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AN INTEGRATED CIRCUIT FAULT MODEL FOR DIGITAL SYSTEMS

1
Mark Loren Ketelsen, Ph.D.

Coordinated Science Laboratory and
Department of Electrical Engineering

University of Illinois at Urbana-champaign, 1976

A model for the faulty behavior of digital networks realized using

I integr ated circu it devices is proposed. This model, the pin fault assumption,

is based on a study of the most f requ ent ly  encountered fai lure mechanisms

for such networks, and the observation that previous fault assumptions model

a large number of faults which occur with low frequency. The basis for the

p in fau lt model , and an investigation of multiple fault detection using this

model is presented.

Fault detection for combinational modules is investigated, and it

is shown that multiple pin fault detection tests sets for such modules may

be quite easily generated. The computation required to generate such test

I sets is independent of the circuit realization internal to the model , and

J each test generated requires about the same amount of computation. The

computational complexity of test generation is greatly reduced compared to

that for previously studied fault models.

Pin fault detection experiments for sequential machines are

I studied , and methods for designing such experiments are developed. These

I design methods are compared to those under other fault assumptions , and a

substantial reduction is observed in the length of such sequences and the

I computation required to produce them.
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1 1. INTRODUCTION

Reliability has been recognized as a primary engineering consi-

deration in the development of digital systems for quite some time. Unlike

1 most other electronic apparatus, failures in digital systems are in many

cases not readily apparent. Consequently, the problem of ensuring the

reliability of the computations produced by digital sys tems has been

actively studied . This area, which has come to be known as fault-tolerant

computing, has taken many direc tions , and has been studied from many

(. application viewpoints.

I
1.1. Fault-Tolerant Computing

It has been recognized that reliability is not a problem which

1 can be effectively deal t with af ter a sys tem has been des igned , but rather

must be faced from the inception of the system design. The various

approaches to the achievement of some degree of fault-tolerance may be

I loosely classified into two categories : fault diagnosis with repair, and

fault masking.

I The principle behind fault diagnosis and repair is that the

j  system is tested either periodically or continuously, and upon the

determination that a fa ilure has occurred , computation is interrupted and

the system is restored to failure-free status through repair. If this

testing is done on a periodic basis, and a failure is detected during

1

LI’ _ _ _ _ _ _ _  
_ _ _ _ _ _ _
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I some diagnostic interval, then all of the computation performed since the

previous diagnostic interval Is suspect. It therefore becomes necessary

to repeat these suspected computations . If, on the other hand , the system

J has been designed so that diagnosis takes place concurrent with normal

operation, failures are immediately detected , and the need to repeat a

potentially large amount of computation is eliminated . The primary trade-

off between these two approaches is that a significant amount of additional

- circuitry is required to effect on-line diagnosis, whereas periodic

[ diagnosis requires little or no circuitry beyond that required to perform

normal computation. An exception to the latter statement i8 the case

where periodic diagnosis is an automated function of the system, and

I 
repair is achieved through switching from faulty subsystem modules to

standby spares. The problem of generating a suitable set of diagnostic

I tests has received much attention [1,2,3]. The development of systems

capable of currently testing themselves is a more recent development [4,51.

The possibilities for long range space exploration have prompted investi-

gation into the feasibility and implementation of self testing systems

with repair capability [6].

1 Fault-tolerance may also be achieved through the use of redundancy

introduced in a way which prevents failures from propagating to a point

where incorrect system operation would result. Redundancy which achieves

- this fault masking effect may take several forms. Triple modular

redundancy [71 or the more general n-tuple modular redundancy [6] achieve

( fault tolerance through replication of functional modules, the outputs of

wh ich ar e compared , and the majority output propagated . Redundancy may

1
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I be introduced at the logic level by a techn ique known as quadded logic [8].

I Automatic repair may also be employed in modular redundancy schemes by

switching in standby spares to replace modules which produce minority

I output s [6] .

I
1 

1.2. Fault Detection in Digital Systems

Regardless of the particular design approach used to achieve

I fault-tolerance, the ability to test the logic networks which implement

the system is essential. For example, in the totally self checking

approach [4 ,5] ,  it is essential that the circuit be designed so that the

input code space includes a test set for the circuit .  In cases where

modular redundancy is used to achieve fault masking, reliability enhance-

ment occurs only if it can be guaranteed that initially all the hardware

is functioning correctly . This requires a system checkout phase in which

the system is reconfigured so that the replicated modules may be

individual ly tested . Consequent ly,  fault  detection is a prob lem which is

central to the whole realm of fault-tolerant computing.

) The fault detection problem may be stated as follows . Given a

digital network and a set of faults which can occur, derive a set of inputs( which can be applied to the network such that normal response to the test

set ensures that none of the faults in the fault set have occurred .

I As this statement of the fault detection problem indicates, it

is first necessary to define an appropriate set of faults. This set of

faults represents an abstraction or model of the ways in which physical

I
I 
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f a i l u r e  phenomena e f f e c t  the behavior of the network . The se lec t ion  of a

fault model determines the effectiveness of the solution to the fault

detection problem , and is there fore  a very important consideration . In

addition , this selection also has direct impact upon the derivation and

analysis f s u i t ab l e  tes t  sets.

1 The selection of a fault model represents a trade off between

completeness in terms of modeling all pos~ ible physica failures , and ease

of generating test sets based on the model. Each physical failure mode

has some probability of occurrence. The “coverage” of a fault model is the

conditiona l probability that given a failure has occurred , the failure

I affects the network in the same way as one of the faults in the model.

A good fault model is one which facilitates the analysis necessary to

derive test sets , but also has an acceptably high coverage .

Existing fault models [9,10] are based on the assumptions that

faults are “logical” and “permanent ” [ 9] . . The term “logical” means that

I failures transform the logical network into another logical network . This

I 
assumption is necessary in order to avoid having to analyze the voltage and

current waveforms in the electronic circuits which realize the network .

The term “permanent” means that once a fault has occurred that fault will

remain until it is repaired , although other faults may occur subsequently.

I It is further assumed that failures may be modeled as permanent logical

I constants occurring at gate inputs and outputs. This fault model is known

as the “stuck-line ” fault model because the faulty network behaves as if

certain gate inputs and outputs are “stuck” at a logical 0 or 1. This

model is amenable to analysis because the gates which make up the network

- - ~~~~~~~~~ I4~~~~~ - — —-----,----,. -
~~~~ 
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retain their logical properties. The stuck-line model has proven to be

quite effective in terms of fault coverage. Fault analysis under the

stuck-line faul t  model is dramatically simplified if it is assumed that at

) most one gate input or output is 8tuck. This assumption is based on the

reasoning that if the system is relatively reliable , the probabili ty of

( more than one fault occurring between diagnosis intervals 18 acceptably

low. However, this implies that at some point the network is fault-free,

and further, that the network is diagnosed sufficiently often. Also it is

implied that the physical failures are adequately modeled as single stuck

- 
f au l t s .  These assumptions are d i f f i c u l t  to jus t i fy  in many instances.

More recently attempts have been made to relax the single fault assumption

and consider multiple faults , i.e. faults made up of a ~~~ of gate inputs

and outputs stuck at logical constants [11,31.

1.3. The Pin Fault Model

State-of-the-art digital system design techniques rely heavily

on medium- and large-scale integrated circuit technologies which have

I been developed in the past decade. This continuing trend has allowed the

implementation of digital systems of extremely high complexity . Existing

fault detection techniques have become increasingly difficult to apply to

such sy stems [12 ,13,14] , since as gate counts increase, the single fault

ass umption becomes increas ingly difficult to justify, wh ile the number of

multiple faults increases at an exponential rate.

I
- 
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I This thesis proposes a new faul t  assumption , the pin faul t  model ,

I which appears to retain an acceptable degree of fault coverage while

allowing fault analysis and test generation to remain within the realm of

I computational feasibility. In this model, “stuck-at” type faults are

I 
assumed to occur only at input and output pins of integrated circuit

modules. This substantial reduction in the number of fault sites, in

addition to the implicit assumption that the logical network within the

integrated circuit boundaries remains fault-free, allows multiple faults

to be- considered easily.

1.4. Outline of the Thesis

Chapter 2 introduces the pin fault model. Motivation for its

application and justification in terms of fault coverage is presented .

In Chapter 3, fault detecticn under the pin fault assumption is

examined for combinational circuits. Test sets for multiple pin fault

detection are investigated , and a test set generation algorithm is

developed .

J Chapter 4 considers sequential circuits. The design of test

sequences capable of detecting all multiple pin faults for synchr onous

and asynchronous circuits is studied .

i 
Chapter 5 concludes the thesis. Design rules to enhance teSt

genera tion under this fault model are discussed . Conclusions about the

I faul t model are presen ted , and areas for further research are proposed .

I
I
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2. T}~ PIN FAULT ~~DEL

2 .1 .  Introduction

Medium- and large-scale digital integra ted cir cuit devices mak a

available single-package networks consisting of hundreds or even thousands

of equivalent gates. The use of such devices in digital system design has

become widespread because of the savings in cost, physical size, power

consumption, speed , and reliability. As indicated in the previous chapter,

the vast increase in the complexity allowed by such technolog ies has

created a diler-~a in the testing of such systems. This thesis proposes

an alternative to existing testing methodologies which is based on a fault

model that results in a significant reduction in the number of modeled

faults.

I
j 

2.2. The Proposed Model

A fault model is an assumption made about the behavior of

networks which have suffered physical malfunction in the electronic circuits

used to implement them. This assumed faulty behavior is the basis for

analysis of faulty networks, and the generation of fault detection tests.

Most previous work in the area of fault detection has been based on the

stuck-line fault model. The fault model to be defined in this section

re tains the use of log ical , permanent faul ts of the “stuck-at ” type,

however the set of possible fault sites is reduced .

I
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In prac tice , integrated c irc uit modu les wh ich con tain the

necessary logical functions are interconnected to implement the desired

network. The proposed fault model , called the pin faul t model , assumes

that stuck-at type faul ts  occur only on the input and output pins of the

integrated circuit modules of the network.

(. Figure 2.1 illustrates the fault  sites for the stuck-line model

for a carry-save full adder circuit which occupies half of an integrated

circuit module. There are 33 such fault sites. Under the pin fault model,

[ the set of fault  sites consists of input pins C~ , B, and A , and output

pins C and E. It can be seen that the reduction in the number of faultn+l

t sites under the pin fault model compared to the stuck-line model becomes

more pronounced as the ratio of internal lines to pins increases.

Integrated circuit fabrication technology is limited by the number of

I chip leads which can be brought to the “outside world ” (14-40 pins)

rather than the amount of internal logic. As a consequence, the types of

- circuits which are integrated are typically those for which the pin fault

model leads to a large reduction in the number of fault sites. This

reduction in the number of fault sites has the potential for simplification

J of fault analysis and test generation, however it also has the potential

for reducing the fault coverage. This implication is considered in the

I next section .

The pin faul t model ass umes that multiple as well as s ingle

stuck-at faults may occur on module pins . The desirability of the multiple

I fault approach has long been recognized , however the difficulties encountered

in its application to the stuck-line fault model have been substant ial.

I

_
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Subsequent chapters in this thesis show that the multiple fault approach

I is more tractable under the pin fault assumption. This multiple fault

assumption greatly improves the fault coverage of the model. In addition

I to failure mechanisms which directly effect module pins, the multiple pin

fault approach models many internal logical faults through fault equivalence .

I 
________________________________________________________________________________________2 .3 .  Justif ication of the Pin Fault Model

[ In order for the pin fault approach to be valuable, it is necessary

that it provide adequate fault coverage . The evaluation of this quality

[ involves a statistical analysis of actual circuit failure modes in order to

determine what fraction of all failures are modeled by multiple pin faults.

The analysis of failure mechanisms is conducted primarily by semiconductor

manufacturers , and data is not generally available.

Available failure data for digital integrated circuits show the

1. dominant failure mechanism to be “lead bond ” failure. These failures occur

{ 
at the interconnection between the integrated circuit package pins and the

silicon chip itself (15 ,16]. Such failures result from thermal and

J mechanical shock and high humidity. Failures may also result from electrical

overload . For example, if the output pin of a TTh logic gate which is in

1 the high state is inadvertently shorted to ground, as by an oscilloscope

probe, the output transistors will fail. Another example is voltage

“overshoo t” on an input pin. Such electrical stress typically results in

a failure of input or output transistors.

I
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Overall sys tem rel iab ility depend s on the rel iability of the

interconnections between integrated circuits and the distribution of supply

vol tages , in addition to the integrated circuit reliability. Present day

system packaging techniques utilize multi-layer printed circuit boards to

mount and interconnect the integrated circuit modules.  The interconnecting

lines are deposited on the boards by photolithographic techniques , and the

integrated circuit  modules are then soldered in place. These solder joints

must make connections between the integrated circuit pins and the printed

wires on interior layers. Studies have shown that these solder joints and

the printed c i rcui t  routing are typically less re l iable than the integrated

circuit devices used in the system [16]. Therefore such failures represent

[ a dominant failure mode for the overall system.

The common logic families (Tm , ECL , ~ DS) are designed so that ,

under normal operating conditions , the various parameters of the transistors ,

diodes , and resistors are quite stable with respect to time. This is the

reason for the outstanding reliability of such devices (50 - 100 failures

( 
per ~~~ hours [ 171). Semicond uctor manufacturers  do extensive testing of

semiconductor chips during fabrication to eliminate devices whose parameters

do not fall within the design margins. These two facts suggest that

failure of some component within a silicon chip is highly unl ikely ,

especially compared to lead bond and solder joint failures .

All of the fa ilure mechanisms discussed are suitab ly modeled by

the pin fault assumption , s ince they all resul t in log ical behav ior

characterized by input and output pins being stuck at logical constants.

Base d on ava ilable data, the pin fault model appears to provide excellent

- ~~~~~~~~~~~~~ 
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fault coverage . This conclusion implies that although the classical stuck-

i 
line fault ass umption models mor e faults , most of these faults occur with

negligible frequency.

I
I
I
I
I
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3. FAULT DETECTiON IN CO)~~INATIONA L )~ DULE S

1 3.1. Introduction

I The most fundamental contex t for cons ider ing faul t de tec tion

strategies is at the level of the single-output combinational module.

I Development of fault detection theory at this level is basic to all types

of digital  systems .

1 The following nomenc lature wil l  be used throughout the remaining

chapters. X is an input vector consisting of L coordinates designated by

subscripted variables , e .g .  x1 is the i-th coordinate of vector X.

Defini t ion 3.1: Combinational function z(X) is a nonvacuous function

[ of X if there is no component x~ of X — x
1
x2. . .x~ such that

- 

Z(x1
x2...xi 1  O...xL ) - Z(x

1
x2...x~_1 l...xL).

Excep t where noted , all combinational functions will be assumed

to realize nonvacuous functions of X. Figure 3.1 represents a combina-

tional module.

In this chapter the problem of constructing test sets for

combinational modules is considered . A theory for such testing is studied ,

and a test generation algorithm is developed. The computational feasibility

I of this algorithm for large modules is investigated . Finally minimum leng th

test sets and the extension to multiple-output functions are considered.

I
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- 3.2 .  Preliminary Discussion

I The following definitions are presented to simplify discussion of

the faul t  detection problem

Defini t ion 3.2:  The multiple pin fault  set, 3
M’ is the set of all possible

j assignments of s tuck-at-O , stuck-at-i , and normal ( fau l t - free ) value s , except

the a l l -normal  assignment , to the L inputs and output of module M. The

I. all-norma l assignment is denoted as

When considering realizations of functions which may contain

faul ts , it is convenient to consider the output of the realization to be

a function of both the input vector and the fault condition of the

realization . This functional relationship is den.ted as Z(X,F) where FC3M

and H is the module which realizes z(x) in the absence of faults.

- 
Definition 3.3: T — (t 1, t2 , . . . , t~

) ,  a set of input vectors , is a multiple

pin fault test set for module M if , for each Fj e3M~ 
there exists at least one

t1CT such that

- z(t~~F~ ) ~ Z(t i,ø) .

The multiple pin fault set contains 3~~
1 
-1 elements , hence we

J strive to avoid the consideration of faults from this set on an individual

basis. The following definitions are useful in discussing various faults.

Definition 3.4: A fault from the multiple pin fault set is comprised of

I components. Each line which is assigned a non-normal value, i.e. stuck-

at-l or stuck-at-0, is a component of the fault. A multiple pin fault may

I

~1 
____ _ _ _ _

_
_ _  

_ _

- 
.-— -.

.- - _
~~~i i~~ - 

.- 
--
~~ ---.-— ~~~~~~~~~~~~~~~~~~~~ 

Id.. 
. 

-
~T~Ti



I
1 

16

be thought of as a set of single faults existing simultaneously , with each

I single fault being a component .

I Definition 3.5: A fault component is detected completely by some test

vector t~ if

I z(t~~F~) z(t~,~)

I for all F~ which contain the fault component.

One way to avoid consideration of all the elements in is to

consider all of the possible fault components , and generate a test set which

completely detects each of these fault components. The following theorem

forms the basis of such a strategy .

Theorem 3.1: T — [t 1,t2,. . .,t ) is a multiple pin fault test set for

I module M realizing function Z(X) if for every input variable x~ there

I 
ex ists a pair o f test vectors t~ , tkeT such that t~ and tk d i f f e r  only in

coordi na te i and Z( t~~~ ) #

I Proof: Any faul t  F which contains the output Z as a component wilL be

completely tested by the pair t j l tk •  If a component of some fault F is

I input xi stuck at either 1 or 0, the internal logic network of module M

will receive the same input vector for both t~ and tk~ 
since t~ and

d i f f e r  onl y in coordinate i. Hence Z(t~~F) — Z( tk, F). Since

I z(t~~ ) ~ 
Z(t~~,ø) then either Z( t~~ F) # Z(t 1,Ø) or Z( t k , F) 

~ 
Z(t~ ,~~)

he nce a f au l t  componen t on l ine x~ is complete ly detected by either t~ or

I
1 1

I
- -  ___ 1 . - ! 1~~ I~~~~~~~ ~~~~~~~~~-:~~~~~~~~~‘ 

-
~~~~~~~~~ ‘ Y r .!~ 
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Corollary: At most 22 and at least 2+1 tests are required to sat isfy

I Theorem 3.1, where 2 is the number of input pins .

Proof: Obviously no more than 22 tests are required ; however fewer than

22 may be suff ic ient  if it is possible to select test vectors so that some

I vectors are common to 2 or more of the test pairs for some of the variables.

If maximal sha r in g is po ssible , then af ter  the f i r s t  variable is tested

I with a pair of tests , each of the remaining 2-1 variables may be tested

by using one of the previous ly selected test vectors plus one new test

I vector thus requiriag a total of 2+1 tests.  Q . E . D .

I Functions which can be tested in accordance with Theorem 3.1

I 
and meet the lower bound given in the corollary are numerous . Obvious

examples are functions which are represented as a single minterm and

I funct ions  containing a minterm which is also a prime implicant . The test

sets for these functions contain the vector which is a prime minterm plus

I the 2 input vectors which are obtained from the prime minterm by comple-

menting one variable .

I 
_________
Theorem 3.2: Any module which implements a nonvacuous function of 2

I variables possesses a test set satisfying the hypothesis of Theorem 3.1.

Proof: If no such test set exists for function Z(X) which depends

I nonvacuously on x1, x2,. . . ,x2, then there must be some variable , ~~~ for

1 which

—

1
I

— - ----v-- —- r— - - -  - — —~~~- - - - . .  -  
- 
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I for all p~ssible assignments of ~~~~~~~~~~~~~~~~~~~~~~~~ 
if this is 80

i the n Z doe s n~~. depend upon x1. The theorem follows by contradiction .

Q.E. D.

Theorems 3.1 and 3.2 characterize a multiple pin fault test set

and establish that such a test set always exists. These concepts can be

I formulated into a test generation procedure. A primary goal in the develop-

merit of this procedure is to minimize the computational complexity of the

procedure . In general , a function will possess several test sets of the

type defined by Theorem 3.1. The generation of a test set of minimum

- 
size, i.e. one with the fewest test vectors, requires an examination of all

of the test sets which exist for a particular function. Minimization of

test generation complexity and minimization of test set size are therefore

conflicting goals. The number of module pins , 2+1, is a parameter which is
I 

primarily determined by integrated circuit technology . Manufacturers

strive to reduce the module pin count to the minimum in order to increase

manufacturing yields . Thus the number of inputs is limited to a relatively

small number . As a result , the reduction of ITt from 22 to something in the

range 2+1 < I T t  < 22 is of questionable value and the additional complexity

in generating a minimum or near minimum test set may not be justifiable

in many practical situations . Minimum test sets will be discussed later

I in this chapter; however the main algorithm of thi8 chapter has been

developed with the goal of minimum test generation complexity without

regard for reducing the size of the set below 22.

I Before developing the details of a test generation algorithm,

it is necessary to make some assumptions about how modules are specified ,

(
I _________

- - —
.,,- .-. - — — 
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since this in format ion  w i l l  be the input to the algorithm. Furthermore ,

1 preprocessing of th i s  inpt ~t could become the dominating factor  in

the running time of the algorithm. Since the trend toward more and more

I automation of the  design of d i git a l  systems will undoubtedly continue , it

I 
is reasonable to further assume tha t module descr ip t ion  w i l l  be ava i lable

from the automated design process. Many recent design automation systems

I generate an irredundant cover of prime implicants at some point . We there-

fore assume that the input to the diagnostic test generation phase will

proceed from this type of module specification .

- - 
Throughout the thesis it will be conven ien t to use the  “cube

representation ” to discuss combinationa l functions. The universe of 2

I Boolean variables forms an 2-dimensional space in which each coordinate

can take on the value 0 or 1. Each lattice point or vertex in this

1 2-dimensiona l cube represents one of the 2
2 

possible input vectors. A

I 
particular function may be represented in this space by specify ing the set

of vertices (input patterns) for which the function takes on the value 1.

i 
Such vertices are referred to as true vertices, and the set of all true

vertices of a function is called the “ON set.” Similarly, vertices which

I are not true vertices are called false vertices , and make up the “OFF set.”

Every true vertex corresponds to a minterm of the function. A

collection of true vertices which forms a subcube corresponds to an impli-

1 cant of the function . Implicants may be represented very conveniently by

specify ing an 2-tuple vector , each element of wh ich is “0,” “1,” or

[ A “1” or a “0” in position i means that input variable X
j 
must be true or

I
1 

_ _ _  _ _
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false res pec tively in order for an inpu t vec tor to be a ver tex of the

I implicant ; a “u” in position i indicates input variable xi may be 0 or 1,

i.e. the value appearing on input i is irrelevant to whether the input

I vector is a vertex of the implicant .

I Definition 3.6a: A specified variable of a cube is a variable which is

constrained to either a 0 or a 1 within the cube , i .e .  all vertices of the

I cube have the same value for that variable .

I Defini t ion 3.6b: An unspecified variable of a cube is a variable which is

I 
not specified , i .e .  the value of that variable is irrelevant to whether

- or not a vertex is a vertex of the cube . If a variab le is unspecified

I for a cube , then half of the vertices of the cube will have a 0 in that

coordinate , and half will have a 1.

Example 3.1: Implicant (for a 4 variable function) cube notation

I ‘
~i 

‘
~2 ~3 ~4 

0010

X
1 

K
3 

luUu

I
Using this notation it is quite convenient to specify a Boolean

I function as the set of cubes which imply the function.

I Example 3.2:

I Z(x 1,x2,x3, x4) — x
1
x3

V x2
x3x4

V~~1~2~3 
— (lulu , ulil , 000u)

It is assumed that function specification in the form of a set

of prime cubes is available as input to the test generation algorithm .

I
I 

- -  - - - - — — .-——.
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I The following definitions will be useful in the discussion of

I test generation:

I Definition 3.7: A vertex v
1 is adjacent to a vertex Vj 

in variable x~ if

v
~ 

and V
j 

are identical in all positions except position i.

Definition 3.8: An alternating adjacency about variab le x~ is a pair of

I vertices of the 2-space which are adjacent in variable x~ and have the

additional property that one of the pair is a true vertex while the other

is a false vertex.

I Definition 3.9: An r-cube is an r-dimensional subcube of the 2-cube, and

can be specified by an 2-element vector containing r unspecified and L-r

I specified variables.

1 In order to generate a test set , it is necessary to find an

alternating adjacency for each input variable. In addition , it is desired

I that the minimal amount of computation be required to accomplish this.

I The following theorem, though quite obvious, is importent because ic

indicates the usefulness of a given prime implicant in terms of test

generation .

Theorem 3.3: If is a prime implicant of Z(X), and P~ is an r-cube , then

there exists at l3ast one alternating adjacency about each of the .t-r

I specified variables of P~.

Proof: Assume there exists a specified variable, X
j ~~ of P~ such that there

is no alternating adjacency about x
1
. Then since all vertices of the r-cube

I
1~~~
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I obtained by complementing X
j 

in P~ are true , the (r+l)-cube consisting of

P . and the r-cube obtained by complementing X

j  

in P~ implies Z. Thus

is not prime . The theorem follows by cont radic t ion . Q . E . D .

I
1 3.3. The Test Generation Process

The significance of Theorem 3.3 to test generation is that given

a prime implicant of the function under consideration it is known that a

• 
- 

J test can be generated for each of the specified (0 or 1) variables . Thus

the strategy will be to select a set of prime implicants which is sufficient

to generate alternating adjacencies for all of the input variables. This

1 
selection is critical to reduction of computation, and requires the formation

I of a “cover. ”

Definition 3.10: A covering set of prime implicant s is a set of prime

-, implicants which has the property that for each variable , at least one

member of the set has that variable specified (either 0 or 1).

The existence of a covering set is assured since it is assumed that the

function depends nonvacuously on all variables . A covering set of minimum

or near minimum size is desirable because this will reduce the number of

( cubes which must be considered . Fortunately this covering problem is much

easier computat~~nally than an arbitrary covering problem. Since a minimum

I cover is not essentia l, an efficient heuristic algorithm can be used .

I
-

I 
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Once a cover ing set has been gene rated , al terna ting adjacenc ies for each

of the inputs can be generated using only prime imp licants which are members

of the covering set.

I Consider a module which implements Z(X ) — E(P1, P2,.. i Pq
) where

is a prime implicant . Let C be a covering set for Z, and consider Pk € C.

Permuting the variables for clarity, it is possible to write as follows :

where[
is an r-cube . An alternating adjacency for variable X

i 
(i > r),

representing a test pair which completely detects the fault components

x
1 

stuck-at-0 and x~ stuck -at-I , can be generated as follows. The r-cube

which is adjacent to in variable x~ is given by:

1 -
- u u U 

~r+l ~~j 1  ~~j ~~j•f~• ~
L .

- 
Theorem 3.4 guarantees that at least one vertex in P~ is a false vertex

(i.e. not a vertex of any of the other prime implicants of Z(X)). This

set of false vertices in P~ can be determined by performing the following

operation :

A Z .

I The tests for x~ are generated as follows:

let

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

I where 

1 2  r r+l 1 2

I

- -- - -—-
~~~

-—
~~ ~~~~~~~ 
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vep~ A ~

I
then the test pair for x~ is given by

i ~~~~~ ~~r 
0
r+l~ 

.

~~~~~~

. 

~~r ~r+l~ 
.

~~~~~~

.

In the above exptessions, the ~ ‘s are fixed so that the test vectors are

in 
~k 

and p
~, 

while the B’s are selected to force the vertex in p
~ 

to be

an element of Z. The constraints which the ~ ‘s are selected to meet may

not require specification of all of the r unspecified variables in p
~
. If

[ this is the case, then there are several choices for test pairs. The

following simple example demonstrates these ideas graphically using

I Karnaugh maps .

As the above discussion suggests the test generation process

requires two main functions: the generation of a covering set, and the

determination of one false vertex within a subcube of the 2-cube of the

function. It is convenient to examine these two functions as separate

I problems , and then incorporate them into the main algorithm.

In the remainder of this chapter , specific algorithms wi l l  be

discussed . The specification of these algorithms, which appear in th is

section and , in the Appendix, is given in “Algol-like” notation. Key words

of the specification language, e.g. do, if, and beg in, are underlined .

I
I [

I
I

- 
I 
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X 
1
X
2

X XI 3 4 00 01 11 10

I f unction: Z(x 1,x2, x3, x4) — E[P11 P2 , P3}

J — E [u lOO ,Olul , lulu)

covering set : C — [P
1 u l00 , P2

0lu1}

1 genera te tes ts for

use P2 — Olul

P~ — ll ul

I P~ A 2 — 1101 (indicated by the asterisk in the map below )

tests for x1 
— (1101 C ~~~, 0101 C Z)

“r_
xlx2x3x4

1 11 
_  _

1 10 
_  _

I
L
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The symbol “a- ” denotes the assignment operator , while the symbol “ .“

I denotes the re lation “equa l to ” which appears in predicates of conditional

statements. All algorithms are expressed in structured form. In these

I algorithms , arrays are used to represent the various multi-element quantities ,

and a particular element of an array is denoted by placing its subscripts

I in parenthesis. The symbol “*“  used as a subscript denotes a dimension

which is allowed to vary over its entire range . As an example , the set of

prime implicants [Pr) will be stored in the rows of two-dimensional array P.

The j-th element of prime implicant P~ may be accessed in this array by

the specification P(i,j), and the entire prime implicant P~ is accessed by

the specification P(i,*).

3.3.1. Covering Set Generation

I The covering problem which is required for the test generation

‘ 
algorithm may be stated as follows . Given a list of prime implicants , find

a subset of them such that each variable is specified in at least one

‘ 
member of the set . An irredundant cover is desired , i.e. one in which each

member in the set covers a variable not covered by any other member of the

J 
set . An irredundant cover guarantees that each prime implicant which is

examined will yield at least one alternating adjacency. As will become

apparent , small prime implicants , i.e. those with many specified variables,

ar e des irabl e because a large number of tests can be genera ted fr om them,

and because their adjacent cubes will intersect fewer other prime

I implicants. The size property of a prime iunplicant can be used to assign

I

1’ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _  
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a “cost” to it; the larger the prime implicant, the higher the cost of using

I it to form the covering set. We then use the cost measure to generate a

“reduced cost” irredundant cover, which tends to favor usage of the smaller

I prime implicants. Since small prime implicants contain more specified

variables , this cost objective is compatible with the objective of forming

a cover wit h minimal or near minimal number of members. The basis for the

cover generating strategy is a heuristic developed by Batni, et al. [19]

The following conventions will be employed throughout the

following discussion . For vectors v and w of the same dimension and relation

RC [— , < , < , > , >J , vRw if and only if v( i) R w( i) for all i, and vgw if

and only if v(i) R w( i )  for some i. The transpose of vector v is v ’.

Consider an 2-variable function Z(x) which is represented by a

set of q prime implicants. Let P be a qX 2 matrix which is used to store

this set of prime implicants. For the covering problem considered here,

variable i is covered by prime implicant j if the i-th component of j is

I specified , i.e. either a 0 or a 1, and is not covered if the i-th component

is unspecified , i.e. ‘u.” Let the s~,mbol “s” denote a 0 or a 1

specification . Thus P(i,j)C[s,u). If P(i,j) — s then prime implicant

P(i,*) covers variable j, and if P(i , j )  — u then P(i,*) does not cover
- 

variable j.

The covering algorithm is more easily understood if the generation

of an irredundant cover without regard to cost is first considered.

L

~ 1 
_ _ _
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A weight is associated with each column of P. Vector W is an 2-element

e vector which stores this weight for each column . The weight for column j

is defined to be the minimum row index i such that P(i,j) — 8. That is,

the weight is the index of the first prime implicant in the list which

covers that variable. The cover is formed in q-dimensional vector CS

I where CS(i)€[O,l). CS(i) — 1 if prime implicant i is a member of the

cover , and 0 othe rwise.

Algorithm 3.1: Irredundant cover.

Begin Basic Cover

I CS ~
- (00. . .0) /* initialize cover to empty */

do for 3 — 1 to 2 /* form initial weight vector */

I
do while P(i , j )  — u

1. i 4— i+l

W( j) ~- i

I
do until W — 0 /* form cover */

k - max[W(l),W(2),.. .,W(L)]

CS(k) 4- 1 /* select an element for cover */

~~ i — 1 2 /* update weight vector */

I’ P(k ,i) — 8, then W( i) ~- 0

end

I
I end Basic Cover

I 
- - - -  - — —  - 
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Algorithm 3.1 generates a cover which is irredundant because it

selects as the next element of the cover the row which has the highest

value in W. This row will be the only row which covers the variable

I 
corresponding to the index of the highest weight in W. Because of the

manner in which the weight is defined , all rows which precede this row in P

have a u in that variable position. After the row is chosen , W is updated .

The next row selected will precede all previous rows selected . This

guarantees that for each row selected , there is a variable which is

covered by only that row. Thus each row in the final cover is essential to

the cover.

t It is seen that Algorithm 3.1 favors selection of rows with ]ow

indices. The cost constraint can therefore be introduced by ordering the

rows in matrix P by ascending cost. This ordering may be accomplished by

I introducing a permutation of (l,2,...,q) which is stored in q-dimensional

vector R. Let C be a q-dimensional vector with C(i) containing the number

of unspecified variables of prime implicant i. Then R is formed such that

C(R(i)) < C(R(j)) if i < j. R is introduced into Algorithm 3.1 8.-’ that

rows are considered according to their position in vector R.

I It is quite possible that the design algorithms which produced

the function under consideration generated the prime iinplicant representa-

I . n o n  with a known ordering with respect to size. If this is the case, then

determining the cost permutation R is a simple matter. If such is not the

case, then a sort must be performed in order to determine R. Algorithm 3.2

encorporates these ideas to form a reduced cost irredundant covering set.

I
- - 

- . -
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I Algorithm 3.2: Reduced Cost Covering Set

Begin COVER

c ~
— [0,0,... ,o] /* compute cost vector */

do i l t o q

do j l t o 2

if P(i, j )  — s then /* cost fcr P(i,* )  — # of a ’s */
C(i) ~

— C(i)+1
end

end

do i l t o q

R(i) 4— j /* initialize R to the natural order *1

SORT (l,q+l) 1* form the permutation R so that

I C(R(i)) < C(R(j)) if i j

do for 3 — 1 to 2 /* form weight vector , considering */

I i — I /* rows in the order specified */

I do while P(R(i),j) — u /* in R. */

i ~- i+1

I
W(j) 4- i

r CS~~ [o,o,...,o]

I do until w — [O,O,. . . ,0] /* form cost reduced cover. */

k 4- max[W(l),W(2),.. .,W(L)]

CS(R(k)) ~~
- 1

do i l t o L

if P(R (k), i) — a , then W(i )  — 0
end

end
end COVER

I
• - - -  -- - - --— —- - -- - -
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Algorithm 3.2 calls subroutine SORT which produces the permutation

of indices corresponding to ascending cost. This subroutine is given in

the Append ix.

This algorithm is incorporated into the main test generation

algorithm for the purpose of determining which prime implicants can be used

to generate tests for the various input variables. If Algorithm 3.2 is

used as given above the n later it is necessary to repeat some of the work

already done in order to determine which variables to test with a given

member of the covering set. This extra computation may be avoided by an

extension to Algorithm 3.2. This modification results in a covering set

data structure tailored to the needs of the main algorithm .

When an element of the cover is chosen and the weight vector is

updat ed to reflect this choice , those elements of the weight vector which

ace nonzero, but which will be set to zero because this current choice

covers those variables , correspond to the variables which can be tested

by this prime implicant but could not be tested by any previously generated

member of the covering set. By storing this information at the time each

element of the covering set is chosen, we avoid having to keep track of

which variables remain to be tested and which variables can be tested with

the next prime implicant . It is also required to know the size (i.e. number

of unspecified variables) of each member of the covering set. This

( 
enumeration is also performed as a byproduct of forming a covering set.

Figure 3.2 illustrates a data structure designed to efficiently store

these items of information as they are generated .
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I
CS - 

~~~
‘[ ELT SIZE f LINK RLINK

J .4 J If[l —9~.J I I~N
VAR !L~~~ 1

I i~~I

I r P A I
ELT: index into array P (set of prime implicants) of an element of

the covering set.

I SIZE: number of unspecified variables in this member of the covering
set.

I LINK : pointer to list of indices of variables covered by this element
of the covering set which are covered by no previous (in the
list) element of the covering set.

1 RLINK : pointer to list entry for the next element of the covering set .

VAR : index of a variable (1 < VAR < 2) which is covered by element
I of the covering set indicated by the parent list entry .

LINK : pointer to next entry in list of covered variables.

t
I
I Figure 3.2. Data structure for storing covering set. 
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The details of the modification to Algorithm 3.2 which builds the

data structure are given in the Appendix . Later in this chapter when the

test generation algorithm is discussed , it will be assumed that COVER

I provides , as output , the s t ructure of Figure 3.2 .

3.3.2. Determination of a False Vertex

I Test generation hinges on the deterntnation of a false vertex

which is adjacent to some prime implicant . This problem may be stated in

a general way as follows. Given a cube ~~~~ dtmension rn and a set of subcubes,

determine a vertex in this rn-cube which is contained in none of the subcubes.

The rn-dimensional cube is the cube adjacent to the prime implicant (of size

rn), and the set of subcubes under consideration is the set of all non-null

intersections of the other prime implicants with this rn-cube. This problem

is interesting from a computational viewpoint in its own right. In this

section we develop an algorithm called FALSE VERTEX which performs this

I function. The basic algorithm will be developed in its general context

first and will then be adapted to take on the structure of a subprocedure

which is called from the main test generation algorithm.

1 The problem of determining a false vertex is basically a combina-

torial search of the vertices of the rn-dimensional cube .

I In many search probl ems, it is convenient to represent the elements

of the search domain as nodes of a tree such that the visitation of the

elements corresponds to a traversal of the tree. The search algorithm

1 determines which edge is followed from the node currently being visited.

The search tree correspond ing to this problem has the m-dimensional 
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universe (uu. . .u) as its root, and each node is a cube which represents a

partia l solution. Each edge corresponds to the assignment of a 0 or 1 to

one of the unspecified positions of the preceding node. The terminal nodes

are cubes containing one vertex , that is cubes having every position

specified . The search terminates when a node, not necessarily terminal, is

found which is disjoint from every cube in the list of true cubes. The

position of a particular cube in the tree is of course determined by the

search strategy . In this section, two search strategies will be presented .

) The f i r s t  search is an exhaustive one and the second is a search by

bisection .

An exhaustive search may be systematically conducted using the

familiar “backtrack” or “depth-first ” approach. The initial partial solution

is the universal , uu. • .u. A pointer into the cube list is maintained, and

the “next” partial solution is generated from the previous one by specifying

(to be either 0 or 1) one of the u ’s so that the cube currently pointed to

is in conflict (the intersection is null) with the trial solution. The

pointer is then advanced to the next cube which does not yet conflict. If

none of the as yet unspecified variables in the solution may be specified

to create a conflict with tI~ current cube, we backtrack to the previous

tria l solution and try a different partial solution. Thus at every point

in the execution of the algorithm the current partial solution is disjoint

from every cube in the list whose index is less than the pointer . The

algorithm terminates with a solution when the pointer has advanced past

the last entry in the cube list.

I
_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _  

~~~~
_—

~~~~
—

~~~~~
_---

.- - - ~~~~~ 
-



rn .4 35

4]~gorithm 3.3:  False Vertex-exhaust ive .

C(i,j) is a list of v cubes of dimension m.

F(i) is the trial solution.

S is a stuck. Each element of the stack is a pair of indices.

i,j > S is a “push” operation

I i,j < S is a ‘~pop” operation

I Begin FALSE VERTEX

F 4-(uu. . .u) /* initial partial solution */

I
i ~

— I /* index into cube list */

do while i < v

‘ 
if F f l C (i,*)~ , — 0 then do

34- 1

I do until (C(i,j)e[0,1))A (F(j) u)

3 ~- 3+1

I do while 3 > m /* backtrack */

i ,j  <— S

I F(j)4- u
1 3 4 - 3 +1

I end

end

1 F(j) 4- —-, C(i,j) 1* set F(j) 80 that FflC(i,*)tui Ø */

S <. i,j save for subsequent backtrack */

I
- 

i~~~i+lI
end FALSE VERTEX

H i
1
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In Al gorithm 3.3, each time a previously unspecified variable is

I specified , we advance to a lower node in the search tree . At the time this

next successor node is chosen , it is not known whether the subtree beneath

I this node contains a solution. If it does the search will find one, however

if it does not the search will examine every node in this subtree and then

I backtrack out of this subtree and enter a different subtree of the preceding

node .

By structuring the search in a slightly different way , it is

j possible to determine whether or not a subtree contains any solutions without

having to 8earCh the subtree. If t~iis determination is made at each stage

of the algorithm , and the search procedure only enters a subtree known to

possess a solution, then the algorithm will proceed directly to a solution

without ever having to backtrack. To facilitate this process it is

desirable for the search to be organized so that the search tree is binary .

The resul t  is a search by bisection , and we must only test one of the two

I subtrees beneath each node for the existence of a solution. If the subtree

tested does not contain a solution , then it is assured that the other subtree

must contain a solution. This is guaranteed because when the current node

was entered the subtree consisting of this node and its two subtrees was

tested for a solution.

I The search may be organized to result in a binary search tree by

restricting the choice of which variab le position in the trial solution is

to be specified at each stage of the algorithm. One way to do this is to

1 require that the variables will be specified in a left-to-right order.

The resulting search tree will have the property that all nodes at level i

I
I 
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will have the first i variable positions specified and the remaining

I positions unspecified . Each node at level i will have two successors :

that with the (i+l)st position specified to be a 0, and that with the

I (i+l)st position specified to be a 1. Each node of the tree represents

I 
some subcube of the original rn-cube, and the successor nodes correspond to

partitions of this cube.

i 
In order to determine whether or not a successor subtree contains

a solution , it is necessary to enumerate the true vertices contained in

I the subtree . If this number is less than the total number of vertices in

the subtree, then there must be at least one false vertex in the subtree.

This enumeration process is carried out by examining the cube list and

ç counting the number of vertices which are in both the cube list and the

partition of the rn-cube corresponding to the subtree under consideration.

This enumeration process is nontrivial. First, the original cubes

in the cube list must be preprocessed to obtain a set of cubes which cover

the same vertices as the original list but which are mutually disjoint.

This is done so that when vertices are enumerated, each true vertex in the

subcube is counted only once.

I 

A list of mutually disjoint cubes may be formed from an arbitrary

list of cubes as follows. Starting with the first cube in the list and

I proceeding through the list, check for a nonnull intersection with each

subsequent cube. When such an intersection is found, replace this cube with

a l ist of cubes which covers all vertices not covered by the cube being

I considered . When all subsequent cubes have been checked , repeat the process

for the next cube. The following example Illustrates this process.

I
I 
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Example 3.4: Formation of disjoint cubes.

I \
~~~2

_ _ _ _

- -j initial cube list
11 ~~~~~~~~ j )  

_ _ _  

C3 u000

10 1 C ulul

C1
f l C

2 
OOuu fl Ou0u

I 000u

replace C
2 

in the list with C2 
- C1 

fl C2 
— OuOu - 000u

— OlOu¶ c1flc3 - 0000

replace C3 with C3 -C 1
flC

3 — u000 - 0000 — 1000
c1fl c 4 — 0

I
new cube list is OOuu

-I OlOu

1 1000

I 
ulul

Now compare C2 
to subsequent cubes:

I C2 flC3 0

C flC — 0101

replace C
4 
with C4 

- C
2 

fl C4 — ulul - 0101
— ilul, xlii

I
I

I

____ - ~~~~~~
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new cube list is: OOuu

0 lOu

1 1000

liul

ulil

comparing C3 to subsequent cubes:

I c3 flc4 
- c3 flc5 — 0

Compar ing C
4
: c4flC

5 — 1111

c5 -c4flC
5 
—0 1 11

I 
\x1x2

00 01 11 10
- 

00 
~~~~~~~ 1~

’ 
____ _____ 

C
l. 

—

____ 

Er) 
_____ 

E EE
10 C

5
0l1l

1
I
I
I 
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Since it may be necessary to create several new cubes to replace

a cube , this procedure Ia most easily implemented using list processing

techniques. The details of handling the various pointers results in a

fairly lengthy specification of the algorithm. This algorithm is therefore

presented in the Appendix .

The algorithm for determining a false vertex then proceeds using

as input this list of disjoint  cube8. The solution vector is initialized

tc~ uu. • .u. This vector is refined to yield a false vertex by specifying

the variables from left to right. At each position a 0 is tried first and

the subtree corresponding to this choice is tested to determine if a

solut ion exists. If one does, then the next variable is specified . If not

( then a 1 i’- used instead of a 0. It is not necessary to test for a solution

in the subtree corresponding to this choice , because it is already known

I from the test performed previously that either the 0 or the 1 subtree

contains a solution . When all variables are specified by this procedure ,

the resulting vertex is guaranteed to be false. Every time a variable is

specified , the cube list can be shortened , which enhances the efficiency

of the algorithm substantially .

The algorithm which implements this strategy is a list processing

al gorithm . The specification ii given in detail in the Appendix; an

I overview is presented here .

I
I
I
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Algorithm 3.4: False Vertex - Bisection (abbreviated ) (cubes contain

I m positions).

Preprocess cube list to get a list of disjoint cubes.

F 4— (uu . . .u) /* F is the solution */

do for 3 1 to m

I count~~~O

F(j) — 0 /* try a zero in position j */

I scan the cube list

if cube (3) — 0 /* cube C F */
count 4- count + cube size

else if cube (3) — 1 /* cubef lF 0 */
move cube to alternate list

else 1* cube (3) — U : cubeflF~~0, but c~ F */

move cube to alternate list

) count 4— count + cube size

end scan

I if count — 2m-j th S!2. -

F( j) 4- 1

replace cube list with alternate list /* this is all cubes in
the F(j) — 1 p~ir~ ition */

3 null the alternate list

end

J else null alternate list - - /* F(j)—O is o.k. The cube list has
- been purged of all nonintersecting

cubes *1

1

.- . , - .. ~•.;,_ ~~~~~~__-_-—----_.__ ___-- — 
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In Algorithm 3.4, when the x1 — 0 choice is made and the cube list

is scanned , any cubes which are properly contained in the x~ — 1 partition

are removed from the cube list and placed in an alternate list. Any cube

I with a u in x~ intersects both the x~ — 0 and x1 — I partitions of the

space . Such cubes are effectively split , and the x~ — 0 portion remains

in the cube list while the xi — 1 portion is placed in the alternate list.

This process accomplishes two things . First , the cube list ii purged of

cubes which do not intersect , thus the cube list becomes shorter and shorter .

Second , if the x~ — 0 choice is wrong, then the altern&te list contains

all cubes in the x~ — 1 partition and can be used to replace the cube list

in subsequent variable selections.

3.3.3. Test Set Generation Algorithm

In this! section we will discuss details of an algorithm which

generates a multiple pin fault test set. As previously indicated , the first

step is the formation of a covering set, CS. Then, for  each pr ime imp~icant,

in CS, alternating adjacencies for each specified variable

which has not already been considered are generated . As

prev iously d iscus sed , the difficult part of this procedure is determination

of a false vertex which is adjacent to the cube in the variable under

1 consideration . This process is broken into two parts. First, we form

and determine the set of prime implicants which have a nonnull inter-I section with Then given this set, we find: a false vertex contained in

I P~, that is a vertex which is in none of the intersections. In general,

we will perform this proces s several times with a single P1. The most

I
I 
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time consuming part of the process is scanning the set of prime implicants

U looking for intersections with ~~~~. It is possible to do this scan only

once for each P~€CS regardless of how many Ft’s we generate from each P
1
.

Definition 3.11: The distance between cubes C1 
and C2 (of the same

dimension), which is denoted by d[C1,C21, is the number of variables in

which C1 
and C

2 
disagree. An unspecified variable does not disagree with

I either a 0 or a 1 specified variable . For example , d [OOlulu ,OllOuu) — 1.

I This distance metric indicates the “proximity” of two cubes

within the i-space , and is useful here because it indicates when nonnull

I intersections between cubes can occur . Three cases are of interest.

I Case 1: d[C~~C2
) 0. This implies that C1 

and C
2 

have some set of

vertices in common, i.e. they overlap on a Karnaugh map.

Case 2: d{C1,C2) — 1. Here C1 and C
2 
are disjoint , however there l.a some

variable which, if complemented in C1 
or in C2 , would result in a nonnull

intersection between the two cubes .

Case 3: d[C1,C21 > 2. C1 and C2 are disjoint and there is no single

variable change which could result in an intersection between C1 and C2.

Now consider P1CCS and the set of adjacent cubes CI~
} which are

used to generate alternating adjacencies (each cube in this set corresponds

to some x
3 

for wh ich tests are der ived from Pt). By examining the distance

I between P~ and 
~k’ Yk ~ i, we can determine if could possibly intersect

any of the E I ~~~) because we know that d(P~,l~) — 1.

I
I
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I Case 1: d[P
i
,Pk
) — 0. and 

~k 
agree in every coordinate where both are

I specified . Since d(P~,P~) — 1 for all [li), we know that d(1~
,Pk
) —

unless the j-th position of contains a u. Thus there will be a null

I intersection between l~ and P
3 
unless this case occurs.

I Case 2: d(Pi,PkI 
— 1. P

i 
and 

~k disagree in exactly one coordinate where

both are specified. In this case at most one of the [I~~) wil l  have a non-

null intersection with 
~k ’ and that w i l l  occur if 3 is the coordinate where

P~ and ~k 
disagree .

- . Case 3: d [P i, Pk
) ~~2 

~k 
will not intersect any of the [I~

).

These observations about the significance of the distance relation-

ship are used to speed up test generation for large problems, i.e. those

wi th  many prime implicants.  Be fore test generation begins , an array of

distances between each element of the covering set and all of the other

1 prime imp licants is formed . Then as each element of [i~) is formed , only

those prime implicants which cov ld possib ly intersect elements of the

I sets ~~~~~~~ i.e. those with d 0  or d 1 , need be examined.

The size of each is of course equal to the size of the prime

- implicant , P1, 
from which it was derived . The search for a false vertex

takes place within the cube of 1~~. Thus when a prime implicant which has

a nonnull intersection with some is detected , we wish to form a cube

I equal to this intersection. Only the subspace corresponding to the P~ is

relevant. This subspace is determined by the unspecified positions of F~.

I Therefore the test generation algorithm strips out the variable positions

1
I
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corresponding to u ’s in when forming the cubes to be passed to FALSE

VERTEX , and assimilates the values returned by FALSE VERTEX back into

to form the ~i1se test of the test pair for x
3
. From this test the true

1 t~ st is obtained by simply complementing variable x
3
.

The details of TEST GEN are rather involved since much manipulation

of the po~oter fields in the data structure constructed by COVER is required .

liwreforc the specification of algorithm TEST GEN is again relegated to the

Appendix . The algorithm is presented here in abbreviated form.

Al gorithm 3.5: Test Set Generation (abbreviated)

beg in TEST GEN

call COVER

I call. DMATRIX /* compute distance between prime implicants */

do for (each prime imp licant , P , in the covering set)

do for (each variable , x3, for which tests are to be generated

I 
from prime implicant P

1)

form list of cubes of inter:ection between and P~ for

I
ca ll FALSE VERTEX

II fo rm tes t vecto r s fo r va r iable x~

j end TEST GEN

I
I

‘
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3.4. Computationa l Complexity of Test Set Ceneration

I In order to establish computationa l feasibility of the test set

generation algorithm developed in Section 3.3 and compare it to other fault

I detection algorithms , it is worthwhile to analyze the “computationa l

complexity ” involved. Computational complexity of an algorithm is an

I algebraic expression which describes the relationship between some

I performance parameter , such as execution time or storage requirement , and

the set of parameters which characterize the input to the algorithm. These

I relationships are inherent to the algorithm and therefore allow the

quant i f ica t ion  of performance without having to revert to an anal ys is  of

the programming details and instruction execution times of a particular

I machine . Since we are interested only in the dependence of performance

on input )arameters , we express complexity as “order ” and use the symbol

1 “0.” Constants of proportionality and lower order terms , i .e.  those which

become negligible as the input parameters become large, are not expressed

in order to simp lify the complexity expression and show the dominating

I terms .

In this  section the complexity of the test generation algorithm

developed in Section 3.3 will be analyzed and compared to the complexity

of test generation algorithms based on other faul t  models.

l The performance of Algorithm 3.5 is highly dependent upon the

I specific function to be tested . While worst-case analysis yields

unrealistically pessimistic results , it is not possible to compute expected

I performance since there is no basis for assuming particular probability

distribution functions for the parameters describing the input. In the

I

_  
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I discussion which follows , a wor~t-case analysis will be performed; however ,

some of the significant ly problem-related coefficients will be expressed

symbolically, and we will discuss how the nature of the input affects the

values of these coefficients.

1 3.4.1. Execution Time of Test Set Generation

Algorithm 3.5 consists of two preprocessing components (COVER and

DMATRIX ) which are executed onc e , and the test generation block which calls

I FALSE VERTEX once for each pair of tests generated. FALSE VERTEX calls

DISJOINT CUBES as an initialization step .

I The following parameters are used to characterize the set of

prime implicants which serves as input to TEST GEN.

L — the number of input variables of the function to be tested.

I q the number of prime implicants used to represent the function

to be tested .

c the number of prime implicants in the reduced cost covering set

- generated by COVER. (Note that c < min(L ,q ) . )

COVER first computes a cost vector by enumerating thz~ unspecified

variab les in each of the prime implicants. This requires the examination

of each of the .L q variable positions. Formation of the cost-ordering

I permutation , R , requires sorting the cost vector , a task known to require

0(q log2 
q) operations [201 . Computing the initial weight vector, W,

requires at most Lq examinations . Finding the maximum weight and assigning

I it to k can take at most L+l steps . Updating the weight vector can require

at most L steps. The loop which consists of finding the maximum weight ,

I
I 
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selecting the next member of the cover , and updating the weight vector is

- repeated once for each member in the covering set . Thus the execution

time required by COVER is as follows .

TCOVER 
°Z Lq + q log q + Lq + c (2L+1 )

2iq + q log q ÷ 2Lc +c

0(L q ÷ q logq) (Since log q and L may be of the same order ,

I both terms are retained.)

DMATRIX computes the distance , up to d 2 , between each of the c

I elements of the covering set and the q-l other prime imp licants. This

- . requires no more than Lqc steps .

I FALSE VERTEX is passed a list of cubes in some subspace o f the

-J i-cube . Assume that this list contains ~ cubes of size ~~~. The cube list

is first transformed into a list of disjoint cubes. Let this list contain

I o~’ cubes. Within the main loop of DISJOINT CUBES, the B positions of the

cube currently being examined are tested either once if there is no

-, intersection or twice if there is. This loop is executed at most

- (c~’-1)+(c~’-2)-+-...+l — times . The length of the list resulting

from the application of DISJOINT CUBES may never exceed 2~~. Theref ore

DISJOINT CUBES could require no more than Ø(22B) steps to be executed .

FALSE VERTEX then determines a false vertex in time bounded by the series

I (B~ l)(2B_l) + (B~ 2 ) ( 2~~
l
~ l) + ... + 22 which is clearly less than 0(22B)

Thus execution time of FALSE VERTEX is dominated by the processing required

I to make the cube list mutually disjoint . This analysis is extremely

I pessimistic since it is quite likely that ~ and ‘~~‘ will be ‘(< 2B . ~ is at

most L-l.

I
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TEST GEN is comprised of two sequentially executed blocks , COVER and

I DMATRIX, and the main loop. This loop scans the data structure which has

c+L elements. For each of the i elements which comprise the sublists ,

the list of prime implicants is scanned for nonnull intersection with Pj~.

I 
This requires O((q-l)L) steps. Then FALSE VERTEX is called. Thus time

complexity of the main loop of TEST GEN is given by the following expression :

I O(L [(q-l)L + FALSE VERTEX + L]) —

0(L q) + O(L2 ).

This resul t s in an ove ral l  time comp lexity for TEST GEN of the f ol lowing :

I O(TEST GEN) — O(q logq) + O(Lqc ) + O(L2q) + 0(L22L ).

3.4.2. Storage Requirements for Test Set Generation

I During the storage analysis we shall use the term “cell” to mean

the number of bits required to represent the quantity in question plus any

I link informat ion  required . Since all  cells contain 0(L) or fewer bits , we

I 
shall assume 0(L) bits are used for all ce l l s .

During execution of the main loop of TEST GEN, there is an amount

of static storage plus some time-varying storage . The static requirement

consists of q cells for the array of prime implicants plus c.q cells for

the distance matrix , plus c-fl cells for the list structure containing

I 
the covering set information. As TEST CEN is executed , a list of inter-

sections of P’~ with 
~k’ k#i ,is constructed and the list is made disjoint .

1 This list can reach a maximum size of cells . Thus storage required is

I
-
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- as follows :

[ 0[L(q + c .q + c + £ + 26] 0[Lcq + +

3.4.3. Discussion of Complexity

The complexity of TEST GEN is dominated by FALSE VERTEX which

requires exponential processing time and storage in the worst case. This

I worst case is based on the assumption that the cubes passed to FALSE VERTEX

cover all but one of the vertices of the B-dimensional subcube , and that

they do so in such a way that after the list has been made mutually

disjoint , each cube covers only one vertex . This is a very unusual cases ,

since as DISJOINT CUBES scans the list of cubes it always retains the cube

it is examining and reshapes subsequent cubes of the l i s t .  When a cube is

reshaped , the number of cubes generated to replace it is equal to the

I number of occurrences of an unspecified variable In the cube to be reshaped

I 
corresponding to a speci f ied var iable 4 n the cube to be retained . The

number of such occurrence is some f rac t ion  of 6 . If there are no such

I occurrences , then the cube is replaced by a null l ist  resul t ing in a

decrease in the length of the cube list. A cube is reshaped only when

there is an intersection with a cube earlier in the list. Therefore one

I 
would expect the list expansion factor to be related to B rather than 2

6 
in

the typical case.

I Since the covering set generation algorithm selects prime

implicants of small size by the cost reduction mechanism, the subcube

I size, B , tends to be minimized . Thus the complexity expressions developed

I I
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in the previous sections are misleading in all but certain pathological

I 
cases.

Although certain combinationa l functions can be irredundantly

l represented with a large number of prime iinplicants , it has been observed

[21] that the types of combinational functions which often crop up in

I actua l design are “shallow” functions, i.e. those which can be represented

with a small (0(L)) number of prime implicants. The use of programmed

logic arrays is becoming more and more common. Such devices implement

[ funct ions  comprised of a re la t ively small number of prime implicants because

of constraints imposed by the techniques used to fabricate such devices .

I The number of inputs , L , is a lso limited by integrated circu it tech nology

to a relatively small number (~~1O - 40). These observations support the

computati ona l feasibility of test generation based on the pin fault model.

In contras t  to the multiple pin fault approach , the best algorithms

known for detecting single faults under the stuck-line fault model have a

computing time that is exponential in the number of input lines and gates

[22] . As a result , test set generation under these fault assumptions is

1. practical only for small circuits.

I
1 3.5. Minimum Size Test Sets

The test generation process described in Section 3.3 generates

I test sets of size 2L where L is the number of input pins . These tests

I have the advantage that they are relatively easy to generate and are

syninetric , i.e. the output sequence resulting from application of the

I
I 
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test set is made up of £ zeros and £ ones. The symmetry property is

I 

advantageous because -It enables the circuit to be t ested w i thou t  t he

necessity to store an array of fault-free circuit responses to the test

I inputs. Future development of the pin fault approach will probably be

I 
directed dt testing networks of modules in an analogous way to th e testing

of gates under the s tuck - l i ne  model. In this case reduction of the size of

I the test set , even though small , may be of value 5

The determination of minimum test sets has proven to be a very

d i f f i c u l t  problem , and major results in this area have not been developed.

In this section , a summary of results and observations related to test set

reduc t ion will be presented .

3.5.1. Test Sets Sat i sfy ing  Theorem 3.1

I The corol lary to Theorem 3.1 states that it may be possible for

a combinational circuit with I inputs to possess a mul t ip le  pin fau l t

test set which sa t i s f ies  Theorem 3.1 with as few as 1+1 test vectors. In

order to consider the question of minimum test sets within the context

of Theorem 3.1 it is useful to use the following graphical representation

I for f u n c t i o n s .  An I - input  funct ion is represented in the I-dimensional

lattice by true vertices as solid dots and false vertices as circles.

I Figure 3.3 Illustrates the lattice representation for Z x1x1 
V x

3
x4

V

I x1
x
2~ 3

V x
1
x2x3. As any edge is traversed , one of the vertex coordinates

is complemented . This property of the iattice is used to associate the

I edges of the lattice with the input variables as follows. Each edge is

I
I 
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assigned an “edge index ” which is equal to the index of the input variable

I which is complemented as the edge is traversed .

If a false vertex is connected to a true vertex by an edge with

I index i then these two vertices correspond to an alternating adjacency

I 
about input variable x~ , and a set of such vertex pairs , one pair for each

edge index i , I < i < I, corresponds to a test set sa t i s fying Theorem 3.1.

I This set of vertex pairs and joining edges represents some subgraph of the

lattice representation. A minimum test set satisfying Theorem 3.1

correspond s to a subgraph of this type with the minimum number of vertices.

Since every such subgraph must contain exactly I edges , the subgraph with

I the fewest number of vertices is one with maximum connectivity . Cycles

cannot occur in such a subgraph because in order to traverse a path

beginning and ending with some vertex V
j~ 

each variable position would have

) to be complemented an even number of times. Thus if an edge with index i

occurs in the path then it must occur again so that input variable x~ would

be tested more than once. Therefore a minimum test corresponds to a tree

or set of trees. The subgraph of I edges with the fewest number oi~ vertices

is a connected tree . Any connected tree with I edges has 1+1 ver tices

hence the lower bound given in the corollary to Theorem 3.1.

I 
Definition 3.12: A minimal spanning tree (lIST) for a function of I

variables is a subgraph of the lattice representation of the function with

the following properties:

1. The subgraph is a connected tree.

2. For each i, I < i < I, there ii exactly one edge in the subgraph

whose index is i.

I 
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3. For every pair of vertices v~ and v~ which are joined by an edge

i 
Z(v 1)’~ Z(v~) — 1.

I (Note that this def in i t ion  bears no relation to the usual minimal spanning

I tree concept of graph theory.)

Figure 3.4 shows two lIST’s for the function represented by

Figu re 3.3 , and thc corresponding test sets T1 and T2 .  (In Figure 3.4 onl y

I 
ed ges belo n gin g to the lIST’s are shown.) Note tnat input x~ is tested by

the two vertices joined by the edge whose index is i.

I The following theorem is an immediate consequence of Definition

3.10 and Theorem 3.1.

I 
_ _ _
Theor em 3.5:  Module M real iz ing func t ion  Z(x 1x 2 . . .x1) possesses a test

set sat i s f y ing the hypothesis of Theorem 3.1 with the minim um, number of

tests if and on l y if the lattice representat ion of Z contains an lIST.

I
The lat t ice representation of functions together with the necessity

clause of Theorem 3.5 allows many easily testable functions to be recognized .

For example any function containing a prime implicant which is a mninterm

or a prime implicant which is a maxterm possesses a test set of size 1+1

I 
because in the lattice representation of such functions, an lIST can be found

surrounding the minterm or maxterm as illustrated in Figure 3.5. Another

interesting class of functions is the class which can be realized by a

network containing no fanout . The following theorem establishes this

result , and its proof may be used to construct a test set for any such

function.

I
I 
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Figure 3.4. Two lIST’s and the corresponding test sets of the function
represented in Figure 3.3.
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Figure 3.5. lIST’s for functions with prime minterin (a) or maxterm (b).
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I Theorem 3.6: Any function which can be realized as a fanout - f ree  (including

inputs) network has a lattice representation containing an lIST and therefore

a test set of size 1+1, where I is the number of inputs.

I 
Proof: (By induction on the numbet of gates in the realization.) Let Tk 

be

a network of k AII~D, OR, NA ND , and NOR gates which realizes function

J 
Z(x1x2. . .x1) without fanout . Consider the degenerate case, T1. Since T1

possesses a single minterm (AND or NOR) or maxterm (OR or NAI~D) the function

I realized by T1 possesses an lIST of the type shown in Figure 3.5.

Assume that function Z is realized as network Tk , and that T
k

pos sesses an lIST . Form network Tk+l from network Tk by adding gate G as

T shown in Figure 3.6. (Note that the inputs to Tk may be permuted so that

C drives line x 1 without loss of generality.) Consider the MST for Tk, and

I re move the ed ge whose index is 1. Figure 3.7 shows this edge .

i Let v~ — 

~ 1~ 2 • 
~ L 

Then V
j 

— 
~ 1~ 2 ’ ..c~~, ~~~o , iL  All vertices in the

subt ree headed by vi have x 1 — 
~~~~~

. All inputs which are tested by vertices

in the vi subtree will still be tested if the inputs y
~ 

to G are held

constant at value s such that C(y 1y2 . .y ~ ) — cr1, and similarly for the V
j

subt ree w i th  G( Y 1Y2 . . . Y  ) — 
~~~ 

Since G consists of one gate, it realizes

a function with a single m m -  or maxterm, and has an lIST of the type

illustrated in Figure 3.5. The subtrees headed by v~ and ~~ and the lIST

J for C may be combined into a single lIST for Tk+l: The edge which formerly

tested x
1 
will test one of the inputs to C. The remaining inputs to G will

( be tested by new edges emanating from either v~ or

The pattern 
~~~~ 

.o~ when applied to x
2
x3. . .x1 

sens itizes line x1
I to the output Z.~~1. That is, either 1K+l (x1,cr2,Q~3. 

~~~ 
— x

1 
or

- - - . . -..-- - - 
_ _-w 

- — 
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I
I
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Figure 3.6. Network Tk+l.
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I
I

I Figure ~.?. The lIST edge corresponding to x1.
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1 
~~+i

(x 1,a2a3. . .a1) — i~~. Therefore, the m inputs to gate C can be tested

by app ly ing the vertices of the MST for C to y1. . ~~ 
while holding x2. . .x1

constant at a
2
a
3
. . .a1. The inputs x

2
. . .x1 are tested by holding y1

. .

-~ constant at values resulting in x1 
— a

1 
to test those inputs in the subtree

formerly headed by v~ and by holding y1
. . constant at values resulting in

x1 
— to test those inputs in the subtree formerly headed by v

j
. The

resulting tree has the structure shown in Figures 3.8a or 3.8b, and is an

MST for network Tk+l. The theorem is thus established for a fanout free

) network consisting of any number of gates. Q.E.D.

J Generation of an MST and therefore a multiple pin fault test Set

by the constructive method used in the above proof is very simple. The

procedure begins at the output gate and proceeds by successive levels

-~ considering each gate until all inputs are reached . The MST for the output

I gate, Figures 3.5a or 3.5b, is drawn first . Then as each gate is considered ,

the lIST for that gate type is added to the graph by replacing the edge

which tests the gate ’s output by one of the edges of the lIST for that gate.

The tree structure is built up in this way so that when all input pins have

I 
been reached , only edges corresponding to teats for inputs will remain.

Whenever a gate which is fed by primary inputs is encountered , the edges

I added are labeled with the input which the endpoints of that edge test.

The result is an lIST with labeled edges. The test vertices are then

I assigned (in a unique way) by considering each gate which rece ives primary

inputs and writing down the test input required on those primary inputs for

that gate type. These teats are the u- and e-tests of Hayes [23] for that

I
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I Figure 3.8. MST for Tk+l.

I
I 

.. . -- 5... - .
. 

~~~~~~~~~~~~~~~~~~~~ 

--  

~~~~~~~~~ 

- -

~~~~



•5 - - 5-- ---- - - -

t
1 63

gate type as given in Table 3.1. When this is done for all inputs , all

I variable pos itions for each vertex in the MST wil l  be assigned , and the8e

vertices are guaranteed to cons.itute a multiple pin fault test set.

I
I

Table 3.1. lIST Vertices for Gates

gate type v
0 

v
1 

V
2 

. . .  V

AND ,NAND ll...l Ol...l 101...]. ... ll...lO

OR,NOR 00.. .0 lO...0 010.. .0 .. .  00...].

The following example illustrates construction of an lIST and the

corresponding test set by the above method. Figure 3.9 shows a 4-level

network and Figure 3.10 illustrates construction of an lIST. The final step

I of assigning values to the vertices is achieved by making the correspondence

between each nonterminal vertex and a gate in the network. Then for each

of these vertices , the values for the inputs tested by adjacent vertices

can be assigned based on the type of gate. For example the vertex

corresponding to gate NOR6 has adjacent vertices which test its inputs, x6,

1 x7, and x8. Thus, since this gate is a NOR, the vertex labeled NOR6 must

i have 000 in positions x6, x7, x8, and the vertices connected by x6, x7,

and x
8 
must have 100, 010, 001 respectively in positions x6 x7 x8.

1 -

-
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I
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I

~~~~~~ OR~)_Z

x
6 16

NOR
6x8 

AND 19

x
9 17

3 7

x 1o - 
13

x
11~ AND8

x12

I 
—~~~~~~~~ -~~~~ - 

—

level 3 leve l 2 level 1 level 0

I
I. Figure 3.9. A 4-level fanout-free network.
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(a) level 0

I
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) AND

I OR1
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1 AND
3

1 
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(b) level 1 added

I
Figure 3.10. lIST construction for network of Figure 3.8.
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All vertices in the subtree connected to vertex NOR6 
via edge x

6 
must have

1 100 in positions x6 
x
7 
x
8 because the essential property of an lIST is that

the value of each variable position changes only once along any path . The

I same holds for the subtreea connected via edges x7 and x8 wh ich have

constant values of 010 and 001 respectively in x6 
x7 x8

.

Fanout-free networks have the property that a multiple stuck-line

fault involving a set of lines anywhere in the network is equivalent to a

multiple fault involving only primary input lines [23,11]. (Two faults F
1

and F
2 
are equivalent if Z(X,F1

) — Z(X ,F2).) This property results from the

fact that for any gate, a fault on the output line is equivalent to a

I multiple fault on the gate inputs. Each of these gate inputs which has a

fault component on it is connected either a primary input or a g-’te output .

If connected to a gate output, the fault component is again equivalent to

a fault involving the inputs to that gate. This process may be continued

until all fault components of the original fault have been replaced by

I equivalent faults involving only primary inputs. (This process may only be

carried out when the network contains no fanout since a fault on a fanout

branch feeding a gate is not equivalent to any fault on the fanout stem

unless all fanout branches emanating from that stem are stuck at the same

value.) (The interested reader may refer to (24) for a thorough treatment

of fault equivalence.) Since a test which detects some fault also detects

I all faults equivalent to it, and since in a fanout-free network any multiple

fault is equivalent to some multiple fault, all of whose components involve

1 only primary inputs, all multiple faults anywhere in a fanout-free network

I
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are detected by a multiple pin fault test set. Thus the preceding discussion

presents a procedure for generating multi ple fault test sets for fanout-free

networks .

Hayes has examined the fanout structure of switching functions [25]

and shown that fanout is an inherent property of switching functions.

Fanout-free functions , i.e. those possessing a fanout-free realization , are

stud ied , and a procedu re fo r determining i f a f unct ion is fanout-free is

presented . This procedure could be used to determine if the preceding test

generation procedure is applicable to a particular function.

The existence of lIST’s for other classes of functions ,,uch as

unate functions has not been established however certain relationships

between the prime implicants of functions are known to be necessary as

stated in the following theorem.

Theorem 3.7: A necessary condition for the existence of an lIST in a function

is that some covering set of prime implicanta of the function (Definition 3.9)

possess the following property : each member of the covering set is distance

(Definition 3.10) < 2 from at least one other member of the set .

Proof: Assume that the prime implicants of some function do not possess

such a covering set. Each edge of an lIST connects a true vertex to a false

J vertex. Consider some prime implicant . Only edges whose indices correspond

to a variable which is specified in the prime implicant can emanate from

that prime implicant , i.e. have the true vertex of that edge be a ver tex

of the implicant. Therefore, in order for all variables to be tested ,

there must be a path in the graph between prime icnpjicants which are a

I
H - I
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~~~~~~~~~~~~~~~~~~~ 
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covering set. Since vertices along any path must be alternately true and

I false , the distance between any two tLu~ vertices in a path is at least 2.

Therefore , since at least one prime implicant which is essential to the

covering set is distance > 2 from all other members by assumption , no path

can lead to a vertex in that prime implicant and therefore the variables

specified only in that member of the cover cannot be tested by a tree

connected to the other prime iniplicants. Thus an lIST cannot exist. Q.E.D

Function~f which do not meet the condition given in Theorem 3 7 are

of course numerous , however such functions must have at least 5 variables

[26]. This fact is easily demonstrated by attempting to construct a set of

prime implicants which violate the condition using 4 variables . Since the

prime implicants need to be separated , they need to be as small as possible ,

hut they must have at least one unspecified variable because a prime minterm

would ~-at1sfy the condition. Arbitrarily choose u000 as a prime implicant.

N~v~ a second prime implicant which covers variable x
1 
must be added so that

:ic -function is nonvacuous in x1. This may be chosen as 
~i
u
~?4. 

No

matter how 
~l’ 

Cr
3. and 

~~~

. are chosen , the prime implicants cannot be more

than distance 2 apart . With five variables , i~ is possible for a function

to violate the condit ion. Figure 3.11 illustrates suc i a function , and it is

easy to see that no lIST exists for such a function.

The condition of Theorem 3.7 is not strong enough to constitute

I sufficiency for the existence of an lIST, however , as the function shown in

Figure 3.12 illustrates. All these prime implicants are required to cover

the 6 variables , however there can be no alternating path from uu0000 to

l i
I
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Figure 3.11, A function which possesses no lIST.
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I
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Figure 3.12. A function satisfying Theorem 3.7 which contains

I no 1/ST.
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Ouulll because u0uuuu only has one specified variab le . Because of this ,

I there is no way to have an edge which enters uOuuuu and a diff rent edge

which leaves u0uuuu. Thus a path must exist which goes directl y from

I uu0000 to Ouulll. Since these two prime implicants are distance three

apart , no such path exists.

1
3.5.2. Test Analysis Based on Growth and Disappearance of Prime

Implicants

Paige [27] studied the effects which single stuck-line faults have

on functions which are realized in two levels. This approach may be app lied

I to arbitrary realizations of functions under the pin fault model. Since

faults may only occur at network inputs , the faulty functions which can

result under the pin fault model are closely related to the fault-free

fu nc t ion , of a network .

Consider a particular prime implicant P of some function . In

the cubic notation used throug h t his chapter each variable position of an

implica nt is specif ied to be e i ther  a 0 or a 1 or is unspecif ied (u) .

I f input x~ is stuck at some value ~ th is  fault  has one of three possible

e f f e c t s  on prime implicant 
~k ~~~~ 

represents the value in the i-th  position

of prime implicant Pk ):

1 1. If 
~k , i — u then doe s not depend on the value applied to

I input x 1, and the prime implicant is unaffected by the fault x~ stuck-at-’~.

2. If 
~k,i 

— ~ then any input vertex which is adjacent to in

1 

variable x~ will result in the function assuming a true output . This

occurs because although an ~ is applied at input x~, the fault x1 stuck-at-a

I
I 
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causes a value of ~ to be transmitted to the (fault-free) network internal

to t he mod u le , and the vertex seen internally is contained in The net

effect of such a condition is that all such vertices become true vertices

of the faulty function. This situation may be conveniently conceptualized

as a growth of 
~k to include these vertices .

3. If 
~k,i 

= ~ then no input vertex can be applied which is

- cc-ntained in 
~k’ since the fault x~ stuck-at-a results in an 0’ being

transmitted to the internal network. The net effect which the fault

I 

x1 stuck-at-0’ has on prime implicant may be conceputalized as the

disappearance of P

- Figure 3.13 illustrates these three cases.

Based on this viewpoint, the faulty function which results under

some multiple pin fault is determined as follows. Any prime implicant

which has a specified variable with a value opposite to the polarity of a

fault component on that input line disappears. Each occurrence of a

specified variable which has the same value as its corresponding fault

component results in a doubling of that prime implicant, i.e. the fault

results in that variable becoming immaterial to inclusion in that prime

implicant . Example 3,5 illustrates the determination of a faul ty  function

from the original function and fault. A multiple pin fault for an L-input

f function Z(x) will be denoted by an L-element vector F each of whose elements

is n, 0, or 1 as follows:

F1 — n -. X
i 

is fault free (normal)

t 
F~ — 0 -. X

i 
is stuck at 0

I 
,

I S
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I
Figure 3.13. Affects of faults on an implicant .
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F. — I -. x is stuck at 1
1. i

I ~ denotes the fault free case F — (on.. .n).

Example 3.5: Z(x ,ø) = E (Olluul, luOlul , uuOlOO)

F = (nnln0l)

I Z(x ,F) = E (Oluuuu)

has grown in x3 
and x6. P

2 
and P

3 have disappeared.

A multiple pin fault test set may be derived in an ad hoc fashion

by selecting a set of test vertices which are sufficient to insure that no

growths or disappearances have occurred . For certain functions, test sets

which are quite small may be derived because tests which detect

many fault components simultaneously may be chosen .

A test set may be derived by a series of deductions which are

based on the set of multiple pin faults which are sti l l  undetected by any

previously selected test. The process terminates when no multiple pin

faul ts  remain undetected .

Defini t ion 3.13: The fault  condition of an L-input combinational module

I relative to a partial test set is the set of assignments of values

0 (stuck-at-0), 1 (stuck-at-I), n (fault free) to the L-input lines which

could exist without resulting in an error indication for any test in the

[ 

partial test set. Let C,. be the fault condition relative to partial test

set ‘T~ Then Z( ti~
f
j) 

— Z(t1,ø), Yt1
CT , f~SC,..

I
I

—1 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~ 

-
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A concise notation for the representation of the fault condition

is a vector of L sets , with each set consisting of the possible fault

- 

conditions (0, 1, or n) which may exist on each line . Any fault derived by

selecting one member from each set is an element of the fault condition.

The following example illustrates this notation :
0 0 1

I If CT — (1 1 0 n) then (OOllOn), (nnln0n), (lnll0n), etc . are

all elements of the fault condition. There are 3.2.1.2.1.1 12 such elements

in this fault condition.

Note that this notation represents a Boolean expression of the

following form. CT is true , i.e. a fault is a member of the fault condition,

if and only if the first input pin is in one of the states given in the

first set, and the second input pin is in one of the states given in the

second se , and so forth. More precisely , CT is a logical product of sums

expression with the further constraint that each input pin can be in only

one state. The fault condition in the above example may be written

I explicitly as follows (x
1
/1 means input pin x

1 
stuck at 1):

I CT = (x 1/i + x . / 0 + x 1/n) (x2 / 0 + x 2 / n ) . ( x 3/ l )

. (x 4/J. + x4/ n ) . ( x S/O) . (x6/n ) .

In this notation , the initial fault  condition (when T — 
~) is

00 0
(1 1 1), and the fina l fault  condition (when T is a multiple pin fault
O n  n

test set) is (no.. .n ) .

The fault condition for a set of test inputs may be determined by

I forming the intersection of the fault conditions for each of the test inputs

individually . This follows from the fact that each of the individual

I

-- - 

-: 
- ~1~
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fault conditions must simultaneously be satisfied . This intersection

I operation is done on an input pin by input pin basis, and is defined by

the truth table of Figure 3.14. (Wheneve r a null intersection results from

some input, the entire fault condition is null.)

The following are examples of the intersection operation :

(1 0 1 ~ 
0) f l (° ° 1 n n ) — ( ° 0 1 n n)

(1 0 1 ~) f l (° n 1 n n) ’ ø.
a - n

Because of the implitit logical meaning of the fault condition

notation, it is quite easy to describe the event that some prime implicant

has not disappeared and the event that some prime iznplicant has grown to

cover a particular vertex or set of vertices. Other events such as the

disappearance of prime implicants and nongrowth onto particular vertices

are not descr ibable because of the implicit logical meaning of the fault

condition expression.

A fault condition is derived by examining the growth and

disappearance of prime implicants which could result in a normal module

I 
output for a partial test. This fault condition is then refined by adding

other tests to the partial test set. This process is best explained by

1. example. Consider the function which is shown in Figure 3.11 and possesses

I no lIST:

z — X
1
X
2
X
3
X
4
V X

1
X
2
X
3
X
5

I E(P1,p2), p1 —

I 
p2 

—

ii -
~~~~ 

— - 

I ~~~~~~~~~~~~~~~~~~~~ 
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I
I
I

0

I l 0 1 0
n n n 1 0 1 n

1 0 0
1 0 1 0
n n n 1 0 1 n

0 0 0
1 

n a n a 0 0 ~

I 1 1 1
I n n n n 1 ~ 1 n

1 0 0 0
1 1 0 1 1 0 1 0

1 
0 0 0 0 0 0 0 0

1 1 1 0 1 1 0 1 0

I a a n a 0 0 0

I
Figure 3.14. The intersection operation for fault conditions .
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I
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Select as the first test t1 — 0OO0O€ P~, and let Z~~ be the function

I under test which may or may not be faulty . If Z~~ (o00O0)—1 then either P1

exists and has possibly grown or P2 
has grown sufficient ly to cover vertex

1 00000. Existence of prime implicant P~ will be denoted as PiEs and growth

I 
of prime implicant P. onto vertex v will be denoted as PiGv. Fault conditions

for the two possible events p
1
E and p

2
G (00000) are derived as follows:

P1E implies that no fault which causes the disappearance of P1 is present,
-1 0 0 0 0 0

that is none of x1 through x1 may be stuck-at-l , hence p1E 
(
~ n a n

In order for P
2 

to have grown onto (00000), fault components sufficient to

transform vertex (00000) into a vertex in P
2 
must be present , hence

1 0
I -. (1. 1 1 1 1). Since one of these two fault conditions must exist for

zUT(t l) 
— 1, the following expression may be written :

z~~~(t 1
) — 1 -. p

1
EV p

2
Gt1t 0 0

—. (
0 0 0 1)V (1 1 1 1 1).a n n a n n

Similarly , if t 2 — 11l11€P
2 then

ZUT(t2) — 1 p
2

EV p1Gt2

1 0 0
.~~ 

~
‘ 1 1 ‘)V  (0 0 0 0 1).n a n  n

a a

I These two fault condition expressions may now be combined as follows:

I Z~~(t1,t2) — (1,1) — (p1
EV p2 Gt 1)f l  (p

2
EV p1Gt2) 

0

I ~ i )vO .  1 1 i j ) ) f l [ (’’ ~ i ‘) v ( o 0 0 0  1)]

(a a n 0 ‘)V  (0 0 0 0 i )V  (1 111 ).

-.
~ --I 

I
_I__ 
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From the above expression it is apparent that tests t1 and t2 have

[ 
detected nearly all of the 3

6_i multiple pin faults. Notice that the last

two terms in the above fault condition expression correspond to growth of

P1 
over the entire space and growth of P

2 
over the entire space respectively.

Thus all of the faulty functions represented by these two terms are

tautologies and will be detected by any test which has a normal output of 0.

I 

Since any test set must have at least one such test to detect stuck-at-I

on the output pin , these two terms will eventually be eliminated . This

I 
leaves only three faults undetected , namely (nnnOn), (nnnnl), and (nnnOl).

The fault (natiOn) corresponds to a growth of P1 along x4 and will be

detected by either 00011 or 00010, independent of the fault state of line

x
5
. The fault (nnnnl) is detected by checking for growth of P

2 
into 11100

or 11110 and is independent of the fault state of line x
4
. Consequently

I only two more tests are required to complete the multiple pin fault test

set. Hence the following is a 4 element test for the function 2 which

possesses no MST:

I 
T — [ooooo , 11111, 00011, lllOO}.

The growth and disappearance approach is not generally amenable

to test set generation although it is useful in the analysis of tests.

( 
The applicability of this type of analysis ia highly dependent upon the

prime implicant structure of the particular function. Functions with few

I prime implicants which are relatively dis’~ant from each other are easily

analyzed because multiple pin faults of high multiplicity are required in

order for the growth of one prime implicant to mask the disappearance of

1
-- 
I
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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another . Functions possessing no MST are generally of this type , and all

such functions which have been studied may be shown to possess test sets

of size < n+1 by use of the techniques described in this section .

I Unfortunately functions of this type have eluded classification , and a

I 
general theory of test generation based on growth and disappearance testing

has not been developed . This section is included in order to present an

approach to fault and test analysis which may be further developed in the

future , and to illustrate that test sets of small size which do not

f 
satisfy Theorem 3.1 do exist for certain functions.

I.
3 6. Multiple-Output Functions

The results of this chapter extend in a straightforward mariner to

I modules with multiple output pins . Such a module is depicted in Figure 3.15.

Each of the output pins Z1 
through Z in Figure 3.13 realizes a combinational

I function which depends nonvacuously on some subset of the input pins

through X
L
.

i Definition 3.14: The input set for each output pin is the set of input

pins carrying the input variables upon which the function appearing at

output Z~ depends nonvacuously . This set is denoted by

A c~-mmon practice in integrated circuit design is to replicate a

function or to implement more than one function on a single chip when chip

area and package pins are available . The result is that an integrated

circuit module may have outputs or sets of outputs whose input sets are

I
I

,
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I
x1 0

I 
x
2
0 022

I
I S

I x 0
1 

_ _ _ _ _ _ _ _  

m

I Figure 3.15. A multiple-output combinational module.
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disjoint from the input sets of the remaining outputs . This property of

I disjoint input sets may be used to partition a module into submoduies which

are independent of each other. Fault detection tests may then be generated

for the module by generating tests for each submoduel. A submodule which

I 
has one output is handled as if it were a single output module, even though

it shares a physical package with other submodules . This section deals

with the case in which a module or submodule has more than one output , and

each of the input sets for these outputs has a nonnull intersection with

the union of the input sets of the other outputs. The term “module” will

- 
- be used to refer to such a module or submodule in the remainder of this

section.

( The alternating adjacency concept used in generating tests for

single-output modules may be extended to the multiple-output case. An

input may be tested by app lying a pair of test vertices which differ only

in the value applied to that input such that the value appearing at some

output changes in the fault-free circuit. Since such a pair of tests

( 
normally causes both values to appear on some output, that output is also

- 
tested for both stuck-at-l and stuck-at-O faults. A multiple pin fault test

set may therefore be formed by determining a set of input vertices which

contain an alternating adjacency for each input pin and has the further

I property that each output pin is used to monitor at least one of the

I alternating adjacencies . It is therefore possible to test a multiple-

output module without having to add teats beyond those required for testing

the inputs. A test set which teats all inputs but r t all of the outputs

I

Si ‘ 
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may be augmented to test the untested outputs by adding at most one

I additional test input for each untested output , and it may be possible to

determine a single input vertex or a small number of vertices which cause

all of the untested outputs to assume values complementary to the output

values produced under the original partial test set. It may also be

possible to test several inputs with one pair of input vertices. For

( 
example if ‘1 12 and 12 ~/ I~ then it may be possible to test an input

contained in I
1
fl12 and simultaneously test an input contained in 12

fl11.

I This is possible whenever the values applied to the inputs contained in

I1
flI

2 
allow both an input in I~ and an input in 12 

to simultaneously

1. be sensitized to Z1 and Z2 respectively.

The algorithms previously developed for the single-output case

may be used to generate a multiple pin fault test set for multiple-output

I modules by the following procedure :

I Step 1: Form a subset , Z~, of the outputs which has the property that

U I
i — [x

l
x
2
...x

L
1.

Yi,zi€z
*

Step 2: For each element 2 eZ* examine I . For each input x contained

in I
i 

for which tests have not yet been generated , use the function

specification for Z~ as input to the single-output test generation

algorithm to generate a pair of tests for input xi. Repeat this step

j until tests have been generated for x1.. .XL . Leave all input variables

noncritical to the test pair unspecified.

I
I
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I Step 3: For each output Zk�z* determine the fault-free circuit response to

I the tests generated in Step 2. Outputs which produce both 0 and 1 values

for this set of tests need not be considered further. Select values for the

as yet unspecified input variables to cause both values to appear on the

remaining outputs wherever possible. Each output which produces only 0’s

I or l ’s after this has been completed requires an additional test selected

I to produce a 1 or 0 respectively . The set of teats produced in steps 2 and 3

constitutes a multiple pin fault test set for the modide.

There are many possibilities for heuristic improvement to the

above procedure such as selecting Z~ to reduce the amount of computationI required to test the inputs, or if l [zfl < L using Z~~~Z and selecting

I inputs such that Step 3 is eliminated . It may even be feasible to consider

m~ ltip1e -~ -~tput modules an an individual basis and adapt the test generation

I 
procedure accordingly.

I
1 3.7. Suiwnary

This chapter has investigated fault detection under the multiple

pin fault assumption for combinational modules. Test sets with the property

that all single fault components are detected completely have been studied ,

J and a method of generating such test sets developed . T~te test sets produced

by the main algorithm presented have the property that exactly half of the

test inputs are true vertices . It is therefore possible to apply these

test inputs in an order which results in a strictly alternating output

I
I I 
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sequence , thus eliminating the need to store the normal output response to

the teat set . The computational complexity of generating test sets was

examined , and shown to be within the realm of feasibility . Other types of

test sets were also examined , and the extension to multiple-output modules

considered .

I

1.
•1
I
I
5J

I
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I
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4. FAULT DETECTION IN SEQUENT IAL CIRCUITS

J 4.1. Introduction

In this section, fault detection under the pin fault assumption

is examined for circuits which exhibit sequential behavior. Figure 4.1

illustrates the general model which is used to describe sequential circuits.

In Figure 4.1 the elements marked D represent signal delays which act as

I memory capable of storing the internal state of the machine . Both

synchronous and asynchronous modes of operation will be considered in this

! chapter.

I In the abstract model of Figure 4.1, the synchronous mode of

operation is characterized by the fact that inputs occur at discrete intervals

of time, and that each application of the set of inputs results in at most

one state transition . Since the outputs are functions of the inputs, they

are also valid only during the time interval in which the inputs are applied .

T In order to assure valid operation of such a scheme, it is necessary to

restrict the circuit delays and the delays of the “D” elements so that state

variables appearing on lines y1. .y~ do not change va lues until af ter the

completion of the interval during which the input8 are applied . In actual

practice the problems associated with synchronous operation are usually

solved by using bietable logic elements (flip-flops) instead of delays for

retention of the state information. A special synchronizing input called

I the “clock” is used to gate the excitation lines 
~~~~~~ 

into the flip-flops.

In the remainder of this chapter, it will be assumed that synchronousI circuits are implemented using suitable flip-flops (master-slave or edge

I
I

~~~~~ 
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Figure 4.1. sequential machine .
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I triggered) and that a clock input is used to synchronize the state

J transitions .

In the asynchronous case there is no clock input , and tFe circuit

responds directly to changes in the values on the input lines. Frequently

the delay elements shown in Figure 4.1 are not implemented explicitly, but

rather the inherent gate delays in the combinational logic network uuffice

to store the state information until a stable state , i.e. when y1 Y~

I < i < k , is achieved . Alternately , unclocked set-reset flip-flops may

be used . Although synchronous circuits may be viewed as asynchronous

circuits by treating the clock input as one of the primary input lines,

these two modes of operation will be discussed separately .

( In the discussion throughout this chapter it is assumed that all

pin fault~ are detectable , i.e. that no input or output lines are

I redundant , and that all flow tables are reduced and strongly connected .

Asynchronous machines are assumed to operate in the fundamental mode .

The nature of the fault detection problem for sequential circuits

is quite different from that for combinational circuits because of the

fact that the output of such a circuit is, in general , a function of

previously applied inputs in addition to the current input . Some of the

inputs (y 1. 
~~~ 

to the combinationa l logic are not directly controllable ,

I and some of the outputs (Y
1
.. .‘Yk ) are not directly observable. As a

result , if it is desired to apply some particular input pattern to the comb i-

national logic portion of the circuit , it is f i r s t  necessary to apply a

I sequence of inputs which result  in the desired va lues appearing on y 1. •
~ k

and then apply the desired values to the directly accessible lines x l ... xL.

. 1 
_ _ _ _  _ 

____________________
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In order to observe the output of the combinational logic to such an input

pattern , it is then necessary to apply a sequence which will lead to an

indirect display at Z
1. . of the value s wh ich appeared at the outputs

J .Y ~ as a result of the applied input pattern. The fault detection

problem for sequential circuits is to determine a sequence of input patterns

which when applied to a circuit under test will result in an output sequence

which is correct only if the circuit under test is fault-free under the pin

fault assumption.

4.2. Fault Detection Sequences for Synchronous Circuits

f This section discusses the generation of fault detection sequences

- for synchzor.ous circuits under the pin fault assumption. Throughout this

I section , the Mealy machine formulation will be used . In the Mealy machine,

the current output is a function of both the current internal state (y
1
. .

I. and the current ir~put . Such machines are represented by flow tables in

which each entry , which corresponds to a particular current state and input,

gives the next state and the output . Figure 4.3a (p. 95) illustrates such a

flow table.

Since this thesis is concerned with the derivation of fault

1 detection tests for existing circuits , discussion will be restricted to flow

tables in which all flow table entries are specified , unless otherwise noted .

I 
Even if the specification for a particular sequential function is incomplete,

as is quite often the case, every realization of the function has a completely

specified flow table .

I
I
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4.2.1. The Effects of Pin Faults on Synchronous Circuits

The locations of fault sites under the pin fault assumption is

of course dependent upon the manner in which the circuit is partitioned

into integrated circuit modules. In this section, we will assume that

faul ts may occur at the pr imary input lines x1. . .xL, the primary output

lines z1. . .z , the “next state” feedback lines Y~. . •
~k’ the state variable

lines 
~l~

•
~~k’ 

and all lines connected to the clock input. This assumption

is quite broad in the types of partitioning which are included . Figure 4.2

I illustrates such a partitioning . Any partitioning which does not contain

any multiple-module signal paths in the combinational logic portion of the

I circuit complies with this assumption . Additionally if some or all of the

I 
memory devices and feedback lines are internal to some of the modules, this

configuration is covered by the above assumption.

Within these topological limits, the effects that pin faults

can have on circuit behavior may now be examined . It is assumed that the

I networks to be considered implement strongly connected, reduced flow

tables, and that the inputs and outputs are irredundant in the sense that

no input or output line may be replaced by a line fed with a constant

logical value of 0 or I. First of all , if the clock input to some module

has failed to either 0 or 1, then the fl ip-flops which are controlled by

I that clock input will never change state . I~ence such a fault  will  be

equivalent to a multiple stuck fault on some subset of the state variable

I lines . Any faults on either excitation lines 
~~l

”-
~~k~ 

or state variable

lines 
~~l

-”
~ k~ 

will result in a faulty machine with fewer states than the

original machine. If all excitation, state var iable , and clock lines are

1~

-~~
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Figure 4.2. Example of partition of synchronous circuit into integrated

I circuit modules.
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fault-free then the only poss ible faul t sites are the pr imary inputs

and the primary outputs z
1
. . .z. The effect of faults on output

pins i8 obvious and is tested by any sequence wh ich results in a normal

output sequence requiring each output to assume both a 0 and a 1 somewhere

in the sequence. The effect that faulty input pins have on circuit behavior

I is that constant values are transmitted to the logic network internal to

- the integrated circuit module regardless of what value is applied at the

inputs to the circuit. As a result , certain input columns in the flow

table are never entered . For example if a three-input circuit has the fault

x stuck-at-i then input columns of the flow table which have x —o will

never be entered by the machine . The next state and output for a given

input will be determined by the input values received by the logic internal

to the in~egrated circuit modules. As a result , the effect which input

pin faults have on the flow table is to cause columns to be replaced by

columns which are adjacent in the faulty input variables. Figure 4.3

1 illustrates this transformation of the flow table. In this figure, the

fault x1 stuck-at-l results in column 00 being replaced by the entries

found in column 10, and column 01 being rep laced by the en tries in column

11. If both x
1 

and x
2 

were faul ty, then all columns would be the same

as the column corresponding to the double fault . It can be seen from

I Figure 4.3 that input pin faults may or may not directly affect the number

I 
of states.

As the above discussion indicates , faults of the pin fault type

I result in a very restricted and well-defined corruption of the normal

machine. Furthermore, this faulty circuit behavior is completely

I
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I
Next state , output

- - Present state 00 01 11 10

A B,0 A,0 C,l B,l

I B C ,0 D ,0 C ,l

C C,l D,l D,l D,0

I D C,l D,l A,l

I
(a) Norma l machine .

I
Present sta~�~\ 00 01 11 10

- - 

A B , l C,1 C,l

I B C,l C,l C,l C,l

C D O  D,1 D,l D ,0
- 

D A,O A,1 A,1 A,0

I (b) Faulty machine resulting from fault
x1 stuck at 1.

Figure 4.3. Transformation of flow table under input pin fault .

I
I
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I characterized by modifications to the fault-free flow table, independent

I 
of any specific implementation. This is a significant improvement over the

situation which exists for synchronous machine diagnosis under previous ly

I studied fault assumptions. In the machine identification approach [28,29]

it is assumed that faults may result in arbitrary sequential behavior as

I long as the number of states does not increase. This assumption admits a

I large number of faul ty mach ines which could not result from any phys ical

failure. As a result of such a “looae” fault assumption, testing sequences

are ex tremely difficult to generate, and are very long. The circuit testing

approach [30,10) , based on a particular implementation in the context of

a specific fault model, results in shorter testing sequences. However,

when the fault model used here is applied, the circuit testing approach

I becomes independent of the circuit implementation and in addition short

test sequences may be readily determined .

The discussion which follows deals with the generation of test

I sequences for synchronous circuits. In this discussion, attention is

focused on pin faults which occur at the primary inputs. It will be shown

I that clock pin failures will automatically be checked, and that any output

1 pins which are not tested are easily discovered and trivially tested by

concatenating a sequence which causes the machine to exercise untested

1 output pins. Since multiple pin faults are assumed the fanout structure

‘ 
of a particular integrated circuit implementation doe. not affect test

generation.

I
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4.2.2. Minimum-Length Fault Detection Sequences

It is always possible , at least in principle , to determine a

minimum-length fault detection sequence by exhaustive methods . This of

course applies for any fault model, but it is necessary to examine all

possible faulty machines in addition to all possible input sequences of

length less than the minimum length. Such an approach is not practical in

general; however , under the pin fault model a relatively restricted set of

fa ulty machines results, and for machines with a small number of inputs,

this approach may be employed if there is sufficient motivation for

minimizing the length of the teat sequence. A method for systematically

determining the minimum length pin fault detection sequence will be

described .

This exhaustive process begins by first determining the flow

tables for all adulterated machines which may result due to input pin

faults, as described in the previous section . Each of the states in this

set of flow tables is then assigned a unique label. A circuit which is to

be tested is ~n one of the states of the set of faulty flow tables or in

one of the states of the normal flow table if no faults are present. A

successor tree [31] may now be constructed for the “direct sum” machine

resulting from the concatenation of the set of faulty flow tables with the

normal flow table. The initial state uncertainty is total, since there is

no knowledge of the fault condition or initial state of the circuit under

test. Observation of the output which results from application of input

symbols allows this initial uncertainty to be reduced with the application

of each input symbol. For example , if the machine may be in any one of the

four states A, B, C, or D , then the initial uncertainty is (ABCD). If an

i
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I input I~ is applied and Z(A,11) — Z( B ,11)— 1 and Z(C,I1
) — Z( D,11) 0 then

after the application of I~ and observation of the output Z, the uncertainty

is (AB)(CD). Rather than recording the states which the machine could

j have been in, it is more convenient to record the current state uncertainties

at each node . Thus, the elements of the various uncertainties are not

necessarily distinct. The successor tree displays the successor uncertainties

for all inputs. Obviously it is unnecessary to continue the tree from nodes

which are identical to some other node , since the subtree will be the same

as some other portion of the tree . A fault detection sequence is indicated

when some node of the successor tree has the property that any uncertainty

I containing a state which is a state of the normal machine contains no states

I which are states of faulty machines. This property assures that a correct

output response to the input sequence corresponding to the path from the

I initial uncertainty to such a node will guarantee that the machine is not

Ia any State which is a state of one of the faulty machines. If one desires

to know precisely what fault is present, this procedure may be continued

until a node is found which has the property that each uncertainty vector

contains states belonging to onJ.y one faulty machine . Figure 4.4

J illustrates the construction of a minimum length pin fault detection sequence .

Since this particular machine possesses no distinguishing sequence, diagnosis

under the general fault assumption of Hennie results in an extremely long

sequence (173 inputs!), compared to 6 inputs under the pin fault assumption.

I
I
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i

A B ,0 D,O

I B A,O

C D,l A ,0

I D D,l C ,O

I next state , output

(a) Normal machine .

F Pi~~~~
t
~~~~~~~ . 0

A B,O D,O

B A ,O B,0
norma l

C D ,l A,O

D D ,l C,O

E F,O F ,O

F E ,O E ,O
x stuck at 0

I C H,1 H,l

H H,l H,l

I L,O L,0

I J .3,0 J ,0
( x stuck at 1

K 1,0 1,0

L K ,O K ,0

I (b) Direct sum machine for input faults.

Figure 4.4. Minimum length test sequence generation.
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(ABCDEFGHIJKL) 
100

I 
_ _ _ _

0(ABEFIJKL) (ABCDEFIJKL )

I (Dli) ’ (H) 1

I I _ _ _ _

‘1 0 1

I (AEEFIJKL )° (BDEPIJXL)0 (ABEFIJKL )0 (ABCDEFIJKL)
0

(DH)1 (C)°(HY (D)~

I
o[ 11

I (AEFIJXL) ° (BCEFIJKL) 0

(D) 1 D) 1(H) 1

ol 11
(BEFIJKL) (DEFIJKL) (AEFIJKL) (ABEFIJI(L)

1 (C)°(C)°(H)
1 (D)1

I 0~ l~
(AEFIJXL) ° (BEFIJKL )° (EFIJKL )

0

pin fault detection sequence : 01010

I valid responses: 00001
( 00101

10101

(c) Successor tree

Figure 4.4. continued
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4.2.3. Generation of Pin Fault Detection Sequences

I This section deals with the generation of pin fault detection

sequences. Such sequences will be constructed by concatenating subsequences

$ which have special properties. The following definitions are useful in the

discussion of such sequences (in these definitions , machine M is fault-free).

I 
_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _
Defi nit 1~ n 4.1: A homin.g sequence for machine M is an input sequence which

-.ihen app U ’~ ’ to M allows the final state to be uniquely determined through

observ-i~~~~ ri of the resulting output sequence , regardless of the initial state .

- A ~ynchronizing sequence for machine M is an input sequence

I V~~~~~ j c h  lc- -~~is ~ to a specified final state , regardless of the initial state.

Lt: i r i z i u ~~~~ .3 A distinguishing sequence for machine M is an input

~~~ .ihj~;t t Uas the property that the resulting output sequence is unique

~~~~ LdC~ 1 p~i~ s i~~e initia l state .

I . V ! i n i ti ~~~~:L ~~~~~~~ A tran:fer sea~ ence from state to state Q~ is a sequence

which when applied to machine M in state Q1 leads H to state Q~ . Suc~-z a

sequence is denoted T(Q1~QJ
) .

The following shorthand notation for specific input faults will be used . The

I fault “input x~ stuck-at-d ,” d€ (0,1), will be denoted x
i
/d.

As prev iously discussed , faults occurring at primary inputs to the

machine render certain columns of the fault-free flow table unreachable.

Faults at the inputs to the memory elements, outputs of the memory elements ,

I and feedback inputs of the combinational logic result in a reduction in the

IL ,  
_ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _
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I number of states. Faults on output pins render these lines inactive. In

I this section a general method for designing sequences which detect these

faults will be formulated.

I The fault detection sequence to be derived consists of three

portions . The f i r s t  part serves the purpose of verjiying tha t the machine

I under test possesses the proper number of states, and also establishes the

I validi ty of certain transfer sequence8. This part of the test therefore

tests for p in faults  on lines into and out of the memory elements.  The

second part of the fault  detection sequence checks certain key trans itions ,

the validity of which guarantees that no input lines have failed . In order

4 to assure that no output lines have failed it is necessary for the fault-

free response to the fault detection experiment to possess values which

place both 0 and 1 on each output line . The third part of the faul t

detection sequence consists of an input sequence which exercises any

previously untested output lines.

The first part of the fault detection sequence is the same as

that developed by Hennie and adapted by Kohavi. The sequence is initiated

by a sequence which brings the fault-free machine to a known state. This

may be accomplished by a synchronizing sequence if one exists, or by a

homing sequence followed by an adaptively selected transfer sequence. For

machines which possess a distinguishing sequence , the number of states may

be ver if ied by applying a distinguishing sequence followed by a transfer

sequence which brings the machine to a new state, then another distinguishing

sequence , and so on. For a machine with N states, this portion of the test

is completed by applying such a sequence which results in N different

I
I
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responses to the distinguishing sequence . The intermediate trans fer

-~ sequences used in this part of the test are also verified since the

terminal state of the transfer is checked . For machines which do not have

a distinguishing sequence, it is necessary to use locating sequences and

characterizing sequences in order to establish the existence of N distinct

1. states , as described in [101 . (Such machines will not be considered in

detail here because they are usually avoided in actual practice due to the

diffic’-lty of diagnosis and because the rather lengthy state identification

J problem is considered elsewhere.)

Consider the machine whose flow table appears in Figure 4.3a.

I This machine has a synchronizing sequence (00,00) which leads the

I 
machine to state C, and a distinguishing sequence (10,10) ,  Thus the first

part of the fault detection sequence consists of the following sequence :

I
Input (x

1
x
2) 00 00 10 10 10 10 10 10

J State ? C D A B C D A

Output 0 0 1 1 0 0

In this case it is possible to overlap the various applicat ions of the

distinguishing sequence , and it is unnecessary to use any intermediate

transfe r sequences since the machine is left  in a d i f fe ren t  state after

I each input is applied . The fact tha t four d i f fe ren t  responses to the

sequence (10 ,10) are observed for the fault-free machine means that a

machine under teat which responds correctly to this sequence has four

1

~ 
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states and also that T(C,D) — (10) ,  T(D ,A) (10), and T(A ,B) — (10).

I Note that one additional application of the distinguishing sequence

determines which state is entered af ter  state B. This verifies the transfer

I sequence T(B ,C). Since the machine has 4 states, the final state which is

verified , B in this case , mu8t return to one of the previously encountered

I states. By adding this extra distinguishing sequence, this previous state

is determined . The significance of this (N+1)st application of the

distinguishing sequence is that it indicates which state the machine is in

1 at the conclusion of this part of the test , and it verifies a transfer

sequence from the last state verified to one of the others. with this

transfer sequence plus the others, it is possible to get from any state to

any other using only tr.ansfer sequences which have been verified .

The second part of the fault-detection test sequence tests a set

of specific transitions which guarantee the absence of input faults. It

is first necessary to deduce such a set. If the machiae is brought to a

known (in terms of its response to the distinguishing sequence) state and

an input is applied , there are two types of errors which can result. The

machine can be transferred to an erroneous state or the machine can produce

an erroneous output . If the output is correct then an application of the

distinguishing sequence can be used to check the new state. If an

I erroneous output is produced for the faulty transitions of interest, then

a distinguishing sequence is unnecessary . The fault detection capabilities

of a particular transition may be deduced by examining the other transitions

L which share that flow table row. For example in the machine of Figure 4.3&,

consider the transition from state C under input 01. An input fault of

I
I 
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x2 /0 or x 1/O , x2 /0 results in a t ransi t ion to state C with an output of 1.

I Therefore these faults can be detected by application of the distinguishing

sequence. The fault x1
/l , x2/0 results in a transition to state D, the

I proper state, but the output is erroneously a 0. Hence this fault will be

detected iianediately . The faults x /1 and x /1, x /1 may not be detected

by this particular transition , because both the next state and the output

-j which occur in the presence of these faults are correct. Using this type

of reasoning, fault condition expressions as defined for combinational

1 circuits may be written and a set of transitions which leads to a fault

condition of (nn. . .n) constitutes a set of transitions sufficient to

1 diagnose the circuit. The transitions which require a distinguishing

sequence in order to detect the desired faults must be noted . In the

example of Figure 4.3a, this process is an follows: Rows C and D have the

I property that under input 10, the output is a 0 but every other transition

in these rows produces a 1. Hence all faults which are detectable with

these two transitions are detected immediately without the necessity for

an application of a distinguishing sequence. Suppose the transition from

state C under 10 is selected , then all faults other than 
~ ~) will be

detected . The transition from state A under input 01 leads to a state which

is different than that under any of the other columns, and in particular

¶ from columns which could be erroneously entered if any of the faults in

I 
(~ ~
) are present. The fault condition for this transition is (~ 

1
)•

Since (~ ~
)fl (~ ~

) — (n n), these two transitions are sufficient to detect

all ~ai1tiple input faults. The transition from state A under input 01 must

be followed by a distinguishing sequence since one of the fault. untested

I
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by the first transition , x2/0 , can cause the machine to produce the correct

output . The second part of the fault detection sequence may now be

constructed using the transition set jC(10),A(0l)), remembering that the

first transition does not require a distinguishing sequence. Since this

particular machine has only one output line , the third part of the test

sequenc e Is not required . The following fault detection sequence results~

I
part 1 part 2

— —- - V -V -V
~~

I Input (x
1
x
2

) 00 00 10 10 10 10 10 10 01 10 10

.-~~~ F State ? ? C B A B C B A A B C
1 5 0
I 50 .
L.

~~~ Output 0 0 1 1 0 0 0 1

I * *

C (lO) checked A(0l) checked

The example above was used by Kohavi to compare his method which considered

a specific implementation and the single fault assumption to the method of

Hennie. Part 1 Is the same for all three methods. The remainder of the

I sequence derived by Kohavi required 15 inputs compared to 41 inputs required

for Hennie ’s method . Thus it is seen that a significant reduction in the

I length of fault detection sequences as well as a simplified generation

procedure results from the pin fault assumption in the case of synchronous

circuits.

I
1.
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4.3. Fault Detection Sequences for Asynchronous Circuits

I 
Fault detection in asynchronous circuits has received relatively

little attention in the past. A primary reason for this is that under

1 previously considered fault models , it is possible for critical races to

result from certain faults. If this occurs the behavior of the faulty

I machine may be nondeterministic . In order to circumvent such difficulties ,

it is necessary to place restrictions on the structure of the fault-free

machine . Under the pin fault assumption, it is not possible for a race-free

circuit to be transformed by a fault into one containing races. There are

other difficulties In testing asynchronous circuits. Since asynchronous

I circuits respond to input changes, it is not possible to repeat an input

without applying an intermediate sequence. The particular implementation

technique may also place restrictions on the types of input sequences which

may be applied , for example the circuit may have been designed under the

assumption of single input changes only , and therefore a fault detection

sequence must be designed which complies with this restriction . Another

inherent difference between synchronous and asynchronous machines is that

in the synchronous case , the state of the machine is determined by the

J values taken on by the internal state variables, whereas in the asynchronous

case, the state is determined by the values on the internal state variables

in addition to the values on the input lines. This state is referred to as

the “total state” of the machine. A distinguishing sequence for an

asynchronous flow table must be capable of identifying each of these total

I states, and in general there will be many more total states than there are

internal states. The distinguishing sequence must also satisfy any input

I
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restrictions . It is therefore necessary to assume that the f low table is

reduced under the specific input restrictions .

The behavior of such circuits in the presence of faults of the

pin fault type is similar to that described in Section 4.2.1. As in the

1 synchronous case, input faults result in an adulterated flow table in which

a column which is unreachable due to the fault is replaced by the column

which is erroneously entered . However if a fault is present which masks

a particular input change to the internal logic , no state transition occurs,

whereas some state transition always occurs for each cycle of the clock

I. input in the synchronous case. Since asynchronous circuits are generally

-

~ 

implemented by relying on propagation delays of the logic elements for the

storage required to maintain the current internal state until the new stable

I state is reached , it is much more likely that state variable lines will be

‘ 
retained within integrated circuit boundaries rather than being routed

externally from output pins to input pins . If this is true , then the

I internal state variables may be assumed to be faul t - f ree . If an asynchronous

machine possesses external feedback , then faults at either end of the routing

J result in a reduction of the number of internal states, and therefore the

number of total states. Since the internal logic of the machine may be

1 assumed fault-free, complete diagnosis results from a verification of all

r input and output lines and a verification of any feedback lines which

possess potentia l fault sites. This guarantees the existence of all  of

the tota l states without the necessity for explicitly testing each of them.

In the next two sections , the design of fault  detection sequences

I wil l  be considered . This design process is greatly enhanced by the presence

I
I
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of certain flow table properties. In Section 4.3.1 these properties will

be identified by means of example, and a methodology for fault detection

I sequences, based on these properties, will be developed. Section 4.3.2

- considers diagnosis of machines which lack these properties.

1 4.3.1. Fault Detection Sequences for Unit Transition Diagnosable

Mach ines

I The nature of asynchronous behavior, namely that a 8tate transition

occurs only when the internal logic senses a change in the input state,

greatly simplifies the test sequence generation process. To illustrate

this simplification , consider the following hypothetical input sequence

and corresponding output sequence (the times shown indicate when the inputs

1 changed , and are arbitrary intervals):

time : 0 1 2 3 4 5 6 7

input (x
1
x
2x3): 000 001 011 001 101 111 011 001

output z:  1 0 0 0 1 1 0 1

Assume that the above input sequence is applied to a three-input single-

output asynchronous machine which has interna l feedback lines , and that

- the above output sequence results. It may be conc luded from this sequence

I alone that the machine is pin faul t-free, without even considering the flow

table of the machine . The reasoning behind this conclusion is as follows :

I At time 0, the machine produces an output of I under input 000, and at time

I i, the input is changed to 001. Thi, input results in a change in the

va lue of the output , and since x3 is the only input variable which is

I
I
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I changed , input x3 must be faul t - f ree . If pin x3 were fau l ty ,  the interna l

logic would not have seen an input change at time 1 and could have retained

- the output z 1 .  Similarly the output observed at time 4 leads to the

I conclusion that input x
1 
is fault-free, and the output observed at time 7

leads to the conclusion that input x
2 

is fault-free . This testing sequence

relies upon single input changes which result in output changes and may

therefore be applied to machines designed to operate under the single-

input-change restriction. Such tests are easy to generate and are quite

I short.

The following definitions defint the flow table property just

I described .

I Definition 4.5: An input line x~ of an asynchronous machine is unit

transition testable (IJTT ) if the f low table for that machine contains two

states Q1 and Q~ in input columns I~ and ‘a respectively with the following

properties:  Q~ is a successor of under the single input change involving
I 

Input x~ (i.e. I~ and I~ d i f fe r only in X
i
) and Z(Qi, Ia) # Z(Qj~~

Ia
)
~ 

where

) Z is the mapping of total states onto output vectors. The transition from

state Q~ to state Q~ is a test transition for input xj.I 
_ _ _  _ _ _ _ _ _
Definit ion 4.6: An asynchronous machine is unit transition diagnosable

I (UTD) if al l  of its inputs are UTT .

I Fault detection sequences for unit transition diagnosable machines

may be designed as follows . Select one test traneition for each input line .

I Form a sequence which contains each of these test transitions by determining

I  
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a synchronizing sequence to initiate the test , and appropriate t ransfer

I sequences which link the synchronizing state and the test transitions.

If the machine is designed assuming single input changes, then the inter-

ç mediate t ransfer  sequences and synchronizing sequence must be constructed

I 
appropriately. The machine, whose flow table is illustrated in Figure 4.5,

will be used to illustrate the design of this type of fault detection

sequence .

Under input 00, stable state A produces an output of 0. The

I transitions of interest are those to column 01 end column 10 which result

in final states producing outputs of 1. Under both 01 and 10 the final state

I produces a 0 output . Hence state A under input 00 is not useful for

detecting faults. State C in column 00 produces an output of 1, and under

input 01 the interna l state remains unchanged , but an output of 0 is

) produced . Therefore this transition is a test transition for input x
2
.

Under input 10 C goes to D which produces a 1. Therefore neither of the

I stable states in column 00 may be used to test input x 1. The other stable

states are similarly examined , and the result is that the following test

transitions for inputs x1 and x2 exist (the subscripts denote the input

column):

x1: Boi A11, D11 B01
x2 : C00 C01, B01 A00,

C01 
-
~ c00~ D1~~ B10, D10 -. D11

The sequence 00,01 is a synchronizing sequence leading to state C01. The

1 sequence is completed by forming any sequence which contains test transitions

for x 1 and x2. If single input changes are required , the following sequence

I
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I
I
I
I x1.

x
2

1 _____________ 
00 01 11 10

1 A ®,0 C ®,0 B

1 
B A ®,l A

8tate

I C ©,1 ©,0 A

B C B ®,0

I 
______

_____ 
, outpvt

I
Figure 4.5. Asynchronous flow table.

I
I
I

i i
I

I I
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V



I
1 113

constitutes a fault detection test (the asterisks indicate points where the

inputs are tested).

input (x ,x ): 00 01 00 10 11 011 2  

AState: C C D B B

I Output: (~) 0 

:
2 

1 0 

:
~ 

1

I Since this circuit has one output line , a fault on this line is also

detected by the above sequence. Therefore if this machine is implemented

such that the feedback lines are not connected through input and output

pins, all multiple pin faults are detected with this sequence of length 6.

For the sake of comparison , this machine is considered in 1 101 ,

and a fault detection sequence is designed under the fault assumption that

no fault increases the number of stable states in any column . The resulting

sequence required 28 symbols.

I In the event that the feedback lines are potentia l fault sites ,

it  is necessary to verify that the internal state variables are functioning .

I Since the above sequence will detect any faulty inputs , it is not necessary

to test every total state in order to assure that every internal state is

I present . It is sufficient to test for one total state in each flow table

row. For example , in Figure 4.5 , internal states A and C may be tested by

checking for the presence of two stable states in input column 00, and

I internal states B and D may be tested by checking for the presence of two

I I
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I 
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stable states in input column 10. In the sequence which was designed to

test input errors , stable state C under input 00 and stable state B under

input 10 are already tested . The remaining internal states may be tested

by appending to the above sequence the following suffix :

I
input (x1,x2): 00 10

state : A B

output: 0 0

Note that in the fault detection sequence derived , it is unnecessary to

test specific transitions . Thi8 results from the fact that for asynchronous

machines,which respond to input changes , an input line may be completely

tested by application of one input symbol. A further ramification of this

fact Is that it does not matter whether internal states are verified before

or after inputs are verified , and fur ther , the problem of using only

previously checked transfer sequences does not arise . It is also observed

that for this particular example , the sequence of eight symbols which

verifies inputs and internal states could have been used to replace the 12

symbol portion of the sequence designed in [10] which is used to verify

the existence of the correct number of stable states in each column.

4.3.2. Fault Detection Sequences for Non-Unit Transition Diagnosable

Machines

Any nondegenerate flow table must possess some UTT inputs , however

it is not necessary that all  inputs have the UTT property. If a machine has

some non-UTT inputs , then the method described in Section 4.3.1 can not be

used to completely diagnose the c i rcu i t .  Figure 4.6 i l lustrates  a non-UTD

I
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I D C B c~~,o

I-
Figure 4 .6. A non-UTD flow table .
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flow table which was obtained from the flow table of Figure 4.5 by changing

some of the output assignments. In this flow table it may be seen that no

transition involving input x
2 

(assuming that only single input changes are

( a l lowed)  results in a transition for which output value changes , hence x2 is

not UTT.

The first step in the design of fault detection experiments for

non-UTD machines is the identification of the set of inputs which are UTT.

The first part of the test sequence will consist of a sequence which tests

these inputs , and this sequence is designed in the same way as test sequences

for IJTD machines. The second part of the test sequence is designed to test

the remaining inputs. At the conclusion of the first part of the fault

detection sequence (assuming that the circuit under test has produced the

correct output sequence), all UTT inputs will be known to be fault-free .

I The effects which faults on the untested inputs can have on

the behavior of the circuit , given that the tested subset of inputs is

I fault-free , can be analyzed by examining the total state transition graph.

Each state is grouped with the other states which share the same input

I column , and these groups are arranged graphically so that an L-dimensional

space is formed (L is the number of input lines). All arcs in this

transition graph which are along dimensions of the space that correspond to

tested inputs are known to be present. Arcs along the other dimensions are

present only if these input lines are fau l t - f ree  which has not been

I determined ye t .  It is assumed that these lines are faul ty  unt i l  proven

otherwise , however ii is not known whether these lines are stuck-at-0 or

s tuck-at - i .  If the state transition graph is visualized with these arcs

I
, 1 
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~
ibsent , it can be seen that if q lines are UTT, then the absence of transi-

tion arcs along the L-q untested dimensions results in ~~~~ submachines ,

each contained in a q-subspace of the L-dimensiona l input space . For

example if a 3 input machine has 1 UTT input , x1, the transition graph

appears as shown in Figure 4.7. In this figure, the nodes represent groups

of total states , and the edges represent all transitions between total

Stales in the input columns of the adjacent nodes. The solid edges represent

t ransi t ions  known to be present (by the first part of the fault detection

sequence), and the dotted edges represent transitions along dimensions

corresponding to suspected inputs. Now if input s x
2 

and x
3 
are faulty, say

x
2
/0, x3/0, then the machine will behave like the submachine consisting

of input columns 000 and 100 and a transition will occur every time the

value of x1 is changed regardless of the values on x2 
and x3. This sub-

machine is labeled SM~. Other faults involving x2 
and x

3 
restrain sequential

behavior to the other submachines consisting of nodes connected by solid

edges. If some part of the test sequence determines that x
2 

is functioning

prope rly ,  then submachines consist ing of the planes x 3 0 and ~~~, 
= 1 could

define the sequentia l behavior of the faulty circuit.

In order to test non-tJTT inputs , it is sufficient to show that

for each such input , two submachines which are adjacent in this variable

are connected . The example of Figure 4.6 will be used to illustrate this

strategy . Figure 4.8 shows the state transit ion graph for this machine .

The sequence 01,11 is sufficient to test x1 since an output change must

occur. Notice however that if fault x
2
/0 is present and input 01 takes the

faulty machine to state A under input 00, the faulty machine will produce

F

_ _ _  _ _  _ _

- 

- 

_
~~~~~� 

--- - V — -  ~~~~~~~~~~~

V

~~~

VV

~~

V ____  
-



-

1 118

I
I

(transitions between
stab le states in

/ 

011

1 00l~,~~~~~~~~~~~~~~~~~~~~~~~~~~
’
~~ 101

/

- t/ (group of stable
states in input
column 101)

I 1

I Figure 4.7. Transition graph for a 3 input machine in which x1 
is UTT.
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Figure 4.8. State transition graph for machine in Figure 4.6.
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the proper response to this sequence. In order to ver i fy  that x
2 

is fault-

I free , it is necessary to make a transition along the x
2 

dimension which

results in the fault-free machine entering a total state which can be

distinguished from the state prior to the transition , since if x2 is f au l t y

no such transition will occur . It is also necessary that the state entered

be a state which is distinguishable from any faulty state which the machine

j could be in after responding correctly to the f ir8t  part of the experiment ,

for example state A under input 00 in the present example . A t ransi t ion from

I state C under input 01 to state C under input 00 satisfies these conditions .

The resulting fault detect-ion sequence is as follows:

input : 01 11 01 00 10

I State : (~
) A C C B

output : 0 1 0 0 0

The distinguishability criteria required for forming test

seque nces for non-UTT inputs are assured by the assumptions that all inputs

f are irredundant and that the flow table is reduced under the single input

change restriction. It is possible , however , that the sequence required to

I indicate the connectivity of a pair of submachines may require more than

one transition in the variable being tested . An example of such a

“pathological case ” is a machine in which all of the submachine s formed by

t ransitions along tested inputs are isomorphic . in this case , it may be
V 

possible to transfer from a state in one submachine to a nonequivalent

I state in the other which solves the problem. I~wever if no such transitions

I
I
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exist it is necessary to transfer back and forth between these submachines

1 unt i l  nonequivalent states are reached by the fau l ty  and fau l t - f ree  machines.

If the internal  state variables require ver if icat ion, once the

( input lines are tested , a sequence wh ich teEt8 the feedback lines may be

appended . This sequence is designed in exactly the same way as in the UTD

I case.

I
I
I.
I
1
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5. CONCLUDII4G REMARK S AND SUMMARY

The research reported in this thesis has been directed at the

investigation of a new model , the pin fault model, for failures in digital

systems . The goal of this initial study has been to evaluate this model

1 from the standpoint of fault detection test design and to determine the

degree of simplification which results. As was discussed in Section 1,

an essential characteristic of a fault model is adequate coverage of the

various failure modes encountered in the check-out phase and field life

( of a digital system. A study of dominant failure mechanisms in typical

state-of-the-art systems suggests that a fault model of the type proposed

here does in fact provide such coverage. It is recognized that additiona l

I research is required to establish the validity of the pin fault model,

however the required data for such a study is not readily available . The

I philosophy behind this research is that the model appears to be valid in

at least some situations and an investigation of the model from a theore-

tical viewpoint is therefore justified . In this section the results of the

I research are suimnarized , and some observations regarding design of circuits

to enhance their testability are made. Areas for additional research are

discussed .

( 5.1. Sumary of Thesis

In Chapter 2, the rationale for the pin fault assumption was

1. stated . This rationale is the belief that the dominant failure mechamisms

I
I 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -  - ~~~~~~~~~~~~~~~~~~~~~



I
1 123

in digital systems implemented using integrated circuits result in logical

I 
behavior modeled by the pin fault approach. It was shown that a substantial

reduction in the number of modeled faults results from the pin fault model

compared to the stuck-line model. This reduction is based on the typically

high ratio of internal lines to the number of input and output pins which

characterizes integrated circuits.

Chapter 3 studied the fault detection prob lem for combinational

circuits under the pin fault assumption . A test set of size bounded by 2L

was shown to exist for all single output combinational modules. Such test

sets are capable of detecting all multiple faults because each single fault

is detected “completely .” Such test sets also have the property that if

applied in the proper order , the normal network response is a strictly

I alternating sequence. This alleviates the need to store the sequence of

I normal responses , or to compare the response of the unit under test to a

known good unit. The computational aspects of generating such test sets

were examined and the results for single output circuits were extended to

the multiple output case.

I Chapter 4 investigated fault detection in sequential circuits

under the pin fault  assumption . The synchronous and asynchronous cases
V 

were considered indiv idual ly .  Methods for  the design of input sequences

capable of detecting all multiple pin faults were developed for both

synchronous and asynchronous circuits .  It was shown that such sequences

I are much easier to design , and are much shorter under the pin fault

i assumption than under previous faul t  assumptions . Fault detection in

asynchronous c ircuits has proven extremely d i f f i c u l t  under previous fault
V

I

I
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models , however such circuits lend themselves very well to fault detection

under the pin fault model , and in many c~ses may be much more easily

diagnosed than in the synchronous case.

The results of Chapters 3 and 4 indicate that the pin fault model

provides a more practica l approach to fault diagnosis than the stuck-line

fault model when large digital systems are considered . A major advantage

of this model is that it provides a multiple fault approach without

presenting the difficulties encountered when the stuck-line model is

extended to the multiple fault case.

I
5.2. Design Rules to Enhance Testability

In the event that the pin fault model is to be adopted for the

design of diagnostic procedures, there may be ways to enhance testability .

It is not unco~~on for design specifications for various networks to be

incompletely specified . This may result because certain combinations of

inputs are excluded by constraints which are known to exist among network

inputs, or because the response of the network under certain inputs is

irrelevant . In either case , the choice of these degrees of freedoms may

allow simplified testing.

In the cothinationa l case , the existence of an isolated maxterm

or minterm allows the function to be tested with L+l trivially generated

tests (for a single-output L .input  network). If such a function is

unspecified for a group of neighboring vertices then assignment of

appropriate value s to these vertices may be made such that an isolated

I

V 
. :



I
125

m m -  or maxterm results. If it is not possible to assign unspecified

vertices to the ON- and OFF-sets so as to create isolated m m -  or maxterms ,

then an assignment which results in minimum size prime implicants or prime

implicates will enhance testability.

In the case of sequential circuits , the existence of at least

one distinguishing sequence is essential to aimple diagnosability .

Synchronizing sequences are also desirable , and this function is most

conveniently provided by designing such circuits with a reset input . For

synchronous circuits , the design of fault detection sequences is facilitated

by flow table rows which possess one entry which differs from the rest in

either next state or output assignment . Unspecified entries should there-

fore be selected to provide such rows when possible. Unspecified flow table

entries for asynchronous circuits should be selected to render as many

inputs unit-transition testable as possible .

Since integrated circuits are packaged in standardized packages,

it is not uncommo n for unused pins to be available . It is possible to take

advantage of this fact to modi1~y the ir.tegrated circuit device si that the

testing of inputs becomes trivial. To see how this may be accomplished ,

consider the following function : Z — x1
x~ . ..xL V x

l~2...xL. 
The three

tests [t
1

l 1 ... l ,t2 0 0 ... 0 t
3) where t3 

is any false vertex may

be shown to constitute a test set as follows:

Z
~~
(t1) 

— 1- P1
EV P

2G(ll...l)

-. (11  1)V ( O O . . . O )n n

I
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z~~ (t 2 — l)- P
2

’P
1~~0 0.... 0)

I - ( 0 0 .
~~

0
)V (l l . . .  1)

1 rZ~~(t1)
1]A [Z~~(t2

) l ]

I 
-. [~ 1 1. 

•. •  ~) V (Ø 0 ... 0)] f l [ (~ 
0 0

)V (l 1 ... 1)]

- (n n . . . n)V (ll.. . l)V (00... 0).

The two remaining faults (1 1 ... 1) and (0 0 ... 0) will be detected by t3.
If a realization of this function (or any function comprised of two

complementary m m -  or maxterms) can be add ed to the integrated circuit

I chip using an available package pin for the output, then all inputs of the

device can be tested with three tests. Figure 5.1 illustrates this circuit

- modification. It does not matter whether the circuit function is combinational

or sequential. A complete test set for such a modified circuit consists of

- 
the three tests given above plus inputs which exercise all output pins .

I The number of additional tests required to exercise the output pins may be

reduced by the judicious choice of t3. As a trivial example, consider a

single output combinational function Z which is modified as shown in

I Figure 5.1. If Z( t 1) — Z(t
2) then t3 is selected to be one of the vertices

(which must exist)  such that Z(t 3) # Z(t 1).  If Z(t 1) # Z(t~) then choice

of t3 is arbitrar~’. In either case no additional tests are required to

exercise the output . The choice of the special diagnosing function may

also be used to reduce the number of tests required to test outputs.  Any

1 function of ei ther  of the fo l lowing forms is adequate (
~ i5i0 ,1))
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I
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L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FI gure 5.1. Use of available pin to implement input diagnosing function.
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I z -~~~ o • . . o V & ~& ... &
specia l 1 2  t 1 2  L

I 
Zsp c i i  

— (~~1
V~~2

V V~~~ ) (~~1
V~~ v’ V c i~~).

This method of enhancing diagnosability is very attractive because at the

expense of only one package pin, diagnosis of an arbitrary number of inputs

is achieved with only three tests , and the method is applicable to arbitrary

functions , combinational or sequential.

- 5.3. Areas for Additional Research

The ultimate goal of a fault detection strategy is the capability

to test system components at the level of easily accessible subassemblies

such as printed circuit boards. Such subassemblies contain many integrated

circuits , and therefore fault detection under the pin fault assumption

should be investigated for networks of integrated circuit modules. This

is a very difficult problem in the general case where arbitrary topologies

are allowed . Perhaps certain topological constraints , wh ich must also be

reasonable from the logic design standpoint , would result in networks

- amenable to fault detection.

I Minimization of test sets for modules may be cr i t ica l  in the

diagnosis of networks of modules. It has been shown that many functions

(of £ variables) require £+1 tests, and that some may be diagnosed with

— I fewer. An uppe r bound on the minimu m number of tests required is conjectured

to be L+l , however this bound remains to be established . The proof of this

I bound may suggest a techni que for generating such a test set .
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APPENDIX

This appendix contains detailed specification of the algorithms

developed in Chapter 3. Many of these algorithms are implemented using list

processing techniques. In such algorithms , it is assumed that variable

AVAIL contains a pointer to the head of a list of available list nodes. When

a node is required during the construction of a list , it is obtained from

this list of free nodes, and when a node is removed from a list it is

returned to the AVAIL list. The fields of the list nodes are specified by

name and these field names are illustrated for each type of list node used .

) 
For example if pointer Q points to a node of the type shown in Figure 3.2

then the ELT field of that node is referenced as ELT(Q). The symbol X

indicates an empty link field , and is used to terminate lists .

~j~ orithm A.l: Reduced cost covering set represented in list structure of

Figure 3.2.

P[l:q, 1:L] prime implicant array

c[l:q] cost vector

R[1:ql permutation vector

cs pointer to covering set list

CSSIZE # of prime implicants in the covet~

________Begin COVER

I 
C ~

- (0 ,0 , . . .  ,0) /* compute cost vector */
do i l t o q

do j— l t o L

if P(i , j )  — a then /* cost for P(i ,*) — # of s ’s */
C(i)  4— C(i)+I

I
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pt

I
end

I do i — 1 to q /* init ial ize K to the natural order */
R ( i ) 4— i

I
SORT (l,q+l) /* form permutation R so that

C(R(i)) < C(R(j)) if i < j  *1
do for j I to L /* form initial weight vector */

i 4 - l

do while P(R (i),j) u
i 4 - - i+l

end

W(j)4-i

end

I CSS IZE 4- 0

CS 4- AVAIL
AVAIL 4-- LINK(AVAIL)
S ~~

- CS

do until W ’  (0,0,... ,0)
- CSSIZE 4-- CSSIZE + 1

KLINE(S) 4- AVAIL /* create a node for new element
AVAIL 4-- LINX (AVAIL) of cover

k ~
— max[W(l),W(2),.. . ,W(L)]

I ELT (RLINX(S)) ~
- R(k)

‘1 4- 0 /* temp for count of the # of

I Q 4- RLINX(S) specified variables */

do for i — I to £

I ~~ P(R (k),i) .AW(i) #0~~~g~~do

Y 4- ‘1+1

I LINIC (Q) 
4- AVAIL

I
I
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ , - 
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I AVAIL 4- LINK(AVAIL)

VAR(LINK(Q)) 4- i /* store indices of all var iables

I 4- LINK(~~ 
covered by this element which
have not been covered by previous

W( i) ~ 0 one */

I
end

1 SIZE (RLINK(S)) 4-- L-Y
LINK(Q) 4- X /* terminate sublist */

S 4- KLIN E ( S )

end

1 RL~~K(S ) 4- X /* terminate list */
T~ -CSI CS 4-

LINX (T) 4- AVAIL

5 AVA IL4-T

end COVER

Algorithm A.2: Form permutation corresponding to ascending cost of prime

implicants. SORT is a recursive procedure which forms a vector R which

contains the indices of vector C arranged in order so that C(R(i)) <

C(R(j)) if i < j .  £ and r are pointers into R anc C which define the

subfield to be sorted (r points to the f i rst  elements not in the subfield) .

The sort is a straight two-way merg sort .

I Begin SORT (L ,r) /* £ ,r are local variable s */

if r-L > 1 then do

I SORT (L ,L + 1!iLl

J SORT (L + 1!j~.1,r)

I
I

V — - —V -V .
~~~~~ -

— - - V  - —-V —

~~~~

——--—- ----- • - V  
~ - -

_ t ~~~~~~~~.. S
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k~~~L

I
do until k r

if C(R(i)) < C(R(j)) then do

T (k) 4- R ( i )

k 4- k+l
i 4— i+l

~~ 
i - £ +

do until. j r

T(k)4- R(J)

k 4 - k + l

j  4-

end

I
T(k) 4-- R ( j )

I
4-- j+l

jj  j r~~~~j~
do until

T(k ) 4- R ( i )

k ~ k+1
L 4 i+l

end

I
end

I
I

— — - - - t . S - — - --.,..- ~~~~~~~~~~~~~~~~~~ 
- ______________________ *5 P-, . - —-—- -.- -—5 --- ~- -~~ -— .—V-~~~~~
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~~~~~~~~~~~~~~~~~~ ~ 
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I do for

I 
R(i) 4- T(i)

end

end

end SORT

Algorithm 3.4: FALSE VERTEX

m size of universe

) F[l:m] solution vector

CUBE(ptr) [l:m) see Figure A.l

Beg~J~ FALSE VERTEX

) Call DISJOINT CUBES (ILIST ,SIZE)
do i — 1 to m

I F ( i) 4- u
t end

do j - l t o m

F(j) ~- 0

I Count 4-- 0

Q 4-- CO

S 4- LINK(cO)
I R *- C1

do until S X

~~ CUBE (S)( j ) — 0 ~~~~~~~ ~~~~ /* ( 1#ø;  count vertices */

temp count 4- 1
I 

~~~~~~~ k j+l~~~~ m

I if CUBE (S)(k) — u then temp count ~
- temp coun t *2

end

I count 4- count + temp count

1. Q 4 - S

S 4- LINK (S)

I
V 

- -‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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end

I j~. CUBE(S)(J) —1 ~~~~
LINK (R) ~ S
K 4- LINK(R)
LINE(Q) 4-- LINK(S)
S LINK(S )

end

else do /* don ’t care : count half and put other half
in other list */temp count 4-- 1

do for k - j +l to m

) if CUBE(S)(k ) — u then temp count 4-- temp count *2
end

LINK(R) 4-- AVAIL
AVAIL 4-- LINK(AVAIL)
CUBE (LINK(R)) 4- CUBE (S)
R 4- LINK(R)

( Q 4 - - S
1 5 4- LINK(S)

end

if count — 2 ** (m-j) then do /* if all vertices are true then
1 F ’4 ’  — I change to othe r subtree , and
I use other list */

LINK (R) 4- X

I LINK(Q) 4- AVAIL

AVAIL 4-- LINK(CO)

( C0 4- - C 1

end

else do

I LINK(R) 4- AVAIL /* throw away other list *1
AVAIL 4- LINK (Cl)

end

1 end FALSE VERTEX (F) /* return F to calling proc . */

I
I

- ~~~- - -
- - V . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Algorithm A.3: DISJOINT CUBES - called by FALSE VERTEX

I m size of space

C poi n ter  to l i s t  of cubes (Figure A. !)

I CUBE (ptr)[1:m] see Figure A . l

Begin DISJOINT CUBES (C,m)

1 S ~- C /* for each cube in list - */

do until S X

Q4- S

do until LINK(Q) — X /* - scan remaining cubes making each

NULL ~~
- 0 disjoint from CUBE (P) */

do for i — 1 to m while NULL — 0

1 if CUBE (P)(i) u then 1(i) 4-- CUBE(LINK(Q))(i)

else if CUBE(P)(i) — CUBE(LINK(Q))(i) then
1 (i ) 4- CUBE(LLNK(Q))( i)

else NULL 4- 11
if NULL — 0 then do /* if intersection ~ ~ */

TI 4-- AVAIL /* Tl pta to new node to be created */

5 do I — 1 to m 1* create list of disjoint cubes *1

if (CUBE(LINK (Q))( i) — u ) A  (I(i)-’ u) then do

CUBE (Ti ) 4- CtJBE(LINK (Q))
CUBE(Tl ) 4-- 1 1(i)

I T2 <- Tl

TI 4- LINK (Ti)

I
I

“ I  
_ _ _  _ _ _  _ _ _ _

— —~~~~~~~~~
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I 
-

T3 4-’ LINK (q ) /* link in new list */I LINK(Q) ~~
- AVAIL

LINK (T2 ) 4- LINK (T3)

I AVAIL 4- T3 /* place old cube in AVAIL */

LINK(T3) 4-- Tl

I 
Q 4- T2 /* advance Q to next cube in old

list */
end

I else Q
~

- LINK (Q)

end

S ~- LINK (S)

end

end DISJOINT CUBES

Algorithm 3.5: TEST GEL TEST GEN operates on array , P, containing q prime

implicants of the L-variable function to be tested . COVER is called to

construct the list structure illustrated in Figure 3.2. DMATRIX is called

to compute the necessary distance information. This information is stored

in array D , where D(i,j) contains the distance (up to 2) between prime

implicanc P(i,*), a member of the covering set , and prime implicant P(j,*).

Then for each variable , TEST GEN determines the list of intersections

I between the prime implicants and the subcube from which a false test vertex

must be selected. This list has the structure shown in Figure A.1. The

1 cube field of a node in ILIST is a vector . If pointer S points to a node

in ILIST then CUBE (S) denotes the vector stored in this node, and

CUBE (S ) ( i )  denotes the i-th component of the vector stored in the cube

I field of the node pointed to by S. The test set generated is stored in

I
I

— -V—-V-V. ~~~_ V_V 
-—S 

— --—
~~.:: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 
._ —5- --— _________—.V- _,------_ - - VV

~ ~~~~~~~~~~~~~~~~~~~~~ - ______
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I

1

I

I ILIST > [ CUBE LINE - ... —> [ x

I

Figure A.l. Structure of intersection list.

I
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three d imensiona l array T , where T(i ,*,0) contains the false test for input

pin i, and T(i,*,1) contains the true test for input pin i.

Begi n TEST GEN

I call COVER

call DHATRIX

1 5 4- C S

do unt i l  S X

I Q4 - LINK (S)
do unti l  Q — X

ILIST 4- LINK(AVAIL)

I 
R.~ — AVAIL

V I ~~ ~~~ i — 1  to VAR (Q)- l , VAR(Q)+l to q

if  D ( ( V AR ( Q ) , i) — OA P ( i ,VAR (Q)) u

I do f o r j l t o L

if P(VAR (S),j) — U

I CEJBE(LINK(R))(j) 4- P( i , j )

end

( R 4 - -  LINE (R)

end

else if D(VAR (Q), i) — IA

P(i,V~R(Q)) # P(ELT (S) , VAR (Q))

I 
then do m o r j l t o L

if P(ELT(S), j) • u then

1 CUBE(LINK(R) (j) 4- P(1,j)
end

I LINK(AVAIL) 4-- LINK(R)
LINK(R) 4.. X

I

!

I 
_____ _____________
TTT . - -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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F(*) 4- FALSE VERTEX (ILIST ,SIZE(S))
T(VAR (Q),*,O) 4- P(ELT(S),*)

I i 4 - l

I 
d o j — l t o L

if T(VAR (Q),j,O) — u do

T(VAR (Q),j,0) 4- F(i)

I i4- i+l

end

T(VAR(Q),*,l) 4- T(VAR (Q),*,0)

I T (VAR(Q) ,VAK (Q), l ) 4 -~~~

Q ~- LINK(Q)

I end
1 end

end TEST GEN

Algorithm 3.5: DMkTRIX. DMA4TRIX computes the distance between members of

I the covering set (pointed to by CS) and the other prime implicants.

I 
Begin DM~ThIX

S 4- CS

do for I • 1 to CSSIZE

~~~~~ 
j•l~~~~q

I D(i ,j )  ~~
- 0

I do fork •lto L until D(i,j) 2

j~ (P(ELT ,k) O A P ( j ,k) 1 )V ( P ( E L T ,k) ’ l A P (j ,k) O)

I then D(t ,j )  4- D(i ,j)+ l

end

. 1
S 4--

I end
I end DMATRIX

I
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