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Dennis Andrew Reynolds , Ph.D.
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Department of Electrical Engineering
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The f au l t  detection capability of a design techni que named

J “a l t e r na t i ng logic design ” is detailed. The technique achieves its faul t

detect ion capabi l i ty  u t i l i z ing  a redu ndancy in time instead of the more

conventional space redundancy and is based on the successive execution of

a required function and its dual . In combinational networks the method

involves the ut i l izat ion of a self-dual function to represent the requ ired

function and the realizat ion of the self-dual function in a network with

st ruct ur al properties which are sufficient to guarantee the detection of

all  single f au l t s .  Necessary and suff icient  structural properties for any

f al ternat ing ne twork to be capable of detecting all single faults are derived.

The app l ication of al ternating logic design of synchronous

( sequential machines is also studied , and a method for  realizing any

synchronous sequential machine with feedback and output circuitry designed

‘ising combinationa l al ternat ing logic techniques is presented . The result ing

I realization is capable of detecting all single faul ts  in the feedback and

output combinational circuitry and all  single input and output faul ts

I associated with the memory elements.

Alternat ing logic design using alternating modules as basic design

elements is also examined. Necessary conditions that a set of a l ternating

modules be su f f i c ien t  to construct al ternat ing networks representing any

a rb i t r a ry  Boolean funct ion are derived .
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1. INTRODUCTION

1.1. Current Approaches to Fault  Tolerant Digital Systems

In recent years due to the prevalent use of integrated circuits the

I complexity and size of digital systems has increased dramatically . As a

result system reliability has become a topic of major concern. And ,

although integrated circuit manufacturers make efforts to ensure the

reliability of their products , the size of digital systems today makes the

probability of a circuit fault somewhere in a complex digital system at any

given time a factor which must be considered . Considerable research has ,

therefore , been conducted in order to find techniques for detecting system

faul ts .  One method for doing this in programmable digital systems is

I periodic software checking .

Periodic software checking essentially involves the utilization of

diagnost ic programs at periodic intervals as a means to test a programmable

digi tal  system for correct operation . If a system fault is detected during

this testing period then necessary repair or -eplacement is made . Obvious ly,

such a method can be used only where human intervention is possible. There,

however , are severa l drawbacks associated with periodic software checking .

First, the diagnostic programs written for complex digital sys tems seldom

fully check the system for correct operation. This is particularly true

if the system is already built. If the diagnostic routines are developed

I concurrently with the system design, then a more diagnosable and main-

tainable system generally results, and initial system checkout time is

I usually reduced. But still, the system is seldom fully checked. Second,

I
I
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I during the testing or checking period when the diagnostic routines are

running, valuable system time is lost. This lost time can be very signi-

ficant for more complex digital systems. Third , since accurate results are

not assured until the testing period following the computation, such a

digital system cannot be used in a critical application where accuracy of

system output must be guaranteed . A18o, even if testing reveals no faults,

the correctness of prior system output cannot be fully assured since

transient faults occurring outside of the testing period can cause erroneous

results which will not be detected. Fourth, if a fault is detected during

the testing period , then all system output obtained since the last testing

t period must be suspect. Thus, when a checkout fails, computation must be

I 
rolled back :o the previous testing period . The effect is lost time and

money.

I A second approach to fault tolerant digital systems is the fault

masking redundancy approach. With this approach, a digital system is

I designed to operate with high reliability for a period of time and is then

expected to fail, the failure occurring when enough faults accumulate to

exceed the protection designed into the system through redundancy. Such a

system is suitable for applications on space missions where reliable operation

is required only for the mission duration. Application of the approach to

maintained digital systems is not too suitable as the fault masking redundancy

built into the system also makes the system difficult to test. Triple

Modular Redundancy (T14() [11 ,16] and Quadded Logic (11 ,16] are probably the

moat common fault masking redundancy techniques used.

I
— 5—. - 
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A third approach to the design of faul t  tolerant digital  systems ,

self-checking desi gn , overcome s some of the disadvantages of periodic

software checking and faul t  masking redundancy techni ques. The main advantage

of the design scheme is the immediate detection of faul ts  which a f fec t  system

operation . The appearance of these faults is indicated using hardware

monitors which continuously check for improperly encoded system information .

One area of application for such self-checking digital  systems has been in

telephone switching computers , e.g. the No. 1 ESS [ 151 and the No. 2 ESS [61 .

In the No. 1 ESS information was encoded in a single error correcting , double

error detecting Hamming code . The No. 2 ESS used a simple parity code for

information encoding . In these computers any improperly encoded information

produced by a module was detected by the hardware monitors , and a duplicate

of the f~ 
- _ed module was switched in automatically ,  thus allowing repair of

‘ 
the fa-i ’5ty module off-line with uninterrupted computer operation. Another

self-checking computer , the Self-Testing and Repairing (STAR) computer [3]

was developed and tested at the Jet Propulsion Laboratory. The STAR computer

utilized self-checking circuits in a tr iple modular system containing spares .

Defective module operation detected by the Test and Repair Processor (TARP)

of the computer initiated the replacement of the faulty module by one of the

standby spares. The TARP itself was triplicated and was considered the

hardcore of the system.

Another type of self-checking digital system, the totally self-

checking digital system was introduced by Carter and Schneider [9]. Such

digital systems employ on-line fault detection and guarantee that no

erroneous data are passed to the user without an error indication for all

- I
L I
A d.~~~ — - 
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I faults from a prescribed set. The design procedures detailed in this thesis

I produce totally self-checking digital systems. A literature survey on

previous work in totally self-checking digital systems is presented in the

following section.

I
‘.
~~~~~~~ Literature Survey on Totally Self-Checking Digital Systems

Totally self-checking (TSC) digital system design has been

studied in some detail since the design problem was formalized in Carter

and Schneider ’s [9] introductory paper. The approach has been to consider

a digital system as composed of interconnections of functional modules,

Anderson [11 , each of which is monitored by a hardware checker . Inputs and

outputs ‘ each functional unit are encoded , and faulty functional module

operation is indicated by the production of an improperly encoded module

output. This improper output is detected by a TSC checker , and the

I erroneous output is indicated on the checker output. Design of the TSC

checker , however , has presented some problems.

1 Carter and Schneider first addressed the problem of TSC checker

design. Included in their introductory paper [9] were network diagrams for

3 TSC checkers; a parity code checker, a 2-out-of-5 code checker, and a

I two-rail code checker. The checkers were, however , assumed to be self-

checking only for faults on gate outputs, not on both checker gate outputs

I and inputs . Anderson [1] modeled faults -on both gate outputs and inputs and

I presented several totally self-checking two-rail checker designs as well as

parity checker designs. Anderson and Metze [2] also investigated rn-out-of-n

$ 1
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checkers in general and formulated a checker design for the k-out-of-2k

codes. Reddy [28] extended Anderson and ~~tze ’s work on the k-out-of-2k

checker by incorporating an easily testable cellular array [30] in the design.

The result was a k-out-of-2k checker with a smaller test set than that of

Anderson and Metze. Design rules for the general m-out-of-n checker were

formulated later by Smith and Metze [33]. Further, the design of two level

rn-out-of-n checkers was shown to be related to the Ramsey number problem.

Research on TSC checkers for other classes of codes has been

minimal. A TSC checker for the Berger code [5] has been reported by

Ashjahee and Reddy [29]. The checker, however , utilizes a code-disjoint

translator to translate the Berger code into a 1-out-of-n code. That code

is then fed into a 1-out-of-n self-checking checker.

Design of the self-checking functional unit whose operation is

I monitored by the TSC checker has received less attention than the TSC

checker design itself. A significant amount of work, however, has been done

on synchronous machine design, particularly on fail-safe design. Some of

• the machine designs resulting from this work have properties suitable for

-
~ application in TSC designs. Thoma (34] used a symmetric fault model and

J employed on-set and off-get form equations with a k-out-of-n code for

state variable encoding. Thoma’s method was later modified by Diaz [13] so

I that only on-set form equations were used in the design. Formally pointing

out the relationships between some fail-safe designs and totally self-

check ing designs, Dias [ 14] extended TSC design concepts to Moore-

synchronous machine, using a two-rail code for the input and output variables

and a k-out-of-n code for the state variables.

I.
1 1



I-

a
1 6

I Recently, Sawin [31) proposed another method for fail-safe

synchronous machine design using the on-set realization only. Sawin’s

approach was drastically different from others because his state assignment

was tailored specifically for the given flow table. A further improvement
- 

of the on-set realization method was presented in Wang ’s [35] paper.

Wang ’s approach was similar to that of Sawin’s but led to a generalization

of the method .

Much less work has been done on TSC asynchronous sequential machines.

Recent work by Ozguner [26], however, has led to TSC asynchronous machine

design methods. Other authors [23 ,27] have proposed designs, but none have

been totally self-checking.

All the methods for TSC checker and functional modu le design

discussed ;tius far have one property in common. All use space encodings to

1 achieve the required measure of fault detection capability . There exists ,

however , an alternate encodth~ scheme , t ime encod ing , which achieves similar

1 results. A type of time encoding, the two-rail time encoding, is the

subject of this thesis. Systems utilizing this type of time encoding are

I called alternating systems or alternating logic systems. Such systems were

I first proposed by Bark and Kinne [4] in 1953. No reference, however , was

made to the fault detecting capabilities of the method until Yamamoto [36)

et al. published an introductory paper on the subject. This thesis

utilizes the fault detection capabilities of alternating logic in the design

I of totally self-checking alternating logic systems.

I
1 1
1 1  
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2. SELF-CHECKING COMBINATIONAL ALTERNAT ING LOGIC

2.1. Combinational Alternating Logic Design

Combinational alternating logic design is a design techniquc

resulting in combinational alternating networks. Any input to an alternating

network used within an alternating system or which is in itself an alter-

nating system must be an alternating binary variable. Alternating binary

variable, alternating network, and alternating logic des ign are thus related

terms. Alternating binary sequence is first defined.

Definition 2.1: An alternating binary sequence is a sequence of symbols

from the set ~O,1) admitting to a sequential parsing into 2-tuples of the

form (d,~ ).

For exampie, the sequence 011001011001 is an alternating binary sequence as

tt
~ 

p~rsing Ol/lO/01/Ol/lO/Ol can be made. The sequence 011101100110,

however , is not.

Definition 2.2: An alternating binary variable is a variable which assumes

values in 2-tuples from the set [01,10).

As a result, any sequence produced by an alternating binary variable when

viewed as a binary sequence is an alternating binary sequence.

Now, consider a combinational network, Figure 2.1 a), with n

inputs x1,x2,.. .,x~ and one output y realizing a function f. That is,

y — f(x1.x2....,x~) —

where X is a binary n-vector . If we assume that x1,x2,...,x~ are alterna ting

I
I i
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I
I

x 2 ~

. 
_f o f (  x 1, x 2 , - . . ,x~~)

I 
_x n 

0

a) Combtnational Network Realizing f

I

I. 
_ _ _ _ _ _ _ _ _ _ _ _

(x 1 ,~~1 ) o

(x 2 ,x 2) ~

1 
-0 ( f (  x 11 x 21

. . - ,x~~ ) , f (  x 11 x 2,
. . - ,x~~ ))

11 (x ~ ,x ,,) 0-

1 
(0,1)

b) Alternating Combinational Network Representing f
FP- 5045

I
1 Figure 2.1. Combinational al ternating logic network model.

I
I 
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I binary var iables and that they alternate in synchronism, then input vectors ,

X , are applied to the network realizing f in complementary pairs. The

network input can therefore be represented as a vector 2-tuple , (x ,5~) where

(X,~) — (x
1x2 . • • X n~~~1~ 2 * • • ~~n ) •

The output produced as a result of this input must also be a 2-tuple although

not necessarily complementary . Since the network realizes f the output

2-tuple must be

(f(x 1~x2~
...~x~). ~1,x2,...,x ) )

or (fOc) f (~ ))

Definition 2.3: A network realizing the function f is an alternating network

if f for ery (X ,~~) an output ( f (X), f (i) ) is produced such that f(X) f(X).

In other words , the network realizing f is an alternating network if the

1 output variable y alternates when synchronized alternating variables are

applied as inputs . Further , since y is produced as a result of the applica-

tion of (X ,X) ,  y alternates in synchronism with (X ,X).  Definition 2.3 thus

places a significant restriction on the functions realized by alternating

1 networks. This class of functions is defined in the following theorem.

I Theorem 2.1: A network realizing a function f is an alternating network if f

f is a self-dual function.

I Proof: If f ii self-dual then f(~ ) — f(X) for every X and any network

I realizing f must therefore be an alternat ing network. Conversely, if a

network is an alternating network then f (~ ) ”  ?Øcj~~~~ --f-ts i d u l.

I
I_ 

_ _ _ _ _  _-
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I Essentially , Theorem 2.1 says that only self-dual functions can be realized

by networks that are alternating networks. However, consider a function f

that is not self-dual and define a function 
~~ 

of n+l variables ~~~~~~~~~~~~~~~~

as follows . Let

f*
(0,xi,x2,...,x~) 

— f
~
(0,X) f(X)

and 
~~~~~~~~~~~~~~~~~~ 

— f
~ (l ,X) ~ 1(i)

for every X. In a sense f*
(~,

x1,x2,. . .,x~ ) represent s f(x 1, x2 , . . . 1 x~ ) since

— 
~~~~~~~~~~~~~~ 

Further , 
~~ 

is a self-dual function

as shown in the following theorem.

Theorem 2.2: The function 
~~ 

of n+l variables • ,x1, x2 , . . . ,x~ defined by

I ~~~~~~~~~~~~~~~~~~ —

I ~~~~~~~~~~~~~~~~~~ 
— x1,x2,.~~ ,x~)

is self-dual for arbitrary f.

I Proof: using Shannon ’s expansion theorem f~ (~ ,X) can be written as

I f~(~,X) 
— 
~f~(l ,X) +~~f~(0

,X)

— 11(1) +~~( ‘X).

I But then — —— — —

f~(*,X) 
— F f(X) + I f(X)s (Ff(X))(I f(X))

I —

— IT(~) + f(X)$ + f(X)f(X).

Thus , by consensus

I
- - ‘——5- — —5 — —  - ~~~~~ -- S -

I 

— 
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~~
(i ,X)  — + ~f(X ) — f~ (1,X),

and f
~

(I ,x1,x21...,x0) is self-dual. Q.E.D.

In ar alternating system it is the function 
~~ 

which is used to realize a

function f whenever f is not self-dual. In fact is called the dual ization

of f .  The ~ ini.’ut variable of 
~~ 

becomes a c lock and is synchronized to the

iflput variables (X ,~~). That is , • o  when X is applied and 4 l  when X is

applied . Thus , when 1 0

— f(x 1, x2 , . .  ~~~~~~

and when

I. ~~~~~~~~~~~~~~~~~~~~~~~~ 
— ~~ (0,x1,x2,. . .,x )  — T(x1,x2,.

With the (0 ,1) clock ~ applied as input the self-dual function thus

produces ~n alternating output ( f (X) , f (X))  representing f .  The network is

I mode h~d in Figure 2.1 b) .  Alternating logic design can now be defined .

Definition 2.4: Alternating logic design: is a design technique whereby

combinational networks are represented utilizing self-dual functions or

1 compositions of self-dual functions, and system input var iables are

constrained to be alternating variables.

Alternating logic design is t&.~re fore implemented by first formulating a

f unctional descript ion of the required function , f .  If f is self-dual any

network realizing f is an alternating networ!~ and alternating input

I variables ~~~~~~~~~~~~~~~~~~~~~~~~ are applied directly to that network

so as to produce (f(X),f(X)). If f is not self-dual, a functional description

is generated , and is realized in a conventional manner. The n, a

I

____  __________ — 
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1 (0,1) clock is applied to the I input, and alternating variables

~~~~~~~~~~~~~~~~~~~ synchronized to the (0,1) clock are applied as inputs

resulting in an alternating output (f(X),1(X)) from the network realizing

The design technique is illustrated by the following example.

Example 2.1: Consider the three variable functional description given in

Figure 2.2 a) for the function f. The problem is to design an alternating

network which represents f. Since f(l,0,l) ~ ?(O,l,0), f is not self-dual.

So, any network realizing f is not an alternating network. However, by

I adding a fourth variable, ~~ , and dualizing f, a functional description of

I Figure 2.2 b), is obtained. From Figure 2.2 b),

f
*
(
~
,x1,~2,x3) —~~~x2 +~ X

1
X

3 
+~~~ 2

X
3 

+ x 1X3

iS —> - (~ 
+x~) + (~ 

+x1 +x3) + (x2 +x3) + ~~ 
+x 3)

I —> — (I +x 2 ) (4’ +x 1 +x 3)(x 2 +x 3 )(x 1 +x 3 ) .

- The alternating network representing f is shown in Figure 2.2 c).

1
2.2. Sing.le Fault Model

I All digital networks, alternating networks included, are susceptible

to physical failures which affect network operation in one way or another.

Several models to represent these network failures have been used, the most

I popular of which is the line fault model. One line fault model, Carter and

Schneider [9], assumes failures can be represented as gate output lines

I stuck-at-I (s-Ø-l) or stuck-at-O (s-@-O). Another more general line fault

—--5 ~~
- — ~~~

I ~~ ~~~~ —— ——.—--- ———-——-—....—-——- —S—-——-—— --——--..--——— — -
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1 _______________________

i 
~ ‘ 

:~ : ~ ~ : ~~~~~~~

N 
a)

\
\ 

X 2 X 3

I N 00 01 11 10

I.
00 1 1 0 1

01 1 1 0 0
— — — —

I 11 1 0 0 0

to 1 1 0 0

b)

IL 
(~~21i2

)

r
I

(x i,;) 
0_i: I

t X 31 X 3 ) •— —

E
1 (0,1) 6~~

I
Figure 2.2. DualizatiOn procedure, Example 2.1.
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model , Anderson and Metze [2], ass umes all failures to be representable by

line faults on all gate input and output lines, s-(a-0 and s-@-l. The

latter representation will be used here. Thus, the term fault will refer

to a network condition in which one or more gate input or output lines

are s-~-0 or s-@-l. The term single fault will refer to a network condition

in which only one gate input or one gate output line is s-@-0 or s-@-l. A

tault involving several lines will be termed a multiple fault. A

unidirectional fault will be defined as a multiple fault in which the faulty

lines are all stuck at the same logical value, either all s-@-0 or all

s-@-l.

Of particular interest in relation to alternating networks is the

s~~ of all ~..ngle line faults. In fact, alternating networks will be shown

to be ca~ - .1e of detecting all single faults on gate input and output lines

r s-@-l, during normal network operation while assuring error-free

operation prior to that detection. Continuous error-free operation, however

hinges on several assumptions. First, it is assumed that initially the

network is free of all faults. The means by which this is guaranteed is

not specified. It is also assumed that the most probable network fault is

the single fault and that the occurrence of the first fault is detected

prior to the occurrence of a second single fault during normal network

operation. This allows for repair of the network so that detection of the

secorJ single fault can be guaranteed. Under these assumptions at most one

single fault is present in the network at any given time and continuous

error-free operation is assured.

I

.5. 
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2.3. Self-Checking Property

Consider an irredundant combinational alternating network N with

n inputs ~~~~~~~~~~~~~~~~~~~~~~~~ and one output y which represents a

f function f. Assume that a network fault of some type occurs. For a

particular input (X ,X) either the fault does not affect network operation,

and the correct alternating output is produced , say (d,a), or one of three

~ ‘ssible errors occurs. If the fault affects N under X only, (~,d) is

I produced ; if the fault a f fec ts  N under ~ only , then (d ,d) is produced ; and

if the fault affects N under both X and ~~ , then (d,d) is produced . Since in

the fault-free state the network output alternates for all inputs, errors of

L the first two types are considered to be detectable, whereas an error of the

last type is considered to be~ undetectable. The network output for this case

I is terme’~ ifl erroneous alternating output.

I Definition 2.5: A network is self-checking for all faults from a prescribed

set , F, if for every fault from F there exists at least one input (X,X) which

produces a detectable error on the network output, and there exists no input

I (X ,~ ) which produces an erroneous alternating output.

If F is constrained to be the set of all single faults of the stuck-at-0 or

stuck-at-l type on all primary network inputs and all network lines, then it

[ is possible to derive necessary and sufficient conditions that the alternating

network realizing f be self-checking. But, to do this some definitions must

first be made.

I
I

~~~~~~~~~~~~~~~~~~ 
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I Definition 2.6: A network line is any line in a network other than a primary

network input. (Branch lines from fanout points are considered to be

distinct network lines.)

Network lines are labeled with small letters and a fault on a line is denoted

by fd where the subscr ipt is the line labe l , and the superscript is the

- logical value at which the line is stuck. For example, in Figure 2.3 an

alternating network representing the function

I f — x1x~ + x1x3 +

is shown. Network lines in the circuit are labeled a- E Primary network

L. input lines are labeled with the variable name. (Note that a, f, b , and i

are defined as network lines, not primary network inpu t lines, as they are

branch li~’-~ s from a fanout point on a primary network input line.) If a

I s-@-l fault exists on a network line, say e, it is designated on the

network diagram, Figure 2.3, with a small x on that line. The fault is

I denoted [17] as f1; that is, line e stuck-at-i. A s-@-O line fault is

des ignated on the network diagram by a small o on the affected line.

Definition 2.7: A ~~~ 
is an ordered sequence of lines W1W2•••Wr 

such that

I lines and w~~1, 1 ~ i ~ r-l are connected through either a single gate or

a fanout point.

Thus, if we consider non-trivial paths, only w
1 
can be a primary network

I input line and only Wr can be a network output . In Figure 2.3 x1acegjL , de ,

k, and ehkL are all paths. The path k is termed a trivial path. In the case

• I
I

I ~~~~~ 5
- -  

~

..—----—- —~--S 
-  

5 - - - -
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I-
I
I
I-

~~ 

_______________________

I
I

I
Figure 2.3. Example alternating circuit.

I
I
I
I 
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of path x1acegjL, network lines e and g, 
and x

1 
and a, are connected through

fanout points.

Definition 2.8: Art output path is a path • • W such that Wr is the

I network output line.

I The network in Figure 2.3 has many output paths. Examples are path egjL,

x3dehk2, and dehk.i.

Definition 2.9: The inversion parity of a path, P, is the parity of the

I number of inversions (NA~ND gates, NOR gates, or inverters) encountered in

tracing the specified path , P, through the circuit and is denoted by w(P).

For the ourpit paths noted above w(egj.t) — 0, W(x3
dehkL) — 0, and

cL (dehkL) 1.

I Definition 2.10: A ~~~~ 
W

1
W

2
~~ .W~. is sensitized if for an input such that

~~~~~~~~~~~~ 
d~€ [0,l), 1< i < r is present on lines W. , W2 , . . ., W the fault

I 
f orces W

2~~~ . ., W~~ to take on values 
~~~~~~~ 

.,
~~~~~

.

Definition 2.11: A line fault f
d 
is sensitized if the network input is such

that at least one path W l, W 2 , . . ., W is sensitized where w
1 a and W

r 
is the

network output, and the logical value of line a in the absence of the fault

is d.

For example, in Figure 2.3, the input x1x2x3 — 011 sensitizes the fault f°

I through the output path ehkL, since normally 1,1,0,1 is present on e,h,k,L

I whereas the fault f° forces h,k,L to take on the values 0,1,0. Note that

I 
_  _ _ _ _  

_ __L~~ _ 
- 

— - - - 
~

-
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-
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i — j — I  for x 1X2x3 011. The fault f
1 
shown in Figure 2.3 is, however,

I not sensitized by 011 as the logical value on line e in the absence of the

fault under 011 is 1, not 0. The input x
1
x
2
x
3 

— 010 however sensitizes both

I f~ and the path ehkL.

Now, with the foregoing definitions as a basis for terminology,

I consider again the irredundant alternating network N with n inputs (x1,~ 1),

(x
2
,~ 2),. . ~~~~~~~~ and one output y which represents a function f. Since

N is irredundant and since all inputs (X,X) are possib le, to show that N is

self-checking for an arbitrary single fault it is only necessary to show

that for no input (X,~ ) is an erroneous alternating output produced by the

network due to the fault.

Lemma 2.1: An erroneous alternating output is produced by N under the

presencc. of a single fault with input (X,~ ) iff both X and X sensitize the1 fault.

I Proof: Certainly if neither X nor X sensitize the fault, then the output of

N under (X,X) is the correct alternating output y — (f(X),f (~)) — (f(X),1(X)).

If only x sensitizes the fault then y (f(X),f(X)) — (f(X),f(X)) and the

fault is detected . If only ~ sensitizes the fault then y — (f(X),f(X)) —

I (f(X),f(X)) and the fault is detected. If both X and X sensitize the fault

then y — (f(X),f(X)) — (f(X),f(X)) and an undetected erroneous output is

produced . Q.E.D.

Theorem 2.3: Any arbitrary alternating network N is self-checking for

single faults on primary network input lines.

I 

_  _ _ _ _ _ _ _ _ _ _- - 5- - -  - - - —-5— - —-----——-—— —_ -— - -  - - ~~~~~~~~~~~ -
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I Proof: Assume primary input line x~ is stuck-at-d . If X sensitizes the

fault , x~ — d. But then 
~i 

— d , and ~ cannot sensitize the fault . Similarly ,

if ~ sensitizes the fault then — d. But then x~ — d, and X cannot

sensitize the fault. So, by Lemma 2.1, N is self-checking for all single

-.  

faults on primary network input lines. Q.E.D.

So, having obtained Theorem 2.3, to show that an alternating network is

self-checking for all single faults on primary network inputs and network

lines it is only necessary to show that the network is self-checking for

faults on network lines . Achieving the self-checking property for these

faults , however, places some constraints on circuit structure .

I
2.4. S~if-Checking Combinational Structures

Yamatnoto, Watanabe, and Urano [361 have investigated standard two-

level AND/OR and OR/AND alternating networks allowing thverters as a third

I level as required to obtain complemented variables. Such networks were

shown to be self-checking for all single stuck-at faults on gate or inverter

output lines. Other more general combinational network structures, however,

can be shown to possess the same self-checking propetty under a generalized

fault set. That fault set is the set of all single line faults on gate or

I inverter input or output lines. Three network structures will be considered ,

j the internal fanout-free network, the essentially inverter-free AND/OR/NOT

network, and the inverter-free network. First, consider the internal fanout-

free network.

1
I

-
, — -- -.5——-. - ~~~~~~~~~~~~~~~~~~~~~~ 
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Definitio~ .2-.12: A network is internal fanout-free if each gate or inverter

output is an input to at most one gate.

Theorem 2.4: Any internal fanout-free alternating network , N, is self-

checking for single faults.

ç Proof: Let N be an internal fanout-free network containing a single fault

on an arbitrary network line ‘a ’ ,, say f’~, where dCtO ,l). By way of

I contradiction , assume that N is not self-checking for the fault f
d
• Then

there exists an input (X,x) for which both X and X sensitize f
d 

producing

an erroneous alternating output . That is, under X

y — dew (P
x)

where P~ is ;he o itput path from ‘a’ sensitized by X, and under X

y — d~~w (P_)

I where P is the output path from ‘a’ sensitized by ~~~. But since N is

internal fanout-free there is only one output path from ‘a’. That is,

P_ P and the nonalternating output

(dGW (P), d~~w(P))

is produced , a contradiction. Q.E.D.

i An alternating internal fanout-free network is shown in Figure 2.4 a). The

I network is distinguished from a tree network in the strictest sense of the

term since fanout of primary network inputs is allowed . The tree network

is thus a subclass of the class of internal fanout-free networks and is self-

checking for all single faults also.

4 1
I 
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I Now , -~onsider the essentially inverter-free AND/OR/NOT network.

Definition 2.13: An essentially inverter-free AND/OR/NOT network is an

AND/OR/NOT network in which the input to any inverter is a network input .

Theorem 2.5: Any essentially inverter-free AND/OR/NOT network, N, is self-

checking for all single faults.

~ r-)Of: The proof will be th two parts a) and b).

a) Consider a fault, f~ , where ‘a’ is any network line which is a gate

input or output or an inverter output . If N is not self-checking for these

faults then there is an input (X,~C) for which both X and X sensitize the

j fault producing an erroneous alternating output. Letting P~ and P.. denote

the  corresponding paths the output produced is

(dSW (P ), dGw(P~)).

I But , sinc e W(P
x) 

— LJ.~(P_) — 0, the output produced becomes (d,d), which is

not an erroneous alternating output.

b) No~ , -onsider a fault, f , where ‘a’ is any inverter input line which is

not a piima ry network input line. (Such a case exists when both an input

and its complement are used to realize a function.) If N is not self-

checking for these faults then there is an input (X,~ ) for wh ich both X and

~ sensitize the fault producing an erroneous alternating output. Letting P~
I and P_. denote the corresponding paths the output produced is

I (deW (P
~
),

But, since U)(Px ) — w(P....) — 1, the output produced becomes (d,d) which is notan erroneous alternating output. Q.E.D.

I
l i
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) The alternating essentially inverter-free AND/OR/NOT network is a generaliza-

tion of the structure studied by Yamamoto [361 in that an unlimited number

- of levels may be utilized in the AND/OR portion of the structure . An

1 alternating network meeting the structural requirements is shown in

Figure 2.4 b). Note that line a, the inverter input labeled in the

figure is the type of network line considered in the b) part of the proof

oi Theorem 2.5.

The last specific structure to be examined is the inverter-free

combinational structure .

Definition 2.14: A network is inverter-free if no inverter or inverting

- - gate is present in the network structure .

Theorem 2 j :  Any inverter-free al ternating network , N, is self-checking for

I all unidirectional faults.

Proof: By way of contradiction assume that N is not self-checking . Then

for at least one input X and some unidirectional fault 

~~l ~~2
where r ~ k, the number of network lines, both X and X sensitize an element

of 

~~~~~~~~~~~~~~ 

Let X sensitize f~~, ~ sensitize f~~, where l < i , j < r.

Now, under (X,X), (f(X),f(X)) is produced since X and X both sensitize an

element of the fault set. Further, under X, y — ae  0 d  is produced since

j all paths are of even parity. Similarly , under X, y — d~~0 d  must be

produced . But this implies that 1(X) — f (X) > f ( X )  — f(X), a contradiction .1 So N is self-checking for all unidirectional faults. Q.E.D.

I
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2 +~~~~~x

3 +~~~2
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a) Interna l Fanout - Free Network
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____________ __________
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•
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•
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I b) Essentially Inverter - Free AND/OR/NOT Networ k
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c) Inverter Free Networ k

Figure 2.4. Self-checking alternating combinational structures.
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I An inverter-free alternating network is shown in Figure 2.4 c). The

network represents the function f — x
2
(x14%3). The dualization procedure

outlined in Section 2.1 was used to obtain the network from the functional

specification of f , thus requiring a clock •. A clock was not required

for a) or b) as the function realized in each case was self-dual.

2.5. Necessary and Sufficient Self-Checking Conditions

Many combinational structures do not belong to one of the network

structure classifications shown to be self-checking in Section 2.4. This

does not mean that the network in question does not possess the self-

checking property . Verification that the network is self-checking ,

I however, ~ more difficult and m ay require computer simulation.

I Theor&-m 2.7: If an alternating network N is self-checking for all faults on

I 
gate and inverter outputs, then it is self-checking for all *ingle faults.

Proof: Let C be any network gate or irtverter. Then

1 w( Px ) —

for any pair of output paths P~ and P
! 

sensitized by X and X respectively

from the output of C. Then, any pair of output paths P~ and PL. sensitized

by X and ~ respectively from an input to C, say a, can be written as

P~
’
~ — a for the path sensitized by X, and

P~. — a P... for the path sensitized by 5~.

I
1~,
I 
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But then W (P~~) w(PL) since~ P.J~) E4~~~,~a .ndNmust therefore be self-

checking for a fault on ‘a’. Therefore N is self-ch~~i~T~~ -io&~~ll single

faults. Q.E.D.

Thus, by Theorem 2.7, to show that a network is self-checking for all single

faults , only faults on gate or inverter outputs need be examined. However,

t’ is constraint can be relaxed somewhat.

Definition 2.15: A fanout gate or fanout inverter is a gate or inverter

whose output is connected to more than one gate or inverter.

Definition 2.16: A primary inverter is an inverter whose input is a primary

network input line or a branch line from a primary network input fanout

p~ m t .  A. secondary inverter i8 any inverter which is not a primary

inverter.

Theorem 2.8: An alternating network N is self-checking for all single faults

if f it is self-checking for all single faults on fanout gates and secondary

fanout inverters .

Proof: A fault on any primary inverter input or output cannot be sensitized

by both X and X and, therefore, cannot cause an erroneous alternating output.

Thus, fanout from a primary inverter cannot affect the self-checking

properties of N in any case. So, consider a fault on any other network line

‘a’ that is a fanout gate or secondary fanout inverter output line. Either

there is a unique output path from ‘a’ or there is a unique path from ‘a’ to

an input of a fanout gate or secondary fanout inverter. For the former case

we know the network is self-checking for the fault by Theorem 2.4. So,

•1
I
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consider the latter case. Any output path, P~, sensitized by X from ‘a ’ can

be written

—

~~~~~~~~~~~~~ and any output path , P.!., sensitized by X from ‘a ’ can be written
- ——-—-.5- - ’- 

X

fI X X

where p* is the path from ‘a’ to the fanout gate or secondary fanout inverter

input , and and P~ are the output paths sensitized by X and X respectively

from the output of the fanout gate or secondary fanout inverter . But,

w(P x ) —

and therefore ,
w (P’) — w(P!).

I X

So, N my . be self-checking for a fault on ‘a’ in this case also. Q.E.D.

Theorem 2.9: An alternating network, N, is self-checking for all single

faults if f the inversion parity of output paths originating on a given

fanout gate or secondary fanout invertt~r output labeled ‘a’ sensitized by

I X equals the inversion parity of like output paths sensitized by for

ever y (X ,X) such that both X and X sensitize f~ for d 0 ,1 and for every

fanout gate or secondary fanout inverter.

Proof: By Theorem 2.8 the network N is self-checking for all single faults

if f it is self-checking for all single faults on fanout gate and secondary

J fanout inverter outputs. So, consider an arbitrary fanout gate or secondary

inverter, G, whose output, ‘a’, is stuck-at-d . If an erroneous output is

to be produced as a result of the fault, by Lemea 2.1 both X and X must

I
I

T. - - -
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-
- 

.
~~~~ - 

.
- 

-



I
27

I consider the latter case. Any output path , P~, sensitized by X from ‘a ’ can

be written

P~~
_ P *PX ’

and any output path, p.!., sensitized by X from ‘a’ can be written

p ’ — pkp
X X

whe re p* is the path from ‘a ’ to the fanout gate or secondary fanout inverter

input, and P~ and P~ are the output paths sensitized by X and X respectively

from the output of the fanout gate or secondary fanout inverter. But,

U)(P
X) 

—

and therefore ,
- w(P ) — w(p!).

so, N mu c be self-checking for a fault on ‘a ’ in this case also. Q.E.D.

Theorem 2.9: An alternating network, N, is self-checking for all single

I faults if f the inversion parity of output paths originating on a given

fanout gate or secondary fanout inverter output labeled ‘a’ sensitized by

I X equals the inversion parity of like output paths sensitized by X fo r

every (X,X) such that both X and X sensitize f~ for d 0 ,l and f or every

fanout gate or secondary fanout inverter.

J Proof: By Theorem 2.8 the network N is self-checking for all single faults

1ff it is self-checking for all single faults on fanout gate and secondary

fanout inverter outputs. So, consider an arbitrary fanout gate or secondary

inverter, G, whose output, ‘a ’, is stuck-at-d . If an erroneous output is

to be produced as a result of the fault, by Lemea 2.1 both X and X must

1

‘ I 
_ _ _ _ _ _ _ _ _ _ _  
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sensitize the fault. But by hypothesis for any such (X,i), W(P) — w(}L)

and the detectable nonalternating output

(d
~~
w(P

x), dSw(P_))

is produced. The network, N, must therefore be self-checking for the fault.

Conversely ,  if there is an (X,i) for which both X and X sensitize f~ for an

a-~itrary gate G with output ‘a’, while the inversion parity W (Px) 
does not

equal the inversion parity w(P....), then that same (X,X) produces on the output

of N

(d
~~
w(P

x), d~~
W (P
!
))

which in this case is an erroneous alternating output since ~U(P ) # w(P_).
X

Q.E.D.

The signi €~cance of Theorems 2.7, 2.8, and 2.9 lies in the fact that in order

t -~~ ass’ e that a functional realization, which does not admit to a classifi-

cation as one of the structures in Section 2.4, is still a self-checking

realization , it is only necessary to simulate the output under fault

conditions on fanout gate and secondary fanout inverter outputs and to

compare these with the fault-free outputs so as to determine if an erroneous

alternating output exists . Since such a simulation can be done quickly, an

optimal minimization program such as Davidson ’s branch and bound program [12]

could be modified so as to produce an optimal self-checking realization from

a dualized functional specification, without degrading program performance

significantly.

For some network structures not of the type considered in

Section 2.4 the self-checking property can be deduced by inspection, and a

I
I
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computer simulation is there fore not required . Corollary 2.1 specifies the

conditions.

Corollary 2.1: An alternating network, N, is self-checking for all single

faults if all output paths from a given fanout gate or secondary fanout

I inverter are of identical parity for every fanout gate or secondary fanout

imiverter.

- \s  an example , consider the alternating network shown in Figure 2.3. We

know that the network is self-checking if it is self-checking for f
d
, dC[O,l).

However, only two output paths egjL and ettkL originate from the output of the

f only fanout gate or secondary fanout inverter, and they are both of the same

inversion parity , w(egjL) — W(ehkL) — 0. So by Corollary 2.1 the network is

sel f-chec og.

Thus far only single output combinational networks have been

considered . Multi-output networks are, however, important structures. If

the network N is a multi-output network then the definition of self-checking

is modified somewhat.

1
Definition 2.17: A multi-output network is self-checking for all single

faults if f there exists no input (x,X) for which an erroneous alternating

output is produced unaccompanied by a nonalternatirig output on another

network output line.

This definition is somewhat more relaxed than the definition in the single

output case and should lead to simpler realizations when logic is shared in

producing the required outputs than when each output is produced with

_ _ _ _  
_ _  _ _  
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independent logic . As an example of the multi-output alternating network

consider the fu l l  adder .

Example 2.2: The full adder is shown in Figure 2.5 a) and Karnaugh maps

specifying the outputs S~ and C~ as a function of the inputs C~~1, a~, and

are shown in Figure 2.5 b). From the map for S~

~ C~ _~a~b~ + ~~~~~~~ + Cj1aibj +

—> S~ Ci 1(ajbj +ajb .) + ~~~~~~~~~~~~~~~

I Similarly , from the map for C.

I C~ — a1
b~ + C~_1b~ + Cj_iai

- 

~~~
, C. — C~~1(~~~~) + ~~~~

I 
Based on these equations, a realization for the full adder is shown in

Figure 2.5 c). The network must be an alternating network since C~ and S~

are self-dual functions. The network, however, is not self-checking . (The

fault f produces an erroneous alternating output under (Cji ai
hj,Cj..iajbj)

1 (000,111).) A self-checking realization can be obtained by converting the

structure shown in Figure 2.5 c) into an internal fanout-free structure.

The resulting network is guaranteed to be self-checking and is shown in

Figure 2.5 d).

Now cons ider those optimal full adder networks obtained by Liu,

et al [223 . Of the thirty networks obtained , six presuppose the existence of

only the input variable and not its complement. These six networks are of

I interest here and are shown in Figure 2.6 a ) - f ) . Networks a) and b) are

I
L 

_ _  _ _ _ _ _ _ _ _ _ _ _  
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Figure 2 .5 .  Alternating full  adder .
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I-
I

I

Figure 2.6. Optimal full adder .
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I optimal NOR adders; networks c) and d) are optimal NOR/AND adders ; and

networks e) and f) are optimal NOR/NAND adders. Adders a), c), and e) were

1 optimized with no level restriction; adders b), d), and f) were limited to

a maximum of 3 levels.

As to the self-checking properties of the optimal adders, adder b)

meets the conditions of Corollary 2.1 and is therefore self-checking .

Adder f) has no reconvergent fanout and is self-checking by Theorem 2.4

extended to the multi-output case. Adders a), c), d), and e) are at first

I glance not self-checking. But, computer simulations based on Theorems 2.8

and 2.9 verify the self-checking property of these networks also. For the

adder in Figure 2.5 d) and the optimal adders b) and f) in Figure 2.6 no

erroneous a~ternating output is ever produced on C~ or S~ . As a result the

I subnetwc—’ real izing C~ and the subnetwork realizing S~ are therefore self-

I checking in themselves. For the optimal adders a), c), d), and e) in

Figure 2.6, an erroneous alternating output can be produced on Cj or S~,

but such an output is always accompanied by a nonalternating output on S~

I 
or C~ , respectively, thus meeting the requirements specified in Definition

2.17. But, in each case neither the subnetwork realizing C~ nor the sub-

I network realizing S~ is self-checking in itself. Their union, however ,

sharing logic, is self-checking. This illustrates the advantages mentioned

I about sharing logic in the multi-output case.

I
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1 3. SELF-CHECKING ALTERNATING SEQUENTIAL MA~CHThE

1 3.1. Sequential Machine Model

Consider the strongly connected synchronous sequential machine,

I M(I,O,S,5,X), with clock ~ of frequency f and period T represented

schematically in Figure 3.1. The circuit has a finite number n of input

terminals . The signals entering the circuit via these terminals constitute

the set 1x1,x2,. ..,x ) of input variables. The set L of 2~ distinct inputs

is called the input alphabet I, and each configuration is referred to as a

symbol of the alphabet. Thus the input alphabet is given by

I — (I ,Il,...,IL
) for I X

1
X

2~~~. .X
fl~ 0(p<L and x~e[0,l), l< i-~ n.

- 
Si~ni larly , t1 e circuit has a finite number L of output terminals which

I define t~ set ~~~~~~~~~~~~~~ of output variables . The set M of 2’~ ordered

I L-tupl’ b is called the output alphabet and is given by

1 
0 — [0 00l,...,OM

) for O Z 1Z2...ZL, O-~ q<M and z~e(O,l), 1<1<1.

The signal at the output of each memory element is referred to as a state

I variable , and the set (y1,y2,. . .,y
~
) con*~titutes the set of state variables.

The combination of values at the outputs of the m memory elements Yl~
Y2~~”~~

PYm

1 defines the present state of the machine. The set R of 2
m m-tuples constitute

the entire set of states of the machine

S (S0~S1~...,S~) for S
s~~YIY2•a •Ym~ 

O<s<R and y~c[O,l}, l< i-<m .

L The externa l inputs X
1

~~ X2,....X
Q 

and the values of the state

variables y1,y 2 , .  
~•‘7m are applied to the combinational circuit, C. This

circuit in turn produces the outputs zl, z2 , . . . , ZL and the feedback variab les

1

— - - 5—..- 5 - - — :5. _~-.~ - ._~_5 .  - -~~~.--—-:-- — -
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I

1 •

*~z IS 

• 8,X
C

:

I

I 

yl Y1

I 
_ _ _

i 
_ _ _

I
I

Figure 3.1. Synchronous machine, M.
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•~~y .  The values of the Y’a which appear at the output of C at

‘ 
time t are identical with the values of the state variables at t-+T and

there fore define the next state of the machine . The machine M thus realizes

the transformations

1 ~: :::::.Normally these trans formations are d~ scribed by means of a state table or a

state diagram. Of interest here is the state table. It has a ’2~ columns,

one for each input symbol, and b rows , one for each state of the machine.

For each combination of input symbol and present state, the corresponding

entry specifies the output that will be generated and the next state to

w~-i ch the ~~chine will go. The succession of states through which a

sequential machine passes, and the output sequence which it produces in

I response to a known input sequence, are specified uniquely by the state

table and the initial state, where by initial state we refer to the state of

the machine prior to the application of the input sequence.

I
1 3.2. Alternating Sequential Machine

An alternating sequential machine M
A 
associated with 14 can be

- defined. Such a machine has the property that state variables and output

I variables alternate in response to alternating inputs.

I Definition 3.1: An alternating sequential machine associated v~~h M is a

sequent ia l machine having the prop erty that for inputs (I~ , I ) ,  1 < i < L ,

~~~~ . ~~~~~~~~~~~~~~~~~ 
- - - .
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I alternating in synchronism with 4, secondary var iables Yj~ 1 < j -( m, and

output variables Z
k~ 

1 < k < L, alternate in synchronism with 4, while

maintaining the next state and output relations realized by M.

Thus, for any alternating sequential machine associated with M,

— [(I ,Io),(Il,Il),.. .,(IL,IL))

I °A 
—

S
A 

— [(S
0,S0),(S1,~ 1),.. ~~~~~~~~~

I Now, consider the sequential machine, M*, modeled in Figure 3.2.

The inputs x1,x2,...,x~ are assumed to alternate in synchronism with 4. The

comb ination~
1 circuitry, C

A
, is a self-checking alternating circuit realizing

the functirns 6 and X of M. The clock line, 4, of period T and frequency f

shown a - an input to CA, is used as the added variable required to dualize

5 and X if they are not already self-dual. And, the clock, A’ of period T/2

and frequency 2f, is in phase with 4. (The clock 4 can be considered to be

derived from 
~~~ 

To analyze the operation of 14* assume that time t is the

beginning of an arbitrary clock period and that at time t
~YlY2•~~•Ym 

— S5

and 
~~~~ 

. .y~ 
— 

~~ 
(Figure 3.3). If 

~~~~~~ 
is applied as input at time t

then 1(t) LK, I(t+~) 
— 1k’ since inputs alternate in synchronism with ~~~•

I 
Further , 

—
y~ (t) — y

i
(t),

I y~~( t +~~) —

1 Thus, all inputs to CA and therefore all outputs from C
A 

alternate in

synchronism with I. Since C
A 

realizes 6 in producing Y~ , 1 < i < m,

____________________
-

.
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J Dj - ’1 ~‘ I D 14 ~~l
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1
Figure 3.2. Synchronous machine, ~~~~
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I

t+T t - ÷ 2T t+3T t +4T t+5T

I I I _ _ _ _  1 1 —

~ i n ~~~n i n ~~~ n i n _
M 12 lo I~ I~ Ii

Sequence S~ S4 _S~~ ____ S5 ____ S3 
—

I 
I 12 I~ 10 10 13 13 15 15 I~ I~

I v S4 54 S5 S~ S5 S~ S3 S3
— — — — — ___  ___  ___  ___  —

I y l S0 S4 S4 S5 ~~ 
S5 S5 S3 S3 

____

y S0 S
~ 

S4 54 Se S~ S5 S5 S3 53

I

I

I Figure 3.3. Timing relationship.
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I Y~ (t) — ô
A~~

(t),5(t
~~ 

—

I 
Yi(t+~

) — 6
A
(I(t+

~
),S(t+

~
)) — 

~~~~~~~~ 
—

Therefore,

I y~(t+T) — y(t +~ ) — Y
i
(t) — ô(Ik,Ss)

I y~ (t+~
2
~) — y~(t+T) — Yi(t+~

) — 
~
(Ik,S )

I and since C
A 

realizes X in producing zi, 1 < i <

zi
(t) — X

A
(I(t),S(t)) — X (Ik,Sg)

z~ (t+~ ) — X
A 

(t+ 2),S(t+2)) — X
A
(L,~,Ss

) — X( I,K,S).

The sequent~~ l machine M* thus produces 4-synchronized alternating secondary

I variables -and outputs in response to 0-synchronized input variables while

I 
maintaining the next state and output relations realized by M as required

by Definition 3.1, and is therefore an alternating sequential machine

I associated with M provided the initial state is set in the y flipflops and

the complement of the initial stCte is set in the y ’ flipflops on

I initialization.

I

I 3.3. Self-Checking Capability

As could be expected , the alternating sequential machine, ?(~~, has

I some fault detecting capabilities. In fact, all singje stuck-at faults on

I 
lines in the feedback and output combinational citcuitry, CA , 

and on the

memory element input and output lines can be detected. If, in addition, it

I

_~~~~~~~~~~ 
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I can be guaranteed that no erroneous alternating outputs are produced prior

to the fault detection then M* is a self-checking alternating sequential

I machine . The ideas are formalized by the following definition.

Definition 3.2: The alternating sequential machine, 14*~ is self-checking

for all faults from a fault set F iff for every fault from F there exists a

state (Si,~j
)CS

A 
and an input (Ij~

I
j
)€IA 

which produces a nonalternating

(detectable) output on 
~1’T2’•••’Tm’ zl, z2 , . . . , zZ _ l  or zL and no state

(Sj,Si)€SA and input (I j~ Ij )€I A for which an erroneous alternating output is

produced prior to a nonalternating output.

Since, in general , the alternating circuit CA in 14
* is not

e:- -rcised b~ all possible input combinations, it is assumed that CA 
has been

I d .~signed t’ be irredundarit with respect to the input combinations encountered .

With th~.s as an assumption the following theorem can be proved .

Theorem 3.1: The alternating sequential machine, 14*~ is self-c -~ecking for

J all single faults on lines in CA 
or on input and output lines associated with

the memory elements.

I Proof: First consider a fault on any line in C
A
. Since M is strongly

connected so is ~~ So, any state in !4* can be reached from any other state

by the application of the proper input sequence. And since C
A 

is self-

checking and irredundant with respect to the state and input space there is

a state (Sj,Si) and an input (I~~i~) which produces a nonalternating output

on some output of CA ,  and no state or input which produces an erroneous

alternating output prior to such a nonalternating output. Since the non-

I alternating output appears on 
~i’

T2’ ”’~m’ 
5l,52’~~~

,5L l  or z
~
, 14* must

I
I

5-—— -~~~~~~ 
~~~~~

5-1
~~~~~~~~~~~ - —~~~~~~~~~~~~~~~ - -
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be self-checking for these faults. Now, consider a stuck-at-d fault on any

memory input or output line . Such a fault must manifest itself eventually

as y1 stuck-at- d for some i, I < I. ( m . Since C
A 

is se1f-checking for all

single faults on primary network inputs, a nonalternating output appears on

‘
~l ”~2’” ~“~m ’ z 1, z2 , .  . . , z~~~1 or zL simultaneously with or prior to an

erroneous alternating output and 14* must be self-checking for these faults.

Q.E.D.

The self-checking capability of the sequential machine 14* was

I obtained by encoding the state variables y~, I < i < in, in time . While such

an encoding has the advantage that the secondary state variable assignment

is not constrained , it has the disadvantage of doubling the number of

memory eleme~its required . However , the added set of memory elements serve

a double irpose as will be shown in the following chapter.

I To illustrate the techniques involved in designing an alternating

sequantial machine consider an alternating sequential machine representing

a one-input , one-output sequence detector which produces an output 1 every

time the sequence 0101 is detected and an output 0 at all other times.

Example 3.1: The 0101 sequence detector has been designed as a conventional

I sequential machine in Kokavi [21]. The state table for the machine is given

in Figure 3.4 a). As there are four distinct states in the state table,

two memory elements are required in the sequential machine. Selecting the

I state assignment

I
I
I

I p 

—
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NS ,z 1 y1y2 4Y 2

— 
,(i:0 x~~ 1 

— 
x~:O x~ 1 x 1~ 0 x~ 1

S0 S~,O S0,0 00 01 00 0 0

S1 S1,0 S2,0 01 01 11 0 0
S2 S,O S0,0 11 10 00 0 0
S3 S1,0 S2, 1 10 01 1 1 -0

a) State Table b) Transition and Output Tables
y1 y2

1 ‘~ 00 01 11 10

I xl

0 0  0 0 0
— — —  — z i

1 i O  0 0 1

I 
01 11 10I x 1~~~~~~~~~~~~~~~~~~~~~

I 1 0 1 1 0 1

y 1y 2
- \ 0 0  02 11 10

‘l 
-— — —  —

0 1  1 0 1

7 7 T1Y 2

c) Excitation and Output Mops

Figure 3.4. Sequence detector.
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d) Circuit Diagram
FP-5100
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Figure 3.4. Concluded .

I
I

- -..-—.————. —. 
— - 

- - -
~~f



V
4 45

I y
1y2 0 0 S

y1y2 0 1 s
1

— 11 — S
2

I — 1 0 — sy1
y
2 3’

I transition and output tables can be constructed , Figure 3.’+ b). From these

tables Karnaugh maps specifying the output function, z1
, and the next-state

variables , Y1 and Y2, can be constructed , Figure 3.4 c) and standard two-

leve l realizatione of z1, Y1, and Y2 yield the conventional 0101 sequence

detector , Figure 3.4 d).

-
~ The alternating sequential machine representing the 0101 sequence

detector f c  obtained by first dualizing the functional descriptions of

1 ~~~
, and Y. to form functional specifications for z

1~ , ‘~1~ ’ 
and These

I 
specifications are shown as Karnaugh maps in Figure 3.5. These functions

are then realized in two-level logic and’ utilized as C
A 

in the alternating

I sequential machine, Figure 3.6. The combinational block C
A 

thus has as

inputs (x1,~ 1) and the (0,1) clock 0, and as outputs, the machine output

I (z1,i1) and the next-state outputs (Y 1,V1) and (Y
2,
V2). 

Four D-flipflop

memory elements are required in the alternating machine, and these are

1. configured as specified in Figure 3.2, clocked by a clock 0A of period T/2.

4 The conventional machine utilized 12 gates and 2 D-flipf lop memory elements.

The alternating machine required 19 gates and 4 D-flipf lop memory elements.

I Thus, gate count was increased by roughly a factor of 1.5 and memory element

4
- 

1
‘ I

I 
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y1 y2
- 00 01 11 w 46—

00 0 0 0 0

01 0 0 0 1

1 ::~~~~~
-
~~~~:

~ 00 01 11 10

00 0 0 0

I- - 01 0 1 0 1
Y1*

11 0 1 1

10
~~~~J O j i f O

I

I 01 0 -ti
~
ii- 0 1

Y2*

1 11 1 0 0

1 
10 1 0

F P 5080

I
Figure 3.5. Dualized functional descriptions.

I
L i   

_ _ _ _ _ _  

_

— T. - -- -



--____________________________________________

1 
4

I - 

47

I
(0 , 1)

I — — 
_ __ __ _

~
_ i

____ 

(z~ ,~~~ )

IX , X ~) —t----” -
~~ ii ~~~~~~~ 

I

~ ~-—-D---— i~1

~ t li~~~—
--

~ —c-—.,.
___  

—t -—1
~

--- 

— 

~ 
~
___._L__..~ 

( Y ~

I ~~
- - T ~~~~~~~~

I _

~~~~~~~~~~~~~~~~1 _  -

i
—

1 
+

7

~

0
c

0
c

- 5OS~

Figure 3.6. Alternating sequence detector.
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8.4
I count by 2. Also , to this added cost must be included the cost of the

alternating checker which monitors (z1,11) ,  (Y
1
,V1), and (Y2,~ 2) so as to

indicate the presence of nonalternating signals on these lines. The

I alternating checker is the subject of the next chapter.

I
I
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I

1
I
I

I
I

I
I
I

- 

~~~~~. 
--
~~

- -
~~ 

-
~~~ I~~ Ll1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -  — -1

I V 
- _ _ _

~• - --s-—-— — _______ — - .5 .5 .5— —5--- —~



1 4. ALTERNATING CHECKERS

4.1. Ad.joint Alternating Checker

In any practical alternating logic network, some means must be

I provided to monitor network output lines (in the case of synchronous

I machines , network output lines and feedback lines) so as to provide an

indication of the occurrence of nonalternating signals on these lines.

Any network which performs this function is an alternating checker. The

adjoint alternating checker is one such checker.

1 
_ _ _ _ _  _ _ _ _ _ _ _ _ _
Definition 4.1: An adjoint alternating checker is a single output network

which produces in response to synchrontzed alternating inputs a synchronized

alternating output and produces in response to one or more synchronized

nonalterrt--:ing inputs a synchronized nonalternating output.

An ad~oint alternating checker monitoring an r output alternating combina-

tional net~wurk N is shown in Figure 4.1. The outputs of the network N,

., f~ are system outputs but also are inputs to the alternating

I 
checker. The output of the alternating checker, p, is also a system output

and is used for fault indication. Under fault-free conditions in response

to a synchronized alternating input (X,~ ), r synchronized alternating outputs

., and 
~~~~~~ 

are produced by N. These outputs are

1 monitored by the checker which produces a synchronized alternating output

(p,~) in response to them. If a fault exists in N and N is self-checking

the re is an input (X ,i) for which a nonal ternat ing output , (ç, f 1) or

I produced on some output f~. This nonalternating output as

I

IT ~~~~~~~~~~~~~~~~ ~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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.

I
(X , X )  ( F ,r

I. . 
________— p (f 1 ~~~~

N 
—~~( f 2 ,T2 )

I 
(x~~,~~ )o~— 1___.____ . — —‘ (f rY r )

I

‘1 W~~ W2 W~
I Ad joint

Alternating
Checker

—0 (n, )

I ________________________ _______________________________

1~ FP- 5O~2

1.

Figure 4.1. Alternating network N and adjoint checker.
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I input to the checker causes a nonalternating checker output , (p ,p ) or

indicating the presence of that fault. A combinational realization for the

adjoint alternating checker, however, does not exist as the following

theorem shows.

Theorem 4.1: A combinational adjoint alternating checker does not exist.

Proof: Assume that the adjoint checker with r inputs w1,w2,
w3,..., and

arid one output p can be realized with combinational logic and suppose that

— v
1
v
2...v maps to d where V1, V2,...,V and detO ,l). Then

I ‘
~l~
’2’ .

~~~~ 

must map to as the output must alternate when alternating inputs

are applied . Further, all other w w - . ~ .L such that W ~L) 
• ~(L) ~~ V V . .1 2  r £ 2  r 1 2  r

must map to d since the output must be nonalternatirig for nonalternating

i~LpUtS . Now consider ~1v2. ..v and v
1
V
2~3

.. 
~~r ’ Both must map to d as

neither equals v
1
v
2
. . .v

r 
and , therefore, under (~1v2. . ~~~~~~~~~~~~~ r~~’ 

an

I alternating input, the nonalternating output (d,d) is produced . The adjoint

alternating checker cannot, therefore , be combinational. Q.E.D.

While the adjoint alternating checker cannot be realized in a combinationa l

1 structure , a combinational alternating checker exists which is capable of

performing the checking function for certain c lasses of network structures .

This checker is discussed in the following section.

1
.5 4.2. Semi-Adjoint Alternating Checker

Some alternating networks are structured such that as a result of

a stuck-at fault, at most one network output (or feedback line in the

I
I 

_ _ _— 
_ ,  . .5 JUi -~~r-r ----~~ ~~~~~~~ — — — ~~ ~~~~~~~~~~~~~~~~~~~~~~~~ -

.5 ..4 .... 
.5 

1~~ 
p -

— . 5- - -



I
1 52

I case of the synchronous machine) is affected by the fault under any given

input , where the effect of the fault must be the production of a non-

I alternating output on that line. A combinationa l network and a sequential

network meeting this criterion are shown in Figure 4.2. In the combina-

tional structure lines 
~1’~ 2’”’~r 

are monitored lines. And , since a

I network fault in any subnetwork Ni, 1 < i ~ r , can only affect the network

output ~~ only one nonalternating output can be produced at any time as a

result of that fault. Obviously , the result is achieved by eliminating

shared logic in producing f
1
,f
2
,...,f .  In the sequential network , the

same technique is used . In this case monitored lines are YI ’~ 2’”~~
’Ym and

z1 ,
z2,. . . , z2 ,  name ly all network  ou t p u t  ,~uid feedback lines. Any single fault

in network N , 1 - i L , affects only z
1
. Any single fault in network

1 ~ i - m , affects only Y~ and therefore only y~
. Similarly, any line

I fault on a memory element input or output line affects only one monitored

line , y
~
. Any checker monitoring line s z 1, z 2 1 • .  ., z1,y 1,y 2 1 .  •

~~‘~ L there fore

I receive s as input at most one nonalternating signa l at any time , while all

others alternate . The same can be said for any checker monitoring lines

1 and 
~r 

in the combinational network.

‘ 
The above structures relax some of the restrictions placed on the

checker , allowing the use of a combinational alternating checker.

Definition 4.2: A seini-adjoint alternating checker is an r input, 1 output

r network which produces in response to r synchronized alternating inputs a

synchronized alternating output and produces in response to r-l alternating

and 1 nonalternating synchronized inputs a nonaltern4ting output .

;- 

J r
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Figure 4.2. Restricted combinational and sequential networks.
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I Now , consider an r-input exclu~ive-OR tree where r is odd , and let

the inputs be designated ~~~~~~~~~~~~~~~~~~~

Theorem 4.2: The r-input exclusive-OR tree, C, is a semi-adjoint alternating

checker for odd r.

Proof: Assume that synchronized alternating inputs are applied , (w,~)

(w
1
w
2
. . .W ,~ 1~

iT
2
. .

~~
) where w has .L l’s and i~, in l’s. Further, assume that

C produces (a,b) in response to input (w ,~). Now, since the exclusive-OR

tree produces an output of 1 when thet parity of the number of l’s on its

input lines is odd , a — P
0(L) where P0 

is the odd parity function.

Similarly, b — P
0(m). But m — r-L for alternating inputs. So, b — P (r-L).

Now if L is odd a 1 .  However , since r is odd , r-1 must be even , P0(r-L)— O ,

and b 0 .  An alternating output is thus produced . If L is even, a 0 , r-L

is odd , E (r-L) — 1, and b l .  An alternating output is thus produced for

I this case also.

I 
If at most one input does not alternate then in effect the circuit

monitors the parity of the other alternating inputs producing an even parity

1 function P if its nonalternating line is (1,1) and an odd parity function

P0 if the nonalternating line is (0,0). Letting t’ be the number of l’s

J on the alternating lines in w and m be the number of l’s on the alternating

lines in ~~ , a — P (L’), b — P
e
(r_l_L’) — “e~~~

’
~ 

— a since r-l is even if the

I nonalternating line is (1,1). And, a — P (L), b — P (r-l-L’) — P (L ’)  — a

( if the line is (0,0). Thus, a nonalternating output is produced . The

exclusive-OR tree is therefore a seini-adjoint alternating checker for odd r.

Q.E.D.

I
~ 1 
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I If an even number of lines is to be monitored it is only necessary

to tie the unused checker input line to the clock L This application is

illustrated in Figure 4.3•where 4 output lines from a combinati.onal network

are monitored using a 5-input exclusive-OR tree composed of 3-input

exclusive-OR gates. Note that the combinational network does not utilize

I shared logic and can therefore be monitored with a semi-adjoint alternating

checker as shown.

So far, only faults in the monitored network have been considered .

Faults, however , may also occur in the checker itself. The self-testing

property of the alternating checker assures that a fault signal is produced

on the checker output as a result of that fault while the monitored network

functions normally.

Definition 4.3: An alternating checker is self-testing if for every single

L stuck-at fault on checker gate input and output lines, there exists a

network output which as input to the checker produces a fault indication as

output.

Theorem 4.3: The exclusive-OR semi-adjoint alternating checker is self-

testing if the number of gate inputs to each exclusive-OR gate is odd .

Proof: Consider a fault on line g, f , in an exclusive-OR tree. The fault

I partitions the set of checker inputs [W lIW2~ •~~~
W
r
} into two sets. One set,

S, contains those w which are inputs to the subtree whose output is g and

the other set , R, contains all remaining inputs. Now, the number of inputs

L 
to the .ubtree whose output is g must be odd since only odd input exclusive-OR

gate. are used . That is , # I S I  — a is odd . But then , #j R ~ — r-a — b where: 1

— 

I 
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I

N
I N1 — — 0 ( f 1J )

N2 — — — ° ( f 2 ,f2 )

(X ,W ) — 

—

N — — - o ( f 31 f 3 )

1
N — -~~~ o (f4,74)

~~

rP- 5 oe4

I

I. Figure 4.3. Multi-output combinational network and semi-adjoint
alternating checker.

I
I

—.5 

- 
.5 .5 ..- — -

~ 
—.5 .5_._ - s~.1j— ~- 

ri;- a” r’- - 
-—

.5- - ~ ,



I-

57

r is the total number of checker inputs. Since r is odd and a is odd , b is

even. Now, consider an input U) such that w — 1 if W eR. Since the faulty

I checker essentially performs the function C — ( ~ w )~~d, d is produced
f
d W C R i

I with w as input. With ~ as input, every ~i
eR is O and d is produced for this

case also. So, a nonalternating output (d,d) is produced as a result of

I application of (W ,~~~) and (W ,~~~) therefore constitutes a test for f~. Q.E.D.

As a result of the above theorem the alternating system shown in

Figure 4.3 is self-checking for all single faults of the stuck-at type in

I both the alternating network, N, and its checker, C.

4.3. Two-Rail Alternating Checker

I 
While the semi-adjoint exclusive-OR checker is an inherently

simple checker, its use constrains the network structure in a manner that

I may be impractical in some cases. For this reason a checker which produces

a fault indication when one or more checker inputs do not alternate is

I desirable . One such checker, Figure 4.4, utilizes an r-input totally self-

checking (TSC) two-rail checker as a subnetwork. This two-rail checker has

V been studied in the literature [1] and has the following properties :

I 
a) Inputs to the TSC two-rail checker are r input pairs, ~~~~~

1 < i < r. Output from the checker is a single output pair v,v’.

1 b) The TSC two-rail checker i. code disjoint. That is, if every input

pair u~~u is two-rail u~ •iZ~, 1 < i < r, then the output v,v’ is

I two-rail, v ’ ~~. But, if One or more input pairs are not two-rail

then the output v,v’ is not two-rail, v ’ # ~~~.

— ,-~ -— 
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I

~Alternating Checker
Wl

o__

L

ç 
_ _ _w2 Lç~1 

-

_ _ _ _ _  

Two Ra I I 
p

1 TSC
Checker — —op’

wr o— p

I ~ I
1
1

1
Figure 4.4. Two-rail alternating checker.
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I c) The TSC two-rail checker is self-testing. That is, for any stuck-at-d

fault on any checker gate input or output there exists a set of r

1 two-rail inputs which when applied to the two-rail checker produces

a checker output which is not two-rail.

The two-rail checker when used as a subnetwork of the alternating checker is

preceded by a set of D-flipflop memory elements. One such element is used

on each input line so as to produce r input pairs from the r alternating

inputs applied to the alternating checker. These r input pairs are then

applied to the two-rail checker as u1,u , 1 < i < r. Thus, if r f-synchronized

alternating inputs are applied , r two-rail pairs ui,u~
, u~ ti~,, 1 < i < r,

are produced as input to the two-rail checker during the ‘0’ of the clock.

As a result , during that half-period , the two-rail checker output is also

1 two-rail , ‘i ’ —~~~ . If one or more of the r i-synchronized inputs are non-

I alternating , one or more of the two-rail checker inputs are not two-rail and

the two-rail checker output v,v ’ during the ‘0’ of the clock is not two-rail

1 either , v ’ ~ ~~~. The two-rail checker outputs v,v ’ are latched using two

additional D-flipf lop memory elements at the beginning of each clock period .

1 The resulting alternating checker output p,p ’ is a representation of v,v ’

1 
with period T, where T is the period of the clock •. Specifically , during

any clock period p,p ’ assumes the value on v ,v ’ during the ‘0’ of the clock

in the previous period . Any fault detected by the alternating checker is

thus indicated on p,p ’ as 0,0 or 1,1 in the clock period following the

sensitization of the fault. A 0,1 or 1,0 on p,p ’ ind icates normal operation

during the previous clock period .

I 
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Theorem 4.4: The two-rail alternating checker is self-testing.

Proof: Consider any single stuck-at fault on lines in the two-rail TSC

I checker. For any such fault there exists a two-rail input u — u
1
u
2
. . .u1.

which tests for that fault as the two-rail TSC checker is itself self-

testing. But then, input (~V ,~~~~) — (u,) must test for that fault in the

¶ alternating checker. That is, under alternating input (W,~~~) — (u,Zi), a

fdult indication, v,v ’ — 0,0 or 1,1 is produced on the TSC two-rail checker

I output . That fault indication then appears on the output p,p ’ during the

following clock period indicating the existence of the fault. Now consider

any line fault stuck-at-d on memory elements preceding the two-rail TSC

checker. Any such fault must manifest itself as ~~~~ — d ,d for any (w,~)

such that (W . , 17j ) — (d ,d). However, if u~ ~ 
then v ’ ~ i. Therefore

I p ’ ~ ~ ir the following clock period and the fault is detected . Similarly ,

line faults on the output memory elements are also detected and the two-rail

alternating checker is self-testing . Q.E.D.

Thus, any line fault on any memory element input or output or any line

fault within the two-rail checker itself manifests itself as a fault signal.

Any alternating system utilizing the two-rail alternating checker for

I monitoring network lines is therefore self-checking for all single faults.

The two-rail alternating checker is somewhat costly as a delay

4 element must be added for each monitored net~~rk line. This restriction

can be relaxed in the case of the synchronous machine. There, machine

outputs z1,z2,. ..,z are monitored in normal fashion us ing a delay element in

the two-rail alternating checker for each of the 1 output lines. The feedback

1
I 
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I lines 11’~ 2 ’~~
•
~~’~m 

are applied to the checker as 
~~~~~~~~~~~~~~~~ 

and

lines 
~~~~~~ ..,y

’ become u
~+1,

u
~+2,. 

. .,u~~~. (Note that r L4m.) Thus,

I no delay elements are required in the two-rail alternating checker for

S •~Y •  A total of in delay elements is eliminated by utilizing delay

elements already used in the synchronous machine.

S

I
I
I

I
I

• I

1 
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5. COST OF ALTERNATING LOGIC IMPLEMENTATION

.5 

5.1. Introduction and Summary of Results

The implementation cost of any design method that yields networks

5 with a measure of fault detection capability is of major concern. Results

in this area are, however , somewhat sparse as design of fault tolerant

digital systems is a relatively new field . Of those design methods where

implementation cost is known, triple modular redundant (T?4() design and

quadded logic design are most classic . In TMR design [11 ,16] basic circuitry

is increased by a factor of 3. To this cost must be added the cost of the

• voter , which may appear as a single ..~.1it or may itself be tripltcated .

Implementation of qu.added logic design [11,161 requires basic circuitry

I t~~ be increased by a factor of 4 as each gate is quadrupled in the design .

Both of ~~e above method s are fault masking techniques.

I Alternating logic design is a design method which yields totally

self-checking digital networks which do not mask a fault but simply

~ndic; te its presence. In order to get a feel for its cost, self-checking

I 
alternating NOR networks representing all 218 three variable functions were

obtained . These networks were compared with optimal NOR realizations [18]

for each of the 218 three variable functions, obtaining in each case the

ratio between the number of gates in the self-checking alternating realiza-

tion to the number of gates in the optimal three variable realization. For

the 218 functions examined these ratios varied from 1 to 7. Those functions

with a ratio of 1 were the self-dual three variable functions whose optimal

[ NOR realization had sufficient structural properties to be self-checking

-
I

H 1
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I also. Eight of the 218 functions were in this class. Onl:’ one function had

a ratio of 7. That function was a+b+c , ri~alizable as a simple NOR gate ifl

a conventional design but requiring 7 gates in a self-checking alternating

representation. Four of the 218 functions had a ratio greater than 3. The
- 

mean for all 218 functions was 1.85. This figure might reasonably be

compared with the figure for duplicating machines, rLamely 2.

The mean self-checking alternating cost ratio , 1.85, obtained is

I not guaranteed to be optimal. That i~ , a self-checking alternating network

may exist which represents a given three variable function while using

less NOR gates than that network used in obtaining the above comparison .

A lower bound to the mean, however, can be formulated from knowledge of the

optimal NOR realization of the alternating network, not necessarily self-

checking . representing each of the 218 three variable functions . To this

I 
end optimal NOR networks for all self-dual functions of 4 variables were

obtained . These networks were associated with each of the 218 three variable

functions they represent in order to form an optimal ratio in each case.

The mean ratio, 1.63, was then calculated . Thus, the mean self-checking

‘I alternating cost ratio is bounded from below by 1.63.

The mean self-checking alternating cost ratio, 1.85, does not

include the cost of the alternating logic checker. Any implementation of

an alternating logic design must of course include this cost in its justi-

fication, just as the voter cost ~ ist be considered in T~~ system design.

I In the following sections the data supporting the results

su~~~ rized here are presented , including NOR network diagrams for each

I
I 
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t optimal alternating network and each self-checking alternating network. If

the details are not of interest , proceeding to Chapter 6 is advised .

p.5

5.2. Functional Notation

In order to define explicitly the manner in which the data are

p~~sented , it is probably best to pick a three variable function and find

I its optimal conventional NOR realization, its optimal alternating NOR

realization, and the self-checking alternating NOR realization utilized for

representing that function. To this end consider the function f(x1,x2,x3)

specified in Figure 5.la). The function can be represented as an 8-tuple

,z7 where —0 or 1, 0 < i < 7 , and where z0 f(0,O,O),

— f (O ,fl ,1),..., and z 7 — f ( l ,l,l). That is, f can be represented as

l 
000lll (IY. As this notation is somewhat cumbersome a shorter notation

based on the previous notation is used . The 8-tuple z0z1
. . .z 7 is parsed

into two four-tuples , and a hexadecimal notation based- on Table 5.1 is used .

The resulting 2-tuple representation for the function is thus denoted

1 f ( x 1,x2,x3) — y
0y1 where y~€[O,l,...,9,A,B,.. . ,F) for 0< i < 1. The function

f is thus represented as f(x1,x2,x3) — lC , since the hexadecimal version of

0001 1100 is lC.

I
5.3. Results

Once the hexadec imal notation for a function f is obtained ,

Table 5.2 is consulted . The first column of that table lists the hexadecimal

I

.5
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~X 3

i
1

i i  - -

(x ~~,ut~ )

C)

I
i 

Figure 5.1 .  Example 3 variable function.
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I Table 5.1. Hexadecimal Notation

I zi zi+1 ~~~ z
~~3 

Y
j

0 0 0 0  0

0 0 0 1  1

1 0 0 1 0  2

I 0 0 1 1  3

i 0 1 0 0  4

0 1 0 1 5
0 1 1 0  6

0 1 1 1  7

1 0 0 0  8

1 1 0 0 1  9

1 0 1 0  A

1 0 11  B
1 1 1 0 0  C

1 1 0 1 D

1 1 1 0  E

1 
1 1 1 1  F

i— 0 ,4 j—i/4

I
I

14

I
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( specifications for all 256 functionsl of three or fewer variables. The

hexadecima l specification for the function in question is thus used to

I select a row of the table . The second column of the table lists the number

- of gates required In the conventional optimal NOR realization of each

function as given in Hellerman [18]. (Complements of input variables are

I 
assumed to be unavailable.) Thus, for the function 1C , 6 NOR gates are

required . A — in the second column indicates that the functional specifi-

1 cation for that row is a specification for a 0, 1, or 2 variable function.

The third through fifth columns contains data for the optimal alternating

NOR network which represents f namely the optimal network for the duali-

zation of f, 
~~ 

discussed in Chapter 2. For the function 1C there are 8

gates in this network, yielding a cost ratio of 8/6 or 1.33. The drawing

I numbers in the fourth column wi l l  be discussed later. The sixth through

I 
eighth columns contain data for an alternating network which represents

f by realizing 
~~ 

but does so with sufficient structural properties to

1 guarantee that it is a self-checking alternating network. For IC this

realization has 9 NOR gates, yielding a cost ratio of 9/6 or 1.5. A better

I realization for the self-checking alternating network may exist but at best

it can have no fewer gates than the optimal alternating network, namely 8.

- The cost ratio 1.33 is thus a lower bound on the cost ratio for the function

1C.

The gates required in the optimal alternating networks representing

.5 [ f were obtained by finding optimal NOR realizations for the function of

each three variable function f. Optimal NOR realizations for every four

I . variable self-dual function were thus required. Of the 3984 P (per mutation

I
I
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of variable) equivalence classes of four variables , assuming complements

- 
of input variables are not available, 32 are P equivalence classes of self-

-
~ dual functions . A representative of each of these 32 representative functions

- was selected and optimized by first minimizing the gate count, then

tninimizir.g the number of gate inputs, and , f inally , minimizing the number

of levels required to realize the function, utilizing a FORTRAN program

ILLOD-(NOR-B)’ writ ten by Nakagawa and Lai [25]. (The optimizing algorithm

I used In that program is based on Davids&s [12) branch-and-bound method and

is essentially a NOR version of Davidson ’s optimizing NAND decomposition

algorithm.) After these optimal networks were produced , one was assigned to

each three variable function along with a permutation number specifying how

input variabies are connected such that the network represents f by realizing

I c• Neti.”~—k drawings of the optimal alternating networks appear in

I 
Figure 5.2 , p. 82. For the example function lC, networks 22 and 23 are both

optimal alternating networks for the function although neither is self-

I checking . Further , an input interconnection number, 1, is specified ,

delimited by a slash (I). Table 5.3, p. 80, associates this number with an input

1 interconnection specification. Thus, for permutation 1, the clock ~ should

be connected to a , x1 to b , x2 to d , and x3 to c. The resulting network

using optimal network number 22 is shown in Figure 5.1 b). It is the optimal

I 
alternating NOR network representing the function 1C.

A self-checking alternati ng network representing the same function

I can be obtained using the network drawing informa ”ton in the seventh column

of Table 5.2 , p. 70. In this column is specified a network drawing number and

I an input inter connection specification as before . The network corresponding

I
I 
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to these numbers appear in Figure 5.3 , p. 84. For the example function , IC,

network drawing number 22 is specified with interconnection number 1. The

1. resulting self-checking alternating network is shown in Figure 5.1 c).

The self-checking alternating networks shown in Figure 5.3 were

also generated by the FORTRAN program ‘ILLOD-(NOR-B) ’. The networks,

I however, were produced by the program in its search for the optimal

networks . The self-checking capability of these networks was determined

I independent ly based on their structural properties.

I

‘I

1
1

I
I
I
I
I
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Table 5.2.  Cost Ratio and Network Drawing Table

f ________________ 

Realization

Optimal Optimal Self-checking
Conventional Alternating Alternating

Function Gates Gates Drvg. Ratio Gates Drwg. Ratio

1 01 4 5 6/0 1.25 5 6/0 1.25
02 3 6 8/0 2.00 6 8/0 2.00

1 04 3 6 8;l 2.00 6 8;l 2.00

05 - - - - - - -

t 06 6 7 14/0 1.17 7 14/0 1.17

07 3 5 6/6 1.67 5 6/6 1.67

1 08 2 6 9/0 3.00 7 9/0 3.50

09 5 7 14/6 1.40 7 14/6 1.40

I OA - - - - - - -
OB 4 6 8/6 1.50 6 8/6 1.50

I OC - - - - -
OD 4 6 8/7 1.50 6 8/7 1.50
OE 5 6 9/6 1.20 7 9/6 1.40

OF - - - - - - -
10 3 6 8/4 2.00 6 8/4 2.00

1 11 - - - - - - -

12 6 7 14/2 1.17 7 14/2 1.17

I 13 3 5 6/8 1.67 5 6/8 1.67

14 6 7 14/3 1.17 7 14/3 1.17

15 3 5 6/9 1.67 5 6/9 1.67

16 7 8 20/0 1.14 9 20/0 1.28

.5 17 4 4 3/18 1.00 4 3/18 1.00

1 18 6 8 21/0 1.33 9 2 1/0 1.50
19 5 8 20/8 1.80 9 20/8 1.80[ 6 8 22.23/0 1.33 9 22/0 1.50

I
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I Table 5.2 continued

Realization
- 

Optimal Optimal Self-Checking
Conventional Alternating Alternating

j Function Gates Gates Drwg. Ratio Gates Drwg. Ratio

lB 4 7 14/12 1.75 7 14/12 1.75

I 1c 6 8 22,23/1 1.33 9 22/1 1.50
ID 4 7 14/13 1.75 7 14/13 1.75

1E 6 8 21/6 1.33 9 21/6 1.50
I iF 3 6 8/18 2.00 6 8/18 2.00

1 20 2 6 9/2 3.00 7 9/2 3.50

21 5 7 14/8 1.40 7 14/8 1.40

23 4 6 8;8 1.50 6 8;8 1.5~
6 8 21/2 1.33 9 21/2 1.50

1 25 5 8 20/8 1.60 9 20/8 1.80

26 6 8 22,23/2 1.33 9 22/2 1.50

I 27 4 7 14/14 1.75 7 14/14 1.75

28 5 7 15/0 1.40 8 15/0 1 .60

I 29 6 8 22,23/12 1.33 9 22/12 1.50

2A 2 6 10/0 3.00 6 10/0 3.00

2B 5 5 5/21 1.00 5 5/21 1,00

1 2C 5 8 24/0 1.60 9 24/0 1.80

2D 5 8 21/ 12 1.60 9 21/2 1.80

I 2E 5 7 15/6 1.40 8 15/6 1.60

2F 4 6 9/12 1.50 7 9/12 1.75

30 - - - - - -
31 4 6 8/10 1.50 6 8/10 1.50
32 5 6 9/8 1.20 7 9/8 1.40

1 33 - - - - - - -
34 6 8 22 ,23/4 1.33 9 22/4 1.50

1 4 7 14/16 1.75 7 14/16 1.75

I
1

I ~~~~~~~~~~~~~ .5 ~~~~~~~~~~~ _ . ~~._ — -________ ___;_ _._.._ __ .5 
.5
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Table 5.2 Continued

.5 1 _ _ _ _ _ _ _ _ _ _ _  

Realizat ion
I Optimal Optimal Self-Checking

Convent iona l Alternating Alternating

I Function Gates Gates Drwg. Ratio Gates Drwg. Ratio

36 6 8 21/8 1.33 9 21/8 1.50

1 37 3 6 8/20 2.00 6 8/20 2.00

38 5 8 24/2 1.60 9 23/2 1.80

39 5 8 21/14 1.60 9 21/14 1.80

3A 5 7 15/8 1.40 8 15/8 1.60

38 4 6 9/14 1.50 7 9/14 1.75

1 3C - - - - - - -

3D 5 8 22 ,23/18 1.60 9 22/18 1.80

I 
3E 6 8 24/12 1.33 9 23/12 1.50

3F - - - - - - -

1 40 2 6 9/3 3.00 7 9/3 3.50

41 5 7 12/9 1.40 7 12/9 1.40

I 42 6 8 21/3 1.33 9 21/3 1.50

43 5 8 20/9 1.60 9 20/9 1.80

44 - .5 - - - - .5

1 4 6 8/9 1.50 6 8/9 1.50
46 6 8 22,23/3 1.33 9 22/3 1.50

1 4 7 14/15 1.75 7 14/15 1.75

48 5 7 15/1 1.40 8 15/1 1.60

49 6 8 22 ,23/13 1.33 9 22/13 1.50
.5 

4A 5 8 24/1 1.60 9 23/1 1.80

I 4B 5 8 21/13 1.60 9 21/13 1.80
I 4C 2 6 lO/l 3.00 6 10/1 3.00

I 
4D 5 5 5/20 1.00 5 5/20 1.00

4E 5 7 15/7 1.40 8 15/7 1.60

4F 4 6 9/13 1.50 7 9/13 1.75(
I
I

~~~~~~~
- - —--— -. .:~~~__ _ _~~~~~~~~~ 
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Table 5.2 Continued

( ________________ Realization

Optimal Optimal Self-Checking
Conventional Alternating Alternating

1 Function Gates Gates Drwg. Ratio Gates Drwg. Ratio

51 4 6 8;ll 1.50 6 8;ll 1.50

52 6 8 22,23/5 1.33 9 22/5 1.50

53 4 7 14/17 1.75 7 14/17 1.75

54 5 6 9/9 1.20 7 9/9 1.40

55 - - - - - .5 -

56 6 8 21/9 1.33 9 21/9 1.50

57 3 6 8/21 2.00 6 8/21 2.00

1 58 5 8 24/3 1.60 9 23/3 1.80

59 5 8 21/15 1.60 9 21/15 1.80

I 5A - .5 - - - - -

5B 5 8 22,23/19 1.60 9 22/19 1.80

I 5C 5 7 15/9 1.40 8 15/9 1.60

5D 4 6 9/15 1.50 7 9/15 1.75

I 5E 6 8 24/13 1.33 9 23/13 1.50

5F - - - - - - -

60 5 7 15/4 1.40 8 15/4 1.60

1 61 6 8 22,23/16 1.33 9 22/16 1.50

62 5 8 24/4 1.60 9 23/4 1.80

1 63 5 8 21/16 1.60 9 21/16 1.80

64 5 8 24/5 1.60 9 23/5 1.80

I 
5 8 21/ 17 1

:
60 9 21/17 1

:
80

( 67 5 8 22 ,23/22 1.60 9 22/22 1.80
I 68 6 8 29,30/0 1.33 9 28/0 1.50

69 7 7 13/18 1.00 8 13/18 1.14

I
I

.5 .5 _ _ _ _ _ _

.5— .5— .5,, 
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Table 5.2 Continued

Realization

Optimal Optimal Self-Checking
.5 Conventional Alternating Alternating

Function Gates Gates Drwg. Ratio Gates Drwg . Ratio

6A 5 8 31/0 1.60 10 29/0 2.00

I 6B 6 8 24/18 1.33 9 23/18 1.50

6C 5 8 31/1 1.60 10 29/1 2.00

I 6D 6 8 24/19 1.33 9 23/19 1.50

6E 5 8 29 ,30/6 1.60 9 28/6 1.80

6F 5 7 15/18 1.40 8 15/18 1.60

1- 70 2 6 10/4 3.00 6 10/4 3.00

71 5 5 5/18 1.00 5 5/18 1.00

1 72 5 7 1$/b 1.40 8 15/10 1.60

73 4 6 9/18 1.50 7 9/18 1.75

74 5 7 15/12. 1.40 8 15/11 1.60

75 4 6 9/17 1.50 7 9/17 1.75

( 76 6 8 24/16 1.33 9 23/16 1.50

77 .5 - — — .5 - —

1 78 5 8 31/4 1.60 10 29/4 2.00

1 79 6 8 24/22 1.33 9 23/22 1.50

7A 5 8 29,30/8 1.60 9 28/8 1.80

I 7B 5 7 15/20 1.40 8 15/20 1.60

7C 5 8 29 ,30/9 1.60 9 28/9 1.80

J 7D 5 7 15/21 1.40 8 15/21 1.60

78 6 8 31/18 1.33 10 29/18 1.67

[ 7F 2 6 10/18 3.00 6 10/18 3.00

80 1 7 16/0 7.00 7 16/0 7.00

I 81 5 8 25/0 1.60 11 24/0 2.20

82 4 7 17/0 1.75 9 17/0 2.25

83 4 8 32/0 2.00 10 30/0 2.50

84 4 7 17/1 1.75 9 17/1 2.25

I
I

.5 - ------- - ..5 -.-—_. -~~~~~ 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
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Table 5.2 Continued

1 _______________ Realization

Optimal Optimal Self-Checking
Conventional Alternating Alternating

Function Gates Gates Drwg. Ratio Gates Drwg. Ratio

85 4 8 32/1 2.00 10 30/1 2.50

1 86 7 8 33/0 1.14 10 31/0 1.42

87 4 8 25/6 2.00 11 24/6 2.75

( 88 - - - - - - -

89 5 8 33/6 1.60 10 31/6 2.00

i 8A 3 7 18/0 2.33 8 18/0 2.67

1. 8B 4 7 17/6 1.75 9 17/6 2.25

8C 3 7 18/1 2.33 8 18/1 2.67

I 8D 4 7 17/7 1.75 9 17/7 2.25

SE 6 6 7/22 1.00 6 7/22 1.00

I 8F 3 7 16/6 2.33 7 16/6 2.33

90 4 7 17/4 1.75 9 17/4 2.25

I 91 4 8 32/4 2.00 10 30/4 2.50

92 7 8 33/2 1.14 10 31/2 1.42

1 93 4 8 25/8 2.00 11 24/8 2.75

1 7 8 33/3 1.14 10 31/3 1.42

95 4 8 25/9 2.00 11 24/9 2.75

1 96 7 7 12/18 1.00 9 12/18 1.28

97 5 8 32/18 1.60 10 30/18 2.00

:: 6 8 34,35/0 1
:

33 10 32/0 1

:

67

9A 6 8 26/0 1.33 10 25/0 1.67
I 98 4 8 33/’.2 2.00 10 31/12 2.50

[ 9C 6 8 26/1 1.33 10 25/1 1.67

.5 
9D 4 8 33/13 2.00 10 31/13 2.50

98 7 8 34,35/6 1.14 10 32/6 1.42

I 9F 4 17/18 1.75 9 17/18 2.25

_ _ _  

I 
_ _ _ _I _______.: ~~~~~~~~ . - 
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J Table 5.2 Continued

I _______________ Realization
I Optimal Optimal Self-Checking

Conventional Alternating Alternating

I Function Gates Gates Drwg. Ratio Gates Drwg. Ratio

I 
Al 5 8 33/8 1.60 10 31;8 2.00

A2 3 7 18/2 2.33 8 18/2 2.67

j A3 4 7 17/8 1.75 9 17/8 2.25

A4 6 8 34 ,35/2 1.33 10 32/2 1.67

AS - - - - - - -

I A6 6 8 26/2 1.33 10 25/2 1.67

A7 4 8 33/14 2.00 10 31/14 2.50

A8 4 7 19/0 1.75 7 19/0 1.75

A9 6 8 26/12 1.33 10 25/12 1.67

I 
AA -

AB 4 7 18/12 1.75 8 18/12 2.00

( AC 5 8 27/0 1.60 9 26/0 1.80
I AD 5 8 34,35/12 1.60 10 32/12 2.00

AE 5 7 19/6 1.40 7 19/6 1.40

AF - - - - - - -

BO 3 7 18/4 2.33 8 18/4 2.67

I BI 4 7 17/10 1.75 9 17/10 2.25

B2 6 6 7/19 1.00 6 7/19 1.00

1 83 3 7 16/8 2.33 7 16/8 2.33

84 6 8 26/4 1.33 10 25/4 1.67

1 85 4 8 33/16 2.00 10 31/16 2.50
1 B6 7 8 34,35/8 1.14 10 32/8 1.42

I B7 4 7 17/20 1.75 9 17/20 2.25

B8 5 8 27/2 1.60 9 26/2 1.80

B9 5 8 34,35/14 1.60 10 32/14 2.00

‘ I

L ‘
I ~~~ ~~~~~~~P~~~~ - I~~~~ ~~~~ ~
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Table 5.2 Continued

Realization

Optimal Optimal Self-Checking
Conventional Alternating Alternating

Function Gates Gates Drwg. Ratio Gates Drwg. Ratio

BA 5 7 19/8 1.40 7 19/8 1.40

BB - - - - - - -

BC 6 8 28/0 1.33 11 27/0 1.83

BD 5 8 26/18 1.60 10 25/18 2.00

BE 6 8 27/12 1.33 9 26/12 1.50

BF 3 7 18/18 2.33 8 18/18 2.67

CO - - - - - - -

Cl 5 8 33/9 1.60 10 31/9 2.00

I C2 3 8 34,35/3 2.67 10 32/3 3.33

C4 3 18/3 2.33 8 18/3 2.67

CS 4 7 17/9 1.75 9 17/9 2.25

I C6 6 8 26/3 1.33 10 25/3 1.67

Cl 4 8 33/15 2.00 10 31/15 2.50

I 
CS 4 7 19/1 1.75 7 19/1 1.75

C9 6 8 26/13 1.33 10 25/13 1.67

5 8 27/1 1.60 9 26/1 1.80

I CE 5 8 34,35/13 1.60 10 32/13 2.00

I cD 4 7 181113 1.75 8 18;l3 2.00

CE 5 7 19/27 1.40 7 19/27 1.40

CF - - - - - - -

DO 3 7 18/5 2.33 8 18/5 2.67

I Dl 4 7 17/11 1.75 9 17/11 2.25

.5 1 D2 6 8 26/5 1.33 10 25/5 1.67

D3 4 8 33/17 2.00 10 31/17 2.50

D4 6 6 7/18 1.00 6 7/18 1.00

I
I_ .5

J T . ... . ... . . . .~~~~~ . . . . . TT. . . ...
.

.

..
.

. 

.TT. .I. ...

.

.
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I Table 5.2 Continued

1 ________________ Realization
I Optimal Optimal Self-Checking

Conventiona l Alternating Al te rna t ing

I Function Gates Gates Drwg. Ratio Gates Drwg. Ratio

D5 5 7 16/9 1.40 7 16/9 1.40

I D6 7 8 34,35/9 1.14 10 32/9 1.42

Dl 4 7 17/21 1.75 9 17/21 2.25

D8 5 8 27/13 1.60 9 26/13 1.80

D9 5 8 34,35/15 1.60 10 32/15 2.00

DA 6 8 28/1 1.33 11 27/1 1.83

.5 DB 5 8 26/19 1.60 10 25/19 2.00

-DC 5 7 19/9 1.40 7 19/9 1.40

DD - - - - - - -

DE 6 8 27/13 1.33 9 26/13 1.80

I DF 3 7 18/19 2.33 8 18/19 2.67

EO 4 7 19/4 1.75 7 19/4 1.75

I El 6 8 26/16 1.33 10 25/16 1.67

E2 5 8 27/4 1.60 9 26/4 1.80

I E3 5 8 34 ,35/16 1.60 10 32/16 2.00

E4 5 8 27/5 1.60 9 26/5 1.80

5 8 34,35/17 1.60 10 32/17 2.00

I E6 6 8 28/4 1.33 11 27/4 1.83

E7 5 8 26/21 1.60 10 25/21 2.00

I E8 5 5 4/18 1.00 5 4/18 1.00
.5 

E9 7 8 28/18 1.14 11 27/18 1.57

I 
RA 4 6 11/0 1.50 6 11/0 1.50.5 
EB 5 8 27/18 1.60 9 26/18 1.80

EC 4 6 11/1 1.50 6 11/1 1.50

ED 5 8 27/19 1.60 9 26/19 1.80

j IL EF 4 l9;l8 1.75 ~ 19;l8 1.75

1

.5 .5—. , , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _.r
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I Table 5.2 Concluded

I _______________ Realization

Op~ima 1 Optimal Self-Checking
Conventional Alternating Alternat ing

Function Gates Gates Drwg. Ratio Gates Drwg~ Ratio

FO - - - - - - -

I Fl 4 7 18/16 1.75 8 18/16 2.00

F2 5 7 19/10 1.40 7 19/10 1.40

I F3 - - - -‘ - - -
I F4 5 7 19/11 1.40 7 19/11 1.40

F5 - - - - - - -

I F6 6 8 27/16 1.33 9 26/16 1.80

F7 3 7 8/22 2.33 8 18/22 2.67

I F8 4 6 11/4 1.50 6 11/4 1.50

F9 5 8 27/22 1.60 9 26/22 1.80

I FA - - - - - - -

FB 4 7 19/20 1.75 7 19/20 1.75

I FC - - - - - - -

Fr) 4 7 19/21 1.75 7 19/21 1.75

I 
FE 5 6 11/18 1.20 6 11/18 1.20

FF - - - - - - -

I
I

i l l

‘ I

.5 ; ‘
.5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— ---.- .5 ~- —- -
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Table 5.3. Input Interconnection Specification

.5 Permutation Var iables
Number ~ x1 ~c2 

X
3

1 0 a b  c

10 b d  a c

1 16 

e b  

a
17 c d  b a

18 d a b  c

19 d a  c b
‘I 20 d b  a C

I 
2

~i

I

Li
I

‘ I 
_ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  

. 
.5 

L ,~ ~~ 
-
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.5
’ 1 

_ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _

.5 _
~

_j

FP EflI fl -diR

I _
~J

~2j

I 
_ _ _ __ _ _ __ _ _ _

.5. .s. ‘p

I
I Figure 5.2. Optimal altern ating NOR networks .

I
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I 
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I
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~~~~~~~~~~~~~~~~~~~~~~~~ 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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“ -41*1

I
Figure 5.2. continued .
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I
I 2~j

~~~ . 5 O . 5  F ,_ 4 ~~~ 
_ _ _ _ _ _

_  
P8-IBIS

I

:~~~~~~~~
‘

~ > ~~~~~~~~~~~~ 

_ _ _ _ _

I 
.5

I 
.5 ______________________________________

I Figure 5.2. concluded .
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_C

I PP.9104 8* -BIOS 88-3106

0
b

~~~~~~~~~~~~~~~~~~~~~

0. 5D

~~ 

~~~~~~~~~~~~~~~~~~

1 
88-3109

I b Do 
- -  

d - {)0J2 
~~ -

(8 ~III ‘ . 5 .-

— 
1
~j

_ 
I_~J 1.~J

d-
~~~~

o-
~~~~~~~~~~~~~~~~~ 

b~~L~~~~~~~~~~~~~~~~~~~~~~~

°

~~~~~~~~~

°

~~~ 

2 D4 ~~~~~~~~~~~~~ 9D.~
.

P4 1017

j ~ Figure 5.3. Self-checking alternating NOR networks.
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I
~ j
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I C
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.- DO.-
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-

,, L C 0
Do

;

I
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:; 
~~~~~~~~~~~~ -

~

•

1 
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_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _

2~J

- Do- .~ Do . C -

-
~ 

Do 0 Do~
’ Do D° -

~~~~~~~ :~

I 2~j  2~ J 24]

b { >  -

- Do- Do - U> C -

ii> 1~~ - [>:Do. 
~~~~~, D°~ II> D°’ D D~~ D~~

~ 4
. tI>

I ‘p I.

- 
PP-SOS.

Figure 5.3. continued.
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I I~J
0 - D°~ 

- D°- - -
I C - 
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-
~~D~ --Do- CI
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s
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~~~~~~~~~ c

-D 
.

.5 

.5

Do
C Do.. Do 

~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~-

U>::: C> Do-  -~~>~~~~~I d U> -C> - t> 1>

II>

‘- - 3 -

I 
d D.-
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I
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Figure 5.3. Concluded .
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6. ALTERNATING DESIGN WITH RAND/NOR LOGIC

6.1. RAND/NOR Algebra

The two-input NAND function and the two-input NOR function are

I cousnonly denoted by such symbols as the stroke

aib u’~~~~.’a+b (RAND )

and the arrow
a~b a+b — ~~~ (NOR).

While such a notation is convenient for two input functions, its iniplementa-

tion in a NAND/NOR decomposition of a multi-input function becomes awkward

to read and to manipulate, and an alternate notation becomes desirable.

Hohn [191 ha~ proposed such a notation and developed an algebra for mani-

I pulating a function expressed in that notation.

I 
Let N denote the multi-input RAND function and m denote the multi-

input NOR function. Then for all switching functions 
~1’~ 2’•~~•’~K 

of n

I var iables , and for all possible integers k,

M(f l, f2,...,fk) — 

~1~
2•••

~k 
f1~~2+~~~ +fk

I and 
______________

— f1+f2+... +fk —

Thus, M(f j~
f2,... f

k
) denotes the RAND of f1,f2,..., and and

m(f 1, f2 , .. . ,f.~) denotes the NOR of f1, f2,..., and f.~. When this notation is

applied to the familiar sum-of-products to NAND tranaform~tion, the following

I. results where 8j 1 ... s~~ represents the i-th implicant of variables.
i

I

~~~~~ ~~~~~~~~



- -- -

I
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g11g12...gj~~
+g21S22 ...g2~~~

+
~~~ 

+
~~ l&a2 •~~~~r

— ~~N(g11,g12,.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Similarly the product-of-sums to NOR transformation can be written as follow s

where h.j 14~ j 2 + . . .  + hi represent s the i-th implicate of ri variab les.r~

(h 11+h 12 + - ~-” + h1 )(h21+h22 + .. .  + h2 ) . . .(h ki+hk2 +~~
•. +hk )

—

Utilization of these transforntation8 enable NAND and NOR expressions

to be obtained directly from the Karnaugh map specification of a function.

Further , the RAND and NOR representations obtained are necessarily minimal

two-level representations of f. The following example illustrates the

procedure.

Example 6.1: Consider a function f of four variables x1,x2,x3, and

specified as in Figure 6.1 a). A minimal two-level NOR decomposition of f

is obtained by first circling prime implicates as shown . Then the NOR

decomposition is written as,

f —

This representation is really obtained from the product-of-sums represen-

tation ,

— 
~~~~~~~ 

(i14,c
3) (x2+i34i4)

• but can be written from the map directly.

Similarly, the minimal two-level RAND decomposition of f is

obtained from the prime implicant map of f Figure 6.1 b), as

I 
— — -  ~~~ -~~

-- .  —
--— 

~~~~~~~~~~~~~~~~~~~ 
__

~~~~~~~~~ *.,.__——-- -  . - -— .  — - - -— —. .-—- — 
— w,_.-~ . - 

~~~~~~~~~
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X j  X 2 (—1-
00 1 i. L~J ~

io~~~~~~~o~~~~~~~~~J

a)

I
x 3 x 4

I 
_ _  _ _  _ _  _ _

I 01
~~~~~~~~j J~~~~I t

11~~~~l 1] 0 0

1 0 0  0 0 0

b)
~P- 5O9O

I
Figure 6.1. ICar naugh maps for RAND and NOR decompositions .
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f —

I with the sum-of-products form being

f — X~•
X

2 
+X

]•
X

3 
+X

1
X~ +x

2
X3.

- 
Once the two-level RAND or NOR decompositions of a function f are

obtained, it should be possible to effect transformations on these so as to

produce possibly more optima l multi-level realizations. Rohn [ 191 has

developed a RAND/NOR algebra to handle such transformations . The laws of the

algebra are sumearized here .

The RAND and NOR operations are operations obeying the comsutative

law . Thus , if 
~~~~~~~~~~~~ 

is any permutation of 1,2 ,. ..,k then

*

m(f
1

, f2 , . .  
~~~~ 

— ln(f i 1f~ , . .  .,f~~).

The operations are however not associative; that is ,

I M(f 1, M(f 2, f 3)] # M[M(f 1, f 2 ), f 3
)

mE f 1,m(f 2, f 3)] # mCm(f 1, f2 ), f3].

I When more than one ope ration is involved, certain regroupings are possible.

These result in the hybrid associative laws.

M(fl,f2,...,fk,h*) —

—

These laws turn out to be ussful for utilizing available inputs , for

eliminating complements when desirable, and for controlling fan-in and

[ fan-out.

I

~ 

—
. --~~ L~~~~~~ 

— 
~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~

-, ~‘- — -
~~~

- - -

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
- - -
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The RAND and NOR operations are not distributive. That is ,

M(f 1, m (f 2 , f 3)) # m(M(f 1,f2),M(f1,f3))

m(f1, M(f2,f3)) # M(m(f 1,f2),m(f1,f3)).

1 However , the factor ing laws p lay the role played by the distributive laws

f in the factoring process. Let f*, g*, and h* denote any nonnegative

integral number of arguments f1, 
~~ 

h1, 
respectively. Similarly, let

g , and h denote any positive integral number of arguments 
~~~~ 

g~ , h~ ,

respectively. Thus , h* may be an empty set , but h+ cannot . 1~~reover ,

whenever h* or h+ ia repeated in a given identity, it stand s for the same

set of arguments at each appearance. The same applies for f*, f+, g*~ and
L +g . Utilizirg this notation, the generalized laws of factorization are

~~~ (f + g+) M(f + g+) . .

I
1 inCm(f ,g1),m(f ,g~),.. .,m(f ,g.~), h J

r + (  + + + 1  *— mLm(f ,mtm(g1),m(g2 ) , .  .

The laws of idempotency for RAND and NOR are essentially derived from those

for AND and OR.
I 

M(f,f,g*) • M(f,g~)

I m(f ,f ,g*) —

From the basic definitions of the RAND and NOR operations , the laws of

operation with 0 and 1,

I
I

~; ~

~ 

— —

- 
•
~~~~~~~

.- - -

~~~~~~~~~

-

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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M(0 ,g*) — 1 and M(l , f+) — M(f +)

m(l ,g*) — 0 m(0 ,f+) —

and the laws of complementarity,

) M(f , f ,g*) — I

.* *m(f,r ,g ) — 0

result . The laws of involution take the form

M(M(f) )  — f and in (N(f) )  — f

m (m (f)) — f M(m( f ) )  — f .

Other transformations or laws which are for the most part simply

trans lations of AND/OR/NOT trans formations to RAND/NOR form also are

useful. These are the reduction laws

M(f ,m(f ,g))  1.

I m(f ,M(f ,g))  — 0,

1 the generalized laws of redundancy,

— Mtf ,M(g+), h*) !1[f ,m(T,g+),h*) — MEf m(g+) h *]

mEf ,m(f ,g+), h*~ — mtf ,m(g+), h*) mt f M(f g+) h *] —

the generalized absorption 1*ws ,

~~M(f
+),M(f+,g*),h*) —

—

the laws of consensus,

I
1

- —-

~

-- --

~

—-

—~~~ — -
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I MEM(f ,g) , M(T,h ) , M(g, h)] —

i 
mtin(f,g),ui(f,h),m(g,h)J —

the generalized laws of condensation,

I ~~M(f ,g+),M(f , g+), h*] — MEM(g+), h*]

m[m(f ,g+),m(f ,g+), h*] — m[m (g
+),h*J,

and a somewhat useful transformation , identity Ii,

I 
MEM (M(f l, f 2 ),M(f l, f 2 )Lh*]

1 mtm(m(f 1, f 2 ),m(f 1, f 2 )) , h*] — m[m(f 1,?2 ),m(?1, f 2 ), h*] .

As an illustration of the application of RAND/NOR algebra consider

the fu l l  adder , Hohn [ 191 .

t 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Example 6 .2:  The full  adder model and Karnaugh maps specifying its operation

1 are shown in Figure 6.2 a). From the map for S , a two-level RAND repre-

sentation is obtained ,

S — M(M(a,b , c~),M(a,b,ci),M(a,b,ci),N(aib~ci)).

I Using the laws of cousmitátivity and the laws of factorization ,

S — M[M (a ,b ,cj ),M(a ,b ,Cj ), N (M [M(a ,b) , M(a ,b))
~

ci)) .

But then, using identity Ii,

S •

Now, using the laws of redundancy to remove complements

I 
S — I 1(M (a,M (b) , M(c~ )) , M (M( a), b ,M( c i) I ,

M(M[a,M(b)) ,M (M(a),b) ,c1fl

I
I 
_ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _
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I

: 
~~~~~~~~~~~~~~

r c 

~~~~~~ 

i: i ~ ~ H :~ E 0; 

~

I c i
~~~~~~nH

I
b)

I
1~

Figure 6.2. RAND/NOR algebra applied to full adder.

I
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I —> S — M[M[a ,M(a ,b) , M(a ,c~ ) ) , M[N(a ,b) , b ,N(b ,c~ ) ) ,

M[M[a,M(a,b)) ,M[M(a,b),bJ ~c~)).

~)nce a~ain , using the laws of redundancy, the redundant argument

M(a ,b) can be inserted into both M(a ,c1) and M(b ,ci) within the first two

major arguments, and the redundant argument c~ can be inserted into

M~a,M(a,b)) and M[N(a,b),b1 of the last major argument. Thus,

I S — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

M[Mt a ,M(a ,b) , ci],MEM(a ,b) , b ,cj], ci)1.

Although the result looks comp lex , repeated appearances of the sam e

I argument make it an economical expression for S.

From the map for C0,

C — MEM(a ,b) M(b ,c ),M(a,c )].

And , using the laws of redundancy,

C0 — !4(M(a,b),MfM(a,b),b,ci},M{a,M(a,b),cj)].

I The resulting form thus has the same arguments as appear in S resulting in

the circuit shown in Figure 6 2  b ) .

I
- 6.2. Self-Checking RAND/NOR Algebra

The RAND/NOR algebra presented permits manipulations of RAND/NOR

decompositions of Boolean functions . Such decompositions are important

I since any Boolean function can be expressed as such a decomposition and,

I
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therefore , realized in a RAND/NOR network . However , of interest here is

the realization of a function f in an alternating RAND/NOR network. If f

is self-dual, then f can be expressed as a NAND/NOR decomposition and

I realized in a RAND/NOR network directly. If f is not self-dual, then it

is dualized to form the self-dual function 
~~ 

and 
~~ 

is expressed as a

RAND/NOR decomposition and realized in a RAND/NOR network with the (0,1)

clock ~ as one input. In either case the resulting RAND/NOR network is

an alternatIng network. It is, however , not necessarily a self-checking

network. To be self-checking the RAND/NOR network structure must be

restricted to some degree. That restriction is essentially specified in

I Corollary 2.1. However, a restatement of that corollary directly as it

pertains to &lternating RAND/NOR networks requires some development.

~onsider an arbitrary alternating RAND/NOR network and label

that n -twork as follows. Label the output gate 0, standing for odd .

Label each gate which is an input to the 0 gate with an e , standing for

I even. Now , proceed toward the input, labeling each gate which is an input

to an e gate with an o , and each gate which is an input to an o gate with

at~ e. If such a labeling is possible then any output path P from a fanout

I gate labeled o is such that w(P) — 0 , and any output path P ’ from a fanout

gate labeled e ia such that w(P ’) — 1. Such a network is therefore self-

checking according to Corollary 2.1. If a contradiction results from the

L 
attempted labeling, then there is a fanout gate which is an input to both

an odd level gate and an even level gate , and , as a result there is an

I output path P through the even level gate such that w(P) 0, and an output

path F ’ through the odd leve l gate such that w (P ’) • 1. As an example ,

I,

~~~~ 4~~ 
-
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I consider the RAND/NOR network shown in Figure 6.3. The output gate is

first labeled o and then labeling proceeds toward the input according to

the procedure. For the network shown in a), the procedure leads to a

contradiction : That network is therefore not self-checking. For the

network shown in b), no contradiction is encountered , and the network is

I self-checking.

A design procedure which assures the production of RAND/NOR

alternating networks in which fanout gates feed only odd or only even leve l

1 gates is therefore desirable. One such procedure that uciltzes Hohe ’s

RAND/NOR algebra modified to carry level information meets these restrictions .( The procedure starts with a two-level RAND/NOR decomposit~~n of the self-

dual function w to be realized . (Note that w f  if f is self-dual, v f
~

if not.) This decomposition is then subscripted to reflect level information.

I Then, the subscripted decomposition is transformed utilizing laws from the

modified RAND/NOR algebra in an effort to obtain a more optimal multi-level

t realization. The decomposition obtained at each step specifies a RAND/NOR

alternating network meeting the stated restrictions. To i llustrate the

first part of the procedure consider the function f of Example 6.1. From

the map specification of f, Figure 6.1 a), the NOR decomposition,

f —

is obtained . When this decomposition for f is subscripted to reflect level

I information, the subscripted decomposition ,

[ f —

I

Li 1 
_ _ _ _ _ _ _  

_ _ _ _ _
- 

- - - -  ______________________________
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I

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

b)

I
1

Figure 6.3. Level labeling of RAND/NOR networks .
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results. An m0 (me
) in this functional  description translates to an odd

(even) level NOR gate in the RAND/NOR network realizing f. Similarly,

M0 (M
e
) translates into an odd (even) level RAND gate.

Each law in Hohn’s RAND/NOR algebra is modified in a similar

- fashion so as to carry level information. For example the hybrid associative

- laws become

Mo (f l,f2,...,fk,h*) • M0[m (f1,f2,. ..,ik),h*]

m0(f 1, f2,.. .,fk,h*) • m i:M (f1,f2,... ,fk),h J

if the law is applied to an odd level gate and

M ( f 1,f2,. ..,~~ ,h*) • Me[mo (fl,f2,~...,fk),h*]

I 
m ( f l, f2,...,fk,h*) • in

e[M ~~l’~2’~ 
..,i~),h*]

I if applied to an even level gate. A simplification of notation results if

L is defined as an element of the set [o,e), L€ [o,e} where o and e are

I 
related as follows: o~~~, e~~~. The hybrid associative laws can then be

written as ,

I ~~~~~~~~~~~~~~~~~ •

mL(f l, f 2 , .  . ., fk, h*) IaL[MI~
(f l, f2 , . . . , k ), h ] .

In similar fashion the other laws or transformations are modified to form a

modified RA ND/NOR algebra carrying level information. The conmzztative laws

become , where i1, i2 , .  . . ,i.~ is any permutation of 1,2,...

— 
~~~~~~~~

mL(fI,12,. . . ‘~~~) 
— ~‘.~~11

,f12
, .. . ,f~~ ) .

I
I
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I The laws of factorization become

I
) ~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . ,M~(g ) 1) , h~]

r + +  + +  + +  *mLLm (f ,g1),~~ (f ,g2),. ..,mt
(f ,gk ), h

+ C + + + *• mLCu (f 
~~~~~~~~~~~~~~~~~~~~ 

. ,m._(g~ )) ) , h 1 .

The laws of idempotency become

t 
ML (f , f ,g*) — !A.~ (f ,g*)

~~~ f , f ,g*) — m
L
(f ,g*).

The laws of operation with 0 ak2d 1 become

I ~~ (O ,g*) - I ~~(l,f~) -

I mL (l ,g*) — ° m~,(0,f~) —

The laws of complementarity become

1 

iij(f,1,g*) — 1

0.

I The laws of involution become

I ML (M
r

( f ) )  a f mL
(M
t
(f)) S

I 
mL(m_ (f ) )  — f M,1 (m...(f)) —

The reduction laws become

L ~~(f ,m~~(f ,g)) — 1

‘ I ~~~~~~~~~~~~~ — 0.

1
- —~~--~~~ 

— 
_ _ _I ~~~~ - - -~ - —----- 

~~~~~~

— ---
~~~~~~~~~~~

-- _____ _ __i__ Tf~~ -
--—-
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I The laws of redundancy become

1 
~jf~~~(fg

+) h *] — z .ij f M_(g+) h *] M~[ f m....(i g+) h *) _~~~E f ,m..( g+), h*]

I 

~~[fj~~(fg+) h*] — ~ jfm_.(g
+) h*] mjf u1~(fg

+) h*] _m
L
[f,M

t
(g
~
),h*).

The absorption laws become

I tn~[fl~_ (f+)m_ (f g*)h*] • mL[m (f ),h].

I 
The laws of consensus become

MLEMt
(f )g),M

r
(?,h),M

t
(g
~
h)] —

nLCmt
(f
~
g),m

t
(T,h),uL.(E

~
h)] m.j 5L.( f ,g), m....(T,h) ] .

1 The laws of condensation become

I 
~ jz1~(fg

+
)~~~ ( f g+) h*] —

— m~Cm_.(g
+)h*1

and, identity Ii becomes

I ~~
[
~~~~~~~f l, f 2 ), ML (?l,~ 2 )) ,h

~
]

I mnLEnU m~
(f l ,f 2 ), mL (Fl,T2 )) , h J  a mLEm (f l, f2 ),m....(fl, f2 ), h*).

1 
The object of applying the modified RAND/NOR algebra to the two-

leve l subscripted NANAJ or NOR decomposition is to produce a ia~lti-level

decomposition containing co~~on terms so as to economize the implementation.

The full adder of Example 6.2 illustrated this approach for the unsubscripted

I RAND/NOR algebra. I~wever, when the subscripted algebra is used two terms

H

~~~~~ ~~~~~~~ 

-

~~~~ 

-
*~~~~~~~~~~ : ‘-

~::~~
- 

-
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are not considered commno n unless they agree in subscripts as well as in type.

For example suppose the subscripted algebra is applied to a two-level

decomposition of a function f, and that the following multi-level decomposi-

tion is obtained ,

I 
f — M [M (a,b),M ( a ,c) , M ( b ,c),M [M0(a,b),m0(a,b,C))).

The subscripted terms Me
(a,b) arid M (a,b) appear, but they are not considered

to be coninon terms, and the RAND/NOR realization of f would contain a RAND

gate for both M(a,b) and M0(a,b). A form of redundancy is thus introduced

automatically as required to guarantee that no RAND or NOR gate fans out

to both even and odd level gates. The following example is one which

results in this type of redundancy.

Example 6.3: Consider a self-dual function f specified as in Figure 6.4 a)

by means of a Karnaugh map . Utilizing the prime implicates indicated , a

two-level NOR decomposition can be written ,

f —

and subscripted as,

1 
f moEm (x1,x2 ,~ 3),me (xi,3~2,x3),me(~1,x2,x3),me (xi,X2,X3)].

Then, using the factorization law, the expression,

. - m
o~
m 2 , mo ( m ( xi,x3),me(~i,~ 3))1,me (xi,x2,mo(x3)),me (x2,x3,%(xi))J,

( is obtained . Using identity Ii on the f i rs t  major term and the law of

redundanc y on the last two major terms yields ,

f — m [ m [ 2, m0 (x 1,~ 3 ) , m0 ( 1, x3 ) ) , m5[x 1, x2, m0 (x 1, x3 )l ,m~Ex2, x3, m0 (x 19 x3 ))).

‘ 1

:.~ ~~~~~~~~~ 
-
~~~~

- 
.-— 

- .- ,-..
~ ~~~~~_~ __~~~~-v~ 

.-— ________________

— . -
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I
~~~~ ~~~

0 0 1

I O I IL~II~J 1  1

I 1 1 1 1
_~~~~~~~~~~

I
I 

a)

( (x 3,i3 )

1.
I xl,x 1 —

— ( f ,f )
( x 31 x 3)

I 2 , x 2 )
(x 3 ,X3)

b)

1.
I Figure 6.4. Function specification and network for Example 6.3.

H ’  
_ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~1 
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Eliminating complements using the law of redundancy then yields ,

I —

m 1, x2 , m
0

(x1, x
3

)} , m
e

[x 2,x3,m ( x 1,x
3 )f l.

I
Based on this multi-level decomposition, a NOR network containing an even

I level gate for m (x1,x3) and an odd level gate for m (x1,x3) is constructed .

This network is shown in Figure 6.4 b).

The procedure described can be applied to functions which are not

I self-dual also. The result is, of course , not an alternating network, but

t simply a RAND/NOR network having the property that no RAND or NOR gate feeds

both even and odd level gates. The following example illustrates.

Example 6.4: The function f has a Karnaugh map specification shown in

Figure 6.5 a). From that specification the two-level RAND decomposition,

f — M[M(c,a,b),M(~,a,b)],

can be wri t ten  ut i l iz ing the prime implicants shown. Subscripted , the

I decomposition becomes

i 

Mo
[M
e

(c ,
~~
,E),Me(~

•,a,b)]

or, f M [M (c,M (b),M (a)),M ( M (c),a,b)].

I Repeated use of the law of redundancy then results in the following sequence

- of transformations,

I
~ k

I
I

r - - - -- ~~~:~~~
- ——- ——- -

S - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S-
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I
I

\ob 
_

I _

1 
a)

1.
-t

:ii~~~~~~~~4 FP - 5094I
I

Figure 6.5. Function specification and network for Example 6.4.

I
I

- 
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I f M [ M (c ,Mo (b ,Me (a)) , Mo (a)) ,Me[a ,b
~

Mo (a ,c))],

I — MoE~
M
~~

c,Mo
(b ,Me (a)) , Mo (a ,c))iMe(a,b,Mo(a ,c)fl

1 
5 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— Mo[M (c ,Mo (b ,Me (a ,c), Me (a ,Mo (a ,c )) ) , Mo (a ,c)L Me(a ,b ,Mo (a ,c)fl

I 5 M [ M Cc ,M ( b ,Me (a ,b ,Mo (a ,c ) ) ) , Mo (a ,c )) , Me[a ,b ,Mo (a ,c))] .

f The resulting RAND network, shown in Figure 6.5 b), has no gate which feeds

both eve n and odd level gates.

It

I
1
I
I

I
1

I
I
I

L 
~ = -

-
- - -  —- - ----——--.-.

-
- - -  

- ‘ -
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7. COMPLETE SETS OF ALTERNATING LOGIC PRI!~aTIVE S

1 7.1 .  Weak Complete Alternating Primitive Sets

Consider a combinational network N realizing an arbitrary function

f with n inputs x1, x2 . . .  ~~~ and one output y. The methods described

previously for realizing N as an alternating circuit utilized a dualization

procedure for functions f vhich were not self-dual so as to produce a self-

dual functional specification representing the original functional

specification. Such a dualization utilized a system clock as an input

in such a manner that with the clock at logical ‘0 ’ and x1,x2 ,. ..

I 
applied as inputs , f (x 1, x2 , .  . . j x~~) was produced . With the clock at

logical ‘1 ’ and 
~1’~2’•• ~~ 

applied as input, f(x 1,x2,. .,x~) was produced .

For a function f which was already self-dual, the functional specification

representing f was the functional specification for f itself , and no clock

input was required . Once these representative functional specifications

I were determined , t1~y were realized using conventional logic primitives,
e.g. AND/OR/NOT, RAND, or NOR, in networks designed to be self-checking

for all single faults. In each case, design procedures using the conven-

tional sets of logic primitives led to networks of restricted structure.

Now, consider a set F of self-dual functions F —

I 
f (P)) and suppose that this set of logic primitives is to be used to

realize the function f directly. That is, the function f is to be realized

as a composition of functions from the set F. A composition of self-dual

I 
functions, Ibuki [2 0] ,  is itself self-dual. Thus, while the realization

of any composition of functions from the set F is an alternating circuit,

II
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only alternating circuits realizing self-dual functions result from the

compositions. In alternating logic design , however, the c lock is available

and is itself a self-dua l function representing the conventional o function.

So, every Boolean function can be represented in an alternating circuit

constructed as a composition of alternating primitives f
(l)

f
(2)

f(P)

if and only if F ’ — [f ),f(2),• ~~~~~~~~~~~~~~~~~~~ is a complete set of logical

primitives in conventional terms. If this is true , then (fO),f
(2)

,• ~~,f(P))

will be called a weak complete set of alternating logic primitives. To

determine what restrictions are placed on f
(l) f(2) f(P) such that

~~~~~~~~ is a complete set of logic primitives in the

conventional sense requires some background and development in the theory

of complete sets of logic primitives.

Definition 7.1: The function set S generated by a function set R

l’~ 2 ’~~” 
,f) is the set of functions realizable as a composition of

functions from the set R 4ar.d is derLo~~ 1 by [K].

Obviously , the set R is a complete set if for every Boolean

function f,fc[R]. Further, if R
N denotes the set of all Boolean functions

of N or fewer variables and ~R1 K
R
, then R is complete . This follows

from the fact that if a function set is complete for a certain value of N,

N > 2 , then the function set is complete for any value of N, [20]. A

minimal complete function set is a complete set which fails to be complete

if any one primitive is removed from it. A maximal incomplete set of logic

primitives is a set of logic functions which becomes complete if there is

added to it any other function which is not an element of the set.

‘ I
I

- .~ - 5— __
~

_ _
~~.w 5— - .---~~~~~~~~~~~.~~~~~~~~~~~~ .- 5 —5 . -

S - a- ,. ---—- -
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Five functional properties are instrumental in determining whether

or not a set of logic primitives is complete . They are the 0-preserving,

- 1-preserving, self-dual, linear , and monotonic properties of the functions

in the set R.

I Definition 7.2: A function f is 0-preserving if the value of the function

is 0 when every input variable takes on a value of 0.

f (0 0,. . ., 0) — 0

I Let M1 designate the set of all 0-preserving functions.

- Definition 7.3: A function f is 1-preserving if the value of the function

is 1 when every input variable takes on the value 1.

I f ( 1 ,l ,. . . ,l) • I

I Let M2 designate the set of all 1-preserving functions.

Definition 7.4: A function f is self-dual iff the function f and its dual

function fD are identical or equivalently,

1 f(x 1, x2 , . . . , x~ ) —

Let M.3 designate the set of all  self-dual functions .

Definition 7.5: A function f is linear if it can be written in the form

f(x l, x2 , . . . , x0) — g0~~~(g1x 1$g2x2 S. . .O g0x~ ).

I Let M4 designate the set of all linear functions .

I
I

~~~— ~~~ - ~~~ ~~~~~~~~~~~~~~~~~~ ~~~
.

~. ~4’~_ ’ -



I
1 

110

Definition 7.6: A function f is monotonically increasing if for every

j ~~~~~~~~~~~~~~~~~ x 21, x2 2 , . . . , x2~ then

~ f(x 21,x22 ,...,x2 ).

Let H
5 
designate the set of all monotonically increasing functions.

I Now , consider again the set of logic primitives F ’ —

where f( ,f
(2)

,•• ,f(1’~ are self-dual functions. Completeness of

the set F’ is dependent on the properties of the self-dual functions

I f
(l) f(2)~~~~~f (P) These dependencies are defined in the following.

Lemea 7.1: If F’c7!M1, then ~tCF ’] and 1c[F’].

Proof: If F’qM 1, then there exists a function feF ’ wh ich is not 0-preserving.

So then , either feM2 fl~~1, or f € f l ~~~. But , if f is self-dual and not

I 

0-preserving then

,0) — 1

I > f(1,l,. . ., l) — 0,

and f is not 1-preserving. So, LIM2
f l M1. That is, fsM

2
fl . But then

~€ [F’], since the function ~ can be obtained from f by tying all inputs of

f together. Thus, for 0 in, x1 0, x2 O,...,x~ .O and, since f is not

0-preserving, a I is produced as an output. For I in, x1 l,x2 1,...,x l

I and a 0 is produced as f is not 1-preserving. Now, since ~€ [F’] and 0e[F’l,

le~ F’]. Q.E.D.

Further , Ibuki [20) has proved the following le~~a. The proof appearing

here is a version of that proof.

I

L i
-- - - - - ——~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

-
~~~ 

-- 

~~~ 
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I Leimna 7.2: If Rc~!M4 
and ~,0,lc[R] then R is a complete set of primitives ,

j where K is an arbitrary set of functions not necessarily self-dual.

Proof: If R~~M4 then there exists a function feR which is nonlinear. That

is, if f is expanded in the form

f — g0~ (g 1x1~g2x2~ . ~ (g12x1x2~~ 13x1x3~ .. . ~Sln x lxn~ 523x2x3~~...

there exists at least one term in the expansion of order t where 2 < t < n.

Let s be the order of the term of minimum order in that range. let y
1

denote the variable with the smallest subscript in the term, y5 denote the

( variable with the next smallest subscript ,..., and y denote the variab le

with the largest subscript in the term. Now, if y ,y ,..., and y are

constrained to be 1 and all remaining variables except y1 and y
2 
are

1 constrained to be 0, then a new 2-variable function f results. Certainly,

f1
c[RJ by construction.

(I 
—

I where o0,01,
a
2
€[0,j). Now, n1~~

x
2
e[R] for n

1 — 0 
or 1 since ~ef. Similarly

o~ Fx €[ R] .

I So, 

2

— 
~o

@
~~l~~ 2 $x 1) Q~cY

2 ~~1 
1~ x2 )~~ ~~ ~~x1)(a 1 ~~x2 )€ [R ]

I —> —

Z 
But then ,

—

1 —> f
3 

— x1x2
5[R].

I
:5-- --

~~ -
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Similarly, f4 
- f 3[f 3 (x1, x2 ), f 3 (~ 1~~ 2 ))e [R]

I •> f4 —

> f4 
•

But then , K must be complete since fx 1
x2,x1~ c2 , l~ is a complete set. Q.E.D.

Theorem 7.1: A set F [f
(l) 

f
(2) f~~~) of self-dual functions is a

weak complete set of alternating logic primitives if f
(l) is not 0-preserving

for some i, I < i < p, and f (i) is nonlinear for some j, 1 < j < p where

possibly i — j

Proof: The set F is a weak complete set of alternating logic primitives if

the set F’ çf ( , f (2) , . .  . ~~~~~ is a complete set in the conventional

sense. And by Lemma 7.1 and Lemma 7.2, F’ is complete if F’clN1 
and F ’c~~M4 ,

or in other words if f
(l) is not 0-preserving for some i, 1 < i < p and

is nonlinear for some j, 1 < j < p. Q.E.D.

Corollary 7.1: The set F = ~f ),f
(2)

,~ •,fQ’)1 of self-dual functions is a

minimal weak complete set of alternating logic primitives if for every proper

subset C of F, GCM 1
or GCM4.

I Corollary 7.2: Any minimal weak complete set of a l ternat ing logic primit ives

contains at most 2 self-dual logic primitives.

I

1
I

5---. ~~..- ss5_~~ _ 
~~~~~1~~~~~~ _~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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7 . 2 .  Strong Complete Al ternat ing Primitive Sets

I In any application of the theory outlined thus far it is implicitly

assumed that the (0,1) clock , the 0-function in an alternating network , may

1 be used as an input to any variab le line in a network application of any

function from the set F. This means that the (0,1) clock may be input on

2 or more variable lines in an application of a given logic primitive in

the composition of a desired alternating network from the set F of alternating

logic primitives. This, however , may result in an undesirable loading of

the clock . If application of the clock is limited to at most one input line

of any logic primitive , a somewhat different theory of alternating logic

primitives results.

Once again let F [f(i),f
12)

,• •,f
(P)) where f(i) is a function

of k . variables , 1 < j < p, be a set of self-dual functions. The set F is

a strong complete set of alternating logic primitives if an alternating

network representing any Boolean function can be constructed by composing

I elements of F with the provision that the (0,1) clock is used as an input

to at most one variable of any given alternating logic primitive . Before

the problem can be restated in terms pertinent to conventional theory of

complete sets, the concept of a 0-subfunction must be defined .

( 
Definition 7.7: The i-th 0-subfunction f0 ~ 

of a function f(x 1, x2,... ,x )

of n variables is the function obtained by constraining the i-th variable

in f(x 1
,x 2,. ..,x )  to a 0. That is ,

I 

f o ,j
(x 1, x 2 , . .. , x j _ 1, x j +1,.. ., x~ ) — f(x 11x2,. ..,xj_l)0,xi+l,...,xfl

).

1

5.! 

________ _ _ _ _ _  _ _ _ _  _ _ _ _ _ _ _ _ _ _ _5 —  

- 
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For a function f(.D, ~ < j < p, from the set F the i-th 0-subfunction will

I be denoted ~~~~ Now , the set F — t f  
)f

(2) 
fQ’)) will be a strong

complete set of alternating logic primitives if

I - [f
(l)

f
(2)~~~•,f(P)~~~ ~

I is a set of complete logic primitives in the conventiona l sense. Further ,

the completeness of T can be determined using the following theorem,

Ibuki [20].

Theorem 7.2: A function set R is a complete set of functions if F Mi for

I
The proof of the theorem is presented in [20] and is not repeated here. Now,

I p
the number of functions in T is at most p + E k as some of the 0-subfunctions

m l  m

may be identical. At any rate it appears that each function in T must be

classified according to the five properties , 0-preserving, 1-preserving,

self-dual, linear , and monotonic so as to determine if T is a complete set.

Fortunately,  this is not the case as will be shown.

Lemma 7.3: No 0-sub function f01 of a self-dual function f(x1,x2,...,x )

J is self-dual, 1 < i < n.

Proof: By hypothesis f 4.s a self-dual function of n variables. By way of

contradiction assume that f
01 

is self-dual. Then,

I f(x1,x2,...,x~~1, O,xj÷1,...,x~) 
—

But , since f is self-dua l

1

_ _ _ _

—~ --5— - -  5-_I
——-.5 —-—5- -- S -- - ________ —----~~~~~~~~~ -‘ - 
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I f(x1,x2,...,xi_ i, l,xj+i,.. .,x0) — f (x 1,x2,..  ~~~~~~~~~~~~~~ .,~~)

I -
~ 

f(x
1
,x2,...,x1 1 , O ,xj+1,...,x~

) — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for every ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
and it therefore follows that f is a

function of n-i variables , a contradiction . Q.E.D.

I 
_ _ _ _ _ _ _ _ _
Lemma 7.4: If f(x1, x2,...,x~) is a linear function of n variables, then

I every O-sub function f0~~, 
1 < I < n, is linear .

Proof: By hypothesis f is a linear function and can therefore be written in

1 the fo rm

I 
f =

where g0 ,g 1, . . . , g €[0 , l ) .  But then ,

I
—

I
I 

The function f
0,~ 

is there fore a linear function also. Q.E.D.

~ Lemma 7.5: If f(x1
,x2,... ~x~) is a monotonically increasing function of n

variables, then every 0-subfunction , 
~0~~’ 

1 < i < n , is monotonically

I increasing.

Proof: By way of contradiction assume that f(x 1, x2~~. . . ,x~ ) is monotonica lly

I increasing but that f 0 ,1 for some i , 1 < I < n , is not . Then , there exists

a pair of (n -l)- tu p les

I
x l , 1x2 , 1 . . . xi_ l , l xi+l 1 . . . x~~ 1~~ x1,2x2, 2 . . . x~~ 1, 2 X i+I 2 . . .X n 2

f or which

— ~~~~~~~~~~~~~~~~~~~~~~~~ -~~~-- - - - - -

__J_ 
~~ • - ‘~ -~4~ ‘~~~~ 

.-~~~~‘ 
— -—-—5-
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I

I Xi+ l 2~~~~~Xn 2 )~

But , since

fo,j
(x

1 ,i,
x
2 ,1,...,

xi_ i ,i,xi+i ,i~ .. ~1~0 l~ 
— f (x 1 1 x

2
1,...,x1 11, O ,

I x1+1 , 1~~... , x~ , 1)

and

for
x1 1 x

2 1
. ..x1 1 ,1 

X
1

~~~1 1 . . .X~~ 
1

~~~~~X 1 2 X
2 2~ 

~~~~X 1_ 1 ,
~~ ~~~~~~~~~~~~~~ . .x~~ 2 ,

f(x1,i,
x
2,1,...,

xj_1 ,i,
0,xi+i,i,...,

x
~ ,i

)<f(xi,2, x2,2~
...,xj_i ,2, O i

~~~~~~~~~~~~~~~~

The function f is therefore not monotonically increasing, a contradiction .

Q.E.D.

The above lemeas have thus shown that the set

1 It
T — (f(’,f

(2)
,~~ ~,f

(P)
, ~
m 1  1—1 0,1

always contains a :unction which is not self-dual. Specifically every sub-

1 function 
~~~ 

is not self-dual. Further , the lenmias show that to determine

if T is a subset of the set of linear function., TC N4, or if T is a subset

of the set of monoton ically increasing functions, TC N5, only the func t ions

f
(l)

f
(2)

•~~~f
(P) need be examined with respect to these properties.

- - ~i:i~~i ~~~~~~ - :-~~~ ~~~~~~~~~~~~~~~~~~~ 

i~~~~
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~
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1 Theorem 7.3:  A set of self-dual functions F — (f ),f
(2)

,• ..,f~~~) is a

strong complete set of a l te rna t ing  logic primitives if f ( l )  i. not

0-preserving for some i, I < i < p, f is not linear for some j ,

1 i < j < p, and f(~~ is not monotonically increas ing for some k , 1 < k < p.

Proof: The set F — {f ( 
,f

(2)
,~~• . ,f

(P)) is a strong complete set of

I a l te rna ting  logic primitives if

~
, km

I 
T • [f

(l)
,f

(2)
,• . ~f

(P) , u 
1
L)
1
f~
’
~~)

is complete in the conventional sense. And, by Theorem 7.2 , T is complete

if T 7 M1 for 1 < I < 5. Now , F contains a function f~~), I < L < p, wh ich

is not 0-preserving by hypothesis. So, T~~ M1
. But if a self-dual function

is not 0-preserving it is not i-preserving. So, T~~ ~t2
. By Lemma 7.3,

I T 7 M.3 as every subfunction f01 is not self-dual. Finally, by Lemma 7.4

and Lemma 7.5 T~1 N4 
and ~~~ M5 

if F~~ M4 and 
FC~ N5 . So , T is complete

- 
if Fl M1,M4,M5. Q.E.D.

Corollary 7 .3:  A proper set of self-dual functions F — [f ~~ ) ,~ . •, f~~)3 is a

I minima l strong complete set of alternating logic primitives if for every

proper subset G of F, CC I’, then GCM1 
for some i, i 1 ,4,5.

Theorem 7.4: Any weak complete set of alternating logic primitives is also

a strong complete set of alternating logic primitives.

Proof: Assume a set F = [f
( l )

,f~
2)

,•~~ ,f~~)) is a weak complete set of

I alternating logic primitives. Then ~~~~~ M1,M4. But , if F~~ N1, then there I.

a function f e) , 1 < i. < p, f(i)~p, having the proper ty tha t f ( l )  is not

0-preserving . So,

1

_ I
‘ T :  

- ~ TI E
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f ( 0 ,0,. . . ,0) — 3.

and by self-duality
f ( l ,1,. . .,1) — 0.

But then there is a pair of n-tuples namely 000.. .0 and ill... 1 with the

following relationship

lii. . . 1 >  000 . . .0

f ( l ,l,...,1) 0 ~ 1 —

So, f is not monotonically increasing, and Fl N5 . So, if Fl then

Fl  M1, M4 , M5. Q.E.D.

I
7.3. Alternating Design with the Maforiti Module

Necessary conditions that a set of p alternating logic pr imitives

F — [f ( , f (2) ,~~ . ~~~~ be a complete set of alternating logic primitives

have been derived . Application of these conditions to minimal complete

sets resulted in a bound on p, p < 2.  So, consider the set F — [f( ,f
(2))

in this regard where f(~~ and f (2) 
are functions specified in Figurt~ 7.1.

Both f(~~ and f (2
~ are self-dual, and f(~~ ~ Me,, f

(2) 
~ 80 F

F — (f )
,f

(2
~) ~t M1,M4. The set F is therefore a complete set of alternating

logic primitives. Further, since f
( l)  c and f (2) c M4 the set F is a

minimal complete set of alternating logic primitives .

Obviously, the module f (2) is the standard NOT gate or module.

The module f~~~, however, is not a standard gate or module. The module

f
(l) is a majority gate, namely a 3-input majority gate. Since F is

(1)complete , with a basic module realising f cud a basic module rea licing

- - _ , --- .-~~~~~~ ~~~~~ - 5 - - - — .-- - - ———-—
~
-. - ——--—— - ——_ _.._r~ — 

~~~~~~~~~~~~~ ~- --~ ‘ - - 
-

- _  

- 
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I
I

~2 
_2.~_ _~~

!__ 10 

x

: : —

~~

— 

~~ 

f ( 1 )  f(2)

I
I

_______ 

1) 0____._r 0__..0 
~ 

( 2 )

1
I,
I Figure 7.1. N module and NOT module.
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f
(2)

, alternating circuits representing any Boolean function can be

I constructed . But what design procedures define the required construction?

Some insight into such a design procedure might be gained by examining the

I functions represented by fW when the (0,1) clock is applied as input

first on x1, then on x2, and f inal ly on x3. These functions are ~~~~

I ~~~~~ and ~~~ respectively.

- (I)f — x1x3 +x 1x2 +x2x3
(1) (1) (1)

— x2x 3 f0 2  — x1x3 f0 3  = x1x2

Thus, with the (0,1) clock on any input to the M module, the M module

I represents the AND of the other inputs. The M module configured in this

manner will be called the “alternating AI~D.”

Now , since the NOT gate, f(2)
, is in the set F, the (0,1) clock

can be applied as input to that gate so as to produce a complemented clock,

the (1,0) clock . When this clock is applied to the N module as input ,

first on x1, then on x2, and f inally on x3, an alternating circuit repre-

senting ~~~~ f
1~~ , and f3

(~~, respec t ively, results.

— x1
x
3 +x 1x2 +x~x3

f~~~ — x2 +x 3 f~~~ — x1 +x 3 f~~~ — x1 +x 2

Thus , w ith the (1,0) clock on any input to the N module, the M module

I represents the OR of the other inputs. The N module configured in this

manner will be called the “alternating OR.”

•
1 

I

i

I
N -*___

___ _ _ ___ 
— —-5 — 
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A design proceudre therefore presents itself. Assume a Boolean

I function f is to be represented in an alternating system. A conventional

AND-OR-NOT realization of f is first found utilizing standard design

I techniques. Then, every AND gate is replaced by an alternating AND.

I 
Simi larly, every OR gate is replaced by an a l te rna t ing  OR. Every NOT gate

remains intact. The additiona l (1,0) clock is obtained from the (0 ,1) clock

using an additiona l NOT gate . The resulting network is certainly an

alternating network since it constitutes a composition of alternating

J log ic primitives , namely f~~) and f(2) , Primary inputs to the conventional

AND-OR-NOT realization become primary inputs to the alternating circuit and

I in the case of the a l ternat ing system are assumed to alternate in synchronism

with the (0,1) clock . Further , the resulting alternating network must

represent I as each conventional gate is replaced with an equivalent

I alternating gate.

Example 7.1: Assume that a function f is to be realized in an alternating

logic design where

f — (~2x3+~j~~ )x5.

To generate the desired alternating network a conventional AND/OR/NOT design

is first generated directly from the functional description for f. This

network is shown in Figure 7.2 a) .  Then each AND gate is replaced by an

alternating AND and each OR by an alternating OR. The (0,1) clock required

by the alternating AND ’s is assumed to be available. The (1,0) clock

required by the alternating OR ’s is obtained from the (0,1) clock using an

additiona l NOT gate. The alternating network is shown in Figure 7.2 b).

I

1
- - -5—.- ~~~~~~~~~~~~~~~~~~~~ - — 

___ ___ I_I & — -1 ~!—~~
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I

I 
—.j~~o—---.—--- --—.—--- (1 ,0)

FP-SO96

1 
(0 , 1) 

~ b)

Figure 7 . 2 .  Example majority logic design .

I

I
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1 7.4. Alternating Design with the Minority Module

Consider the set F — [f(~~3, where f (l) is specified as in

Figure 7.3. Now, f
(~~ I M~, f

(~~ I N4 so F is a complete set of alternating

logic primitives. That is, the function f
(~~ is complete in itself being

self-dua l , but neither 0-preserving nor linear. If the (0,1) clock is

applied on any input of the i~ module realizing f
(l)

, then in an alternating

network , the NAND of the other two inputs is realized .

f (~~ — (x 1+x2 )(x 1+x3)(x 2+x 3)

1 (1) — (I) — (1) —f — x x  f x x  f = x x0 , 1 2 3  0 ,2 1 3  0,3 1 2

The M module configured with the (0,1) clock as one input will be referred

to as the “al ternating NAND .” Similarly , if the (1,0) clock is applied on

- any input of the ~i module , then in an al ternating network the NOR of the

I other two inputs is realized.

1 
f
(l) 

= (x
1
+~2

)(x
1
+x
3
)(X

2
4~X3)

~ x~4%~ ~~~ — x1+x~

The ~i module configured with the (1,0) clock as one input will be referred

to as the “alternating NOR.”

One design procedure for obtaining alternating networks composed

of minority gates thus proceeds as follows. The Boo lean function to be

realized in an alternating network is first realized as a conventional NAND

1 network. Then, each NAND gate in this network is replaced by an alternating

RAND to form an alternating network. Primary network inputs in the

conventional design become alternating primary inputs in the alternating

I
I

. V ~~~~~~~~~~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Figure 7.3. Minority module, N.
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design , alternating in synchronism with the (0,1) clock , which is used as

1 input to each alternating NAND. The result is an alternating circuit

realizing f.

Example 7.2: Assume that a function f is to be realized in an alternating

logic design using minority gates where f i8 given as

1 f — (x2 ~~~~ (x~ X
2
X4

Since f is already specified as a NAND decomposition, a conventional RAND

network realizing f can be obtained from the functional specification

directly. This network is shown in Figure 7.4 a). To obtain an alternating

- network f each RAND in the conventional network is first replaced with an

ii module having one input tied to the (0,1) clock which is assumed to be

available . Primary inputs to the conventiona l ne twork become synchronized

I alternating primary inputs to the alternating network. The resulting

network is an alternating network realizing the function f and is ehovn in

Figure 7.4 b).

j The minority logic alternating network of least cost is not

necessarily obtained by the above procedure even if the conventional design

J from which the alternating design is constructed is optimal. The reason

for this is that no attempt is made to use the fW module, independent of

the (0,1) clock as a basic gate . The following example illustrates the

1 problem.

1

- - I
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I

i ~::‘~:~ 
(X2 ,~~2)

M

(O,l)°— 

(x11~1)—

b) FP-9095

IL
I
I Figure 7.4. Example minority logic design . 
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Example 7.3: Consider the function f given as

f — (x40c1x2)(x1x3)(x2x3)) 
~~~

A conventional NOR network realizing f would utilize 8 NOR gates. The

alternating network obtained from this realization by the minority logic

1 alternating design procedure would therefore utilize 8 N-modules. However,

a realization using only 4 H-modules exists . This realization is obtained

as follows. Rewrite f(U in its dual form,

— (x
1
4-x
2

)(x
2+x3)(x

1
4,c
3)

I —> fW — çx2 +x 2x3 +X 1X3,

and then formulate it as a NAND decomposition ,

i ~ 
(1) 

— 
~~~~~~~~~~~~~~~~~~~ 

(~~
-j

~~~;).

(1)
Utilize the f function where possible as a subfunction in f.

1
f — x~f ~(x1,x21x3) ~~~~

The resulting minority logic alternating network is shown in Figure 7.5.

J 
A similar problem exists for the majority logic alternating design

procedure discussed in the previous section. No effort is made to utilize

the M-module as a basic gate and minimality of the alternating design obtained

can therefore not be guaranteed even if the conventional AND/OR/NOT design is

optimal.

I
A minority logic alternating design procedure can also be defined

utilizing alternating NOR ’s. This procedure is the dual of the design

I
1

~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~ 
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;- 
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I
I
I

I
I (x 3,~~ )~_~1,.~~

’5 -I.,,’
,

1 (0,1)

~ P-SO 79

1~

I
Figure 7.5. Minority logic alternating network.
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I procedure defined for minority logic alternating design using alternating

I 
NAND . As such it begins with a conventional NOR decomposition of the function

- to be realized. Each NOR is then replaced by an alternating NOR , so the (1,0)

I clock is required and primary network inputs become primary alternating

inputs synchronized with this clock. Connnents on optimality apply here as

in the case of the alternating NAND design discussed earlier.

I
1 7.5. Self-Checking Characteristic8 of Compositions of Alternating Logic

Primitives

I The methods which have been described yield alternating circuits

composed of alternating logic primitives representing any arbitrary Boolean
- 

function. These circuits , however , may not be self-checking. Consider an

I arbitrary al ternat ing network N constructed as a composition of alternating

logic primitives with n inputs ~~~~~~~~~~~~~~~~~~~~~~~~ and m outputs

~~~~~~~~~~~~~~~~~~~~~~~ 
During fault-free operation inputs alternate

and , as a result , the output of any logic primitive having only primary

- network inputs as inputs must alternate. But then, the output of any logic

primitive having as inputs, primary network inputs or outputs from primitives

having as input only primary network inputs, must alternate. Continuing,

the output of every alternating logic primitive in a composition of

alternating logic primitives must alternate if alternating inputs are

I applied . Faults, however, may occur in the network. Such faults are

I assumed to occur as stuck-at faults on input and output lines of alternating

logic primitives. More formally, the fault set ~ is assumed to be the set of

I
I
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all single stuck-at-0 and stuck-at-l faults on any alternating logic

primitive input or output line. Assuming that a fault from the set 3 is

present in the network N, the network is self-checking for that fault if no

I erroneous alternating output appears on ~~ I < i < m, unaccompanied by a

nonalternating output on some ~~ 1 < j < m, i#j.

Theorem 7.5:  Any network N consisting of a composition of alternating

logic primitives is self-checking for all  single stuck-at-0 and stuck-at-i

I 
faults  on any alternating logic primitive input or output line.

Proof: Assume a single fault  f~ is present on an arbitrary logic primitive

J input or output line, a. Since the network N is a composition of alter-

nating logic primitive8, in fault-free operation either (d,d) or (d,d) is

I applied on a. If (d,ä) is applied then the fault is sensitized only during

I 
the application of X — 

~1~2
• 

~~~~ 
to N. So, on any output ~~ 1 < i < m,

either (f~,f~) is produced if ~ also sensitizes a path from a to output

or (fj,ç), the normal output , is produced if ~ does not sensitize a path

from a to the output f 1. If (d ,d) is applied then the fault is sensitized

I only during the application of X — x
1
x2. . .x~ to N. As a result, on any

I 
output ~~ 1 < i < m only (f~,f1) or (I~ I~) is produced . In no case can

an erroneous alternating output be produced and N is therefore self-

I checking for all single faults from the fault set 3. Q.E.D.

The significance of Theorem 7.5 lies in its generality.

According to the theorem any alternating network resulting from the minority

and majority logic alternating design procedures must be self-checking, as

the procedures yield alternating networks which are structured as

1
‘H’ 1 
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compositions of alternating logic primitives. In fact , these networks are

I self-checking irregardless of the network structure utilized in the

conventional designs which initiate the design procedures. In Example 7.2

the conventional RAND network contained reconvergent fanout with unequal

inversion parity on output paths originating on the fanout point . And ,

I while the al ternat ing network resulting from the application of the des ign

procedure retains the same structure, Theorem 7.5 says that it must be

self-checking for all single faults.

I.

I
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8. CONCLUSION

8.1. Sunmiary

I 
The application of alternating logic in the design of comb tha-

tional and sequential circuits with the capability to detect all single

1 stuck-at faults on all network lines witt~ ut passing erroneous data to the

user has been studied. The fault detecting capability was obtained by

I utilizing a redundancy in time instead of the conventional space redundancy

and is based on the successive execution of a required function and its

dual. In combinational networks the method involves the utilization of a

I self-dual function to represent the required function and the realization

of the self-dual function in a network with structural properties which are

sufficient to guarantee the detection of all single faults. The internal

l 
fanout-free network , the essentially inver ter-free AND/OR/NOT network, and

the inverter-free network were defined and shown to be network structures

I having these properties. Further, necessary and sufficient conditions that

any general alternating combinationa l structure be self-checking were derived .

1 That a network satisfies these conditions was shown to be readily checked

utilizing computer simulation. Multi-output combinational structures were

also discussed and an important multi-output network, the full adder , was

p studied in detail. With respect to this network, the advantages of sharing

logic in multi-output alternating networks were illustrated.

{ A particular class of combinational alternating networks,

namely R~.ND/NOR alternating networks were examined in more detail. An

I algebra for manipulating the functional description for the alternating

RAND/NOR n~tvork for the purpose of obtaining a more economical realization

I 
_ _ _ _ _ _ _ _  ___ _  _-—5 — — -5- —~— — - -, - ~~.- - - - — — — — —~~-.- - - *_ _ . sm~~4.~~~.
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was developed . The algebra consisted of a set of transformations , which

I 
when applied to a functional description of a self-checking alternating

RAND/NOR network, could only result in an alternate , but hopefully more

I economical , functional description while retaining the self-checking struc-

tural properties. The method was applied to the full-adder , beginning with

its standard RAND two-level functional description and generating its

optimal RAND multilevel realization .

The cost of implementing the dualized function as a self-checking

alternating network as compared with the cost of implementing the original

function in a conventional design was also studied . The study was

I restricted to NOR networks and the co8t of dualizing all three-variable

functions was studied . Only NOR networks and three-variable functions were

considered because of availability of data. The results showed that on

the average a cost increase of 85~ resulted. This, however, did not include

the cost of a checker for monitoring output lines.

The application of alternating logic design to synchronous

sequential machines was also studied , and a method for realizing any

synchronous sequential machine with feedback and output circuitry des igned

7 using combinational alternating logic techniques was presented. The

resulting realization was shown to be capable of detecting all single

I faults in the feedback and output combinational circuitry and all single

input and output faults associated with the memory elements. While the

method did not place any restraints on the state assignment of the secondary

I variable , the number of memory elements required was doubled . However, the

ex tra set of memory elements added also served as the memory elements

I
I ’  ~- - - - — -~. - , - - 
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required by the alternating checker and therefore reduced cost increase

there .

Since some means must be provided to monitor network output lines

$ (in the case of synchronous machines , network output lines and feedback

‘ 
lines) so as to provide an indication of the occurrence of nonalternating

outputs on these lines , a network performing this task, the alternating

I 
checker , was defined . One such checker, utilized a memory element for each

monitored line and performed the self-checking function in the general

I case while being self-checking itself. A second checker utilized only

exclusive-OR gates in its construction and performed the self-checking

I function on networks possessing the property that nonalternating outputs

I 
occur on only a single line at a time. This checker was also shown to be

self-checking .

I An alternate approach to designing self-checking alternating

networks was also studied . Instead of uti l izing conventional logic

primitives (AND/OR/NOT, RAND , NOR, etc.), self-dual logic primitives were

considered since composing these primitives to form a network naturally

yields an alternating network. Conditions that a set of these primitives

be complete , that is, that all Boolean functions be represented as a

composition of these primitives, were defined . Further, it was shown that

any network, regardless of its structure , is self-checking for all single

I 
stuck-at faults on alternating primitive input and output lines. The

alternating primitive set, (M ,NOTI, where M is a three-input majority

I gate , was studied in detail as it allowed any conventional AND/OR/NOT

I
I
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network design to be converted into a self-checking network of M gates and

I NOT gates with particular ease.

With respect to the area of applicability of alternating logic,

some remarks should be made . First, since alternating systems utilize a

redundancy in time in order to achieve fault  detection capabilities , an

I alternating system approach to fault detection probably ahould not be

used where time is a constraining factor . However , in clocked systems where

logic speed is more than double the speed required by the application,

alternating logic design can be an effec tive technique for producing

combinational and sequent ial circuits which are self-checking for all single

I f au l t s .  Uti l izat ion of redundancy in time, however, also leads to an

advantage in that dynamic checking of circuit operation is achieved without

an increase in the number of input and output lines associated with the

I network itself. Thus, in MSI and LSI applications where pin count is a

major factor, an alternating logic design could be a feasible approach in

f achieving a measure of fault detecting capability.

I
8.2. Suggestions for Further Research

The capability of alternating systems to detect all sing le faults

of the stuck-at type while not passing erroneous data to the user has been

studied . Specific alternating systems, however, may have some multiple

fault detection capabilities. These multiple fault detection capabilities ,

if any, need to be researched and defined .

I
I 
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In order to gain a measure of multiple fault detection capability,

it may however be necessary to utilize a more complex coding scheme than

the basic alternating scheme studied here. The systems studied here in

I essence employ a two-rail encoding in time rather than in space and hence

I 
are referred to as alternating systems. The encoding used, however, may be

generalized to more complex time encodings. One result of this could be a

i reduction in the ratio of the number of check bits to information bits , which

for alternating systems is i/i. Such a reduction would , of course , alleviate

at least to some extent some of the speed restrictions that limited the

applicability of alternating systems. A second result could be the multiple

I faul t  detection capability mentioned earlier. Timing considerations could,

I however , be prohibitive .

The application of alternating logic to synchronous sequential

I machines has been studied . It may also be possible to apply alternating

logic to some forms of asynchronous machines , particularly those machines

I which employ a “handshaking” scheme. Research in this area might also

prove fruitful.

I
I
I
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