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[. INTRODUCTION

The spectral dependence of optical absorption of Siﬂz through the funda-
mental absorption edge is important to interpretation of vacuum ultraviolet
(VUV) transport and charging studies [1~3]. Accurate knowledge of the band-
gap is important to analysis of electron bombardment experiments (4] and di-
electric breakdown studies [5] in addition to its obvious importance to elec-
tronic structure studies. For these reasons, we have performed experiments
on thin, unbacked films of thermally grown SiO2 films, The results of these
experiments, along with photoconductivity and charge accumulation spectra,
are presented and discussed in Section II of this report.

It has recently been shown [6] that processing parameters play an im-

portant role in determining the trap structure near the Si-Si0, interface.

Studies of well-characterized MOS structures with steam-grown 3102 films have
been performed on samples with different post-oxidation anneal histories in
order to determine the dependence on anneal temperature and ambient gas,
hopefully to provide new insight into the nature of the hole trap. These
results, which include current enhancement and flatband shift experiments,
are presented and discussed in Section III.

Section IV contains the results of corona discharge experiments per-
formed on the same series of samples used for the vacuum UV experiments.

Similarities and differences are pointed out and discussed.

1. R, J. Powell and G. F., Derbenwick, IEEE Trans. Nuclear Science NS-19,

99 (1971).
2, A. G, Holmes-Siedle and I. Groombridge, Thin Solid Films 27, 165 (1975).
3. R. J. Powell, J. Appl. Phys. 46, 4557 (1975).
4, 0, L. Curtis, J. R. Srour, and K. Y. Chiu, J. Appl. Phys. 45, 4506 (1974).
5. N. Klein, Advances in Electronics and Electron Physics 26, 309 (1971).
6. R. J. Powell, IEEE Trans. Nuclear Science NS-22, 2240 (1975).




IT. OPTICAL PROPERTIES AND PHOTOCONDUCTIVITY
IN THERMALLY GROWN SiO2

A. OPTICAL ABSORPTION

Transmission measurements on SiO2 have previously been limited to thick
({1 mm) samples of fused silica [7] or crystalline quartz [8]. With such
samples the absorption coefficient a cannot be determined accurately above
50 cm.1 because of experimental limitations such as scattered light.

Philipp [9] has . termined the optical properties of Si0O, by means of a

Kramers-Kronig analysis of his reflectance data. With tﬁis method, values

of a are not expected to be accurate much below 105 cm-1 owing to the rela-
tive insensitivity of reflectance to absorption in this range. We have meas-
ured the optical transmission of thin unbacked films of SiO2 to determine «
through the fundamental edge. These data indicated an energy gap of 8 eV for

thermally grown SiO Measurements of the photoconductivity and positive

charging thresholdszconfirm this value.

Transmisson samples were prepared in the following manner: <100> silicon
wafers, 0.15 mm thick, were polished on both sides and processed to produce a
thick (5000-%) film on the backside for masking purposes and a thin (900 R to
2000 R) oxide on the front side. Apertures, 1 mm in diameter, were etched in
the back oxide using standard photoresist masking. The silicon was then
etched through from the backside using a solution of Ethylenediamine and
Pyrocatechol [10] at 110°C. The front side of a typical sample is shown in
Fig. 1(a), and a cross section is illustrated in Fig. 1(b). The aperture in
the back oxide is circular, but in the silicon it approaches a square with
sloping sides because of the strong anisotropy in the silicon etch rates.

The etch rates are approximately 50, 30, and 3 um/h for the <100>, <110>,
and <111> directions, respectively [10]. Therefore, etching proceeds rapidly
beneath the masking oxide until <111> planes are formed and then practically

stops, The crystalline planes are indicated in the illustration. The samples

7. D. F. Health and P. A. Sacher, Appl. Optics 5, 937 (1966).

8. A. A. Ballman, et al., Appl. Optics 7, 1387 (1968).

9. H. R. Philipp, J. Phys. Chem. Solids 32, 1935 (1971).

10. R. M. Finne and D. L. Klein, J. Electrochem. Soc. 114, 965 (1967).
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Figure 1. (a) Photograph of typical unbacked Si0; film, 580 X
thick, produced by etching through the silicon wafer.
(b) Cross section of sample showing an actual meas-
sured oxide profile. The various crystalline planes
are indicated.
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are 5-mm square chips with the unsupported oxide in the center. Approxi-
mately 20 identical samples are formed simultaneously, the chip being sep-
arated during formation of the apertures. Since the exposed surface of the
front oxide is etched somewhat (200 to 300 R) during the process, the oxide
thickness was determined after etching by an ellipsometer measurement of a
region adjacent to the aperture.

The photograph of Fig. 1(a) is deceiving in that the strong contrast
produced by the microscope gives the impression of large elevations and de-
pressions. However, this is not the case, and a typical oxide profile is
illustrated to scale in Fig. 1(b). Several oxide profiles were measured
microscopically using a focusing stage with l-um vertical scale divisions
and an objective which produced a l-um depth of focus. Calculation of the
extended length of the oxide from such piecewise linear profiles indicated
the oxide to be about 0.5% larger than the opening in the silicon. Consid-
ering our method of measurement, this is in reasonable agreement with the
differences in linear expansion of silicon [11], 0.4%, and fused silica [12],
0.05%, at the growth temperature of 1000°C. The average angle of the un-
supported film with respect to the plane of the silicon chip was found to be
4,5°, justifying our normal incidence analysis of the transmisssion data.

Transmission measurements were made in a vacuum UV monochromator by
interchanging two samples, one of which had no oxide film. Following the
measurements, the oxide was removed from the other sample, and checks were
made to ensure that the apertures transmitted equally. The detector was a
photomultiplier coated with sodium salicylate phosphor. Filters of Ban,
NaF, and CaF2 were used to determine the contribution of scattered light
for measurements above 10 eV, where the transmission becomes so small that
a correction for scattered light was made. Measurements were performed on
geveral samples with thicknesses of 580 8 and 2045 R. The transmission of
an unsupported film is given by [13]

a-R) % 1+k/n?)

-2Rcos(¢-9)-R2e-ad

11, Handbook of Thermophysical Properties of Solid Materials, Vol. 1,
(MacMillan Co., New York, 1961).

12, T. A, Hahn and R. K. Kirby, Thermal Expansion 1971 - AIF Conference
Proceedings.

13, 0. S. Heavens, Optical Properties of Thin Solid Filmg, (Dover Pub-
lications, Inc., New York, 1965).
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where R is the reflectance [(n—l)2 + k2]/[(n+1)2 + k2], n and k are the real
and imaginary parts of the complex refractive index, n-ik, ¢ = 4mnd/),

8 = 2tan-1[2k/(l-n2-k2)], d is the film thickness, and a the absorption co-

efficient., In the usual range of transmission measurements kz << nz,

eo‘d >> Rze—ad, and 6 v 0. Including these approximations, and solving

Eq. (1) for a we get

a 2.% 2n (-R) + 2Rcos¢ (2)

The second term in the brackets results from interference in the film and is
important where the transmission is large. Equation (2) was used to calculate
a from our transmission data from 8 eV to 10 eV, although above 9.5 eV the
interference term has little effect. Values of R and n were obtained from the
reflectance data of Philipp since it was previously established [1] that the

reflectance of thermally grown SiO, and fused silica are identical within ex-

perimental error. It should be nozed that Philipp's values of n over this
range should be quite accurate since k is small and R & (n-l)zl(n+l)2. Since
the absorption coefficient o is 4mk/A, we can determine k for each photon
energy to check the assumptions made in deriving Eq. (2) from Eq. (1). The
approximations were found to be excellent except above 10.2 eV, where a cor-
rection was made for the factor (1+k2/n2) in Eq. (1). In this range o was

determined from a two-step iteration of
a v L on ra-R) 2 an?/n?y/1) (3)

and n was taken from the data of Philipp. This correction has a maximum
effect of increasing o about 5% at the 10.5-eV peak.

The absorption coefficient of SiO2 determined from transmission measure-
ments on a 580-8 film is given in Fig, 2, It is seen that the absorption is
still quite strong well below 9 eV, and just on the basis of magnitude the
absorption above about 8.3 eV may be safely attributed to fundamental ab-
sorption., The data indicate an absorption threshold of 8 eV, which we in-

terpret to be the bandgap of 8102.

11
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Figure 2., Optical absorption coefficient of a thermally
grown 510, film as determined from transmission
measurements, The expanded curve on the left
corresponds to the scale on the left side of
the illustration.

B. PHOTOCONDUCTIVITY AND CHARGE ACCUMULATION SPECTRA

- It has recently been shown that hole trapping in SiO2 films varies
widely with growth and anneal temperatures [6]. Using this fact, we have
prepared samples with negligible hole trapping and large hole trapping for
photoconductivity and charge accumulation spectra, respectively., The photo-
conductivity spectrum depicted in Fig. 3 was measured on a 1200-8-thick MOS
sample. With both positive and negative gate polarities, photocurrents were
time-independent, and negligible charge accumulation was observed. The
photoconductive yield shows a shape similar to the absorption, and the thresh-
old is about 7.9 eV. In another 1200-% sample, which was annealed to produce

12
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Figure 3. Photoconductivity spectra measured near threshold on
an MOS structure with a 1034-% $102 film and a
semitransparent Al-gate electrode. The yields for
both bias polarities are given.

large hole trapping, the spectral dependence of charge accumulation was de-

termined by measuring the high-frequency capacitance-voltage shift AV__ versus

FB
photon energy for the same number of absorbed photons. This spectrum is illus-
trated in Fig. 4, and it also shows a threshold at 7.9 eV. Hence, we have

shown in three separate experiments that the bandgap of Si0, thermally grown

on silicon is 8.0 *+ 0.2 eV. This value agrees with a previgus estimate by
Williams ([14] based on transmission data of Groth and Weyssenhof [15]). How-
ever, such estimates were previously subject to question because the small
absorption coefficients measurable with thick samples might be interpreted as

absorption due to impurities or imperfections. Other previous estimates have

14, R, Williams, Phys. Rev. 140, A5669 (1965).
15, W. Groth and H, v. Weyssenhof, Z, Naturforsch. lla, 165 (1956).

13
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Figure 4., Charge accumulation spectrum measured near threshold
on an MOS structure with a 1034-% S10, film and a
semitransparent Al-gate electrode. The flatband
shift produced by trapped charge is the measured
quantity.

placed the SiO2 bandgap as high as 11 eV. However, those estimates [16-19]
were based on the assumption that the 10.5-eV peak in Fig. 2, which corres-
ponds to the reflectance peak [9] at 10.3 eV, is due to an excitonic transi-
tion. The first band-to-band transition was assumed to lie energetically
above the exciton, It is obvious from our results that if the 10.5-eV peak is

16. E. Loh, Solid State Commun. 2, 269 (1964).

17. A. R, Ruffa, Phys. Stat. Sol. 29, 605 (1968).

18, M. H, Reilly, J. Phys. Chem, Solids 31, 1041 (1970).
19. K. Platz8der, Phys. Stat. Sol. 29, K63 (1968).
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excitonic, it is degenerate in energy with band-to-band transitions. Further-
more, since the photoconductivity near 10.5 eV shows no strong excitonic
effects [20], it would seem that the only evidence for the interpretation

is the temperature dependence reported by Platzdder [19].

C. DISCUSSION AND INTERPRETATION

It is useful to consider the results of our experiments in light of the
various theoretical predictions regarding the electronic energy levels in

5102. There have been a number of molecular orbital-type calculations of the

energy levels in Si0, and its polymorphs with tetrahedral coordination [21-24].

There is general angement that the uppermost filled levels are associated
with the 2p lone pair, or m, orbitals of oxygen (i.e., those orbitals not
invclved in the o-bond with Si) and that the o~electrons, being more strongly
bonded, will have lower energy levels. However, there is a long-standing
controversy regarding the importance of 7 bonding, which results from the over-
lap of the oxygen 2pm orbitals and the originally empty 3d orbitals of silicon.
Pauling [25] postulated the 3d-2pm bonding to reduce the ionic nature of the
Si-0 bond below 50% to satisfy his electroneutrality principle. Recent posi-
tron annihilation experiments [26,27] support Pauling's argument, particularly

for amorphous Si0O,, in which the effective charge of the oxygen atom is found

2!
to be about -0.6, in electronic units (50% ionicity corresponds to a charge

of -1). The experimental and theoretical papers supporting 3d-2pm bonding are
too numerous to summarize here, and for a review the reader is referred to a
paper by Revesz [28] and the references contained therein. On the other side

of the argument are calculations by Gilbert, et al. [21], and Bennett and

20. T. H, DiStefano and D. E. Eastman, Solid State Commun. 9, 2259 (1971).
21. T. L. Gilbert, et al., Phys. Rev. B8, 5977 (1973).

22, A. J. Bennett and L. M, Roth, J, Phys. Chem. Solids 32, 1251 (1971).

23. G. A. D, Collins, D. W, J. Cruickshank, and A. Breeze, J. Chem. Soc.,
Faraday Trans, II 68, 1189 (1972).

24, K, L. Yip and W, B, Fowler, Phys. Rev. B10, 1400 (1974).

25, L. Pauling, J. Phys. Chem. 56, 361 (1952).

26. V. P, Prjanishnikov, et al., Proc. IX International Congress on Glass,
Versaille, Vol. 1, pp. 119-131 (1971).

27. G. M, Bartenev, et al., Izvestiya Akademii Nauk SSSR, Neroganicheskie
Materialy 6, 1553 (1970).

28, A. G, Revesz, J. Non-Crystalline Solids 11, 309 (1973).
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Roth [22] based on an Si0, fragment and the B-crystobalite structure, re-

spectively, which indicatz relatively small 3d hybridization in the valence
molecular orbitals. The calculations of Reilly [18] and the more extensive
work of Yip and Fowler [24] unfortunately provide no direct evidence since
these authors neglect d orbitals at the outset. However, the latter authors
have noted that their poor agreement with experimental x-ray emission intensi-
ties may be due to their neglect of the silicon 3d orbitals. It seems likely
that this may have contributed to the large ionicity they calculated for the
SiO4 cluster.

The optical transitions involved in the absorption and photoconductivity
spectra reported here must originate from the oxygen 2p lone pair (m) orbitals,
since it has been shown by ample experimental [21,29] and theoretical [18,21,
24] evidence that the oxygen 2p o-bonding band lies at least 5 eV below the
uppermost filled level. The observation of hole photoconductivity over this
range of hw with a threshold coincident with that of the optical absorption
compels us to conclude that the upper valence levels are broadened into a band
with sufficient orbital overlap that holes readily transport. The bonding in
the uppermost band is most likely due to m bonding, which we have discussed
above, since the 2pm(0) - 3d(Si) interaction is quite strong [23], whereas
the overlap integral for m orbitals on neighboring oxygen atoms is much smaller
even than that of their ¢ orbitals [21]. Also, holes are found to be trapped
mostly near the 51-8102 interface [1,30], and the density of hole traps is
strongly dependent on oxide growth and anneal temperatures [6]. These ob-
servations are inconsistent with models in which holes are presumed to be self-~
trapped in localized valence levels. As a final observation, the transmission
of our 2045-% sample is well below 0.05% for hw > 10 eV. Hence, we must con-
clude that the photoluminescent efficiency in these films is less than 0.05%,
and, therefore, the recombination in these films with the excitation levels of
our experiments is dominated by nonradiative processes.

29. T. H. Distefano and D. E. Eastman, Phys. Rev. Letters 27, 1560 (1971).

30. R. Williams and M. H. Woods, J. Appl. Phys. 46, 695 (1975).
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III. VACUUM ULTRAVIOLET RADIATION STUDIES

A. CURRENT ENHANCEMENT EXPERIMENTS

It has been shown [3,6] that during irradiation of Si0O, MOS structures,

holes travel in the 8102, and some are trapped in the vicinity of the negative
electrode. This accumulation of space charge augments the average (applied)
field, and when the interface field reaches 6 to 7 MV/cm, current enhancement
is observed as electron tunneling from the electrode contributes to the cur-
rent. This current enhancement phenomenon proves to be a very sensitive
measure of the number and location of traps near the 31-8102 and gate-SiO2
interfaces. Furthermore, it also provides a sensitive method for comparing
radiation sensitivity between samples with differing processing histories.

In this section we present and discuss the results of experiments on well-
characterized samples. The samples were grown on 1 ohm-cm n-type <100> sili-
con at 900°C in steam. Following oxidation, the samples were annealed for 15
minutes in ultrapure helium at temperatures ranging from 850° to 1100°C. In
addition, one set of samples was also given a 15-min 500°C anneal in hydrogen.
The wafers were then divided and metallized with l-mm-diameter, 100-8~thick
(semitransparent) Al-gate electrodes for VUV experiments. No metallization
was used for the corona discharge experiments. All samples were tested for
mobile ion contamination using the bias-temperature stress technique, and
contamination was found to be negligible.

The current enhancement phenomenon and its experimental implementation
have been described in detail previously [1]; thus, it will only be outlined
briefly here. The MOS sample under test is placed in a vacuum monochromator,
biased with an appropriate gate bias, either positive or negative, and irradi-
ated with VUV light of a photon energy that is strongly absorbed* in the oxide
film., One measures the time dependence of the total current flowing through
the MOS device. The current measured at the initiation of radiation is just
the electron or hole photocurrent flowing through the oxide. If the applied

field is sufficient, eventually a current enhancement will be observed as

*This is not essential, and the device may be irradiated with penetrating
radiation as well.

17




holes accumulate near the negatively biased electrode, and electron tunneling
current from this electrode becomes comparable to and exceeds the photocur-
rent.

The results of many experiments on steam-grown oxides, which were
annealed in helium at various temperatures, are summarized in Fig. 5 for posi-

tive gate bias. The current flowing initially, as shown in this figure, is

850°C
10 -
e
8 =
: - t=5MV/ecm GATE (+) 900°C
o ¢}
°
- 4L
E 1050°C
2 950°C
» 1000°C
0 b b itk N W R e R T AR ey
| 10 100 1000

TIME (SECONDS)

Figure 5. Time dependence of current during VUV irradiation
for steam-grown samples with different helium
anneal temperatures. Positive gate bias was used
to produce an average field of 5 MV/cm. The photon
energy was 10.2 EV and the SiOz-absOtbed photon
flux was 4 x 10M cm2g-1,

the hole photocurrent produced by the 10,2-eV photons, which are strongly
absorbed in the Si0, near the gate electrode. When sufficient space charge

z
accumulates to raise the Si-Si10, interface field to the vicinity of 7 MV/cm,

the current begins to 1ncteaae.2 The curves of Fig. 5 show the time dependence
of total oxide current for different helium anneal temperatures. It is impor-
tant to point out that all of these samples have relatively few traps compared
with those previously studied since no current enhancement is observed with ap-

plied fields less than about 4 MV/cm, whereas in previously reported results [6]
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current enhancement was observed with applied fields as small as 1 MV/cm. Fur-
thermore, one should recognize that the differences in the amount of space
charge accumulation between the samples is magnified in the current enhance-
ment by the strong current-field dependence of the tunnel-injection mechanism.
The most striking observation to be made from the data of Fig. 5 is that there
is a very strong and definite minimum in the current enhancement as a function
of anneal temperature. Minimum enhancement is observed at 1000°C anneal temp-
erature, and the temperature extremes at 850°C and 1100°C are about equally
effective in current enhancement. These results indicate that the low- and
high-temperature anneals have markedly increased the number of traps near the
81-8102 interface which are effective* in producing current enhancement. This
statement is confirmed by the C-V curve flatband voltage shift data shown in
Fig. 6. These data show that the flatband shifts at lO3 s for the 850° and
1100°C samples are nearly twice as large as that of the 1000°C sample. Since
there is ample evidence [1, 2] that charge is located mostly near the Si-SiO

2
interface following positive bias irradiation, this result implies that the

amount of charge trapped in the 850° and 1100°C samples is about twice that
of the 1000°C sample. The data of Fig. 6 show the same trends with tempera-
ture as the current enhancement data of Fig. 5. After 103-9 exposure, there
is a definite minimum in the |AVFB| at 1000°C, and it increases markedly for
lower and higher anneal temperatures. There is some crossing of curves at
earlier times, and similar crossing is observed near 1023 in the current en-
hancement data. It appears that for short exposures the minimum IAVFBI is
obtained with a 950°C anneal temperature.

There are two unusual effects to be noted regarding the differences be-
tween the 850° and 1100°C samples. First, focusing our attention on Fig. 5,
we see that the 1100°C curve begins rising above the photocurrent about four
times earlier than the 850°C sample. In addition, examination of the IAVFBI
curves in Fig. 6 for t ¥ 100 s reveals that for the same IAVFB| the 850°C

sample has been irradiated about four times longer than the 1100°C sample.

*The actual number of traps is difficult to ascertain because some may be so
near to the silicon interface that they immediately empty by tunneling. It
is suggested that the variation in temperature changes the density of traps
which are either sufficiently far from the interface or have energy levels
unfavorable for direct tunneling.
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Figure 6. High-frequency (1 MHz) capacitance-voltage
flatband shift versus time during VUV
irradiation with positive gate bias and an
average oxide field of 5 MV/cm. The samples
are the same as used in the experiments
illustrated in Fig. 5, and the same irradia-
tion conditions were used.

If we consider that approximately equal hole photocurrents were used in the two
experiments, this result indicates that the 1100°C sample ie initially about
four times more effective in trapping holes than the 850°C sample. An even
larger difference is noted between the 1100° and 950°C samples in Fig. 6,

where it is noted that the 950°C sample requires about ten times the exposure
of the 1100°C sample in order to accumulate the same interface charge. It is
also important to note that the final shifts obtained at 1000 s differ by only
about a factor of two for all samples. We take this to be evidence that the
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density of fillable traps does not vary much with anneal temperature. The
large difference in trapping rate must then be attributed to differences in
the capture cross section for holes. There is no reason to expect that the
capture cross section of a specific trap should vary with anneal temperature;
it is proposed that there are at least two different species of traps involved.
Suppose, for example, that there is one trap species near the interface whose
density decreases with temperature and a second trap with a much larger cross
section whose density increases with temperature. The first trap might be
associated with excess silicon near the interface [31], which, if associated
with interface fixed charge, is known to decrease with increasing oxidation

temperature [31]. The large cross section trap might be associated with a

species which diffuses into the oxide much more rapidly at 1100°C than at 850°C.

There is additional evidence that different trap species are involved, but be-
fore considering it further let us determine the approximate density and cross

section of the traps.

B. TRAPPING KINETICS

Consider a distribution of traps located in a narrow region near the

Si-SiO2 interface. Let there be N,r traps per cm2 of which N;

are filled with holes. Then the probability that a hole reaching the inter-

2
traps per cm

face is trapped is (NT -~ N;)-S, where S is the capture cross section. Letting

J be the constant hole current density flowing through the interface, we can write

+
dN
T J +
— W — - . 4
- - (N, = Np)+*S (4)
This equation has the solution:
+ ( -%oSat)
Np=8, \1-s (5)

and if we express the densities of traps in terms of flatband shift, Eq. (5)

becomes

- 5— oSot)
dAvFB = 8Vpp 1-e (6)

31. B. E. Deal, et al., J. Electrochem. Soc. 114, 266 (1967).
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where AVFB = qNTdox/cox is the flatband shift at time t, dox is the oxide

thickness, on is the dielectric constant, and AV = qNTdox/on is the flat-

band shift with all the traps filled. This simplEB:odel assumes that
emission from traps is unimportant. It is well known that some hole traps
near the silicon interface retain their charge for very short times so

that they make no contribution to AVFB’ which is measured typically minutes

after each irradiation. Thus, the density N, refers to the density of fill-

able interface traps, i.e., those which retafn their charge for minutes or
hours without appreciable detrapping. One can determine the trap density NT
and the capture cross section S by fitting Eq. (6) to experimental data.
Unfortunately, it is not always possible to measure AVFBF directly because
tunnel injection may preveat complete filling of traps, and the highest value

of AV reached may be appreciably less than AV There is an alternate

dt

Evaluate the derivative at t = 0 and some other convenient value ot t, e.g.,

methognfot determining NT and S from the data. Fggnsider the derivative of
Eq. (6):
i S . %E 38 (7
FBF q

t = q/JS; then we get

dav Jd
FB J ox
= i W [ —— 8
dt AVFBF q ’ € NT . (8
ox
t=0
dAv ok ¥ s Jd_ b g -
dt FBF ¢ ° © i s
t=q/(JS)

Clearly, we can determine the products NT~S from the initial slope of the
experimental curve, and the time for which the slope is 1l/e of its initial
value is just t = q/JS; so we get S from this time. Hence, NT and S are both
determined. Using this technique, it was found that a good fit to the 1100°C
curve in Fig. 6 was obtained for t % 100 with AVFB = 28(1 - e—t/28). Since

this equation saturates at AV__ = 28, the implication is that there are other

FB
traps with smaller S which account for the continued increase of AVFB for
t > 100. Since there is reason to expect that there are at least two trap
species involved, one should try to fit the data with an extension of Eq. (5),

which applies for two noninteracting trap species:
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N, =N 1-Esl.t)+u (1 0 T i (
y ™ fgg.1ene 2 \*"* 10)

An approximate fit of Eq. (10) to some of the experimental data of Fig. 6 is

shown in Fig. 7 for the 1100°, 950°, and 850°C samples. The fit was obtained
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Figure 7. Iilustration of the fit of some of the experimental
data of Fig. 6 with a theoretical model using two
species of hole traps. The solid curves are theo-
retical and the points experimental. The trap
parameters used are given in Table I.
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within the constraint that the same values of Sl and 52 are used for all three

T1 and NTZ were varied. The agreement is quite

good, considering the simplicity of the model. Some of the discrepancy might

curves, and only the densities N

be accounted for by the trap neutralization caused by the tunneling currents,
especially for the 850° and 1100°C samples. In this regard, it should be noted
that the kink in the 1100°C curve of Fig. 6 begins at about 40 s, where the

current enhancement rises abruptly in Fig. 5.

The parameters used in Eq. (10) to obtain the solid curves of Fig. 7 are

given in Table I.
TABLE I. Si0, HOLE TRAP PARAMETERS

2
He Anneal S% Nle 822 Nng
Temp. (em™) (cm 7) (em®™) (em ™)
850°C 1.04x10"13 1.73x1012 6.5x10" 2> 8.6x1012
950°C 1.04x10713 3.0x10M 6.5x10"%> 6.3x1012
1100°C 1.04x10"23 5. 4x1012 6.5x10"1° s. 4x1012
It is interesting to note that the cross section S. is mlO-l3, a value usually

1
associated with an attractive coulombic center. However, there is apparently

no charge associated with this center because the densities involved would re-
quire sizable preirradiation flatband shifts, which were not observed. This
trap (Sl) is the one we have proposed to be produced by a diffusing species.
The S2 trap has a much smaller cross section, of a value comparable to those
ordinarily associated with neutral centers. This may be the intrinsic inter-
face trap, perhaps associated with the oxygen deficit or silicon excess near

the interface.

C. IRREVERSIBLE EFFECTS

There is another unusual effect to be observed in Fig. 5. The 1100°C
curve begins to decay very slowly for t 2 200 s. (Note that the decay is much
slower than the rise since the time scale is logarithmic.) This decay in the
total current might be explained by a decrease in the number of trapped holes,
causing a corresponding reduction in the field. However, this is not confirmed

by the data of Fig. 6, which show a monotonic increase in IAVFBI during this
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interval. It would appear that we have a dilemma: an increase in interface

field and

AVFBI with a decrease in tunneling current. There are at least
two possible explanations for this effect: (1) If some atomic species is
ionized by the UV radiation, it could contribute a portion of the total cur-
rent until depleted in the UV absorbing region. So an ionic component of
current could decay with time. If the ions accumulate very near the Si-—SiO2
interface, they will not increase the tunneling current, although they will
increase the flatband shift. The difficulty with this explanation is that it
requires an ionic current of 3 x 10-9A or 3 x lO-7A/cm2 to decay over

several hundred seconds. This would result in the accumulation of more than
1016 ions/cm2 at the interface and unless some neutralization mechanism exists,
this would produce a flatband shift of more than 500 volts. (2) When holes

are trapped more than V40 & from the Si-Si0 interface, they are effective

in producing current enhancement and flatbaid shifts. On the other hand,
charge trapped very near the interface has a much reduced effect on current
enhancement. The effect of charge location on current enhancement is illus-
trated with the aid of Fig. 8(a), which shows the calculated shape of the con-
duction band edge near the Si-5102 interface with an applied (average) field

13q <:m_2 located at various dis-

of 5 MV/cm and a sheet charge density of 10
tances from the interface. It is seen that the tunneling distance X¢ from
the silicon accumulation (or inversicn) layer to the SiO2 conduction band is
markedly influenced by the location of the charge when it is within about

40 & of the interface. In Fig. 8(b) we have plotted X, versus charge loca-
tion for two different charge densities. It is clear that charge located
about 40 & or more from the interface produces the largest current enhance-
ment with only a small reduction in effectiveness with increasing distance up
to 100 & or more. However, since the tunneling current is exponentially
dependent on Xe o its effectiveness is drastically reduced as charge moves
nearer the interface. For example, increasing Xe from 40 ] to 50 & will
reduce the tunneling current by a factor of more than 1000.

The increasing IAV in Fig. 6 proves that charge accumulation increases

B!
monotonically with time. In order to explain the decayiag current in Fig. 4,
we must hypothesize the motion of the charge centroid toward the Si-SiO2 inter-
face as accumulation continues. However, this motion of the centroid cannot

be only the result of increased accumulation very near the interface; it must
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be accompanied by a reduction in charge density at more effective densities
further than 40 & from the interface. This would appear to require some
change in the trap structure of the oxide with continuing irradiation. Since
our knowledge of the microscopic nature of the hole trap near the Si-SiO2
interface is still quite meager, it would be premature to assign a specific
chemical reaction to the effect at this time. However, it is not difficult

to imagine that the continuous flux of holes through this disordered interface
region might produce chemical reactions which are essentially irreversible at
room temperature. One possibility that comes to mind is expressed in the

reaction:

S1 -OH+h' +z81-0"+mny (11)

m

In this reaction, a hole interacts with an Si-OH bond to liberate the hydrogen
which may diffuse out of the oxide. The positive charge may then be annihi-

lated by the injected election flux leaving the center neutral.
. + - - .
=81 -0 +e »=81i-0 (12)

The process is irreversible unless some source of hydrogen or protons is pro-
vided.

The current decay observed in Fig. 5 appears to be associated with the
large cross section hole trap, since it is observed primarily in the 1100°C
sample in which this trap predominates. This result provides further evidence

that this trap is not intrinsic to the Si-5i0, interface but is associated with

2
an impurity that has diffused in at the higher anneal temperatures.
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IV. CORONA DISCHARGE EXPERIMENTS

In the corona discharge experiments, the surfaces of the unmetallized
5102 films on silicorn are charged with a negative corona in air. The corona
tip is about 5 cm away from the oxide surface. Negative ions form near the
tip and are rapidly thermalized. They are transported through the air and
land on the outer surface of the oxide with negligible kinetic energy. The
field across the oxide reaches about 1.4 x 107 V/cm, which is sufficient to
tunnel electrons from the hole trapping centers into the silicon directly or
into the oxide conduction band [32]. When the corona is switched off the
charge remains, giving flatband shifts comparable to those obtained with VUV
irradiation. The flatband shifts are measured with a mercury probe.

The samples used in the experiments described here are portions of the
same wafers used for the VUV experiments described in the previous section.
The results are shown in Fig. 9, which displays the flatband shift versus

helium anneal temperature. Since IAV is proportional to the number of

-
traps filled by this technique, there is an apparent inconsistency between
these data and the VUV data of Fig. 6. The 850°C sample shows very little
trapping in the corona experiment, but quite large trapping effects with the
VUV exposure, particularly associated with the small cross section trap, 82'
If one examines the flatband shifts obtained with the VUV exposure at t = 10 s
in Fig. 6, he finds behavior qualitatively similar to that in Fig. 9, although
the 850°C sample is out of place. These results suggest that the corona dis-
charge experiment cannot fill certain traps available to holes, and these
traps seem to be the ones with the small capture cross section. This dis-
agreement between the two techniques might be explained if some traps are
energetically near the 5102 valence band edge (within "3 eV). Then it may be
impossible for electrons to tunnel from these centers into the silieon because
they may lie energetically opposite the Si- valence or forbidden bands even at
1.4 x 107 V/em. This is particularly true for traps located near the 81-8102
interface.

While the results shown here are preliminary and have not been duplicated,

they are significant in illustrating the importance of this technique in

32, M. H. Woods and R. Williams, to be published, J. Appl. Phys., Feb. 1976.
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Figure 9. Flatband shift produced by negative corona
discharge exposure as a function of helium
anneal temperature. The samples are the
same as those used in obtaining the results
of Figs. 5 and 6.

sorting out the various characteristics of the hole traps. It is expected
that the combination of the VUV and corona techniques will prove useful to

future research in this area.
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V. CONCLUSIONS

Optical transmission measurements of thin unbacked films of 3102 have
been performed, and the absorption coefficient spectrum indicates a bandgap
of 8.0 + 0.2 eV. Measurements of the photoconductivity spectrum and the
threshold for positive charge accumulation confirm this value. Coincidence
of the absorption and photoconductivity thresholds provides evidence that the
uppermost valence levels are band-like although the band may be quite narrow.

Current enhancement and flatband shift experiments using 10,2-eV vacuum
UV light show a pronounced minimum with helium anneal temperature near 1000°C.
The decrease in hole trapping between 850°C and 1000°C may be associated with
a change in the density of intrinsic interface traps perhaps associated with
excess silicon near the interface. The increase between 1000° and 1100°C is
believed to be associated with a trap of larger cross section related to a
species which diffuses into the oxide, particularly at high anneal temperatures.
The experimental flatband shift data for three temperatures were fitted with
a two-trap model using only two hole capture cross sections and varying the

density of the two traps. The cross sections are 1.04 x 10-13 cm2 and 6.5 x

10-'15 cmz, the first associated with a diffusing species, and the second with
intrinsic interface trapping.

Some irreversible effects associated with the large cross section trap
have been observed. A decay in the current enhancement with a corresponding
increase in the flatband shift is believed to be the result of annihilation
of some of the large cross section traps further from the interface during
continued accumulation by the small cross section trap very near the inter-
face. We have explained how such restructuring of the charge distribution
can produce the experimental observation.

Corona discharge experiments on the same series of samples show a mono-

tonic increase in AV__ with anneal temperature. This result is not entirely

FB
understood at this time and has been tentatively explained by the possible
inability of this technique to fill certain traps, depending on their energy

and spatial location.
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VI. SUMMARY OF EARLIER CONTRACT REPORTS

A. INTRODUCTION

In this section we briefly summarize the research on A1203 reported in
earlier Scientific Reports; namely, in Technical Report No. AFCRL-TR-74-0330,
dated 15 July 1974; Technical Report No. AFCRL-TR-75-0094, dated 16 January 1975;
and Technical Report No. AFCRL-TR-75-0485, dated 17 July 1975.

The scientific work described in the aforementioned reports was undertaken
with the purpose of applying new experimental techniques to develop models
capable of explaining the phenomena of high-field charge injection and
radiation-induced charging in pyrolytic A1203 films suitable for MOS-gate
insulators. The use of vacuum ultraviolet (VUV) radiation has proved to be
extremely valuable to an understanding of radiation-induced charging in SiO2
films. Studies of SiOZ-MOS structures with bandgap light have revealed new
information regarding the electronic processes in 8102. In particular, it has
been shown that under positive gate bias holes transport to the vicinity of the
Si-SiO2 interface, where a significant number become trapped. The trapped
charge enhances the interface field, resulting in electron tunneling currents
that can be much larger than the photocurrents. These experiments have been
extended to A1203 in an effort to provide further understanding of the electronic
processes involved in this material. In these reports, we describe the results
and give an interpretation of vacuum UV experiments on pyrolytic A1203 gate
insulators.

Photoinjection of electrons has been used to provide information about
three very important characteristics of the metal-A1203-Si system,

(1) The nature and location of electron trapping in the A1203.

(2) The barrier energy for electron injection from the silicon into

the A1203.

(3) The scattering length for electrons in the A1203 near the Si-Alzo3

interface.

Finally, the technique of constant-current charging has been used to
evaluate the effects of processing temperature and 5102 interlayers on the

injection behavior of the Si—A1203 and 51-5102-A1203 interface regions.
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B. VACUUM ULTRAVIOLET RADIATION STUDIES

The energy threshold for electron-hole pair generation and radiation-induced
positive charging was found to be approximately 7.8 eV. This value is signif-
icantly lower than previously predicted by others from interpretation of optical
data. Our result indicates that their interpretation is probably incorrect.

A decreasing flatband shift with photon energy was observed, and this is
tentatively explained in terms of very small hole mobility, leaving holes
trapped very near their birthsites.

The voltage dependence of flatband shift obtained under vacuum UV radiation
shows a sharp maximum with voltage, and actually reverses sign for large gate
voltages. This has been interpreted in terms of competition between electron-
hole pair generation and electrcn injection from the electrodes at high
interface fields.

Radiation-induced currents in aluminum oxide using strongly absorbed vacuum
UV radiation have been measured. These currents show behavior similar to that
which has been observed previously in SiO2 films; namely, there is a photocurrent
component and a dark current component that is apparently produced by the
tunneling of electrons into the film from the silicon electrode. Several
differences are noted between these results and those reported for SiOz. First,
the photocurrent component is much smaller than in the case of 5102, resulting
in significantly less than 100% quantum efficiency. Secondly, the current
enhancement mechanism occurs with a much lower applied field than in the case
of 5102. The mechanism for the current enhancement in A1203 is believed to be
the trapping of positive charge (holes) in the aluminum oxide film. Two possible
models have been presented, one in which holes are mobile and one in which they
are immobile. Either model can explain the presently observed experimental
results. In either case, under irradiation the accumulation of positive charge
in A1203 continues until the interface field is sufficient to produce tunnel
injection from the silicon. This occurs at a much lower field in A1203 than in
5102. owing to the trap-assisted tunneling mechanism that has been described
previously. Analyses of the photocurrents in this experiment have shown that
it is not possible to distinguish between a model in which holes are immobile
and the photocurrent results from merely the sweepout of electrons and a model

in which holes are mobile and traverse the oxide. Interpretation of the results
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in A1203 are complicated by the presence of large electron trapping and the
relatively low injection threshold for electrons. The presence of both

electron and hole trapping in A1203 and the difficulty in determining the
location of the space charge by etching techniques make it very hard to
distinguish between models involving mobile holes and immobile holes. Therefore,
until some new experimental techniques are developed, it appears impossible to

distinguish between the two models.
C. PHOTOINJECTION EXPERIMENTS

Photoinjection experiments have provided very useful information in several
ways. Charge centroid measurements have shown that a large fraction of the
charge injected into A1203 is trapped near the injecting electrode. Comparison
of . the experimental data with two limiting models shows that no conclusions can
be drawn regarding the spatial distribution of traps but that trapping is
localized to the interface region. Similar measurements on Si-S10,-Al1,0

structures have shown that trapping occurs in the A1203 near the SiO2 inierface.
Mcasurements of the voltage dependence of photocurrents have provided

important information regarding barrier energies and electron scattering in

A1203. The Si-A1203 barrier is approximately 4.2 eV, and the electron scatter-

ing length in the A1203 in the direction of the field is approximately 3 R.
D. HIGH FIELD CHARGE INJECTION

Studies of high-field charge injection on A1203 MOS structures, with
purposely introduced SiO2 films between the Si and A1203. have shown that very
thin 8102 (40 X) actually enhances the electron injection. Thicker films of
SiO2 (270 X) can markedly reduce the electron injection for a given applied
field in the A1203. Unfortunately, the SiO2 layer, while reducing electron
injection, increases the radiation sersitivity. Additionally, processing
variables have an effect on the high-field injection process, but so far any
reduction in the injection was accompanied by a corresponding reduction in

hardness.
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