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I. Introduction

The most prevalent approach to prove that a program satishes a given property has been the
invariant assertion method, made known largely through the work of Floyd [1967] and Hoare
[1969]. In this method, the program being studied is supplied with formal documentation in
the form of comments, called invariant assertions, which express relationships between the
different variables manipulated by the program. Such an invariant assertion is attached to a
given point in the program with the understanding that the assertion is to hold every time
control passes through the point.

Assuming that an appropriate invariant assertion, called the input specification, holds at the
start of the program, the method allows us to prove that the other invariant assertions hold at
the corresponding points in the program. In particular, we can prove that the ourput
specification, the assertion associated to the program’s exit, will hold whenever control reaches
the exit. If this output specification reflects what the program is intended to achieve, we have
succeeded in proving the correctness of the program.

It is in fact possible to prove that an invariant assertion holds at some point even though
control never reaches that point, since then the assertion holds vacuously every time control
passes through the point in question. In particular, using the invariant assertion method, one
might prove that an output specification holds at the exit even though control never reaches
that exit. If we manage to prove that a program’s output specification holds, but neglect to show
that the program terminates, we are said to have proved the program’s partial correctness.

A separate proof, by a different method, is required to prove that the program does terminate.
Typically, a termination proof is conducted by choosing a well-founded set, whose elements are
ordered in such a way that no infinite decreasing sequences of elements exist. (The natural
numbers under the regular less-than ordering, for example, constitute a well-founded set.) For
some designated label within each loop of the program an expression involving the variables of
the program is then selected whose vailue always belongs to the well-founded set. These
expressions must be chosen so that each time control passes from one designated loop label to
the next, the value of the expression corresponding to the second label is smalier than the value
of the expression corresponding to the first label. Here, “smaller” means with respect to the
well-founded ordering, the ordering of the chosen well-founded set. This establishes
termination of the program, because if there were an infinite computation of the program,
control would traverse an infinite sequence of loop labels; the successive values of the
corresponding expressions would constitute an infinite decreasing sequence of elements of the
well-founded set, thereby contradicting the defining property of the set. This well-founded
ordering method constitutes the conventional way of proving the termination of a program
(Floyd (1967)).

Saes Lk i
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If a program both terminates and satisfies its output specification, that program is said to be
totally correct.

Burstall [1974) advocated an approach whereby the total correctness of a program can be
shown in a single proof (see also Schwarz [1975] and Topor [1976)). This technique, which he
attributes to Knuth [1968] (Section 2.3.1), again involves affixing comments to points in the
program but with the intention that sometime control will pass through the point and satisfy
the attached assertion. Consequently, control may pass through a point many times without
satisfying the assertion, but control must pass through the point at least once with the assertion
satisfied; therefore we call these comments intermittent assertions. If we prove the output
specification as an intermittent assertion at the program'’s exit, we have simultaneously shown
that the program must halt and satisfy the specification. This establishes the program’s total
correctness. Since the conventional approach requires two separate proofs to establish total
correctness, the intermittent-assertion method invites further attention.

We will use the phrase
sometime Q at L

to denote that Q is an intermittent assertion at label L (that sometime control will pass through
L with assertion Q satisfied). If the entrance of a program is labelled start and its exit is
labelled finish, we can express its total correctness with respect to an input specification P and
an output specification R by

Theorem:  if sometime P at start
then sometime R at finish.

This theorem entails the termination as well as the partial correctness of the program, because it
implies that control must eventually reach the programs exit, and satisfy the desired output
specification.

If we are only interested whether the program terminates, but don't care if it satisfes any
particular output specification, we can try to prove

Theorem:  if sometime P at start
then sometime at finish.

The conclusion "sometime at finish" expresses that control must eventually reach the program'’s
exit, but does not require that any relation be satisfied.

Generally, to prove the total correctness or termination theorem for a program, we must affix

FRCToN




Manna & Waldinger June 16, 1976

intermittent assertions to some of the program’s internal points, and supply lemmas to relate
these assertions. Typically, we will need a lemma for each of the program's loops, to describe
the intended behavior of that loop.

The proofs of the lemmas often involve complete induction vver a well-founded ordering (see
Manna [1974)). In proving such a lemma we assume that the lemma holds for all elements of
the well-founded set smaller (in the ordering) than a given element, and show that the lemma
then holds for the given element as well.

In this paper, we will first present and illustrate the intermittent assertions method with a
variety of exan ples. We will then show that the conventional invariant-assertion method and
the well- founded orderlng method, in addition to the more recent subgoal induction method
(Manna [1971], Morris and Wegbrelt (1976)) for proving partial correctness, can be regarded as
special cases of the intermittent-assertion method. On the other hand, we present proofs of
correctness and termination using intermittent assertions that are markedly simpler than their
conventional counterparts. Finally, we show that the method can also be applied to establish
the validity of program transformations, and to prove the correctness of continuously operating
programs, programs that are intended never to terminate.

o
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II. The Intermittent-Assertion Method

Rather than present a formal definition of the intermittent-assertion method, we prefer to
illuminate it by means of a sequence of examples. Each example has been selected to illustrate
a different aspect of the method.

1. Finding a zero of an array

We first consider a simple program, as a vehicle for introducing the basic technique. The
program is given an array a[l:n] of numbers, where n 2 1, and is intended to find the index of
an array element equal to zero, if such an element exists, or to output zero otherwise. The
program, which we will call find-index, is

input(a(1:n))
start:  index « n
more:  if alindex] = 0
then success: output(index)
else index « index-1
if index = 0
then failure: output(index)
else  goto more.

This program counts down from n until it succeeds in finding a zero element or else reaches
index zero without finding such an element. It has two exits, success and failure, corresponding
to successful and unsuccessful termination. In talking about this program, the abbreviation
"aluv] has a zero” will denote that at least one of a(u], alu+1], .., alv] is zero. (If v < u, then
aluv] has no zeros.) The total correctness of the find-index program is then expressed by the
following theorem.

Theorem: if sometime n 2 | at start
then if a[l:n] has a zero
then sometime alindex) = 0 and 1 < index < n at success
else sometime index = 0 at failure.

This theorem states the termination in addition to the partial correctness of the program
because it implies that control must eventually reach one of the program's exits (success or
failure) and satisfy the appropriate output specification.

In order to apply the intermittent assertion method, we are in general required to supply a
lemma for each of the program’s loops to describe the behavior of that loop. For the single
loop of the given program, it suffices to prove the following lemma.
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Lemma: if sometime index = i and | < i s n at more
then if al1:i) has a zero
then sometime alindex] = 0 and 1 < index < i at success
else sometime index = 0 at failure.

The hypothesis index = i in the antecedent enables us to refer to the original value of index in
the conclusion, even though the value of index may have changed subsequently.

Note that the conclusion of the lemma is the same as the conclusion of the total correctness
theorem with n replaced by i. This lemma implies the theorem directly, for assume we enter the
program at start with input n 2 I. Then we reach more immediately with index = n. The
lemma then tells us (taking i to be n), that the conclusion of the theorem will ultimately be
satisfied.

The proof of the lemma is by complete induction on i over the nonnegative integers; in other
words, we will assume the lemma holds whenever index = i, for any nonnegative integer i’ such
that i’ < i, and show that it then holds when index = i.

Suppose that

sometime index = i, and | < i < n at more.

We distinguish between two cases: If a[i] = 0, then clearly a[1:i] has a zero; but then we reach
success with index satisfying the conditions of the lemma, that alindex] = 0 and 1 < index < i
On the other hand, if a[i] = 0, then

(«) all:i] has a zero <=> a[l:i-1] has a zero

and index is reset to i-1. If i-1 = 0, then a[l:i-1], and hence a[1:i), has no zeros; but indeed in
this case we reach the failure exit with index = i-1 = 0. Alternatively, if i-1 » 0, we return to
more with index = i-1, where | < i-1 < n. Since i-1 < i, our induction hypothesis applies, with
index = i- |, telling us that

if all:i-1) has a zero
then sometime alindex] = 0 and | < index < i-1 at success
else sometime index = 0 at failure.

However, a[l:i-1] has a zero if and only if a[l:i] has a zero (by #), and index < i-1 implies
index s i. Consequently we have established the conclusion of the lemma, and completed the
proof of the total correctness of the find-index program.

s e s
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The chief difficulties in devising such a proof are formulating the lemmas and choosing the
ordering on which to base the mathematical induction in the proof. The conventional methods

however, require comparable acts of ingenuity. For instance, suppose we want to apply the
invariant assertion method to prove the partial correctness of the program with respect to the

input specification
nzl
and the output specification

if a[l:n] has a zero
then alindex) = 0 and | < index < n

else index = 0,
acsociated with both the success and the failure exits. (Note that the invariant-assertion

method does not allow us to distinguish between the roles of the two exits.) Then we must

devise an invariant assertion at more, such as

| < index < n and
alindex+1:n) has no zeroes,

or, alternatively,

| < index < n and
al1:n) has a zero <=> a[l:index] has a zero.

Furthermore, if we wish to prove termination using the conventional method, we must devise a
decreasing expression over an appropriate well-founded ordering: for instance, we can use the
same expression (index) and the same well-founded set (the nonnegative integers) that we used
as the basis for the complete induction under the intermittent-assertion method. We will make

these connections more precise in Section 111-3.
9. The greatest common divisor of two numbers

Because the find-index program involved only a single loop, a single lemma sufficed to prove its
total correctness. The following program, which computes the greatest common divisor (gcd) of
two positive integers, is introduced to show how the intermittent-assertion method is applied to

a program with a more complex loop structure.

We define ged(x y), where x and y are positive integers, as the greatest integer that evenly

divides both x and y, that is,

ged(x y) = max{u : ul|x and uly}

- Sl
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For instance, ged(9 12) = 3 and ged(12 2% = |

o

The program is

i

E input(x y)
E start:
more:  if x =y
then finish: output(y)
else reducex: if x>}y
then x « x-y
goto reducex
reducey: if x <y
then 9y« y-x
goto reducey

goto more. &
. |

This program is based on the properties of the ged that ged(x ) = y if x=y, ged(x y) = ged(x~y y) |
if x >y, and ged(x y) = ged(x y-x) if x < y. 4

We would like to use the intermittent-assertion method to prove the total correctness of the ged
program. T he total correctness can be expressed as follows: 2

Theorem: if sometime x = a,y = b and ab > 0 at start
then sometime y = max{u : u|a and u|b} at finish

To prove this theorem, we need a lemma that describes the behavior of each of the program's
loops. For instance, corresponding to the outer loop we have

Lemma 1 (outer loop):
if sometime x = a;,y = b, and x,y > 0 at more

3 then sometime x = y and y = max{u : u|a; and u|b,} at more.
This lemma summarizes the effects of the program's outer loop.

‘ Lemma | implies the theorem directly: We assume that initially x = a, y = b, and ab > 0 at
8! start, we immediately reach more again, with x = a, y = b, and ab > 0. Lemma | implies that
sometime we will return to more, with x = y = max{u : u|a and u|b}. Since x = y, we will then
reach finish, with y = max{u : u|a and u|b}.

Ak Because there are two inner loops within the program's outer loop, to prove Lemma 1 requires .
| o the following lemmas, each describing the behavior of the corresponding inner loop.
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Lemma 2 (top inner loop):
if sometime x = ap, 9 = by, x > y and x,y > 0 at reducex
then sometime x < @,y = by, x < y, x5 > 0 and
{u:u|xand w|y} = {u:ulap; and u|by} at reducex.
Lemma 3 (bottom inner loop):
if sometime x = a3, § = b3, x < y and x,y > 0 at reducey
then sometime x = @3,y < b3, x 2 9, 2,9 > 0 and
{u:ulxand u|y} = {u: ulaz and u|bs} at reducey.
Lemma 2 states that the top inner loop will reduce x until it is less than or equal to y but will
not change y or the set of common divisors of x and y. Lemma 3 is similar, but the roles of x

and y are reversed. Let us first prove Lemma 2

Proof of Lemma 2: This proof is by complete induction on a,; in other words, we will assume
that Lemma 2 holds whenever x = a;', for any non-negative integer a,' such that ay' < ap, and
show that the lemma then holds when x = a,.

Suppose that
sometime x = ap, y = by, x > y and x,y > 0 at reducex.

Since x > y, x is reset to x-y, i.e. to ay-b,, which is still positive, and control returns to reducex
T herefore,

sometime x = ap-bp, y = by, x,y > 0 and
{u:ulxand uly} = {u:uja, and u|by} at reducex.

T he set of common divisors of x and y is unchanged because the common divisors of a-b, and
b, are the same as those of a; and b,. We must now distinguish between two cases.

Case x <y The conclusion of Lemma 2 is already satisfied, since b, > 0 and, therefore
X = 02°b2 < aj.

Case x > y: Since x = ap-b, < ap, our induction hypothesis applies, telling us that

sometime x < @p-bp, y = by, x < 9, xy > 0 and
{u:ulxand uly} = {u:u|ap-by and u|by} at reducex.

We can conclude that x < a, (because b, > 0) and that

fu:ulx and uly) = {u:ulasand u|by)

ok, S
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since the common divisors of ap-b, and b, are the same as those of a, and b,, thereby
completing the proof of Lemma 2.

R i ks P s

The proof of Lemma 3 is similar to that of Lemma 2, except that induction is on by instead of
a,. It remains only to use both Lemmas in proving Lemma 1.

Proof of Lemma [: The proof is by complete induction on b; thus, we will assume that
Lemma | holds whenever y = b)', for any non-negative integer b)' such that b,' < b;, and show
the lemma then holds when y = b).

Assume that

sometime x = @}, y = by, and x,y > 0 at more.

If x = y, the conclusion of the lemma,
sometime x = y and y = max{u : u|a, and u|b;} at more,

is already satisfied because the greatest common divisor of x and y is then the greatest divisor
of 3, namely y itself. If x = y, then either x > y and we pass to reducex, or x < y and we pass to
reducey. We treat these two cases separately.

Case x > y at reducex: Here, we know x = a;, y = b, x >y and xy > 0. Thus, by Lemma 2, we

have
sometime x <a;,y = b, x <y xy> 0and
(+) {u:ulxand uly} = {u:ula; and u|b;} at reducex.

If x =y at this point, we are done: we pass directly to more, and y is already the greatest
common divisor of x and y (by the argument given earlier in this proof) and therefore of a,
and &,, by (x). On the other hand, if x < y we pass to reducey, and the situation is treated in

the next case.

Case x < y at reducey: Whether we have travelled around the top inner loop or reached this
point directly, we know that x <@, y=b,x<y xy>0and {u:ulxand uly} = {u:ula, and
N u|b,}. Lemma 3 implies that

<

|
k. |
b |
E

sometime x < a;,y < b, x 2y xy>0and
() {u:ulxand uly} = {u:ula; and u|b,} at reducey

The formula () holds because Lemma 3 tells us that the common divisors of x and y are still
unchanged. We can then pass directly to more and, if x = y, the conclusions of the lemma are
satisfied as before. On the other hand, if x = y, the value of y has been reduced, and therefore

T Brp————
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the induction hypothesis applies. If we denote the current values of x and y by a,' and &', the
induction hypothesis implies that

sometime x = y and y = max{u : u|a," and u|b,'} at more,

or, applying (:=), that
y = max{u : u|a; and u{b,}.
T his satisfies the conclusion of Lemma I.

This example shows how the use of the lemmas in proving the total correctness theorem refiects
the loop structure of the program.

It is not difficult to prove the partial correctness of the above program using the conventional
invariant assertion method. For instance, to prove that the program is partially correct with
respect to the input specification

xp > 0and y5> 0

and output specification
y = ged(xp yo)

(where xp and yg are the initial values of x and ) we can use the same invariant assertion
xy > 0and {u:u|xand uly} = {u: ujxg and yo}

at each of the labels more, reducex and reducey.

In contrast, the termination of this program is awkward to prove by the conventional
well-founded ordering method, because it is possible to pass from more to reducex, reducex to
reducey, or from reducey to more without changing any of the program variables. One of the
simplest proofs of the termination of the gcd program by this method involves taking the
well-founded set to be the pairs of non-negative integers ordered by the regular lexicographic

ordering; that is,
(1) v)) < (up vp)
if and only if

u. < uz or
u, = up and v; < v,
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When the expressions corresponding to the loop labels are taken to be

(x+y 2) at more,
if x = y then (xsy 1) else (x+y 4) at reducex, and
if x <y then (x+y 0) else (x+y 3) at reducey,

it can be shown that their successive values decrease as control passes from one loop label to the
next (Katz and Manna [1975)). Although this method is effective, it is not the most natural in

establishing the termination of the ged program.

3. The Ackermann Function

Another example for which the termination proof is even more difficult to accomplish by the
well-founded ordering method is an iterative program to compute the Ackermann function.
This function, denoted by A(x ¥), is defined recursively for non-negative integers x and y as

Alxy) <= ifx=0
then y+1
else ify=0
then A(x-11)
else A(x-1 A(x y-1)).

This function is of theoretical interest, in part because it value grow extremely quickly; for

instance,

216
A4 4) =22

An iterative program to compute the same function is
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input(xg yo)
start:  stack[1] « xg
stack[2] « y
index « 2
more:  if index = |
then finish: output(stack[1])
else if stack[index-1] =0
then stacklindex-1] « stacklindex]+|
index « index-1|
goto more
else if stack[index] = 0
then stack[index-1) « stacklindex-1)-1
stack[index]) « |
goto more
else stack[index+1) « stacklindex]-1
stacklindex) « stacklindex-1]
stacklindex-1) « stack[index-1]-1
index « index+1
goto more.

This iterative program represents a direct translation of the recursive definition; at each
iteration it can be shown that

A(stack[1] A(stackl?] .. A(stacklindex-1] stacklindex]))) = A(xq yg)
at more and, when the program terminates, that
stack[1] = A(xg yp).

The only known proof of the termination of this program using the conventional well-founded
ordering method (by A. Pnueli) is extremely complicated, and we challenge the intrepid reader
to construct such a proof.

The intermittent assertion proof allows us to show total correctness of the same program in a
markedly more simple fashion. The theorem that expresses the program's total correctness is

Theorem:  if sometime x50 2 0 at start
then sometime stack(1] = A(xy yo) at finish.

In proving this theorem we will employ the following lemma,
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Lemma: if sometime index = i, i 2 2, (stack(1] stack[2] ... stack[i-2)) = s,
stack(i-1] = a and stack(i] = b at more,
then sometime index = i- 1, (stack(1] stack(2] ... stack[i-2)) = s
and stack(i-1] = A(a b) at more.

Here, s represents a tuple of stack elements. The expression (stack[1] stack[2] ... stack[i-2]) = s
is included in the hypothesis and the conclusion of the lemma to convey that the initial segment
of the array, the first i-2 elements, are unchanged when we return to more.

It is straightforward to see that the Lemma implies the Theorem. For index is 2, stack[1] is Xo,
and stack[2] is yp the first time we reach more. Then the lemma implies that eventually we will
reach more again, with index=1 and stack(1] = A(xg yg). Since index = 1 we then pass to finish
with the desired output.

To prove the lemma let us suppose

sometime  index = i,i 2 2, (stack(1] stack(2] .. stackli-2)) = s,
stack[i-1) = a and stack[i] = b at more.

Our proof will be by induction on the pair (stacklindex-1] stacklindex)) under the
lexicographic ordering over the non-negative integers; in other words, we will assume the
lemma holds whenever stacklindex-1] = a' and stacklindex] = b, where a' and b are any
non-negative integers such that @' <a, or @’ = a and b’ < b, and show that it then holds when
stack[index-1)=a and stacklindex)=b. The proof distinguishes between three cases,
corresponding to the conditional tests in the recursive definition of the Ackermann function.

Case a = 0: Then A(a b) = b+1 by the recursive definition of the Ackermann function. But
since index = 1, and stacklindex-1]1=a =0, we return to more with index = i-1 and
stack[i-1] = b+ 1, satisfying the conclusion of the lemma.

Case a >0, b=0: Here, A(a b) = Ala-1 1) by the definition of the Ackermann function,
Because index # i, stacklindex-1]=a =0 and stack[index) = b = 0, we return to more with
index = i, stack[i-1) = a-1, and stack(i] = 1. Since stack[i-1] = a-1 < a, we have

(stackli-1] stackli)) = (a-1 1) < (a O),

and, therefore, the inductive hypothesis can be applied, to yield that

sometime index = i-1, (stack[1] stack[?) .. stack(i-2)) = s and
stack[i-1) = A(a-1 1) at more.

Because A(a b) = A(a-1 1), the lemma is established in this case.

13
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Casea >0, b>0: Then A(a b) = A(a-]1 A(a b-1)), by the recursive definition. Since index = |
stacklindex-1) = a » 0, and stack[index] = b » 0, we return to more with

index = i+,

stackli-1] = a-1,
stack[i] = a, and
stacklis1] = b-1.

Because index = i+l and (stack(i) stack[i+1]) = (a b-1) < (a b), our induction hypothesis applies
yielding

sometime index = i, (stack[1]stack[2] .. stack[i-2)) = s,
stack(i-1) = a-1, and stack[i) = A(a b-1).

Note that we could conclude that stack[i-1] = a-1 because the induction hypothesis,- for
index = i+1, states tha_t the first i-1 array elements are unchanged. Since index =i and
(stackli-1] stack(i)) = (a-1 A(a b-1)) < (a b), we can apply the induction hypothesis once more
to obtain that

sometime index = i~1, (stack[1] stack(2] .. stack[i-2)) = s,
and stack[i-1] = A(a-1 A(a b-1)) at more,

which is the desired conclusion in this case.

This completes the proof of the total correctness of our Ackermann program. We believe it
reflects our understanding of the way the program works.

4. Counting the tips of a tree

For all of the above examples (the find-index, ged, and Ackermann programs) it is possible to
find a simple partial correctness proof using invariant assertions. Thus, none of these examples
illustrate a certain advantage of the intermittent-assertion method over the conventional
methods for proving partial correctness. Our next example presents a situation in which a
straightforward proof of total correctness using intermittent assertions is possible, but for which
the proof of partial correctness with invariant assertions is peculiarly difficult.

This example, included in Burstall [1974), is an algorithm to count the tips of a binary tree
those nodes that have no descendents. A recursive definition of a function tips(tree) that counts
the tips of a binary tree free is

tips(tree) <= if tree is a tip
then |
else tips(left(tree)) + tips(right(tree)),

14
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where left(tree) and right(tree) are the left and right subtrees of tree respectively.

An iterative program to count the tips of a binary tree free is

GRS Bt i

input(tree) -
start:  stack « ()
count « 0
more:  if free is a tip
then count « count+l
teststack: if stack = ()
then finish: output(count)
else (tree stack) « (head(stack) tail(stack))
A goto more
else  (tree stack) « (left(tree) right(tree). stack)
: goto more.

Here. the value of stack is a ist. We denote the empty list by (). If stack is not empty, then
head(stack) is its first element and tail(stack) 1s the list of its remaining elements. We denote by
x. stack the list formed by adding the element x at the beginning of stack. The assignment
(tree stack) « (head(stack) tail(stack)) means that free and stack are simultaneously set to the
value of head(stack) and tail(stack), respectively.

This program operates by using the variable count to be the number of tips already counted,

tree to be the subtree of the original tree whose tips are now being counted, and stack to be the !
list of subtrees whose tips have yet to be counted. Its partial correctness can be established

taking the invariant

tips(treeg) = count + tipsitree) + Z tips(s) at more,

s ¢ stack

where treeg is the given tree, and Z tips(s) is the
0 g N ps(s) sum of the tips of all the subtrees

on stack.

To prove termination with the conventional well-founded ordering approach, we can show that
the value of the expression

b3

e 2
———

( tips(treeg)-count tipsitree) )

" » always decreases in the lexicographic ordering each time we return to more, but always remains
in the set of pairs of nonnegative integers.

T e Lo . 2 ’
5 " R o ko
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If we use intermittent assertions, we can express the total correctness of this program in the
following theorem.

Theorem: if sometime tree =t at start
then sometime count = tips(t) at finish.

The proof of this theorem depends on the following lemma, that describes the behavior of the
program in more detail.

Lemma: if sometime free = {, count = ¢ and stack = s at more
then sometime count = c+tips(t) and stack = s at teststack.

It is not difficult to see that this lemma implies the theorem. Suppose
sometime free =t at start.
Then we set stack to (), count to 0, and reach more, so that
sometime free = t, count = 0 and stack = () at more.
The lemma then tells us that
sometime count = O+tips(t) and stack = () at teststack.
Because stack is (), we reach finish, so that
sometime count = tips(t) at finish,
and the theorem is thereby established.
The proof of the lemma is by complete induction on the structure of tree. We suppose that
sometime {ree = t, count = ¢, and stack = s at more,

and we assume inductively that the lemma holds whenever tree = (', where ¢' is any subtree of ¢
The proof distinguishes between two cases, depending on the current value ¢ of tree.

Case t is a tip: Then tips(t) = 1 by the recursive definition of tips; count is then increased by 1
and we reach teststack with count = c+1 = c+tips(t), establishing the conclusion of the lemma.

Case ¢ is not a tip: Then tips(t) = tips(left(t))sright(left(t)), by the recursive definition of tips.
Since ¢ is not a tip, we pass around the else branch of the loop and return to more, so that

16



sometime tree = left(t), count = ¢ and stack = right(t)- s at more.
‘ Because left(t) is a subtree of ¢, our induction hypothesis can be applied to yield
sometime count = cstips(left(t)) and stack = right(t)- s at teststack.

Since stack is nonempty (it contains right(t)), we pass around the loop once again, setting free to
head(stack) and stack to tail(stack), so that

sometime tree = right(t), count = cotips(lcft(t)) and stack = s at more.
Since n'ght(r) is a subtree of ¢, we can apply our induction hypothesis a second time, obtaining

sometime count = c+tips(left(t))+tips(right(t)) and stack = s at teststack.

In other words, since tips(t) = tipsileft(t))+tips(right(t)),
sometime count = c+tips(t), and stack = s at teststack.
This is the desired conclusion of the lemma.

Part of the difficulty in applying the conventional invariant-assertion method here is that this
iterative program is derived from a recursive definition, with a stack introduced to circumvent
the need for recursion. Both the iterative and the recursive programs count the tips of every
subtree of the given tree. For the recursive program, each recursive call counts the tips of a
E‘. single subtree, however, for the iterative program, counting the tips of the subtree may involve
\ traversing the loop many times. The intermittent-assertion method allows us to relate the point
at which we are about to count the tips of a subtree ¢t (at more) with the point at which we have
completed the counting (at teststack), and to consider all the computation between these points
as a single unit, which corresponds naturally to a single recursive call of ti ps(t).

e

i i 7 Lo

On the other hand, the invariant assertion method forces us to relate the point at which we are
about to count the tips of the subtree ¢ with the point after we have traversed the loop only
£l once. There may be no natural connection between these points: for instance, in travelling
' around the loop we may have reset (ree to be the head of the stack. Our invariant assertion
~ must be exceptionally complete, and even include a description of the stack, so that we can
relate these two points.

T he intermittent-assertion method is particularly useful for such iterative programs as our tips
program that are derived from recursive definitions. We will discuss this class of programs
further in Section IV.

Manna & Waldinger June 16, 1976
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III. Relation to Conventional Proof Techniques

One question that naturally arises in presenting a new proof technique is its relationship to the
more conventional methods? In the previous section we argued that, in some cases, the
intermittent-assertion method en joys certain advantages. In this section we will show that this
method effectively can replace the others. In particular, we directly rephrase a
partial-correctness proof using either of two standard techniques as a partial-correctness proof
using intermittent assertions. Furthermore, any termination proof using the well-founded
ordering method can be expressed using intermittent assertions instead. Therefore, we can
always use the intermittent-assertion method in place of the established techniques. 3

TR P e

-

For simplicity, we will employ a simple cne-loop abstract program to illustrate these
constructions,

input(xp) -
start: % « flxg) -
more: if t(x)
then x « A(x)
finish: output(x) i 4
else  x « g(x) ;
goto more.

The results we present, however, apply to concrete programs with arbitrary loop structure

For each computation, a program of the above form defines an implicit ordering on the possible
values of the program's variable x: This is the ordering > defined as the transitive closure of
the relation

a > gla), 0

where a and g(a) are two successive values of x at the label more as control passes around the 3
4 loop. We will call > the ordering induced by the computation. If the computation terminates 5
y this ordering is well-founded: because, if the ordering admitted an infinite decreasing sequence.
the computation itself would have to be infinite. :

{
|
The above ordering enables us to apply the intermittent-assertion method to prove partial
‘ correctness, even though the method is basically a total correctness technique. We include in
the theorem an explicit assumption that the computation terminates. Since the output .
1 specification is only claimed to hold if the program haits, the theorem will express partial rather
than total correctness. The proof of the corresponding lemma will involve a complete induction A
over the ordering induced by the computation, which is well-founded because the computation
has been assumed to terminate.

18
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Now let us see in more detail how an invariant-assertion proof of the partial correctness of our
program can be rephrased using intermittent assertions.

1. Invariant-Assertion Method

Suppose that we have used the invariant assertion technique to prove that our program is
partially correct with respect to some input specification P(xp) and output specification R(xg x).
Then we have found an invariant assertion Qfxg x) with the property that every time we pass
through more, Qlxg x) will be true for the current value of x, and we have proved the three
conditions
(1)  Plxg) => Qfxg flxp)) for every xg
(the invariant assertion holds on entry to the loop),

(2)  P(xg) and Q(xp x) and ~t(x) => Qlxg g(x)) for every xg and x
(the invariant assertion 1s maintained as control passes “round the loop), and

(3)  P(xg) and Q(xp x) and t(x) => R(xp A(x)) for every xy and x
(the invariant assertion implies the output specification after exit from the loop).

Conditions (1) and (2) tell us that Qfxp x) is indeed an invariant assertion of our program, and
condition (3) says that if Q{xg x) holds when we exit from the loop, then the desired output
specification will be satisfied. Together these conditions imply the partial correctness of our
simple program.

If we can prove the three conditions nccessary in establishing the partial correctness of the
program using an invariant assertion, then we can use the intermittent-assertion method
instead. The proof will require the same three conditions, and the ordering induced by the
computation will serve as the basis for the complete induction. The theorem that expresses the
partial correctness is as follows.

Theorem:  if sometime P(xy) at start
and if the computation terminates
then sometime R(xg x) at finish.

We can always prove this theorem using a lemma of form

Lemma: if sometime x = a, P(xy) and Q(xq a) at more
and if the computation terminates
then sometime Q(xg x) and t(x) at more.

First let us show that the lemma actually does imply the theorem. Assume that
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sometime P(xp) at start. 3

Then we reach more at once with x = flxg). The condition (1), which we used in proving the
partial correctness of this program, says that

P(Io) => nge f(xo»

eSS e A

for all xg. Since P(xg) now holds at more, we can conclude that Q(xp f(xp)) also holds at more
Because we also have assumed that the computation terminates, we can apply the lemma to
yield

sometime Q(xp x) and t(x) at more.
Our condition (3), however, states that

P(xp) and Qfxg x) and #(x) => R(xg A(x))

Bretd o cic

for every xo and x. Since we know P(xp), Q(xp x) and «(x) hold at mere, we can deduce
R(xp A(x)) at more as well. Since t(x) holds, we pass directly to finish, setting x to A(x), so that
now R(xp x) holds at finish, as we intended to prove.

To prove the lemma, suppose that
sometime x = a, P(xp) and Q(xy a) at more,

; and that the computation terminates. The proof is by complete induction on a, using the

] ordering < induced by the computation. Since we are assuming that the computation
terminates, we know that < is well-founded. We therefore assume inductively that the lemma
holds whenever x = a', for any a' such that a' < ¢, and show that it holds when x = a as well. In
the proof we distinguish between two cases, depending on whether t(a) holds.

& Case t(a) holds: Because x = a, both Q(xp x) and t(x) hold at more, and the conclusion of the
1 B lemma is already satisfied.

ol Case -t(a) holds: Recall that condition (2) says that
P(xg) and Qfxp x) and =t(x) => Qfxg g(x))

for every xo and x. Since P(xg), Q{xg a) and -t(a) all hold at more, we can conclude that
Q(xp gla)) holds at more as well. Since we have assumed -f(a), we pass around the loop
returning to more with x reset to gla). But now, because '

gla) <a
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in the ordering < induced by the computation, our induction hypothesis applies with x = g(a)
This allows us to infer that

sometime Q(xg x) and t(x) at more

which completes the proof of the lemma.

We have thus constructed a proof of the partial correctness of the program using intermittent
assertions, assuming that we could prove its partial correctness with invariant assertions

2. Subgoal induction method

The invariant-assertion approach always relates the current values of the program variables to
their initial values. Another approach for preving partial correctness, the subgoal induction
method, relates these variables to their ultimate values when the program halts. We will first
present the method, and then show as before that if we have proved the partial correctness of a
program using this method, then we can rephrase the same proof with intermittent assertions
instead. Again, we will demonstrate the construction on the one-loop abstract program

input(xp)
start: x « flxg)
more: if t(x)
then x « A(x)
finishk: output(x)
else x « g(x)
goto more.

To prove the partial correctness of this program with respect to the input specification P(xp)
and output specification R(xg x) by the subgoal induction method, we need to find a subgoal
assertion Qu v) at more: the intuitive meaning of this assertion is that Q(u ») must hold
whenever u is the current value of x at more and v is the ultimate value of x at finish. To
establish the partial correctness of the program, we need to prove the following three conditions:

e et 8
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(1) t(x) => Q(x A(x)) for every x
(the subgoal assertion holds when we are about to exit from the loop),

(2)  Qglx) 2) and ~t(x) => Q(x 2) for every x and z
(if we are about to go around the loop, and if the subgoal assertion
holds for the value of x after passing around the loop once more, then
the subgoal assertion holds for the current value of x as well), and

(3)  P(xp) and Q(f(xp) 2) => R(xy 2) for every x, and z
(if the subgoal assertion holds the first time we reach more, then the
output specification is satisfied).

Subgoal induction works backward through the computation, whereas the invariant assertion
method works forward. Condition (1) implies that the subgoal assertion applies to the current
value of x when we are about to exit from the loop. Condition (2) says that if the subgoal
assertion applies to the subsequent value of x, it applies to the current value of x as well. If the
program terminates, therefore, conditions (1) and (2) together imply that the subgoal assertion
apphies to all values assumed by x within the loop. Finally, condition (3) states that, if the
subgoal assertion holds for the initial value assumed by x within the loop, the desired output
specification is satisfied. Combined, these three conditions establish the partial correctness of
the program.

Because many readers may be unfamiliar with the subgoal induction method, we will illustrate
it with a very simple program to compute the ged:

input(xg yo)
start: (x y) « (xg y0)
more: if x=0
then finish: output(y)
else (x y) « (rem(y x) x)
goto more.

This program differs slightly from our abstract program in that it has two program variables, x
and y.

Suppose we are to show that this program is partially correct with respect to the input
specification

P(xg y0): %g > 0 and yg > 0,
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and the output specification
R(xg y0 ¥): ¥ = max{u : u|xp and u|yp},

using subgoal induction. If we take the subgoal assertion to be
Q(x yz): z=max{u:u|xand uly},

the three conditions to prove the partial correctness are then

(1) x=0 => y = max{u:u|x and u|y} for every x and y,

(2) z = max{u : ulrem(y x) and u|x} and x«0 => z = max{u : u|x and u|y} for every x
y and z, and

(3) x>0 and >0 and z=max{u :
every xp, yp and z.

ulxp and ulyp} => z=max{u : u|xy and u|yg} for

T hese three conditions are easily seen to be true, and the partial correctness is established.

Note that although the subgoal assertion for the above program is derived directly from the
output specification, the invariant assertion for proving partial correctness of this program

{u:ulxand uly} = {u:ulxgand ulyel

requires some mgenuity to construct.

If we have used subgoal induction to prove partial correctness, we can construct an analogous
proof with intermittent assertions nstead, just as we did for the invariant-assertion method
T he theorem that expresses the partial correctness of the program is again

Theorem:  if sometime P(xy) at start

and if the computation terminates
then sometime R(xg x) at finish.

The lemma used to prove the theorem is different:

Lemma: if sometime x = a at more
and if the computation terminates
then sometime Q(a x) at finish.

23
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The difference between the two lemmas refiects the difference in meaning between the invariant
and subgoal assertions.

To see that the lemma implies the theorem, assume that

sometime P(xp) at start

and that the computation terminates; we then reach more immediately with x = flxp). The
lemma implies that

sometime Q(f(xp) x) at finish.
Since our condition (3) states that
P(xg) and Q(f(xg) z) => R(xp 2)
for every xo and z, we can conclude that R(xg x) also holds at finish, as we intended to prove.

The proof of the lemma is again by complete induction on ¢, using the ordering < induced by
the computation, which is well-founded because the computation has been assumed to
terminate. Suppose that

sometime X = @ at more.

We assume inductively that the lemma holds whenever x = @', for any a' such that @' < a, and
show that it holds when x = a. In the proof we distinguish between two cases, depending on
whether or not t(a) holds.

Case t(a) holds: By condition (1),
t(x) => Qfx A(x))

for every x; therefore, Q(a A(a)) holds at more. Because t(a) is true, x is set to A(a) so that Qfa x)
holds, and control passes to finish, to satisfy the conclusion of the lemma.

Case ~t(a) holds: Here, the computation passes around the loop, setting x to g(a) and returning
to more. Since

gla) <a

in the ordering < induced by the computation, our induction hypothesis applies with x = gla)
to yield that g
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sometime Q(g(a) x) at finish.

Recall that condition (2) says that
Q(glx) 2) and -t(x) => Q(x 2)

for every x and z. Because Q(g(a) x) now holds at finish, and we have assumed -t(a), we can
conclude that Qfa x) at finish. This completes the proof of the lemma.

Again, although this demonstration was only conducted for our simple one-loop abstract
program, it applies to programs with a more complex loop structure as well. This result allows
the use of the intermittent-assertion method to mimic any proof of partial correctness by
subgoal induction.

We have remarked that the invariant-assertion method relates the current values of the
program variables to their initial values, whereas the subgoal-induction method relates the
current values to their final values. The intermittent-assertion technique can imitate both of
these methods because it can relate the values of the piogram variables at any two stages in the
computation.

3. Well-founded ordering method

The above constructions enabled us to mirror conventional partial-correctness proofs using
intermittent assertions. In fact, we can also use the intermittent-assertion method to express
conventional termination proofs that use the well-founded set approach. We wiil again use the
simple one-loop abstract program:

input(xg) ;
start:  x « flxp)
more: if t(x)
then x « h(x)
finish: output(x)
else  x « g(x)
goto more.

To prove the termination of this program by the conventional method, we must find a
well-founded set W with ordering < and an expression E(x) such that

25
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(1) E(a) € W for every value a of x at more
(the value of the expression at more always belongs to the well-founded
set), and

(2)  E(gla)) < Ea), where a and g(a) are any two successive values of x at
more
(the value of the expression is always reduced in the well-founded
ordering when control passes around the loop).

If these two conditions hold, the existence of an infinite computation of the program implies the
existence of a corresponding infinite decreasing sequence of elements of the well-founded set
which violates the defining property of the set.

T he theorem that expresses the termination of the program with intermittent assertions is

Theorem: if sometime P(xp) at start
then sometime at finish.

Because the conclusion of the theorem states only that we eventually reach finish, without
making any claims about the values of the program variables at that time, it expresses only the
termination of the program.

We can prove this theorem by establishing the lemma

Lemma: if sometime P(xg) and x = a at more
then sometime f(x) at more.

Of course this lemma implies the theorem, because if we reach more and t(x) holds, then we
pass directly to finish.

To prove the lemma we use complete induction over the same well-founded ordering that we
employed to prove termination in the conventional proof. We assume that

sometime P(xg) and x = a at more

and assume inductively that the lemma holds whenever x =o', where E(a’) < E(a) and
E(a') € W. The proof considers two cases. If #(a) holds, the conclusion of the lemma is already
satisfied; otherwise, we pass around the loop, set x to gla), and return to more. Since
E(g{a)) € W by condition (1), and E(g(a)) < E(a) by condition (2), our induction hypothesis
applies, to yield that




Manna & Waldinger June 16, 1976

sometime t(x) at more,

and the proof of the lemma is concluded.

With this section we conclude our discussion of how the intermittent-assertion method applies
to proving the total correctness of programs. In the next two sections we deal with some less
typical applications.
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IV. Application: Validity of Transformations That
" Eliminate Recursion

In discussing the tips program (Section I1-4) we remarked that part of the difficulty in proving
i the correctness of the program arose because the program was developed by introducing a stack
3 to remove the recursion from the original definition. It has been argued (eg. Knuth [l§71]_
Burstall and Darlington [1975)) that, in such cases, we should first prove the correctness of the
original recursive program, and then develop the more efficient iterative version by applying
one or more transformations to the recursive one. These transformations are intended to
increase the efficiency of the program (at the expense of clarity) while still satisfying its original

specifications.
If we were applying this methodology in producing our tips program, therefore, we would first |
prove the correctness of the recursive version (a trivial task, since that version is completely - j

transparent), we would then develop the iterative tips program by systematically transforming
the recursive program — removing its recursion and introducing a stack instead. Consequently,
the proof we presented in Section Il would be completely unnecessary, since the program would
have been produced by applying to a correct recursive program a sequence of transformations
p that are guaranteed not to change that program'’s specifications.

G, o

: To realize such a plan, however, we must be certain that the transformations we use actually do
produce a program equivalent to the original one; given the same input, the two programs must
- be guaranteed to return the same output. In other words, we must be certain that bugs cannot
be introduced during the transformation process. d

2 In this section we will illustrate how intermittent assertions can be employed to establish that
such transformations really do preserve the equivalence of the transformed programs. We will
present three transformations to demonstrate this application. Each transformation eliminates
recursion in the original program, but each applies in different circumstances and uses a
J different device. The first transformation requires an extra variable to effect the recursion
removal: the other two use a stack, represented as an array and list respectively.
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# 1. Introducing a New Variable

Suppose we are given a recursive program of form
F(x) <= if p(x)

4 then fix)
: else  A(x F(g(x))).

If we know that
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(1) Alu Alv w)) = A(h(u v) w) for every u, v and w
(A 1s associative), and

(2) A(e u) = u for every u
(e is a left 1dentity of A),

then we can transform our program into an equivalent iterative program, of form

input(x)
start: ze+«¢
more:  if p(x)
then z « A(z f(x))
finish: output(z)
else  (x 2) « (g(x) Az x))
goto more.

This program uses the additional variable z to accumulate the intermediate results that would
be returned by the recursive calls of the original program. The validity of this transformation
can be expressed by the following

Theorem: if sormetime x = a at start
and F(a) 1s defined
then sometime z = F(a) at finish..

The theorem contains the condition that the recursive function F be defined on a, (that the

computation of F(a) will terminate) this condition is necessary for, otherwise, the iterative
program will never terminate, and therefore control will never reach finish at all.

The theorem can be proved using
Lemma:  if sometime x = a and z = b at more
and F(a) is defined
then sometime z = A(b F(a)) at finish.
The lemma implies the theorem, since if we enter the program with input x = a, where F(a) is
defined, then we reach more with x = @ and z = ¢. By the lemma, therefore, we will eventually
reach finish with z = A(e F(a)), but then z = F(a) since ¢ is a left identity of 4 (condition (2)).

To prove the lemma, suppose

sometime x =a and z = b at more,
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where F(a) 1s defined. The proof employs complete induction on a, over the ordering < induced
by the recursive computation of F(a). (This is the ordering such that g(d) < d, where d and gld)
are the arguments to two successive calls to F in the computation of F(a). It can be shown to be
well-founded, since the recursive computation of F(a) has been assumed to terminate) We will
assume inductively that the lemma holds whenever x = @', for any a' such that @' < a, and show
that it holds when x=a as well.

We distinguish between two cases, depending on the truth value of p(a).

Case p(a) is true: Then F(a) = f(a), by the definition of F. Since p(a) is true, we follow the
then branch of the program and arrive at finish with z = (b fla)), i.e, z = A(b F(a)), which is the
desired conclusion.

Case p(a) is false: Then F(a) = A(a F(g(a))) by the definition of F. Since p(a) is false, we follow
the else branch around the loop, so that

sometime x = g{a) and z = A(b a) at more.
Since x = g{a) and g(a) < a, we obtain by our induction hypothesis that
sometime z = A(A(b a) F(g(a))) at finish,
or, by the associativity of 4 (condition (1)),
sometime z = A(b A(a F(g(a)))) at finish.
But F(a) = Ala F(g(a))), so that we have
sometime z = A(b F(a)) at finish,
which is the desired result.

In the above argument we established that the iterative program will terminate whenever the
original recursive program does and that the two programs will then return the same value. It
is still conceivable, however, that the iterative program may terminate and return some value
even though the recursive program does not. In other words, we have shown that the iterative
program computes an extension of the function computed by our recursive program, rather that
the exact same function.

In fact, the iterative and recursive programs do compute the same function; ie. they are
equivalent. To show that the recursive program halts whenever the iterative program does, we
need only prove the following additional theorem. 3
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Theorem: if sometime x = a at start
and if the computation terminates
then F(a) is defined.

The proof depends on the following

Lemma: if sometime x = a at more
and if the computation terminates
then F(a) is defined.

which implies the theorem immediately.
To prove the lemma, suppose that

sometime x = @ at more,

June 16, 1976

and that the computation terminates. The proof is by induction on the ordering induced by
the computation, which is weli-founded since the computation is assumed to terminate. In the
case that p(a) holds, the lemma follows because F(a) is then defined to be f(a); if pla) is false, on
the other hand, we pass around the loop and return to more with x reset to gla). Since gla)<a
in the ordering induced by the computation, our induction hypothesis implies that F(g(a)) is
defined. However, F(a) in this case is Ala F(g(a))), which is also defined, so the proof is complete.

Now let us see briefly how the corresponding results are obtained for the remaining two

transformations.

2. Introducing an array stack

In this and the succeeding section we will omit proofs, because they tend to be repetitive

Suppose we are given a recursive program of form

F(x) <= if p(x)
then f(x)
else F(A(x F(g{x)))).

For instance, the Ackermann function defined in Section 11-3 can be expressed in this form
The program is more complicated than the preceding form because it contains two nested

recursive calls.

If A has a left identity e, we can transform the above program into an equivalent iterative

program, of form
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input(x)
start: index « 2
stack[1] « e
stack([2) « x
more: if index = |
then finish: output (stack[1])
else if p(stacklindex))
then stacklindex-1] « h(stacklindex-1] fistacklindex]))
index « index-1|
goto more
else stacklindex+1] « g(stacklindex))
index « index+|
goto more.

Note that this time we have not assumed that 4 is associative. The two theorems that exﬁress
the validity of our transformation are

Theorem: if sometime x = @ at start
and if F(a) is defined
then sometime stack[1] = F(a) at finish
and
Theorem: if sometime x = a at sfart
and if the computation terminates
then F(a) is defined.

T he first theorem conveys that the iterative program is an extension of the recursive one, while
the second theorem states that the recursive program terminates whenever the iterative one
does. Together, the two theorems imply the equivalence of the two programs.

The proof of the first theorem depends on

Lemma: if sometime index = i, i 2 2, (stack[1] stack(2] ... stack[i-2)) = s,
stackli-1) = a, and stack[i] = b at more,
and F(b) is defined,
then sometime index = i-1, (stack[1] stack[2) ... stack[i-2)) = s
and stack{i-1] = A(a F(6)) at more.

The proof is similar to the total correctness proof of the Ackermann program we introduced in
Section 11-3.

The proof of the second theorem depends directly upon
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Lemma: if sometime index =i, i > 2 and stack[i] = b at more
and if the computation terminates
then F(b) is defined,

whose proof, in turn, depends on the pievious lemma. The reader may find it rewarding to
complete this proof on his own.

3. latroducing a list stack

We will indicate here how to prove the validity of a transformation that removes recursion by
introducing a stack represented as a list. Suppose we have a recursive program of form

F(x) <= if p(x)
then f(x)
else  A(F(g,(x)) F(gy(x))).

Qur recursive definition of the tips function (section I11-4) is of this form, for instance. If we
know that A is associative, and that A has a left identity e, we can transform our recursive
program into an equivalent iterative program, of form

input(x)
start:  stack « ()
zee
more: if p(x)
then z « A(z f(x))
teststack: if stack = ()
then finish: output(z)
else (x stack) « (head(stack) tail(stack))
goto more
else (x stack) « (g (x) go(x).stack)
goto more.

The two theorems that express the validity of this transformation are again

33
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Theorem: if sometime x = g at start
and if F(a) is defined
then sometime z = F(a) at finish
(the iterative program is an extension of the recursive program),

and

Theorem: if sometime x = a at start
and if the computation terminates
then F(a) is defined
(whenever the iterative program terminates, the recursive program terminates).

The proof of the first theorem depends on the following

Lemma: if sometime x = a, z = b and stack = s at more
and if F(a) is defined
then sometime z = A(b F(a)) and stack = s at teststack.

The proof of the lemma is an abstract version of the proof we conducted for the tips example
in Section 11-4.

The proof of the second theorem depends on the following

Lemma: if sometime x = @ and z = b at more
and if the computation terminates
then F(a) is defined,

whose proof, in turn, depends on the previous lemma.

In the next section we will discuss an entirely different application of the intermittent-assertion
method.
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V. Application: Correctness of Continuously Operating

Programs

Conventionally, in proving the correctness of a program, we describe its expected behavior in
terms of an output specification, which is intended to hold when the program terminates. Some
programs, such as operating systems, airline-reservation systems and management systems,
however, are never expected to terminate. Such programs will be said to be continuously
operating (Francez and Pneuli [1975)). The correctness of continuously operating programs
therefore cannot be expressed by output specifications, but rather by their intended behavior
while running.

Furthermore, we conventionally describe the internal workings of a program with an invariant
assertion, which is intended to hold every time control passes through the corresponding point.
The description of the workings of a continuously operating program, however, often involves
a relationship that some event A is inevitably followed by some other event B. Such a
relationship connects two different states of the program and, generally, cannot be phrased as an
invariant assertion.

In other words, the standard tools for proving the correctness of terminating programs,
input-output specifications and invariant assertions, are not appropriate for continuously
operating programs. The intermittent-assertion method provides a natural complement here,
both as a means for specifying the internal and external behavior of these programs, and as a
technique for proving the specifications correct.

We will use one very simple example, an imaginary sequential operating system, to illustrate
this point:

more:  read(requests)
setup: if requests = ()
then goto more
else (job requests) « (head(requests) tail(requests))
execute: process(job)
goto setup.

At each iteration this program reads a list, requests, of jobs to be processed. If requests is
empty, the program will read a new list, and will repeat this operation indefinitely until a
nonempty request list is read. The system will then process the jobs one by one; when they are
all processed, the system will again attempt to read a request list.

What we wish to establish about this program is that if a job j is read into the request list, it
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will eventually be processed. Although this claim is not representable as an input-output
specification, it is directiy expressed in the following

Theorem: if sometime j € requests at setup
then sometime job = j at execute.

Here, j € requests means that j belongs to the list of current requests.
To prove the theorem, assume that

sometime j € requests at setup.
Then requests is not empty and is of the form

aji,

where a and @ are the sublists of jobs occuring before and after j, respectively, in the request
list. Qur proof will be by complete induction on the structure of a: we assume the theorem
holds whenever requests is of form

o' jB,

for any sublist o’ of a. The proof distinguishes between two cases

Case a=(: Then js= head(requests). Since requests « (), we reach execute with
job = head(requests) = j, satisfying the conclusion of the theorem.

Case o » (): Then o = Aead(x)- tail(a). Because again requests = (), we process job = head(x), and
return to setup with requests reset to tail(«) j 8. Since tail(a) is a sublist of «, we can conclude
from our inductive assumption that

sometime job = j at execute,
as we had hoped.
This program is very simple, but it may serve to suggest how the intermittent-assertion method

can be applied to the more realistic examples. It is possible that the method could be extended
to concurrent programs as well.
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VI. Conclusions

The intermittent-assertion method not only serves as a valuable tool, but also provides a
general framework encompassing a wide variety of techniques for the logical analysis of
programs. Diverse methods for establishing partial correctness, termination, and equivalence fit
easily within this framework. Furthermore, some proofs, naturally expressed with intermittent
assertions, are not as easily conveyed by the more conventional methods.

It has yet to be determined whether this approach is suitable for automatic or interactive proof
of program correctness. If the lemmas and the well-founded orderings for the induction are
provided by the programmer, to construct the remainder of the proof appears to be fairly
mechanical. On the other hand, to find appropriate lemmas and the corresponding orderings is
as difficult a task as finding the invariant assertions and well-founded orderings for the
conventional ways of establishing correctness and termination. But regardless of whether its
implementation turns out to be difficult, we believe that the intermittent-assertion method
embodies much of the intuitive understanding about the way programs work. Therein lies its
principal strength.
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