test Set Generation Algorithm

In this'section we will discuss details of an algorithm which
generates a multiple pin fault test set. As previously indicated, the first
step is the formation of a covering set, CS. Then, for each prime implicant,
Pi’ in CS, alternating adjacencies for each specified variable
which has not already been considered are generated. As
previously discussed, the difficult part of this procedure is determination

of a false vertex which is adjacent to the cube in the variable under

~

consideration. This process is broken into two parts. First, we form Pi

and determine the set of prime implicants which have a nonnull inter-

~

section with Pi. Then given this set, we find: a false vertex contained in

~

P{, that is a vertex which is in none of the intersections. In general,

we will perform this process several times with a single Pi’ The most

— O 00 o s £
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time consuming part of the process is scanning the set of prime implicants

looking for intersections with ;{. It is possible to do this scan only

~

€CS regardless of how many PJ's we generate from each P

once for each P 1

1 - 35

Definition 3.11: The distance between cubes C., and C2 (of the same

1
dimension), which is denoted by d{Cl,Cz}, is the number of variables in

which C, and C, disagree. An unspecified variable does not disagree with

1 2
either a 0 or a 1 specified variable. For example, d{001u1u,0110uu] = 1.

This distance metric indicates the ''proximity" of two cubes
within the £-space, and is useful here because it indicates when nonnull

intersections between cubes can occur. Three cases are of interest.

1 and 02 have some set of

vertices in common, i.e. they overlap on a Karnaugh map.

case 1: d{Cl,Cz} = 0. This implies that C

Case 2: d{Cl,Cz] = 1. Here C, and C, are disjoint, however there is some

1 <

variable which, if complemented in C, or in C2, would result in a nonnull

1
intersection between the two cubes.
and C

Case 3: d{Cl,Cz} > 2 G are disjoint and there is no single

1 2

variable change which could result in an intersection between C1 and C2.

Now consider Piecs and the set of adjacent cubes {é{} which are
used to generate alternating adjacencies (each cube in this set corresponds

to some x, for which tests are derived from Pi)' By examining the distance

J

between Pi and P, Vk # i, we can determine if Pk could possibly intersect

any of the {éz} because we know that d[Pi,;I} -],

st o ' T A — S A6 A o
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Case 1: d[Pi,Pk} = 0. P, and P, agree in every coordinate where both are

i k
specified. Since d{Pi,Pil = 1 for all {éi}, we know that d[é],Pk} = 1

unless the j-th position of Pk contains a u. Thus there will be a null

intersection between é{ and P, unless this case occurs.

3

Case 2: d{Pi’Pk] =1, P, and Pk disagree in exactly one coordinate where

i
both are specified. 1In this case at most one of the {ég} will have a non-

null intersection with P,

K? and that will occur if j is the coordinate where

P1 and Pk disagree.

Case 3: d{Pi’Pk} 22. P will not intersect any of the [éz}.

k

These observations about the significance of the distance relation-

ship are used to speed up test generation for large problems, i.e. those
with many prime implicants. Before test generation begins, an array of
distances between each element of the covering set and all of the other
prime implicants is formed. Then as each element of {é{} is formed, only
those prime implicants which couvld possibly intersect elements of the
sets {Pi}, i.e. those with d=0 or d =1, need be examined.

The size of each éz is of course equal to the size of the prime

implicant, P,, from which it was derived. The search for a false vertex

1’
takes place within the cube of é{. Thus when a prime implicant which has

a nonnull intersection with some é{ is detected, we wish to form a cube

~

equal to this intersection. Only the subspace corresponding to the Pi is

relevant., This subspace is determined by the unspecified positions of Pi.

Therefore the test generation algorithm strips out the variable positions




i

)

i when forming the cubes to be passed to FALSE

~

corresponding to u's in P

VERTEX, and assimilates the values returned by FALSE VERTEX back into Pi

to form the false test of the test pair for x From this test the true

g
test is obtained by simply complementing variable x

I

The details of TEST GEN are rather involved since much manipulation

45

of the pointer fields in the data structure constructed by COVER is required.

Therefore the specification of algorithm TEST GEN is again relegated to the

Appendix, The algorithm is presented here in abbreviated form.

Algorithm 3.5: Test Set Generation (abbreviated)

begin TEST GEN

call COVER

call DMATRIX /% compute distance between prime implicants */

do for (each prime implicant, P,, in the covering set)

i!

do for (each variable, x., for which tests are to be generated

j’
from prime implicant Pi)

~

form list of cubes of intersection between Pk and Pi for
k#1i

call FALSE VERTEX

form test vectors for variable Xg

end

end TEST GEN
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3.4. Computational Complexity of Test Set Generation

In order to establish computational feasibility of the test set
generation algorithm developed in Section 3.3 and compare it to other fault
detection aléorithms, it is worthwhile to analyze the ''computational
complexity" involved. Computational complexity of an algorithm is an
algebraic expression which describes the relationship between some
per formance parameter, such as execution time or storage requirement, and
the set of parameters which characterize the input to the algorithm. These
relationships are inherent to the algorithm and therefore allow the
quantification of performance without having to revert to an analysis of
the programming details and instruction execution times of a particular
machine. Since we are interested only in the dependence of performance
on input parameters, we express complexity as ''order' and use the symbol
"0." Constants of proportionality and lower order terms, i.e. those which
become negligible as the input parameters become large, are not expressed
in order to simplify the complexity expression and show the dominating
terms.

In this section the complexity of the test generation algorithm
developed in Section 3.3 will be analyzed and compared to the complexity
of test generation algorithms based on other fault models.

The performance of Algorithm 3.5 is highly dependent upon the
specific function to be tested. While worst-case analysis yields
unrealistically pessimistic results, it is not possible to compute expected
per formance since there is no basis for assuming particular probability

distribution functions for the parameters describing the input. 1In the
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discussion which follows, a worst-case analysis will be performed; however,
some of the significantly problem-related coefficients will be expressed
symbolically, and we will discuss how the nature of the input affects the

values of these coefficients.

3.4.1. Execution Time of Test Set Generation

Algorithm 3.5 consists of two preprocessing components (COVER and
DMATRIX) which are executed once, and the test generation block which calls
FALSE VERTEX once for each pair of tests generated. FALSE VERTEX calls
DISJOINT CUBES as an initialization step.

The following parameters are used to characterize the set of
prime implicants which serves as input to TEST GEN.

4 = the number of input variables of the function to be tested.

q = the number of prime implicants used to represent the function
to be tested.

¢ = the number of prime implicants in the reduced cost covering set
generated by COVER. (Note that ¢ g_mingl,q).)

COVER first computes a cost vector by enumerating the unspecified
variables in each of the prime implicants. This requires the examination
of each of the 4q variable positions. Formation of the cost-ordering
permutation, R, requires sorting the cost vector, a task known to require
0(q log2 q) operations [20]. Computing the initial weight vector, W,
requires at most Lq examinations. Finding the maximum weight and assigning
it to k can take at most £+l steps. Updating the weight vector can require

at most £ steps. The loop which consists of finding the maximum weight,
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selecting the next member of the cover, and updating the weight vector is
repeated once for each member in the covering set. Thus the execution
time required by COVER is as follows.

T Lq + qlogq + Lq + c(24+1)

COVER
« 24q + qlogq + 24c +c
= 0(Lq + qlogq) (Since logq and £ may be of the same order,
both terms are retained.)

DMATRIX computes the distance, up to d =2, between each of the ¢
elements of the covering set and the q-1 other prime implicants. This
requires no more than Lqc steps.

FALSE VERTEX is passed a list of cubes in some subspace of the

L-cube. Assume that this list contains @ cubes of size B. The cube list

is first transformed into a list of disjoint cubes. Let this list contain

@' cubes. Within the main loop of DISJOINT CUBES, the B positions of the

cube currently being examined are tested either once if there is no
intersection or twice if there is. This loop is executed at most

(@'-1)+ (@'-2)+:-+1 = A g'-l times. The length of the list resuiting
from the application of DISJOINT CUBES may never exceed 25. Therefore
DISJOINT CUBES cauld require no more than 0(226) steps to be executed.
FALSE VERTEX then determines a false vertex in time bounded by the series

Poly + B-2)@P"1-1) + ... + 22 which 1s clearly less than 0(22P).

®B-1)
Thus execution time of FALSE VERTEX is dominated by the processing required
to make the cube list mutually disjoint. This analysis is extremely

pessimistic since it is quite likely that @ and @' will be << 23. B is at

most £-1,
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TEST GEN is comprised of two sequentially executed blocks, COVER and
DMATRIX, and the main loop. This loop scans the data structure which has
c+{ elements. For each of the { elements which comprise the sublists,
the list of prime implicants is scanned for nonnull intersection with éz.

This requires 0((q-1)4) steps. Then FALSE VERTEX is called. Thus time

complexity of the main loop of TEST GEN is given by the following expression:

0(£[ (q-1)4 + FALSE VERTEX + £]) =

0¢lq) + 02??y.

This results in an overall time complexity for TEST GEN of the following:

O(TEST GEN) = 0(q logq) + 0(fqc) + 0(4%q) + 0(e2?%).

3.4.2. Storage Requirements for Test Set Generation

During the storage analysis we shall use the term ''cell'" to mean
the number of bits required to represent the quantity in question plus any
link information required. Since all cells contain 0(Z) or fewer bits, we
shall assume O{L) bits are used for all cells.

During execution of the main loop of TEST GEN, there is an amount
of static storage plus some time-varying storage. The static requirement
consists of q cells for the array of prime implicants plus c.q cells for
the distance matrix, plus c+f cells for the list structure containing
the covering set information. As TEST GEN is executed, a list of inter-
sections of-éi with Pk’ k#1i,is constructed and the list is made disjoint.

This list can reach a maximum size of ZB cells. Thus storage required is

R
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. as follows:

O[E(q +cqt+c+i + ZB] = 0[2cq + lz + 2£].

3.4.3. Discussion of Complexity

The complexity of TEST GEN is dominated by FALSE VERTEX which
requires exponential processing time and storage in the worst case. This
worst case is based on the assumption that the cubes passed to FALSE VERTEX
cover all but one of the vertices of the B-dimensional subcube, and that
they do so in such a way that after the list has been made mutually
disjoint, each cube covers only one vertex. This is a very unusual cases,
since as DISJOINT CUBES scans the list of cubes it always retains the cube
it is examining and reshapes subsequent cubes of the list. When a cube is
reshaped, the number of cubes generated to replace it is equal to the
number of occurrences of an unspecified variable in the cube to be reshaped
corresponding to a specified variable in the cube to be retained. The
number of such occurrence is some fraction of B, If there are no such
occurrences, then the cube is replaced by a null list resulting in a
decrease in the length of the cube list. A cube is reshaped only when
there is an intersection with a cube earlier in the list. Therefore one
would expect the list expansion factor to be related to B rather than 2B in
the typical case.

Since the covering set generation algorithm selects prime
implicants of small size by the cost reduction mechanism, the subcube

size, B, tends to be minimized. Thus the complexity expressions developed
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in the previous sections are misleading in all but certain pathological
cases.

Although certain combinational functions can be irredundantly
represented with a large number of prime implicants, it has been observed
[21] that the types of combinational functions which often crop up in
actual design are 'shallow' functions, i.e. those which can be represented
with a small (0(£)) number of prime implicants. The use of programmed
logic arrays is becoming more and more common. Such devices implement
functions comprised of a relatively small number of prime implicants because
of constraints imposed by the techniques used to fabricate such devices.

The number of inputs, £, is also limited by integrated circuit technology
to a relatively small number (~ 10 - 40). These observations support the
computational feasibility of test generation based on the pin fault model.

In contrast to the multiple pin fault approach, the best algorithms
known for detecting single faults under the stuck-line fault model have a
computing time that is exponential in the number of input lines and gates
[22]. As a result, test set generation under these fault assumptions is

practical only for small circuits.

3.5. Minimum Size Test Sets

The test generation process described in Section 3.3 generates
test sets of size 24 where £ is the number of input pins. These tests
have the advantage that they are relatively easy to generate and are

symmetric, i.e. the output sequence resulting from application of the
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test set is made up of £ zeros and £ ones. The symmetry property is
advantageous because it enables the circuit to be tested without the
necessity to store an array of fault-free circuit responses to the test
inputs. Future development of the pin fault approach will probably be

directed at testing networks of modules in an analogous way to the testing

of gates under the stuck-line model. 1In this case reduction of the size of

the test set, even though small, may be of value.

The determination of minimum test sets has proven to be a very
difficult problem, and major results in this area have not been developed.
In this section, a summary of results and observations related to test set

reduction will be presented.

3.5.1. Test Sets Satisfying Theorem 3.1

The corollary to Theorem 3.1 states that it may be possible for
a combinational circuit with £ inputs to possess a multiple pin fault
test set which satisfies Theorem 3.1 with as few as L+1 test vectors. In
order to consider the question of minimum test sets within the context
of Theorem 3.1 it is useful to use the following graphical representation
for functions. An £-input function is represented in the £-dimensional
lattice by true vertices as solid dots and false vertices as circles.

Figure 3.3 illustrates the lattice representation for Z = xrz Vx3xaV

xlxzié‘¢§1§éx3. As any edge is traversed, one of the vertex coordinates

is complemented. This property of the lattice is used to associate the

edges of the lattice with the input variables as follows. Each edge is
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1100 0011

4 edge index

()"v false vertex of Z
0000 ‘~ true vertex of Z

xlx2x3x6

= v v X Vx.x
Figure 3.3. Lattice representation of Z X X,V XqaX, VX X Xq X XyXq.
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assigned an '"edge index' which is equal to the index of the input variable
which is complemented as the edge is traversed.

If a false vertex is connected to a true vertex by an edge with
index i then these two vertices correspond to an alternating adjacency
about input variable Xis and a set of such vertex pairs, one pair for each
edge index i, 1 < i < £, corresponds to a test set satisfying Theorem 3.1.
This set of vertex pairs and joining edges represents some subgraph of the
lattice representation. A minimum test set satisfying Theorem 3.1
corresponds to a subgraph of this type with the minimum number of vertices.
Since every such subgraph must contain exactly £ edges, the subgraph with
the fewest number of vertices is one with maximum connectivity. Cycles
cannot occur in such a subgraph because in order to traverse a path
beginning and ending with some vertex vj, each variable position would have
to be complemented an even number of times. Thus if an edge with index i
occurs in the path then it must occur again so that input variable X would
be tested more than once. Therefore a minimum test corresponds to a tree
or set of trees. The subgraph of £ edges with the fewest number of vertices

is a connected tree. Any connected tree with £ edges has £+l vertices

hence the lower bound given in the corollary to Theorem 3.1.

Definition 3.12: A minimal spanning tree (MST) for a function of £

variables is a subgraph of the lattice representation of the function with
the following properties:

1. The subgraph is a connected tree.

2, For each i, 1 < i < £, there is exactly one edge in the subgraph

whose index is 1.

A e
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3. For every pair of vertices v, and v, which are joined by an edge

1 J

Z(vi)@z(v )= 1.

3

(Note that this definition bears no relation to the usual minimal spanning
tree concept of graph theory.)

Figure 3.4 shows two MST's for the function represented by
Figure 3.3, and the corresponding test sets Tl and T2. (In Figure 3.4 only

edges belonging to the MST's are shown.) Note tnat input x, is tested by

i
the two vertices joined by the edge whose index is 1i.
The following theorem is an immediate consequence of Definition

3.10 and Theorem 3.1.

Theorem 3.5: Module M realizing function Z(xlxz...xl) possesses a test
set satisfying the hypothesis of Theorem 3.1 with the minimum number of

tests if and only if the lattice representation of Z contains an MST.

The lattice representation of functions together with the necessity
clause of Theorem 3.5 allows many easily testable functions to be recognized.
For example any function containing a prime implicant which is a minterm
or a prime implicant which is a maxterm possesses a test set of size L+l
because in the lattice representation of such functions, an MST can be found
surrounding the minterm or maxterm as illustrated in Figure 3.5. Another
interesting class of functions is the class which can be realized by a
network containing no fanout. The following theorem establishes this
result, and its proof may be used to construct a test set for any such

function.
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Figure 3.4.

0101 0011 @
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Two MST's and the corresponding test sets of the function
represented in Figure 3.3.
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MST's for functions with prime minterm (a) or maxterm (b).
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Theorem 3.6: Any function which can be realized as a fanout-free (including
inputs) network has a lattice representation containing an MST and therefore
a test set of size 4+l, where £ is the number of inputs.

Proof: (By induction on the number of gates in the realization.) Let Tk be

a network of k AND, OR, NAND, and NOR gates which realizes function

Z(xlxz...xz) without fanout. Consider the degenerate case, T Since T

) 34 1
possesses a single minterm (AND or NOR) or maxterm (OR or NAND) the function

realized by T, possesses an MST of the type shown in Figure 3.5.

1
Assume that function Z is realized as network Tk’ and that Tk
possesses an MST. Form network Tk+1 from network Tk by adding gate G as

shown in Figure 3.6. (Note that the inputs to Tk may be permuted so that

G drives line Xy without loss of generality.) Consider the MST for T, , and

remove the edge whose index is 1. Figure 3.7 shows this edge.

= --
Let vy 102...a£. Then vj alaz"'al’ 016{0,1}. All vertices in the

subtree headed by vy have X = . All inputs which are tested by vertices

in the v, subtree will still be tested if the inputs Yy to G are held

i

constant at values such that G(ylyz...ym) =a, and similarly for the vj

subtree with G(ylyz...ym) = 5}. Since G consists of one gate, it realizes
a function with a single min- or maxterm, and has an MST of the type

illustrated in Figure 3.5. The subtrees headed by v, and v,, and the MST

i ]

for G may be combined into a single MST for The edge which formerly

Ten®

tested x, will test one of the inputs to G. The remaining inputs to G will

1

be tested by new edges emanating from either vy or v,.

b
2x3. . .xl‘
to the output zk+1' That is, either Z41 (xl,az,a

The pattern 0203...01 when applied to x sensitizes line x

1

"'OZ) = x. Oor

3 1
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Zk+1(x1,a2a3...az) =X Therefore, the m inputs to gate G can be tested
by applying the vertices of the MST for G to Y1t Y while holding XyeeeXy
constant at a203"'al' The inputs Xy...X, are tested by holding Yio*Ym
constant at values resulting in Xy - al to test those inputs in the subtree

formerly headed by vy and by holding Y1°Ym constant at values resulting in

X = 51 to test those inputs in the subtree formerly headed by v The

5
resulting tree has the structure shown in Figures 3.8a or 3.8b, and is an
MST for network LR The theorem is thus established for a fanout free

network consisting of any number of gates. Q.E.D.

Generation of an MST and therefore a multiple pin fault test set
by the constructive method used in the above proof is very simple. The
procedure begins at the output gate and proceeds by successive levels
considering each gate until all inputs are reached. The MST for the output
gate, Figures 3.5a or 3.5b, is drawn first. Then as each gate is considered,
the MST for that gate type is added to the graph by replacing the edge
which tests the gate's output by one of the edges of the MST for that gate.
The tree structure is built up in this way so that when all input pins have
been reached, only edges corresponding to tests for inputs will remain.
Whenever a gate which is fed by primary inputs is encountered, the edges
added are labeled with the input which the endpoints of that edge test.

The result is an MST with labeled edges. The test vertices are then
assigned (in a unique way) by considering each gate which receives primary
inputs and writing down the test input required on those primary inputs for

that gate type. These tests are the u- and e-tests of Hayes [23] for that

Wl
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edges testing Xpeoe

edges testing XgeooXy

Figure 3.8. MST for Tk+1'
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gate type as given in Table 3.1. When this is done for all inputs, all
variable positions for each vertex in the MST will be assigned, and these

vertices are guaranteed to conscitute a multiple pin fault test set.

Table 3.1. MST Vertices for Gates

gate type v0 v1 v2 wae vn
AND, NAND : 3 SR | 01...1 101, ..1 e 11...10
OR, NOR 00...0 10...0 010...0 o 00...1

The following example illustrates construction of an MST and the
corresponding test set by the above method. Figure 3.9 shows a 4-level
network and Figure 3.10 illustrates construction of an MST. The final step
of assigning values to the vertices is achieved by making the correspondence
between each nonterminal vertex and a gate in the network. Then for each
of these vertices, the values for the inputs tested by adjacent vertices
can be assigned based on the type of gate. For example the vertex
corresponding to gate NOR6 has adjacent vertices which test its inputs, Xg
Xgs and Xg Thus, since this gate is a NOR, the vertex labeled NOR6 must
have 000 in positions Xg» X735 Xg, and the vertices connected by Xgr Xg,

and x, must have 100, 010, 00l respectively in positions Xg Xy Xg-

8
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Figure 3.9. A 4-level fanout-free network.
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MST construction for network of Figure 3.8.
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All vertices in the subtree connected to vertex NOR6 via edge Xg must have
100 in positions Xg X Xg because the essential property of an MST is that
the value of each variable position changes only once along any path. The
same holds for the subtrees connected via edges Xy and Xg which have
constant values of 010 and 001 respectively in Xg X7 Xg-

Fanout-free networks have the property that a multiple stuck-line
fault involving a set of lines anywhere in the network is equivalent to a
multiple fault involving only primary input lines [23,11]. (Two faults F,
and F2 are equivalent if Z(X,Fl) - Z(X,FZ).) This property results from the
fact that for any gate, a fault on the output line is equivalent to a
multiple fault on the gate inputs. Each of these gate inputs which has a
fault component on it is connected either a primary input or a g-te output.
If connected to a gate output, the fault compounent is again equivalent to
a fault involving the inputs to that gate. This process may be continued
until all fault components of the original fault have been replaced by
equivalent faults involving only primary inputs. (This process may only be
carried out when the network contains no fanout since a fault on a fanout
branch feeding a gate is not equivalent to any fault on the fanout stem
unless all fanout branches emanating from that stem are stuck at the same
value.) (The interested reader may refer to (24) for a thorough treatment
of fault equivalence.) Since a test which detects some fault also detects
all faults equivalent to it, and since in a fanout-free network any multiple
fault is equivalent to some multiple fault, all of whose components involve

only primary inputs, all multiple faults anywhere in a fanout-free network
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! are detected by a multiple pin fault test set. Thus the preceding discussion

% presents a procedure for generating multiple fault test sets for fanout-free
networks.

% Hayes has examined the fanout structure of switching functions [25]

, and shown that fanout is an inherent property of switching functions.

3 Fanout-free functions, i.e. those possessing a fanout-free realization, are
studied, and a procedure for determining if a function is fanout-free is
presented. This procedure could be used to determine if the preceding test

z generation procedure is applicable to a particular function.

The existence of MST's for other classes of functions such as

J unate functions has not been established however certain relationships

between the prime implicants of functions are known to be necessary as

-

stated in the following theorem.

Theorem 3.7: A necessary condition for the existence of an MST in a function
% is that some covering set of prime implicants of the function (Definition 3.9)
possess the following property: each member of the covering set is distance
) (Definition 3.10) < 2 from at least one other member of the set.
Proof: Assume that the prime implicants of some function do not possess
) such a covering set. Each edge of an MST connects a true vertex to a false
vertex., Consider some prime implicant. Only edges whose indices correspond
to a variable which is specified in the prime implicant can emanate froua
that prime implicant, i.e. have the true vertex of that edge be a vertex
of the implicant. Therefore, in order for all variables to be tested,

there must be a path in the graph between prime implicants which are a
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covering set. Since vertices along any path must be alternately true and
false, the distance between any two true vertices in a path is at least 2,
Therefore, since at least one prime implicant which is essential to the
covering set is distance =~ 2 from all other members by assumption, no path
can lead to a vertex in that prime implicant and therefore the variables
specified only in that member of the cover cannot be tested by a tree

connected to the other prime implicants. Thus an MST cannot exist. Q.E.D

Functions’ which do not meet the condition given in Theorem 3 7 are
of course numercus, however such functions must have at least 5 variables
[26]. This fact is easily demonstrated by attempting to construct a set of
prime implicants which violate the condition using 4 variables. Since the
prime implicants neced to be separated, they need to be as small as possible,
but they must have at least one unspecified variable because a prime minterm
would satisfy the condition. Arbitrarily choose u000 as a prime implicant.
Now a second prime implicant which covers variable x, must be added so that

1

the function is nonvacuous in Xy This may be chosen as aluQBQA' No
matter how 01, 03, and &4 are chosen, the prime implicants cannot be more
than distance 2 agpart. With five variables, it is possible for a function
to violate the condition. Figure 3.11 illustrates such a function, and it is
easy to see that no MST exists for such a function.

The condition of Theorem 3.7 is not strong enough to constitute
sufficiency for the existence of an MST, however, as the function shown in

Figure 3.12 illustrates. All these prime implicants are required to cover

the 6 variables, however there can be no alternating path from uu0000 to
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Z = £(0000u,111ul)
= X.X.X.%, V
X)X, X%, V X XXX
Figure 3.11. A function which possesses no MST.
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Figure 3.12.

Z = Z(uOuuuu,uu0000,0uulll)

A function satisfying Theorem 3.7 which contains
no MST.
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Ouulll because uOuuuu only has one specified variable. Because of this,
there is no way to have an edge which enters uQuuuu and a different edge
which leaves uOuuuu. Thus a path must exist which goes directly from
uu0000 to Ouulll. Since these two prime implicants are distance three

apart, no such path exists.

3.5.2. Test Analysis Based on Growth and Disappearance of Prime

Implicants

Paige [27] studied the effects which single stuck-line faults have
on functions which are realized in two levels. This approach may be applied
to arbitrary realizations of functions under the pin fault model. Since
faults may only occur at network inputs, the faulty functions which can
result under the pin fault model are closely related to the fault-free
function of a network.

Consider a particular prime implicant Pk of some function. 1In

the cubic notation used through this chapter each variable position of an
implicant is specified to be either a 0 or a 1 or is unspecified (u).

If input x, is stuck at some value @ this fault has one of three possible

i
effects on prime implicant Pk (Pk 4 represents the value in the i-th position
’

of prime implicant Pk):

s - EX u then P, does not depend on the value applied to

. W &

input Xis and the prime implicant is unaffected by the fault Xy stuck-at-a,

2. If Pk 3 ® @ then any input vertex which is adjacent to Pk in
’

variable x, will result in the function assuming a true output. This

i

occurs because although an @ is applied at input x,, the fault x, stuck-at-o

i i

U e
po=.
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causes a value of @ to be transmitted to the (fault-free) network internal
to the module, and the vertex seen internally is contained in Pk. The net
effect of such a condition is that all such vertices become true vertices

of the faulty function. This situation may be conveniently conceptualized

as a growth of Pk to include these vertices.

< s | = @ then no input vertex can be applied which is

F kb

contained in Pk’ since the fault X,

transmitted to the internal network. The net effect which the fault

stuck-at-a results in an @ being

3 Xg stuck-at-@ has on prime implicant Pk may be conceputalized as the
9 digappearance of Pk'
I Figure 3.13 illustrates these three cases.
i Based on this viewpoint, the faulty function which results under

some multiple pin fault is determined as follows. Any prime implicant

which has a specified variable with a value opposite to the polarity of a

)

fault component on that input line disappears. Each occurrence of a
? specified variable which has the same value as its corresponding fault
component results in a doubling of that prime implicant, i.e. the fault
results in that variable becoming immaterial to inclusion in that prime
implicant. Example 3.5 illustrates the determination of a faulty function
from the original function and fault. A multiple pin fault for an Z-input
function Z(x) will be denoted by an L-element vector F each of whose elements

is n, O, or 1 as follows:

F, = n - x, is fault free (normal)

&

: P, e0=x

i
is stuck at 0

carrdan
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Fi =1 - x, is stuck at 1

i

® denotes the fault free case F = (nn...n).

Example 3.5: Z(x,9) = £(01luul, luOlul, uu0100)

F = (nnlnOl)

Z(x,F) = £(0luuuu)

P1 has grown in X3 and Xg« P2 and P3 have disappeared.

A multiple pin fault test set may be derived in an ad hoc fashion
by selecting a set of test vertices which are sufficient to insure that no
growths or disappearances have occurred. For certain functions, test sets
which are quite small may be derived because tests which detect
many fault components simultaneously may be chosen.

A test set may be derived by a series of deductions which are
based on the set of multiple pin faults which are still undetected by any
previously selected test. The process terminates when no multiple pin

faults remain undetected.

Definition 3.13: The fault condition of an 4~input combinational module

relative to a partial test set is the set of assignments of values

0 (stuck-at-0), 1 (stuck-at-1), n (fault free) to the L-input lines which
could exist without resulting in an error indication for any test in the
partial test set. Let Cy be the fault condition relative to partial test

set T. Then Z(ti,fj) = z(t1’¢)’ VcicT, f.eC,.

3
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A concise notation for the representation of the fault condition
is a vector of L sets, with each set consisting of the possible fault
conditions (0, 1, or n) which may exist on each line. Any fault derived by
selecting one member from each set is an element of the fault condition.

The following example illustrates this notation:

0
1£ ¢ = (1 g 1 ; 0 n) then (00110n), (anlnOn), (lnllOn), etc. are
n

all elements of the fault condition. There are 3:2:1:2.1.1 = 12 such elements
in this fault condition.

Note that this notation represents a Boolean expression of the
following form. Cr is true, i.e. a fault is a member of the fault condition,
if and only if the first input pin is in one of the states given in the
first set, and the second input pin is in one of the states given in the

second set, and so forth. More precisely, C. is a logical product of sums

-
expression with the further constraint that each input pin can be in only
one state. The fault condition in the above example may be written

explicitly as follows (x1/1 means input pin x. stuck at 1):

3

G, = (xl/l + x1/0 + x1/n)'(x2/0 + xz/n)-(x3/1)

-(x4/1 + x4/n)-(x5/0)-(x6/n).

In this notation, the initial fault condition (when T = @) is
00 0
(L1 <+ 1), and the final fault condition (when T is a multiple pin fault
On n
test set) is (nn...n).

The fault condition for a set of test inputs may be determined by
forming the intersection of the fault conditions for each of the test inputs

individually. This follows from the fact that each of the individual

L l o ima
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fault conditions must simultaneously be satisfied. This intersection
operation is done on an input pin by input pin basis, and is defined by

the truth table of Figure 3.14. (Whenever a null intersection results from
some input, the entire fault condition is null.)

The following are examples of the intersection operation:

0 0
1.0 0 0 0
(1 01 ™ n)r](n & 1 n n)s= (n 0 1 a n)
n n
0 0
10 0
(i 01 p n)ﬂ(n n ; n n) =9,

Because of the implicit logical meaning of the fault condition
notation, it is quite easy to describe the event that some prime implicant
has not disappeared and the event that some prime implicant has grown to
cover a particular vertex or set of vertices. Other events such as the
disappearance of prime implicants and nongrowth onto particular vertices
are not describable because of the implicit logical meaning of the fault
condition expression.

A fault condition is derived by examining the growth and
disappearance of prime implicants which could result in a normal module
output for a partial test. This fault condition is then refined by adding
other tests to the partial test set. This process is best explained by
example., Consider the function which is shown in Figure 3.11 and possesses
no MST:

Z = §1f2§3§4 v X XoX X
= E(PI.PZ), i 0000u

p, = lllul.
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0

1 0 1 0
N n n n 1 0 1 n
0 0
n n n n 1 0 1 n
0 0 0
n n n n 0 0 @ n
1 1 1
n n n n 1 ¢ ) n
0 0 0
1 1 0 1 1 0 1 )
0 0 0 @ 0 0 ) @
1 1 (4] 1 1 (0] 1 (0]
n n n n (0] @ ® n

Figure 3.14. The intersection operation for fault conditions.
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Select as the first test tl = OOOOOCPI, and let ZUT be the function
under test which may or may not be faulty. If ZUT(OOOOO) =] then either P1
exists and has possibly grown or P2 has grown sufficiently to cover vertex

00000. Existence of prime implicant P, will be denoted as P .E, and growth

i i

of prime implicant P, onto vertex v will be denoted as Pin. Fault conditions

i
for the two possible events plE and pZG (00000) are derived as follows:

PIE implies that no fault which causes the disappearance of P1 is present,
0
0000

through X, may be stuck-at-1, hence plE = i 5 1%

is
that none of x nnaon

1

In order for P2 to have grown onto (00000), fault components sufficient to

transform vertex (00000) into a vertex in P2
0

PZth - (1 1111). Since one of these two fault conditions must exist for
n

ZUT(tl) = 1, the following expression may be written:

must be present, hence

- — V
(tl) 1 plE pZth

0 0
0000
\"
s s o DL

n n

2yt

Tk

11111€P, then

Similarly, if t2 2

Z =1~ pZEVpIGt

2

0 1 0
ln)V(OOOOI).

n n

vr(ty)

' S
(n nn

These two fault condition expressions may now be combined as follows:

Zyp(trsty) = (L,1) = (PiEV p,yGt)) N (p,EV pyGE,y)

0 0 0 0
(@900 hvartinintd i hyveooon
n n n n
01 0 0
~@anllhyvoooonvari.
n n
i e — . R ———— -
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1 and tz have

detected nearly all of the 36-1 multiple pin faults. Notice that the last

From the above expression it is apparent that tests t

two terms in the above fault condition expression correspond to growth of

P,

P1 over the entire space and growth of P2 over the entire space respectively.

Thus all of the faulty functions represented by these two terms are

p———

tautologies and will be detected by any test which has a normal output of O.
j Since any test set must have at least one such test to detect stuck-at-l
on the output pin, these two terms will eventually be eliminated. This
} leaves only three faults undetected, namely (nonOn), (nnnnl), and (nnnOl).
The fault (nnnOn) corresponds to a growth of P1 along X, and will be
i detected by either 00011 or 00010, independent of the fault state of line
Xg The fault (nnnnl) is detected by checking for growth of P2 into 11100
or 11110 and is independent of the fault state of line X, Consequently
i only two more tests are required to complete the multiple pin fault test

set. Hence the following is a 4 element test for the function Z which

possesses no MST:
s T = {00000, 11111, 00011, 11100}.

The growth and disappearance approach is not generally amenable
to test set generation although it is useful in the analysis of tests.
The applicability of this type of analysis is highly dependent upon the
prime implicant structure of the particular function. Functions with few
prime implicants which are relatively distant from each other are easily

l analyzed because multiple pin faults of high multiplicity are required in
order for the growth of one prime implicant to mask the disappearance of

S_— —— e o r— e ————




pret )

S e e

82

another. Functions possessing no MST are generally of this type, and all
such functions which have been studied may be shown to possess test sets

of size < n+l by use of the techniques described in this section.
Unfortunately functions of this type have eluded classification, and a
general theory of test generation based on growth and disappearance testing
has not been developed. This section is included in order to present an
approach to fault and test analysis which may be further developed in the
future, and to illustrate that test sets of small size which do not

satisfy Theorem 3.1 do exist for certain functions.

3.6. Multiple-Output Functions

The results of this chapter extend in a straightforward manner to
modules with multiple output pins. Such a module is depicted in Figure 3.15.

Each of the output pins Z, through Zm in Figure 3.13 realizes a combinational

1

function which depends nonvacuously on some subset of the input pins X

through Xy

Definition 3.14: The input set for each output pin Z, is the set of input

b
pins carrying the input variables upon which the function appearing at

output Zj depends nonvacuously. This set is demoted by Ij‘

A common practice in integrated circuit design is to replicate a
function or to implement more than one function on a single chip when chip
area and package pins are available. The result is that an integrated

circuit module may have outputs or sets of outputs whose input sets are

e ———————————— i i , “
il 4 '@‘w‘ x — kil
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Figure 3.15. A multiple-output combinational module.
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disjoint from the input sets of the remaining outputs. This property of
disjoint input sets may be used to partition a module into submodules which
are independent of each other. Fault detection tests may then be generated
for the module by generating tests for each submoduel. A submodule which
has one output is handled as if it were a single output module, even though
it shares a physical package with other submodules. This section deals
with the case in which a module or submcdule has more than one output, and
each of the input sets for these outputs has a nonnull intersection with
the union of the input sets of the other outputs. The term "module'" will
be used to refer to such a module or submodule in the remainder of this
section.

The alternating adjacency concept used in generating tests for
single-output modules may be extended to the multiple-output case. An
input may be tested by applying a pair of test vertices which differ only
in the value applied to that input such that the value appearing at some
output changes in the fault-free circuit. Since such a pair of tests
normally causes both values to appear on some output, that output is also
tested for both stuck-at-1 and stuck-at-0 faults. A multiple pin fault test
set may therefore be formed by determining a set of input vertices which
contain an alternating adjacency for each input pin and has the further
property that each output pin is used to monitor at least one of the
alternating adjacencies. It is therefore possible to test a multiple=-
output module without having to add tests beyond those required for testing

the inputs. A test set which tests all inputs but r t all of the outputs
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may be augmented to test the untested outputs by adding at most one
additional test input for each untested output, and it may be possible to
determine a single input vetrtex or a small number of vertices which cause
all of the untested outputs to assume values complementary to the output
values produced under the original partial test set. It may also be
possible to test several inputs with one pair of input vertices. For

example if I o L, and I, @ 1, then it may be possible to test an input

1
and simultaneously test an input contained in 12r1f1.

contained in Ilﬁl2

This is possible whenever the values applied to the inputs contained in

IIYWIZ allow both an input in I

be sensitized to Z

and an input in I, to simultaneously

1 e

and Z, respectively.

1 2
The algorithms previously developed for the single-output case

may be used to generate a multiple pin fault test set for multiple-output

modules by the following procedure:

Step 1l: Form a subset, 2%, of the outputs which has the property that

1.

U I, = {x.%x....x
Visz ez* 1 L2 4

i

Step 2: For each element zjez* examine Ij’ For each input Xq contained

in I, for which tests have not yet been generated, use the function

J

specification for Zj as input to the single-output test generation
algorithm to generate a pair of tests for input X Repeat this step
until tests have been generated for XpeooXyo Leave all input variables

noncritical to the test pair unspecified.

e e e — NN
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Step 3: For each output Zk¢z* determine the fault-free circuit response to
the tests generated in Step 2. Outputs which produce both 0 and 1 values

for this set of tests need not be considered further. Select values for the
as yet unspecified input variables to cause both values to appear on the
remaining outputs wherever possible. Each output which produces only 0's

or 1's after this has been completed requires an additional test selected

to produce a 1 or O respectively. The set of tests produced in steps 2 and 3
constitutes a multiple pin fault test set for the module.

There are many possibilities for heuristic improvement to the
above procedure such as selecting Z* to reduce the amount of computation
required to test the inputs, or if '{Z}' < L using Zz¥=7 and selecting
inputs such that Step 3 is eliminated. It may even be feasible to consider
multiple~cutput modules on an individual basis and adapt the test generation

procedure accordingly.

3.7. Summary

This chapter has investigated fault detection under the multiple
pin fault assumption for combinational modules. Test sets with the property
that all single fault components are detected completely have been studied,
and a method of generating such test sets developed. Tie test sets produced
by the main algorithm presented have the property that exactly half of the
test inputs are true vertices. It is therefore possible to apply these

test inputs in an order which results in a strictly alternating output
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sequence, thus eliminating the need to store the normal output response to
the test set. The computational complexity of generating test sets was
examined, and shown to be within the realm of feasibility. Other types of

test sets were also examined, and the extension to multiple-output modules

considered.
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4. FAULT DETECTION IN SEQUENTIAL CIRCUITS

4.1. Introduction

In this section, fault detection under the pin fault assumption
is examined for circuits which exhibit sequential behavior. Figure 4.1
illustrates the general model which is used to describe sequential circuits.
In Figure 4.1 the elements marked D represent signal delays which act as
memory capable of storing the internal state of the machine. Both
synchronous and asynchronous modes of operation will be considered in this
chapter.

In the abstract model of Figure 4.1, the synchronous mode of
operation is characterized by the fact that inputs occur at discrete intervals
of time, and that each application of the set of inputs results in at most
one state transition. Since the outputs are functions of the inputs, they
are also valid only during the time interval in which the inputs are applied.
In order to assure valid operation of such a scheme, it is necessary to
restrict the circuit delays and the delays of the 'D" elements so that state
variables appearing on lines Yo Yg do not change values until after the
completion of the interval during which the inputs are applied. 1In actual
practice the problems associated with synchronous operation are usually
solved by using bistable logic elements (flip-flops) instead of delays for
retention of the state information. A special synchronizing input called
the "clock'" is used to gate the excitation lines Yl...Yk into the flip-flops.
In the remainder of this chapter, it will be assumed that synchronous

circuits are implemented using suitable flip-flops (master-slave or edge
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triggered) and that a clock input is used to synchronize the state
transitions.

In the asynchronous case there is no clock input, and the circuit
responds directly to changes in the values on the input lines. Frequently
the delay elements shown in Figure 4.1 are not implemented explicitly, but
rather the inherent gate delays in the combinational logic network suffice
to store the state information until a stable state, i.e. when Yy -Y&

1 < i<k, is achieved. Alternately, unclocked set-reset flip-flops may
be used. Altliough synchronous circuits may be viewed as asynchronous
circuits by treating the clock input as one of the primary input lines,
these two modes of opération will be discussed separately.

In the discussion throughout this chapter it is assumed that all
pin faults are detectable, i.e. that no input or output lines are
redundant, and that all flow tables are reduced and strongly connected.
Asynchronous machines are assumed to operate in the fundamental mode.

The nature of the fault detection problem for sequential circuits
is quite different from that for combinational circuits because of the
fact that the output of such a circuit is, in general, a function of
previously applied inputs in addition to the current input. Some of the
inputs (yl...yk) to the combinational logic are not directly controllable,

and some of the outputs (Yl...Yk) are not directly observable. As a

result, if it is desired to apply some particular input pattern to the combi-

national logic portion of the circuit, it is first necessary to apply a
sequence of inputs which result in the desired values appearing on YooYy

and then apply the desired values to the directly accessible lines XpeooXge

=
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In order to observe the output of the combinational logic to such an input
pattern, it is then necessary to apply a sequence which will lead to an
indirect display at zl...zm of the values which appeared at the outputs
...Y as a result of the applied input pattern. The fault detection

1 k
problem for sequential circuits is to determine a sequence of input patterns

Y

which when applied to a circuit under test will result in an output sequence

which is correct only if the circuit under test is fault-free under the pin

fault assumption,

4.2. Fault Detection Sequences for Synchronous Circuits

This section discusses the generation of fault detection sequences
for synchronous circuits under the pin fault assumption. Throughout this
section, the Mealy machine formulation will be used. In the Mealy machine,
the current output is a function of both the current internal state (yl...yk)
and the current input. Such machines are represented by flow tables in
which each entry, which corresponds to a particular current state and input,
gives the next state and the output. Figure 4.3a (p. 95) illustrates such a
flow table.

Since this thesis is concerned with the derivation of fault
detection tests for existing circuits, discussion will be restricted to flow
tables in which all flow table entries are specified, unless otherwise noted.
Even if the specification for a particular sequential function is incomplete,
as is quite often the case, every realization of the function has a completely

specified flow table.
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4,2.1. The Effects of Pin Faults on Synchronous Circuits

The locations of fault sites under the pin fault assumption is
of course dependent upon the manner in which the circuit is partitioned
into integrated circuit modules. In this section, we will assume that
faults may occur at the primary input lines XyeeoXyy the primary output
lines ZyeeoZo, the '"next state'" feedback lines Yl"' K’ the state variable
lines Yyee Yo and all lines connected to the clock input. This assumption
is quite broad in the types of partitioning which are included. Figure 4.2
illustrates such a partitioning. Any partitioning which does not contain
any multiple-module signal paths in the combinational logic portion of the
circuit complies with this assumption. Additionally if some or all of the
memory devices and feedback lines are internal to some of the modules, this
configuration is covered by the above assumption.

Within these topological limits, the effects that pin faults
can have on circuit behavior may now be examined. It is assumed that the
networks to be considered implement strongly connected, reduced flow
tables, and that the inputs and outputs are irredundant in the sense that
no input or output line may be replaced by a line fed with a constant
logical value of 0 or 1. First of all, if the clock input to some module
has failed to either O or 1, then the flip-flops which are controlled by
that clock input will never change state. Hence such a fault will be
equivalent to a multiple stuck fault on some subset of the state variable
lines. Any faults on either excitation lines (Yl"‘Yk) or state variable
lines (yl...yk) will result in a faulty machine with fewer states than the

original machine. If all excitation, state variable, and clock lines are
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Figure 4.2. Example of partition of synchronous circuit into integrated
circuit modules.
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fault-free then the only possible fault sites are the primary inputs
XpeeeX, and the primary outputs zl...zm. The effect of faults on output
pins is obvious and is tested by any sequence which results in a normal
output sequence requiring each output to assume both a 0 and a 1 somewhere
in the sequence. The effect that faulty input pins have on circuit behavior
is that constant values are transmitted to the logic network internal to
the integrated circuit module regardless of what value is applied at the
inputs to the circuit. As a result, certain input columns in the flow
table are never entered. For example if a three-input circuit has the fault
X, stuck-at~1 then input columns of the flow table which have x2'-0 will
never be entered by the machine. The next state and output for a given
input will be determined by the input values receiva:d by the logic internal
to the integrated circuit modules. As a result, the effect which input
pin faults have on the flow table is to cause columns to be replaced by
columns which are adjacent in the faulty input variables. Figure 4.3
illustrates this transformation of the flow table. In this figure, the
fault Xy stuck-at-1 results in column 00 being replaced by the entries
found in column 10, and column Ol being replaced by the entries in column
11. 1If both Xy and x, were faulty, then all columns would be the same
as the column corresponding to the double fault. It can be seen from
Figure 4.3 that input pin faults may or may not directly affect the number
of states.

As the above discussion indicates, faults of the pin fault type

result in a very restricted and well-defined corruption of the normal

machine. Furthermore, this faulty circuit behavior is completely
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1x2 Next state, output
Present state 00 01 11 10
A B,0 A,0 C,1 B,1
B c,0 D,0 c,1 c,l
C C,1 D,1 D,1 D,0
D c,l D,1 A,l A,0
Normal machine.
x1x2
Present stat 00 01 11 10
A B,1 C,1 (7 | B,1
B [+ 38 | 3% | ' | c.1
c D,0 D,1 D,1 D,0
D A,0 A,l A,l A,0
(b) Faulty machine resulting from fault
x, stuck at 1.
Figure 4.3. Transformation of flow table under input pin fault.
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characterized by modifications to the fault-free flow table, independent

of any specific implementation. This is a significant improvement over the
situation which exists for synchronous machine diagnosis under previously
studied fault assumptions. In the machine identification approach [28,29]
it is assumed that faults may result in arbitrary sequential behavior as
long as the number of states does not increase. This assumption admits a
large number of faulty machines which could not result from any physical
failure. As a result of such a '"loose" fault assumption, testing sequences
are extremely difficult to generate, and are very long. The circuit testing
approach [30,10], based on a particular implementation in the context of

a specific fault model, results in shorter testing sequences. However,
when the fault model used here is applied, the circuit testing approach

becomes independent of the circuit implementation and in addition short

test sequences may be readily determined.

The discussion which follows deals with the generation of test
sequences for synchronous circuits. In this discussion, attention is
focused on pin faults which occur at the primary inputs. It will be shown
that clock pin failures will automatically be checked, and that any output
pins which are not tested are easily discovered and trivially tested by
concatenating a sequence which causes the machine to exercise untested
output pins. Since multiple pin faults are assumed the fanout structure
of a particular integrated circuit implementation does not affect test

generation.
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4.2.2. Minimum-Length Fault Detection Sequences

It is always possible, at 1eas; in principle, to determine a
minimum-length fault detection sequence by exhaustive methods. This of
course applies for any fault model, but it is necessary to examine all
possible faulty machines in addition to all possible input sequences of
length less than the minimum length. Such an approach is not practical in
general; however, under the pin fault model a relatively restricted set of
faulty machines results, and for machines with a small number of inputs,
this approach may be employed if there is sufficient motivation for
minimizing the length of the test sequence. A method for systematically
determining the minimum length pin fault detection sequence will be

described,

This exhaustive process begins by first determining the flow
tables for all adulterated machines which may result due to input pin
faults, as described in the previous section. Each of the states in this
set of flow tables is then assigned a unique labél. A circuit which is to
be tested is in one of the states of the set of faulty flow tables or in
one of the states of the normal flow table if no faults are present. A
successor tree [31] may now be constructed for the 'direct sum' machine
resulting from the concatenation of the set of faulty flow tables with the
normal flow table. The initial state uncertainty is total, since there is
no knowledge of the fault condition or initial state of the circuit under
test. Observation of the output which results from application of input

symbols allows this initial uncertainty to be reduced with the application

of each input symbol. For example, if the machine may be in any one of the

four states A, B, C, or D, then the initial uncertainty is (ABCD). If an
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input I, is applied and Z(A,I,) = Z(B,I,)= 1 and Z(C,I,) = Z(D,I,) = O then
1 1 1

1
after the application of I1 and observation of the output Z, the uncertainty
is (AB)(CD). Rather than recording the states which the machine could

have been in, it is more convenient to record the current state uncertainties
at each node. Thus, the elements of the various uncertainties are not
necessarily distinct. The successor tree displays the successor uncertainties
for all inputs. Obviously it is unnecessary to continue the tree from nodes
which are identical to some other node, since the subtree will be the same

as some other portion of the tree. A fault detection sequence is indicated
when some node of the successor tree has the property that any uncertainty
containing a state which is a state of the normal machine contains no states
which are states of faulty machines. This property assures that a correct
output response to the input sequence corresponding to the path from the
initial uncertainty to such a node will guarantee that the machine is not

in any state which is a state of one of the faulty machines. If one desires
to know precisely what fault is present, this procedure may be continued

until a node is found which has the property that each uncertainty vector
contains states belonging to onldy one faulty machine. Figure 4.4

illustrates the construction of a minimum length pin fault detection sequence.
Since this particular machine possesses no distinguishing sequence, diagnosis
under the general fault assumption of Hennie results in an extremely long

sequence (173 inputs!), compared to 6 inputs under the pin fault assumption.
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Prese X
State 0 1
A B,0 D,0
B A,0 B,0
C Dyl A,0
D D,1 c,0

next state, output

(a) Normal machine.

X
Present 0 1
.State
A B,0 D,0
B A,0 B,0
normal
C D,1 A,0
D D,1 c,0
E F,0 F,0
F E,O E,O
x stuck at 0
G H,1 H,1
H H,1 H,1
I L,0 L,0
J J,0 J,0
x stuck at 1
K 1,0 I,0
L K,0 K,0

(b) Direct sum machine for input faults.

Figure 4.4. Minimum length test sequence generation.
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4.2.3. Generation of Pin Fault Detection Sequences

This section deals with the generation of pin fault detection
sequences. Such sequences will be constructed by concatenating subsequences
which have special properties. The following definitions are useful in the

discussion of such sequences (in these definitions, machine M is fault-free).

Definition 4.1: A homing sequence for machine M is an input sequence which

when applied to M allows the final state to be uniquely determined through

observation of the resulting output sequence, regardless of the initial state.

Definition 4.2: A synchronizing sequence for machine M is an input sequence

which leads M to a specified final state, regardless of the initial state.

Definition 4.3: A distinguishing sequence for machine M is an input

sequence which has the property that the resulting output sequence is unique

for each possible initial state.

Definition 4.4: A tranzfer sequence from state Qi to state Qj is a sequence
which when applied to machine M in state Qi leads M to state Qj' Sucnt a

sequence is denoted T(Qi’Qj)'

The following shorthand notation for specific input faults will be used. The

fault "input x, stuck-at-d," de(0,1), will be denoted xi/d.

i
As previously discussed, faults occurring at primary inputs to the
machine render certain columns of the fault-free flow table unreachable.

Faults at the inputs to the memory elements, outputs of the memory elements,

and feedback inputs of the combinational logic result in a reduction in the

AT
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number of states. Faults on output pins render these lines inactive. In
this section a general method for designing sequences which detect these
faults will be formulated.

The fault detection sequence to be derived consists of three
portions. The first part serves the purpose of verjifying that the machine
under test possesses the proper number of states, and also establishes the
validity of certain transfer sequences. This part of the test therefore
tests for pin faults on lines into and out of the memory elements. The
second part of the fault detection sequence checks certain key transitions,
the validity of which guarantees that no input lines have failed. 1In order
to assure that no output lines have failed it is necessary for the fault-
free response to the fault detection experiment to possess values which
place both 0 and 1 on each output line. The third part of the fault
detection sequence consists of an input sequence which exercises any
previously untested output lines.

The first part of the fault detection sequence is the same as
that developed by Hennie and adapted by Kohavi. The sequence is initiated
by a sequence which brings the fault-free machine to a known state. This
may be acg¢omplished by a synchronizing sequence if one exists, or by a
homing sequence followed by an adaptively selected transfer sequence. For
machines which possess a distinguishing sequence, the number of states may
be verified by applying a distinguishing sequence followed by a transfer
sequence which brings the machine to a new state, then another distinguishing
sequence, and so on., For a machine with N states, this portion of the test

is completed by applying such a sequence which results in N different
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responses to the distinguishing sequence. The intermediate transfer
sequences used in this part of the test are also verified since the
terminal state of the transfer is checked. For machines which do not have
a distinguishing sequence, it is necessary to use locating sequences and
characterizing sequences in order to establish the existence of N distinct
states, as described in [10]. (Such machines will not be considered in
detail here because they are usually avoided in actual practice due to the
diffic:lty of diagnosis and because the rather lengthy state identification
problem is considered elsewhere.)

Consider the machine whose flow table appears in Figure 4.3a.
This machine has a synchronizing sequence (00,00) which leads the
machine to state C, and a distinguishing sequence (10,10), Thus the first

part of the fault detection sequence consists of the following sequence :

Input (x1x2) . 00 00 10 10 10 10 10 10
State ? ? C D A B C D A
Output : 0 0 1 1 0 0

In this case it is possible to overlap the various applications of the
distinguishing sequence, and it is unnecessary to use any intermediate
transfer sequences since the machine is left in a different state after
each input is applied. The fact that four different responses to the
sequence (10,10) are observed for the fault-free machine means that a

machine under test which responds correctly to this sequence has four
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states and also that T(C,D) = (10), T(D,A) = (10), and T(A,B) = (10).
Note that one additional application of the distinguishing sequence
determines which state is entered after state B. This verifies the transfer
sequence T(B,C). Since the machine has 4 states, the final state which is
verified, B in this case, must return to one of the previously encountered
states. By adding this extra distinguishing sequence, this previous state
is determined. The significance of this (N+l)st application of the
distinguishing sequence is that it indicates which state the machine is in
at the conclusion of this part of the test, and it verifies a transfer
sequence from the last state verified to one of the others. With this
transfer sequence plus the others, it is possible to get from any state to
any other using only transfer sequences which have been verified.

The second part of the fault-detection test sequence tests a set
of specific transitions which guarantee the absence of input faults. It
is first necessary to deduce such a set. If the machine is brought to a
known (in terms of its response to the distinguishing sequence) state and
an input is applied, there are two types of errors which can result. The
machine can be transferred to an erroneous state or the machine can produce
an erroneous output. If the output is correct then an application of the
distinguishing sequence can be used to check the new state. If an
erroneous output is produced for the faulty transitions of interest, then
a distinguishing sequence is unnecessary. The fault detection capabilities
of a particular transition may be deduced by examining the other transitions
which share that flow table row. For example in the machine of Figure 4.3a,

consider the transition from state C under input 0l. An input fault of
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x2/0 or xl/O, x2/0 results in a transition to state C with an output of 1.
Therefore these faults can be detected by application of the distinguishing
sequence. The fault x1/1, x2/0 results in a transition to state D, the
proper state, but the output is erroneously a 0. Hence this fault will be
detected immediately. The faults xl/l and xl/l, x2/1 may not be detected
by this particular transition, because both the next state and the output
which occur in the presence of these faults are correct. Using this type
of reasoning, fault condition expressions as defined for combinational
circuits may be written and a set of transitions which leads to a fault
condition of (nn...n) constitutes a set of transitions sufficient to
diagnose the circuit. The transitions which require a distinguishing
sequence in order to detect the desired faults must be noted. 1In the
example of Figure 4.3a, this process is as follows: Rows C and D have the
property that under input 10, the output is a 0 but every other transition
in these rows produces a 1. Hence all faults which are detectable with
these two transitions are detected immediately without the necessity for
an application of a distinguishing sequence. Suppose the transition from
state C under 10 is selected, then all faults other than (; g) will be
detected. The transition from state A under input 0Ol leads to a state which
is different than that under any of the other columns, and in particular
from columns which could be erroneously entered if any of the faults in

(i g) are present. The fault condition for this transition is (2 :).

Since (; g)r\(g i) = (n n), these two transitions are sufficient to detect
all multiple input faults. The transition from state A under input 0l must

be followed by a distinguishing sequence since one of the faults untested
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by the first transition, x2/0, can cause the machine to produce the correct
output. The second part of the fault detection sequence may now be
constructed using the transition set {C(IO),A(OI)}, remembering that the
first transition does not require a distinguishing sequence. Since this
particular machine has only one output line, the third part of the test

sequence is not required. The following fault detection sequence results:

part 1 part 2

e — e N
Input (x1x2) 00 00 10 10 10 10 10 10 01 10 10

Q
RS B T R SRR MR  GRERE EUEN TR RS Rl SSEe) LTRE Sheht et .
g8
N O
2 ¢! Output R R e
—
* *

C(10) checked A(0l) checked

The example above was used by Kohavi to compare his method which considered
a specific implementation and the single fault assumption to the method of
Hennie. Part 1 is the same for all three methods. The remainder of the
sequence derived by Kohavi required 15 inputs compared to 41 inputs required
for Hennie's method. Thus it is seen that a significant reduction in the
length of fault detection sequences as well as a simplified generation
procedure results from the pin fault assumption in the case of synchronous

circuits.
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4.3. Fault Detection Sequences for Asynchronous Circuits

Fault detection in asynchronous circuits has received relatively
little attention in the past. A primary reason for this is that under
previously considered fault models, it is possible for critical races to
result from certain faults. If this occurs the behavior of the faulty
machine may be nondeterministic. In order to circumvent such difficulties,
it is necessary to place restrictions on the structure of the fault-free
machine. Under the pin fault assumption, it is not possible for a race-free
circuit to be transformed by a fault into one containing races. There are
other difficulties in testing asynchronous circuits. Since asynchronous
circuits respond to input changes, it is not possible to repeat an input
without applying an intermediate sequence. The particular implementation
technique may also place restrictions on the types of input sequences which
may be applied, for example the circuit may have been designed under the
assumption of single input changes only, and therefore a fault detection
sequence must be designed which complies with this restriction. Another
inherent difference between synchronous and asynchronous machines is that
in the synchronous case, the state of the machine is determined by the
values taken on by the internal state variables, whereas in the asynchronous
case, the state is determined by the values on the internal state variables
in addition to the values on the input lines. This state is referred to as
the "total state" of the machine. A distinguishing sequence for an
asynchronous flow table must be capable of identifying each of these total
states, and in general there will be many more total states than there are

internal states. The distinguishing sequence must also satisfy any input
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restrictions. It is therefore necessary to assume that the flow table is
reduced under the specific input restrictions.

The behavior of such circuits in the presence of faults of the
pin fault type is similar to that described in Section 4.2.1. As in the
synchronous case, input faults result in an adulterated flow table in which
a column which is unreachable due to the fault is replaced by the column
which is erroneously entered. However if a fault is present which masks
a particular input change to the internal logic, no state transition occurs,
whereas some state transition always occurs for each cycle of the clock
input in the synchronous case. Since asynchronous circuits are generally
implemented by relying on propagation delays of the logic elements for the
storage required to maintain the current internal state until the new stable
state is reached, it is much more likely that state variable lines will be
retained within integrated circuit boundaries rather than being routed
externally from output pins to input pins. If this is true, then the
internal state variables may be assumed to be fault-free. If an asynchronous
machine possesses external feedback, then faults at either end of the routing
result in a reduction of the number of internal states, and therefore the
number of total states. Since the internal logic of the machine may be
assumed fault-free, complete diagnosis results from a verification of all
input and output lines and a verification of any feedback lines which
possess potential fault sites. This guarantees the existence of all of
the total states without the necessity for explicitly testing each of them.

In the next two sections, the design of fault detection sequences

will be considered. This design process is greatly enhanced by the presence
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of certain flow table properties. In Section 4.3.1 these properties will
be identified by means of example, and a methodology for fault detection
sequences, based on these properties, will be developed. Section 4.3.2

considers diagnosis of machines which lack these properties.

4.3.1. Fault Detection Sequences for Unit Transition Diagnosable

Machines
The nature of asynchronous behavior, namely that a state transition
occurs only when the internal logic senses a change in the input state,
greatly simplifies the test sequence generation process. To illustrate
this simplification, consider the following hypothetical input sequence
and corresponding output sequence (the times shown indicate when the inputs

changed, and are arbitrary intervals):

time: 0 1 2 3 4 5 6 7
input (x1x2x3): 000 o001 011 001 101 111 011 001

output z: 1 0 0 o 1 1 0 1

Assume that the above input sequence is applied to a three-input single-
output asynchronous machine which has internal feedback lines, and that

the above output sequence results. It may be concluded from this sequence
alone that the machine is pin fault-free, without even considering the flow
table of the machine. The reasoning behind this conclusion is as follows:
At time O, the machine produces an output of 1 under input 000, and at time
1, the input is changed to 001. This input results in a change in the

value of the output, and since X4 is the only input variable which is

a————— - e " R

e

i T




110

changed, input Xy must be fault-free. If pin x4 Were faulty, the internal
logic would not have seen an input change at time 1 and could have retained
the output z=1, Similarly the output observed at time 4 leads to the
conclusion that input Xy is fault-free, and the output observed at time 7
leads to the conclusion that input X, is fault-free. This testing sequence
relies upon single input changes which result in output changes and may
therefore be applied to machines designed to operate under the single-~
input-change restriction. Such tests are easy to generate and are quite
short.

The following definitions define the flow table property just

described.

Definition 4.5: An input line x, of an asynchronous machine is unit

i
transition testable (UTT) if the flow table for that machine contains two

states Qi and QJ in input columns Ia and IB respectively with the following
properties: Qj is a successor of Q1 under the single input change involving
input x; (i.e. I, and I8 differ only in xi) and 2(01:10) # Z(QJ’IB)’ where

Z is the mapping of total states onto output vectors. The transition from

state Q1 to state Qj is a test transition for input Xy

Definition 4.6: An asynchronous machine is unit transition diagnosable

(UTD) 1if all of its inputs are UTT.

Fault detection sequences for unit transition diagnosable machines ‘
may be designed as follows. Select one test trangsition for each input line. ‘

Form a sequence which contains each of these test transitions by determining
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a synchronizing sequence to initiate the test, and appropriate transfer
sequences which link the synchronizing state and the test transitions.

If the machine is designed assuming single input changes, then the inter-
mediate transfer sequences and synchronizing sequence must be constructed
appropriately. The machine, whose flow table is illustrated in Figure 4.5,
will be used to illustrate the design of this type of fault detection
sequence.

Under input 00, stable state A produces an output of 0. The
transitions of interest are those to column 01 and column 10 which result
in final states producing outputs of 1. Under both Ol and 10 the final state
produces a 0 output. Hence state A under input 00 is not useful for
detecting faults. State C in column 00 produces an output of 1, and under
input Ol the internal state remains unchanged, but an output of 0 is
produced. Therefore this transition is a test transition for input X,
Under input 10 C goes to D which produces a 1. Therefore neither of the
stable states in column 00 may be used to test input X The other stable
states are similarly examined, and the result is that the following test

transitions for inputs Xy and Xy exist (the subscripts denote the input

column):
%1 Bgy " Ay Dy 7 By
X3¢ €0 ~ Co1* Bor ~ Ao’
Co1 ~ 0’ P11” P10’ P10~ P11

The sequence 00,01 is a synchronizing sequence leading to state °o1' The
sequence is completed by forming any sequence which contains test transitions

for X and X, 1f single input changes are required, the following sequence
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1
00 1

d 0 11 10
A @,o0 c ,0 B
B A )1 A :0

state

c ©,1 ©,o0 A D
D c B ®,0 ,1

, output

Figure 4.5. Asynchronous flow table.
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constitutes a fault detection test (the asterisks indicate points where the

inputs are tested).

input (xl,xz): 00 01 00 10 11 01

State: - Y R e AlPAE R
Output: (?) 0 1 1 0 1
s *
X
X, 3

Since this circuit has one output line, a fault on this line is also
detected by the above sequence. Therefore if this machine is implemented
such that the feedback lines are not connected through input and output
pins, all multiple pin faults are detected with this sequence of length 6.

For the sake of comparison, this machine is considered in [10],
and a fault detection sequence is designed under the fault assumption that
no fault increases the number of stable states in any column. The resulting
sequence required 28 symbols.

In the event that the feedback lines are potential fault sites,
it is necessary to verify that the internal state variables are functioning.
Since the above sequence will detect any faulty inputs, it is not necessary
to test every total state in order to assure that every internal state is
present. It is sufficient to test for one total state in each flow table
row. For example, in Figure 4.5, internal states A and C may be tested by
checking for the presence of two stable states in input column 00, and

internal states B and D may be tested by checking for the presence of two
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stable states in input column 10. 1In the sequence which was designed to
test input errors, stable state C under input 00 and stable state D under
input 10 are already tested. The remaining internal states may be tested

by appending to the above sequence the following suffix:

input (xl,xz): 00 10
state: A
output: 0

Note that in the fault detection sequence derived, it is unnecessary to

test specific transitions. This results from the fact that for asynchronous
machines, which respond to input changes, an input line may be completely
tested by application of one input symbol. A further ramification of this
fact is that it does not matter whether internal states are verified before
or after inputs are verified, and further, the problem of using only
previously checked transfer sequences does not arise. It is also observed
that for this particular example, the sequence of eight symbols which
verifies inputs and internal states could have been used to replace the 12
symbol portion of the sequence designed in [10] which is used to verify

the existence of the correct number of stable states in each column.

4.3.2. Fault Detection Sequences for Non-Unit Transition Diagnosable

Machines
Any nondegenerate flow table must possess some UTT inputs, however
it is not necessary that all inputs have the UTT property. If a machine has
some non-UTT inputs, then the method described in Section 4.3.1 can not be

used to completely diagnose the circuit. Figure 4.6 illustrates a non-UTD
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Figure 4.6.

A non-UTD flow table.
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flow table which was obtained from the flow table of Figure 4.5 by changing
some of the output assignments. In this flow table it may be seen that no
transition involving input X, (assuming that only single input changes are
allowed) results in a transition for which output value changes, hence X, is
not UTT.

The first step in the design of fault detection experiments for
non-UTD machines is the identification of the set of inputs which are UTT.
The first part of the test sequence will consist of a sequence which tests
these inputs, and this sequence is designed in the same way as test sequences
for UTD machines. The second part of the test sequence is designed to test
the remaining inputs. At the conclusion of the first part of the fault
detection sequence (assuming that the circuit under test has produced the
correct output sequence), all UTT inputs will be known to be fault-free.

The effects which faults on the untested inputs can have on
the behavior of the circuit, given that the tested subset of inputs is
fault-free, can be analyzed by examining the total state transition graph.
Each state is grouped with the other states which share the same input
column, and these groups are arranged graphically so that an £-dimensional
space is formed (£ is the number of input lines). All arcs in this
transition graph which are along dimensions of the space that correspond to
tested inputs are known to be present. Arcs along the other dimensions are
present only if these input lines are fault-free which has not been
determined yet. It is assumed that these lines are faulty until proven

otherwise, however it is not known whether these lines are stuck-at-0 or

stuck-at-1. If the state transition graph is visualized with these arcs
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absent, it can be seen that if q lines are UTT, then the absence of transi-
tion arcs along the £-q untested dimensions results in ZZ-q submachines,
each contained in a q-subspace of the L-dimensional input space. For
example if a 3 input machine has 1 UTT input, X the transition graph
appears as shown in Figure 4.7. 1In this figure, the nodes represent groups
of total states, and the edges represent all transitions between total
states in the input columns of the adjacent nodes. The solid edges represent
transitions known to be present (by the first part of the fault detection
sequence), and the dotted edges represent transitions along dimensions
corresponding to suspected inputs. Now if inputs x2 and Xq are faulty, say
x2/0, x3/0, then the machine will behave like the submachine consisting

of input columns 000 and 100 and a transition will occur every time the
value of Xy is changed regardless of the values on x, and Xqe This sub-

2

machine is labeled SM,. Other faults involving X, and x, restrain sequential

3

behavior to the other submachines consistiang of nodes connected by solid

edges. If some part of the test sequence determines that x, is functioning

2

properly, then submachines consisting of the planes x,=0 and v, =1 could

]

3
define the sequential behavior of the faulty circuit.

In order to test non-UTT inputs, it is sufficient to show that
for each such input, two submachines which are adjacent in this variable
are connected. The example of Figure 4.6 will be used to illustrate this
strategy. Figure 4.8 shows the state transition graph for this machine.
The sequence 01,11 is sufficient to test Xy since an output change must
occur. Notice however that if fault x2/0 is present and input 01 takes the

faulty machine to state A under input 00, the faulty machine will produce
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(transitions between
stable states in
input columns 011
and 111)

111

(group of stable
states in input
column 101)

Figure 4.7. Transition graph for a 3 input machine in which Xy is UTT.
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the proper response to this sequence. 1In order to verify that X, is fault-

free, it is necessary to make a transition along the x, dimension which
results in the fault-free machine entering a total state which can be
distinguished from the state prior to the transition, since if X, is faulty
no such transition will occur. It is also necessary that the state entered
be a state which is distinguishable from any fauity state which the machine
could be in after responding correctly to the first part of the experiment,
for example state A under input 00 in the present example. A transition from

state C under input 0l to state C under input 00 satisfies these conditions.

The resulting fault detection sequence is as follows:

input: 01 11 01 00 10

state: (g) A C c D
output: 0 1 0 0 0

The distinguishability criteria required for forming test
sequences for non~UTT inputs are assured by the assumptions that all inputs
are irredundant and that the flow table is reduced under the single input
change restriction. It is possible, however, that the sequence required to
indicate the connectivity of a pair of submachines may require more than
one transition in the variable being tested. An example of such a
"pathological case'" is a machine in which all of the submachines formed by
transitions along tested inputs are isomorphic. In this case, it may be
possible to transfer from a state in one submachine to a nonequivalenf ‘

state in the other which solves the problem. However if no such transitions
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exist it is necessary to transfer back and forth between these submachines
until nonequivalent states are reached by the faulty and fault-free machines.
If the internal state variables require verification, once the
input lines are tested, a sequence which tests the feedback lines may be
appended. This sequence is designed in exactly the same way as in the UTD

case.
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5. CONCLUDING REMARKS AND SUMMARY

The research reported in this thesis has been directed at the
investigation of a new model, the pin fault model, for failures in digital
systems. The goal of this initial study has been to evaluate this model
from the standpoint of fault detection test design and to determine the
degree of simplification which results. As was discussed in Section 1,
an essential characteristic of a fault model is adequate coverage of the
various failure modes encountered in the check-out phase and field life
of a digital system. A study of dominant failure mechanisms in typical
state-of-the-art systems suggests that a fault model of the type proposed
here does in fact provide such coverage. It is recognized that additional
research is required to establish the validity of the pin fault model,
however the required data for such a study is not readily available. The
philosophy behind this research is that the model appears to be valid in
at least some situations and an investigation of the model from a theore-
tical viewpoint is therefore justified. 1In this section the results of the
research are summarized, and some observations regarding design of circuits
to enhance their testability are made. Areas for additional research are

discussed.

5.1. Summary of Thesis

In Chapter 2, the rationale for the pin fault assumption was

stated. This rationale is the belief that the dominant failure mechamisms
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in digital systems implemented using integrated circuits result in logical
behavior modeled by the pin fault approach. It was shown that a substantial
reduction in the number of modeled faults results from the pin fault model
compared to the stuck-line model. This reduction is based on the typically
high ratio of internal lines to the number of input and output pins which
characterizes integrated circuits.

Chapter 3 studied the fault detection problem for combinational
circuits under the pin fault assumption. A test set of size bounded by 24
was shown to exist for all single output combinational modules. Such test
sets are capable of detecting all multiple faults because each single fault

is detected '"completely."

Such test sets also have the property that if
applied in the proper order, the normal network response is a strictly
alternating sequence. This alleviates the need to store the sequence of
normal responses, or to compare the response of the unit under test to a
known good unit. The computational aspects of generating such test sets
were examined and the results for single output circuits were extended to
the multiple output case.

Chapter 4 investigated fault detection in sequential circuits
under the pin fault assumption. The synchronous and asynchronous cases
were considered individually. Methods for the design of input sequences
capable of detecting all multiple pin faults were developed for both
synchronous and asynchronous circuits. It was shown that such sequences
are much easier to design, and are much shorter under the pin fault

assumption than under previous fault assumptions. Fault detection in

asynchronous circuits has proven extremely difficult under previous fault
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models, however such circuits lend themselves very well to fault detection
under the pin fault model, and in many cuses may be much more easily
diagnosed than in the synchronous case.

The results of Chapters 3 and 4 indicate that the pin fault model
provides a more practical approach to fault diagnosis than the stuck-line
fault model when large digital systems are considered. A major advantage
of this model is that it provides a multiple fault approach without
presenting the difficulties encountered when the stuck-line model is

extended to the multiple fault case.

5.2. Design Rules to Enhance Testability

In the event that the pin fault model is to be adopted for the
design of diagnostic procedures, there may be ways to enhance testability.
It is not uncommon for design specifications for various networks to be
incompletely specified. This may result because certain combinations of
inputs are excluded by constraints which are known to exist among network
inputs, or because the response of the network under certain inputs is
irrelevant. 1In either case, the choice of these degrees of freedoms may
allow simplified testing.

In the combinational case, the existence of an isolated maxterm
or minterm allows the function to be tested with £+l trivially generated
tests (for a single-output L-input network). If such a function is
unspecified for a group of neighboring vertices then assignment of

appropriate values to these vertices may be made such that an isolated

B
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min- or maxterm results. If it is not possible to assign unspecified
vertices to the ON- and OFF-sets 8o as to create isolated min- or maxterms,
then an assignment which results in minimum size prime implicants or prime
implicates will enhance testability.

In the case of sequential circuits, the existence of at least
one distinguishing sequence is essential to simple diagnosability.
Synchronizing sequences are also desirable, and this function is most
conveniently provided by designing such circuits with a reset input. For
synchronous circuits, the design of fault detection sequences is facilitated
by flow table rows which possess one entry which differs from the rest in
either next state or output assignment. Unspecified entries should there-
fore be selected to provide such rows when possible. Unspecified flow table
entries for asynchronous circuits should be selected to render as many
inputs unit-transition testable as possible.

Since integrated circuits are packaged in standardized packages,
it is not uncommon for unused pins to be available. It is possible to take
advantage of this fact to modify the integrated circuit device so that the
testing of inputs becomes trivial. To see how this may be accomplished,
consider the following function: Z = x x2...x‘\/§1§é...§l. The three

1

tests {tl-l Rt 1,t2-0 @ Ve 0,(:3] where t

be shown to constitute a test set as follows:

3 is any false vertex may

-] = Vv
ZUT(tl) 1 PIE P2G(11...1)
-4t

1
na )V (00...0)
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= - \
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=@%...fhvar..

[ZUT(tl) =1]A [zUT(cz) =1]

¢t hveo... 0Inll % Hvar...
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The two remaining faults (1 1 ... 1) and (0 0...0) will be detected by t3.
If a realization of this function (or any function comprised of two
complementary min- cr maxterms) can be added to the integrated circuit

chip using an available package pin for the output, then all inputs of the
device can be tested with three tests. Figure 5.1 illustrates this circuit
modification. It does not matter whether the circuit function is combinational
or sequential. A complete test set for such a modified circuit consists of

the three tests given above plus inputs which exercise all output pins.

The number of additional tests required to exercise the output pins may be

reduced by the judicious choice of t As a trivial example, consider a

3
single output combinational function Z which is modified as shown in

Figure 5.1. 1If Z(tl) = Z(tz) then t3 is selected to be one of the vertices
(which must exist) such that z(t3) # Z(tl). 1f Z(tl) # Z(tz) then choice
of t, is arbitrarr. 1In either case no additional tests are required to
exercise the output. The choice of the special diagnosing function may

also be used to reduce the number of tests required to test outputs. Any

function of either of the following forms is adequate (aic[O,l]):

- ~— R T
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This method of enhancing diagnosability is very attractive because at the
expense of only one package pin, diagnosis of an arbitrary number of inputs
is achieved with only three tests, and the method is applicable to arbitrary

functions, combinational or sequential.

5.3. Areas for Additional Research

The ultimate goal of a fault detection strategy is the capability
to test system components at the level of easily accessible subassemblies
such as printed circuit boards. Such subassemblies contain many integrated
circuits, and therefore fault detection under the pin fault assumption
should be investigated for networks of integrated circuit modules. This
is a very difficult problem in the general case where arbitrary topologies
are allowed. Perhaps certain topological constraints, which must also be
reasonable from the logic design standpoint, would result in networks
amenable to fault detecticn.

Minimization of test sets for modules may be critical in the
diagnosis of networks of modules. It has been shown that many functions
(of L variables) require £+l tests, and that some may be diagnosed with
fewer. An upper bound on the minimum number of tests required is conjectured
to be L+1, however this bound remains to be established. The proof of this

bound may suggest a technique for generating such a test set.
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APPENDIX

This appendix contains detailed specification of the algorithms
developed in Chapter 3. Many of these algorithms are implemented using list
processing techniques. 1In such algorithms, it is assumed that variable
AVAIL contains a pointer to the head of a list of available list nodes. When
a node is required during the construction of a list, it is obtained from
this list of free nodes, and when a node is removed from a list it is
returned to the AVAIL list. The fields of the list nodes are specified by
name and these field names are illustrated for each type of list node used.
For example if pointer Q points to a node of the type shown in Figure 3.2
then the ELT field of that node is referenced as ELT(Q). The symbol A

indicates an empty link field, and is used to terminate lists.

Algorithm A.1l: Reduced cost covering set represented in list structure of

Figure 3.2.

P[l:q, 1:4] prime implicant array
cl1:q] cost vector
R[1:q) permutation vector
Cs pointer to covering set list
CSSIZE # of prime implicants in the covet
Begin COVER
C « (0,0,...,0) /%* compute cost vector */

do i=1togq
do j=1tod
if P(i,j) = s then /* cost for P(i,*) = # of s's */
c(l) « c(1)+
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end

| do i=1to q /* initialize R to the natural order */
R(1) « i
end

SORT (1,q+l) /* form permutation R so that
| C(R(1)) < C(R(§)) 1f 1 < j */

do for j=1 to 4 /* form initial weight vector */

? 1ie1
do while P(R(1),j) = u
ie 141

end
I W() « 1

end

§ CSSIZE « 0

CS « AVAIL

AVAIL « LINK(AVAIL)

S « Cs

i do until W= (0,0,...,0)

' CSSIZE « CSSIZE + 1

3 RLINK(S) « AVAIL /* create a node for new element
AVAIL « LINK(AVAIL) of cover */

k « max(W(1),W(@2),...,W()]

ELT (RLINK(S)) « R(k)

Y<o /* temp for count of the # of
Q « RLINK(S) specified variables */

s

do for 1=1to 4

if PR(k),1)=sAW(L) # O then do
Y « Y+l
LINK(Q) « AVAIL

Gl G e e
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AVAIL « LINK(AVAIL)
VAR (LINK(Q)) « i /* store indices of all variables
covered by this element which
Q « LINK(Q) have not been covered by previous
W)« o0 one */

end

SIZE (RLINK(S)) « £-Y
LINK(Q) < A
S « RLINK(S)

end

RLINK(S) « )

T « CS

CS « RLINK(CS)
LINK(T) « AVAIL
AVAIL « T

end COVER

Algorithm A.2: Form permutation

S e " — T e wEm R O e
o
2

implicants. SORT is a recursive

contains the indices of vector C

/* terminate sublist */

/* terminate list */

corresponding to ascending cost of prime
procedure which forms a vector R which

arranged in order so that C(R(i)) <

C(R(j)) if 1 < j. 4 and r are pointers into R anc C which define the

Begin SORT (L,r)
if r-£ > 1 then do

sort ¢, + [E£|

SORT (4 + [55—‘-‘].:)

subfield to be sorted (r points to the first elements not in the subfield).

The sort is a straight two-way merg sort.

/* L,r are local variables */




ke
it

-4
yer s[5t
do until k=r
if C(R(1)) < C(R(j)) then do

T(k) « R(1)
k © k+l
ie 141
if 1= z+f‘—;’=] then
do until j=r
T(k) « R(J)
k « k+l
j e jtl
end

end
else

o

o

T(k) « R(J)
k « k+1

je 11

if j=r then

do untdl 1 = £ +[EE]

T(k) « R(1)

k « kHl

1€ i+
end

end

135
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do for i=4 to r-1
R(1) « T(1)
end
end
end  SORT

Algorithm 3.4: FALSE VERTEX

m size of universe
Fl1:m] solution vegtor
CUBE (ptr) [1:m)] see Figure A.1l

Begin FALSE VERTEX

Call DISJOINT CUBES (ILIST,SIZE)
doi=1tom

F(i) € u
end

do j=ltom

F(j) « 0
Count « 0

Q « Co

S « LINK(CO)
R« Cl

do until S=)\

if CUBE (S)(j) = O then do /* N¢@P; count vertices */
temp count ¢« 1
do for k = j+l tom

if CUBE (S)(k) = u then temp count « temp count *2
end
count ¢« count + temp count
Qe«s
8§ « LINK (S)
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if CUBE(S)(j)=1 then do
LINK(R) « S

i' R « LINK(R)

LINK(Q) « LINK(S)

S « LINK(S)

<

else do /* don't care: count half and put other half
in other list */

temp count « 1

do for k = j+l to m

————

if CUBE(S)(k) = u then temp count ¢« temp count *2
end
} LINK(R) « AVAIL
AVAIL « LINK(AVAIL)
’ CUBE (LINK(R)) « CUBE (S)
R « LINK(R)
Q< s
S S « LINK(S)

end

if count = 2 ** (m-j) then do /* if all vertices are true then
§ F(§) = 1 change to other subtree, and
use other list */
LINK(R) « A

LINK(Q) « AVAIL
AVAIL « LINK(CO)
; CO« - Cl
end
else do
LINK(R) « AVAIL /* throw away other list */
AVAIL « LINK (Cl)
end
end
end FALSE VERTEX (F) /* return F to calling proc. */

— - - ~ JO—— e — > -
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Algorithm A.3: DISJOINT CUBES - called by FALSE VERTEX
m size of space
C pointer to list of cubes (Figure A.1l)
CUBE (ptr)[1:m] see Figure A.l
Begin DISJOINT CUBES (C,m)
S ¢ /* for each cube in list - */
do until S=1\
Q&8
do until LINK(Q) = A /* - scan remaining cubes making each
*
S disjoint from CUBE (P) */
do for i=1 to m while NULL = 0
if CUBE (P)(i) = u then I(i) « CUBE(LINK(Q))(i)
else if CUBE(P)(i) = CUBE(LINK(Q))(i) then
I(i) « CUBE(LINK(Q)) (i)
else NULL ¢« 1
end
if NULL = 0 then do /% if intersection # ¢ */
Tl < AVAIL /* Tl pts to new node to be created */
do i=1tom /* create list of disjoiant cubes */

if (CUBE(LINK(Q))(i) = u)A (I(i)~=u) then do

CUBE (T1) « CUBE(LINK(Q))
CUBE(T1) « — 1 I(i)
T2 « T1
Tl « LINK (T1)
end
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end
T3 « LINK(Q) /* link in new list */
LINK(Q) « AVAIL

LINK(T2) ¢ LINK(T3)

AVAIL ¢« T3 /* place old cube in AVAIL */
LINK(T3) « Tl

Q& 72 /* advance Q to next cube in old
list */

end
else Q ¢« LINK (Q)
end
S « LINK(S)
end

end DISJOINT CUBES

Algorithm 3.5: TEST GEN. TEST GEN operates on array, P, containing q prime

implicants of the £-variable function to be tested. COVER is called to
construct the list structure illustrated in Figure 3.2. DMATRIX is called
to compute the necessary distance information. This information is stored
in array D, where D(i,j) contains the distance (up to 2) between prime
implicant P(i,*), a member of the covering set, and prime implicant P(j,*).
Then for each variable, TEST GEN determines the list of intersections
between the prime implicants and the subcube from which a false test vertex
must be selected. This list has the structure shown in Figure A.l1. The
cube field of a node in ILIST is a vector. If pointer S points to a node
in ILIST then CUBE (S) denotes the vector stored in this node, and

CUBE (S)(i) denotes the i-th component of the vector stored in the cube

field of the node pointed to by S. The test set generated is stored in
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three dimensional array T, where T(i,*,0) contains the false test for input

pin i, and T(i,*,l) contains the true test for input pin i.

Begin TEST GEN

-

al COVER
call DMATRIX
S« ¢S

do until § =12

(2]

Q < LINK (S8)
do until Q =1\

ILIST <« LINK(AVAIL)

R « AVAIL

do for i=1 to VAR(Q)-1, VAR(Q)+l to q

if D({VAR(Q),i) = OAP(i,VAR(Q)) = u then
do for j=1 to 4
if P(VAR(S),i) = u then
CUBE(LINK(R)) (j) « P(i,])

end
R ¢ LINK (R)

o
(=%

it

-

else if D(VAR(Q),1) = 1A

P(1,VAR(Q)) # P(ELT(S),VAR(Q))

then do for j=1 to 4
if P(ELT(S),}) = u then
CUBE(LINK(R) (j) « P(@,]))
end
LINK(AVAIL) ¢« LINK(R)
LINK(R) « A




ul

k

———
¢

P

oot R s e e mmm— e o

Aperhd Ao i g et

142

F(*) « FALSE VERTEX (ILIST,SIZE(S))
T(VAR(Q),*,0) « P(ELT(S),*)

ie1
do j=1 to £
if T(VAR(Q),j,0) = u then do
T(VAR(Q),],0) « F(1)
1€ idl
end
end
T(VAR(Q),*,1) « T(VAR(Q),*,0)
T(VAR(Q),VAR(Q),1) « 7 T(VAR(Q),VAR(Q),1)

Q « LINK(Q)
end
end
end TEST GEN

Algorithm 3.5: DMATRIX. DMATRIX computes the distance between members of
the covering set (pointed to by CS) and the other prime implicants.
Begin DMATRIX

S € Cs
do for iw=1 to CSSIZE
do for j=1toq
D{,j) « O
do for k=1 to £ until D(i,j) = 2
if (P(ELT,k) =OAP(j,k)=1)V (P(ELT,k) =1AP(j,k)=0)
then D(,j) « D({,§)+1
end
end
S « RLINK(S)
end
end DMATRIX




-

ERSRRIRS

— S O B e

i

e

o |
i 7

£ SRS

143

VITA

Mark Loren Ketelsen was born in Ames, Iowa on November 5, 1946.
He received the B.S. degree in electrical engineering from Iowa State
University, Ames, Iowa in 1969. He was employed by Texas Instruments,
Incorporated from 1969 to 1970, where he was involved in the design of
airborne computer systems. From 1972 to 1974 Mr. Ketelsen was a research
assistant at the Digital Computer Laboratory, and from 1974 to 1976 he was
a research assistant in the Digital Systems Group of the Coordinated Science
Laboratory. He received the M.S. degree in electrical engineering in 1973.
Mr. Ketelsen is a member of Tau Beta Pi, Eta Kappa Nu, and

Phi Kappa Phi, and was a University Fellow in 1970 and 1971.



