
-. VV
V —

—~

f lVfl .~~f l~
__

~ • L.
•

- ~~~~~~~~~ - V ’
V

V

Stanford Artificial Intelligence Laboratory June 1976
Memo AIM-28 1

Computer Science Department
V Report No. STAN-CS-76-558 V

Is “sometime ” sometimes bette r tha n “always”?
Intermittent asser tions in provin g

program cor rectness
by

Zohar Manna Rkhard Wakiinger
Art ificial Intelligence Lab Artthciaf Intelligence Center
Stanford University Stanford Research Institute
Stanford, Ca. Menlo Park , Ca.

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

• 1 and
National Science Foundation

V

/• COMPUTER SCIENCE DEPARTMENT
Stanford University s

~

~ !7 1r -

U

çO~~ TIJNIOç
—.

~~c~~~ .•.,. t •
~~

~
~~~~~~ ~~~ ~
°i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~



~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
V~~S_ _V -~

—

V
V

UN~LASSIPI~~
V

SECURITY CLASSI FICATION OF THIS PAGE (Whan oaf. EnI.r.d)

DEP’~°1 ~~~C1IUE~~TLTu’~~ PL~ E READ INSTRUCTION S
V ~~ 1 ~~~~ ~~~~ ~~ ‘~~~“ ~~~ BEFORE COMPLETING FORM V

J REPORT suMa~~R
•~~~ 2. GOVT ACCESSION NO. 3 ECIPIENrS C A T A L O G NUMBER

/ STAN—CS—76—558, AIM—28l~
“

~~ .

ITL F~ (Vc.th~ I?I~ 1I —~~~~~~~~~.—--—-- YPE OF REPORT & PERIOD CO EREO

) S ~~OMETIME~~~~0METIMES ~ETTER THAN !~ LWAY S~~PI . - .~_ t
~ntermittent jssertions in proving program Technica1 ?‘

~~~~~
. >Lorrectness . P MIN D O ~~~~. ~~~~~~~ ~~UM ER

7 A UTR OR(a
~ 

C O N T R A C T O R GRANTN UMUER(a) 
-

v 0 Zoharf Manna Richard/Waldinger ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.1I/ 4~t
9. PERFORMING O R G A N I Z A T I O N  NAME AND AOO RESS 10. PROGRAM ELEMENT, PROJ ECT , TASK

AREA S WORK UNIT NUMBERS ;• -
~

V Artificial Intelligence Laboratory 1/
Stanford University ARPA t~rder..2l49l4.
Stanford , California 911.305 

• 
— -:

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORL 2AI .L

Col.Dave Russell, Dep. Dir., ARPA, ~PT, June a76 ‘i
ARPA Headquarters, lli.00 Wilson Blvd. - l~. NUMBER OP PAGE S

Arlington, Virginia 22209 40
I S  MO N)T ORNG AGENCY NAME & AQORESS(Il di f l.,~~it from Controflffid Olflc.) 15. SECURITY CLASS. (of hi. r.pOrf)
Philip Surra, ~~R Representative

V 

V V Durand Aeronautics Building Ro 15
Stanford University j ~~ IS. OECLA SSIFICAT ION/DOWNGRAOING

Stanford , California 911.305 /~1 I_ ~J
) i \  SCHEDULE

IS. DISTRIBUTION STATEMENT (of 11,1. R.port)

Releasable without limitations on ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - • •  -

DISTRIBjT TTc~ r ‘r~ ~~~~

Appxoved fcJs [;u!

I?. OIST RIBUT IO N STATEMENT (of th. ab.tr.ct .nI .r.d in Block 20. ii dilf.r*et from R.porf) j , .~ ~

Ia SUPPLEM ENT ARY NOTE S 
V - S~~~~V • V ~~~~~~~ 

-
~~

• V

V 
19 KEY WORDS (Conli nu. on r.v.ra. .id. II n.c.aa~~y ~~d Id.MIifp b? block nt b..~)

0. A B STRACT (Comtlmm mi r.. r.. aid. Hn.o.•om~ adid.ntifr by black m ,b.r) V

• .~~.
• his paper explores a technique for proving the correctness and termination of programs

simultaneously. This approach, which we caB the lnte rmlttent— asser tlDn iPietliod, Involves

t 

documenting the program with assertions that must be true at some time when control is .
‘ 

•
~~~~

passing through the corresponding point, but that need not be true every lime. The method,
I Introduced by Knuth and further developed by Burstall, prOmiSes to provide a valuable

j - complement to the more conventional methods / / i ’x y ~~~~ ~~~~~~~~ - S___-~~~
. V

DD j AN 73 1473 iOIT~ON oP~~~NOV~~ S II OPSOLEI C UN CLASSIFIED CD 5~’V _L ~2)~
*

V SECURITY CLASSIFICATION OF THIS PASS (P~~.., Oar. i~.l.v.d)

— . — — - _ SV S S _ ~~~~~• •~~ _ • V•~~~’S -’. - V~~


~~~~~~~~~~~~~~~~ .
~~ 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

— - V . _. __ _ .

~~~~~~~ 
~~~ V - — — I

V 20. Abstract (continued) V

~~~flrst introduce and illustrate the technique with a number of examples. We then show that
a correctness proof using the in variant assertion method or the subgoal Induction method can 

V

V - always be expressed using intermittent assertions instead, but that the reverse is not always the 
- 

V

case. The method can also be used Just to prove termination, and any proof of termination
using the conventional well-founded sets approach can be rephrased as a proof using
intermittent assertions. Finally, we show how the method can be applied to prove the validity
of program transformations and the correctness of continuously operating programs.

-t 
-

-

V 

-

~

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ .



-- V~ V__
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~--,-- --SS--- - - _____

I
Manna & Waldinger June 16. I976~.

_- - -~• 
- - ----

Is “sometime ” sometimes better tha n ‘always”?
~a T ~TT Inte r mittent assertions in provi ng

$ 1 ;  %‘~~~~ program correctness
V 05$ hil SactIN fl

USAN *OUN CEV 0
V 

- JV~T IIRLTIQI 

it V V V •  Zohar Manna Richard Waldinger ‘
•

~~~~~~~~~~~~~~~~~~ Colts t Art ificial Intelligence Lab Artificial Intelligence Center
~~~~~~~~~~~~~~~~~ ~~~ Stanford University Stanford Research Institute

Stanford, Ca. Menlo Park, Ca. r -

1 

— ——- 
j

Abstrac t ~~..

U ~~~~

This paper explores a technique for proving the correctness and termination of programs
V simultaneously. This approach, which we call the inr er miuent—assert g on method , involves

documenting the program with assertions that must be true at some time when control is
V 

passing through the corresponding point, but that need not be true every time. The method,
introduced by Knuth and further developed by Burstall , promises to provide a valuable V

• complement to the more conventional methods. / - V

,~ 
~//S~~~/j//~~~ c?e ’ I c~~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V

We first tntrodu~e and illustrate the technique with a number of exa mples. ~~~then showllthat
a correctness proof using the invariant assert Ion method or the subgoal induction method can
always be expressed using intermittent assertions instead, but that the reverse is not always the
case. The method can also be used Just to prove termination, and any proof of termination
using the conventional we1l-foa~,nd~ed sets approach can be rephrased as a proof using

V intermittent assertions. Finally, we sho~ 4iow the method can be applied to prove the valid ity
of program transformations and the correctness of continuously operating programs.

This research was supported in part by Me Advanced Research Projects Agency of the Departmcn ,
of Defense under Con(r act DAHCI5- 73- C- 0435 , by the Na t ional Science F ound a tzon under
Grant GJ -36 146 and by a grant front the United States-Israel Binational Science Foundation

~~~SFi ,/ erusa1em , israel.

V
V The views and conclusions contained In this document are those of Me authors and should not be

interp reted as necessaril y representin g the official polic ies , eit her exp ressed or Implied , of Stanford

— ~~~~~~~~~~~~~~~ ~VV~~~~~ Vp_ ~

f

~ ~~~~~~~ —- __. -_ UuuIlIIII UU~~
,

V - . - - V V - V~ -
-

Manna & Waldinger June 16, 1976 -
V

Table of Contents

- I- Page 1.
I. Introduction

II. The Intermittent—Assertion Method
I. Finding a zero of an array 4
2. The greatest common divisor of two numbers 6
3. The Ackerm ann function ii
4. Counting the tips of a tree 14

III. Relation to Conventional Proof Techniques 18
I. Invariant—assertion method 19
2. Subgoal induction method 21
3. Well-founded ordering method 25

IV . Application: Validit y of Transformations that Eliminate Recursion 28
I. Introducing a new variable 28
2. Introducing an array stack 31

V

- V 3. Introducing a list stack 33
V

V. A pp lication: Correctness of Continuously Operating Programs 35

V t . Conclusions V

References

- -

V :
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

V -

Manna & Waldinger June 16, 1976

I. Intro duct ion

The most prevalent approach to prove that a program satisfies a given property has been the
invariant assertion method , made known largely through the work of Floyd (1967] and Hoare
[1969]. In this method, the program being studied is supplied with formal documentation in
the form of comments, called invariant assert ions , which express relationships between the V

different variables manipulated by the program. Such an invariant assertion is attached to a
given point in the program with the understanding that the assertion is to hold every time
control passes through the point.

Assuming that an appropriate invariant assert ion, called the input sp eci fication , holds at the
start of the program s the method allows us to prove that the other invariant assertions hold at
the corresponding points in the program. In particular , we can prove that the output
spe cifica tion . the assertion associated to the program’s exit , will hold whenever control reaches
the exit. If this output specification reflects what the program is intended to achieve, we have
succeeded in proving the correctness of the program.

It Is In fact possible to prove that an Invariant assertion holds at some point even though
control never reaches that point, since then the assertion holds vacuously every time control
passes through the point in question. In particular. using the invariant assertion method, one

might prove that an output specification holds at the exit even though control never reaches -:

that exit . If we manage to prove that a program’s output specification holds, but neglect to show
that the program terminates, we are said to have proved the program’s partial correctnes s.

T. A separate proof, by a different method, Is required to prove that the program does terminate. V

Typically, a termination proof Is conducted by choosing a well-founded set , whose elements are
ordered in such a way that no infinite decreasing sequences of elements exist . (The natural
numbers under the regular less-than ordering, for example , constitute a well—founded set.) For
some designated label within each loop of the program an expression involving the variables of
the program is then selected whose value always belongs to the well—founded set. These
ex pressions must be chosen so that each time control asses from one designated loop label to
the next , the value of the expression corresponding to the second label Is smaller than the v alue
of the expression corresponding to the first label. Here, “smaller ” means with respect to the
well—founded ordering , the ordering of the chosen we llV~founded set . This establishes
termination of the program. because it there were an infinite computation of the program,
control would traverse an Infinite sequence of oop labels; the successive values of the
corresponding expreuloni would constitute an Infinite decreasing sequence of elements of the
well-founded set, thereby contradicting the defining property of the set . This well—founded
orderin g method constitutes the conventional way of proving the termination of a program
(Floyd (1967]).

~~~~~~~~~~~~~~~~~ V:VV V~~~~~~~~~~~~~~~~~~~ -


-~ -~
~~~~~~~~~~~~~~~~~~~~~~ 

V 

~~~~~~~~~~~~~~~ 2 -

Manna & Waldinger June 16, 1976
• V

If a program both terminates and satisfies its output specification, that program is said to be
totally correct.

Burstall (1974) advocated an approach whereby the total correctness of a program can be
shown in a single proof (see also Schwarz [l975~ and Topor (1976)). This technique, which he
attributes to Knuth (1968) (Section 2.3. 1), again involves affixing comments to points in the
program but with the intention that someti me control will pass through the point and satis fy
the attached assertion. Consequently, control may pass through a point many times without V

satisfying the assertion, but control must pass through the point at least once with the assertion
satisf ied; therefore we call these comments intermittent assertions . If we prove the output
specification as an intermittent assertion at the program’s exit , we have simultaneousl y shown
that the program must halt and satisf y the specification . This establishes the program’s total :

V correctness . Since the conventional approach requires two separate proofs to establish tota l
correctness , the intermittent—assertion method invites further attention.

We will use the phrase

sometime Q,at L
V

V
~

to denote that Q~is an Intermittent assertion at label L (that sometime control will pass through
- ii ~VL with assertion Q~ satisfied). If the entrance of a program is labelled start and its exit is V .

labelled finish , we can ex press its total correctness with respect to an input specification P and
an output specification R by -

Theorem: If sometime P at start
then sometime R at finish.L

This theorem entails the termination as well as the partial correctness of the program, because it
implies that control must eventually reach the programs exit , and satisf y the desired output
specification.

If we are only interested whether the program terminates , but don’t care if it satisfies any
particular output specification, we can try to prove

Theorem: If sometime P at start
V

then sometime at f inish.

The conclusion “sometime at finish” ex presses that control must eventually reach the program’s
exit , but does not require that any relation be satisfied.

Generally, to prove the total correctness or termination theorem for a program, we must affix I
I —

- - ~~

- _________

Manna & Waldinger j une 16, 1976

intermittent assertions to some of the program’s Internal points, and supply lemmas to relate
these as ertions. Typically, we will need a lemma for each of the program’s loops, to describe V

the Intended behavior of that loop.

The proofs of the lemmas often involve complete Induction over a well—founded ordering (see
Manna (1974)). In proving such a lemma we assume that the lemma holds for all elements of
the well—founded set smaller (in the ordering) than a given element, and show that the lemma
then holds for the given element as well.

In this paper . we will first present and illustrate the intermittent assertions method with a
variety of exa r ~~ We will then show that the conventional invariant —assertion method and
the well-founded ordering method, in addition to the more recent subgoal induction method
(Manna (1971], Morris and Wegbre it [1976)) for proving partial correctness , can be regarded as
special cases of the intermittent—assertion method. On the other hand, we present proofs of .-

~ -correctness and termination using Intermittent assertions that are markedly simpler than their
conventional counterparts. Finally, we show that the method can also be applied to establish
the validity of program transformations , and to prove the correctness of continuously operating V

programs, programs that are intended never to terminate.

; - _;

t

3

-~ —

- ~~~

V V

_ _ _ _ _ -- . ____________

- - -‘ -. ~~~~ V;1,**Vj~ ~~~~~~~~~~~~~~~~~~~~~ -
V

Manna & Waldinger June 16, 1976

II. The Interm ittent-As sertion Method

Rather than present a formal definition of the intermittent—assertion method, we prefer to
illuminate it by means of a sequence of examp les. Each example has been selected to illustrate
a different aspect of the method.

1. Finding a zero of an array

We first consider a simple program, as a vehicle for introducing the basic technique. The
V

program is given an array a[l:nJ of numbers, where n 2 I, and is intended to find the index of
an array element equal to zero, if such an element exists , or to output zero otherwise. The
program, which we will call find-index, is

input(a(l:n))
start: index ~- n
more: if a(inder] • 0

then success: output(index) -
V

else index *- index- I
If Ind ex- 0
then failure: out put(index)
else goto more.

This program counts down from n until It succeeds in finding a zero element or else reaches V~~
-

Index zero without finding such an element. It has two ex its, succes s and failure , corresponding
to successful and unsuccessful termination. In talking about this program, the abbreviation
“a(u.~v] has a zero” will denote that at least one of a(ul, a[u.l), ... , a(v] is zero. (If v < u, then
a(u.v] has no zeros.) The total correctness of the find-index program is then expressed by the
following theorem.

Theorem: if sometime n 2 I at start
then If a (l :n] has a zero

.

then sometime a(index) — 0 and - I ~ index � n at succe ss
else sometime index - 0 at failure.

V

This theorem states the termination In addition to the partial correctness of the program
because it implies that control must eventually reach one of the program’s exits (success or
failure) and satisfy the appropriate output specification.

In order to apply the Intermittent assertion method, we are in general required to supply a
lemma for each of the program’s loops to describe the behavior of that loop. For the single V

loop of the given program, It suffices to prove the following lemma.

~

Manna & ~%‘aldinger June 16. 1976

Lemma: If sometime Index • i and 1 ~ I ~ n at more
then if a[l : i) has a zero

then sometime a(index) — 0 and I � index S I at success
else sometime index • 0 at failure.

The hypothesis in dex — I in the antecedent enables us to refer to the original value of index in
the conclusion, even though the value of index may have changed subsequently.

Note that the conclusion of the lemma is the same as the conclusion of the total correctnes s
theorem with n replaced by i. This lemma implies the theorem directly, for assume we enter the
program at start with Input n � I. Then we reach more immediately with Index — n. The
lemma then tells us (taking I to be n). that the conclusion of the theorem will ultimatel y be
satisfied.

The proof of the lemma is by complete induction on i over the nonnegative integers; in other
words, we will assume the lemma holds whenever index — 1’, for any nonnegative integer i° such
that i’ < I, and show that it then holds when index - i.

Suppose that

sometime Index - i , and I s I � n at more.

We distinguish between two cases: If a[i] - 0, then clearly a[l : i] has a zero; but then we reach
success with index satisf ying the conditions of the lemma, that a (index] - 0 and I ~ index ~ j .
On the other hand, if a(i] — 0, then

V
-

(f:.) a[l:i) has a zer o < — > a (I : i— l) has a zero

and index is reset to i—I . If i—I — 0, then a[I:t-Ii and hence a[l:i], has no zeros; but indeed in
this case we reach the failure exit with index — i-I — 0. Alternativel y, if i—I w 0, we return to

V - more with Index — i—I , where I s I—I n. Since i—I < I, our induction hypothesis applies, with
Index • I- I. telling us that

if a(l :i—l)has a zero
then sometime a(index) — 0 and I s index s i—I at success

- - - else sometime Index - 0 at failure.

I ~
- However , a(I:i—l) has a zero if and only if at l : l) has a zero (by c ’) . and Index S I—I implies

index � 1. Consequently we have established the conclusion of the lemma, and completed the
proof of the total correctness of the find-Index program.

5

~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
- ~~~~~~~~~~~~~~~~~~

- -

Manna & Waldinger June 16. 1976

V

- lVh e chief difficulties in devising such a proof are formulating the lemmas and choosing the
oider iflg on which to base the mathematical induction in the proof. The conventional methods,

—

- however , require comparable acts of ingenuity. For instance, suppose we want to apply the
inva riant assertion method to prove the partial correctness of the program with respect to the
input specification

n � I ,

and the output specification

if a[I:n) has a zero
then a[i ndex) - 0 and I s index s n
else index — 0,

associated with both the success and the failure exits. (Note that the invariant—assertion

V method does not allow us to distinguish between the roles of the two exits.) Then we must
devise an invariant assertion at more, such as

I � i n d e x ~~ n and

V
aEindex + l :n) has no zeroes,

or , a lternat ively, - -

I s i n d e x s n a n d
a t l : n) has a zero <— > a [l : i nd er) has a zero.

Furthermore , if we wish to prove termination using the conven tional method, we must devise a
decreasing expression over an appropr iate well-founded ordering: for instance, we can use the
same exp recs ion (index) and the same well-founded set (the nonnegative integers) that we used
as the basis for the complete induction under the intermittent—assertion method. We will make
these connections more precise in Section l lJ— 3 .

2. The greatest common divisor of two numbers

Fecause t he f ind-index program involved only a single ioop. a single lemma sufficed to prove its
total correctness . The following program, which computes the greatest common divisor (gcd) of
two positive integers, is introduced to show how the intermittent—assertion method is applied to
a program with a more complex loop structure.

We define g cd (x y), where x and y are positive integers, as the greatest Integer that evenly
iv ides both x d th at is

Maniia & Wald inger June 16, 1976

For instance, gcd(9 12) — 3 and gcd(12 2’ - I

The program is

input(x y)
start: V

more: if x ~~y
t hen f inish: output(y)
else reduce r: if x > y

theii x ‘— x-y
goto reducer

—
reducey: if x < y

then y ~- y-r
gob reducey

V
goto more.

V This program is based on the properties of the gcd that gcd(x y) - y if x~y. gcd(x y) — gcd(x -y y)
if x > y, and gcd(x y) — gcd(x y-x) if x <y .

We would like to use the intermit tent—assertion method to prove the total Correctness of the gcd
program. The total correctnes s can be expressed as follows:

Theorem : if sometime x = a, y = I’ and a,b > 0 at sta r t
then sometime y = ntar{u : ulq and u~b} at f inish

To prove this theorem, we need a lemma that describes the behavior of each of the program’s
V loops. For instance , corresponding to the outer loop we have

Lemma 1 (outer loop):

-

-

if sometime x — a L, y l’i and x,y > 0 at more
then sometime x - y and y ‘nax ~u : u $ a 1 and u 16 1 } at more.

This lemma summarizes the effects of the program’s outer loop.

Lemma I implies the theorem directly: We assume that initiall y x a , y = b, and a,b > 0 at
start ; we immediately reach more again , with x = a, y b, and a,b > 0. Lemma I implies that
sometime we will return to more , with x - y - maxlu : u l a and UI b} . Since x — y, we will then
reach f in ish , with y - ma r{u : u l a and u l b) .

Because there are two inner loops within the program ’s outer loop, to prove Lemma I requires
the following lemmas, each describing the behavior of the corresponding inner 1oop.

IHI
-
—-—- —---

V _ _ - — —V...’

— V.. V. ~V_ ~~~V_ ~~ - V~ ~~ - - V -~~~ ~~~~~~~~~~~~~~~~
V ~~~~~~~~~~~~~

V Maj ina &‘ Waldinger Juiie 16, 1976

Lemma 2 (top inner loop):
V if sometime r — a2, y b2, x > y and x.y > 0 at reducer

then sometime x < a 2, y =

~2. r S y, x,y > 0 and
{u : u l x and u l y } (it : ula 2 and u l b 2} at reducer.

Lem ma 3 (bottom inner loop): V~

if sometime x - a 3, y - 1)3, x < y and x,y > 0 at reducey
then sometime x - a3.y < b3, r�y , x,y> O and

(u : uk and u j y) - (u : u l a 3 and u Ib3} at reducey.
V

Lemma 2 states that the top inner loop will reduce x until It is less than or equal to y but will
not change y or the set of common divisors of x and y. Lemma 3 is similar , but the roles of x ~V

V

and y are reversed. Let us first prove Lemma 2

Proof of Leni mn a 2: This proof is by complete induction on a2; in other words, we will assume
that Lemma 2 holds whenever x - a2’, for any non-negative integer a2’ such that a2’ < a2, and
show t hat the lemma then holds when x - a2. *

Suppose that

sometime x — a2, y = 1’2, r > y an d r ,y > 0 at reducer.

Since x > y. x is reset to x— y, i.e. to a2— b 2, which is sti ll positive , and control returns to reducer.
Thei efore, -

~~

V
sometime x — a2-b 2, y — b2, r ,y > 0 and

(u : u l r and u l y } - { u : u I a 2 and u l b 2} at reducer.
‘1

The set of common divisors of x and y is unchanged because the common divisors of a2-b 2 and
are the same as those of a2 and b2. We must now distinguish between two cases.

Case r � y: The conclusion of Lemma 2 is already satisfied, since b2 > 0 and , therefore,
x — a 2—b 2 a 2.

Case x > y : Since x — a2-b 2 <a 2, our induction hypothesis applies, telling us that

V
• sometime x < a2—b 2, y — b2, r � y x ,y > 0 and

{u : u l x and uly) • {u : i t l a 2-b 2 and u l b 2 } at reducer.

We can conclude that x < a2 (because b2 > 0) and that

: u~x and uly } — {u : u I a 2 and u I h 2}

8

-—
V ~~~~~~~ -

—
. . V : -~~~~~ .

~
. ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

_ _ _ _ _

Manna & Waldinger Jutie 16. 1976

since the common divisors of a2-b 2 and b2 are the same as those of a2 and b2, thereb y
V completing the proof of Lemma 2.

The pIVOOf of Lemma 3 is similar to that of Lemm a 2, except that induction is on b3 instead of •

a2. It remains only to use both Lemmas in proving Lemma I.

Proof of Lemma I: The proof is by complete induction on b 1; thus, we will assume that
Lemma I holds whenever y - b 1’, for any non-negative integer b 1’ such that b 1 ’ < b 1, and show
the lemma then holds when y - b 1.

A ssume that

sometime x — a 1, y — b i , and x ,y > 0 at more.

If x - y. the conclusion of the lemma,

sometime x - y and y - max (u : u l a i and u l b i) at more,

V is already satisfied because the greatest common divisor of x and y is then the greatest div isor
of y~ namely y

itself. If x — y, then either r > y and we pass to reducer, or x < y and we pass to
reduc ey. We treat these two cases separatel y.

Case x > y at reducer: Here, we know x - a i , y - b 1, x > y and x, y > 0. Thus, by Lemma 2, we

have
sometime x <a 1, y = b 1, x s y, x , y > 0 and

(.:.) {u : U~~~x and u ty l - {u : ula i and u~b 1 } at reducer.

If x = y at this point, we are done: we pass directl y to more , and y is already the greatest
common divisor of x and y (by the argument given earlier in this proof) and therefore of a 1
and b i, by (‘:~). On the other hand, if x < y we pass to reducey, and the Situation is treated in
the next case.

V

Case x <y at reducey: Whether we have travelled around the top inner loop or reached this
point direct ly, we know that x � a i, y - b~

, x <y. x,y > 0, and (u : uj x and uly) - (u : u I a 1 and

ulb i
~
. Lemma 3 implies that

sometime r s a ~,y < b ,, x � y, x . Y > O a t 1 d

(- -) (u : Uk and u l y } — {u : ula 1 and u~b 1 } at r ducr ~
i~~

- I
-

~~~~~~~ 
The formula ( : - : ) holds because Lemma ~ tells us that die common div isors of x and y are still
unchanged We can then pass directly to more and, if x — ~ the conclusions of the lemma are
satisfied as before . On the other hand, if x — y, the value of y has been reduced , and therefore

I ~~~

9

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~



- 
_ ___________  

- - -V T ~ ~

-

-

- V ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - . ~~~- ~~~~~~~~~~~~~~ - -—-V --~~~- ~- ~~~~~~~~~~~~~~~~~~~~~~~~~~ -

Maniia & Waldinger June 16, 1976

the induction hypothesis applies. If we denote the current values of r and y by a 1’ and b i ’, the
induction hypothesis implies that

sometime x - y and y - max( u : u Ia i ’ and u Ib 1’} at more,

or , applying (:- :), tha t 
. 

V

y — max{u : u~a 1 and u( b i1.

This satisfies the conclusion of Lemma I. ‘4

This example shows how the use of the lemmas in proving the total Correctness theorem reflects
the loop structure of the program.

U is not difficult to prove the partial correctness of the above program using the conventional
invariant assertion method. For instance, to prove that the program is partially correct w ith
res pect to the input specification

x0~~0 and y9 > 0

and output specification

y - gcd(x 0 yo)

(where x9 and y
~ 

are the initial values of r and y) we can use the same Invariant assertion

x .y > 0 and {u : u l x  and uly) - (u : Uk0 and y~)

-4
at each of the labels more , reducer and reducey.

In contrast, the termination of this program is awkward to prove by the conventional
well -founded ordering method, because it is possible to pass from more to reducer , reducer to ~~~~~

rcdu s cy . or from reducey to more withou t changing any of the program variables. One of the
simplest proofs of the termination of the gcd program by this method involves taking the -4
well—founded set to be the pairs of non-negative integers ordered by the regular lexicographic ~~~~~

orderingS t hat is, ~~ .

(u~ v 1) < (u2 v2)

if and only if

U i < U2 OT

- u2 and u~ c v 2.
.

I0



V 
- 

— ~~~~~~ ~~~~~~~~~~~ ~. ________ _______

~~~~~~~~~
- rw ...

Manna & WaIdiiiger June 16, 1976

When the expressions corresponding to the loop labels are taken to be

(xey 2) at more ,
if r — y then (x .y I) else (r.y 4) at reducer , and

if x <y then (x.y 0) else (r.y 3) at uducey,

it can be shown that their successive values decrease as control passes from one ioop label to the

next (Katz and Manna (19751). Although this method is effective , it is not the most natural in

establishing the termination of the gcd program.

3. The Ackermaflhl Function

Another example for which the termination proof is even more difficult to accomp lish by the

V wefl-.founded ordering method is an iterative program to compute the Acker mann function.

This function, denoted by A(x y). is defined recurs ively for non—negative integers r and y as

A(x y) <- i f x - 0
V

t hen y4 i
V else i f y = 0

then A(x — I I)
else A (x- I A(x y- U).

This function is of theoretical interest , in part because it value grow extremely quickly; for

instance ,

22 16

V

.

V

A(4 4) - 2 2

An iterative program to compute the same function is

I I

- - V - ~~~~~~~~~~~~~ -~_~~ ‘~~T~~~ ~~~~~~~~~~~~~~~

-
~~~~~ ~~~~~~~~~~~~~~~~~~ -- - - V - V . -  ~

V_ _  - - — - - ~~~~

Ma n n a  & Wa ldinger Julie 16, 1976

input(x0y0)
start: stac k [ l ]  .-x 0

V stack (2] Ye
index 4-.2 V

more: if index — I
then finish: ou tpu t (st ack [ 1])
else if itack[index—l) — 0

then stack (index- I) .- stack[ inder] . I
index - index- I
goto more

else if st ack[ inde r) — 0
then stack (ind ex- I) ~ stac&(index— 1) — I

s tack t indm ) I
goto more

else s tack [ in dex . I) 
~~ 

stack(jndex)_ .I .
~~ 

-

stack[inder] stack(index— 1]
siack[index—l] ~ stack(index—l)— I
index ~- index. I
goto mor e.

This iterative program represents a direct translation of the recursive definition; at each
iteration it can be shown that

A (st ack ( l)  A (sta ck ( 2] ... A (stack[index—I] stack(index]))) — A(x9 y~)

at more and, when the program terminates, that

V 
s t ack (I ]  — A(x 0 y9).

The only known proof of the termination of~ this program using the conventional well—founded
ordering method (by A. Pnueli) Is extremel y complicated, and we challenge the intrepid reader
to construct such a proof.

The intermittent assertion proof allows us to show total correctness of the same program in a
markedly more simple fashion. The theorem that expresses the program’s total correctness is

• 

. Theorem: if sometime x0,y0 � 0 at start
then sometime st ack (l]  — A(x0 Ye) at fi nhs/i .

In proving this theorem we will employ the following lemma,
IS

p

12



~~~A
- -.-~ - .

-
~~

-
~~

Manmia & Wa ldinger June 16, 1976

Lemma: if sometime index — i , i ~ 2, (sza ch l l) st ack[2 1 .. . st ac h [i— 2]) = s ,
V

stack U— I] — a and sca ck(j 3 — b at more ,
then sometime index — i—I , (s t a c k (I] s ta ck[2] ... s t ack[i — 2]) s

and s t a ck [i—I] — A(a b) at more. - -

Here, s represents a tuple of stack elements. The expression (s tack[l] s a ck[2) ... s t a c k[j —2)) — $

is included in the hypothesis and the conclusion of the lemma to convey that the initial segment
of the array, the first i-2 elements, are unchanged when we return to more.

It is straig htforward to see that the Lemma implies the Theorem. For index is 2, stac kEl] is
~~~~~

and sta ck (2) IS Ye the first time we reach more. Then the lemma implies that eventually we will
reach more again, with index—I and s t ack ( l ]  - A(x0 ye)~ 

Since i ndex — I we then pass to f in ish
wit h the desired output.

To prove the lemma let us suppose

sometime index — i , i � 2, (s tack ( 1) stack( 2] ... st ac k(i— 2)) =

s tac h (i— 1] — a and st ac k [ iJ — b at more.

Our proof will be by Induction on the pair (stac k(i ndex —I J s tack[inder)) under the
lexicograp hic ordering over the non—negative integers; in other words , we will assume the V

lemma holds whenever s t ack [ index —I) = a’ and sta ck(ind er) = 6’, w here a’ and 6’ are an y
V non—negati ve integers such that a’ < a, or a’ - a and b < 6, and show that it then holds when

s t a c k (i nd ex— I) =a and s tack [ index ) =b. The proof distinguishes between three cases ,
corresponding to the conditional tests in the recursive definition of the Ackermann function. V

Case a - 0: Then A(a b ) .  b.l by the recursive definition of the Ackermann function. But
I.since index — I, and st ack (index -I]  - a - 0, we return to more with index — i — I  and

s t ack ( i — I] — b. I, satisfying the conclusion of the lemma. 
V

Case a > 0, 6 - 0: Here, A(a b) - A(a-l I) by the definition of the Acke rmann function. ~

- 
V

Because index — , s tack [ inde x— l)  — a — 0 and st ack (index] = b • 0, we return to more w ith
V index • 1, s t a c k [ i — I )  — a—I , and st a ck[ i] — I .  Since s tack ( i—I)  a— I < a , we have

— V(stat ~k t i — l )  st ac k (i) ) — (a — I I) < ( a  0),
V .

? I -

- ,  - and , therefore , the inductive hypothesis can be applied, to yield that

sometime index — i — I , ( srac k ( 13 sta ck(2) ... s tack(i —2)) — s and
si’ack(i— I ]  — A(a— I I) at more. •

Because A(a 6) — A(a — I I), the lemma is established in this case.

~~~~~~ ‘3

________________________-

— . . ~~~ . . ~~~~~~ - - .=.
.....

~
. ,.-w--_

~~ — _ -
— ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - - -V - _ -~~V ~~~V - V - V~~~~ V

Manima & Waldinger June 16. 1976

Case a > 0. b > 0: Then A(a b) - A (a—1 A(a b-I)), by the recursive definition. Since Index — 1,
s t a c k (i n d e r — l] a — 0, and s ta ck(index] — b — 0, we return to more with

index Z 4 I ,
s ta ck[i - I) — a-I ,
s t ac k[i) — a , and
s t a c k (i . I] — b — I .

Because index — 1.1 and (sta ck(i) s t ac k (i . l)) • (a b- I) <(a b), our induction hypothesis applies,
yielding

sometime index — I, (s r ack [l] , stac k (2] .. s t ack (i—2]) — s ,
sf ack (i— I) — a- I , and s t ac k (i) — A(a b—I).

Note that we could conclude that St iic k (i- I) - a - I because the induction hypothesis ,. for
index i.l , states that the fi rst i— I array elements are unchanged. Since index = I and
(s t a c k (i — I) s t ack [i)) — (a—I A(a b—I)) <(a b), we can apply the induction hypothesis once more,
to obtain t hat

sometime index • i— I , (s tack [I) s ta ck (2] ... sca c k [i — 2]) —

and stack(i—l) — A(a —I A(a b—I)) at more,

which is the desired conclusion in this case .

This completes the proof of the total correctness of our Ackerm ann program. We believe it
reflects our understanding of the way the program works.

V

4. CountIng the tips of a tree

For all of the above examp les (the fin d-inth ’x , gcd, and Ackermanrt programs) it is possible to
P fInd a simple partial correctness proof using invariant assertions. Thus, none of these examp les

illustrate a certai n advantage of the Intermittent—ass ertion method over the conventional
met hods for proving partial correctness . Our next example presents a situation in which a
strai ghtforward proof of total correctness using Intermittent assertions is possible, but for which
the proof of partial correctness with invariant assertions is peculiarly difficult.

V
This examp le, included in Burstall (1974], is an algorithm to count the tips of a binary tree,
those nodes that have no descendents. A recursive definition of a function (ips(tree) that counts

V
the tips of a binary tree tree is

V ips (: re e) ~ — if free is a tip
then I
else tl/ ’s (Ief t (tree)) • tips(right (eree)),

‘4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- 



- -~--~
_-
~=•‘-w ~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~ 
—.

~~~~~— ~~~~~~~~~~~~~~~~~

Manna & Wa ldinger June 16. 1976 V

where leJt(tree) and rig #tt ( tr ee) are the left and right subtrees of free respectively. V
- -

An iterative program to count the tips of a binary tree tree is

iuiput(tree)
s tart: stack ~— 0

count~~ 0
more: if’ tree is a tip

theii count ‘- coun t. I
test stack : if stack = 0

t u t u  fiv :is/i : out p ut (co unt)
else (t 1r s t ack) .- (/ ue a d (s tack) ta il (s tac k))

~oIo more
— else (tree stack) ~~- (lc f t( tru) r ig i ~i’( i i ee) . s ack )

goto more .

Here . t he value of stac k is a list . We denote the empty list by 0. If stack is not empty, then
h ad (st ack) is its first element and tai l(stack) is the list of its remaining elements. We denote by

V x .s ta ck the list foi med by adding the element x at the beginning of stack. The assignment
(tree stack ) ~ - (I iead (s tac k) ta i f ls t ac k))  means that tree and stack are simultaneously set to the
value of he ad (s tack) and tail (st ack) , respectively .

This progiam operates by using the variable count tr~ be the number of tips already counted,
f ree to be the subtree of the original tree whose tips arc now being counted, and stack to be the
list of subtrees whose tips have yet to be counted. Its partial correctness can be established V

taking the invariant

r ips ( t r ee 9) — count • t i / ~s (f tee) . ~II t ips (s)  at more , V

V I ( I I $ C P

where tree0 is the given tree , and tips ( s) is the sum of the tips of all the subtrees

on st ack. —

To prove termination with the conventional well-founded ordering approach , we can show that
the value of the expression V 

V 
-

( rips ( reee)—cbunt tips(eree)

- 
- V always decrea ses in the lexicograp hic ordering each time we return to more, but always remains

in the set of pairs of nonnegative integers.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



-- V . V ~~~~~~~~~~~~~~~~~~ VS - ~~~~~~ __

~~~~~~~
_

~
~__V -V .

~~~
.
~~~_j-~~

.-..l—____,.._._

Manna & Wa ld lnger June 16, 1976 V

If we use intermittent assertions, we can ex press the total correctness of this program in the
following theorem.

Theorem: if sometime tree — t at start
then sometime count — tips(t) at finish.

The proof of this theorem depends on the following lemma, that describes the behavior of the
program in more detail.

Leui,ma: if Sometime tree — t , count — c and stack — s at more
then sometime count — c. tips (t) and stack — s at test stack.

It is not difficult to see that this lemma implies the theorem. Suppose V

sometime tree — t at start.

Then we set stack to 0~
count to 0, and reach more, so that

sometime tree — t, count — 0 and stack — 0 at more.

The lemma then tells us that

sometime count • 0.ti,bs(t) and stack — 0 at test stack.

Because stack is 0. we reach finish, so that

sometime count — tips(t) at f inish ,

and the theorem is thereby established.

The proof of the lemma is by complete induction on the structu re of tree. We suppose that -
~ V

V sometime tree — t, count — c, and stac k — s at more , —

and we assume Inductively that the lemma holds whenever free — t’, where t’ is any subtree of t.
The proof distinguishes between two cases , depending on the current value t of tree. V

Case r is a tip: Then tips(t) — I by the recursive definition of tips; count is then Increased by I ,
and we reach tes (s (ack with count — c.I • c•tips(t), establishing the conclusion of the lemma.

Case t Is not a tip: Then ti ,bs(t) — tips (Ief t (z)) .r ight(le f t(t)), by the recursive definition of tips.
Since t is not a tip, we pass around the else branch of the loop and return to more, so that

16 -
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~-~ . - V - ~~~~V V - - - V~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — V .. .--— --V-~~~~~-



~ 
~~~~~~~~~~~~~~~~~~~~~~~~ 

V
~~~ 

V —‘-.~~~~—~—-.f,--- -

Manna & Waldinger June 16. 1976

sometime tree — Ieft(t). count — c and stack — r ig/I t O) . s at more. 
V

Because left(t) is a subttee of t , our induction hypothesis can be applied to yield

sometime count — c+cips(left(t)) and stack — right(t ). s at tts t sta ck.

Since stack is nonempty (it contains rig /I t O)) . we pass around the loop once again , settin g tree to

~%ea d (stack ) and stac k to taiI(s tack) , so that

sometime tree — rig ht(t) . Count — c .zips (b f t ( t) )  and stack s at more .

Since rig / i t ( t )  is a subtree of t, we can app ly ow induction hypothesis a second time, obtaining

sometime count ciii ps (le f t W) . t ips (ri ght(t) ) and stack — S at test sta ck.

In other words, since t ip s (t) — t ips (leJ t ( t)) +tip s (r ight( O) ,

sometime count — c.tips(t) , and stac k — s at test stack.

This is the desired conclusion of the lemma.

Part of the difficulty in applying the conventional invariant—assertion method here is that this
iterative program is derived from a recursive definition, wit h a stack introduced to circumvent
t he need for recursion. Both the iterati ve arid the recursive programs count the tips of every
subtree of t he given tree. For the recursive program, each recursive cal l counts the tips of a
single subtree; however , for the iterative program, counting the tips of the subtree may involve
traversing the loop many times. The intc rm utte nt-asseit ion method allows us to relate the point
at which we are about to count the ti ps of a s ui bt uec t (at more) with the point at which we have
completed the counting (at tests tack), and to consider all the Computation between these points
as a single unit , which corresponds naturall y to a Sing le recursive call of t ip s ( t ) .

On the other hand, the invariant assertion method forces us to relate the point at which we are
about to count the tips of the subtree t with the point after we have traversed the loop only
once. There may be no natural connection between these points: for instance , in trave lling

iIaround the loop we may have reset tree to be the head of the stack. Our invariant assertion
must be exceptionall y complete, and even include a description of the stack , so that we can
relate these two points.

The intermittent—assert ion method is part icularly useful for such iterative programs as our tips
program that are derived from recursive definitions. We will discuss this class of programs
further in Section IV.

I, 

~~~~~~~~~~~


.--VS-V~~=S~~ -V~~~~~ -

~~~~~ _~~~~~~~~~~~~~~ _ _ _  . - -  
—V--.-

~~~~~~~ 

Manna & Waldinger June 16, 1976
V

I I I . Relation to Conventional P xoof Techniques

One question that naturally arises in presenting a new proof technique Is its relationship to the V

more conventiona l methods? In the previous section we argued that , in some cases, the
intermittent-assertion met hod enjoys certain advantages. In this section we will show that this
method effective ly can replace the others. In particular , we directl y rephrase a
partial-correctness proof using either of two standard techniques as a partial—correctness proof
using intermittent assertions. Furthermore , an y termination proof using the well—founded

V ordering method can be expressed using intermittent assertions instead. Therefore, we can
alwa ys use the intermittent—assertion method in place of the established techniques.

For simp licity, we will employ a simple one-loop abstract program to illustrate these
constructions,

in put(xg)
start: r ~- fix 0)
more : if t(r)

t hen x ~- h(x)

finis h: output(x)
else r ~- g(x)

goto more.

The results we present . however , apply to concrete programs with arbitrary loop structure.

For each computation , a program of the above form defines an implicit ordering on the possible
values of the program’s variable x: This is the ordering > defined as the transitive closure of
the relation

a > g (a) ,

where a and ~ a) are two successive values of r at the label more as control passes around the .
-

loop. We will ca ll > the ordering Induced by the computation. If the computation terminates~
V this ordering is well—founded : because, if the ordering admitted an infinite decreasing sequence,

the computation itself would have to be Infinite.

The above ordering enables us to apply the intermittent-assertion method to prove partial
correct iless , eV Cn though the method is basicall y a total correctness technique. We include in
the theorem an exp licit assumption that the computation terminates. Since the output
specification is only claimed to hold If the program halts, the theorem will express partial rather -

V

than total correctness . The proof of the corresponding lemma will involve a complete induction
over the ordering induced by the computation, which Is well-founded because the computation V

has been assumed to terminate .

18

Manna & Waldinger June 16, 1976

Now let us see in more detai l how an invar iant-assert ion proof of the partial correctness of our
program can be rephrased using intermittent assertions. V

I. Invar ia nl —Ass e r t iOi l Method

Suppose that we have used the invariant asse rtion technique to prove that our progi am is
rart iall y co i s ect with respect to some input specification P(x0) and output s pecif icatio n R(x 0 x).

Then we have found an inv au ant asseuion QJx0 x) wit h the property that every time we pass
th ioug h mo te , Q(x0 x) will be true for the current value of x, and we have pioved the thiee

V

conditions
(I) P(x 0) ~~ > Q,~r 0 f(x 0)) for evc t y

~o V

V
(the invar ian t assert ion holds on entr y to the loop),

(2) P(x 0) arid O~(x 0 x) and - ‘t(x) Ojxo g(r)) for ever y x~
- rid x

(the invariant assertion is maintained as control passes :iound the loop), and

(3) P(x 0) and O~.(x 0 x) and t (r) = > R(r 0 h(x)) b r ever y x0 arid x
(the invariant asser tion implies the ou tput specification after exi t from the loop).

Cond.t,onc (1) and (2) tell us that Q.Jx0 x) is indeed an invariant assertion of our program, and
condition (3) says that if Q(r0 x) holds when we exit from the loop, then the desired output
specification will be satisf ied. Together these conditions imply the partial co i- rectness of our
sim ple program.

If we can prove the three condit ions necessary in establishin g the pat t ial correct ness of the
program using an invariant asseruon , then we can use the iriterm ittc , lt_ assert io n method
instead. The pioof will require the same tlii -ce conditions , arid t he oicler ing induced by the
computation will serve as the basis for the comp lete induction. The theorem that expresses the
partial correctness is as follows

Theorem: if sometime P(x0) at s ta ; t ‘

and if the com putation terminates
then sometime R(x 0 r) at f inis h.

We can alwa ys prove this theorem using a lemma of form

- - Lem m a: if sometime x — a, P(x 0) and Q~x0 a) at more

and if the computat ion terminates
then sometime q~x0 x) and t (x) at more.

V
First let us show that the lemma actuall y does imply the theorem. Assume that

19

- , ~~~~~~~~~~~~~~~~~~~~~
—

‘~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— ., —V...-——— ~V.—- - V ~~~~
- - - ~~~~~~~ - . .

~~~~~
- -

Manna & Waldinger June 16, 1976

• sometime P(x9) at start.

• Then we reach more at once with r ~fix 0). The condition ( I), which we used in proving the
partial correctness of this program. says that

P(x 0) -> o~j x0 f(x9))

for all x0. Since P(x0) now holds at more , we can conc lude that Qjref(x0)) also holds at more.
V 

- Because we also have assumed that the computation terminates, we can app ly the lemma to
yield

sometime Q(x0 x) and t (x) at more .

Our condition (3), however , states that 
V

P(x 0) and Q~x0 x) and t(x) -> R(x 0 h(x))

for ever y x0 and x. Since we know P(r9), O,,.(x 0 x) and t (x) hold at mere, we can deduce
R(r c, /i(x)) at more as well . Since t(x) holds, we pass directly to f i nish , setting x to /i(x), so that
now R(x 0 r) holds at f inis h, as we intended to prove.

To prove the lemma, suppose that

sometime x — a, P(xo) and Q~x~ a) at more ,

and that the computation terminates. The proof is by com p lete inducti on on a, using the
ordering < induced by the computation . Since we are assuming that the computation -;
terminates , we know that < is well—founded. We therefore assume inductively that the lemma
holds whenever x - a’, for any a’ such that a’ <a , and show that it holds when x — a as well. In
the proof we distinguish between two cases , depending on whether t(a) holds.

Case : (a) holds: Because r — a, both Q,~x0 x) and t(r) hold at more, and the conclusion of the
lemma is already satisfied. - 

V

Case —z(a) holds: Recall that condition (2) says that

P(x9) and 04x0 x) an d —1(x) —> O~x~ g(x))

for every x0 and x. Since P(x0), Q~x0 a) and -.1(a) all hold at more, we can conclude that
O~ x0 g~a)) holds at more as well. Since we have assumed -.t(a), we pass around the 1oop,

V returning to mo re with x reset to g(a). But now, because

g ( a ) < a

20

~~ L 
.._ - ~~ . _ —-~~~~~~~

_
-] ~~ . - ~ —- ~~~~~~~~~ .



Manna & Waldinger June 16. 1976

in the ordering < induced by the computation , our induction hypothesis app lies with x g (a).
This allows us to infer that -

sometime QJx0 x) and 1(x) at more

which completes the proof of the lemma.

We have thus construc ted a proof of the pat t ial correctness of the program using intermittent
assertions, assuming that we could prove its partia l correctness with invariant assertions.

2. Subgoal induction method

The invar iant—assertion approach always relates the current values of the program variables to
their initial values. Another approach for proving partial correctness , the sub goal induct ion
met hod , relates these variab les to their ultimate val ues when the program halts. We will first 4

present the method , and then show as before that if we have proved the partial correctnes s of a
prog ram usi ng this method , then we can rephrase the same proof with intermittent assertions

V 

instead. A gain, we will demonstrate the constructio n on the one-loop abstract program

imm put (x 0)
sta ; t: x# . f(r0)

more: if 1(x) 
‘

the mi x ~- h(x) 
.

f inis h: output(x) .

else x ~- g (x) — .

goto more.

To prove the partial correctness of this progr am with respect to the input specification P(x 0) . -

and output s pec ificatio n R(x 0 x) by the subgoal induction method , we need to find a sub goal - 

V

a sse r t ion  O~u v) at more: the intuitive meaning of this assertion is that O~u v) must hold

whenever u is the current va lue of r at more and v is ti-me ultimate value of x at f i n ish. To
establish the partial correctness of the prog ram , we need to prove the following three conditions:

~, i .

V 
- - -

‘ H

21

I
V

. 
-

— —— -~~~~~~~~~~~~~ - _ _ _ _ _ _



______________ _______________ _______________ ____ 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~— ~~~ ~~~~~~~~~~ ~~

~4anna & Waldinger June 16, 1976

( I )  1(r) ->  Q,~r h(r)) for every x
(the subgoal assertion holds when we are about to exit from the loop),

(2) Q(g(x) z) and -‘1(x) —> Q~x z) for every x and z
(if we are about to go around the loop, and if the subgoal assertion
holds for the value of x after passing around the loop once more, then
the subgoal assertion holds for the current value of r as well), and

(3) P(r 0) and Q([(x9) z) => R(x0 z) for every x0 and z
(if the subgoal assertion holds the first time we reach mo re, then the
output specification is satisfied).

Subgoal induction works backward through the com putation , whereas the invariant assertion
method works forward. Condition (I) implies t hat the subgoal assertion applies to the current
value of x when we are about to exit from the loop. Condition (2) says that if the subgoal- 

assertion applies to the subsequent value of r, it app lies to the current v alue of r as well. If the
prog r am terminates , t herefore , condi tions (I) and (2) together imply that the subgoal assert ion
app lies to all va lues assumed by x within the loop. Finally, condition (3) stat es that , if t he
subgoal assertion holds for the initial value assumed by r within the loop, the desired output
specification is satisfied . Combined, t hese three co nditions establish the partial correctness of
the program.

V

t Because many readers may be unfamiliar with the subgoal induction method, we will illustrate
i t  with a very simp le program to compute the gcd:

iiiput(r0 y0)
start :  (x y) ~ (x9 y 0)
more: if x— 0

V Ihenfinish: outputcy)
else (x y) 4- (re m(y x) x)

V 

goto more.

V This program differs slightly from our abstract program In that it has two program variables, rand y.

Suppose we are to show that this program is partially correct w ith respect to the input
specification

P(r0 yo): xo > 0 and Ye > 0,

22

1T~~~~~ —V



r ~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.~~~~~~~~~~ :

Ma n n a & Waldiiiger June 16, 1976

and t he output specification

R(x 0y0 y): y - m a x { u : u l x o and uI yø},

using subgoal induction. If we take the subgoal assertion to be

Q~r y z): z — mar{u : uIx and u~y}.

the three conditions to prove the partial correctness are then

(I) x~0 -> y — mar{u : ulx and u~y~ for ever y x and y,

(2) z max {u ulr em(y x) and ulr} and xw0 -> z - max{u ulx and uly~ for ever y r,
y and z. and

(3) xo>0 and yo:~0 and z~max {u : u l x o and uly o} -> z =rn a r {u : uk0 and ul y0} for
ever y x9. y~ and z.

These three conditions are easil y seen to be true , and the partial correctness is estab lished :
V Note that although the subgoal assertion for the above program is derived directly from the

output specification, the invariant assertion for proving partial correctness of this program,

{u : ulr and uly} • {u : u I r 0 and u l y 0} ,

requires some ingenuity to construct. V

If we have used subgoal induction to prove partial correctness , we can construct an analogous
L proof with intermittent assertion s instead , ju st as we did for the invariant—asse rtion method .

The theorem that expresses the partial correct ness of the program is again

Theorem: if sometime P(x 9) at start
and if the computation terminates
then sometime R(x 0 x) at f inish.

The lemma used to prove the theorem is different:

Lenm iiia: if sometime x — a at more V t

and if t he computation terminates
then sometime Q~a x) at finish.

23

- — ~~~~~~~~~~~~~~ .-V--— ~~~~~~~~~~ -~ V~~~~
— - —- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - V. ~~~~. - • V- . -  - - —- - - ~~~ I:-~~__~~~~~ ’ V

Manna & Wa ldinger June 16, 1976

The difference between the two lemmas reflects the difference in meaning between the invariant
and subgoal assertions.

To see that the lemma implies the theorem, assume that

sometime P(x0) at start

V and that the computation terminates; we then reach more Immediately with x f(x0) . The
lemma implies that

sometime Q(f(x0) x) at finish.

Since our condition (3) states that 
V

P(x 0) and Q(f(x0) z) —> R(x 9 z)

for ever y x0 and z, we can conc lude that R(x 9 x) also holds at f inish , as we intended to prove.

V The proof of the lemma is again by complete induction on a, using the ordering < induced by
the computation, which is well-founded because the computation has been assumed to
terminate . Suppose that

sometime x - a at more.

We assume inductive ly that the lemma holds whenever r - a’, for any a’ such that a’ < a, arid V

show that it holds when x - a. In the proof we distinguish between two cases, depending on
whether or not t(a) holds.

Case t(a) h olds: By condition ( I ) ,

t(x) — > 04x li (x))

for every  X; therefore, 04a h(a)) holds at more. Because t(a) is true, x is set to h(a) so that 04a r)
H 

- 
holds, and control passes to finis h, to satisfy the conclusion of the lemma.

Case -. 1(a) holds: Here, the computation passes around the loop, setting x to g(a) and returning
to more. Since

g ( a ) < a

in the ordering < induced by the computation, our induction hypothesis applies with x - g(a),
to yield that

- 
V 

24



V’ 
- — 

-. ~~~~~~~~~~~~~~~~~~~ . . _______________

Ma n n a  & Wa ldii iger June 16, 1976

sometime Qj g(a) x) at finish.

Recall that condition (2) says that

Q~g(x) z) and - ‘1(x) —> ~~x z)

for ever y x and z. Because Q~g (n)  x)  now holds at f i n ish , and we have assumed — ‘t(a) , we can
conclude that Q,~(a x) at f inish. This completes the proof of the lemma.

A gain . although this demonstration was only conducted for our simple one—loop abst ract
program, it applies to programs with a more complex loop structure as well. This result allows
t he use of the intermittent—assertion method to mimic any proof of partial correctness by
subgoal induction-

We have remar ked that the invariant -asse rtion method relates the current values of the
program va t iables to their initial values , w hcica s t he subgoal—inductio n method relates t he
current va lues to their final values. The it itet mit te nt—asse i- t ioi i  technique can imitate both of
these methods because it can ie late the values of the piograni variables at art y two stages in the V

computation. .

3. Wel l—founded ordering method 
V

¶ The above constructions enabled us to mirror conventional partial—cor rectness proofs using
V intermittent assertions . In fact , we can also use the Intermittent -assertion method to ex press

conventional termination proofs that use the well-founded set approach. We will again use the
simple one-loop abstrac t program: V

input(x 0)
start:  x i- fix0)
more: if 1(x)

(lieu r .- /,(r)
f inish: output (x)

else x ~~ g(r)

goto more.
I t

To prove the termination of this progr~.im by the conventio nal method, we must find a
wel l—founded set W with ordering < and a rm expression E(r) such that

-
-

25 V

— - — —— ,-—~~~ - — 



- — ~.-.--- —~,- . .;
~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~11

Manna & Waldinger Juime 16, 1976

(I) E(a) € W for every value a of x at more
(the value of the expression at mo re always belongs to the well-founded
set), and

(2) E(g(a)) < E(a), where a and g(a) are any two successive values of x at
— more

(the value of the expression is always reduced in the well—founded
ordering when control passes around the loop).

If these two conditions hold, the existence of an infinite computation of the program Implies the
existence of a corresponding infinite decreasing sequence of elements of the well—founded set ,
which violates the defining property of the set.

The theorem that ex presses the termination of the program with intermittent assertions is -
V

Tlieorenl: if sometime P(x0) at star t
then sometime at finish.

Because the conclusion of the theorem states only that we eventually reach f in ish , without
makin g any claims about the values of the program variables at that time, it expresses only the

- -

-

termination of the program.

We can prove this theorem by establishing the lemma

1cm in a: if sometime P(x0) and x — a at more

then sometime 1(r) at more.

Of course t his lemma implies the theorem, because if we reach more and 1(x) holds, then we
pass direct ly to f inish.

To prove the lemma wo use complete induction over the same well-founded ordering that we
emp loyed to prove termination in the conventional proof. We assume that

sometime P(x9) and x • a at more V

and assume inductivel y that the lemma holds whenever x - a’, w here E(a’) < E(a) and V

E(a’) € W . The proof considers two cases. If 1(a) holds, the conclusion of the lemma is already
satisfied ; otherwise, we pass around the loop, set x to g(a), and return to more. Since

E(g(a)) € W by condition (I), and E(g(a)) ‘(E(a) by condition (2), our Induction hypothesis
app lies, to yield that

26


~~~~~ 
-
~~~~

--- -
~~

-
~~~~~~~ 

- 
~~
. .... . __________________________

Manut a & Waldinger June 16, 1976

sometime 1(x) at more , 
-

and the proof of the lemma is concluded.

- With this section we conclude our discussion of how the intermittent -assertion method applies :
to proving the total correctness of programs. In the next two sections we deal w ith some less 

V

typical applications.

• 
;~,-. 

- I
4,.

27

-. --—. - V—.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~ 
V
—~~~~~ — -V --V 



V.-.- .  — V , ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
~~~~~~~~~~~~~ V

-

~~~~~~~~~~~~~~~~~~~~~ -~~~~

— — - - . :_ .  ~~~~~~~~~

Mauima & Waldiiiger June 16, 1976

I V. Application : Validity of Tra nsformations Tha t
• Elimin ate Recursi on V

In discuss ing the t ips program (Section I l - I)  we remarked that part of the difficulty in proving
the correctn ess of t he program arose because the program was developed by introducing a stack
to remove t he recursion from the original definition. It has been argued (e.g. Knuth [19’lj),
Burstall and Darlington (1975]) that , in such cases, we should first prove the correctness of the
original recursive program. and then develop the more efficient iterative version by applying
one or more trans forma lions to the recursive one. These transformat~orts are intended to

— 

increase the efficiency of the program (at the expense of clarity ) while still satisfying its original
specifications.

If we were a pplying this methodology in producing our t ips program, therefore , we Wo u ld first
prove the corre ctness of the recursive version (a trivial task , since that version is completel y 4 -

trans parent); we would then develop the iterative tips program by systematicall y transforming
the recursi ve program — removing its recursion and introducing a stack instead. Consequently,
the proof we presented in Section II would be completely unnecessary, since the program would
have been produced by applying to a correct recursive program a sequence of transformations V

that are guaranteed not to change that program’s specifications.

• To realize such a plan, however, we must be certain that the transformations we use actuall y do
produce a program equivalent to the original one; given the same input, the two programs must

• be guaranteed to return the same output. In other words, we must be certain that bugs cannot
be introduced during the transformation process.

In this section we will illustrate how intermittent assertions can be employed to establish that
such transf ormations really do preserve the equivalence of the transformed programs. We will
present three transformations to demonstrate this application. Each transformation eliminates
recursion in the original progr am . but each applies in different circumstances and uses a 

V

different device. The first transformation requires an extra variable to effect the recursion
removal; the other two use a stack , represented as an array and list respectively.

V I. Introducing a New Variable

V 

Suppose we are given a recursive program of form

F(x) <- If p(x)
(l ien f~x)
else !i(r F(g(x))).

a

If we know that

I 

- - - - . --~~~~ ~~~~~~~~~~~~~~~ I



- ~~~~~~~~~~~~~~~~~~ 
-T 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~
.
~~~~~~~~,—V- •~

Manna  & Waldinger Juime 16, 1976

(I) h(u h(t’ w)) — A(h(u v) w) for every u, v and w
(A is associative), and

(2) #t(e u) — u for every u

(e is a left identity of A),

then we can transform our program into an equivalent iterative program, of form

input(r)
V sIa71: z .- e

more: if p (x)
-

~ then z ‘- h(z f (x))
f i n is h: output(z) -

else (x z) ~ (g(x) ~4(z x))

gob more.

This program uses the additional variable z to accumulate the intermediate results that would
be returned by the recursive calls of the original program. The validity of this transformation

V 

can be ex pressed by the following

Theorem: if sometime r — a at sta rt •
and F(a) us defined
then sometime z — F(a) at finish. -

The theorem contains the condition that the recursive function F be defined on a, (that the
computat ion of F(a) will terminate ) this condition is necessary for, otherwise , the iterative
program will never terminate , and therefore contr ol will never reach f inish at all.

The theorem can be prov ed using

Lemm a: if sometime x — a and z — b at more
and F(a) us defined V

then sometime z • A(~ 
F(a)) atfinish V

- - The lemma implies the theorem, since if we enter the program with input X - ~7 , where F(a) is
defined, then we reach more with x - a and z - e. By the lemma, therefore, we will eventually
reach f in i sh with z h(e F(a)), but then z - 1 (a) since eis a left identity of A (condition (2)).

~I; ~~~~~~~~

To prove the lemma, suppose

sometime x — a and z • b at more ,

29 



- 

~~~~~~~~~~~~~~~~~~~~~~ - 
—. --- .

~~~~~~
- -

. 
—~~

Manmma & Waldinger June 16, 1976

where F(a) is defined. The proof employs complete induction on a, over the ordering < induced
by the recursive computation of F(a). (This is the ordering such that g(d) < d, where d and g(d)
are the arguments to two successive calls to F in the computation of F(a). It can be shown to be
well- founded, since the recursive computation of F(a) has been assumed to termtnate.) We will
assume inductively that the lemma holds whenever x — a’, for any a’ such that a’ <a , and show V

that it holds when x—a as well.

We distinguish between two cases, depending on the truth value of p (a).
V 

Case p (a) is true: Then F(a) — f(a), by the definition of F. Since p (a) is true, we follow the
ti me im branch of the program and arrive at f inish wit h z — It(b f(a)), i.e., z — h(b F(a)), which is the
desired conclusion.

Case p (a) Is false: Then F(a) - A(a F(g(a))) by the definition of F. Since p (a) Is false, we follow
the else branch around the loop, so that

sometime x — g(a) and z - /i (b a) at more.

Since x - g(a) and g(a) <a , we obtain by our induction hypothesis that

sometime z — A(h(b a) F(g (a))) at f i n ish ,

or , by the assoc iativity of A (condition (I)), V

sometime z — h(b /i (a F(g (a)))) at finish.

But F(a) - A(a F(g (a))). so that we have

sometime z — A(b F(a)) at f inish , V

which is the desired result.

In the above argument we established that the iterative program will terminate whenever the
original recursive program does and that the two programs will then return the same value. It
is sti ll conceivable, however , t hat the iterative program may terminate and return some value
even though the recursive program does not. In other words, we have shown that the iterative
program computes an extension of the function computed by our recursive program, rather that - -

the exact same function.

V In fact , the Iterative and recursive programs do compute the same function; i.e. they are
equivalen t. To show that the recursive program halts whenever the iterative program does, we V~-~

’

need only prove the following additional theorem. -

~~~

30

V — ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~ ~~~~~~~~ 
-
~~~ 

V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Manna & Wa ldinger Juiie 16, 1976

Theorem: if sometime x — a at sta rt I
and if the computation terminates
then F(a) is defined. -

The proof depends on the following

Lein iii a: if sometime x • a at more -

and if the computation terminates
then F(a) is defined.

which implies the theorem immediately.

To prove the lemma, suppose that

sometime x — a at mor e,
4

and t hat the computation terminates. The proof is by induction on the ordering induced by
the computation , w hich is well-founded since the computation is assumed to terminate. In the
case that p(a) holds, the lemma follows because F(a) is then defined to bef(a); if p (a) is false , on
the other hand, we pass around the 1oop and return to more with x reset to g(a). Since g(a) <a  

‘ 

-

,

in the ordering induced by the computation, our induction hypothesis implies that F(g(a)) is
defined. However , F(a) in this case is /i(a F(g(a))), which is also defined, so the proof is complete. V

Now let us see briefiy how the corresponding results are obtained for the remaining two
transforma tions.

2. Introdu c ing an array stack

In this and the succeeding section we will omit proofs, because they tend to be repetitive.

Suppose we are given a recursive program of form 
V

F(x) <— if p (x)  .. 
V 

-

then f (x)
else P(Ji (x F(g(x)))).

For instance , the Ackermann function defined in Section 11-3 can be expressed in this form.
The program is more complicated than the preceding form because it contains two nested V

recursive calls .

If A has a left identity e, we can transform the above program into an equivalent iterative
program, of form •

-

SI

~~~~~~ ...~~~~ V~~~~ VV V~~~~~~~~~~~~ V


- —
i- _

~~~~~~L~I~~~~—_ -a~~~ ~~~~~~~~~~~~~~~~~~~ -

Maniia & Wa ldinger June 16, 1976

input(x) —

s tart: index ~~ 2 V

V 
stack(I).- e
stack[2] ~- x

more: if index — I
then f inis h: output (stack[ I])
else if p (s: ac kEind ex))

then s ta ck [index — 1] 4- h(st ac k[ in dex— 1] f (st ack( index])) —

index ~ index- I
goto more

else stack[index.I1 ~ g (stack (index))
index .- index.l
goto more.

Note that this time we have not assumed that A is associative. The two theorems that express
the validity of our transformation are

Th eorem: if sometime x — a at sta rt
and if F(a) is defined
then sometime s tack [ l)  F(a) at finish

I’ and
Theorem: if sometime x — a at sta rt

and if the computation terminates
then F(a) is defined.

The first theorem conveys that the iterative program is an extension of the recursive one, whi le V 
V V

the second theorem states that the recursive program terminates whenever the iterative one
does. Together , the two theorems imply the equivalence of the two programs. V

The proof of the first theorem depends on

Lemma : if sometime Index — 1, I ~ 2, (s tack t l]  s tack( 2) ... st ack(i — 2) ) — - -
~ Istac k ( i — l )  a, and stac k [ i ]  • b at more,

and F(b) is defined,
then sometime index — i— I , (s (a ck [ l]  st ack (2) ... st ac k (l— 2]) — s

and stac 4 ( i— i J  — A(a F(b)) at more.

The proof Is similar to the total correctness proof of the Ackermann program we introduced in :

Section Il—S.

The proof of the second theorem depends directly upon

32



‘— -V-V.-. _ _ _ _ _ _ _  

-
_

-

Manna & Waldiuigei Julie 16, 1976

Lemma: if somet ime index — 1, I � 2 and stack (iJ — b at more -

and if the computation terminates
then F(b) is defined,

whose proof , in turn, depends on the pievious lemma. The reader may find it rewarding to
complete this proof on his own.

3. Introducing a list stack :~
We will indicate here how to prove the validity of a transformation that removes recursion by
introducing a stack represented as a list. Suppose we have a recursive program of form

F(x) <- if p(r)
then fix)
else h(F (g 1(x)) F (g2 (x))).

Our recursive definition of the tips function (section 111—4) is of this form, for instance, If we
know that A is associati ve , and that A has a left identity e, we can transform our recursive
program into an equivalent iterative program, of form

iimput(x)
s tart: stac k ~- 0

Z 4 - C

more: if p(x) 
V.

then z ~ /u (z f (x))
tesistac k: if stack 0

th en f inish: output(z)
else (x stack) ~ (head(stack) tai l (s tack))

gob more
else (x stack) .- (g 1(x) g 2 (x) ’sta ck)

goto more.

The two theorems that express the validity of this transformation are again 
V

VV
~~~~

- I
33 IV -~I;i~i

~ V V ’~~~~
V

_____________ ~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~
-V ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

V
~~~~~~~~~~~~~~~~~~~ .~~~~~ -~~~-V-. .~~~~ -~~~~~~~~~-



— -- -, 

_ _ _ _ _

-. ‘V ~~~~~~~~~~~~ - - ._-~L. 
P

..— -

I

Manna & Wald inger June 16, 1976

Theorem : if sometime x — a at start
and if F(a) is defined
then sometime z • F(a) at finish .:

(t he iterative program is an extension of the recursive program), ~

and

Theorem: if sometime x • a at start
and if the computation terminates
then F(a) is defined

(whenever the iterative program terminates, the recursive program terminates).

The proof of the first theorem depends on the following

Lemma: If sometime x — a, z — b and stack — s at more
and if F(a) is defined
then sometime z — A(b F(a)) and stack — s at test stack.

The proof of the lemma Is an abstract version of the proof we conducted for the tips exam ple
in Section 11-4.

The proof of the second theorem depends on the following ‘

~~

.

Lemma: if sometime x — a and z • b at more . -~

and if the computation terminates
then F(a) is defined, -

whose proof, in turn, depends on the previous lemma. ~

In the next section we will discuss an entirely different application of the Intermittent—assertion .
~~

method. -

J.

_  
~~~~~~~~~~~~~~~


V
V

~~.
-

- T~~~~- -- ~~
‘ - - V ______ _____

Manna & Waldinger Julie 16. 1976

V. App lication: Correctness of Continuo usl y O perating
Pro gram s

Conventiona ll y, in proving the correctness of a program , we describe its expected behavior in
terms of an output specification, which is intended to hold when the program terminate s. Some
programs , such a; operating systems , aul ine—reservation systems and mana gement systems ,

V

V however , are never ex pected to terminate. Such programs will be said to be conti nuo us l y
operatin g (Francez and Pneuli [1975]). The correctness of continuously operating programs

V therefore cannot be expressed by output specifications, but rather by their intended behavior
while running. V

Furthermore , we conventionally describe the internal workings of a program with an invariant
assertion , which Is intended to hold every time control passes through the corresponding point
The descri ption of the workings of a continuously operating program , however , often involves
a re lationship that some event A is inevitably followed by some other event B. Such a
relationship connects two different states of the program and, generally, cannot be phrased as an

V invariant assertion.

In other words , the standard tools for proving the correctness of terminating programs ,
input—output specificat ions and invariant assertions , are not appropriate for continuously V

operating programs. The intermittent-assertion method piovides a natural comp lement here ,
both ac a means for specifying the internal and external behavior of these programs , and as a
technique for proving the specifications correct.

* We will use one very simple example, an imaginary sequential operating system , to illustrate
this point:

V
more: read(requests)
setup: if’ requests — 0

then goto more $else (j ob requests) ~ (head(r e quests) tai l(rc quests)) -
-

• execute: process(job)
goto setup.

At each iteration this program reads a list , reques ts , of jobs to be processed. If requests is
empty, the program will read a new list , and will repeat this operation indefinitely unti l a
nonempty request list Is read . The system will then process the jobs one by one; when they are
all processed , the system will again attempt to read a r.q uest list.

V

- W hat we wish to establish about this program is that if a job J is read into the request list , it

- - I

-- -—
—-~~ V V~~~~~ -— - ~~~~~~~~~ - ~~~ - . — ~~~~ VV ~~ V ~~~~~~~~~~~~~~~~ - - - V~~~~~~~~~~ V

_ j7

Manna & Wald inger June 16, 1976

will eventua lly be processed. Although this claim is not representable as an input—output
specification. it is directly expressed in the following

Theorem: if sometimej E requests at setup
then sometime job — j at execute.

Here, j € requests means that j belongs to the list of current requests.

To prove the theorem, assume that

- - sometimej € requests at setup.

V
Then requests is not empty and is of the form

aj l3,

w here a and ~3 are the sublists of jobs occurir ig before and after j , respectivel y, in t he request
list. Our proof will be by complete induction on the structure of a: we assume the theorem
holds whenever requests is of form

a’j f i,

for any sublist a’ of a. The proof distinguishes between two cases

Case a = 0: Then j • head(re quests) . Since requests — 0, we reac h execute with V.

j ob — /iead(requests) = j . satisf ying the conclusion of the theorem.

Case a — 0: Then a — head(a) . tail (c *). Because a gai n requests 0, we process job — hcad(a) and
return to setup with requests reset to tail (a) j ~3. Since tai l(a) is a sub h ist of a, we can conclude
from our inductive assumption that

sometime jo b .j at execute ,

-~ - as we had hoped.

This program is very simple, but it may serve to suggest how the intermitten t—assertio n method
can be applied to t he more realistic examp les. It is possible that the method could be extended
to concurrent programs as well.

36

- - ~~~~~~~~~~~~~~~ -

-V ,V
V _~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~ 
-

V.

Manila &‘ Waldinger June 16. 1976 V

VI. Conclusion s

lhe intermittent—ass ertion method not only serves as a valuable tool, but a lso provides a
general framework encompassing a wide variety of techniques for the logical anal ysis of
programs. Diverse methods for establishing partial correctness , termination, and equivalence fit
easi ly within this framework. Furthermore, some proofs, naturally expressed with intermittent
assertions , aie not as easi ly conveyed by the more conventional methods.

It has yet to be determined whether this aiproach is suitable for automatic or interactive proof V

of program correctness. If the lemmas and the well—founded orderings for the induction are
provided by the programmer , to construct the remainder of the proof appears to be fairly
mechanical On the other hand, to find appropriate lemmas and the corresponding orderings is

V as difficult a task as finding the invariant assertions and well—founded orderings for the
conventional wa ys of establishing correctness and termination. But regardless of whether its
implementat ion turns out to be difficult, we believe that the intermittent—assertion method
embodies much of t he intuitive understanding about the way programs work. Therein lies its
principal strength.

Acknow ledgement s

We would like to thank Rod Burstall and Nachum Dershowiti for many helpful discussions - V

related to this work.

I

L_ _



- 
-
~~~~ 
,

~
- V.:- ~~~~~ -— j

~~~~~~~~~ TT~ 
- -V 

~~~~~~~~~~~~~ 
V V~~~ _______

Manna & Waldinger June 16. 1976

VII . References

Burstall, R.M. [Aug. 1974), Program p roving as hand simulation with a l i t t le
inductio n, Information Processing, 1974, North Holland Publishing
Company. Amsterdam . pp. 308-312.

Burstall, R.M. and Darlington, J. (Apr. 1975], Some trans formations for develo ping
rec ursive programs , Proceedings of liiternational Conference on Reliable

V

-
Softwa se, Los Angeles, Calif., pp. 165-472.

Floyd. R. W. (1967), AssignIng meaning to programs, Proceedings of Symposium in
App lied Mathematics, V. 19 (J.T. Schwartz , ed), American Mathematical

V Society, pp. 19-32.

Francez , N. and Pnuell, A. (Nov. 1975], A proof method for cyclic p rograms , Memo,
Computer Science Dept., Tel—Aviv University, Tel—Aviv , Israel .

Hoare, C A R . (Oct. l969), An axiomatic basis of computer programmin g, CACM , Vol.
12, NO. 10, pp. 576 -580, 583.

Katz , SM . and Manna, Z. (Dec. 1975], 4 closer look at terminat Ion , Acta Informatica ,
• Vol . 5, pp. 333452.

Knuth, D.E. (19681 The Art of Programming, Addison -Wesley Publishers, Reading,
Mass.

Knuth, D.E. (Dec. 19741 Structu red programmin g with goto statements , Computing
Surveys, Vol. 6, No. 4, pp. 261-301.

Manna , Z. (June 197 l), Mathematical theory of partial correctness , Journal of
Computer and System Sciences, Vol. 5, No. 3, pp. 239-253.

Manna, Z. (1974), Mathematical Theory of Com putation, McGraw —Hill Book
Company. New York , N.Y.

4 Morris, J.H. and Wegbreit . B. (Feb. 1976], Subgoal induction , Memo, Xerox Research
V

Center, Palo A lto, Calif.

V Schwarz, J. (Dcc. 1975], Event based reasoning — A system for proving correct
terminati on of programs , Research Report No. 12, Dept . of Artificial
Intellignece, University of Edinburgh, Edinburgh, Scotland .

—~~~~~~~~--

- ~—--
—-V - -‘-----~~~~~~~ V~~-- V ~~~~ ~—~~~ -~~~~~~~~~~~ :- ~ ~~

_ - V -
~~

V-
~~~~~~

-
~~~~~~ 1.--__V-I,____ 

.
_,~~~~~I—

Manna & Waldinger June 16, 1976 V

Topor . R.W . (1976], A simple proof of the Scho r r— Wai te garbage collegection algorithm ,

Acta Informatica (to appear).
.

I

~

VV I

