AD=A031 429 ILLINOIS UNIV AT URBANA=CHAMPAIGN COORDINATED SCIENCE LAR .F/8 9/
THE DESIGN OF ALTERNATING LOGIT SYSTEMS wITH FAULT DETECTION c=-2c$c1u’
AUG 76 D A REYNOLDS DAABO7=T72=C=0259
UNCLASSIFIED R=738

R

N REPORT R-738 AUGUST, 1976 UILU-ENG 76-2226

' COORDINATED SCIENCE LABORATORY

THE DESIGN OF ALTERNATING
LOGIC SYSTEMS WITH FAULT
DETECTION CAPABILITIES

~

ADAO031429

.

UNCLASS IFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
A S
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
i ’|. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

i

/W"ﬂ I R S —— S. TYPE OF REPORT & PERIOD COVERED

{ .é /FHE DESIGN OF ALTERNATING_LOGIC SYSTEMS / Technical Report

- e e e (0] RT3t GTio EneTo-22%6] | L~
7 _‘_uzgg&';i/———MN-_--«f fe 7 g

/‘)\; Derinis Andw)DAAB{£{7 -72-C-0259 l

/-

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT TASK

Coordinated Science Laboratory

University gf Illinois at Urbana-Champaign \/’“ Z /’/

Urbana, Illinois 61801

Iy
11. CONTROLLING OFFICE NAME AND ADDRESS ?/ﬁ
Joint Services Electronics Program | Augusty= 2976

iZl.’AGES

) 15. SECURITY CLASS. (of this report)

l/'"?‘ [L f Y. // S/, UNCLASS IFIED

1 / 1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

-

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

vie) mEa 0 SEN MR SEan T R S AR W e
{

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Alternating Logic Stuck-At~-Faults Time Redundancy
Alternating Systems Totally Self-Checking Alternating Logic
Single Fault Combinational Network Primitives
On~Line Detection Synchronous Machine

20. ABSTRACT (Continue on reverse side If necessary and identily by block number)

¥ The fault detection capability of a design technique named ®alternating
logic design® is detailed. The technique achieves its fault detection
capability utilizing a redundancy in time instead of the more conventional
space redundancy and is based on the successive execution of a required
function and its dual. In combinational networks the method involves the
utilization of a self-dual function to represent the required function and

the realization of the self-dual function in a network with structural
roperties which

FORM
DD , ix 73 1473 E€OITION OF 1 NOV 65 1S OBSOLETE 0 O
SECURITY CLASSIFICATION OF JHIS PAGE (When Dnllt/nvod) \.\
/

¢
-—

e g - - - - IR o SR .

: >
W : -

PEER e e e s

Pt

-

e o

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) .

\

= \

= ,

\\)

20. ABSTRACT (continued)—"
/

{
“faults are derived.

The application of alternating logic design to synchronous sequential
machines is also studied, and a method for realizing any synchronous
sequential machine with feedback and output circuitry designed using
combinational alternating logic techniques is presented. The resulting
realization is capable of detecting all single faults in the feedback
and output combinational circuitry and all single input and output
faults associated with the memory elements.

Alternating logic design using alternating modules as basic design
elements is also examined. Necessary conditions that a set of
alternating modules be sufficient to construct alternating networks
representing any arbitrary Boolean function are derived.

»

7

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

»—

sl ‘ — .

MG, e e g RS SR s e O SaE R AR s

IS

s Wite uction ;a
a0C il St [
UNARKOUNCED 0

JUSTIFICATION ..o eememmasneioee

LISTRISUTION/AVAILABILITY CootB

“hist. AVAIL wad/&r SPEBIAL

B

UILU-ENG 76-2226

THE DESIGN OF ALTERNATING LOGIC SYSTEMS
WITH FAULT DETECTION CAPABILITIES

by

Dennis Andrew Reynolds

This work was supported in part by the Joint Services Electronics

Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB-07-

72-C-0259.

Reproduction in whole or in part is permitted for any purpose

of the United States Government.

Approved for public release.

Distribution unlimited.

DDC

U NOV 8 1978

WhUU b
D

'.‘

M LI

e Scing | e

THE DESIGN OF ALTERNATING LOGIC SYSTEMS
WITH FAULT DETECTION CAPABILITIES

BY
DENNIS ANDREW REYNOLDS

B.S.E.E., University of Arkansas, 1969
M.S., Universgity of Illinois, 1970

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1976

Thesis Advisor: Professor Gernot Metze

Urbana, Illinois

S — -

R

THE DESIGN OF ALTERNATING LOGIC SYSTEMS
WITH FAULT DETECTION CAPABILITIES

Dennis Andrew Reynolds, Ph.D.
Coordinated Science Laboratory and
Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1976

The fault detection capability of a design technique named
"alternating logic design" is detailed. The technique achieves its fault
detection capability utilizing a redundancy in time instead of the more
conventional space redundancy and is based on the successive execution of
a required function and its dual. In combinational networks the method
involves the utilization of a self-dual function to represent the required
function and the realization of the self-dual function in a network with
structural properties which are sufficient to guarantee the detection of
all single faults. Necessary and sufficient structural properties for any
alternating network to be capable of detecting all single faults are derived.

The application of alternating logic design of synchronous
sequential machines is also studied, and a method for realizing any
synchronous sequential machine with feedback and output circuitry designed
using combinational alternating logic techniques is presented. The resulting
realization is capable of detecting all single faults in the feedback and
output combinational circuitry and all single input and output faults
associated with the memory elements.

Alternating logic design using alternating modules as basic design
elements is also examined. Necessary conditions that a set of alternating
modules be sufficient to construct alternating networks representing any

arbitrary Boolean function are derived.

T T —

e . B e | - e p—

o

- O S s e e

iii

ACKNOWLEDGMENT

The author would like to express his gratitude to his thesis
advisor, Professor Gernot Metze, for his guidance afforded the author in
the production of this thesis. Further, the author would also like to
thank his colleagues of the Switching Systems Group at the Coordinated
Science Laboratory for helping to create a congenial atmosphere conducive
to productive research and to thank the Coordinated Science Laboratory staff,
particularly Mrs. Rose Harris, for their assistance in producing the
manuscript.

The author also thanks Sandia Laboratories for supporting the
author financially thus making the production of the thesis possible.

Finally, the author would like to dedicate the thesis to his
father, Ira E. Reynolds, who enabled the author to complete an undergraduate
engineering curriculum, giving up personal luxuries for himself in extending
the necessary financial support. The support and patience extended the

author by his wife, Beverly, is also gratefully appreciated.

e]

p——

aanr

S —y SR— — opm— ——— Lane

P

TABLE OF CONTENTS

INTRODUCEION v ciicisnivasnsunsinsisne Siwaihnie ST LA aabas .
T.1 Current Approaches to Fault Tolerant Digital Systems
1.2 Literature Survey on Totally Self-Checking Digital

Systems .c...cceccssv000c0vs $sovesanes SedsssasnannssnEe oo
SELF-CHECKING COMBINATIONAL ALTERNATING LOGICccov000uu. vane
2.1 Combinational Alternating J.ogic Design LR e
2.2 Single Fault Modelcc.0000. PR VGR S S AEa PR ECEEE D 2
2.3 Self-Checking Property el ki AL 5 PR C e
2.4 Self-Checking Combinational Structures ey ok Ak
2.5 Necessary and Sufficient Self-Checking Conditions e
SELF-CHECKING ALTERNATING SEQUENTIAL MACHINESc000v0evvenen
3.1 Sequential Machine Model ssacessssssssensans .
3.2 Alternating Sequential Machineccvvvvvencccnncns
3.3 Self-Checking Capability FEVE DS o8 CRR O TSR 63

ALTERRATING CHECKERS ¢ :csvovsscsdasvsnsosssosesscssssosses

4.1 ~Adjoint Alternating CHECKEY se.ccoisiivcsvcasnsssscssansases
4,2 Semi-Adjoint Alternating Checkerc...eeveeeevecces
4.3 Two-Rail Alternating Checker N R BB e e e
COST OF ALTERNATING LOGIC IMPLEMENTATION P PR SRS
5.1 Introduction and Summary of ReSultsci.ceccecensnnnns
5,2 Functionagl NOEatioll ..icesssasnicvesnvsvasosvisnmessscosess
5.3 REBBEED .o onaiisivesnndebshheseberodusmmesseseesasessneeess

ALTERNATING DESIGN WITH NAND/NOR LOGICcovvvveeesnnnns

6.1
6.2

RANRY NUR - BEBUBEE -« o v vemvss v uks i s sabsoss badvinsses
Self-Checking NAND/NOR Algebraoceuvaveanes

es e v o

COMPLETE SETS OF ALTERNATING LOGIC PRIMITIVEScoc0eveusnne

7.1
7.2
7.3

Weak Complete Alternating Primitive Sets
Strong Complete Alternating Primitive Sets
Alternating Design with the Majority Module

iv

12
15
20
25

34
34
36
40
49
49
51
57
62
62
64
64
87

87
95

107
107

113
118

S e g -

- g —

R e m—— — Py e

RS

TABLE OF CONTENTS (continued)

Page

Alternating Design with the Minority Module AT
Self-Checking Characteristics of Compositions of
Alternating loglc Primitivesecccvevcnnvosannnornsnes 129

B. CONCLUSTUR ...viceocsnuinnensstanmnsspdnneesesasmserondvevesesae 132

8.
8

1
2

SUMMBYY . .ceevcossvsnssesosbesosssassssssssasossossvansssces 132
Suggestions for Further Researchc.cc00cveevveeeeees 135

REFERENCES :coseisisavaasssoovensrssnsanensevpsscessnsssscnsverosssss 137

VITA ..

P R e e SR S P S SR e PR 1,

1. INTRODUCTION

1.1. Current Approaches to Fault Tolerant Digital Systems

In recent years due to the prevalent use of integrated circuits the
complexity and size of digital systems has increased dramatically. As a
result system reliability has become a topic of major concern. And,
although integrated circuit manufacturers make efforts to ensure the
reliability of their products, the size of digital systems today makes the
probability of a circuit fault somewhere in a complex digital system at any
given time a factor which must be considered. Considerable research has,
therefore, been conducted in order to find techniques for detecting system
faults. One method for doing this in programmable digital systems is
periodic software checking.

Periodic software checking essentially involves the utilization of
diagnostic programs at periodic intervals as a means to test a programmable
digital system for correct operation. If a system fault is detected during
this testing period then necessary repair or replacement is made. Obviously,
such a method can be used only where human intervention is possible. There,
however, are several drawbacks associated with periodic software checking.
First, the diagnostic programs written for complex digital systems seldom
fully check the system for correct operation. This is particularly true
if the system is already built. If the diagnostic routines are developed
concurrently with the system design, then a more diagnosable and main-
tainable system generally results, and initial system checkout time is

usually reduced. But still, the system is seldom fully checked. Second,

3 . e TR RGN & i Rl AR s

b LR N
A

-

B S T

during the testing or checking period when the diagnostic routines are
running, valuable system time is lost. This lost time can be very signi-
ficant for more complex digital systems. Third, since accurate results are
not assured until the testing period following the computation, such a
digital system cannot be used in a critical application where accuracy of
system output must be guaranteed. Also, even if testing reveals no faults,
the correctness of prior system output cannot be fully assured since
transient faults occurring outside of the testing period can cause erroneous
results which will not be detected. Fourth, if a fault is detected during
the testing period, then all system output obtained since the last testing
period must be suspect. Thus, when a checkout fails, computation must be
rolled back co the previous testing period. The effect is lost time and
money.

A second approach to fault tolerant digital systems is the fault
masking redundancy approach. With this approach, a digital system is
designed to operate with high reliability for a period of time and is then
expected to fail, the failure occurring when enough faults accumulate to
exceed the protection designed into the system through redundancy. Such a
system is suitable for applications on space missions where reliable operation
is required only for the mission duration. Application of the approach to
maintained digital systems is not too suitable as the fault masking redundancy
built into the system also makes the system difficult to test. Triple
Modular Redundancy (TMR) [11,16] and Quadded Logic [11,16] are probably the

most common fault masking redundancy techniques used.

AR

AT

G R L S

+

-
&

s N e e

l

A third approach to the design of fault tolerant digital systems,
self-checking design, overcomes some of the disadvantages of periodic
software checking and fault masking redundancy techniques. The main advantage
of the design scheme is the immediate detection of faults which affect system
operation. The appearance of these faults is indicated using hardware
monitors which continuously check for improperly encoded system information.
One area of application for such self-checking digital systems has been in
telephone switching computers, e.g. the No. 1 ESS [15] and the No. 2 ESS [6].
In the No. 1 ESS information was encoded in a single error correcting, double
error detecting Hamming code. The No. 2 ESS used a simple parity code for
information encoding. In these computers any improperly encoded information
produced by a2 module was detected by the hardware monitors, and a duplicate
of the fe _ed module was switched in automatically, thus allowing repair of
the faulty module off-line with uninterrupted computer operation. Another
self-checking computer, the Self-Testing and Repairing (STAR) computer [3]
was developed and tested at the Jet Propulsion Laboratory. The STAR computer
utilized self-checking circuits in a triple modular system containing spares.
Defective module operation detected by the Test and Repair Processor (TARP)
of the computer initiated the replacement of the faulty module by one of the
standby spares. The TARP itself was triplicated and was considerad the
hardcore of the system.

Another type of self-checking digital system, the totally self-
checking digital system was introduced by Carter and Schneider [9]. Such
digital systems employ on-line fault detection and guarantee that no

erroneous data are passed to the user without an error indication for all

s ———— s r— S N RS SR

e - k= -

[e——t

faults from a prescribed set. The design procedures detailed in this thesis
produce totally self-checking digital systems. A literature survey on
previous work in totally self-checking digital systems is presented in the

following section.

2. Literature Survey on Totally Self-Checking Digital Systems

Totally self-checking (TSC) digital system design has been
studied in some detail since the design problem was formalized in Carter
and Schneider's [9] introductory paper. The approach has been to consider
a digital system as composed of interconnections of functional modules,
Anderson [1], each of which is monitored by a hardware checker. Inputs and
cutputs - each functional unit are encoded, and faulty functional module
operation is indicated by the production of an improperly encoded module
output. This improper output is detected by a TSC checker, and the
erroneous output is indicated on the checker output. Design of the TSC
checker, however, has presented some problems.

Carter and Schneider first addressed the problem of TSC checker
design. Included in their introductory paper [9] were network diagrams for
3 TSC checkers; a parity code checker, a 2-out-of-5 code checker, and a
two-rail code checker. The checkers were, however, assumed to be self-
checking only for faults on gate outputs, not on both checker gate outputs
and inputs. Anderson [1l] modeled faulcs on both gate outputs and inputs and
presented several totally self-checking two-rail checker designs as well as

parity checker designs. Anderson and Metze [2] also investigated m-out-of-n

e

—

-

TR

——

T N e

s

. —

checkers in general and formulated a checker design for the k-out-of-2k

codes. Reddy [28] extended Anderson and Metze's work on the k-out-of-2k
checker by incorporating an easily testable cellular array [30] in the design.
The result was a k-out-of-2k checker with a smaller test set than that of
Anderson and Metze. Design rules for the general m-out-of-n checker were
formulated later by Smith and Metze [33]. Further, the design of two level
m-out-of-n checkers was shown to be related to the Ramsey number problem.

Research on TSC checkers for other classes of codes has been
minimal. A TSC checker for the Berger code [5] has been reported by
Ashjahee and Reddy [29]. The checker, however, utilizes a code-disjoint
translator to translate the Berger code into a l-out-of-n code. That code
is then fed into a l-out-of-n self-checking checker.

Design of the self-checking functional unit whose operation is
monitored by the TSC checker has received less attention than the TSC
checker design itself. A significant amount of work, however, has been done
on synchronous machine design, particularly on fail-safe design. Some of
the machine designs resulting from this work have properties suitable for
application in TSC designs. Thoma [34] used a symmetric fault model and
employed on-set and off-set form equations with a k-out-of-n code for
state variable encoding. Thoma's method was later modified by Diaz [13] so
that only on-set form equations were used in the design. Formally pointing
out the relationships between some fail-safe designs and totally self-
checking designs, Diaz [14] extended TSC design concepts to Moore-
synchronous machines using a two-rail code for the input and output variables

and a k-out-of-n code for the state variables.

™

-

.

— R e

ek o

Recently, Sawin [31] proposed another method for fail-safe
synchronous machine design using the on-set realization only. Sawin's
approach was drastically different from others because his state assignment
was tailored specifically for the given flow table. A further improvement
of the on-set realization method was presented in Wang's [35] paper.

Wang's approach was similar to that of Sawin's but led to a generalization
of the method.

Much less work has been done on TSC asynchronous sequential machines.
Recent work by Ozguner [26], however, has led to TSC asynchronous machine
design methods. Other authors [23,27] have proposed designs, but none have
been totally self-checking.

All the methods for TSC checker and functional module design
discussed :hus far have one property in common. All use space encodings to
achieve the required measure of fault detection capability. There exists,
however, an alternate encoding scheme, time encoding, which achieves similar
results. A type of time encoding, the two-rail time encoding, is the
subject of this thesis. Systems utilizing this type of time encoding are
called alternating systems or alternating logic systems. Such systems were
first proposed by Bark and Kinne [4] in 1953. No reference, however, was
made to the fault detecting capabilities of the method until Yamamoto [36]
et al. published an introductory paper on the subject. This thesis
utilizes the fault detection capabilities of alternating logic in the design

of totally self-checking alternating logic systems.

————

e —

2. SELF-CHECKING COMBINATIONAL ALTERNATING LOGIC

2.1. Combinational Alternating Logic Design

Combinational alternating logic design is a design technique
resulting in combinational alternating networks. Any input to an alternating
network used within an alternating system or which is in itself an alter-
nating system must be an alternating binary variable. Alternating binary
variable, alternating network, and alternating logic design are thus related

terms. Alternating binary sequence is first defined.

Definition 2.1: An alternating binary sequence is a sequence of symbols

from the set {0,1} admitting to a sequential parsing into 2-tuples of the

form (d,d).

For example, the sequence 011001011001 is an alternating binary sequence as
the parsing 01/10/01/01/10/01 can be made. The sequence 011101100110,

however, is not.

Definition 2.2: An alternating binary variable is a variable which assumes

values in 2-tuples from the set {01,10].

As a result, any sequence produced by an alternating binary variable when
viewed as a binary sequence is an alternating binary sequence.
Now, consider a combinational network, Figure 2.1 a), with n

inputs XpsXps oo ey Xy and one output y realizing a function f£. That is,
y= f(xl.xz,...,xn) = f(X),

where X is a binary n-vector. I1f we assume that XpaXyyeee,X are alternating

-

_—

-

f— e RS e

e

O s e

Ny e

Xn

ety §{ 8, Ky R0

a) Combinational Network Realizing f

(Ry, %) Oennd
(kg Rg) O——

(xmx,‘) O

F——0 (f(Xy, X3, ,X"),F(X1y X2y Xa))

o

(0,1) o

b) Alternating Combinational Network Representing f
FP- 5045

Figure 2.1.

Combinational alternating logic network model.

LR

o

-

mih [y - -

PR

binary variables and that they alternate in synchronism, then input vectors,
X, are applied to the network realizing f in complementary pairs. The

network input can therefore be represented as a vector 2-tuple, (X,X) where

(X,X) = (xlxz...xn,xlxz...xn).
The output produced as a result of this input must also be a 2-tuple although
not necessarily complementary. Since the network realizes f the output

2-tuple must be
(f(xl’x2’ s ’xn)’ f(;l’;2" . -’En))

or

(£(X),£(X)).

Definition 2.3: A network realizing the function f is an alternating network

iff for « ery (X,X) an output (£(X),f(X)) is produced such that £(X) = f(X).

In other words, the network realizing f is an alternating network if the
output variable y alternates when synchronized alternating variables are
applied as inputs. Further, since y is produced as a result of the applica-
tion of (X,i), y alternates in synchronism with (X,i). Definition 2.3 thus
places a significant restriction on the functions realized by alternating

networks. This class of functions is defined in the following theorem.

Theorem 2.1: A network realizing a function f is an alternating network iff
f 18 a self-dual function.

Proof: If f is self-dual then £(X) = £(X) for every X and any network
realizing f must therefore be an alternating network. Conversely, if a

network is an alternating network then ;i§§~5“?(x7“ind"f~tn«anlf:éug}.

Q.E.D.

S S Re— NS TR

- .
U ———— e e e et

’ ‘:i;:—f "Q. '

[

. B

10

Essentially, Theorem 2.1 says that only self-dual functions can be realized

by networks that are alternating networks. However, consider a function £

that is not self-dual and define a function f, of n+l variables Q,xl,xz,...,xn

as follows. Let
A
f*(O,xl,xz,...,xn) = £,(0,X) = £(X)

ol £, (L, .o ox) = £,(1,00 & E@®)

for every X. In a sense f*(b,xl,xz,...,xn) represents f(xl,xz,...,xn) since

f*(O,xl,xz,...,xn) = f(xl,xz,...,xn). Further, f_ is a self-dual function

as shown in the following theorem.

Theorem 2.2: The function f, of n+l variables Q,xl,xz,...,xn defined by

f*(O,xl,xz,...,xn) = f(xl,xz,...,xn)
£y (LX) 5%y eX)) = EGK K500 00X)

is self-dual for arbitrary f.

Proof: Using Shannon's expansion theorem f*(Q,x) can be written as

£,(2,X) = 8£,(1,X) + 3£, (0,X)
- 3E(X) + 3(X).

—

But then g r——————— i
£EX) =T EX) + 3£ = FEX)E £(X))

- @+EX)E+EX))
- 3TX) + £QX)E + £X)EX).

Thus, by consensus

o asing

it v

11

EEX) = 8EX) + #£(X) = £, (3,X),

and f*(Q,x1 ...,xn) is self-dual. Q.E.D.

-XZ’
In an alternating system it is the function f, which is used to realize a
function f whenever f is not self-dual. In fact f_ 1is called the dualization
of £. The % input variable of f, becomes a clock and is synchronized to the
input variables (X,X). That is, & =0 when X is applied and § =1 when X is
applied. Thus, when $=0
f*(O,xl,xZ,...,xn) = f(xl,xz,...,xn),

and when § =1

£f,= f*(l,fl,ié,...,ih) = ?;(O,xl.xz,...,xn) - T(xl,xz,...,kn).
with the (0,1) clock & applied as input the self-dual function f_ thus
produces «n alternating output (£(X),£(X)) representing f. The network £, is

modeled in Figure 2.1 b). Alternating logic design can now be defined.

Definition 2.4: Alternating logic design: is a design technique whereby

combinational networks are represented utilizing self-dual functicons or
compositions of self-dual functions, and system input variables are

constrained to be alternating variables.

Alternating logic design is tlerefore implemented by first formulating a
functional description of the required function, f. If f is self-dual any
network realizing f is an alternating network and alternating input

variables (xl,ii),(xz,ié),....(xn,Ih) are applied directly to that network

80 as to produce (f(x),?(x)). If £ is not self-dual, a functional description

of £, 1s generated, and f, is realized in a conventional manner. Then, a

= RS TR RS RO R .
E

B

s] i v

12

(0,1) clock is applied to the ¥ input, and alternating variables (xl,ii),
(xz,ié),...,(xn,ih) synchronized to the (0,1) clock are applied as inputs
resulting in an alternating output (f(X),f(X)) from the network realizing

f,- The design technique is illustrated by the following example.

Example 2.1: Consider the three variable functional description given in
Figure 2.2 a) for the function f. The problem is to design an alternating
network which represents f. Since £(1,0,1) # £(0,1,0), f is not self-dual.

So, any network realizing f is not an alternating network. However, by

adding a fourth variable, 3, and dualizing f, a functional description of P

Figure 2.2 b), is obtained. From Figure 2.2 b),

f*(é,xl,xz,x3) =3 x2-+§ X Xq + XXy + §1§5

=> f. = (3 +x2) + (3 +x +x3) + (x2 +x3) + (x1+x3)

= f.* @ +x2)(<I> +x1 +x3) (x2 +x3)(x1 +x3).

The alternating network representing f is shown in Figure 2.2 c).

2.2. Single Fault Model

All digital networks, alternating networks included, are susceptible

to physical failures which affect network operation in one way or another.
Several models to represent these network failures have been used, the most
popular of which is the line fault model. One line fault model, Carter and
Schneider [9], assumes failures can be represented as gate output lines

stuck-at-1 (8-@-1) or stuck-at-0 (s8-@-0). Another more general line fault

e o—

Eee_—

G S s e e e

13
X2 X3
00 ol 11 10
X}
ol 1 1 0 X
f(X X 2,X3)
| R 1 (0] 0
a)
X2 X3
00 o1 11 10
°l1

f.(@, "u"z"‘s)

b)

(%y,%y) 0=

-0 (f(xl'x21x3)t?’(Xy ,X2,X3))

i
E T o
|

(xy, %) ©

(xg,X3) & _—>
c)

(0,1) i ®

Figure 2.2. Dualization procedure, Example 2.1.

et e 5 e g LADASC ke N
—— vt o o

PP
.‘,,,‘ Wa %

SRS

-m.-—-—-——-—-—-n

14

model, Anderson and Metze [2], assumes all failures to be representable by
line faults on all gate input and output lines, s-@-0 and s-@-1. The

latter representation will be used here. Thus, the term fault will refer

to a network condition in which one or more gate input or output lines

are s-@-0 or s-@-1. The term single fault will refer to a network condition
in which only one gate input or one gate output line is s-@-0 or s-@-1. A

fault involving several lines will be termed a multiple fault. A

unidirectional fault will be defined as a multiple fault in which the faulty

lines are all stuck at the same logical value, either all s-@-0 or all
s-@-1.

Of particular interest in relation to alternating networks is the
set of all single line faults. 1In fact, alternating networks will be shown
to be can ble of detecting all single faults on gate input and output lines,
§=@-0 or s-@-1, during normal network operation while assuring error-free
operation prior to that detection. Continuous error-free operation, however
hinges on several assumptions. First, it is assumed that initially the
network is free of all faults. The means by which this is guaranteed is
not specified. It is also assumed that the most probable network fault is
the single fault and that the occurrence of the first fault is detected
prior to the occurrence of a second single fault during normal network
operation. This allows for repair of the network so that detection of the
second single fault can be guaranteed. Under these assumptions at most one
single fault is present in the network at any given time and continuous

error-free operation is assured.

F

— e R e

R,

P,

——— e, E—— | — —

15

2.3. Self-Checking Property

Consider an irredundant combinational alternating network N with
n inputs (xl,il),(x2,§2),...,(xn,§h) and one output y which represents a
function f. Assume that a network fault of some type occurs. For a
particular input (X,f) either the fault does not affect network operation,
and the correct alternating output is produced, say (d,d), or one of three
possible errors occurs. If the fault affects N under X only, (5,3) is
produced; if the fault affects N under X only, then (d,d) is produced; and
if the fault affects N under both X and X, then (E,d) is produced. Since in
the fault-free state the network output alternatee for all inputs, errors of
the first two types are considered to be detectable, whereas an error of the
last type is considered to be undetectable. The network output for this case

is terme” in erroneous alternating output.

Definition 2.5: A network is self-checking for all faults from a prescribed

set, F, if for every fault from F there exists at least one input (X,i) which
produces a detectable error on the network output, and there exists no input

(X,X) which produces an erroneous alternating output.

If F is constrained to be thé set of all single faults of the stuck-at-0 or
stuck-at-1 type on all primary network inputs and all network lines, then it
is possible to derive necessary and sufficient conditions that the alternating
network realizing f be self-checking. But, to do this some definitions must

first be made.

e g gt e Tﬁ < B SN g

e |

i §

sl el s e

16

Definition 2.6: A network line is any line in a network other than a primary

network input. (Branch lines from fanout points are considered to be

distinct network lines.)

Network lines are labeled with small letters and a fault on a line is denoted
by f: where the subscript is the line label, and the superscript is the
logical value at which the line is stuck. For example, in Figure 2.3 an

alternating network representing the function

f= xlx2 + xlx3 + x2x3

is shown. Network lines in the circuit are labeled a -f. Primary network
input lines are labeled with the variable name. (Note that a, f, b, and 1
are defined as network lines, not primary network input lines, as they are
branch lives from a fanout point on a primary network input line.) If a
s-@-1 fault exists on a network line, say e, it is designated on the
network diagram, Figure 2.3, with a small x on that line. The fault is
denoted [17] as fi; that is, line e stuck-at-l. A s-@-0 line fault is

designated on the network diagram by a small o on the affected line.

Definition 2.7: A path is an ordered sequence of lines wlwz...wr such that

lines wy and w1+1,

a fanout point.

1 <1< r-l1 are connected through either a single gate or

Thus, if we consider non-trivial paths, only w, can be a primary network

i
input line and only w, can be a network output. In Figure 2.3 xlacegj&, de,

k, and ehkl are all paths. The path k is termed a trivial path. In the case

p— B TR

%

JPRIPR—

B e e e

. f
(xhil) o—b—) i g
(x2,X2) b, 7 G e
(x3,X3) O— d h

|

Figure 2.3. Example alternating circuit.

17

FP-5047

e R o W SN
B

v

w—— o —

R

18

of path xlacegjt, network lines e and g, and x, and a, are connected through

1

fanout points.

Definition 2.8: An output path is a path W Wy . such that @ is the

network output line.

The network in Figure 2.3 has many ocutput paths. Examples are path egijf,

x3dehk£, and dehkd.

Definition 2.9 : The inversion parity of a path, P, is the parity of the

number of inversions (NAND gates, NOR gates, or inverters) encountered in

tracing the specified path, P, through the circuit and is denoted by w(P).

For the output paths noted above w(egjl) = 0, w(x3dehkl) = 0, and

@ (dehkf) = 1.

Definition 2.10: A path wlw "'wr is sensitized if for an input such that

2

dl’dz""’dr’ die{O,l], 1< 1i<r is present on lines wl’w2’°"’wr the fault

f 1 forces W

>
wl 2

Definition 2.11: A line fault f: is sensitized if the network input is such

.+,®_ to take on values d. ,as,...,ar.

that at least one path wl,w Wr is sensitized where ©, =a and w is the

grees
network output, and the logical value of line a in the absence of the fault

is d.

For example, in Figure 2.3, the input xlxzx3 = 011 sensitizes the fault f:
through the output path ehkf, since normally 1,1,0,1 is present on e,h,k,

whereas the fault f: forces h,k,4 to take on the values 0,1,0. Note that

o

N

e B R

e BB B

[— U e AN — e)

e I e

19

i=j=1 for X)XoXqy = 0l11. The fault fe1 shown in Figure 2.3 is, however,
not sensitized by Oll as the logical value on line e in the absence of the
fault under 0l1 is 1, not 0. The input X XXy = 010 however sensitizes both
f: and the path ehkd.

Now, with the foregoing definitions as a basis for terminology,
consider again the irredundant alternating network N with n inputs (xl,il),
(xz,ié),...,(xn,in) and one output y which represents a function f£. Since
N is irredundant and since all inputs (X,i) are possible, to show that N is
self-checking for an arbitrary single fault it is only necessary to show
that for no input (X,X) is an erroneous alternating output produced by the

network due to the fault.

Lemma 2.1: An erroneous alternating output is produced by N under the
presence of a single fault with input (X,X) iff both X and X sensitize the
fault.

Proof: Certainly if neither X nor X sensitize the fault, then the output of
N under (X,X) is the correct alternating output y = (£(X),f(X)) = (f£(X),£(X)).
If only X sensitizes the fault then y = (?(X),f(i)) = (£(X),£(X)) and the
fault is detected. If only X sensitizes the fault then y = (£(X),£(X)) =
(£(X),f(X)) and the fault is detected. If both X and X sensitize the fault
then y = (?(x),?(i)) = (?(x),f(X)) and an undetected erroneous output is

produced. Q.E.D.

Theorem 2.3: Any arbitrary alternating network N is self-checking for

single faults on primary network input lines.

- — — m— TR0 Pk AR b VR

S

-

——

o

ey

20
Proof: Assume primary input line Xy is stuck-at-d. If X sensitizes the
fault, = - d. But then ;i = d, and X cannot sensitize the fault. Similarly,
if X sensitizes the fault then x, = d. But then x, = d, and X cannot

i i
sensitize the fault. So, by Lemma 2.1, N is self-checking for all single

faults on primary network input lines. Q.E.D.

So, having obtained Theorem 2.3, to show that an alternating network is
self-checking for all single faults on primary network inputs and network
lines it is only necessary to show that the network is self-checking for
faults on network lines. Achieving the self-checking property for these

faults, however, places some constraints on circuit structure.

2.4, Self-Checking Combinational Structures

Yamamoto, Watanabe, and Urano [36] have investigated standard two-
level AND/OR and OR/AND alternating networks allowing inverters as a third
level as required to obtain complemented variables. Such networks were
shown to be self-checking for all single stuck~-at faults on gate or iaverter
output lines. Other more general combinational network structures, however,
can be shown to possess the same self-checking property under a generalized
fault set. That fault set is the set of all single line faults on gate or
inverter input or output lines. Three network structures will be considered,
the internal fanout-free network, the essentially inverter-free AND/OR/NOT
network, and the inverter-free network. First, consider the internal fanout-

free network.

of

D
¥

e 3

= S

[T)

e B 1

-

Definitiggﬁzilfz A network is internal fanout-free if each gate or inverter

output is an input to at most one gate.

Theorem 2.4: Any internal fanout-free alternating network, N, is self-
checking for single faults.

Proof: Let N be an internal fanout-free network containing a single fault
on an arbitrary network line 'a', say f:, where dc{O,l}. By way of
contradiction, assume that N is not self-checking for the fault fi. Then
there exists an input (x,i) for which both X and X sensitize fi producing

an erroneous alternating output. That is, under X
w
y = d®w(Py)

where P is -he output path from 'a' sensitized by X, and under X

= dOw(P-
y (x)

where Pi is the output path from 'a' sensitized by X. But since N is
internal fanout-free there is only one output path from 'a'. That is,

Px = Pi = P and the nonalternating output

@@w(P), ddw(P))

is produced, a contradiction. Q.E.D.

An alternating internal fanout-free network is shown in Figure 2.4 a). The
network is distinguished from a tree network in the strictest sense of the
term since fanout of primary network inputs is allowed. The tree network

is thus a subclass of the class of internal fanout-free networks and is self-

checking for all single faults also.

e : . e e RIS
‘:}.Q’ % o~ " ’

#|

by

e

22

Now, consider the essentially inverter-free AND/OR/NOT network.

Definition 2.13: An essentially inverter-free AND/OR/NOT network is an

AND/OR/NOT network in which the input to any inverter is a network input.

Theorem 2.5: Any essentially inverter-free AND/OR/NOT network, N, is self-
checking for all single faults.

Proof: The proof will be in two parts a) and b).

a) Consider a fault, fz, where 'a' is any network line which is a gate
input or output or an inverter output. If N is not self-checking for these
faults then there is an input (X,i) for which both X and X sensitize the
fault producing an erroneous alternating output. Letting P_ and Pf denote

X
the corresponding paths the output produced is

(dQ“’(Px), de“’(P-i))-

But, ince W(Px) = w(Pi) = (0, the output produced becomes (d,d), which is
not an erroneous alternating output.

b) Now, -onsider a fault, fi, where 'a' is any inverter input line which is
not a p:imary network input line. (Such a case exists when both an input
and its complement are used to realize a function.) If N is not self-
checking for these faults then there is an input (x,i) for which both X and
X sensitize the fault producing an erroneous alternating output. Letting Px

and Pi denote the corresponding paths the output produced is

(d®w(Py), dO“’(P-k-))—

But, since w(Px) = W(gi) = 1, the output produced becomes (3,5) which is not

an erroneous alternating output. Q.E.D.

>, . . .'. - 'lﬂm~£“|¢7'\

‘l

o™

e -

i)

23

The alternating essentially inverter-free AND/OR/NOT network is a generaliza-
tion of the structure studied by Yamamoto [36] in that an unlimited number
of levels may be utilized in the AND/OR portion of the structure. An
alternating network meeting the structural requirements is shown in
Figure 2.4 b). Note that line a, the inverter input labeled in the
figure is the type of network line considered in the b) part of the proof
of Theorem 2.5.
The last specific structure to be examined is the inverter-frce

combinational structure.

Definition 2.14: A network is inverter-free if no inverter or inverting

gate is present in the network structure.

"

Theorem 2 .: Any inverter-free alternating network, N, is self-checking for
all unidirectional faults.

Proof: By way of contradiction assume that N is not self-checking. Then

for at least one input X and some unidirectional fault ﬁg qg e ﬁz
RS

where r < k, the number of network lines, both X and X sensitize an element

* . ,...,fd). Let X sensitize fd , X sensitize fd , where 1<i,j<r.
e, W w, Wy = =

r
Now, under (X,X), (£f(X),f(X)) is produced siuce X and X both sensitize an

of (f:

element of the fault set. Further, under X, y = d® 0=d is produced since
all paths are of even parity. Similarly, under i, y = d®0=d must be

produced. But this implies that f(X) = f(X)=>f(X) = £f(X), a contradiction.

Soc N is self-checking for all unidirectional faults. Q.E.D.
Ve S ;

Sl J——

ey

24

(xy, %)
(Xz,iz)
(x3,X3) ©~

f= Xy X+ X Xg+ XpXy

a) Internal Fanout -Free Network

(x3,X3) ‘*_'D°—

(X5 %,) °_T°*D°‘ ¥

(X1, %)

(X1 %) ©

xlx,‘, + X1 X‘-O- XZXSX‘Q- Xle

b) Essentially Inverter-Free AND/OR/NOT Network

L

(x1,%y)

(Xg,Xg)

: 1

(0,1)

f= xz(xl-t xs)

¢) Inverter.-Free Network FP-5048

Figure 2.4. Self-checking alternating combinational structures.

RN N

e — e G e pr—

. vt

An inverter-free alternating network is shown in Figure 2.4 c). The
network represents the function f = xz(x1+x3). The dualization procedure
outlined in Section 2.1 was used to obtain the network from the functional
specification of f, thus requiring a clock §. A clock was not required

for a) or b) as the function realized in each case was self-dual.

2.5. Necessary and Sufficient Self-Checking Conditions

Many combinational structures do not belong to one of the network
structure classifications shown to be self-checking in Section 2.4. This
does not mean that the network in question does not possess the self-
checking property. Verification that the network is self-checking,

however, * more difficult and may require computer simulation.

Theorem 2.7: If an alternating network N is self-checking for all faults on
gate and inverter outputs, then it is self-checking for all gingle faults.

Proof: Let G be any network gate or inverter. Then
W (P—
w(By) = @ (R)

for any pair of output paths Px and Rx sensitized by X and X respectively

from the output of G. Then, any pair of output paths Pi and P% sensitized

by X and X respectively from an input to G, say a, can be written as
P; = a Px for the path sensitized by X, and

P* = g P? for the path sensitized by X.

o ki

\T -«.-\.‘N\-\ 26

l

e T

But then w(P.) = w(Pl) since:;:;“$"=ﬁrf8.),‘epd N must therefore be self-

—

checking for a fault on 'a'. Therefore N is self-ch;ZKTHg~£o;‘£}1 single

\\

faults. Q.E.D.

Thus, by Theorem 2.7, to show that a network is self-checking for all single
faults, only faults on gate or inverter outputs need be examined. However,

this constraint can be relaxed somewhat.

Definition 2.15: A fanout gate or fanout inverter is a gate or inverter

whose output is connected to more than one gate or inverter.

Definition 2.16: A primary inverter is an inverter whose input is a primary

network input line or a branch line from a primary network input fanout

pcint. A secondary inverter is any inverter which is not a primary

inverter.

Theorem 2.8: An alternating network N is self-checking for ail single faults
iff it is self-checking for all single faults on fanout gates and secondary
fanout inverters.

Proof: A fault on any primary inverter input or output cannot be sensitized
by both X and X and, therefore, cannot cause an erroneous alternating output.
Thus, fanout from a primary inverter cannot affect the self-checking
properties of N in any case. So, consider a fault on any other network line
'a' that is a fanout gate or secondary fanout inverter output line. Either
there is a unique output path from 'a' or there is a unique path from 'a' to
an input of a fanout gate or secondary fanout inverter. For the former case

we know the network is self-checking for the fault by Theorem 2.4. So,

.

a2

-~
s o,

FES—

27

consider the latter case. Any output path, Pi, sensitized by X from 'a' can
be written

P;(- P*Px,

and any output path, P%, sensitized by X from 'a' can be written

e —

p' = prp_

X X

where P* is the path from 'a' to the fanout gate or secondary fanout inverter
input, and Px and Rx are the output paths sensitized by X and X respectively
from the output of the fanout gate or secondary fanout inverter. But,

and therefore, : .
w = .
(By) w(Pi)

So, Nmu c be self-checking for a fault on 'a' in this case also. Q.E.D.

Theorem 2.9: An alternating network, N, is self-checking for all single
faults iff the inversion parity of output paths originating on a given
fanout gate or secondary fanout inverter output labeled 'a' sensitized by

X equals the inversion parity of like output paths sensitized by X for

every (X,i) such that both X and X sensitize f: for d=0,1 and for every
fanout gate or secondary fanout inverter.

Proof: By Theorem 2.8 the network N is self-checking for all single faults
iff it is self-checking for all single faults on fanout gate and secondary
fanout inverter outputs. So, consider an arbitrary fanout gate or secondary
inverter, G, whose output, 'a', is stuck-at-d. If an erroneous output is

to be produced as a result of the fault, by Lemma 2.1 both X and X must

W

e

e

27

consider the latter case. Any output path, ?i’ sensitized by X from 'a' can

be written

' -
Py P*Px,

and any output path, P%, sensitized by X from 'a' can be written

P! = P*P_

X X
where P* is the path from 'a' to the fanout gate or secondary fanout inverter
input, and Px and PX are the output paths sensitized by X and X respectively

from the output of the fanout gate or secondary fanout inverter. But,

u) P = P
and therefore,

w(Py) = W(Ri)-

So, Nmu ¢ be self-checking for a fault on 'a' in this case also. Q.E.D.

Theorem 2.9: An alternating network, N, is self-checking for all single
faults iff the inversion parity of output paths originating on a given
fanout gate or secondary fanout inverter output labeled 'a' sensitized by

X equals the inversion parity of like output paths sensitized by X for
every (X,i) such that both X and X sensitize f: for d=0,1 and for every
fanout gate or secondary fanout inverter.

Proof: By Theorem 2.8 the network N is self-checking for all single faults
iff it is self-checking for all single faults on fanout gate and secondary
fanout inverter outputs. So, consider an arbitrary fanout gate or secondary
inverter, G, whose output, 'a', is stuck-at-d. If an erroneous output is

to be produced as a result of the fault, by Lemma 2.1 both X and X must

§ ——— e g e e g s

o p— e R e

B PR ey e e G e e e

28

sensitize the fault. But by hypothesis for any such (X,X), W(Px) = w(Bi)

and the detectable nonalternating output
(ABw(Ry), d@w(P))

is produced. The network, N, must therefore be self-checking for the fault.
Conversely, if there is an (X,i) for which both X and X sensitize f: for an
arbitrary gate G with output 'a', while the inversion parity w(PX) does not
equal the inversion parity w(Pi)’ then that same (X,i) produces on the output

of N

@ou(Ry), d®u(R))

which in this case is an erroneous alternating output since u)(Px) # W(Ri)'
Q.E.D.

The significance of Theorems 2,7, 2.8, and 2.9 lies in the fact that in order
to assure that a functional realization, which does not admit to a classifi-
cation as one of the structures in Section 2.4, is still a self-checking
realization, it is only necessary to simulate the output under fault
conditions on fanout gate and secondary fanout inverter outputs and to
compare these with the fault-free outputs so as to determine if an erroneous
alternating output exists. Since such a simulation can be done quickly, an
optimal minimization program such as Davidson's branch and bound program [12]
could be modified so as to produce an optimal self-checking realization from
a dualized functional specification, without degrading program performance
significantly.

For some network structures not of the type considered in

Section 2.4 the self-checking property can be deduced by inspection, and a

24

computer simulation is therefore not required. Corollary 2.1 specifies the

conditions.

Corollary 2.1: An alternating network, N, is self-checking for all single

faults if all output paths from a given fanout gate or secondary fanout
inverter are of identical parity for every fanout gate or secondary fanout

inverter.

As an example, consider the alternating network shown in Figure 2.3. We
know that the network is self-checking if it is self-checking for fi, de{o,1}.
However, only two output paths egjf and ehki originate from the output of the
only fanout gate or secondary fanout inverter, and they are both of the same
inversion parity, w(egj4) = Ww(ehkf) = 0. So by Corollary 2.1 the network is
self-chec’ .ng.

Thus far only single output combinational networks have been
considered. Multi-output networks are, however, important structures. If
the network N is a multi-output network then the definition of self-checking

is modified somewhat.

Definition 2.17: A multi-output network is self-checking for all single

faults iff there exists no input (X,i) for which an erroneous alternating
output is produced unaccompanied by a nonalternating output on another

network output line.

This definition is somewhat more relaxed than the definition in the single
output case and should lead to simpler realizations when logic is shared in

producing the required outputs than when each output is produced with

—_—

e

e s st —

et

W P e e e

30

independent logic. As an example of the multi-output alternating network

consider the full adder.

Example 2.2: The full adder is shown in Figure 2.5 a) and Karnaugh maps
specifying the outputs Si and C1 as a function of the inputs Ci-l’ a, and bi

are shown in Figure 2.5 b). From the map for Si

g = Cgq94bq *C_y8,b +Cy ;b +C 8y

S b

=> Si = Ci_l(aibi-+aibi) + Ci_l(aibi-+aibi).

Similarly, from the map for Ci

C, mahby +C, 10 648

=> = a.b
Ci Ci-l(aibi) + aibi'
Based on these equations, a realization for the full adder is shown in

Figure 2.5 ¢). The network must be an alternating network since C, and Si

i
are self-dual functions. The network, however, is not self-checking. (The
fault f: produces an erroneous alternating output under (Ci_laibi.ai_lz b) =
(000,111).) A self-checking realization can be obtained by converting the
structure shown in Figure 2.5 c¢) into an internal fanout-free structure.
The resulting network is guaranteed to be self-checking and is shown in
Figure 2.5 d).

Now consider those optimal full adder networks obtained by Liu,
et al [22]. Of the thirty networks obtained, six presuppose the existence of

only the input variable and not its complement. These six networks are of

interest here and are shown in Figure 2.6 a)-f). Networks a) and b) are

)

:

LA

31

u

=
=1 ol
Sl

Figure 2.5. Alternating full adder.

5
r - i
3 4..“.:%“_,, —

e R

¥

o~
Laa}
H
2
1
i
g
|
I s =
T B 6.3 &8 &% .. - _,
3 G 5 = om .8 @
Rt i
L] !
. H
- j=
= pﬁ
% > . f
— 8
: %
@ G -t .|
m. :
0 5
g o~ m
—_ ¥
S o [M—. t
3 ® £
F -l
%_ E = b
> o (.. D §
° o 6 8 s
e - R S— — Prm— by o P et — —— — : M !
{
3 |
e — -——

o
%

o

-

ER——

G I e e e A S G R e

33

optimal NOR adders; networks c¢) and d) are optimal NOR/AND adders; and
networks e) and f) are optimal NOR/NAND adders. Adders a), c), and e) were
optimized with no level restriction; adders b), d), and f) were limited to
a maximum of 3 levels.

As to the self-checking properties of the optimal adders, adder b)
meets the conditions of Corollary 2.1 and is therefore self-checking.
Adder f) has no reconvergent fanout and is self-checking by Theorem 2.4
extended to the multi-output case. Adders a), c), d), and e) are at first
glance not self-checking. But, computer simulations based on Theorems 2.8
and 2.9 verify the self-checking property of these networks also. For the
adder in Figure 2.5 d) and the optimal adders b) and £) in Figure 2.6 no
erroneous al.ternating output is ever produced on Ci or Si. As a result the
subnetwo~'. realizing Ci and the subnetwork realizing Si are therefore self-
checking in themselves. For the optimal adders a), c), d), and e) in
Figure 2.6, an erroneous alternating output can be produced on Cj or Si’
but such an output is always accompanied by a nonalternating output on Si
or Ci’ respectively, thus meeting the requirements specified in Definition
2.17. But, in each case neither the subnetwork realizing Ci nor the sub-
network realizing s1 is self-checking in itself. Their union, however,
sharing logic, is self-checking. This illustrates the advantages mentioned

about sharing logic in the multi-output case.

AR TR

e

&
B
o |
%
S
}
i
|
{
I
|
|
K

34

3. SELF-CHECKING ALTERNATING SEQUENTIAL MACHINE

3.1. Sequential Machine Model

Consider the strongly connected synchronous sequential machine,
M(I,0,S,5,0), with clock & of frequency f and period T represented
schematically in Figure 3.1. The circuit has a finite number n of input
terminals. The signals entering the circuit via these terminals constitute

the set {xl,x ,xn} of input variables. The set L of 2" distinct inputs

PLEEE
is called the input alphabet I, and each configuration is referred to as a

symbol of the alphabet. Thus the input alphabet is given by
I= {Io,Il,...,IL} for Ip-xlxz...xn, 0<p<L and xie{o,l], 1<1<n.

Similarly, the circuit has a finite number £ of output terminals which
define th set {21’22""’21} of output variables. The set M of 2‘ ordered

L-tuples is called the output alphabet and is given by

0= {0,,0,,...,0} for 0y =212y -2y 0<q<H and z,e{0,1}, 1<i<u.

)ttt e

The signal at the output of each memory element is referred to as a state
variable, and the set {yl,yz,...,ym] com'titutes the set of state variables.
The combination of values at the outputs of the m memory elements Yys¥gseees¥y
defines the present state of the machine. The set R of " m-tuples constitute

the entire set of states of the machine

s=1{s,,s veeosSp) for S =y.y ...y, 0<s<R and yelo,1), 1ci<m.

1
The external inputs Xy sXpyeeesXy and the values of the state
variables Yy#Ypeeees¥, are applied to the combinational circuit, C. This

circuit in turn produces the outputs 21029500002, and the feedback variables

o

——

—

ot |

P

ey —

mmm— == s e

xl—. .._-___—>21
Xp——— 2,
Xn____..—. '_—b. ZI
o S X
y Y '
1 D 1
y Y.
2 D 2
i
Ym b e Y
| . !
®
Figure 3.1. Synchronous machine, M.

35

- s s s e

36

Yl’YZ""’Ym' The values of the Y's which appear at the output of C at
time t are identical with the values of the state variables at t+T and
therefore define the next state of the machine. The machine M thus realizes

the transformations

G BRI ™8

A: SXI-oO.

Normally these transformations are described by means of a state table or a
state diagram. Of interest here is the state table. It has a'-Zn columns,
one for each input symbol, and b rows, one for each state of the machine.
For each combination of input symbol and present state, the corresponding
entry specifies the output that will be generated and the next state to
which the machine will go. The succession of states through which a
sequential machine passes, and the output sequence which it produces in
response to a known input sequence, are specified uniquely by the state
table and the initial state, where by initial state we refer to the state of

the machine prior to the application of the input sequence.

3.2. Alternating Sequential Machine

An alternating sequential machine “A associated with M can be
defined. Such a machine has the property that state variables and output

variables alternate in response to alternating inputs.

Definition 3.1: An alternating sequential machine associated wich M is a

sequential machine having the property that for inputs (Ii’il)’ 1<i<i,

N s s e e
T

37

alternating in synchronism with &, secondary variables yj, 1< j<m and
output variables Zys 1<k < £, alternate in synchronism with &, while

maintaining the next state and output relations realized by M.
Thus, for any alternating sequential machine associated with M,
I, = LT (1,T))0 00 (1, 1))
0, = {(0,,0,),€0,,0),...,(0,,0,)}
S, = ((5,,5,),(5,,5))5. ., (5,5}
Now, consider the sequential machine, M*, modeled in Figure 3.2.

The inputs X1sXps.es,X are assumed to alternate in synchronism with &. The

combinationa’ circuitry, CA’

the functions § and A of M. The clock line, &, of period T and frequency f

is a self-checking alternating circuit realizing

shown a+ an input to C,, is used as the added variable required to dualize

A?
5 and A if they are not already self-dual. And, the clock, QA’ of period T/2
and frequency 2f, is in phase with §. (The clock & can be considered to be
derived from QA.) To analyze the operation of M* assume that time t is the
beginning of an arbitrary clock period and that at time t,ylyz...ym - Ss
and yiyé...y; = §; (Figure 3.3). 1If (Ik’ik) is applied as input at time t
then I(t) = Ik’ I(t-+§) = ii, since inputs alternate in synchronism with &.
Further,
yi(€) =y, (t),

y (E+3) = F, ().

Thus, all inputs to C, and therefore all outputs from C, alternate in

A A

synchronism with &. Since cA realizes 8 in producing Yi’ 1<1i<m,

o astncemieTy

eisbgioaid

o
Xy l_ RS TEE SO 1
X2 Pt
| SRRSO SRS ‘_——-—:——-——¢-z|
SM)‘A
: Ca :
y : Y
1 D |e yl D e :
Y2 —. 1% Y,
e g PERLL g PR
Dp

Figure 3.2.

Synchronous machine, M*.

38

P

ol

e

G s e s

t t+T t+2T 25T t+47T t+5T
® 1 ERGE e TORG e
. O T R T8 K R o N2 T D e K S
M Iz Io 13 Is Il
Sequence Sa Se Ss Sa
T 1 %l %l Ll LT LI . NL KL L
¥ Ss §4 Se §g Sg §5 S3 §3
MI'
V'l So| S| S s | Se 5 S Sy S
1Sl Rl Sl SI&TI ST 51 %1 5

Figure 3.3.

Timing relationship.

39

ﬁ?“iﬂﬁ 7':

NS O e

Y

o S e e

40

¥, (£) = 6, (1(£),5(t)) = 6(L,S,)
Y, (E+7) = 8, (L(t+7),5(+3) = 8,(T,,5,) = B(L,S,).
Therefore,
y (E+T) =yl (£+3) = ¥, (£) = §(T,,8,)

Y (E+3D) = yI(E+T) = Y, (£ 47) = B(L,,8,)

and since CA realizes A in producing z, 1<1< 4,

2, (£) = X, (1(t),5(t)) = A(,5,)
2, (E43) =, (LE+7),5(+3)) = 1, T,5,) = X(L,,8,).

The sequential machine M* thus produces §-synchronized alternating secondary
variables and outputs in response to ¥-synchronized input variables while
maintaining the next state and output relations realized by M as required

by Definition 3.1, and is therefore an alternating sequential machine

associated with M provided the initial state is set in the y flipflops and
the complement of the initial state is set in the y' flipflops on

initialization.

3.3, Self-Checking Capability

As could be expected, the alternating sequential machine, M*, has
some fault detecting capabilities. In fact, all single stuck-at faults on
lines in the feedback and output combinational circuitry, CA’ and on the

memory element input and output lines can be detected. If, in addition, it

T e
e

e ¢

41

can be guaranteed that no erroneous alternating outputs are produced prior
to the fault detection then M* is a self-checking alternating sequential

machine. The ideas are formalized by the following definition.

Definition 3.2: The alternating sequential machine, M*, is self-checking

for all faults from a fault set F iff for every fault from F there exists a
state (Si,§'i)esA and an input (Ij,TS)clA which produces a nonalternating
(detectable) output on Yl’YZ""’Ym’ Z1sZyy-cesZy 1 OF 2 and no state
(Si,gi)GSA and input (IJ’TH)GIA for which an erroneous alternating output is
produced prior to a nonalternating output.

Since, in general, the alternmating circuit C, in M* is not
exercised bv all possible input combinations, it is assumed that CA has been

d.signed tc be irredundant with respect to the input combinations encountered.

With thi: as an assumption the following theorem can be proved.

Theorem 3.1: The alternating sequential machine, M*, is self-checking for

all single faults on lines in CA or on input and output lines associated with

the memory elements.

Proof: First consider a fault on any line in CA' Since M is strongly

connected so is M*. So, any state in M* can be reached from any other state

by the application of the proper input sequence. And since CA is self-

checking and irredundant with respect to the state and input space there is

a state (Si,§1) and an input (I T&) which produces a nonalternating output

j)

on some output of CA’ and no state or input which produces an erroneous

alternating output prior to such a nonalternating output. Since the non-

alternating output appears on YI'YZ”"’Ym’ :1,22,...,11_1 or z‘, M* must

S e -
.;,5“" ‘th e

3 - e s pe—— i— e QES—— —— P

42

be self-checking for these faults. Now, consider a stuck-at-d fault on any
memory input or output line. Such a fault must manifest itself eventually
as y, stuck-at-d for some i, 1 < 1 < m. Since CA is self-checking for all
single faults on primary network inputs, a nonalternating output appears on
YI’YZ”"’Ym’ 21’22""’21-1 or) simultaneously with or prior to an
erroneous alternating output and M* must be self-checking for these faults.
Q.E.D.

The self-checking capability of the sequential machine M* was
obtained by encoding the state variables Yys l1<i<m in time. While such
an encoding has the advantage that the secondary state variable assignment
is not constrained, it has the disadvantage of doubling the number of
memory elements required. However, the added set of memory elements serve
a double urpose as will be shown in the following chapter.

To illustrate the techniques involved in designing an alternating
sequantial machine consider an alternating sequential machine representing
a one-input, one-output sequence detector which produces an output 1 every

time the sequence 0101 is detected and an output 0 at all other times.

Example 3.1: The 0101 sequence detector has been designed as a conventional
sequential machine in Kohavi [21]. The state table for the machine is given
in Figure 3.4 a). As there are four distinct states in the state table,

two memory elements are required in the sequential machine. Selecting the

state assignment

lv'.;' *:'!* i bl

N

pre——

S

PS NS, z, Y1 Y2 nY2 A
x,=0 %=1 x,=0 x=1 x =0 =1
S | %0 So,0 oo| o 00 0 0
% ¥ 5.0 S;,0 o1 | o1 11 0 0
S, S0 $o,0 11 10 00 (0] 0
Sy T %b 3,1 10{ o1 11) 1
a) State Table b) Transition and Output Tables
"y,
00 0l 11 10
Xy
(o] 0 0 0] 0]
2;
1 0] 0] 0 1
Ny,
00 01 11 10
X1
o} 0 0] 1 0
Yy
1 (0] 1 (0] 1
Ye
00 01 11 10
X1
of 1 1 0 1
Y2
1y O 1 o} 1
c¢) Excitation and Output Maps ooy
Figure 3.4. Sequence detector.
B —e— s y i <
e —— o OO S,

~4
-

R ras e e

X1 O

— e
L/ 1
v o
[% W
+- ey e
il S
>0 Jeon
Yy Y,
g B
C
J2 Q D Y2
¢
___T¢
d) Circuit Diagram

Figure 3.4. Concluded.

44

b g e—

b

e

IR D B e el S e e S e

45

¥, = 00 = s
yly2 = (0l = §
yly2 =11l =g

' St

transition and output tables can be constructed, Figure 3.4 b). From these
tables Karnaugh maps specifying the output function, z)» and the next-state
variables, Y1 and Y2’ can be constructed, Figure 3.4 c) and standard two-

level realizations of z)5 Yl’ and Y, yield the conventional 0101 sequence

detector, Figure 3.4 d).

The alternating sequential machine representing the 0101 sequence

detector is obtained by first dualizing the functional descriptions of s

&1, and Y. to form functional specifications for z Yl*’ and Y2*' These

1%’
specifications are shown as Karnaugh maps in Figure 3.5. These functions
are then realized in two-level logic and'utilized as CA in the alternating

sequential machine, Figure 3.6. The combinationq} block CA thus has as
inputs (xl,fl) and the (0,1) clock &, and as outputs, the machine output
(z,,%)) and the next-state outputs (YI,?I) and (Yz,?é). Four D-flipflop
memory elements are required in the alternating machine, and these are
configured as specified in Figure 3.2, clocked by a clock QA of period T/2.
The conventional machine utilized 12 gates and 2 D-flipflop memory elements.

The alternating machine required 19 gates and 4 D-flipflop memory elements.

Thus, gate count was increased by roughly a factor of 1.5 and memory element

e ———— O T R e

L2 o

-

S

A RN NN e

®x,
00

01

11

10

00

01

11

10

00

01

11

10

Figure 3.5.

"y,
00 01 11 10
olololo
ololo ’q
@ 1 (1 ful
Wl olli | 1

Y2
00 01 11 10
o
0 [1’ 0 1‘

1

0 ‘ll E 1]’
30K

1%,
00 01 3 10
1 1]] 0 m
' |
0 1| o [[1
m olo] o
Wl o) o
FP- 5080

Dualized functional descriptions.

Z1x

Yix

; .‘*,!ﬁua% X .k

46

47

(zy,2y)

o ————— v 5 2 o s s s S S S s S

(0,1)

R I — —— o [S—

(. [— e ¥~ Rl m——

«
I"

FP-5081

Alternating sequence detector.

Figure 3.6.

e T I T

L I e

48

count by 2. Also, to this added cost must be included the cost of the
alternating checker which monitors (zl,il), (Yl,Yl), and (Yz,Yé) s0 as to
indicate the presence of nonalternating signals on these lines. The

alternating checker is the subject of the next chapter.

-

e — . s

v"

[RRSER—

- " pasasns

-

e

S B

49

4. ALTERNATING CHECKERS

4.1. Adjoint Alternating Checker

In any practical alternating logic network, some means must be
provided to monitor network output lines (in the case of synchronous
machines, network output lines and feedback lines) so as to provide an
indication of the occurrence of nonalternating signals on these lines.
Any network which performs this function is an alternating checker. The

adjoint alternating checker is one such checker.

Definition 4.1: An adjoint alternating checker is a single output network

which produces in response to synchrondzed alternating inputs a synchronized
alternating output and produces in response to one or more synchronized

nonaltern-“-ing inputs a synchronized nonalternating output.

An adjoint alternating checker monitoring an r output alternating combina-
tional network N is shown in Figure 4.1. The outputs of the network N,
fl’fZ”"’fr are system outputs but also are inputs to the alternating
checker. The output of the alternating checker, p, is also a system output
and is used for fault indication. Under fault-free conditions in response

to a synchronized alternating input (x,i), r synchronized alternating outputs
(fl’fl)’(fz'?é)""’ and (fr,f;) are produced by N. These outputs are
monitored by the checker which produces a synchronized alternating output
(p,P) in response to them. If a fault exists in N and N is self-checking
there is an input (X,X) for which a nonalternating output, (fi’fi) or

(El'?i)'i‘ produced on some output fi' This nonalternating output as

ol

-

ey

i oy

-

e

(X,X)

(x,,%,) 0

50

({F.F)

(Xz ,-X-z) s

o (f, fi)

—) (fZ’Tz)

Adjoint
Alternating
Checker

. ==
- (ff,f()

o (p,p)

FP-35082

Figure 4.1. Alternating network N and adjoint checker.

]

rﬁﬁ:wﬂ.

e T
Bt

‘,/

———

——aiaie

e 4

ram—t

- P e S

51

input to the checker causes a nonalternating checker output, (p,p) or (p,P),
indicating the presence of that fault. A combinational realization for the
adjoint alternating checker, however, does not exist as the following

theorem shows.

Theorem 4.1: A combinational adjoint alternating checker does not exist.

Proof: Assume that the adjoint checker with r inputs wl,w ., and wr

2,w3,..
and one output p can be realized with combinational logic and suppose that

0@y = VY +..V, maps to d where vV

1V2 eV and dC{O,I]. Then

2
;1;é"‘;; must map to d as the output must alternate when alternating inputs
are applied. Further, all other R such that w, 1¥pe e @, * ViVyreeVy
must map to d since the output must be nonalternatipg for nonalternating
ianputs. Now consider v1 2...v and v 3...v . Both must map to d as
neither equals vlvz...vr and, therefore, under (v1 PREE vlvév5 ..V}), an
alternating input, the nonalternating output (d,d) is produced. The adjoint

alternating checker cannot, therefore, be combinational. Q.E.D.

While the adjoint alternating checker cannot be realized in a combinational
structure, a combinational alternating checker exists which is capable of
performing the checking function for certain classes of network structures.

This checker is discussed in the following section.

4.2, Semi-Adjoint Alternating Checker

Some alternating networks are structured such that as a result of

a stuck-at fault, at most one network output (or feedback line in the

P

e

-

P e e e e e B O e e

52

case of the synchronous machine) is affected by the fault under any given
input, where the effect of the fault must be the production of a non-
alternating output on that line. A combinational network and a sequential
network meeting this criterion are shown in Figure 4.2. In the combina-
tional structure lines fl’f2""’fr are monitored lines. And, since a
network fault in any subnetwork N, 1 €1 ¢ r, can only affect the network
output fi’ only one nonalternating output can be produced at any time as a
result of that fault. Obviously, the result is achieved by eliminating
shared logic in producing fl’fz"'°’ft' In the sequential network, the

same technique is used. 1In this case monitored lines are yl,yz,...,ym and
21’22""’22’ namely all network output and feedback lines. Any single fault
in network Nzi, 1< i< £, affects only z,.
NY , 1< i< m, affects only Yi and therefore only Yy Similarly, any line

i
fault on a memory element input or output line affects only one monitored

Any single fault in network

line, Yy Any checker monitoring lines ST TEREFLIT PR PYRREIS) therefore
receives as input at most one nonalternating signal at any time, while all
others alternate. The same can be said for any checker monitoring lines
fl’f2""’ and fr in the combinational network.

The above structures relax some of the restrictions placed on the

checker, allowing the use of a combinational alternating checker.

Definition 4.2: A semi-adjoint alternating checker is an r input, 1 output

network which produces in response to r synchronized alternating inputs a

synchronized alternating output and produces in response to r-1 alternating

and 1 nonalternating synchronized inputs a nonalternating output.

As e £ 2 -

— o —————

B R e S e e A G e

a) Combinational Structure

(yy)

b) Sequential Structure

53
N, —0 (f,,1;)
SN
N, -0 (f5,F;)
R
. .
L4 L
o N, —0if e)
| SN 1
P
®
)
Nz, -0 (2,,7))
3
I—1 1
> Nll 0 (z..-i.)
4
FP - 5083
Figure 4.2. Restricted combinational and sequential networks.

— e S S

———

e S

54

Now, consider an r-input exclugive-OR tree where r is odd, and let

the inputs be designated wl,wz,...,wr.

Theorem 4.2: The r-input exclusive-OR tree, C, is a semi-adjoint alternating
checker for odd r.

Proof: Assume that synchronized alternating inputs are applied, (w,0) =

g e @ ,E B, ..

C produces (a,b) in response toc input (w,®). Now, since the exclusive-OR

(0w .E}) where w has £ 1's and W, m 1's. Further, assume that
tree produces an output of 1 when the' parity of the number of 1's on its
input lines is odd, a = Po(l) where Po is the odd parity function.
Similarly, b = Po(m). But m = r-£ for alternating inputs. So, b = Po(r-L).
Now if 4 is odd a=1. However, since r is odd, r-{ must be even, Po(r-l)-o,
and b=0. An alternating output is thus produced. If £ is even, a=0, r-A
is odd, }o(t-l) = 1, and b=1. An alternating output is thus produced for
this case also.

If at most one input does not alternate then in effect the circuit
monitors the parity of the other alternating inputs producing an even parity
function Pe if its nonalternating line is (1,1) and an odd parity function
P if the nonalternating line is (0,0). Letting 4' be the number of 1's
on the alternating lines in w and m' be the number of 1's on the alternating
lines inw, a = Pe(l'), b= Pe(r-l-l') - Pe(l') = g since r-1 is even if the
nonalternating line is (1,1). And, a = Po(l), b= Po(r-l-l') = PO(L') =g
if the line is (0,0). Thus, a nonalternating output is produced. The
exclusive-OR tree is therefore a semi-adjoint alternating checker for odd r.

Q.E.D.

R —— v " A BRSSP Se L S i eatiad

gt

e T e I I

%

55

If an even number of lines is to be monitored it is only necessary
to tie the unused checker input line to the clock . This application is
illustrated in Figure 4.3.where 4 output lines from a combinational network
are monitored using a 5-input exclusive-OR tree domposed of 3-input
exclusive-OR gates. Note that the combinational network does not utilize
shared logic and can therefore be monitored with a semi-adjoint alternating
checker as shown.

So far, only faults in the monitored network have been considered.
Faults, however, may also occur in the checker itsélf. The self-testing
property of the alternating checker assures that a fault signal is produced
on the checker output as a result of that fault while the monitored network

functions normally.

Definition 4.3: An alternating checker is self-testing if for every single

stuck-at fault on checker gate input and output lines, there exists a
network output which as input to the checker produces a fault indication as

output.

Theorem 4.3: The exclusive~OR semi-adjoint alternating checker is self-
testing if the number of gate inputs to each exclusive-OR gate is odd.
Proof: Consider a fault on line g, fg, in an exclusive-OR tree. The fault
partitions the set of checker inputs {wl’wz""’wr} into two sets. One set,

S, contains those ®w, which are inputs to the subtree whose output is g and

i
the other set, R, contains all remaining inputs. Now, the number of inputs

to the subtree whose output is g must be odd since only odd input exclusive-OR

gates are used., That is, #|8| = a is odd. But then, #|R| = r-a = b where

L2 Lt

N—

I ¥ R A

56
N
1 N o (f,f)
| PRI
N>) (fz,Tz)
(X,X) S
N, -0 (fsn—f-s)
——
N‘ —0 (f‘ ,?‘)
et
w C
wz +
W3
¥a + (p,P)
Ws
®! (0,1)
FP - 5084

Figure 4.3. Multi-output combinational network and semi-adjoint
alternating checker. .

mwmﬂhmu-I--..-Il..-.-."l-.......'.1!!-...'I—'ﬂ---II--Iﬁﬂlﬂﬂhﬁﬂﬂﬂlﬁmﬂﬁﬂﬁﬁhﬁ&wyw
P PP L SR - -

— N O e

]

e

P e A B A s e

57

r is the total number of checker inputs. Since r is odd and a is odd, b is
even. Now, consider an input W such that uu_-l if wieR. Since the faulty

checker essentially performs the function C e (8 wi)e<L d is produced
£ W €R
g
with w as input. With w as input, every wieR is 0 and d is produced for this

case also. So, a nonalternating output (d,d) is produced as a result of

application of (@,®) and (w,¥) therefore constitutes a test for f:. Q.E.D.

As a result of the above theorem the alternating system shown in
Figure 4.3 is self-checking for all single faults of the stuck-at type in

both the alternating network, N, and its checker, C.

4.3. Two-Rail Alternating Checker

While the semi-adjoint exclusive-OR checker is an inherently
simple checker, its use constrains the network structure in a manner that
may be impractical in some cases. For this reason a checker which produces
a fault indication when one or more checker inputs do not alternate is
desirable. One such checker, Figure 4.4, utilizes an r-input totally self-
checking (TSC) two-rail checker as a subnetwork. This two-rail checker has
been studied in the literature [l] and has the following properties:

a) Inputs to the TSC two-rail checkar are r input pairs, ui’ui’
1 <1< r. Output from the checker is a single output pair v,v'.
b) The TSC two-rail checker i8 code disjoint. That is, if every input
pair ui,u' is two-rail u' =4

i £ L

two-rail, v' =V, But, if one or more input pairs are not two-rail

1< 1< r, then the output v,v' is

then the output v,v' is not two-rail, v' # V.

- .'nm’.' e - . ' \ R

—————————— - ————————

o g
1;”?.

Ao

—— s R e

R

58

Alternating Checker
Ui
ch * PO
Dp—
L——T Uz
VVZ o *- ;
ok Two Rail 2l 24
W i A ¥
’ TSC :
Checker D op’
3
Ur
W, —1—¢
r D U;'
X
@6 FP-4847

Figure 4.4. Two-rail alternating checker.

Rp——,

S e - s pre—

59

c) The TSC two-rail checker is self-testing. That is, for any stuck-at-d
fault on any checker gate input or output there exists a set of r
two-rail inputs which when applied to the two-rail checker produces
a checker output which is not two-rail.

The two-rail checker when used as a subnetwork of the alternating checker is
preceded by a set of D-flipflop memory elements. One such element is used

on each input line so as to produce r input pairs from the r alternating

inputs applied to the alternating checker. These r input pairs are then
applied to the two-rail checker as ui,u', 1<i<r. Thus, if r ®-synchronized
alternating inputs are applied, r two-rail pairs ui,ui, u'=qu

R
are produced as input to the two-rail checker during the '0' of the clock.

: R

As a result, during that half-period, the two-rail checker output is also
two-rail, '=Vv. If one or more of the r &-synchronized inputs are non-
alternating, one or more of the two-rail checker inputs are not two-rail and
the two-rail checker output v,v' during the 'O' of the clock is not two-rail
either, v' # V. The two-rail checker outputs v,v' are latched using two
additional D-flipflop memory elements at the beginning of each clock period.
The resulting alternating checker output p,p' is a representation of v,v'
with period T, where T is the period of the clock §. Specifically, during
any clock period p,p' assumes the value on v,v' during the '0' of the clock
in the previous period. Any fault detected by the alternating checker is
thus indicated on p,p' as 0,0 or 1,1 in the clock period following the
gsensitization of the fault. A 0,1 or 1,0 on p,p' indicates normal operation

during the previous clock period.

{

iy

———

B S A e e e

 m——

60

Theorem 4.4: The two-rail alternating checker is self-testing.

Proof: Consider any single stuck-at fault on lines in the two-rail TSC
checker. For any such fault there exists a two-rail input u = Ul ..Uy
which tests for that fault as the two-rail TSC checker is itself self-
testing. But then, input (@,T) = (u,u) must test for that fault in the
alternating checker. That is, under alternating input (@,») = (u,u), a
fault indication, v,v' = 0,0 or 1,1 is produced on the TSC two-rail checker
output. That fault indication then appears on the output p,p' during the
following clock period: indicating the existence of the fault. Now consider
any line fault stuck-at-d on memory elements preceding the two-rail TSC
checker. Any such fault must manifest itself as ui,ui = d,d for any (w,0)
such that (wi,ﬁi) = (d,d). However, if ui # ﬁi then v' # V. Therefore

p' # p ip the following clock period and the fault is detected. Similarly,
line faults on the output memory elements are also detected and the two-rail

alternating checker is self-testing. Q.E.D.

Thus, any line fault on any memory element input or output or any line

fault within the two-rail checker itself manifests itself as a fault signal.

Any alternating system utilizing the two-rail alternating checker for

monitoring network lines is therefore self-checking for all single faults.
The two-rail alternating checker is somewhat costly as a delay

element must be added for each monitored network line. This restriction

can be relaxed in the case of the synchronous machine. There, machine

outputs 211255002, are monitored in normal fashion using a delay element in

the two-rail alternating checker for each of the L output lines. The feedback

e 54 i S o i < " T RO U S R

f

™

-

s B porig ety

61

lines Yl,Yz,...,Ym are applied to the checker as u, d

+1°Y422 0 Y Yam 8°
lines yi,yé,...,y; become ui+1,ui+2,...,ui+m. (Note that r = 44m.) Thus,
no delay elements are required in the two-rail alternating checker for

YI’YZ""’Ym' A total of m delay elements is eliminated by utilizing delay

elements already used in the synchronous machine.

3

-

- e — — _— S ———" e R B — P

62

5. COST OF ALTERNATING LOGIC IMPLEMENTATION

5.1. Introduction and Summary of Results

The implementation cost of any design method that yields networks
with a measure of fault detection capability is of major concern. Results
in this area are, however, somewhat sparse as design of fault tolerant
digital systems is a relatively new field. Of those design methods where
implementation cost is known, triple modular redundant (TMR) design and
quadded logic design are most classic. In TMR design [11,16] basic circuitry
is increased by a factor of 3. To this cost must be added the cost of the
voter, which may appear as a single uuit or may itself be tripldcated.
Implementation of quadded logic design [11,16] requires basic circuitry
to be increased by a factor of 4 as each gate is quadrupled in the design.
Both of the above methods are fault masking techniques.

Alternating logic design is a design method which yields totally
self-checking digital networks which do not mask a fault but simply
indic: te its presence. In order to get a feel for its cost, self-checking
alternating NOR networks representing all 218 three variable functions wera
obtained. These networks were compared with optimal NOR realizations [18]
for each of the 218 three variable functions, obtaining in each case the
ratio between the number of gates in the self-checking alternating realiza-
tion to the number of gates in the optimal three variable realization. For
the 218 functions examined these ratios varied from 1 to 7. Those functions
with a ratio of 1 were the self-dual three variable functions whose optimal

NOR realization had sufficient structural properties to be self-checking

R AR e T ey v R

MR e
AR

o

B— — PR - P

——

-

63

also. Eight of the 218 functions were in this class. Only one function had
a ratio of 7. That function was ET;ET;E; realizable as a simple NOR gate in
a conventional design but requiring 7 gates in a self-checking alternating
representation. Four of the 218 functions had a ratio greater than 3. The
mean for all 218 functions was 1.85, This figure might reasonably be
compared with the figure for duplicating machines, namely 2.

The mean self-checking alternating cost ratio, 1.85, obtained is
not guaranteed to be optimal. That is, a self-checking alternating network
may exist which represents a given three variable function while using
less NOR gates than that network used in obtaining the above comparison.

A lower bound to the mean, however, can be formulated from knowledge of the
optimal NOR realization of the alternating network, not necessarily self-
checking. representing each of the 218 three variable functions. To this

end optimal NOR networks for all self-dual functions of 4 variables were
obtained. These networks were associated with each of the 218 three variable
functions they represent in order to form an optimal ratio in each case.

The mean ratio, 1.63, was then calculated. Thus, the mean self-checking
alternating cost ratio is bounded from below by 1.63.

The mean self-checking alternating cost ratio, 1.85, does not
include the cost of the alternating logic checker. Any implementation of
an alternating logic design must of course include this cost in its justi-
fication, just as the voter cost must be considered in TMR system design.

In the following sections the data supporting the results

summarized here are presented, including NOR network diagrams for each

ot R eSS SRR
B e ' :

|

' — o

.

S

o)

PR MRS R e ey e e G e e

64

optimal alternating network and each self-checking alternating network. If

the details are not of interest, proceeding to Chapter 6 is advised.

5.2. Functional Notation

In order to define explicitly the manner in which the data are
presented, it is probably best to pick a three variable function and find
its optimal conventional NOR realization, its optimal alternating NOR
realization, and the self-checking alternating NOR realization utilized for
representing that function. To this end consider the function f(xl,xz,x3)
specified in Figure 5.la). The function can be represented as an 8-tuple
Z 221300022y where zi-O or 1, 0< i< 7, and where R, ™ £(0,0,0),

z, = £€0,0,) 4¢3 and z, = f(1,1,1). That is, f can be represented as
00011100. As this notation is somewhat cumbersome a shorter notation

based on the previous notation is used. The 8-tuple Z,Z -2 is parsed
into two four-tuples, and a hexadecimal notation based on Table 5.1 is used.
The resulting 2-tuple representation for the function is thus denoted
f(xl,xz,x3) it B 5 where in[O,l,...,9,A,B,...,F} for 0 < i < 1. The function
f is thus represented as f(xl,xz,x3) =]1C, since the hexadecimal version of

0001 1100 is 1C.

5.3. Results

Once the hexadecimal notation for a function f is obtained,

Table 5.2 is consulted. The first column of that table lists the hexadecimal

—

s v

X, X3 65
00 o1 il
L
ol © 0 o
f
i) ¥ 1 F o) o
a)
(xy%y) (x;,%)
(lz,;z)
(‘!-;!)
(t,H)
(xy,%,)
(x5,%,)
(lln)
(xg,%y) (xy X3)
c)
#P - 5008
Figure 5.1. Example 3 variable function.
. s _— nes e wm

z

Table 5.1.

1 %141 %142

o TR S R I S O T - S - B - G - SH - I - W~ -
= e e e O OO O e O 0 O O
o O O = MO O - =0 O ™ =00 O
= O - O -~ O = O = O = O = O = ©

1=0,4

Hexadecimal Notation

%143 j

N N D O B P W e NN N D

j=i/4

66

—— RSN s—— - e pel

67

specifications for all 256 functionstof three or fewer variables. The
hexadecimal specification for the function in question is thus used to
select a row of the table. The second column of the table lists the number
of gates required in the conventional optimal NOR realization of each
function as given in Hellerman [18]. (Complements of input variabies are
assumed to be unavailable.) Thus, for the function 1C, 6 NOR gates are
required. A — 1in the second column indicates that the functional specifi-
cation for that row is a specification for a 0, 1, or 2 variable function.
The third through fifth columns contains data for the optimal alternating
NOR network which represents f, namely the optimal network for the duali-
zation of f, f,, discussed in Chapter 2. For the function 1C there are 8
gates in thi: netwerk, yielding a cost ratio of 8/6 or 1.33. The drawing
numbers in the fourth column will be discussed later. The sixth through
eighth columns contain data for an alternating network which represents
f by realizing f, but does so with sufficient structural properties to
guarantee that it is a self-checking alternating network. For 1C this
realization has 9 NOR gates, yielding a cost ratio of 9/6 or 1.5. A better
realization for the self-checking alternating network may exist but at best
it can have no fewer gates than the optimal alternating network, namely 8.
The cost ratio 1.33 is thus a lower bound on the cost ratio for the function
1c.

The gates required in the optimal alternating networks representing
f were obtained by finding optimal NOR realizations for the function f, of
each three variable function f. Optimal NOR realizations for every four

variable self-dual function were thus required. Of the 3984 P (permutation

e

o 3

PRNTEY oY ———— JRFIRRENS

B AR N O e e e S TR e e R

68

of variable) equivalence classes of four variables, assuming complements
of input variables are not available, 32 are P equivalence classes of self-
dual functions. A representative of each of these 32 representative functions
was selected and optimized by first minimizing the gate count, then
minimizing the number of gate inputs, and, finally, minimizing the number
of levels required to realize the function, utilizing a FORTRAN program

ILLOD- (NOR-B)' written by Nakagawa and Lai [25]. (The optimizing algorithm
used in that program is based on Davidson's [12] branch-and-bound method and
is essentially a NOR version of Davidson's optimizing NAND decomposition
algorithm.) After these optimal networks were produced, one was assigned to
each three variable function along with a permutation number specifying how
input variables are connected such that the network represents f by realizing
f,. Network drawings of the optimal alternating networks appear in
Figure 5.2, p. 82. For the example function 1C, networks 22 and 23 are both
optimal alternating networks for the function although neither is self-
checking. Further, an input interconnection number, 1, is specified,
delimited by a slash (/). Table 5.3, p. 80, associates this number with an input
interconnection specification. Thus, for permutation 1, the clock & should
be connected to a, Xy to b, x, to d, and Xy to ¢. The resulting network
using optimal network number 22 is shown in Figure 5.1 b). It is the optimal
alternating NOR metwork representing the function 1C.

A self-checking alternating network representing the same function

can be obtained using the network drawing information in the seventh column
of Table 5.2, p. 70. In this column {s specified a network drawing number and

an input interconnection specification as before. The network corresponding

St §

e

—

B s e e

69

to these numbers appear in Figure 5.3, p. 84. For the example function, IC,
network drawing number 22 is specified with interconnection number 1. The
resulting self-checking alternating network is shown in Figure 5.1 c).

The self-checking alternating networks shown in Figure 5.3 were
also generated by the FORTRAN program 'ILLOD-(NOR-B)'. The networks,
however, were produced by the program in its search for the optimal
networks. The self-checking capability of these networks was determined

independently based on their structural properties.

'ﬁ"m”‘ 4 . S . el e

ram—

B e e ey e e S B B B s e e

[S
b

70

Table 5.2. Cost Ratio and Network Drawing Table

Realization
Optimal Optimal Self-checking
Conventional Alternating Alternating
Function _Gates _Gates Drwg. Ratio Gates Drwg. Ratio
00 - - - - - - -
01 4 5 6/0 1.25 5 6/0 1:.25
02 3 6 8/0 2.00 6 8/0 2.00
03 - - - - - - -
04 3 6 8/1 2.00 6 8/1 2.00
05 = - - - - - -
06 6 7 14/0 1.17 7 14/0 .17
07 3 5 6/6 1.67 5 6/6 1.67
08 2 6 9/0 3.00 7 9/0 3.50
09 5 7 14/6 1.40 7 14/6 1.40
0A - - - - - - -
0B 4 6 8/6 1.50 6 8/6 1.50
0cC - - - ~ - -
0D 4 6 8/7 1.50 6 8/7 1.50
OE 5 6 9/6 1.20 7 9/6 1.40
OF - - - - - - -
10 3 6 8/4 2.00 6 8/4 2.00
11 - - - - - - -
12 6 7 14/2 1.17 7 14/2 1.17
13 3 s 6/8 1.67 5 6/8 1.67
14 6 7 14/3 p s 7 14/3 1.17
15 3 5 6/9 1.67 5 6/9 1.67
16 7 8 20/0 1.14 9 20/0 1.28
17 4 4 3/18 1.00 4 3/18 1.00
18 6 8 21/0 1.33 9 21/0 1.50
19 o 8 20/8 1.80 9 20/8 1.80
1A 6 8 22,23/0 1.33 9 22/0 1.50
- - — Rt e e TR

Pesu—

[oo
P

s B R e s

71
Table 5.2 continued
Realization
Optimal Optimal Self-Checking
Conventional Alternating Alternating
Function Gates Gates Drwg. Ratio Gates Drwg. Ratio
1B 4 7 14/12 1.75 7 146£12 1.75
1C 6 8 22,23/1 1.33 9 22/1 1.50
1D 4 7 14/13 L. 75 7 14/13 1.75
1E 6 8 21/6 1.33 9 21/6 1.50
1F 3 6 8/18 2.00 6 8/18 2.00
20 2 6 9/2 3.00 7 9/2 3.50
21 5 7 14/8 1.40 7 14/8 1.40
22 - - - - - - -
23 4 6 8/8 1.50 6 8/8 1.5v
24 6 8 21/2 1.33 9 21/2 1.50
25 5 8 20/8 1.60 9 20/8 1.80
26 6 8 22,23/2 1.33 9 22/2 1.50
27 4 7 14/14 j 5 7 14/14 1,75
28 5 7 15/0 1.40 8 15/0 1.60
29 6 8 22,23712 1,33 9 22/12 1.50
2A 2 6 10/0 3.00 6 10/0 3.00
2B 5 5 5/21 1.00 5 5/21 1.00
2C 5 8 24/0 1.60 9 24/0 1.80
2D 5 8 21/12 1.60 9 21/2 1.80
2E 5 7 15/6 1.40 8 15/6 1.60
2F 4 6 9/12 1.50 7 9/12 1.75
30 - - - - - - -
33 4 6 8/10 1.50 6 8/10 1.50
32 5 6 9/8 1.20 7 9/8 1.40
33 - - - - - - -
34 6 8 22,23/4 1.33 9 22/4 1.50
35 7 14/16 1.75 14/16 1.75

———

«!

o

——

p— i E . s——

72
Table 5.2 Continued
Realization
Optimal Optimal Self-Checking
Conventional Alternating Alternating
Function Gates Gates Drwg. Ratio Gates Drwg. Ratio
36 6 8 21/8 1,33 9 21/8 1.50
a7 3 6 8/20 2.00 6 8/20 2.00
38 5 8 24/2 1.60 9 23/2 1.80
39 5 8 21/14 1.60 9 21/14 1.80
3A 5 g 15/8 1.40 8 15/8 1.60
3B 4 6 9/14 1.50 7 . T A W
3C - - - - - - =
3D o 8 22,23/18 1.60 9 22/18 1.80
3E 6 8 24/12 1.33 9 23412 1.50
3F - - - - - - -
40 2 6 9/3 3.00 7 9/3 3.50
41 5 7 12/9 1.40 i 12/9 1.40
42 6 8 21/3 1.33 9 21/3 1.50
43 5 8 20/9 1.60 9 20/9 1.80
44 - B - - - - -
45 4 6 8/9 1.30 6 8/9 1.50
46 6 8 22,23/3 1.33 9 22/3 1.50
47 4 7 14/15 L. 75 7 WIS L.73
48 5 7 15/1 1.40 8 15/1 1.60
49 6 8 22,23/13 1.33 9 22713 1.50
4A - 8 24/1 1.60 9 23/1 1.80
4B 5 8 21/13 1.60 9 21/13 1.80
4C Z 6 10/1 3.00 6 10/1 3.00
4D o 5 5/20 1.00 3 5/20 1.00
4E 5 7 15/7 1.40 8 15/7 1.60
4F 4 6 9/13 1.50 F /13 1.73

e

P ——1

Kl

S

73
Table 5.2 Continued
Realization
Optimal Optimal Self-Checking
Conventional Alternating Alternating
Function Gates Gates Drwg. Ratio Gates Drwg. Ratio
50 - - - ‘- - - -
51 4 6 8/11 1:50 6 8/11 1.50
52 6 8 22,23/5 1.33 9 22/5 1.50
53 4 7 14/17 1.75 7 7 b S O
54 5 6 9/9 1.20 7 9/9 1.40
55 - - - - - - -
56 6 8 21/9 1.33 9 21/9 1.50
57 3 6 8/21 2.00 6 8/21 2.00
58 5 8 24/3 1.60 9 23/3 1.80
59 5 8 21/155 1.60 9 21715 = - 1.80
5A - - - - - - -
5B 5 8 22,2319 1.60 9 22/19 1.80
5C 5 7 15/9 1.40 8 15/9 1.60
5D 4 6 9/15 1.50 7 9L1s | S1.T5
5E 6 8 24/13 1.33 9 23/13 . 150
5F - = - - - - =
60 5 7 15/4 1.40 8 15/4 1.60
61 6 8 22,23/16 1.33 9 22416 . 1.50
62 S 8 24/4 1.60 9 23/4 1.80
63 5 8 21/16 1.60 9 21716 1.80
64 5 8 24/5 1.60 9 23/5 1.80
65 5 8 21/17 1.60 9 21/17 1.80
66 - - - - - - -
67 5 8 22,23/22 1.60 9 22/22 1.80
68 6 8 29,30/0 1.33 9 2870 - 1.50
69 7 7 13/18 1.00 8 13/18 1.14

N LSRR s 4 5

s

N oy r——

. alama

P eees @ e

it -

PrIY

-_-—‘N-—u--ﬁ

74

Table 5.2 Continued
Realization
Optimal Optimal Self-Checking
Conventional Alternating Alternating
Function Gates Gates _Drwg. Ratio Gates Drwg. Ratio
6A 5 8 31/0 1.60 10 29/0 2.00
6B 6 8 24/18 1..33 9 23/18 1,50
6C 5 8 31/1 1.60 10 29/1 2.00
6D 6 8 24/19 1.33 9 23/19 1.50
6E 5, 8 29,30/6 1.60 9 28/6 1.80
6F 5 7 15/18 1.40 8 15/18 1.60
70 2 6 10/4 3.00 6 10/4 3.00
71 5 5 5/18 1.00 5 5/18 1.00
72 5 7 15/10 1.40 8 15/10 1.60
43 4 6 9/18 1.50 7 9/18 1.75
74 5 7 15/11 1.40 8 15/11 1.60
75 4 6 9/17 1.50 7 917 1.75
76 6 8 24/16 133 9 23716 1.50
77 - - - - - - -
78 5 8 31/4 1.60 10 29/4 2.00
79 6 8 24/22 1233 9 23722 1.50
7A 3 8 29,30/8 1.60 s 28/8 1.80
7B 5 7 15/20 1.40 8 15/20 1.60
7C 5 8 29,30/9 1.60 9 28/9 1.80
7D 5 7 15/21 1.40 8 15/21 1.60
7E 6 8 31/18 1.33 10 29/18 1.67
7F /2 6 10/18 3.00 6 10/18 3.00
80 1 7 16/0 7.00 7 16/0 7.00
81 5 8 25/0 1.60 11 24/0 2.20
82 4 7 17/0 1.75 9 17/0 2.25
83 4 8 32/0 2.00 10 30/0 2.50
84 4 7 17/1 1.75 9 17/1 2.25

-

i e w—— s

"

75
Table 5.2 Continued
Realization
Optimal Optimal Self-Checking
Conventional Alternating Alternating
Function Gates Gates Drwg. Ratio Gates Drwg. Ratio
85 4 8 32/1 2.00 10 30/1 2.50
86 7 8 33/0 1.14 10 31/0 1.42
87 4 8 25/6 2.00 11 24/6 2.75
88 - - - - - - -
89 5 8 33/6 1.60 10 31/6 2.00
8A 3 7 18/0 2.33 8 18/0 2.67
8B 4 7 17/6 1.75 9 17/6 2.25
8C 3 7 18/1 2.33 8 18/1 2.67
8D 4 7 17/7 Ee75 9 17/7 2.25
8E 6 6 7/22 1.00 6 722 1.00
8F 3 7 16/6 2.33 7 16/6 2230
90 4 7 17/4 1.75 9 17/4 2.25
91 4 8 32/4 2.00 10 30/4 2.50
92 7 8 33/2 114 10 31/2 1.42
93 4 8 25/8 2.00 11 24/8 2.5
94 7 8 33/3 1.14 10 31/3 1.42
95 4 8 25/9 2.00 11 24/9 2. 15
96 7 7 12/18 1.00 9 12/18 1.28
97 5 8 32/18 1.60 10 30/18 2.00
98 6 8 34,35/0 1:33 10 32/0 1.67
99 - - - - ~ - -
9A 6 8 26/0 1.33 10 25/0 1.67
9B 4 8 33/°2 2.00 10 31/12 2.50
9C 6 8 26/1 1.33 10 25/1 1.67
9D 4 8 33/13 2.00 10 31/13 2.50
9E 7 8 34,35/6 1.14 10 32/6 1.42
9F 4 7 17/18 1.75 9 17/18 2.25
—

™

!
iy

it §

rganan 4

an—a—

e UHB W emm e

™ P

76
Table 5.2 Continued
Realization
Optimal Optimal Self-Checking
Conventional Alternating Alternating
Function Gates Gates Drwg. Ratio Gates Drwg. Ratio
AQ - - - - - - -
Al 5 8 33/8 1.60 10 31/8 2.00
A2 3 7 18/2 2.33 18/2 2.67
A3 4 7 17/8 1.75 17/8 225
A4 6 8 34,35/2 1.33 10 32/2 1..67
A5 - < - - - £ -
A6 6 8 26/2 1.33 10 25/2 1.67
A7 4 8 33/14 2.00 10 3114 2.50
A8 4 7 19/0 1.75 7 19/0 1.75
A9 6 8 26/12 1535 10 25412 - 1:67
AA - = - - = = -
AB 4 7 18/12 1.75 18/12 2.00
AC 5 8 27/0 1.60 26/0 1.80
AD 5 8 34,35/12 1.60 10 32/12 2.00
AE 5 7 19/6 1.40 7 19/6 1.40
AF - - - = = - -
BO 3 7 18/4 2.33 8 18/4 2.67
Bl 4 7 17/10 1.75 9 17719 2.25
B2 6 6 7/19 1.00 6 7/19 1.00
B3 3 7 16/8 2.33 7 16/8 2.35
B4 6 8 26/4 1.33 10 25/4 1.67
B5 4 8 33/16 2.00 10 31/16 2.50
B6 7 8 34,35/8 1.14 10 32/8 1.42
B7 4 7 17/20 1.75 9 17/20 2.25
B8 5 8 27/2 1.60 9 26/2 1.80
B9 5 8 34,35/14 1.60 10 32/14 2.00

BT T ————— e o - .

PRV

-

el e

77
Table 5.2 Continued
i Realization
[Optimal Optimal Self-Checking
: Conventional Alternating Alternating
g Function Gates Gates Drwg. Ratio Gates Drwg. Ratio
BA 5 7 19/8 1.40 7 19/8 1.40
§ BB - - - - - - -
s BC 6 8 28/0 1.8 3 1 2 1.
BD 5 8 26/18 1.60 10 25/18 2.00
BE 6 8 27/12 1.33 26/12 1.50
i BF 3 7 18/18 2.33 18/18 2.67
& : S ; EERE R
cl 5 8 33/9 1.60 10 31/9 2.00
i c2 3 8 34,35/3 2.67 10 32/3 3.33
c3 - - - - - - -
l A 3 7 18/3 2.33 8 18/3 2.67
c5 4 7 17/9 1.75 17/9 2.25
l c6 6 8 26/3 133 10+ '25%/% . 1.62
c7 4 8 33/15 2.00 10 31/15 2.50
c8 4 7 19/1 ¥.75 o 19/1 1.75
‘ c9 6 8 26/13 1.33 10 25/13 1.67
CA 5 8 27/1 1.60 9 26/1 1.80
' CB 5 8 34,35/13 1.60 10 32/13 2.00
CcC = < - & - - -
' CD 4 7 18/13 1.75 8 18/13 2.00
CE 5 7 19/27 1.40 19/27 1.40
] CF - - - - - - -
DO J 7 18/5 2:33 8 18/5 2.67
D1 4 7 17/11 1.75 1IM/11 2.25
l D2 6 8 26/5 1.33 10 25/5 1.67
D3 4 8 33/17 2.00 10 31117 - 2.50
l D4 6 6 7/18 1.00 6 7/18 1.00
i
L
e T ——
N

M —— S S

[r——

[— Y — — - . e e—

" . \

B e e

78
Table 5.2 Continued
Realization
Optimal Optimal Self-Checking
Conventional Alternating Alternating

Function __Gates Gates Drwg. Ratio | Gates Drwg. Ratio
D5 5 7 16/9 1.40 7 16/9 1.40
D6 7 8 34,35/9 1.14 10 32/9 1.42
D7 4 7 17/21 1.75 9 L7128 - 225
D8 5 8 27/13 1.60 9 26/13 1.80
D9 5 8 34,35/15 1.60 10 32/15 2.00
DA 6 8 28/1 1.33 11 27/1 1.83
DB 5 8 26/19 1.60 10 25/19 2.00
- DC 5 7 19/9 1.40 7 19/9 1.40

DD = . - - - - -
DE 6 8 27/13 1.33 9 26/13 1.80
DF 3 7 18/19 2.33 8 18/19 2.67
EO 4 7 19/4 § i 7 19/4 B
El 6 8 26/16 1:33 10 25/16 1.67
E2 5 8 27/4 1.60 9 26/4 1.80
E3 5 8 34,35/16 1.60 10 32/16 2.00
E4 3 8 27/5 1.60 9 26/5 1.80
E5 5 8 34,35/17 1.60 10 3zrLr 2.00
E6 6 8 28/4 133 11 27/4 1.83
E7 5 8 26/21 1.60 10 25/21 2.00
E8 5 5 4/18 1.00 5 4/18 1.00
E9 7 8 2 taa] 1t 1INe LY
EA 4 6 11/0 1.50 6 11/0 1.50
EB 5 8 27/18 1.60 9 26/18 1.80
EC 4 6 11/1 1.50 6 11/1 1.50
ED 5 8 27/19 1.60 9 26/19 1.80

EE - : - - - - -
EF 4 7 19/18 1475 7 19/18 1.75

A AR

l,l;f ‘i

T @) R AT R S e A SRR SRR e

79
Table 5.2 Concluded
Realization
. Optimal Optimal Self-Checking
Conventional Alternating Alternating

1 Function Gates Gates Drwg. Ratio Gates Drwg. Ratio

FO - - - - - - -
F1 4 7 18/16 2o 13 8 18/16 2.00
F2 5 7 19/10 1.40 19/10 1.40

F3 - - - - - - -
F4 5 7 19/11 1.40 7 19/11 1.40

F5 = = = - = ~ -
F6 6 8 27/16 1.33 9 26/16 1.80
F7 3 7 18/22 2.33 8 18/22 2.67
F8 4 6 11/4 1.50 6 11/4 1.50
F9 5 8 27/22 1.60 9 26/22 1.80

FA - - = - = - -
FB 4 7 19/20 1.75 7 19/26° -1.725

FC = = = = “ = -
FD 4 7 19/21 1.75 7 1928« 105
FE 5 6 11/18 1.20 6 11/18 1.20

FF . ~ = - = - -

s HEE B e e e el e S RS M e e e

T T

80

Input Interconnection Specification

Table 5.3.

Variables
$ X x2 X3

Permutation

Number

d

P,

10
13
12

L3
14
15
16
17
18
19
20
21

22
23

Ay

iiﬁif”'"

e

gt g

S S A e e e i el e S prw—— —

81

NnTQ A0 Ao ao

¢

Figure 5.2.

Optimal alternating NOR networks.

W b TR s gl

®
- |3 ;
2 ¥ 1 :
g !
i
3
o o M
o M
K
(Shelele) m
T 2] “
2
g :
o
o
- |
=
s |
e
(-} |
o f
i !
.
o~ 1
- Tu_7 : 1
— —) {
d . z ”
3 =
B 5 m. {
“ -~ e
e
3
1 .
{
o O jov -
1 gl
- —

'--i".il.fi.siillll‘;t}!llll

83

TR e s e e e

©

13:#

FP-ag?’

FP-4818

i

M
o
L8]
—~
L2}

B

y)
3

W0,

et 5,

e wem BEE BEE O SRE e s e SEm e 8

concluded.

Figure 5.2.

B TR

g ———————— e — ———— 5

S

84

FP-5087

o m
S &
: o
& ()
o (R
ﬂ p.‘p
L S | ool 2y
= o © oo
()
o o o o o v
o © o o o B8P i Aol
o
= B =]
-
2
a
a
“
[
=
| 1!
o Y oo ou
o o owu W
= Vo DoV 9V oL
° o
2_ 5_ = 8_ et
-
2
s
d
-
% e o
o |
nU oV ©o |]
a o ©o
= o <] S
- - v ey - e —— e oo e— Fr— |

Self-checking alternating NOR networks.

Figure 5.3.

s B et G P

g ate

e t———

S §

|
ol

s

——

L I e

85

Figure 5.3.

continued.

FP-so8e

W

Lk S TS

86

-
X
.

Rl T —— — P,

fP-30089

Concluded.

Figure 5.3.

‘.{S‘d.ﬁ' \

s AT

o -

7 AD=AD31 429 ILLINOIS UNIV AT URBANA=CHAMPAIGN COORDINATED SCIENCE LAB F/8 9/2
THE DESIGN OF ALTERNATING LOGIC SYSTEMS WITH FAULT DETECTION CA==ETC(U)
AUG 76 D A REYNOLDS DAABO7=72=-C~-0239
R=738 NL

UNCLASSIFIED

END

DATE
FILMED

{176

e

Nl\u» \\\H: I

% .|i;i A4

122
2

2 [lis s

-
¢

87

6. ALTERNATING DESIGN WITH NAND/NOR LOGIC

6.1. NAND/NOR Algebra

The two-input NAND function and the two-input NOR function are

commonly denoted by such symbols as the stroke
alb =35 = a+b (NAND)

and the arrow 2
alb = a+b =ab (NOR).

While such a notation is convenient for two input functions, its implementa-
tion in a NAND/NOR decomposition of a multi-input function becomes awkward
to read and to manipulate, and an alternate notation becomes desirable.
Hohn [19] has proposed such a notation and developed an algebra for mani-
pulating a function expressed in that notation.

Let M denote the multi-input NAND function and m denote the multi-
input NOR function. Then for all switching functions fl’f2""’£k of n
variables, and for all possible integers k,

LICHE S A f_l‘f;“ﬁk = 'f'1+?2+... +Ek

and

m(E L fy, .0 nfy) = EHE, #oe #F = £,

Thus, M(fl.fz,...,fk) denotes the NAND of fl,fz,..., and fk and

m(f ,...,fk) denotes the NOR of fl,fz,..., and fk' When this notation is

15
applied to the familiar sum-of-products to NAND transformation, the following

results where Bi1 842 - 8y, represents the i-th implicant of r, variables.
i

i S — — — S ——
- - - ; : . s

2 @% b

e nd

————

——

88

811812"'81r1+821822'"32r2 MR L WLE “See,

- M[M(gll’glz"'"slrl)’M(821’822’"”82r2)""'M(skl’ng""’gkrk)]'

Similarly the product-of-sums to NOR transformation can be written as follows

where h.11+h12-+...-+hiri represents the i-th implicate of r, variables.

(hyyHhyy e '”‘1:1) (hythy, +-oe “‘2:2)“ o (hy iy, +eee +hkrk)

- m[m(hu,hu,...,hlrl),m(hzl,hzz,...,hzrz),...,m(h.kl,hkz,...,hkrk)].

Utilization of these transformations enable NAND and NOR expressions
to be obtained directly from the Karnaugh map specification of a function.
Further, the NAND and NOR representations obtained are necessarily minimal

two-level representations of f. The following example illustrates the

procedure.

Example 6.1: Consider a function f of four variables xl,xz,x3, and X,
specified as in Figure 6.1 a). A minimal two-level NOR decomposition of £
is obtained by first circling prime implicates as shown. Then the NOR

decomposition is written as,
X m[m(;‘.lixz)’m(-x-lix3)’m(xztx39xa)]'
This representation is really obtained from the product-of-sums represen-
tation,
f= (x1+x2)(§i+x3)(x2+x3+xa)
but can be written from the map directly.

Similarly, the minimal two-level NAND decomposition of f is

obtained from the prime implicant map of £, Figure 6.1 b), as

i pa—— e T

o,

SR pey e e e e S R S e e—

89

X3 Xg
00 o1 11 10

X1 X2 '
oof 1 1 0 1

o} 1 1 1 1

1 1 1 0 O]

ol (o | ool o)

X} X2

00 11 1 0

01_@ LIl 1

n[1 1] o

oﬁqs

0] O (0] 0 0

b)

FP-5090

Figure 6.1. Karnaugh maps for NAND and NOR decompositions.

-

E———

90
£ = M[M(El oxz) ’M(;l :;3) ’M(il ’R-Q) ’M(XZ ,‘)(-3)] s

with the sum-of-~products form being

f= xlx2 +x1x3 +x1x4 +x2x3.

Once the two-level NAND or NOR decompositions of a function f are
obtained, it should be possible to effect transformations on these so as to

produce possibly more optimal multi-level realizations. Hohn [19] has

developed a NAND/NOR algebra to handle such transformations. The laws of the

algebra are summarized here.

The NAND and NOR operations are operations obeying the commutative

law. Thus, if 11,12,...,ik is any permutation of 1,2,...,k then
BB s Ensvsanh) ™ML, 8, yoies®y)
128g0 ey T 4

Wl i) SO B L erisk 3
£ P Y

The operations are however not associative; that is,
MLE,M(E,y, £4)] # MIM(E,,£,)5 £,]

m[fl.m(fz.f3)] # m[m(fl.fz),f3]-

When more than one operation is involved, certain regroupings are possible.
These result in the hybrid associative laws.

M(£ 2 Eyseen sy ah™) = Mu(E,,5,, ... 5),0*")

LICHE AN A O w(M(E,, £y, .00 B) 0*]
These laws turn out to be useful for utilizing available inputs, for

eliminating complements when desirable, and for controlling fan-in and

fan-out.

- ———

—— p—— .. S e

- ——

91

The NAND and NOR operations are not distributive. That is,
H(fl,m(fz,f3)) d m(M(fltfz)iM(flifa))
m(f L M(E,,£,)) ¢ M), £,) m(E),£5)).

However, the factoring laws play the role played by the distributive laws
in the factoring process. Let f*, g*, and h* denote any nonnegative

integral number of arguments f ’ hi’ respectively. Similarly, let f*,

i’ &4

g*, and h* denote any positive integral number of arguments £ h

il 81’ i’
respectively. Thus, h* may be an empty set, but h+ cannot. Moreover,
whenever h* or h+ is repeated in a given identity, it stands for the same

+
set of arguments at each appearance. The same applies for f*, f , g*, and

g+. Utilizing this notation, the generalized laws of factorization are

EYTE AT BITCAR 3 MR TC A S W

ol CTGRT TR IO R TOA s PR

alm(s",8)) ,m(f",8)), - omee", g0) "]
= ulu(f",uln(g)),m(g)), ... ,m(g)}),0"].

The laws of idempotency for NAND and NOR are essentially derived from those

for AND and OR.
M(£, £,8") = M(£,8%)
m(f,f,g*) = m(f,8%)
From the basic definitions of the NAND and NOR operations, the laws of

operation with O and 1,

e

M©0,g*) =1 and M(1,£)) = M(£))

m(1,g*) = © m(0,£) = m(£h),

and the laws of complementarity,

M(f, E,8%) = 1

m(£,E,87) = 0

result. The laws of involution take the form

MM(f)) = £ and m(M(f)) = £

m(m(f)) = £ M(m(f)) = £.

Other transformations or laws which are for the most part simply
translations of AND/OR/NOT transformations to NAND/NOR form also are

uscful. These are the reduction laws

M(f,m(f,g)) =1

m(f,M(f,g)) = O,
the generalized laws of redundancy,
M £,M(E,8T),0%) = M e, %) Mm@, gh),0*) = Mg,meh),n*)
al£,m(f,8%),0%) = ul£,mgH),0*] wle,ME gH),0*] = ulg,M(e),0*)
the generalized absorption laws,
mimceh),meet,8%) 0% = Mnee™) 0"

alm(e"),mret,8%),0*] = alm(e),0*],

the laws of consensus,

92

e —

93

M M(£,8),M(E,h),M(g,h)] = M{M(£,8),M(E,h)]

n{m(f,g),n(E,h),m(g,h)] = mlm(£,g),n(E,h)],

the generalized laws of condensationm,

Mimce, ey, M(E e 0" = 1ingh) 0%
alm(z,e"),mE, g, 0% = aluh),n*l,
and a somewhat useful transformation, identity I1,
imlM(E), £,),M(E}, BT, 0%) = MOM(E), By M(E) L £,) 0]
lm{m(t,,£,),m(E, ,£))],0*] = alm(f,,) ,m(E, . £,) 0%
As an illustration of the application of NAND/NOR algebra consider

the full adder, Hohn [19].

Example 6.2: The full adder model and Karnaugh maps specifying its operation
are shown in Figure 6.2 a). From the map for S, a two-level NAND repre-

sentation is obtained,

s = M{MG@a,b,c,),M@,b,c;),M(a,b,cq),Mla,b,cp)].
Using the laws of commutdtivity and the laws of factorization,

S = M[M(a,b‘,?:'i),u(;‘,b,’c‘i),n(uin(i,i),u(a,b)},ci)].
But then, using identity I1,

s = MM(a,bB,c;),M@@,b,c;),MM(a,B) ,M@,b) e }].
Now, using the laws of redundancy to remove complements

s = Mmla,M(b),M(c))} MM(a) b M(ep)],
H{H{l.“(b)] ,H{H(]),b} oci}l

e

Fult

Adder

94

ab
c, 00 o1 11 10 00 ol 11 10
08 o @ 1 0 1 °f 0O 0 1 0
——o ¢4 1 1 o} 1 o} 1l O 1 1 1

a)

Ci

b) FP-5091

Figure 6.2. NAND/NOR algebra applied to full adder.

L - .
— “”“‘Wsay %

S e wete B A

N T s e

95

= 5 = Mula,M(a,b),Ma,c)}, MM(a,b),b,Mb,c))],

m{mla,M(a,b)}, M M(a,b),b] ,ci}].

once again, using the laws of redundancy, the redundant argument
M(a,b) can be inserted into both M(a,ci) and M(b,ci) within the first two
ma jor arguments, and the redundant argument ¢, can be inserted into
Mia,M(a,b)} and M{M(a,b),b} of the last major argument. Thus,

s = Mmla,M(a,b),M[a,M(a,b),c, 1}, M{M(a,b),b, M M(a,b),b,c,],

M{H[B,M(a,b),ci] ,M[M(a,b),b,cil ’ci}] .

Although the result looks complex, repeated appearances of the same
argument make it an economical expression for S.

From the map for Co’
co - MfM(a,b).M(b,ci),M(a,ci)].
And, using the laws of redundancy,
CO - M[M(a,b),M{M(a,b),b,ci] ,H{A,M(a,b),c }]'

The resulting form thus has the same arguments as appear in S resulting in

the circuit shown in Figure 6.2 b).

6.2, Self-Checking NAND/NOR Algebra
The NAND/NOR algebra presented permits manipulations of NAND/NOR

decompositions of Boolean functions. Such decompositions are important

since any Boolean function can be expressed as such a decomposition and,

R

96

therefore, realized in a NAND/NOR network. However, of interest here is

the realization of a function f in an alternating NAND/NOR network. If f

is self-dual, then f can be expressed as a NAND/NOR decomposition and
realized in a NAND/NOR network directly. If f is not self-dual, then it
is dualized to form the self-dual function f,, and f, is expressed as a
NAND/NOR decomposition and realized in a NAND/NOR network with the (0,1)
clock ¢ as one input. 1In either case the resulting NAND/NOR network is
an alternating network. It is, however, not necessarily a self-checking
network. To be self-checking the NAND/NOR network structure must be
restricted to some degree. That restriction is essentially specified in
Corollary 2.1. However, a restatement of that corollary directly as it
pertains to zlternating NAND/NOR networks requires some development.
Jonsider an arbitrary alternating NAND/NOR network and label
that network as follows. Label the output gate 0, standing for odd.
Label each gate which is an input to the 60 gate with an e, standing for
even. Now, proceed toward the input, labeling each gate which is an input
to an e gate with an o, and each gate which is an input to an o gate with
an e. If such a labeling is possible then any output path P from a fanout
gate labeled o is such that w(P) = 0, and any output path P' from a fanout
gate labeled e is such that w(P') = 1. Such a network is therefore self-
checking according to Corollary 2.1. If a contradiction results from the
attempted labeling, then there is a fanout gate which is an input to both
an odd level gate and an even level gate, and, as a result there is an
output path P through the even level gate such that w(P) = 0, and an output

path P' through the odd level gate such that w(P') = 1. As an example,

......

‘ ,*?':.,. m T

e . o PR A

o

s

97

considgr the NAND/NOR network shown in Figure 6.3. The output gate is
first labeled o and then labeling proceeds toward the input according to
the procedure. For the network shown in a), the procedure leads to a
contradiction; That network is therefore not self-checking. For the
network shown in b), no contradiction is encountered, and the network is
self-checking.

A design procedure which assures the production of NAND/NOR
alternating networks in which fanout gates feed only odd or only even level
gates is therefore desirable. One such procedure that utilizes Hohn's
NAND/NOR algebra modified to carry level information meets these restrictions.
The procedure starts with a two-level NAND/NOR decompositon of the self-
dual function w to be realized. (Note that w=f if f is self-dual, w=f
if not.) This decomposition is then subscripted to reflect level information.
Then, the subscripted decomposition is transformed utilizing laws from the
modified NAND/NOR algebra in an effort to obtain a more optimal multi-level
realization. The decomposition obtained at each step specifies a NAND/NOR
alternating network meeting the stated restrictions. To illustrate the
first part of the procedure consider the function f of Example 6.1. From

the map specification of f, Figure 6.1 a), the NOR decomposition,
f= m{m(§1,xz),m(?l,ié),m(x2,§5,§4)],

is obtained. When this decomposition for f is subscripted to reflect level

information, the subscripted decomposition,

f = mo[me (-’?laxz)nme ,.""19;3)’me (xz 023 3;4)] ’

g e AP Sauin o0 p— I T

{xg,x})
(%, %)

e

)

B e B

o,e p e

(s,5)

a)

(£,f)

FP-5092

Figure 6.3. Level labeling of NAND/NOR networks.

L™ Py

98

s e e ——

YT

G s e

e T

99

results. An m, (me) in this functional description translates to an odd
(even) level NOR gate in the NAND/NOR network realizing f. Similarly,
Mo (Me) translates into an odd (even) level NAND gate.

Each law in Hohn's NAND/NOR algebra is modified in a similar
fashion so as to carry level information. For example the hybrid associatdive

laws become
P - *
M (£156,, 0005 6,0%) = M lm (),E,,...,E),h"]
) r 3 £).h
m (£156,,000,6,0%) mo[Me(fl,fz,...,fk),h]
if the law is applied to an odd level gate and
M (£)05y,. 00,5, ,h%) = Me[mo(fl,-f-z,‘...,-f—k),h*]
me(fl,fz,...,fk,h*) - me[uo(?l,?z,...,ik),h*]
if applied to an even level gate. A simplification of notation results if

L is defined as an element of the set {o,e}, LG{o,e] where o and e are

related as follows: o=¢e, e=0. The hybrid associative laws can then be

written as,
M (E)afys s Bo0%) = Dee(EL T, L) 07
mL(fl,fz,...,fk,h*) - mL[yt(?l,?z,...,fk),h*].

In similar fashion the other laws or transformations are modified to form a

modified NAND/NOR algebra carrying level information. The commutative laws

become, where 11’12""’1k is any permutation of 1,2,...,k,

L A LGPV R R B
M, (£, 5) g ™ L
URR AT R T SB, B, 1
m (£, 5, £)*m e L

P~ .

100

The laws of factorization become

m D (e, 8D e (7,), e (g0 ,0%)
- ML[}tc(f+,ML{Ptr(g;),Mr(8;)....,ML-(G:)}),h*]
m Lo (€7, 81 me (€789 i (€T,) 0%
= m (o (e my (mo(g)) o)) ome(gy)) 04D,
The laws of idempotency become
M (f,£,8%) = M (£,8%)
my (£,£,8%) = m (£,8%).

The laws of operation with O aad 1 become

M (0,8%) = 1 M (L) = (£
m (1,g%) =0 m (0,£") = m (£1).

The laws of complementarity become

M (£,F,8%) = 1
m (£,%,g%) = 0.
The laws of involution become

MOG(E) = £ m (M) = €
m@(£) = £ M (@(D) = £.

The reduction laws become
My (£,mc(£,8)) = 1
@y (£,M(£,8)) = 0.

e————————

P
|

G e e

101
The laws of redundancy become
* o o +, o = ah At e *y ¥
M LEM(E,80), 0] = LEMGeT), 0] M E,m(E,87),0%] =2 [£,m(g7),0%)

mlf,m (5,870,084 = mlf,m(e),n*] m[e,M(Fg"),0%] =m Lo, (8,08,

The absorption laws become

w (e 67,89, 047 = g D (£, %)

o + o, W
my (o (£7) m(£7,8%),0%] = my[m (£7),07].

The laws of consensus become

e, (o (£,8) 10 (F, 0, (8,00 = 2 (8580 500 (F,)]
my (me-(£,8) ,m-(F, 0) ,me(8,0)] = my [mc (£, 8),m (1) 1.

The laws of condensation become

+ A T S +, %
M (M- (£,87), Mp(E,87),0%] = M [(g7),07]
4 - + +
m [m(£,87) ,m-(F,87),0*] = m [m-(g7),0*]
and, identity Il becomes
- * = *
i Dol (£, 6,0, (B 10T = wDnp(e),B)) M (5L £)) 0]
* - 3 z *
my (m{my (£, 8,),my (FLFp)10%) = mloa(8),8)) om(E) L £)) 07T,
The object of applying the modified NAND/NOR algebra to the two-
level subscripted NANU or NOR decomposition is to produce a multi-level
decomposition containing common terms so as to economize the implementation.

The full adder of Example 6.2 illustrated this approach for the unsubscripted

NAND/NOR algebra. However, when the subscripted algebra is used two terms

R Cismmen T T——

T D
et

-~

-

ye—

G

|

102

are not considered common unless they agree in subscripts as well as in type.
For example suppose the subscripted algebra is applied to a two-level
decomposition of a function f, and that the following multi-level decomposi-

tion is obtained,
£ = MO[Me(a,b),Me(a,c),Me(b,c),Me{Mo(a,b),mo(a,b,c)}].

The subscripted terms Me(a,b) and Mo(a,b) appear, but they are not considered
to be common terms, and the NAND/NOR realization of f would contain a NAND
gate for both Me(a,b) and Mb(a,b). A form of redundancy is thus introduced
automatically as required to guarantee that no NAND or NOR gate fans out

to both even and odd level gates. The following example is one which

results in this type of redundancy.

Example 6.3: Consider a self-dual function f specified as in Figure 6.4 a)
by means of a Karnaugh map. Utilizing the prime implicates indicated, a

two-level NOR decomposition can be written,
£ m(m(xlﬁx2!;3))m(x1’;2)x3)!m(iliizi;‘-3)lm6€1tx2!x3)]!
and subscripted as,
£ = mo[me(xl’XZ’x:})’me(x1’§2’x3)'me(xl'x2’x3)’me(xl’XZ’x3)]'
Then, using the factorization law, the expression,
- i mo"me{XZ nmo(me (xl)x3)ume(x1'x3))} ’me(xl’x2’mo(x3))’me(XZ’fo'no(xl))]’

is obtained. Using identity Il on the first major term and the law of

redundancy on the last two major terms yields,

f= mo[me{;Z .ﬂo(x19;3) "oﬁl’x3)} .ﬂ‘e{xl ’x2 o‘o(xlox3)} nﬂ.{x2,3‘3’-°(110x3)}]~

o1 |0 Ol 1 1
1 1 1 IO Ol
Rirsg ey

b) FP - 5093

Figure 6.4. Function specification and network for Example 6.3.

103

A

— -

),

[

T — e a8

104

Eliminating complements using the law of redundancy then yields,
mo[me{mo (xz),mo (xl »me (xl lx3)):mo (x3 ’me (xl’x3))} B
me{xl,xz,mo(xl,xa)},me{xz,x3,m°(xl,x3)}].
Based on this multi-level decomposition, a NOR network containing an even

level gate for me(xl,x3) and an odd level gate for mo(xl,x3) is constructed.

This network is shown in Figure 6.4 b).

The procedure described can be applied to functions which are not
self-dual also. The result is, of course, not an alternating network, but
simply a NAND/NOR network having the property that no NAND or NOR gate feeds

both even and odd level gates. The following example illustrates.

Example 6.4: The function f has a Karnaugh map specification shown in

Figure 6.5 a). From that specification the two-level NAND decomposition,
f = M(M(c,a,b),M(T,a,b)],

can be written utilizing the prime implicants shown. Subscripted, the

decomposition becomes

f = Mo[Me (c,E,F),ue (c,a,b)]

= £ = MM (e, M (b),M, (a)),M, (M (c),a,b)].

Repeated use of the law of redundancy then results in the following sequence

of transformations,

D SEmy M e e e B S e

ab

10

a)

S

b)

FP - 5094

Figure 6.5. Function specification and network for Example 6.4,

e

105

. B

e)

106

£ =M [fc,M (b4, @)),M (a)),4 1a,b, (a,0)}],

M (M {c,M (b,M, (a)),M (a,e)},M (a,b,M (a,e)}]

M (M {c,M (b, (a,c),M, (a)),M (a,e)} .M La,b,M (a,e)]]

M IM L M (b4, (@,0),M, (a4, (a,¢))), M, (a,0)], M {a,b,M (a,c)]]

M (M {c,M (b4, (a,b,4 (a,))),M (a,c)] M [a,b, (a,c)}].

The resulting NAND network, shown in Figure 6.5 b), has no gate which feeds

both even and odd level gates.

S T e ——— L A S S ST

L

™ P

107

7. COMPLETE SETS OF ALTERNATING LOGIC PRIMITIVES

7.1. Weak Complete AlternatingAPrimitive Sets

Consider a combinational network N realizing an arbitrary function
f with n inputs XjaXg eees¥p and one output y. The methods described
previously for realizing N as an alternating circuit utilized a dualization
procedure for functions f which were not self-dual so as to produce a self-~
dual functional specification representing the original functional
specification. Such a dualization utilized a system clock as an input
in such a manner that with the clock at logical '0' and XyoXpyeoesXy

applied as inputs, f(xl,x .,xn) was produced. With the clock at

g3

logical '1l' and El,ié,...,ih applied as input, ?(xl,x ,xn) was produced.

gseee
For a function f which was already self-dual, the functional specification
representing f was the functional specification for f itself, and no clock
input was required. Once these representative functional specifications
were determined, they were realized using conventional logic primitives,
e.g. AND/OR/NOT, NAND, or NOR, in networks designed to be self-checking
for all single faults. 1In each case, design procedures using the conven-
tional sets of logic primitives led to networks of restricted structure.

Now, consider a set F of self-dual functions F = {f(l),f(z)

PR
f(p)} and suppose that this set of logic primitives is to be used to
realize the function f directly. That is, the function f is to be realized
as a composition of functions from the set F. A composition of self-dual

functions, Ibuki [20], is itself self-dual. Thus, while the realization

of any composition of functions from the set F is an alternating circuit,

T i s

R,

ol St 4

B e e

108

only alternating circuits realizing self-dual functions result from the
compositions. In alternating logic design, however, the clock is available
and is itself a self-dual function representing the conventional o function.
So, every Boolean function can be represented in an alternating circuit

constructed as a composition of alternating primitives f(l),f(z),...,f(p)

& {f(l),f(Z)’.__’f(P)

if and only if F' ,o} is a complete set of logical
primitives in conventional terms. If this is true, then {f(l),f(z),...,f(p)}

will be called a weak complete set of alternating logic primitives. To

determine what restrictions are placed on f(l),f(z),...,f(p) such that
{f(l),f(z),...,f(p),o} is a complete set of logic primitives in the
conventional sense requires some background and development in the theory

of complete sets of logic primitives.

Definition 7.1: The function set S generated by a function set R =

{fl’fz""’fq} is the set of functions realizable as a composition of

functions from the set R and is demoted by [K].

Obviously, the set R is a complete set if for every Boolean
function f,fe(R]. Further, if KN denotes the set of all Boolean functions
of N or fewer variables and [R] = KN, then R is complete. This follows
from the fact that if a function set i3 complete for a certain value of N,
N > 2, then the function set is complete for any value of N, [20]. A

minimal complete function set is a complete set which fails to be complete

if any one primitive is removed from it. A maximal incomplete set of logic
primitives is a set of logic functions which becomes complete if there is

added to it any other function which is not an element of the set.

o ndee

s

- - m _- _— = | emand | e —— aabm———

——— e T R R S

109

Five functional properties are instrumental in determining whether
or not a set of logic primitives is complete. They are the O-preserving,
l-preserving, self-dual, linear, and monotonic properties of the functions

in the set R.

Definition 7.2: A function f is O-preserving if the value of the function

is 0 when every input variable takes on a value of O.
£(0,0,...,0) =0

Let M. designate the set of all O-preserving functions.

1

Definition 7.3: A function f is l-preserving if the value of the function

is 1 when every input variable takes on the value 1.
F(lylssccel) = 1

Let M2 designate the set of all l-preserving functions.

Definition 7.4: A function f is self-dual 1iff the function f and its dual

function fD are identical or equivalently,
£(XpsXpseeesXy) = ?&1,22,...&“).

Let M3 designate the set of all self-dual functionms.

Definition 7.5: A function f is linear if it can be written in the form

f(xl,xz,.. .,xn) = goe (glxle 32x26 ~~-$gnxn).

Let H4 designate the set of all linear functions.

— g -

. e

B N N e e e e e

110

Definition 7.6: A function f is monotonically increasing if for every

xll’x12""’x1n': x21’x22""'x2n then

>
f(xll’xlz""’xln) z f(x21,x22,...,x2n).

Let M. designate the set of all monotonically increasing functions.

5

Now, consider again the set of logic primitives F' = {f(l),f(z),...,

f(p),o} where f<1),f(2),...,f(p) are self~dual functions. Completeness of
the set F' is dependent on the properties of the self-dual functions

f(l),f(z),...,f(p). These dependencies are defined in the following.

Lemma 7.1: If F'dM, then xe[F'] and 1€[F'].
Proof: 1f F'Q’Ml, then there exists a function feF' which is not 0O-preserving.
So then, either fen2r1ﬁl, or feigfﬁig. But, if f is self-dual and not

O-preserving then

£(0,0,...,0) = 1

=> f(1,1,...,1) = 0,

and f is not l-preserving. So, flefiﬁl. That is, fe§2f1ﬁ1. But then
xe[F'], since the function X can be obtained from f by tying all inputs of

f together. Thus, for O in, xl-O, x2-0,...,xn-0 and, since f is not
O-preserving, a 1 is produced as an output. For 1 in, X" l,x2 = 1,...,xn- 1
and a 0 is produced as f is not l-preserving. Now, since xe[F'] and 0e[F'],

le[F']. Q.E.D.

Further, Ibuki [20] has proved the following lemma. The proof appearing

here is a version of that proof.

& —re TR T e O
i T - B
v ’li‘ wb‘ “
e —

-—“4‘-—-‘

—

—— e asbanod

111

Lemma 7.2: If RE M, and X,0,1e[R] then R is a complete set of primitives,
where R is an arbitrary set of functions not necessarily self-dual.
Proof: If RGiM4 then there exists a function feR which is nonlinear. That
is, if f is expanded in the form

f = go®(glx1©gzx2@ e @gnxn) ©) (g12x1x2®313x1x3® Baiia @glnxlxn®gz3x2x3@. e

08, 180%0-1%0)® - - By, . n*1%2 %

there exists at least one term in the expansion of order t where 2 < t < n.
Let s be the order of the term of minimum order in that range. ILet Y,
denote the variable with the smallest subscript in the term, : A denote the
variable with the next smallest subscript,..., and denote the variable
with the largest subscript in the term. Now, if Y3s¥gseees and yg are
constrained to be 1 and all remaining variables except Y1 and y, are

constrained to be 0, then a new 2-variable function f1 results. Certainly,

fle[R] by construction.
£, = %92y, 9%y,®y,y,

where 0’0,01,028{0,1}. Now, Otlexze[R] for @ =0 or 1 since X€f. Similarly

1
crz@le[R].
So, :
£y = 2, @9) (%, ®%)) B%) (@) Bx,) ® (%, ®x)) (%) ®x,)¢[R]
=> £, = ¢,80,0, ®x;x,.
But then,
£, = aoealazofze[n]

- f = xleG[R].

e

L0

el

- e —— o e - — e e T -

112

Similarly, £, = £3{f5(x)5%,),£5 (%) ,%,)}e(R]

=> £, = X%, X %) €[R]

=> fa = x1®x2€ [Rr].

But then, R must be complete since {xlxz,xlacz,l} is a complete set. Q.E.D.

Theorem 7.1: A set F = {f(l),f(z),...,f(p)} of self-dual functions is a
weak complete set of alternating logic primitives if f(i) is not O-preserving
for some i, 1 < i < p, and f(j) is nonlinear for some j, 1 < j < p where
possibly i=j.

Proof: The set F is a weak complete set of alternating logic primitives if
the set F' = {f(l),f(z),...,f(p),O} is a complete set in the conventional
sense. And by Lemma 7.1 and Lemma 7.2, F' is complete if F'dM1 and F'@d M, ,
or in other words if f(i) is not O-preserving for some i, 1 < i < p and f(j)

is nonlinear for some j, 1 < j < p. Q.E.D.

1
Corollary 7.1: The set F = ff('"),f(z),...,f(p)] of self-dual functions is a

minimal weak complete set of alternating logic primitives if for every proper

subset G of F, GC M1 or G& MA'

Corollary 7.2: Any minimal weak complete set of alternating logic primitives

contains at most 2 self-dual logic primitives.

- syt o N ——

|

-

e = Pro—

M O W e e e e

113

7.2. Strong Complete Alternating Primitive Sets

In any application of the theory outlined thus far it is implicitly
assumed that the (0,1) clock, the O-function in an alternating network, may
be used as an input to any variable line in a network application of any
function from the set F. This means that the (0,1) clock may be input on
2 or more variable lines in an application of a given logic primitive in
the composition of a desired alternating network from the set F of alternating
logic primitives. This, however, may result in an undesirable loading of
the clock. 1If application of the clock is limited to at most one input line
of any logic primitive, a somewhat different theory of alternating logic
primitives results.

Once again let F = {f(l),f(z),...,f(p)} where f(j) is a function
of kj variables, 1 < j < p, be a set of self-dual functions. The set F is

a strong complete set of alternating logic primitives if an alternating

network representing any Boolean function can be constructed by composing
elements of F with the provision that the (0,1) clock is used as an input
to at most one variable of any given alternating logic primitive. Before
the problem can be restated in terms pertinent to conventional theory of

complete sets, the concept of a O-subfunction must be defined.

Definition 7.7: The i-th O-subfunction f of a function £(X,,X,5+.0+5X_)
0,1 Bl n

of n variables is the function obtained by constraining the i-th variable

in f(xl,xz,...,xn) to a 0. That is,

fO,i(xl’XZ’""xi-l’xi+1""’xn) = f(xl.xz,...,xi_l,O,xi+1,....xn).

s
AP

o

|y ™

———

i < §

s — -~ —— e B T —

A —— s ——————— o S

114

For a function f(J), 1< j<p, from the set F the i-th O-subfunction will
be denoted féji. Now, the set F = {f(l),f(z),...,f(p)} will be a strong
’

complete set of alternating logic primitives if

k
=il) @ F T
ol B T L B bl S oy 19 fo’i}

is a set of complete logic primitives in the conventional sense. Further,
the completeness of T can be determined using the following theorem,

Ibuki [20].

Theorem 7.2: A function set R is a complete set of functions if FZ Mi for

12 iz S

The proof of the theorem is presented in [20] and is not repeated here. Now,
the number of functions in T is at most p~+m§1km as some of the O-subfunctions
may be identical. At any rate it appears that each function in T must be
classified according to the five properties, O-preserving, l-preserving,
self-dual, linear, and monotonic so as to determine if T is a complete set.

Fertunately, this is not the case as will be shown.

Lemma 7.3: No O-subfunction fo i of a self-dual function f(xl,xz,...,xn)
>

is self-dual, 1 < i < n.

Proof: By hypothesis f is a self-dual function of n variables. By way of

contradiction assume that fo i is self-dual. Then,
’

E(R 0% 000 sXy _2000%, 1neeesX) ® EGX)aKoyenes®y 1000K; 4a0eeesX).

But, since f is self-dual

T ————————— ————

et e o e

i e

-

. was VIR B W B T SR B e e e B S ST A R e

115

£(xp,x 1 X) = B Kgs e sy 100,%, g0l sX))

geecea®e strRignses n

=> f(xl,xz,...,xi_l,O,x1+1,...,xn) = f(x1’x2’""xi-l’l’xi+1""’xn)

for every XpsXgseeosXy 19Xy gaeeesXy and it therefore follows that f is a

function of n-1 variables, a contradiction. Q.E.D.

Lemma 7.4: If f(xl,xz,...,xn) is a linear function of n variables, then

every O-subfunction £ 1< i< n, is linear.

0,1’
Proof: By hypothesis f is a linear function and can therefore be written in
the form

f= go@ (glx1®gzx2® s @gnxn)

where go,gl,...,gne{o,l]. But then,

fo,i(xl’xz’ g "’xi-l’xiﬂ""’xn) = 30@(31x1® o @gi_lxi_1®gi+1x1+1@
®gnxn).

The function fo { is therefore a linear function also. Q.E.D.
[4

Lemma 7.5: If f(xl,xz,...,xn) is a monotonically increasing function of n

variables, then every O-subfunction, 1< i< n, is monotonically

£, 12

increasing.
Proof: By way of contradiction assume that f(xl,xz,...,xn) is monotonically

increasing but that f for some 1, 1 < 1 < n, is not. Then, there exists

0,1
a pair of (n-1)-tuples

oo X eesX

1-1,2 *1+41,2

>
x1,1x2,1"'x1-1.1 x1+1.1...xn’1__x1'2x2’2

n,2

for which

b

s i—n

el N e

_ abana

116

fO,i(xl,l'XZ,l""’xi-l,l’x1+1,1""’xn,1)<'fO,i(xl,Z’xz,Z""’xi-1,2’

. i

Xi41,2° %020

But, since

ivgk 0

fO,i(xl,l'XZ,l‘""xi-l,l'xi+1,1"'"xn,l)- f(xl,l’xz,l" i-1,1°%
x 3e ek)
i+l,1 n,l
and
£o0,1(%1,20% 20 -+ 9%q_1 29%g41,20 7 72%g,2) " E(X) 29%) 95e000%y g 500,
x sseosk. a)
i+1,2 n,2
for

>
pe T (py: I it 05 B8 By U O bt W £ 57w S0 Akgionn 0% BR S L PC Sl W

f()< f(x 0,

X),10%g 1000 o%g oy 190eRe g qeee¥y gy P e T8 DRGSR L

).

v s X

by 7. P Lol a T

The function f is therefore not monotonically increasing, a contradiction.

Q.E.D.

The above lemmas have thus shown that the set

Kk
e {eg) @ @) O @y
m=l i=1 0,1

always contains a function which is not self-dual. Specifically every sub-

function £ is not self-dual. Further, the lemmas show that to determine

0,i
if T is a subset of the set of linear functions, TC Ma, or if T is a subset
of the set of monotonically increasing functions, TC MS’ only the functions

f(l),f(z),...,f(p) need be examined with respect to these properties.

ol

-

117

Theorem 7.3: A set of self-dual functions F = {f(l),f(z),....f(p)} is a
(1)

strong complete set of alternating logic primitives if f is not
O-preserving for some i, 1 < i < p, f(j) is not linear for some j,
1< j<p, and f(k) is not monotonically increasing for some k, 1 < k < p.

Proof: The set F = {f(l),f(z),...,f(p)] is a strong complete set of

alternating logic primitives if

(1) (2) @) m (m)
T (g 8¢ L f .ml_J1 iglfo’i}

is complete in the conventional sense. And, by Theorem 7.2, T is complete

if Td M, for 1 < i < 5. Now, F contains a function f(‘), 1 < 4 < p, which

i
is not O-preserving by hypothesis. So, Ifl Ml But if a self-dual function

is not O-preserving it is not l-preserving. So, T¢ MZ By Lemma 7.3,

TY M3 as every subfunction fo i is not self-dual. Finally, by Lemma 7.4
’

and Lemma 7.5 T ¢ M, and T ¢ Mg if FY M, and F& M. So, T is complete

if FZ M MS. Q.E.D.

1+

Corollary 7.3: A proper set of self-dual functions F = {f(l),...,f(P)} is a

minimal strong complete set of alternating logic primitives if for every

proper subset G of F, GCF, then GCM1 for some 1, 1=1,4,5.

Theorem 7.4: Any weak complete set of alternating logic primitives is also
a strong complete set of alternating logic primitives.

Proof: Assume a set F = {f(l),f(Z)....,f(p)) is a weak complete set of
alternating logic primitives. Then F& MM, . But, if F& L then there is

a function f(i). 1<1i<yp, f(i)CF, having the property that f(“ is not

O-preserving. So,

e

118

£¢0,0,,..,0) = 1

and by self-duality
£4Y.0....,;1) = Q.

But then there is a pair of n~tuples namely 000...0 and 111...1 with the

following relationship

111...1 > 000...0

£(1,1,...,1) =0< 1 = £(0,...,0).

So, f is not monotonically increasing, and F & MS. o, iIf ¥ & Hl.Mz then

Fd My M, M. Q.E.D.

7.3. Alternating Design with the Majority Module

Necessary conditions that a set of p alternating logic primitives
F= (f(l),f(z),...,f(p)] be a complete set of alternating logic primitives
have been derived. Application of these conditions to minimal complete
sets resulted in a bound on p, p € 2. So, consider the set F = {f(l),f(z)]

) and f(z) are functions specified in Figure 7.1.

in this regard where f
Both £1) and £?) are self-dual, and £ M 7y, £P ¢ M 50 F =
F = [f(l),f(z)}‘¢ MM, The set F is therefore a complete set of alternating
logic primitives. Further, since f(l) = Hi and f(2)<: ﬁ“ the set F is a
minimal complete set of alternating logic primitives.

Obviously, the module f(z) is the standard NOT gate or module.
The module f(l). however, is not a standard gate or module. The module

f(l) is a majority gate, namely a 3-input majority gate. Since F is

complete, with a basic module realizing f(l) and a basic module realizing

X2 X3 X
00 01 11 10 1
X3
of O o) 1 0 (0]
f(” f(Z)

11 O 1 1 1
S
Do M f(l) o___Do,_(, f(Z)
P, —

Figure 7.1. M module and NOT module.

e

FP-5095

119

i RO TE ENTOSOI AN S A L B
. ‘ LS

[erv—y

——y

120

£@

, alternating circuits representing any Boolean function can be
constructed. But what design procedures define the required construction?

Some insight into such a design procedure might be gained by examining the

f(l) when the (0,1) clock is applied as input

first on Xgo then on Xy» and finally on Xge These functions are féli,
’

f(l) and f(l)

functions represented by

0.2? 0.3 respectively.
’ ’
11 SRS
£ xlx3 +x1x2 -’-xzx3
£y . & % 1) o
£0,1 " %% fo,2 " "% 0,3 " *1%

Thus, with the (0,1) clock on any input to the M module, the M module
represents the AND of the other inputs. The M module configured in this
manner will be called the "alternating AND."

Now, since the NOT gate, f(z), is in the set F, the (0,1) clock
can be applied as input to that gate so as to produce a complemented clock,
the (1,0) clock. When this clock is applied to the M module as input,

first on X1 then on Xy and finally on X3, an alternating circuit repre-
(1) (1) g (D)

senting fl,l’ 1,2 1,3’ respectively, results.
ay .
$ X X3 +x1x2 4»:(2x3
) (1) 5§
fl,l x2+x3 £1,2 = x1+x3 f1,3 Xy +x2

Thus, with the (1,0) clock on any input to the M module, the M module
represents the OR of the other inputs. The M module configured in this

manner will be called the "alternating OR."

F
|
q”’

e

Lot d Pe—— - o P E- -

. R B

121

A design proceudre therefore presents itself. Assume a Boolean
function f is to be represented in an alternating system. A conventional
AND-OR-NOT realization of f is first found utilizing standard design
techniques. Then, every AND gate is replaced by an alternating AND.
Similarly, every OR gate is replaced by an alternating OR. Every NOT gate
remains intact. The additional (1,0) clock is obtained from the (0,1) clock
using an additional NOT gate. The resulting network is certainly an
alternating network since it constitutes a composition of alternating
logic primitives, namely f(l) and f(z). Primary inputs to the conventional
AND-OR-NOT realization become primary inputs to the alternating circuit and
in the case of the alternating system are assumed to alternate in synchronism
with the (0,1) clock. Further, the resulting alternating network must

represent f as each conventional gate is replaced with an equivalent

alternating gate.

Example 7.1: Assume that a function f is to be realized in an alternating

logic design where

f = (:?2x3 +x_]'.'aQ)x5.
To generate the desired alternating network a <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>