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Preface

This 18 the third and last in a series of reports on
‘high~speed tensile~impact work performed in the Pioneering
Research Laborstory of the US Army Natick Leborabories
(now the US Army Natick Research and Development Command).
The first (NIABS Tech. Rept. 69-18~PR) appeared in
July 1968 and the second (NIABS Tech. Rept. Th-26-FPR)
appeared in February LOTh.

The first report dealt with the basic mathematical
techniques and their appliecation to a linear material.
The second report extended the method to non-linesar
materials that do not exhibit creep or other time de-
pendence. The present report deals with non-linear
materials that do exhibit time dependence. 8ince all actual
materials exhibit creep and relaxation, it is in the present
report that we can expect to get the best test of the
sgreement between the theory and the actual behavior of
materials.

Body armor must be resistant to high-speed impact in
order to stop projectiles and shell fragments. Parachute
straps are sublected to sudden tensile stresses when the
parachute opens and the falling load is suddenly decelerated.
The work described in the present series of reports re-
presents progress towsrd an understanding of tensile impact
bat leaves much still to be done.
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Glossary of Terms

first time-integral of thé repetitive process,
corresponding to the lattice point in the i
column end the j&B oW, o

gecond time-integral of the repetitive process.

auxillary quantity found in the repetitive
process .

velocity of propagation of strain waves.

propagation veloclty at zero strain.

function giving the initial displacement of
each particle in a string.

function giving the initlal velocity of each
particle in a8 string. o

subscript indicating the column number of a
lattice point.

subgeript indicating the row number of a
lattice point.

spring constant in the model of the material.

a repetition index (superscript) in the re-
petitive process.

length of unstretched sample.

number of lattice-polnt intervals in the
length L.

2
(e¢/eo) , & given function of the strain & .

displaceament of a particle of material from its
anstretehed position x, also see §; also, in
the appendix, & quantity appearing in Iaplace
trans forms .

S/LVO; the bar is dropped after the quantity

ig introduced.

portion of the displacement s due to spring L.
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1s introduced.
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normal stress across spring L (total stress
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contribution of the dashpot to d" .
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RESPONSE OF POIYMERS TO TENSILE IMPACT 3. The
Integral-Eguation, Successive-Substitution Method
Applied to Non-Linear Materials hav1ﬂg Tlme—" '
Dependence (Creep, Relaxatlon)

L. TIatroduction

The present report is the third of a series of three
that describe the results of mathematical and experimental
investigations of the response of polymers to tensile
impact. Professor Crout is responsible for the mathe-
matical developmente; Mr. Pilsworth is responsible for
the experimental data, and all three authors have worked
on the physics of the problem and the writing of the reports.
For further background material reference 1 should be
consulted; 1% 18 the first of the present serles and is
referred to as Report I. Simllarly reference 2 is the
second report of the series and is referred to as
Report 1II; the present report 1s of course Report ITI.

The work was undertaken primarily because of our in-
terest in the production of improved body armor. Ex-
perimentel dats had been obtalned showing the propagation
of strain pulses in nylon string after tensile impact at
moderately high speeds. A theory and mathematical tech-
nigues were recognized as important means of explaining what
was observed and of predicting what mlght occur under other
conditions,

1. P. D. Crout, M. W. Pilsworth, Jr., and H. J. Hoge,
"Response of Polymers to Tensile Impact. 1. An integral-
equation, successive-gsubstitution solution for use in digital
computers, and its application to a linear elastic model”,

U.S. Army Natick Laboratorles, -Pechnical Report 69-18-FR
(July 1968), TL p; AD-6827Lh. :

2.“P, D. Crout, M. N..Pilsworth, Jr., and H. J. Hoge, -
"Response of Polymemyto Tensile -Impact. 2. Extension of
the integral-equation, successive-substitution solution to
non-linear, time-independent materials"”, U.S. Army Natick
Isboratories, Technical Report Th-26-FR (F@b l97h),

76 p; AD-780811.




In Report T the mathematlcal method was developed and was
applied to the problem of strain propagation in a Linear
material having no creep or other tims dependence° Since
the solution of this problem is known, and since the new
method glves the correct golution, its validity for this
cagg has been established, and by inference the new
method can also be expected to give correct answers to
releted problems Tor which satisfactory solutions Have not
been avallable. : ' , :

In Report IT the iterative method of Report I was.
extended to non-linear materials and was applied to a bet
of experimental dats that had been previously analyzed by
the method of characteristics. Good agreement was fouand
between the present (iterative) method and the method.
of characteristics at low and intermediate strains but
trouble wap encountered at higher strains when the stress-
strain curve was concave upward.

In the present veport the problem of a non-linear,.
time~dependent materlal is treated and compared with ex-
periment. Reports T and II were considered as sebting the
stage for Report ITI, for whercas the problems treated in
I and II could be solved by other methods, there. is no
fully satisfactory method of computing the behavior of
non-linear, time-dependent meterials. The resulte being
presented in the present report.do not clear up this
situation but represent some progress toward solving ito
The methode now being presented are somewhat limited by .
- the tendency toward oscillatory and diverging seolutions.
This tendency ls reduced, &s we expected, in the presence
of time dependency. In the present report, the greatest
weakness of the solutions is some lack of uniqueness:
there 1s too much latitude in the choice of model para-
meters. A greater range of experimertal:data would un—'
doubtedly help to resolve thlS gituation.

The experimental data with Wthh we compare our -
results has mostly ‘been obbtained on specimens 50 cm_ long;
in which one and sometimes two reflections of the strain
pulge oceur during the period of observation. The present
report “contains comparisons of computed ‘bebavior with data
in which reflectlions occur, and it-also contalns expsrimental
data taken on long specimens in which no reflections
peearred during the periocd of obgervation.  The no--
raflection resulis were surprising and mey constitute a
major contribution of the present repori. - '

JRe




2. Summary of Reports I and IX

In Report I & new method of handling the problem of strain-
wave propagetion was developed, in which the relevant partial
differential eguabtlons are transformed into integral equations.
The integral eduatlons are then solved by the method of
successive substltublons. Referring to the system shown
in Fig. 1, the differential eguation

2 2
A A
%}1 =" 35 (1)

was derived for strain propagation. Here x is the position
of a particle of material in the unstrained state, & 1s

the displacement of the game particle from its original
position, and ¢ is the wave velocity. TFor ready reference,
these and other definitions are included in a glossary at
the beginning of thils report. By integrating eq (l)

twice, the eguation a ' T o

| . .,
4 =FH0 '#‘t@(x)'f‘@}"}:h[%—yzawow(z)

was obtalined; this equation is valid when ¢ is constant

(a linear material has ¢ constant). The funetion £{x)
specifies the initial displacements and g(x) specifies the
initial velocities; except at the impacted end of the
string these funections are usvally zero in practical
problems.

Bquation (2) was simplified by putting £ and g=o and

introducing three new normalized variables:

- ek =%
AETHS AT o XE Ty O

in which v, 1s the velocity of the impacted end of the

string. The result of these substitutions (see Report I,
p 36) was to reduce eq (2) to the form

ft i
s

1L
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Fig. 1. Btring subjected to tensile impact.
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where for convenience the bars have been dropped from the
new variables. The velocity & does not appear in eq (4);
this equation refers, in fact, to the problem in which
I=l, c=l, and vFl. When a solution of eq .(4) Las been
obtailned, the results can be applied to actual problems
by using eg (3). The method devised for evaluating the
integral in eq (4) was to accept a lattice of points in
the (x,t) plane, to specify the values of s along three
borders of this lattice, and to find the values of s at
the remaining points by an iterative procedure. To find
values of the integrand the three-point differentiation
Formuls was used, and for the integration the trapezoildal
formala was adopted. Values of s were calculated one

row (one value of t) at a time by iteration, using the
border values, and taking all other starting values from
the previocus row. When the specified degree of con-
vergence had been reached, the next row. of values was
calculated. :

Two linear, time- independent probloms were solved -in
Report I. 1In the first the end of the string is set in
motion w1th its full velocity vy at t=o; in the second

the Ve1001ty rises Linearly during a finite time-interval
beginning at t=o. The solutions found by iteration were
compared with the exact solutions, which are known. The
agreement was good except where the exact sclution had a
discontinaity (abrupt rise, wave front) In the neighbor-
hood of a discontinuity the values (of strain, for -
example) calecdlated’ by 1terat10n oscmllated above and
below the exact values, when plotted versus x. It was
clear that the iterative process could not glve results
that reproduced a discontinuity exactly. This had been
anticipated. In adjusting to a discontindiby the
iterative results were found to be first too low, then too
high, and g0 on, but as the discontinaity traveled away
from any particular point, the amplitude of the osalllatlons
near that p01nﬁ was found to decwease.

The second of the problems solved in Report I, in
which the rige in velocity occurred during a finite time
interval, was more easily handled by the iterative procedure
than the problem in which the velocity rise was in-
stantaneous. This was of course expected. There was still
some oscillation of the iterative values above and below
the exact solution bat nob enough to destroy the usefulness
of the solution. The conclusion reached in Report I was
that the successive substibubtion procedure was satisfacbory
and that oseillations relative to the exact solution could
be troublesome but would probably not be seriocus. The
greatest chance of trouble was expected to be associastaed
wilth calculations based on a stress~gtrain curve that was
concave apward; in such cases shock waves are mathematically
predicted, for example by the method of characteristics.

13




In Report II 1% was shown that a non-linear,“time—w
independent material may be handled in a nmanner similar to
a Linear material, but with eg (&) replaced by-

P J Iz ek

This equation dlff@rsefrom ag (M) ouly in the . presence

of the factor (g/qo) « The other varisbles in the
two eguations are the same, although in Report IT and:

eq (5) the bars over the variables have not been.
dropped. The propagation velocity c¢ is a function

of €, and c/co tg the ratio of the wvelocity at strain €

to the veloelty at strain mero. An accepted stress-
strain carve permits e/eo to be found. For ase in the

repetitive process the quantity R = (0/00)2 wag expressed.
in a form convenlent for machine calculation, usually as
a polynomisl in €, The funcbion R (€ ) was not changed
during any one computatlional. run. : o

Asas test of tHhe usefulness of the successive-
substitution method for non-linear, btime-independent
systems, a problem was selected that had been.previously
solved by the method of characteristics. The values
of R were obbalned from the same stress-strain curve
that had been used 1ln the method-of-characteristics
solution. Good agreement was obtained between the.
succesgive-gubstitotlon golution and the method-of~
characteristics solution, from the time of impact up
antil the time when the method-of-characteristics pre-
dicted that shock waves were beginning to develop and the
successlve~substitutlon method began to give serious
oscillations. . The two sets of results are compared in
Fig. 2; the Lines show strain as a function of position;
caleulated by succesglve substitubions; the plotted
points are corresponding strains calculated by the method
of characteristles. ALl the pointg and the . corresponding
curves show good sgreement except-for two points near the
top of the flgure. These points and the corresponding
curve were in the reglon of developlng shock waves and
increasing oscillations.

14
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successive substitution (lines), and by method-
of-characteristics (points).
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The successive-substitution-solution could not be mdde
to converge in the region where the methed ‘of characlteristics
showed the development of shock waves. This as we know
is the region where the stress-straln curve is concave
npward. In order to obtgln s solutlon of soris, the
aceapbed stresg-strain curve was modlfied slightly by
replacing the final part of the concave-upward section
hy a stralght Line; this avolded divergence of the :
solutlon. It was concluded that the solution does not
immediately diverge in a reglon where the stress-strain
curve is condave upward hut dilverges when the computed wave
front becomas very steep. The question arose as to whether
© the shock waves indlcated by the method of characteristics
snd the oscillations shown by the succegsive~substitution
method were simply computational resalts not found in
actual materisls. This was a tempting assumption, since
we know of no cases where a tensile shock wave has ever
actually been cobserved. However, it was concluded that
the possibility of actual oscillations in strain along
the length of a string could not be ruled out. A con-
giderable portlion of Report II was devéted to showing -
that such oscillations can in fact serve as a means of”

. conserving energy. In this: connection it should be
remembered that, when the method of characteristics is"
applied in a regilon where a shock wave’ develops, the -
golution satlsfies momentum and continuity but does not
congerve energy. In using it, one has to assume an an-
specified mechanlsm to convert the excess energy into-heat.

3. Extension of the Previous Solutilon to Include Tlme—
Dependence ceoe

The results obtalned preV10usly apply to elther a ;
linear material (Report I) or to & non-linear material
(Report II) but they do fiot apply to a material that shows
time~dependence (creep or stress relaxatlon) Since most
materials. show time-dependence the methods of Reports T .
and IT are of limited applicability, unless experiments are
devised that take place so rapidly that creep and re-
laxation are Insignificant. In extending the previous.
golution to problems 1nvolv1ng time-dapendence, we wished
to choose a model for our materisl that could adequately .
describe the time=depéndence and at ‘the' same time Introduce
no more-additional mathematical complicatlons than
necegsary .

16




Cholce of Model System B

The model adopted is shown in Fig. 3. It consists of
a spring and dashpot in parallel, with a second spring
in series with the combination. :This model was diScugsed
briefly in Report I. It has been widely used. Smitho,
for example, uses it in a problem involving nylon yarn.
His treatment differs from ours, however, because his
gprings are linear (stress = & constant x strain)
whereas our springs are in general non-linear. Both
Smith's dashpot and ours are linear; that is, the force
supported by the daghpot is proportilonal to the rate of
change of etrain.

A three-element model was accepted ag probably the
simplest that could show the desired time dependence.
The two~element models both have drawbacks. A spring
and dashpot in parallel (Voigt model) obeys the
differential equatlon: ‘

r:m_é—k,&-%—%. (6)

This model allows creep but cannot represent stress re-
laxation at constant strain. A spring and dashpot in
series (Maxwell model) obeys the equstion

ae | d<r -

This model gives an incorrect creep behavior because the
creep conbinues indefinitely at a constant rate, whereas
the materials of interest to-us show a decreasing creep
rate. The accepted model (Fig. 3) avoids the two draw-
“backs Jjust mentioned, but of course its validity has to
be established by experiment. As will appear later, the
‘model has been found adeguate in the sense that by
adjustbing the various parameters our experimental data
could usually be well represented. It is of course
possible that some other model would have been equally
satisfactory. It is even possible that a simple Voigt
or Maxwell model would have been adeduate for some of
our date, considering that we were dealing with high-
speed Impact and rather short intervals of time, but

the adeguacy of these simple models was not anticipated.

P T e, Smith, "Wave Propagation in a Three-Element
'Linear Spring and Dashpot Model Fllament", J. Appl.
Phys. 37, 1697-704 (15 Mar 1966)
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The analysis of the model shown in Fig. 3 was carried
out in such a way that the two springs could obey different
stress-strain curves, but when the time came for actual
calculations the assumption was made that the two springs
were alike except in “length". The length of spring 2
was taken %o be )\ times the length of spring L. If
the same stress could be applied to both springs, the
strains would obey the relation

)\e, . | (8)

Of course the stresses scross the two springs are in
general uvhedual, becauge the dashpot across spring 2
supports part of the stress.  The ratio of spring
lengths,~5\ s was one of the parameters to be adJusted in
order. to fit the experlmental data .

Ag a second disposable‘parameter the damping constant
of the dashpot was used. ~In the simple case Where spring 2
is Llinear with spring-constant X the constant é@
simply related to the time constant of the system con-
sisting of spring 2 and the dashpot across it; we have

/L:K'?" T ey

where P is the time cbnstantQ

In addition to assigning the values of ,\ and- we . also
have some freedom in the choice of the. stress-straln curve,
used for both springs.

- Mathematical Analysis of the Time-Dependent Model.
The model of a tlme-dependent material shown in Fig. 3
can be analyzed by making certain additions and changes
in the methods used in Reports I and II.. The separate
spring 1 1s equlvalent to the "springs" handled in
Report II. The spring 2 with the dashpot across it, forms
8 new.combination that has not ‘been preV1oasly treated.

More specifically we shall sappose that a’cubic centi-
meter of the material behaves like the mechanical system
shown in Fig. 3. Because of the unit length and cross-
section the strains may be considered tc be elongations,
and the stresses to be forces. The basic equations are

T= 0 ta (10)
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=gy )
G"Té-:a’"acéa) O a®)

gy = dé (1%)

We thus consider the elongation € to. be compesed of two
parts, one of which depends on the total stress alone,
whereas the other depends also on the time (past history).
Similarly, we consider the force g~ to be composed of

two parbs, one of which depends on €, alone; whereas

the other is proportional to 5iéé,étt The sprlngs -

shown in Fig. 3 are in general not linear. In the above T

equat1ons the effect of 1nertia 13 not 1ncluded.

In the case of our string the above relations pertazn f"
to each point, and {1l4) becomes

- o€ | (15)
gy = M %52 o Y
? 9 ‘

also, we regard the displacement s to be composed of two
component displacements, thus

= »d: “f”xba . ;':.' 1 1 :: §16)_

where, in accordance wzth (ll)

D e
ﬁ" g (17)
84 2 g, (18)

(19) -

20 -




Finally, the condition for dynamic equilibrium is expressed
by o

R4 dom
| o f:..é_rl = -—é—-*?-t—' R (20)

(Bee Report II, eq 6)e

We shall conslder the damping coefficient - to.be;conw‘ :
stant, whilch corresponds to viscous damping. :

Integrating (15) we obtain

i o e T '
éz-CEaLov‘F,[d*,dt ; (21)

also, integrating (20) twice gives
o o AE
= L [ 29
A Cﬁ’)no*’t(ﬁbﬂf,[{ﬁd& dt,

The problem in which we are interestdd is one in which
the 1nitial distributions of displacement, velocity, and
strain are zero. In this case (21) and (22) become,
respectively,

nj& |
= - | ¢ (23)
€2 POW”‘J‘
o = 72_?:‘0&& | (2h)
Fod J 8% . |

In view of (12) and (18), (24) may be written

e
ag[ [Tt dt.

Proceeding as in Report II, page T, we now place

2

e = a2 e
B=gg K=y t==E 09
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where

@“"(6 a7
9 /C ‘¢ (0) (1)

¢ and ¢, hence pertaln to the left hand 9pr1ng in Flg 3
It now followas that AR Lo s oo

D, =

BAJy LQZ 6
L_. ai‘c aﬁ"" :

(28)

€=
Similarly . ,
€25 €, and €= €. (29)
From (éT) aﬁd.(QB) we:séejéhatn
e 3By )
() =€) = C (ﬁ). e T

(23) now becomes

or, placing

9 . (31)

. bk
)

we have

(32)

ol
[

[}
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,.‘Q____hb‘
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(25) becomes

where

- »c(é,)) AL
e (- (&)

A pogslble method of successive substitutions is now
given by the follewlng equations, which are used in the
order glven, and In which the bars are omitted, 1t being
understood that the various quantities are normalized as
“indiceted on the preceding pages. ‘The step numbenagﬁ)'
or ( ﬁé%l) are, indicated by superscripts. Starting with
fefﬁ‘) and, ?e‘(‘&) ve obtain . (R+/) and EU&H) by the

oﬁ.lowing st"eps;_l AT 2 o '

SO N |
“ cp)lee) - (eN]dE,
| ttE &y |

( x (h)y D€
'A»(&""):_Z[R(&. ),a';c Atu’ (36)
cletd 5 4kt c®H e
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We nobe that in this succesgive substitation proéesézit
is not required that a record be kept of sl,se, 8 or

The untmlandbmm&wycmﬁﬁdmmzwe

20,8 =0 0<% A,

A (X,0)= O o<‘7f- ﬁ

4 E)= WW%@ - (38)

Since these conditions are on s, it does not appear that we.
shall be able to confine our attention to the strains
alone. Accordingly, we shall place (36} in the form

(«% | .
g CAeHD) ,ffF?(E );xi a‘,ﬁdz‘: (39)

Since si and 82 are both positlve, it follows from (38) that
A':CO,:t) =0 W ,az (a,t) o wﬁm 0<;b
21,0020 omd A2 0,0=0 bans OEHE

From the second of these equations we algo have

(%0)

“0=0 and éaex)m o*fo<>f<‘f o)
also, since . ., | :
| J ¢ o
éa(f,t)‘-ﬁp a(ht)dt , .00

ok




and since ¢; is finite, we see that G.ZC{,i:) cannot be
changed abruptly from ite initial value of zero regardless
of what motlon is specified for the right end of the string.
On the other hand E&(gijtmay change abruptly. Similarly,
gince

s .
€ 01,%) = 7:{ i (A1) dbs (:3)

we gee that for any fixed value of x 4 --E,g(?f,;ﬁ) is a con-
tinucus function of %.

We shall now consider a tentative numerical procedare
for applying the above equations. As before, we shall use
"~ a square latbtice, as indicated in Fig. 4. The various
guantlties are determined one row at a time; hence, we
need only describe how to obtain data for the jtB row
when data for the préceding rows are available. The
varlous steps are as follows. *'

1} & is known exactly at i=o and i=n for all values of j.
As a first aﬁproximation we shall take the values of s for
the ( j-1 )P row as those for the j*B row when 0Ll oyy,
Similarly, we shall take the values of sy for the { j-1 )

row as the fir?%)approxir(l%’sion to those of the jtb TOW.

Subtracting ss from s we obtain s L) for the jth TOW.
2) Knowing s for the J*% row we determine €, for
1 /

this row; and hence, using (39), s(e)

' 2 ~
3) Knowlng 6?) for the 38 row, €, is determined for
this row using (35). This is a subroubine process of
succesggive substitution. '

for this row.

€2)
lL) Integrating éz" numerically, ség) for the ,jth row is

obtained.

5) 81(2) far the ¥ row is obtained by subtracting 52(2)
N -

from s ¥°{ We note that s ls known exactly at the end

points.

6} We now proceed as with step 2, and so on.




— W

Q

_0[23‘

Fig. 4. L&ttice of points at which calculations
: are to be made.. S
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In the various numerical differentiations and’ 1ntegrat10ns
appropriate formulas are used. To fix ideas we can
tentatively say that the numerical integrations will. be
carried out using the trapezoidal formuls (116 Report I);.,
and that second derivatives will be obtained using the.
three poilnt formula (LL7 Report I), based on a

quadratlc polynomisl. BExcept at end polnts first de--
rivatives will be obtained using the three point formula

(k)

/. | B L
f(0= A [f CA AR =~ -ch-%ﬂ

based on a guadratic pOIynomial; at the end pcints they
will be obtained using the two point formula

Fo= 3&[1‘ foo 7 foss] )

based on the linear polynomial, the upper sign being
used at the right end, and the lower sign being used at
the left.

Proceeding along the lines indicated above, the set
of instructions given in the next section for programming
the successive repetition process for use in conrection
with a digital computer was devised. 1In these in-
structions A is a measure of the first time integral in -
(39), B is a measure of the second; and C is a measure of
the time integral in (35). Instead of finishing the
calculation of €., for each round of the main successive
repetition process, whlch is aimed at SOlVlng (39), the |
subroutine indicated ‘in 3) above ig replaced by a single
round of the subroutine process. This was done because
it was felt that there was no point in calculating ézito
an accuracy much greater than €, during the course of
the main successive repetition process. However, if
difficulty is encountered with convergence, it may be
necessary to include the full subroutine process. ‘Mean-
vhile, until such difficulby is encountered we shall use
the simpler process described in the instructions. '
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In the above discussion s(m) and 52( ) are the basic

quantities which we know at the beglnnlng of the Kth round
and s(k+l) and s (K+1) are the guantitiss which we

ultimately calculate %u ing the c arse of the round.
If, however, we use 8 nd.e ag the basic quantities,

we avold the sifuation wherezn é is integrated to give
Y which is then differentiated to give'ézw The resalt

ig the set of instructions given in the next section.

L. Description of the Repetitive Process when Applied
to the Nonlinear String with Creep or Relaxation

Our problem is to debtermine the values of the
quantities slj and Q%i at the points of a square lattlce.
i takes the values O l, 2, 3, *** ,n; and j takes the

values O, 1, 2, 3, *» . n is given; hence the range of
values taken by i is bounded. The range of values taken

by Jj, however, has no upper bound except, possibly, one
which will be assigned later from practlcal con-
siderations, Fig. 4.

The wvalues of Biy are given for those points which Lie
on the border, thus Co

”mﬂ i =0 f,.2. 3

b= 0 _,,23.”,}@ 3 A‘“?’L

z%vngw@’, J 0,123

The wvalues of ele are given for those p01nts which lie
on the left and lower parts of the border, thus ‘

bt o mg  e
270)=0, J=0,1,2,3, ¢

244070y L=0,/,2,3, M
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The values of le andqesla at the other p01nts are: detprmlned

a row at a tlmaﬁ#.that is,. for 3 flxed and 1= l, 2, 3,--3 5
(n - 1) for B3y, and 1 for o815+ The valaes of J are taken

in the order 1,.2, 3, °° In v1ew of thls 1t w1ll
evidently be sufficlent to describe how o ‘obtain the values
of 81 4 and, Esij for the jbh row when the values Ffor all

of the- precedlng TOWS are. known

The . values of le and 281 for the J £ row are - gbtained

a8 the limits gotten, respectlvely, by applylng repeatedly
8 process shortly to be described. At ‘the beglnnlng
of the Kbh repetition we have the quantities . &= - v

() ) (k)

A )423 \ _,4:35 oy A,@,,)J(A)} )

wu‘&’j oA J‘*‘g' 2453 ..'5 2,%3‘*’? |
a5 approxinations tODZGhe guan*t:itie.s |

s A’ijs 43590 ?4’@-53 5} o)

ZA"H'}’J LA"ZJ‘j 2"”'33) b '_9 QA’m»j 5

respectively., Here k is a superscript, not an exponent.
When the process is applied starting with the quantities
(48), the quantities

(st 1) Ué.ﬂ) Lmn (et 1)
210y A2y, Aaf o, Ama)
A.H) (50)

5@»*!) t&ﬂ) -H)

are obtained as apﬁroximations tot(h9),'respebtiVely.
The sequence of repetitions is started by taking the
values of 81 ‘and 2813 for the (J-1)%h row as approx-

Imations to- the values for the Jth row;,respéptively, thus

W _ (i) |
A i - (H
.A,J iyd '9 J Az J lj p AJm‘ IJ Aﬂ“’;:j"‘ (51)
N o ) n
2A,“ =?—A'5‘5'U ?-AQ'J = &2;5"_5 9 QJAW‘J l’d‘m)rl‘
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These values are, of course, knowd. The sequence of
repetitions is Gterminated when for sufficiently large K,
the output (50) duplicates the input (48) to the re-
quired accuracy. The common values which then compose
(48) and (50) are then taken as the final result (49).
The values of 8iy and 2513 which - compoge the Jth row are

thug determined.

Finally we shall describe the process by which we
start with (48) and obtain (50). During the course of
the calculations we compute and record, in addition to
the guantities si, and 291j, the auxiliary quantities
Ae-bdb 284 <k Rids 058 o Thdy Augy Bij and. Ciyj

long the lower border, where j=0 these quantlties
are defined to be

R 2 s ¢ ‘
20, £ ﬂ;cw O)V "7y rC‘(wo"Oj

€oa™ V7 £ ,OZOM‘G’M:().& vy Lo O )‘f'

200

r".\)}o:‘: { /?2)0\ ,i) \;@ , e @_.5 }'\g/}’é-'{,g: %

0h0 ™ T () 20, Tlo = 07050,

20'"6 [OEIEERY r;m(~(3*<<>) O;

e 0 () O 2_ o= (7 (Q}w Oy

RN Ye

2 Cr A 2 (O) ) . ow, e {"j”" (D)-"f 0 '; B :

Alo':'{)fr ‘/\:7.;0":@? A’MAO “maAraiG"@ﬁ

) : > B -
Bio=0s Bsz‘@} BSO_"'OS ) 'bm--l.,@"o':;‘

C/oa:@> Cfor“o? CZ".{):OTDMS) Cm)o-aC)_,J
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The quantities Ri . Aij: and Bij do not exist at the

points of the lef‘t border, where i=0, ox the po:.nts of
the right border, where 1-n . As is the ‘case "with SlJ

and 2913 the aux111ary qua.ntlt:x.es N €. l? G |
s Aﬂ b 2- Ay Mijs Us
20'}.J, A,,__; 5.1 »and CN are obkained one row at & B
time, are f(nown in the first (j-1) rows, and are

obtained in the 0, row as, the limits approachﬁd by

the %mntlties ' »ﬁ‘k)’ 2_54‘.&' R j‘ak) T -k’ Jt";.)

and C\ (Jz) 2 respective Vs du.r:tng
the course of %he successive repetitions. The des:Lred |
bagle process is now descrlbed by the relatlons

k ‘ ) ) ),
Q’Q’AJ()"“-"‘m(éz 5&4’2 |j@L+ 62_ 4 voe
; @ .
+E-é~”‘-'3\]€¢b) ‘ A . ) (53)
A=/, 2 .3 /YL)
) myp R @o R
le‘j = _2_-( g*'J /J’J- l),J 'a-""“)d +2 el ] (54)
~ :@2 S
Ja)
_;6( («Md 2a4i; ; L (59)
2 0
:ﬁwj =%(/¢m5 —A,m(.,),j + @m@J 5 60

-R(, )J_e;b%ﬂawhfm
Qe)

= A.n 3= ;+ A J "—_Q(A‘J‘MJJ '+'&"-““3J’| :

P\

‘ @0 | J)e) ”l . ‘4@)
.+R (Aﬂ_e RN zm;‘-.,;
&) QW
2 J-*l"JJ) A’\"’Lz_ “'\d' S R
Az Ay mmt 5 )
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ke
B4 Buae 4 (s +AS),

. (59)
"52:' - /3‘ _

éfo-H) @ L e
0.3.4;; +D?BJ, b=l mel .(éé)_

7y - o : _
Gy = O*(,ej;i )} AT 1,200, m ) ()
.&%ODI)Q)osoJmJO (62)

® _ '
Ca.‘aj - a.).l—vl +—2'<G~*)J"f 2, “")d !

-’-a':@ ‘L '@
2% ) )
A= 0, I, 2 m’ﬁ
. 9 ’.
‘f“p“'“) 2 €. U’a) (6n)

| )
'g_egi 3,5 +07MLC .

5. Application of the Method to Expewlmental Data (with
Reflections)

In order to test the model selected for a time-de-
pendent material and to test the successive-substitution
method developed in the preceding mathematical analyses,

a get of experimental datas obtained on a nylon yarn was
selected. This.set of data Waﬁ originally presented and
analyzed by Pilsworth and Hoge™. It was uased in Report II
-as the besls for & comparison between the results of a
successive-substitution.analysis and the best of the
method~of ~charscteristits analyses given 1h*R&F. U. «HALL
of the data were obtained from the high- speed stroboscoplc
photograph shown in Fig 3 of béference L » which is

k. M, N. Pilsworth, Jr., and H. J. Hoge, "Rate-De-
pendent Response of Polymers to Tensile Impact”,
Textile Res. J. 35, 129-39 (Feb 1965).
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reproduced as Flg. 5 of the present report This figure
contains 6 usable exposures following impact, and the '
strains obtained from these exposures are plotted as
the broken lines of Figs. T, 8, and 9, where they are.
compared with results from three dlfferent computer

- runs. : : :

Each attempt to caleulate the behavior of the nylon
yarn as experimentally observed requires a stress-sirain
curve for the wmaterlal to be accepted; it also requires

. values to be chosen for the parameters ) and .

We began by using the stress-strain curve. that /had
‘previously given the best results. This is curve C in
Fig. 6; it is also carve C in Fig. 5 of refevence k.
This cuarve had been developed by successive trials in
whieh the method of characteristics was used and it
gave a reasonably good fit of the experimental data,
especially the early data obtained before the second or
third reflection of the strain pulsehad’occurred. The
values of A3'amdf¢ reguired for a calculatlon were :
chosen partly by ‘guesswork and partly by methods similar .
to those described in the appendix, bat more primitive.
The valiues used in each compuber run are given in

" Table 1, together with other relevant quantities '

. describing the run. After each ran had. been plotted
and analyzed, new values of,A s or cther relevant
quantities were selected. for use "in the next run.

- Since no table of computer runs was included either in

~-Report I or Report II, a complete table is included in
the present report. ALL runs that yielded useful in-
formation are listed. Omitted runs had faulty programs,
diverged very. quickly, or had other defects.

Results of three of the best runs are shown in .
the present report. The first of these, Run 1k, is
shown in Fig. T, where straln is plotted against position,
with time as a parameter. The 6 solid lines are plotted
from 6 rows of the computer print-out; one row being
chosen to. correspond to each of the 6 usable exposures .
in Fig. 5..°The common time of each expssure ‘and the
corresponding row -of the print-out is iridicated near
" each pair of curves in the figure. Good agreement
between calculation and experiment is indicated if each
pair of curves nearly coincides. -In Flg. T the agree-
ment i only falr. One of the weaknesses .of earlier
calculations has been taken care ofI Figure 2 shows .
. regions of constant strain near x = 6 for two curves
(b o= O h79 and 0.613 ); it also shows ‘such regions
neat x = 50 for three carves { t = 0.213, 0.346,
and 0. MT9) The experimental dats do not show these .
flat regions. Run 14 does not have the flat regions
and in this respect represents an advance over the
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Fig. 6. Various stress-strain carves for nylon; A,

semi~-static; B, linear; C and D, dynamic but
developed with different assumptions.
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Table 1. Summary of Computer Runs

ALl silgnificant computer runs are listed, including
those made for the present report and also those made for
Reports I and II. The omitted runs had faulty programs,
diverged at an early stage, or were considered not useful
for other reasons.

Run Stress- ‘ Notes

Strain :
Relation = R A M
1 Lin .o - - , a,
0 1 - - - -
3-10 o! ' - - - b
11 o - - - ¢
L2 o - 1/3 240 d
13 " - 1/3 60
1k " - 1 60
15 Lin 1 L 60 g
6. D - 1 60 g
20 Lin 1 1 oh
21 " L.15 1 ok g
22 " 1.15 2 - 60
23 " . 0.85 L 60
2k " 0,85 .1 2k
25 " 0185 . 2 120
26 " 0.85 2 . 60
27 T . 0.85 o 2l
28 o GO 1 €0
29 - " o TO 1 ek
30-33 " ‘1 Lor3 T.50r e
S 30
35 " 25/16  1/9 61.218
36-41L C - 1to 3.9 to
A 25 30
o A - 5 1125
43-49 Lin (2) o £
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Kotes for Table 1
Rane 1-2, %reated 1n Report 1,
Rung 3-11, tréated in Reﬁort 2
Curve C unmodified (no linear final sectlon)

Runs 12-29, treated in the present report; they
refer to short specimens with strain raflections-.

Runs 30 33, 36- ko, treated in the present report,:
runs without reflectlons -

‘Runs L43- h9, treated in Appendix 2 of Report 2;
stregs-sgtrain curve con51sted of 2 linear sactions
of slopes lik.

Buns 15, 16, 21 gave best agreement with the ‘ex-

perimental data of all runs made, w1th 21 probably
the best of the 3.
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0 10 20 30 40 50
Position cm

Fig. 7. Comparison of results of Run 14 (Curve C,
=1, M = 60), solid line; with experimental
results, brcken line.
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calculations shown In Flg. 2. However, the slopes of

the calcolated lines in Fig. T do not agree wibh the data
and at t = 0.613 the slopes even have the wrong sign.
These facts made it seem likely that the propagation
velocities of various strain increments were ihcorrect.
Hence we concluded that the faults of Run 1% could not

be corrected if we continced to use curve C as our -
gtreas-gtrain curve., It seemed likely that curve C had
no fundamental significance, that it was not a true curve
of & time-independent material bat was the result of
trylng to represent time-dependent datae with a timeé'
independent model. Presumably, the representation was
fairly good because the experimental data came fhom

a single experiment with a single time scale. 1If a

much more rapid cr.much slower experiment were to be
performed, the representation based on curve € would
probably be worse.

Assuming that curve C was not of primary significance -.
and probably described the behavior of the material only
for one particular speed of Impact, we decided to btry
other stress-gtrain curves. The next one tried was &
~ simple linear curve. The result (Run 15) was judged to.

be better than any previous run. In Run 16, the results
of which are shown in Flg. 8, a new streds-strain curve
-was used., This curve (curve D of Fig. 6) was developed
by the same mebhods used to develop curvé C; these
methods are described in reference % . Run 16 was
Judged to represent the experimental dats womewhat
better than Run 15 end hence was the best run made up
to that date.

After 3 unsuccessful runs (17, 18, 19), a set of
10 runs (20-29) were computed, all with Linear stress-
strain curves. Various values of A and were used,
and in addition the value of R (-:. ‘/‘% as assigned values
ranglng from L.15 down to 0.70. For a linear curve, &%
- is constent, of course, and assigning a value of R 1
is simply & convenient way of changing the value of &
for the material. Of the group of 10 runs, Run 21, shown
in Fig. 9, was judged to represent the experimental data
best, and to give & slightly better f£it than any of the
earlier runs.

To be useful,,our-model of & time-dependent material
should contain only a few disposable. parameters, and
these parsmeters should be uniquely determined by the
experimental data. If-this is the case we can use the
model with some confidence to predict the response of
the ‘material uhder other experimental conditions, for
example when the impact is more rapid or slower than the
- impactsiwe studied. The results presentéd in Figs. 8 and.
9 stiow that our model is nobt unique; we were able to

39




%

Strain

o 20 30 - 40 50
Position cm
Fig.78. .Comparisoﬁ of .results of Run 16 (Cufve-D;

X =1, M=60), solid line; with experimental
results, broken line..
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Fig. 9.. Cémba_rison pf‘_fesalts of qul:2l .(L'in',egzr o
curve, R = 1.15, A = 1, M =.2L), solid line; with
experimental, results, broken line. '
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represent the experimental data almost equally well with
different. sets of parameters, including both linear and
nonlinear stress-strain curves.

One way of improving our model would be to include
more than one time constant in the creep and relaxation -
mechanism. Our single dashpot” has essentially only
one time constant. Some authors have used a wide
gpectrum of relaxation times %o explain polymeric
behavior. Howevar, we would need to have experimental
data covering a wlder range of impact velocitieg bhefore -
we would be justifiled in dntroducing a larger number of
elements into our model

Slnce observatlons of 1mpacﬁ at substantlally h1gher
veloclties would have required major changes in our
experimental equlpment, we gearched for other ways to
cast more Light on the behavior of our material. The
selt of experimental data analyzed ahove were taken with
a specimen 50 cm long. This length was short enough
so0 bthat reflections of the strain pulse occurred during
the period of observation. The reflection of strains
into the already-strained material made the data more - -
difficult to .interpret. We decilded to perform ex-
periments in which reflections did not occur. " Two
such experiments are descrilbed in the following section.

6. Experiments Without Reflections

Specimens of nylon yarn 400 cm long (8 times the
normal length) ware marked in the usual way at l-cm
intervals and installed in the usual way. The camera
wags aimed at the end of the specimen where impact
occurred, so that 1t could photograph-a length of
roughly 50 cm of the yarn. The yarn was so long that
the photographing was completed before the strain pulse
could be reflected at the fixed end of the string and
be propagated back into the field of the camera. After
a considerable amount of work (synchronization of the
impact and the photographing was a problem), two good
photos of impact behavior were obbtained. The data
obtained from these photos have been designated NC-6
and NC-7. Fig. 10 shows the photo from which NC- 6 was
obtained. Figures 11 and 12 shoy typlcal curves
plotted :from each set of data. The plotted points were
derived from the data and the curves were faired thru
the points (they are not computed curves). In each
figitre the top cuarve refers t0 the end of ‘the yarn
attached to the head mass and the bottom curve refers
to & p01nt near the other edge of the field of view of
the camers; the middle curve refeis to a point’
intermediate between the othér two. The two figures
show strain as & function of ‘time for periods of about
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Fig. 11. Selected data from the experiment NC-6. - Strain
, versus time after impact. BEach curve refers ©o
- a different Vpoint on-the spacimen.
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2 milliseconds after impact. For details of how the high-
speed, stroboscoplc photographs were taken and how

the deta (positions of marks on the strings) were
analyzed, reference L should be consulted.

We had expected all curves of the Lype shown in
Figs. 11 and 12 to show an initlal rapld rise corres-
ponding te the arrival of the strain pulse, followed by
a gradual rlse corresponding to a further stretching
of the materlal. Of the gix curves plotted, only the
top curve ln Fig. 12 shows this behavior. The top curve
in Pig. 11 and the middle curve in Fig. 12 show sasen~
tially no change in strain after the passage of the
initial pulse. The three remaining curves all show a
decreage of strain with time. Instead of continning
to elongate by creep, the material represented by these
curves appears to be contracting after it reaches
maximum strain. There are wide variations in strain
at different points on the specimen at a given time and
alse at a glven point at different times. TFor example;
Fig 11 at t=2 msec has & strain of about T% near the
head mass and a strain of less than 3% at the point
33 cm downstring. Also, at the 33 om point the straln
went above 4% at 0.6 msec and then fell to below 3%.

The strains Bhown in Figs. 1L and 12 show major
departures from the behavior that ls commonly assumed,
in which a strain pulse of constant height travels
along bthe specimen, leaving uniformly strained material
behind 1t. The possibility that the data are in errox
because of experimental difficulties has been con-
sldered, but we are not aware of anything that could
invalidate these two experiments. The fact that one of
the curves in Flge. 1L and 12 slante uoward, two are
horizontal and three glant downward does nobt point
toward any simple type of experimental error. Wavelike
irregularities are evident in some of the curves, es-
pecially in the two top curves that describe the point
nearest the head mass. Such waves have been obsérved
in many of our experiments and have smplitudes that
sometimes exceed iwice the scabtter of the data. We
believe that the waves actually exist but can only
speculate on their canse. One possible cause is non-
uniformity of the nylon yamn.-

The mathematically simple pictuare of impact is one
in which the head mass is instantly accelerated to some
fixed veloclty and travels with constant speed there-
after. OCur actual experiments differed significantly
from this simple picture. The head mass had a finite
velocity-rise time of rcughly 0.3 msec, as can be seen
from Figs. 1L and 12 (the head maszs veloclby is very
nearly the same as the particle velocity at x=o). -
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After the head mass reaches its maximum speed it
gradually slows down because of friection and because
of the force exerted on it by the stretching specimen,
but the deceleration is too small to be very noticeable
in Figs. 11 and 12. The acceleration and deceleration
of the head mass complicate the situation somewhat

but do not give any obvicus help in explaining the
curves shown in Figs. 1l and 12.

T. Attempts to Calculate the No-Reflection Data

"~ The data teken in such a way as to avoid strain-
pulse reflections in the part of the specimen being
observed were snalyzed by the same methods as were used
in section 5. It was realized that if our model of
the material was a good one it should predict the be-
havior when reflections were present and also when they
were not present. Thirteen computer runs (30 - 42)
were made, using a variebty of combinations of the

- constantg )\,}.Land R and various types of stress-

strain curves, including linear "carves™ and curve C

of Flg. 6. 8Since the specimen length was now 8 times
what it had previously been, the distance between
points of the computation lattice was increased from

1 cm to 2 em. Even so thébcomputer time per run was:
considerably increased, bedause all lattice points in
each row had to be computed, although the strain at
most of them had not begun to rise above zZero.

" None of the 13 runs gave curves that looked like
those in Figs. 1l and 12. A few of the calculated
curves are shown in Fig. 13. In only one.run did we
gucceed in getting the strain to decrease with time;
this was Run 32. The three curves for different values
of x differ from the experimental curves, however, in
that all three ecalculated curves approach each other
and become nearly coincident. The experimental curves
never get very close together and are diverging as the

- experiment ends.

It seems best not toc try to propose any specific
mechanism for the behavior shown in Figs. 11 and 12.
The resulte were unexpected and interesting; they
cast some doubt on the validity of our three-slement
model. However, it should be remembered that large
amounts-of energy are released when the slider is
accelerated by the rubber bands. Energy could travel
more rapidly in the steel tracks and possibly in
the supporting table than it travels in the nylon
yarn. It seems doubtful that any mechanism exists
that could transfer energy to the fixed end of the
string and set it in motion before the pulse in the
string arrivéd, but some such mechanism cannot be
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Fig. 13. A few of the curves calculated in our attempts to
mateh the curves in Figs. 11 and 12.




completely ruled oat. Further experiments are nesded,
in which the conditions and paramebers of the experiment
ara varied.

8. Conclusions

The integral-equation, successive-substitutilon
method of analyzing and predicting the behavior of
materials under tensile impact has been extended to
include time~dependency (creep and relaxation). A
three-glement model, consisting of a spring and dashpot
in parallel, and a second spring in series with this
combination was used. The behavior of short (50 cm)
specimens, in which the strain pulse experienced re-
flections, could be explained by this model. It was
in fact possible to describe the behavior with various
medels; employing different stress-sirain carves
and other dlfferent model paremeters. ©Since different
sets of parameters described the obserwved behavior
almost equally well, no anique set of parameters for
the materlal could be chosen.

Whén long specimens were used, in which no re-
flections could occur during the time of the ex-
periment, no satlsfactory model of the process was
found. The material was observed to contract after
the strain pulse had passed over it instead of re-
maining at constant strain or continuing to elongate
slightly. A study of this somewhbt-unexpected be-
haevior appears to be the mogt fertile area for fubture
work, when and if impact experiments are resumed.
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99. Appendix
A-l Determination of A and M»

The purpose of this appendix is to record certain
ideas that were being considered when work on this
rroject was discontinued. These have to do with
determining )\ and more precisely. At present we
have too much freedom in their choice; hence we shall
congider additional restrictions which can be applied
experimentally. We note that the use of the parameter A
implies that the two sprihgs are of the same natura,
and differ only in length, spring 2 being A timss as
long as spring L. ‘

Determination of ;% NOtlng Fig. 3 and equations
(L0) = (1L), we see that under slow (qu351stat10nary)

Loading g =0, and

d,a“
d &

d€, _ a'le)
G_(é)de Y ey

Under fast Loading

v / ) / e :
T =0 ()€ =0 (€) [e- 62], (22)
Initially 0"}-"-: o; hence éaz O, and (2&) becomes
G= @& ow £=0. ()

It follows that

3

dé—G‘(@) whom =0, (b)
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Placing the initial valos e Oln (1a) and dividing
into (ba), we obtain fmally

(_‘aif
4.6 /0F - | (58)

(%),

vhere the subscripts O, F, and § indicste "initial",
"rest", and "slow", respectively. This gives A after
the derivatives on the right hand side have been '
determined experlmentally :

A

Determination of f‘&" . L2t us suppose that the springs
are linear, and have spring congtants Ky and Ko, re-

spectively. We then have

é::é,“i‘“@z R

T 2K €0 +033K,6, + €y, | (62)

Starting ab t=0 with the system uvnstressed let us
maintain ¢ =/, then

€ + €,=/

é | (Ta)
€ - K€y =5 =0. |
Taking Laplace transforms we have
-, et l
A ép + 4 E = =

K E - Ckptpn) €= 0




where the bars indicate transforms " Bolving for 6,'we

obtain
E; - ﬂn;£.<if<2 1L/L6’d%)

=4 (Ko tpa +K) o
Ka _ 4 /o
AR (aR) A (L+R)
where
= a ;Kz. (108)
Noting the partial fraction expansions
aAr(ts) T oar o2 Aetl
] | (11a)

B(arR) ~ KA T Alrd) !

and using a table of Laplace transforms we find that
the lnverse transform of (9a) is

T Kz_,t +a-(/-' m)(l-e_dt. (128)

Multiplying by K; to obtain a‘, and noting (10a) we
obtaln finally

K
g = Ki‘<+ ;:;‘t”‘b(K-#Kz) ) (13a)

Differentiating with respect to t gives

(1ha)

2

® f<:P<z p<t_“ "'Q‘i:

g = + -
Ktk K +Ky € 9
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€
from which we see. that €™ changes exponentially from
one value to ancother with a time constant

ek = A e
rEg s K,+K, ° |

We also note that the first term in (lba) 1s the
spring constant of springs L and 2 in series. - If
is determined experimentally, (15a) gives f“*"" .
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A-2 Further Constraints. Inclusion of Inertia.

In the above it was tentatively assumed that the
experiments deviged were such that inerti'ia'ﬁ‘s U=
important. If this is not the case we can still proceed
ag follows if the springs are linear. We have the
equations '

e= €+ &, 0

T =ELTES
:K,é,, d'"z:Kzep_-
It follows that
2,
Su _ o 26
f’aﬂ—"K' dX 7 (17a)

- o= e ., €2 (18a)
KeE =Ky = T ~2=0=p 57« )

In view of (1l6a) this may be written

_ /3E 36
(K,+K2)5,-kze “PlT5E "aj;"). (198)

Differentiating with respect to x gives

) Eafx - (20a)
e & é,
"/““(’axa'r T 3XF
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Substituting from (l’Ta) this becomes .

(K‘+K )"E' aat’-* _KZ Qi

L (aa)

/’*(axa:b _3%‘) §

Since

%-: — O | (228,)

p) Y QK 3
= L 2% 3.:5) (232)
£\ Xt ‘%‘ k3 )9

., (oks)
M2 (3L M) e
"% at(‘?ﬁc TLESE BT
wheres ‘ -
| K 5
! (258.)
L = ? 2
' Iiaciﬁg .
A

T a0k
£ (2 at)“‘ 24 e

- Q% A
FAr e T

(26s.)
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-{2ha) becomes

e e il . (2718)

'F%;‘g_i—;_te‘ f)\'F. Y 0

2 ' 2 ' ‘ B S
%%_: ) and %’f‘b are cbtained from test datz.
For an &ssumed value of c - perhaps the initial "wave
veloclty e }4, / ,c,?f‘ and )/A can bé determined using
least ‘squares’ in conneétion with (27a), which is
written for several poigté in the xt plane. We ‘
riote that (27a) is linear in /) and /“/f’-"”z"" -
An approximation to 02 can also be cobtalned from
(25a), in which we place \

K, = _(ltéi-_)\)_-‘K , e (_2'8;)

wherein K is the spring constant of both springs in
series - obtained by a slow (quasistationary) test -
and /\ is a tentative v&lqe which is later improved.
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A=3 Turther Gonstfaints. Use of Silnusoidal Excitation.

In addition %o tests involving transient motion it is
also possible to devise tests involving sinusoidal
motlon, or vibration. Tor example, let us consider
‘& string of length L fastened at. the origin and ex-
tending to point I on the x axis, Fig. Lhb.z At the.
right end xsL it is fastened to a device capable of
exerting tension, both constant and sinusoidal of
angular frequency (A) . First we prestretch the string
so that 1t has & constant strain €, ; and then super-
impose a small gilnusoldal motmon on this. In the
trestment which follows Ke.- @* €€,0)vhere é'
the initial value of €;o ‘Aand 0g.07 4 Oy ) e
'y é%& and 4, are the sinusoidal parts of
the strgése%, stralns, and’ displacements which are
the excess. over the prestressed values. {Incremental
stresses, stralns, and dlsplacements.) :

2

Using complex notation to take care of the
sinusoidally varying quentities; as is commonly done
" in solving elternating current network and transmission
Lline problems, beam vibration problems, ete., our basic
edqustiong become

- A= ;L—;;(: 2 . (2%)
Tz 0, +Tg (308)
€= E+Ey, (312)
7= K,E, J (322)

Gj:}AJwezj - ~ (33a)

(34a)




AN

\

Fig. 14. String subjected to special end conditions.
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where the bars indicate the complex gquantities which
correspond to the various sinusoldally varying
quantities, and J is the imaginary unit. It follows
that

= G-} + ??2&
:(Ka-#-jw#) 62, = K, 6*3 (355)

= éﬂ#é’g

Placing

?wa(K;*Ka"e’Jw}U) 2
= A (372} .
K, (K, uw,w) 2

(292) and (36a) give

d e

d,?é + O&'AL =0, : (36a)

or

e

APy
A 7C*

The general solution of this differentisl
equation is

2“ Ll
+ A4 =0, (3%a)

= A A YN + Besvo k. (40s.)

N ) ® o
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where A and B are constants. Applying the boundary
conditions

A= O b X = cjjf%.

= | (hla)
we obtain
0=8
| | (bea)
B . Y - 4
A‘L. A MO(LL_,_ g
which in (40a) give finally
,E:E AM@OQ.% . | (432)
Differentiating with respect to x we obtain also
- ol OK~TXL
(Uha, )
65 ‘-ci\ ,dt4u D( L. L

In view of (32a) - (36a) it follows that-

- € ( Kot Jw o
T 5 MKk Ketjope/ o

y g Ki
| @-E(W e(R,HGz*J“D/W)J (46a)

ﬂ=Jwﬁ€m_. (7e)
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ﬁ:‘: Ka Z:__Z.j_ .

ko EKatip ]
T=KE= ¢ Kit Ky +dwop

Substituting (hha) in (49a) we obtain

Ki(Katiwpo) ] cowk %

7=z o

or, noting (37a),

) (Fu:f) £ K.
mou.. ’ _7

- At the en@;;—L this becomes
= -7 [PW ‘
7. =2, (52 ) ’O’t L,

which maey be wri%ten_

e

ﬁﬂwﬂ et (5 )

' where

fg ::'tel; aﬂ

62

K+K2+Jmp Mo&L .

.(h8a)

(49a)

(50a)

(51a)

(52a)

(53a)

(5ha.)




For any value of UJ we can obta:Ln Ak/a“experlmentally.

(53a) then gives ﬁ , after which (5ha) gives of .

#We thus know ol &s a function of &) . This knowledge
‘18 used in connection with (37a) in order to obtain

Kl, Kg, and /L

In s0 doing it may be des:.rable to take advantage
of the fact that the spr:mg contan'b K for both )
gprings Iin series is :

- _KiKa
K= Tﬁ: 9 (55a.)

which relation can be used to reduce the number of
unknowng by one if we are willing to determine K
separately by obtaining a glow test value of o, @ /d.&
evaluated at € 2 €4+

In any case we: can. write (375) .in: the form
P W (K +Katjwp)
- K,(KQ'#JU.?/J«)O(Q =

(56a)

. insert the success:.ve pairs of values (60”0!.‘)
(0o yoh2) » (Om btained by experiment,
(53&), on (5&&) and det®rmine the unknowns so that

Z_ l?wL(Kﬁka*J%}b) | e
~K,(Ky mpmiammmf:'? .

¥ ﬂ can be determined from (53a) in several different -
menners, among vhich are the following.

L. An interation procedure can probably be. devised.

2. An interpolation procedure can certainiy be
devased

3. Using a8 digital computer a table of wvalues of
the function MBtan § - for complex arguments can
easily be constructed.
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In so doing a digital computer can be used to cover the
ranges of the unknowns - two or three:as the case may be,
and choose the best combination of values. .

Even Wl’uhou.t a dlgital computer it lS llke}_y that
a least square procedare can be devised.

Another possibility 18 to write (37a) in the form

Q(I+JGJK”sz) L S
Ki Kz ,&) (58a)
= o5 s "’"“’K.+Kz |
or N 9 ,
pwtk-d Xy
- " | o
1 [ e‘K . \
-J rw +J -——'Ea*—' - O (59}
where

/‘ - K£ ,59

K is obtained separaﬁely,-as’indicatéd’ih'bonnection
with (55a); then since ¥; and X, appear linearly in

(59a), a least square procedure can easily be devised
] fo deﬁérmine them so that

Z' H‘U&,X U\_;, Xz_““Jf“Ux.,
vt 45 (S fl.("_éia)

: L o

Knowa.ng X1, X5, and K, the other quantltles Kl, Kg;
and fb follow immediately..

Since K appears linearly in (59&) it could, if
desired, be included.among the .unknowns instead of
being determined by a separate experiment.: .
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