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ABSTRACT

A system must operate for t units of time. A certain component
is essential for its operation and must be replaced, when it fails,
with a new component. The class of spare components is grouped into
n categories with components of the ith category costing a positive
amount C, and functioning for an exponential length of time with

i

rate Ai . The main problem of interest is, for a given t , to

assign the initial component and subsequent replacements from among

the n categories of spare components so as to minimize the expected

In Section 1 we show that when there are an infinite number of

5. % cost of providing an operative component for t wunits of time.
)
; spares of each category, the optimal policy has a simple structure.

Namely, the time axis can be divided up into n intervals, some of

which may be vacuous, such that when a replacement lecision has to be
made it is optimal to select a spare from the category having the ith

largest value of AC whenever the remaining time falls into the ith

closest interval to the origin. In Section 2 we consider the situ-
ation where n = 2 and there is only a single spare of one category

and an infinite number of the other. In Section 3 we consider the

b
3
!
3
o
L
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case where there is only a finite number of spares for certain of the
categories under the assumption that a rebate is allowed for the

component in use at the end of the problem. In Section 4 we allude to

B i i o couge

a generalization of the model in Section 1 allowing for discounting or

for the possibility that the system may randomly terminate before the

t units of time expire. An optimal policy has the same simple

structure as in Section 1.
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A RENEWAL DECISION PROBLEM
by

C. Derman, G. J. Lieberman and S. Ross

0. Statement of Problem

A system must operate for t units of time. A certain component is
essential for its operation and must be replaced, when it fails, with a new
component. The class of spare components is grouped into n categories with
components of the ith category costing a positive amount Ci and functioning
for an exponential length of time with rate Ai. The main problem of interest
is, for a given t, to assign the initial compunent and subsequent replacements

from among the n categories of spare components so as to minimize the expected

cost of providing an operative component for t units of time.

In Section 1 we show that when there are an infinite number of spares
of each category, the optimal policy has a simple structure. Namely, the time
axis can be divided up into n intervals, some of which may be vacuous, such
that when a replacement decision has tc be made it is optimal to select a spare
from the category having the ith largest value of AC lwhenever the remaining
time falls into the ith closest interval to the origin. In Section 2 we con-
sider the situation where n = 2 and there is only a single spare of one
category and an infinite number of the other. In Section 3 we consider the
case where there is only a2 finite number of spares for certain of the categories
under the assumption that a rebate is allowed for the component in use at the
end of the problem. In Section 4 we allude to a generalization of the model in
Section 1 allowing for discounting or for the possibility that the system may
randomly terminate before the t units of time expire. An optimal policy has

the same simple structure as in Section i.
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1. Infinite Surplus in All Categories

S e S
S a

In this section we suppose that our surplus of spare parts contains an in-

finite number of each category, and we number them so that A. C. > A, C, > ... >

s e

17 2 72
An Cn . In addition, we suppose that there 18 no 1 and j such that Cj > C1
and )‘j > Ai; for 1f such is the case it can be shown (see Proposition 2) that

category Jj need never be used.
Letting V(t) denote the infimal expected additional cost incurred when i
:1.' there are t time units to go and a failure has just occurred, then V(t) satisfies ”
the optimality equation

t -A,x

V(t) =  min  {C, + [ V(t-x) Ae
i=1,...,n 0

dx} , t>0 (1)
and V(0) =0 .

In addition, the policy which chooses, when t time units are remaining, a spare

from a category whose number minimizes the right side of the optimality equation '

is an optimal policy. (This is a standar! result in dynamic prograuming when H

all costs are assumed non-negative (see [3], [ 4]). |

Proposition 1:

V(t) 1s an increasing, contiiuous function of t for t > 0 .

% Proof: The increabing part follows from the definition of V(t) since all

costs are assumed non-negative. To prove continuity suppose that it is optimal
to select a spare from category 1 whenever there are t units of time remaining.
E ' Then by selecting this same category at time t + ¢ we see, from the lack of

1 memory of the exponential, and the monotonicity of V that

A -A{E€

V() <V(t+e) <e 18 ye)+ (1-e

) (ci + V(t +¢)) .

Hence, the result is given. Q.E.D.

.
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Theorem 1:

V{t) 1is a piecewise linear concave function of ¢t having at most n pileces.

ALkl B AR,

Proof: Consider any value t > 0 . Suppose the assignment of category 1
when t units of time remain is uniquely optimal. Then by the continuity of !
V and the optimality equation (1) there is an interval (t, t +¢€), ¢ > 0,

such that 1 1s uniquely optimal at every point in (t, t + €) . Suppose

several categories are optimal at t . Then the expressions within the brackets E
of (1) corresponding to each of the optimal categories are all equal to V(t) .
If 1 4is optimal the derivative of the expression with respect to t corres-

ponding to category 1 is

t =A% t =i, (t-y)
d
EE{Ci + g vV(t - x) A\ e 1" 4x) = é%{g V(y) A\ e 1 dy}
t -A (t=y)
=X V(t)-Ai(f) V(y) A e dy
t -xix
= Ay V(v) -Ai(f) V(e -x) A e dx (2)
= Ay V(t) = A (V(e) - C))
- Ai Ci S

the derivative existing since V(t) is continuous. It follows that among those

categories that are optimal at t that category j with the smallest A, C

373
will be uniquely optimal over sume interval (t, t +€'), €' > 0 . Since at

each change (as t 1increases) of optimal category a category with a smaller AC
becomes optimal, there can be at most n values of t where a change in optimal
category takes place. Since ﬂ%é&l is constant within the intervals where one
category 1is optimal, V(t) 1is linear within the interval; it is concave because

the derivatives are non-increasing.

Q.E.D.
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Remark: Having established that an optimal policy employs the same category over

intervals, the linearity and concavity of V(t) can be deduced, as well, from
the memoryless property of the exponential distribution and the linearity of
the renewal function of the Poisson process.

It follows from the proof of Theorem 1 that the optimal policy uses
category 1 spares when the time remaining is small, then switches to category
2 spares as the time increases, then category 3 spares as the time further in-
creases, etc. where, of course, the interval of use for some categories may be

empty. This suggests two possible algorithms for finding switching points.

Algorithm 1:

For this algorithm let V, denote the minimal expected cost function

i

and let m denote the optimal policy, when only categories 1, 2, ..., 1 are

avallable. For instance

Vl(t) = Cl(l + Alt), 0<t< o,

and LY is the policy which always replaces with a spare from category 1.

From our previous structural results it follows that LA will use category

i whenever the time remaining is at least some finite critical value ti—l c

Now at t it follows, by continuity, that it is optimal either to use

i-1°

category 1 and then proceed optimally, or to just use LR Hence, 1if

ti—l > 0, then
i-1 -Aix
Ve ) mic, +£ Vo (=% A e dx . (3)

Furthermore, since it follows from the optimality equation that for small

values of t, 1, chooses the category with minimal value of C we obtain

1 K




that ti-l = Q0 1if and only 1f C, = min C Hence, unless this is the

1 gckes K

case, can be taken to be the smallest positive solution of (3).

-1
And, in addition, we have

vi_l(t) bt
v, () =
Vper (g ) ¥ G-ty 2y,
and ni uses category 1 whenever t 3_ti_1 and follows "i—l when
t < ti-l
For example when C1 < C2, Al C1 > Az C2, this algorithm yields
that tl is chosen so that
tl —sz
C L+ Mt =C,+C é [1+ 2 -], e dx .
Simplifying,
N N ©M " G
1 AZ Clxl - CZAZ

The expression for V2(t) can be written as

| A
r

Vz(t) = Cl(l + Alt) t

2 C2 t t

| v
r

C1 + ()\IC1 = lzCz) tl + A

Algorithm 2:

Let Cil = min{Cl, 5o0p Cn} . For some value tl > 0, category

11 is used whenever 0 < t f_cl . To find tl’ for every value of

i, 1 > il’ determine X the smallest value of x, x > 0 satisfying

Gk

)

el e
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where

v(t) = Cil(Ailt +1) = ul(t)(say) for t>0. :

i For some value t2 category 12 is used whenever
9

s

X -Ai t X ~-A t 7

1 i .

c, + V(x-1t) A, e dt =¢C, + V(x - t) A, e dt i

i i i i A

1 O 1 0 ]

1 #

Let t, = Ti? {xi} = x

4 | t, <t<t,. To find ¢t for every value of i, i > 1,, determine x

| 1 -2 2° 2? iR
é. i the smallest value of x, x > t, satisfying
; X -A{ t X -Ait
, C, +[ Vx-t)r e 2dt=Ci+fV(x—t)Aie dt
F 2 0 2 0
4 : where
£ {
: V(t) = u(t) for O<e <t

= ul(tl) + Ai Ci (t - tl) = uz(t) (say) for t > t, -

2 72
Let t, = min {x,} = x, . For some value of t, category i, 1s used
2 1>1 i 13 3 3
2
whenever t2 <t < t3 . Recursively, category ik is used whenever
i
3 teep St for some value £y - To find to for every value of
é i, 1 > ik’ determine Xgo the smallest value of x, x > tk—l satisfying
X At x -Ait
; c. + f Vvix - t, Ai e k 4t = Ci + f Vix - t) Ai e dt
: ' 0 k 0
where
v(t) = uj(t), tyep <82 By 3 =1,...k-1
= - = t t>¢t
wep (Bey) ¥ Ay G (g ) =y (e, k-1 .




Let t, = min {x } = x . This process stops when t, = o ., Of course
Ul L S k
k

if :I.k = n, then tk = o,

Both algorithms automatically exclude those categories which should
never be used. However, it is pcssible to eliminate some in advance. This

is indicated in the following.

Proposition 2.

If Cj Z.Ci, Xj > Ai(cj > Ci, Aj > Ai), then category 3 1s never

used in an optimal policy.

Proof: Let t > 0 be arbitrary. Let ™ be the policy that uses category

J at t and subsequently assigns categories optimally. Let =, be the

2
policy that uses category 1 and subsequently assigns categories optimally.

On comparing m and m, we have

t -\, X

=y, X
e 3 dx - [ v(t-x) A e

t
v, (t) -V (t) = (cj - ¢+ (é V(t-x) xj !

1 2

The first expression on the right is non-negative (positive) by assumption.

The second expression is positive (non-negative) since f f(x) A e—>‘x dx

is increasing in 1 for every non-constant non—increasigg function f ; V(t - x)
is such a function in x, as seen by letting V(t - x) =0 for x>t .

Thus VTr (v) - V',r (t) > 0. Since the use of category j can always be im-

1 2
proved upon by using category 1 1ts use can never be optimal. Q.E.D.

Remark: It is also intuitive that 1if, for some 1 and j, Ai Ci < AJ Cj
and Ci < Cj, then category j will never be used. However, while this is
evident from the formula for t; in the case of n=2 and implies it is

true for n = 3, we have not been able to prove it in general.

-7-
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2. Finite Supply Model

In this section we suppose that n = 2 and that there is an in-

finite supply of spares of one category and only one of the other category.

Theorem 2:

If the set of spare components consists of one component of
category 1 and an infinite number of category 2, where C2 > Cl’ then
the optimal policy is to use a category 2 component when the time re-
maining t 1is greater than t and use the category 1 component when

t < E, where

_ 1og(c,/cy)

R Y v B
172

= o if Ay <A

Proof: Since once the decision to use the category 1 item is made there
are no further decisions, it follows that one may regard this as a
stopping rule problem where stopping means the use of the category 1 item.
The one-stage look ahead stopping policy stops at t whenever stopping
at t 1s better than continuing at t and then stopping at the next op-

portunity. Now letting X denote the lifetime of the category 1 component

ORI PN, - & Ty

and V that of the first category 2 component used then W, the expected

1
cost of using 1 at t, is

W1=C1P{X>t}+(C1+C2) P{(X <t, X+V >t} +E[cost|X+V<t] PX+V<rt},

while W2 the expected cost of first using a category 2 at t and then using a

the category 1 component, is given by

wzxczP{V>t}+(cl+cz) P{V<t, X+V>t)+E[cost|X+V<t] P(X+V<t}.



Hence

“1 - “z = clp{x >t} + (c1 + Cz) P{iX<t, X+V> ¢t} - czp{v >t}

-(Cl+C2) P{V<t, X+V>t}

- clp{v >t} - czp{x >t}

Therefore, the one stage look ahead policy uses the category 1 component

at t whenever

or, equivalently, whenever

108(CZ/C1)

P N e

t = if Xl‘i A

9 *
Since these sets of time points at which the one-stage look ahead policy

stops can ncver be left once entered (without stopping), it follows (see

[1]) or [ 2]) that it is an optimal policy. Q.E.D.

Remark: The above proof does not need the assumption of exponential dis-
tributions for X and V . The same form of policy is optimal 1f there is

a t such that

(o] ]

C,P{V>rt}-C, P{X>¢t} <0 for t<

v
(ad]
ot

¢ 0 (t >




2 4

If the failure rate function of X 1s always greater than the failure rate

function of V then sucha t (possibly =) will exist since then

P(V > t)/P(X > t) 1is a non-decreasing function of ¢t .

Theorem 3:

If the set of spare components is an infinite number of cate-
gory 1 and one of category 2, where 02 > Cl’ Az < Al, then the optimal
policy is to use the category 2 component when the time remaining t is
greater than x and use a category 1 component when t < x where
D (e - ey

A2 LCIAI - Ch
Note: As we might expect x 1is the same as in the infinite supply model

when n= 2 .

Proof: Using the stated policy the expected cost function is

u(c) = cl(xlt +1) if t<x

t —Azy
-Cz+£ G-y +112, e “ dy 1f > x.

It is somewhat tedious but possible to verify that u(t) satisfies

-A

t y t
1
u(t) = min(c, +£ u(t - y) A e dy, ¢, +{) C M (t-ylA,e

That is, u(t) satisfies the optimality equations for this problem; it

thus follows from Proposition 1 of [3] that this policy is optimal. Q.E.D.

-10-
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3. Finite Supply with Rebate Problem
Suppose in some of the n categories there are only a finite number of i
:
components. We assume that the components are numbered j =1, 2, ... . i
However, in contrast to the previous problems, the cost of the last component q
i

used is returned. The problem, again, is to determine a policy for deciding

which available component ¢o use when a new component is required, so as to

f I minimize the total expected cost.
? : If t units of time remain when a particular component from category i
% ln is put into use and L 1is the length of its life, then the expected cost

i associated with the use of this component 1is

3 E(cost of component|t) = CiP{L <t} ]
] -t
E ¥ l-~e i :
, = C,\ ]
_ 117 A :
- = i
 § Cili E[min(L,t)] A

CiAi E[Length of time this component is usedlt] . 3

Thus, letting 6(j) denote the category to which component j belongs it

follows that the total expected cost under any policy n is

R b e L e
S s e/ i ar

= k.
F B E_[total cost] = A C E !
: pltotal cost] § 5(3) Ss(p EalTy)
4 where Tj is the amount of time component j 1is used, and where the sum

is taken over all components.

l 37 Consider now a modified problem where the cost associated with compo-

: nent j 1is Ad(j) Cd(j) Tj where once again Tj is defined as the amount

E i of time that component j 1is inuse, j > 1 . The total expected cost with

respect to the modified problem where policy = 1s used is precisely the

same as the total expected cost with respect to the original problem. Thus,

the policy that is optimal for the modified problem is optimal for the original

problem. However, it is clear that the policy that used the category

R W R WG W I WA ¢
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associated with the minimal available Ai C1 is optimal for the modified

problem. Thus we have proved the following:

Theorem 4:
The policy that minimizes the: total expected cort when a rebate
is given for the last component used is that policy that always selects

among 211 the available categories that one hezving che smallest

Remark 1: The same problem can be thought of in a different context except

that it leads to a maximization problem instead of a minimization one.
There are n jobs to be performed sequentially within a fixed time ¢t -
the 1ith job takes an exponential amount of time with mean 1/)\i and 1if
completed within the time span of the prctlem earns the decision maker an
amount Ci . Whenever a job is completed the decision maker must decide

which job "o attempt. He wishes to maximize the total expected earnings.

Ai Ci 11 if Ti units

The modified problem has the decision maker earn
of time are spent on the 1th job whether or not it is completed within
the time span of the problem. The decision maker wishes to maximize total

expected earnings. As before, the optimal policy for the two problems

is identical, namely, always choose the job with maximum Ai Ci .

g e e ot "r!“' Sl o e e — Sl i LR




Remark 2: The conclusions for the problem in this section obviously hold
if each category contains an infinite number of components. Since the op-
timal expected total cost must be less than the optimal expected cost for
the problem discussed in Section 1 and since always using category n in

that problem is not necessarily optimal we have the inequalities

A C t<V(t) <i C t+C .
nn - - n n n

Actually, better bounds can be obtained. If the rebate given for the
last component used is Cj - C1 when the last component used is from
category J, it is still optimal to use category n for each replace-
ment. One then arrives at

An Cn t+C

1 £ v(t).

Remark 3: Since the optimal policy is independent of the remaining time
it follows that this policy is optimal when the time horizon is a random

variable having any arbitrary distribution.
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4. Discounted Case (A Random Termination Model)

Suppose in Section 1 discounting is appropriate, i.e., for some

t O -Aix
V(t) =min{C, + [ e " V(t -x) A, e
A 1

dx} .

This can be interpreted in the usual economic sense or as a random termina-
tion model. The latter interpretation arises when the system, in addition
to being terminated definitely t units in the future, may also be termi- .

nated due to a randomly occurring accident; the time until such an accident

occurs has an exponential distribution with mean 1l/a .
The methodolougy of Section 1 applies in this case. Proposition 1
holds for V(t) . The derivative corresponding to (2) becomes

(Ai + a) Ci - av(t) . Wix replaced by (Ai + a) Ci the same

Xi Ci
type of statement concerning the structure of an optimal policy holds.
The segments will no longer be piecewise linear; however, V(t) will still

be concave (the segments being the appropriate solution to the linear

differential equation V'(t) = (A +a) C - aV(t)) .
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