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ABSTP\CT 

•■ 

A system must operate for    t    units of time.     A certain component 

is essential for its operation and must be replaced, when it fails, 

with a new component.    The class of spare components  is grouped into 

n    categories with components of the ith category costing a positive 

amount    C.    and functioning for an exponential length of  time with 

rate    X     .     The main problem of interest  is,   for a given    t  ,  to 

assign the initial component and subsequent replacements from among 

the    n    categories of spare components so as  to minimize the expected 

cost of providing an operative component for    t    units of time. 

In Section 1 we  show that when there are an infinite number of 

spares of each category,   the optimal policy has a simple structure. 

Namely,  the time axis can be divided up into    n    intervals,  some of 

which may be vacuous,  such that when a replacement   lecision has to be 

made it is optimal to select a spare from the category having the ith 

largest value of    AC    whenever the remaining  time falls  into the ith 

closest interval to the origin.    In Section 2 we consider the situ- 

ation where    n =  2    and there is only a single spare of  one category 

and an infinite number of  the other.     In Section 3 we consider the 

case where  there is only a finite number of spares  for certain of  the 

categories under  the assumption that a rebate  is allowed  for the 

component  in use at  the end of the problem.     In Section 4 we allude to 

a generalization of  the model  in Section 1 allowing  for discounting or 

for the possibility that the system may randomly terminate before the 

t    units of  time expire.     An optimal policy has  the same simple 

structure as in Section 1. 

■■' • «MMMBMH^V« — -  ' ■--^- 
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A RENEWAL DECISION PROBLEM 

by 

C. Derman, G. J. Lleberman and S. Ross 

0. Statement of Problem 

A system must operate for t units of time.  A certain component Is 

essential for Its operation and must be replaced, when It falls, with a new 

component. The class of spare components Is grouped Into n categories with 

components of the 1th category costing a positive amount C  and functioning 

for an exponential length of time with rate A .  The main problem of Interest 

Is, for a given t, to assign the Initial component and subsequent replacements 

from among the n categories of spare components so as to minimize the expected 

cost of providing an operative component for t units of time. 

In Section 1 we show that when there are an Infinite number of spares 

of each category, the optimal policy has a simple structure. Namely, the time 

axis can be divided up Into n Intervals, some of which may be vacuous, such 

that when a replacement decision has tc be made It Is optimal to select a spare 

from the category having the 1th largest value of XC    whenever the remaining 

time falls Into the 1th closest Interval to the origin.  In Section 2 we con- 

sider the situation where r = 2 and there is only a single spa^e of one 

category and an Infinite number of the other.  In Section 3 we consider the 

case where there is only a finite number of spares for certain of the categories 

under the assumption that a rebate Is allowed for the component In use at the 

end of the problem.  In Section 4 we allude to a generalization of the model in 

Section 1 allowing for discounting or for the possibility that the system may 

randomly terminate before the t units of time expire.  An optimal policy has 

the same simple structure as in Section 1. 

  -  - --   
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1 
1. Igfinite Surplus in All Categories 

In this section we suppose that our surplus of spare parts contains an in- 

finite number of each category, and we number them so that X C > X C > ... > 

X C . In addition, we suppose that there is no 1 and  1 such that C > C. n r, .     rr j j - 1 

and A .> A.;  for if such is the case it can be shown (see Proposition 2) that 

category J need never be used. 

Letting V(t)  denote the infimal expected additional cost Incurred when 

there are t time units to go and a failure has Just occurred, then V(t)  satisfies 

the optimality equation 

t        -A.x 
V(t) -   min   {Ci  + / V(t-x) X^e ^^ dx} ,  t > 0 

i»l,...,n      0 
(1) 

and V(0) - 0 . 

In addition, the policy which chooses, when t time units are remaining, a spare 

from a category whose number minimizes the right side of the optimality equation 

is an optimal policy.  (This is a standard result in dynamic prograuming when 

all costs are assumed non-negative (see [ 3 ], [ 4 ]). 

Proposition 1; 

V(t)  is an increasing, continuous function of t for t > 0 . 

Proof; The increasing part follows from the definition of V(t) since all 

costs are assumed non-negative. To prove continuity suppose that It is optimal 

to select a spcre from category 1 whenever there are t units of time remaining. 

Then by selecting this same category at time t + e we see, from the lack of 

memory of the exponential, and the monotonicity of V that 

V(t) < V(t + e) < e"Xie V(t) + (1 - e"XiE) (^ + V(t + e)) . 

Hence, the result is given.  Q.E.D. 

- 2 - 
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Theorem 1: 

V(t)    is a plecewide linear concave function of    t    having at most    n    pieces. 

Proof;    Consider any value    t > 0 .    Suppose the assignment of category    1 

when    t    units of  time remain Is uniquely optimal.    Then by the continuity of 

V    and the optlmallty equation  (1)  there Is an Interval     (t,  t + e), e > 0, 

such that    1    Is uniquely optimal at every point In    (t,   t + e)   .    Suppose 

several categories are optimal at    t  .    Then the expressions within the brackets 

of  (1)  corresponding to each of the optimal categories are all equal to    V(t)   . 

If    1    Is optimal the derivative of the expression with respect to    t    corres- 

ponding to category    1    Is 

^{Cj + /    V(t - x)  A1 e    ** dx} - -fcj    V(y)  \± e    i 

t -Mt-y) 
- X    V(t)  - A.   /    V(y)  A.  e    1 dy 

1 1 0 1 

t -Ax 
- X    V(t)  - A    /    V(t - x)  A,  e    1    dx 

1 0 1 

-A,(t-y) 
dy} 

(2) 

A1 V(t)  -  Ai(V(t)  - C^ 

" Xl Cl   ; 

the derivative existing since    V(t)    is continuous.     It follows that among those 

categories that are optimal at    t    that category    j    with the smallest    A    C 

will be uniquely optimal over some interval    (t,   t + e'),   c*   > 0  .    Since at 

each change (as    t    increases)  of optimal category a category with a smaller    AC 

becomes optimal,  there can be at most    n   values of    t    where a change in optimal 

category takes place.     Since        Tg '    is constant within the Intervals where one 

category is optimal,    V(t)    Is linear within the Interval;  It Is concave because 

the derivatives are non-increasing.    Q.E.D. 

•3- 
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Remark;    Having established that an optimal policy employs the same category over 

Intervals,  the linearity and concavity of    V(t)    can be deduced, as well,  from 

the memoryless property of the exponential distribution and the linearity of 

the renewal function of the Polsson process. 

It follows from the proof of Theorem 1 that the optimal policy uses 

category 1 spares when the time remaining is small,   then switches to category 

2 spares as the time Increases,   then category 3 spares as  the time further in- 

creases,  etc. where, of course,   the interval of use for some categories may be 

empty.    This suggests two possible algorithms for finding switching points. 

Algorithm 1: 

For this algorithm let    V.    denote the minimal expected cost function 

and let    w      denote the optimal policy, when only categories    1,  2,   ...,  1    are 

available.    For instance 

V1(t) = (^(1 + ^t), 0 <  t < ~, 

and    IT..     is the policy which always replaces with a spare from category 1. 

From our previous structural results it follows that    TT      will use category 

1    whenever the time remaining is at least some finite critical value    t i-1 

Now at tjii it follows, by continuity, that it is optimal either to use 

category 1 and then proceed optimally, or to just use v .    Hence, if 

t . > 0,  then 

tl-l -X x 
Vl-l(ti-l) " Cl + /    Vi-l(tl-l - x) Xi e    dx •  (3) 

Furthermore,  since It follows  from the optimality equation that for small 

values of    t, TT      chooses the category with minimal value of    C. ,    we obtain 

-4- 
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that t. n - 0 if and only If C. ■ min C. . Hence, unless this is the 

case,  t.   can be taken to be the smallest positive solution of (3). 

And, in addition, we have 

Vi-1 
/l(t) " \ .. 

(t) t ^ 4-1 

Vi^i-P + Ai ^ - h-J    t ^ 4-] 

and    v±    uses category    i    whenever    t > t and follows    IT when 

1 ± h-l  • 
For example when (^ < C2, \1 C1  > X2 C2, this algorithm yields 

that t. is chosen so that 

^(1 + X1t1)  . c2 + ^ / ^  [1 + X^ - x)] A2 e    2    dx  . 

I 

Simplifying, 

4 * ^ lo* 
c1x1 - c1x2 

C1X1 " C2X2 

The expression for    V-Ct)    can be written as 

v2(t) - ^(1 + X^) 

Cl +  (X1C1 "  X2C2)   tl + A2 C2 t 

^h 

^h 

Algorithm 2; 

Let C. = min{C1 C } .  For some value t1 > 0,  category 

i.  is used whenever 0 < t £ t. . To find t-, for every value of 

it i > i,, determine x., the smallest value of x, x j> 0 satisfying 

- 5 - 
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-H^ ■X.t 
C  + / V(x - t) A  e 11 dt = C + / V(x - t) A  e i dt 
11  0 11 1  0 i 

where 

V(t) - C (A t + 1) = u (t) (say)  for t >_ 0 

1  1 1 

Let  t, ■ mln  {x.} = x.  .  For some value t„ category 1„ is used whenever 

1 
t- < t < t» . To find t-,  for every value of i, i > i , determine x,, 

the smallest value of x, x >^ t1 satisfying 

C  + / V(x - t) A  e 
2  0 2 

-H t -A.t 
It - C. + / V(x - t) A1 e 

i dt 

where 

V(t) = ^(t) for 0 <. t £ t. 

■ u1(t:l) + ^i Ci (t - t^  = u2(t) (say) for t  >  t^^  . 

Let  t„ ■ mln  {x } = x.  .  For some value of t- category i„ is used 
Z        i>i    1 13 J J 

whenever t? < t _< t_ .  Recursively, category i,  is used whenever 

t. - < t < t.  for some value t. .  To find t. , for every value of 
K— IK K X 

i, i > i , determine x , the smallest value of x, x ^ t, 1  satisfying 

-XA   t x -A.t x -A^C x -A 

.    + /    V(x - t;  A,     e       k    dt =  C    + /     V(x -  t)   A     e 
^      0 \ 0 1 

dt 

where 

V(t)  = "j^t).   tj.i <  t 1 tj»  J  = l,...k-l 

V^W + \ \(t - Vl* = \itU   t > Vl 
k       k 

-  6 
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Let    t.   -    mln 
16       1>1, 

{x.} - x. 
k+1 

This process stops when    t.   ■ « .    Of course 

If    1, then   t.   - " . 
k 

Both algorithms automatically exclude those categories which should 

never be used. However, It is possible to eliminate some in advance. This 

is indicated in the following. 

Proposition 2. 

If    C4 1 V  X4  > ^(Cj  * Ci»  x
i 1 *!>*    then category    j    is never 

used in an optimal policy. 

Proof:    Let    t > 0   be arbitrary.     Let    ir      be the policy that uses category 

j    at    t    and subsequently assigns categories optimally.    Let    IT      be the 

policy that uses category    i    and subsequently assigns categories optimally. 

On comparing   IT.,    and    it-   we have 

t -Ax t -X x 
V

w   (t) " V«  ^ - (C. - C.) + (/    V(t-x)  X.  e   J    dx - /    V(t-x)   X,  e    i    dx)  . 
1 2 3        1 0 J 0 1 

The first expression on the right is non-negative (positive) by assumption. 

r -Xx The second expression is positive (non-negative) since j     f(x) X e   dx 
0 

is Increasing in X for every non-constant non-increasing function f ; V(t - x) 

is such a function in x, as seen by letting V(t - x) = 0 for x > t . 

Thus V (t) - V (t) > 0 . Since the use of category j can always be im- 
'l     "2 

proved upon by using category 1 its use can never be optimal. Q.E.D. 

Remark; It is also intuitive that if, for some 1 and J, X C < X C. 

and C. < C., then category J will never be used. However, while this is 

evident from the formula for t, in the case of n = 2> and Implies It is 

true for n = 3, we have not been able to prove it in general. 

-7- 
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2.  Finite Supply Model 

In this section we suppose that n = 2 and that there Is an In- 

finite supply of spares of one category and only one of the other category. 

Theorem 2; 

If the set of spare components consists of one component of 

category 1 and an Infinite number of category 2, where C_ > C-,  then 

the optimal policy Is to use a category 2 component when the time re- 

maining t Is greater than t and use the category 1 component when 

t < t, where 

log(C JC) 
1  "  X1-A2      

lf    h  > X2 

If    X
1 1 

A2 

Proof;  Since once the decision to usr-  the category 1 Item Is made there 

are no further decisions. It follows that one may regard this as a 

stopping rule problem where stopping means the use of the category 1 Item. 

The one-stage look ahead stopping policy stops at t whenever stopping 

at t Is better than continuing at t and then stopping at the next op- 

portunity.  Now letting X denote the lifetime of the category 1 component 

and V that of the first category 2 component used then W.  the expected 

cost of using 1 at t, is 

Wl " C1P{X > t} + CCx + C2) P^X < t, X + V > t} + E[cost|x + V < t]  P{X + V < t} , 

while W the expected cost of first using a category 2 at t and then using 

the category 1 component, is given by 

W2 " C2P{V > t} + (Ci + C2) HV < t, X + V > t) + E[co8t|x + V < t] P{X + V < t) . 

- 8 - 
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Hence 

U    - W 
*1      W2 

C P{X > t} + (c1 + c2) P{X < t, X + V > t} - C2P{V > t} 

- (c1 + c2) P{V < t, X + V > t} 

- C P{V > t} - C2P{X > t} 

-X t      -At 
- (^ e Z " c2 e 

Therefore, the one stage look ahead policy uses the category 1 component 

at t whenever 

-X-t      -X.t 

Cle    "C2e    l0 

or, equivalently, whenever 

log(C2/C1) 

t < 
" Al-A2 

if \1 > x2 

or 

t - 00 if \1 < x2 

Since these sets of time points at which the one-stage look ahead policy 

stops can never be left once entered (without stopping), It follows (see 

[ l] or [2]) that It Is an optimal policy. Q.E.D. 

Remark;  The above proof does not need the assumption of exponential dis- 

tributions for X and V . The same form of policy is optimal if there is 

a t such that 

Cj P{V > t} - C2 P{X > t} < 0 for t < t 

(> 0)    (t > t) 

- 9 - 
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If the failure rate function of X Is always greater than the failure rate 

function of V then such a t  (possibly oo) will exist since then 

P(V > t)/P(X > t)  is a non-decreasing function of t . 

Theorem 3; 

If  the set of spare components is an infinite number of cate- 

gory 1 and one of category 2,  where    C-  > C  ,  X    < A  ,  then the optimal 

policy is to use the category 2 component when the time remaining    t    is 

greater than    x    and use a category 1 component when    t < x    where 

x = -      log [Vl " V; 
I Vl " C2X2 

Note:  As we might expect x is the same as in the infinite supply model 

when n " 2 . 

Proof; Using the stated policy the expected cost function is 

u('c) - C (X t + 1) if  t < x 

- C + / C [A (t - y) + 1] X 
^0 

-v 
dy if t > x . 

It is somewhat tedious but possible to verify that u(t)  satisfies 

t -X.y t -X y 
u(t) - mlniC, + / u(t - y) X e    dy, C, + / CA^At  - y] X  e * dy} 

That is,  u(t)  satisfies the optlmality equations for this problem; it 

thus follows from Proposition 1 of [3] that this policy is optimal.  Q.E.D. 

-10- 
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3.  Finite Supply with Rebate Problem 

Suppose In some of the n categories there are only a finite number of 

components.  We assume that the components are numbered  j = 1, 2  

However, In contrast to the previous problems, the cost of the last component 

used Is returned.  The problem, again. Is to determine a policy for deciding 

which available component to use when a new component Is required, so as to 

minimize the total expected cost. 

If  t units of time remain when a particular component from category 1 

Is put Into use and L Is the length of Its life, then the expected cost 

associated with the use of this component Is 

E(co8t of componentjt) = C P{L < t} 

C.A 1 - e 
v 

11  X, 

= C1X1 E(mln(L,t)] 

= C A E[Length of time this component Is used|t] . 

Thus, letting 6(j)  denote the category to which component j belongs It 

follows that the total expected cost under any policy n  Is 

E^total cost] - I  A5(j) C6(j) E^T.] 

where T.  IS the amount of time component j  Is used,  and where the sum 

Is taken over all components. 

Consider now a modified problem where the cost associated with compo- 

nent  1  Is X.,.v C.,.. T. where once again x.  Is defined as the amount 
<5(j)  6(j)  j *     j 

of time that component j  Is In use,  j ^. 1 •  The total expected cost with 

respect to the modified problem where policy IT  IS used Is precisely the 

same as the total expected cost with respect to the original problem.  Thus, 

the policy that is optimal for the modified problem is optimal for the original 

problem.  However, it is clear that the policy that used the category 

■11- 
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associated with the minimal available ^^  ci     
is optimal for the modified 

problem.  Thus we have proved the following: 

Theorem 4; 

The policy that minimizes the total expected copt when a rebate 

Is given for the last component used Is that policy that always selects 

imong all the available categories that one lu./ing ehe smallest 

x1c1 . 

Remark 1:  The same problem can be thought of in a different context except 

that it leads to a maximization problem instead of a minimization one. 

There are n jobs to be performed sequentially within a fixed time  t - 

the ith job takes an exponential amount of time with mean l/X  and if 

completed within the time span of the pioblem earns the decision maker an 

amount  C  .  Whenever a job is completed the decision maker must decide 

which job "o attempt.  He wishes to maximize the total expected earnings. 

The modified problem has the decision maker earn  X C T  if T.  units 

of time are spent on the 1th job whether or not it is completed within 

the time span of the problem. The decision maker wishes to maximize total 

expected earnings. As before, the optimal policy for the two problems 

is identical, namely, always choose the job with maximum A C . 
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Remark 2;  The conclusions for the problem In this section obviously hold 

if each category contains an infinite number of components. Since the op- 

timal expected total cost must be less than the optimal expected cost for 

the problem discussed in Section 1 and since always using category n in 

that problem is not necessarily optimal we have the inequalities 

A C t < V(t) < \    C t + C 
n n  —    — n n    n 

Actually, better bounds can be obtained.  If the rebate given for the 

last component used is C - C  when the last component used is from 

category J, it is still optimal to use category n for each replace- 

ment. One then arrives at 

X C t + C. < V(t). 
n n    i — 

Remark 3; Since the optimal policy is independent of the remaining time 

it follows that this policy is optimal when the time horizon is a random 

variable having any arbitrary distribution. 
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4. Discounted Case (A Random Termination Model) 

Suppose In Section 1 discounting Is appropriate, i.e., for some 

a > 0 

t -X x 
V(t) - mln{C + / e"aX V(t - x) A e 1 dx} 

I  1  0 1 

This can be Interpreted In the usual economic sense or as a random termina- 

tion model.     The latter interpretation arises whan the   system,  in addition 

to being terminated definitely    t    units in the future, may also be termi- 

nated due to a randomly occurring accident;   the time until such an accident 

occurs has an exponential distribution with mean    1/a  . 

The methodology of Section 1 applies in this case.    Proposition 1 

holds for    V(t)   .     The derivative corresponding to  (2)  becomes 

(X1 + ot)  C^ - oV(t)   .     WUh    X1 C1    replaced by     (^ + a)  C      the same 

type of statement concerning the structure of an optimal policy holds. 

The segments will no  longer be piecewise linear;  however,  V(t)    will still 

be concave  (the segments being the appropriate solution to the linear 

differential equation    V'Ct)  =  (A + a)  C - aV(t))   . 

1A 
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