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Preface 

This is the third and last in a series of reports on 
high-speed tensile-impact work performed in the Pioneering 
Research Laboratory of the US Army Natick L9.boratories 
(now the US Army Natick Research and Development Command). 
The first (NLABS Tech. Rept. 69-18-PR) appeared in 
July 1968 and the second (NLABS Tech. Rept. 74-26-PR) 
appeared in February 1974, 

The first report dealt with the basic mathematical 
techniques and their application to a linear material. 
The second report extended the method to non-linear 
materials that do not exhibit creep or other time de­
pendence. The present report deals with non-linear 
materials that do exhibit time dependence. Since all actual 
materials exhibit creep and relaxation, it is in the present 
report that we can expect to get the best test of the 
agreement between the theory and the actual behavior of 
materials. 

Body armor must be resistant to high-speed impact in 
order to stop projectiles and shell fragments. Parachute 
straps are subjected to sudden tensile stresses when the 
parachute opens and the falling load is suddenly decelerated. 
The work described in the present series of reports re­
presents progress toward an understanding of tensile impact 
but leaves much still to be done. 
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Bij "' 

Cij = 

c = 

co = 

f(x) = 

g(x) = 

i = 

j = 

K = 

k = 

L 

n = 

R = 

s = 

Glossary of Terms 

first time-integral of the repetitive process, 
corresponding to the lattice point in the :rth 
colwnn and the jth row. 

second time-integral of the repetitive process, 

a~iliary quantity found in the repetitive 
process. 

velocity of propagation of strain waves. 

propagation velocity at zero strain. 

function giving the initial displacement of 
each particle in a string. 

function giving the initial velocity of each 
particle in a string. 

subscript indicating the column number of a 
lattice point. 

subscript indicating the row number of a 
lattice point. 

spring constant in the model of the material. 

a repetition index (superscript) in the re­
petitive process. 

length of unstretched sample. 

number of lattice-point intervals in the 
length L. 

2 
(c/c0 ) , a given function of the strain E.. 

displacement of a particle of material from its 
unstretched position x, also see s; also, in 
the appendix, a quantity appearing in Laplace 
transforms • 

s/Lv0 ; the bar is dropped after the quantity 
is introduced. 

portion of the displacement s due to spring 1. 
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2Sij "' 
t ~ 

t "' 

v c 

Vo c 

X c 

portion of the displacement s due, to spring 2. 

displacement of the particle of material at the 
lattice-point ij from its unstretched position 
Xij• 

portion of 8ijdue to spring 2. 

time, also see t, 

tc/L; the bar is dropped after the quantity 
is introduced. 

velocity of a particle of sample. 

velocity of impacted end of sample. 

distance of a particle of material from the 
fixed (left) end of the sample in the un­
stretched state, also see x. 

x = x/L; the bar is dropped after the quantity is 
introd11ced. 

o\ = (appendix) q11antity defined by eq (lOa); also, 
a quantity defined by eq (37a). 

E = normal strain along axis of string, = ;;) ,.o,/o ~ , 

c 

= 

= 

= 

= 

c 

portion of E due to spring 1. 

portion of E- due to spring 2. 

ratio of length of spring 2 to length of 
spring 1. 

damping constant of the dashpot across spring 2. 

ft.-/c0 L, the normalized value off'-. 
density of 11nstretched material. 

normal stress across spring l (total stress 
along axis of string). 

contribution of the dashpot to ~ 

contribution of spring 2 to q- . 

7 



,..,... ~ time constant of the spring 2-dashpot .combination. 

Ll) ~ (appendix) angQlar freqQency of.a small sinQSQidal 
motion imparted to a preiltretched string. 
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RESIDNSE OF IDLYMERS TO TENSILE IMPACT 3. The 
Integral-EgQation, SQccessive-SQbstitQtion Method 
Applied to Non-Linear Materials having Time­
Dependence (Creep, Relaxation) 

1. IntrodQction 

The present report is the third of a series of three 
that describe the resQlts of mathematical and experimental 
investigations of the response of polymers to tensile 
impact. Professor CroQt is responsible for the mathe­
matical developments, Mr. Pilsworth is responsible for 
the experimental data, and all three aQthors have worked 
on the physics of the problem and the writing of the reports. 
For fQrther backgroQnd material reference l shoQld be 
consQlted; it is the first of the present series and is 
referred to as Report I. Similarly reference 2 is the 
second report of the series and is referred to as 
Report II; the present report is of coQrse Report III. 

The work was Qndertaken primarily becaQse of OQr· in­
terest in the prodQction of improved body armor. Ex­
perimental data had been obtained showing the propagation 
of strain pQlses in nylon string after tensile impact at 
mode~ately high speeds. A theory and mathematical tech­
nigQeS were recognized as important means of explaining what 
was observed and of predicting what might occQr Qnder other 
conditions. 

1. P. D. CroQt, M. N. Pilsworth, Jr., and H. J, Hoge, 
"Response of Polymers to Tensile Impact. 1. An integral­
egQation, SQccessive-sQbstitQtion solQtion for QSe in digital 
compQters, and its application to a linear elastic model", 
u.s. Army Natick Laboratories, ·Technical Report 69-18-PR 
(JQly 1968), 71 p; AD-682714. 

2. P. D. CroQt, M. N, Pilsworth, Jr., and H. J• Hoge, 
"Response of PolymeJ1!lltO Tensile ·Impact. 2. Extension of 
the integral-eqQation, SQccessive-SQbstitQtion solQtion to 
non-linear, time-independent materials", U.S. Army .Natick 
Laboratories, Technical Report 74-26-PR (Feb 1974 ), 
76 p; AD-780811. 
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In Report I the mathematical method wa$ developed and was 
applied to the problem of strain propagation in a linear 
material having no creep or other time dependence, Sl.nce 
the solutl.on of this problem is known, and since the new 
method gives the correct solution, its vall.dity for this 
case has been established, and by inference the new 
method can also be expected to give correct answers to 
related problems for which satisfactory solutions have not 
been ave.i:Le.l/Le. 

In Report IJ: the iterative method of Report I was 
extended to non.,linear materials and was applied to a set 
of exper:l.mental data that had been previously analyzed by 
the method of characteristics. Good agreement was found 
between the present (iterative.) method and the method 
of characteristics at low and intermediate strains but 
trouble was encountered at higher strains when the ~tress­
strain curve was concave upward. 

In .the present report the problem of a non-linear, 
time-dependent material is treated and compared with ex­
periment, Reports I and II were considered as sett.ing the 
stage for Report III, for whereas the problems tre:"ted in 
I and II. could be solved by other methods, there is no 
fully satisfactory method of computing the behavior of 
non-linear, time-dependent materials. The results be;i.ng 
presented in the present report. do not clear up this 
situation but represent some progresE; toward solv;i.ng it. 
The methods now being presented are somewhat limited by 
the tendency toward oscillatory and diverging solutions. 
This tendency is reduced, as we expected, in the presence 
of time dependency. In the present report, the greatest 
weakness of the sollltions is some lack of uniqueness: 
there is too much latitude in the choice of model para­
meters. A greater range of experimental data would un­
doubtedly help to resolve this sitllation. 

The experimental data with which we compare Ollr 
resu.lts has mostly 'been obtained on specimens 50 em~ long, 
in which one e.nd sometimes two ref'lection;s of the strain 
pu,lse occLlr dllrj,ng the period of observation. The present 
report contains comparisons of' computed behavior with data 
in which rei;'lections occur, and it also contains experimental 
data taken on long specimens in which no reflections 
occLlrred during the period of Observation. The no• · 
reflection reslllts were· surprising and may constitute a 
major contribution of the present report. 

10 



2. Swmmary of Reports I and II 

In Report I a new method of handling the problem of strain­
wave propagation was developed, in which the relevant partial 
differential eqtlations are transformed into integral eqllations' 
The integral eqt1ations are then solved by the method of 
stlccessive Stlbstitlltions. Referring to the system shown 
in Fig. l, the differentis.l eqllation 

(l) 

was derived for strain propagation. Here x is the position 
of a particle of material in the t1nstrained state, s is 
the displacement of the same particle from its original 
position, and c is the wave velocity. For ready reference, 
these and other definitions are incltlded in a glossary at 
the beginning of this report. By integrating eq (1) 
twice, the eqt1ation 

was obtained; this eqtlation is valid when c is constant 
(a linear material has c constant). The fllnction f(x) 
specifies the initial displacements and g(x) specifies the 
initial velocities; except at the impacted end of the 
string these fllnctions are llSllally zero in practical 
problems. 

Eqtlation (2) was simplified by pt1tting f and g~o and 
introdtlcing three new normalized variables: 

(3) 

in which v0 is the velocity of the impacted end of the 
string. The rest1lt of these st1bstitt1tions (see Report I, 
p 36) was to redt1ce eq (2) to the form 

(4) 

ll 



L. 

Fig. 1. String subjected to tensile impact. 
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where for convenience the bars have been dropped from the 
new variables. The velocity 6 does not appear in eq (4); 
this equation refers, in fact, to the problem in which 
L=l, c=l, and ir0 1. When a solution of eq (4) has been 
obtained, the results can be applied to actual problems 
by using eq (3). The method devised for evaluating the 
integral in eq (4) was to accept a lattice of points in 
the (x,t) plane, to :ilpecify the values of s along three 
borders of this lattice,, and to find the values of sat 
the remaining points by an iterative procedure. To find 
values of the integrand the three-point differentiation 
formula was used, and for the integration the trapezoidal 
formula was adopted. Values of s were' calculated one 
row (one value oft) at a time by iteration, using the 
border values, and taking all other starting values from 
the previolls row• When the specified degree of con­
vergence had been reached, the next row, of valt1es was 
calct1lated. 

Two linear, time-independent problems were solved in 
Report I. In tlw first the end of the string is set in 
motion with its fllll velocity v0 at t=o; in the second , 
the velocity rises linearly dt1ring a finite time-interval 
beginning at t=o. The sollltions fou~d by iteration were 
compared with the exact solutions,, which are known. The 
agreement was good except where the exact solution had a 
discontinllity (abrupt rise, wave front). In the neighbor­
hood of a discontinllity the valt1es (of strain, for 
example) calct1lated by iteration oscillated above and 
below the exact vallles, 'When plotted verst1s x. It was 
clear that the iterative process cot1ld not give rest1lts 
that reprodt1ced a discontin~ity exactly. This had been 
anticipated. In adjusting to a discontinuity the 
iterative results were follnd to be first too low, then too 
high, and so on, bt1t as the discontinllity traveled away 
from any particlllar point, the amplittlde of the oscillations 
near that point was found to dec~$ase. 

I 

The .second of the problems solved in Report I, in 
which the rise in velocity occt1rred during a finite time 
interval;, was more easily handled by the iterative procedure 
than the problem in which the velocity rise was in­
stantaneotls. This was of cot1rse expected. There was still 
some oscillation of the, iterative values above and below 
the exact solution but not enot1gh to destroy the usefulness 
of the sollltion. The conclusion reached in Report I was 
that the Stlccessive stlbstitution procedt1re was satisfactory 
and that oscillati,ons relative to the exact sollltion could 
be troublesome but wot1ld probably not be seriot1s. The 
greatest chance of trot1ble was expected to be associated 
with calctllations based on a stress-strain ct1rve that w1w 
concave t1~ard; in Stlch cases shock waves are mathematically 
predicted, for example by the method of characteristics. 
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In Report II it was shown that a non-linear, time­
independent material may be handled in a manner similar to 
a linear material, bllt with eq (4) replaced.by 

(5) 

This ec;tllation differs2from eq (4) only in the presence 
of the faotor ( o/ a0 ) • The other varie,bles in the 
two ec;tllationa are the same, althollgh in Report II and· 
eq (5) the bars over the variables have not been 
dropped, The propagation velocity c is a fllnction 
of € , and o/c0 is the ratio of the velocity at strain t 
to the velocity e,t strain :oero. An accepted stress­
strain CllrVe permits c/c0 to be found. For llse in the 

. 2 
repetitive process the c;tllantity R ; (c/c

0
) was expressed 

in a form convenient for machine calclllation, usually .as 
a polynomial in E , The fllnction R ( t:.) was not changed 
dllring any one computational run. 

As:a test of the llSefulness of the Sllccessive­
substitution method for non-linear, time-independent 
systems, a problem was selected that had been previously 
solved by the method of characteristics. The values 
of R were obtained from the same stress-strain curve 
that had been used in the method-of-characteristics 
solution. Good agreement was obtained between the 
sllccessive-substitution solution and the method-of" 
characteristics solution, from the time of impact up 
until the time when the.method-of-characteristics pre­
dicted that shock waves were beginning to develop and the 
successive-substitlltion method began to give serious 
oscillations. The two sets of res.ll.lts are compared in 
Fig. 2; the lines show strain as a fllnction of posit·ion,. 
calclllated by successive substitutions; the plotted 
points are corresponding strains calculated by the method 
of characteristics. All the points and the.cor~esponding 
curves show good agreement except for two points near the 
top of the figure. These points and the corresponding 
curve were in the region of developing shock waves and 
increasing oscillations. 
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The successive-substitntiowsolution could not ·be ma!de 
to converge in the region where the method of characteristics 
showed the development of shock waves. This as we know 
is the region where the stress-strain curve is concave, 
upward. In order to obtain a solution of sorts, the 
accepted stress-strain o~rve was modified slightly by 
replacing th~ final part of the concave-upward section 
by a atraight line; this avoided divergence of the 
solution. It was concluded that the solution does not 
immediately diverge in a region where the stress-strair\ 
curve is concave upward but diverges when the computed wave 
front becomes very steep. The question arose as to whether 
the shock waves indicated by the method of characteristics 
and the oscillations shown by the successive-substitution 
method were simply computational result's not found in 
actual materials. This was a tempting assumption,- since 
we know of no cases where a tensile shock wave has ever 
actually been observed. However, it was concluded that 
the possibility of actual oscillations in strain along 
the length of a string could not be ruled out. A con­
siderable portion of Report II was devmted to showing 
that such oscillations can in fact serve as a means of' 
conserving energy. In this: connection it shotilq be 
remembered that, when the method of characteristics is­
applied in a region where a shock 'wave develops, the 
solution satisfies momentum a~d continuity but does not 
conserve_ energy. In using it, one has to assume an un­
specified mechanism to convert the excess energy into heat. 

3· Extension of the Previous Solution to Include Time­
Dependence 

The results obtained previously apply to either a : 
linear material (Report I) or to a rion-linear material' 
(Report II) but they do n'Ot apply to a material that sJ;lOWS 
time-dependence (creep or stress relaxation). Since m?st _ 
materials. show time-dependence the methods of Reports -I 
and II are of limited applicability, unless experiments are 
devised that take place so rapidly that 'creep and re­
laxation are insignificant. In extending the previous 
solution to problems involving time-dependence, we wished 
to choose a mod~l for our material tnat could adequately , 
describe the tim~~dependen<!e and at -the same time introduce 
no more' additional mathematical complicai;fions than 

' •, - ' 

necessary. 



Choice of Model System 

The model adopted is shown in Fig. 3· It consists of 
a spring and dashpot in parallel, with a second sp~ing 
in series with the combination. This model was discussed 
briefly in Report I. It has been widely used. Smith3, 
for example, uses it in a problem involving nylon yarn. 
His treatment differs from ours, however, because his 
springs are linear (stress = a constant x strain) 
whereas our springs are in general non-linear. Both 
Smith's dashpot and ours are linear; that is, the force 
supported by the dashpot is proportional to the rate of 
change of strain. 

A three-element model was accepted as probably the 
simplest that could show the desired time dependence. 
The two-element models both have drawbacks. A spring 
and dashpot in parallel (Voigt model) obeys the 
differential equation•. 

(6) 

This model allows creep but cannot repres.ent stress re­
laxation at constant strain. A spring and dashpot in 
series (Maxwell model) obeys the equation 

r).,e Jq----;o-+J-d.t - ~ a.. dt. 
(7) 

This model gives an incorrect creep behavior because the. 
creep continues indefinitely at a constant rate, whereas 
the materials of interest to us show a decreasing creep 
rate, The accepted model (Fig. 3) avoids the two draw-
backs just mentioned, but of course ~ts validity has to 
be established by experiment. As will appear later, the 
model has been found adequate in the. sense that by 
adjusting the various parameters our experimental data 
could usually be well represented. It is of course 
possible that some other model would have been equally 
satisfactory. It is even possible that a simple Voigt 
or Maxwell model would have been adequate for some of 
our data, considering that we were dealing with high­
speed impact and rather short intervals of time, 'but 
the adequacy of these simple models was not anticipated. 

·3. J. C. Smith, "Wave Propagation in a Three-Element 
Linear Spring and Dash pot Model Filament", J. Appl. 
Phys. 11, 1697-704 (15 Mar 1966). 
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The analysis of the model shown in Fig. 3 was carried 
ot1t in Sllch a way that the two springs cot1ld obey different 
stress-strain curves, bt1t when the time came for actual 
calctllations the asstlllption was made that ohe two springs 
were alike except in "length", The length of spring 2 
was taken to be 1\ times the length of spring 1. If 
the same stress cot1ld be applied to both springs, the 
strains wot1ld obey the relation 

E
2 

:: A f, . (s) 

Of cot1rse the stresses across the two springs are in 
general tlnequal, because the dashpot across spring 2 
Stlpports !\.art of the stress. The ratio of spr.ing 
lengths, A , was one of the parameters to be adjusted in 
order to fit the experimental data. 

As a second disposable parameter the. damping constant )!­
of the dashpot .was tlSed .• · In the simple case where spring 2 
is linear with spring-constant !C the constant J.J; is 
simply relatE)d. to the time constant of thE;! sysf;em con­
sisting of spring 2 and the dashpot across it; we have 

where 7"' is the time constant. 

(9) 

In addition.to assigning the valt1es of ).. and}:'- we also 
have some freedom in the choice of the stress~strain ct1rve 
used. for both springs. 

Mathematical Analysis of the Time-Dependent Model. 
The model of a time-dependent material shown in Fig. 3 
can be analyzed by making certain additions and changes 
in the methods t1sed in Reports I and II •. The separate 
spring 1 is eqtlivalent to the "springs" handled in 
Report II. The spring 2, with the dashpot across it, forms 

~ 

a new. combination that has not. been previoasl.y treated. 

More specifically we shall Stlppose that a·cubic centi­
meter of the material behaves like the mechanical system 
shown in Fig. 3· Becatlse'of the ll!iit length and cross­
section the strains may be considered to be elongations, 
and the stresses to be forces. The basic eqt1ations are 

(10) 
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E ~I -1- {.2. (11) 

(12) 

(13) 

(14) 

We thQs consider the elongation E to~ be composed of two 
parts, one of which depends on the total stress alone, 
whereas the other depends also on the time (past history). 
Similarly, we consider the force q- to be composed of 
two parts, one of which depends on !11'2 alone, whereas · 
the other is proportional to d€2/J:t· The springs 

shown in },ig. 3 are in general not ·linear. In the above· 
eqQations the effect of inertia is not inclQded. 

In the case of o~.r string the above relations pertain 
to each point, and (14) becomes 

cr; -:;: u ~ e 2. , 
I ~ ~j; ' 

(15) 

also, we regard the displacement s to be composed of two 
component.displacements, thQS 

(16) 

where, in accordance with (ll) 

(17) 

(18) 

(19) 
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Finally, the condition for dynamic equilibrium is expressed 
by 

(20) 

(See Report II, eq 6). 

We shall consider the damping coefficient fL to be con­
stant, which corresponds to viscous damping. 

Integrating (15) we _obtain 

. d:: 

Ea: (eal =c +~[ <!f tM ; (21) 

also, integrating (20) twice gives 

The problem in which we are interestdd is one in which 
the initial distributions of displacement, velocity, and 
strain are zero. In this case (21) and (22)·become, 
respectively, 

(23) 

(24) 

In view of (12) and (18), (24) may be written 

(25) 

Proceeding as in Report II, page 7, we now place 

::;:..Jl. 
L' 

(26) 
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where 

(27) 

c and c0 hence pertain to the left hand spri~g in Fig .. {. 

It now follows that 

- ~z, E = (Ldll - b.. d-4, ...... ·-· - €1 .. I d'/( - L ~.x.· 
.J.,. 

a}( 
.... (28) 

. . 
Similarly 

- -f = E2' ~ ! - E. -2 (29) 

B'rom (27) and (28) we see that 

.--· 
.c(E,) :: ,t:..(~,). :_ .c.(~f).. (30) 

(23) now becomes 

i. 
'[ L frr.di -- ~ojL o · '· 2. 

or, placing 

- - Cof.L 

~ - I 
~ L. (31) 

we have 

. :t 
-· -1-fo; -
E - dZ. -2 .)h . 

. . 0 . 

(32) 
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(25) becomes 

J..L= 

or, noting (27), 

(33) 

where 

- ~ 
D(E) = {c(E,J) = ~,c )a (34) 

"' , r..c (0) \ .e.Q • 

A.possible method of s~oces~ive s~bstit~tions is now 
given by the following eg~ations, which are ~sed in the 
order given, and in which the bars are omitted, it being 
~nderstood that the vario~s g~antities are normalized as 

' indicated l)n the preceding pages. The step n~mbem (~) 
or ( .£+1) are indicated by s~perscripts. Starting with 
f (-Va) and ~ (: ) we optain G:(lt+l) and €C-kt/) by the 
rohowing st'efs: . . ·.. ' . 2 . . . . 

.r(k+l) c., = 

23 

E c~-+t) 
2 ·• 

(35) 

(36) 

(37) 
! 



We note that in this successive substitution process it 
is not required that a record be kept of sl,s2, s or e 
The initial and boundary conditions are 

O~'X~I 
. . .. ··' 

...b(/)-i;)= ~~o-c-t. (38) 

Since these conditions are on s, it does not appear that we 
shall be able to confine our attention to the strains 
alone. Accordingly, we shall place (36) in the form 

G~+l) j ti:J; (.fi) dl.A.~.A) . . 
~ = R(E, J:JX2.d;td);. 

. 0 ~ . . 

(39) 

Since s1 and s2 are both positive, it follows from (38) that 

AI, Cq,.::t) : 0 

...&d~t,o) :: 0 
From the second of these equations we also have 

also, since . . · ·. ;t . ' .. 

E.2 ( 1/t) = fo 1 cr,(l,-:6)· rJ:t J ( 42) 



and since <fi is finite, we see the.t €.:z.U.J-h) cannot be 
changed abraptly from its initial valae of zero regardless 
of what motion is specified for the right end of the str:!.ng. 
On the other hand €

1
(1J-J;)may change abraptly. Similarly, 

since 

(43) 

we see that for any fixed valae of x , ez(?(,;/;;) is a con­
tinaoas fanction oft. 

We shall now consider a tentative nllillerical procedare 
for applying the above eqaations. As before, we shall ase 
a sqaare lattice, as indicated in Fig. 4. The varioas 
qaantities are determined one row at a time; hence, we 
need only describe how to obtain data for the jth row 
when date. for the preceding rows are available. The 
varioas steps are as follows. 

l) sis known exactly at i=o and i=n for all valaes of j. 
As a first aRproximation we shall take the valaes of s for 
the ( j-l )t row as those for the }h row when O~J..<bl.•th 
Similarly, we shall take the valaes of s2 for the ( j-1 ) 
row as the fir~t approxi~ation to those 9f the jth row. 
Sabtracting s2 ~l) from s~l) we obtain s 1 ~l) for the jth row. 

2) Knowing s1(l) for the jth row we determine 

this row; and hence, using (39), s(2 ) for this 

(I) 
£1 for 

row. 

() C.l.) 
3) Knowing t;; 1 for the j th row, Ez is determined for 
this row asing1 (35). This is a sabroatine process of 
saccessive sabstitation. 

4) Integrating 
,..t2) (2) 
~;;; namerically, s8• 2. 

for the }h row is 

obtained. 

5) s1(2) f@r the jth row is obtained by sabtracting s8(2) 
from s (~X) We note that s is known exactly at the end 
points. 

6) We now proceed as with step 2, and so on. 
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Fig. 4. Lattice of points at which calculations 
are to be made. · 
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In the various nUmerical differentiations and integrations 
appropriate formulas are used. To fix ideas we can 
tentatively say that the numerical integrations wi:Ll. be 
carried out using the trapezoidal formula (116 Report 1); 
and that second derivatives will be obtained using the. 
three point formula ( 117 Report I), based on a 
quadratic polynomial. Except at end points first de­
rivatives will be obtained using the three point formula 

based on a quadratic polynomial; at the end points they 
will be obtained using the two point formula 

based on the linear polynomial, the upper sign being 
used at t.he right end, and the lower sign being used at 
the left. 

Proceeding along the lines indicated above, the set 
of instructions given in the next section for programming 
the successive repetition process for use in connection 
with a digital computer was devised. In these in­
structions A ;i.s a measure of. the first time integral in 
(39), B is a measure of the second; and C is a measure of 
the time integral in (35). Instead of finishing the 
calculation '?f €~ ·for .each round of the main successive 
repetition process,. which is aimed at solVing (39), the 
subroutine indicated 'in 3) above is replaced by a single 
round of the subroutine process. This was done because 

. it was felt that there was no point in calculating. Ea to 
an accuracy much greater than E, during the. course of 
the main successive repetition process. However, if 
difficulty is encountered with convergence, it IDE!.y be 
necessary to. include the f'ull subroutine p:r'ocess. ·Mean.­
while, until such difficulty is encountered we shall LlSe 
the simpler process described. in the inst:mctions. 
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In the above discussion s (lq) and s2 (15>) are the basic 

quantities which we know at the beginning of the l\th round; 
and s(k+l) and s

2
(k+l) are the quantities which we 

ultimately calculate gu:ring the(cqurse of the round. 
If, however, we use s\m/ and€ N/ as the basic quantities, 2 .. 

\Ve avoid the situation ~Vherein E is integrated to give . 
s2 , ~Vhich is then differentiated to give E2 . The res.ult 

is the set of instructions given in the next section. 

4. Description of the Repetitive Process ~Vhen Applied 
to the Nonlinear String ~Vith Creep or. Relaxation 

Our probl.em i.s to determine the values of the 
quantities si. and Q:itl~j at the points of a square lattice. 

J 
i takes the values 0, 1, 2, 3, ··· ,n; and j takes the 
values o, l, 2, 3, ·• . n is given; hence the range of 
values taken by :j) is bounded. The range of values taken 
by j, however, has no upper bound except, possibly, one 
~Vhich will be assigned later from practical con-
siderations, Fig. 4. . 

The values of Sij are given for those points which lie 
on the border, thus 

Atlj =0 
• • 
J ;:::; o, r, 2 J 3, · · · , 

(M) 

The values of 2sij are given for those points'~Vhich ·lie 

on the left and lo~Ver parts of the border, thus 

.-<\J • - 0 2 OJ- . ' 
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'('he valu.es of sij and::~esij at the_ other points are'determined 

a row at a tim,__ that is, ,for j fixed and L;:1; 2,: 3, · · · , 
(n- 1) for Sij' and n N:r 2sij• ~h~ va1u.es ofj are t>i,ken 

in the orde:, 1, · 2, 3, • · • ... ;r:n view.•of this·. it. will · . . 
evidently be su.ff:lcient to describe how to obtain the va1u.es 
of Sij' and 2sij for the jth rmv when the va1u.es 'for all 
of the preceding rows -are known .. 

T!;:v" valu.es of Sij and 28 ij for the jth r0war~ ,obtained 

as the llfunits gotten, respectively, by applying repeatedly 
a process shortLy to be described. · At the beginning 
of the Kth repetition we have the qu.antities · · ·' 

as approximations to·~fhe qu.antities 
'o;, 

} (49) 

' 
respectively. Here K is a su.perscript, not an exponent. 
When the process is applied starting with the qu.antities 
(48), the quantities 

.AJ (~+I) 

I J ' 

(/a.+ I) 
2 A>,J 

J 

A (.P<.+ I) . t.k+l) 
.... 2.j . ' ~ 2j ) ••• 

·,;' 

are obtained as approximations to· (49), respectively. 

(50) 

The sequence of repetitions is started by taking the 
valu.es of sij and 28 ij for the (j-l)th row as approx-

imations to the valu.e,s for the jth row·; respectiv:ely, thu.s 
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These valQes are, of coQrse, know~. The seqQence of 
repetitions is terminated when for SQfficiently large k, 
the OQtpQt (50) dQplicates the inpQt (48) to the re­
qQired accQracy. The common valQes which then compose 
(48) and (50) are then taken as the final resQlt (49). 
The valQe.s of Sij and 2Sij which compose the jth row are 

thQS determined. 

Finally we shall describe the process by which we 
start with (48) and obtain (50). DQring the coQrse of 
the calcQlations we compQte and record, in addition to 
the qQantities Sij and 2Sij, the am<:iliary qQantities 

1E.1..j ~ 2. C..t.j ' R..l J l ~j, :1. a):,j) A,l;Jl B;.,3 and C...:.j . · 
Along the lower border, where j~o these qQantities 
are defined to be 

n :: r I 0 I 

r.r·,;(l "'· cr (o) .. 0;\ (rl () ::: u (o) "· 0) 
(r;~; :::o"·(o):c:O "'o o·; ::rr-(o)::rJ· 

'.() ) ·j ill.• (I . . ) 

r 

. -o 
c""- ) C -;:: Q' c :;: 0 '• 0 

' c ~'VO::: 0 ' .. J j(l I '2.0 ) ./ 
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The quantities Rij' Aij' and Bij do not exist at the 

points of the left border, , where i=o, or the points of -
the right border, where i=n." As is thio> 'case··wi~h ilij 

an,d 28 ij the at>xiliary qu~ritities 11GJ.t > a..€.1-J, R.tj, G'lj' 
2CQJ • A;,J B..bJ>and C;.j are ob_-p:aineii one row at a 
time, are ~nown in the first (j-1) rows, and are 
obtained in the jt~row as(.t!;he limits approached by Uo) __ 

the ~anti ties 1 E,.)J ' 2.. G'AJ ~ R~Jk)j .<:f;,)_ /-lob ~ (J'.,.:.J ~ 
AJi )' 8,;,{~ and C;. .(./4 respectivefy, dt1ring 
the course of the succe~sive repetitions. 1~e desired 
basic process is now described by the relations 

. '-

(54) 

(55) 



} (59) 

~ :.. D I 2 • • • '""'. • 
' j > ~ ,. 

E 
(i+l) 

'2. ,, -
"'.J -

(64) 

5. Application of the Method to Expe:pimental Data (with 
Reflections) 

In order to test the model selected for a time-de­
pendent material and to test the SQccessive-sQbstitQtion 
method developed in the preceding mathematical analyses, 
a set of experimental data obtained on a nylon yarn was 
selected. This set of data wa~ originally presented and 
analyzed by Pilsworth and Hoge • It was QSed in Report II 

·as the basis for a comparison petween the reSQlts of a 
SQccessive-SQbstitQtion·canalysis and the best of the 
method-of-characteristics analyses given ih' 'RIH. 4, •1\All 
of the data, were obtained from.:\i.):J.e .high-spee<l. stroboscopic 
photograph shown in Fig. 3 of :ilEl'terence 4 , which is 

4. M. N. Pilsworth, Jr., and H, J, Hoge, "Rate-De­
pendent Response of Polymers to Tensile Impact", 
Textile Res. J, 12, 129-39 (Feb 1965). 
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Fig. 5· Photo of nylon dQring tensile impact. The data o~tained from thi s photo were selected for QSe in the 
present pape~. The speed of impact was 90 m sec- and the SQccessive exposQreS were made at the rate 
of 7500 sec- . 
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reproduced as Fig. 5 of the present report. This figure 
contains 6 usable exposares following impact, and the 
strains obtained from these exposures are plotted as 
the broken lines of Figs. 7, 8, and 9, where they are 
compared with results from three different compt1ter 
runs~~ 

Each attempt to calclllate the behavior of the nylon 
yarn as experimentally observed reqllires a streps-strain 
curve for the material to be accepted; it also requires 
values to be chosen for the parameters ').. and JJv • 
We began by using the stress-strain curve that/had 
previously given the best results. This is curve C in 
Fig. 6; it is also curve C in Fig, 5 of reference 4. 
This curve had been developed by successive trials in 
which the method of characteristics was t1sed and it 
gave a reasonably good fit of the experimental data, 
especially the early data obtained before the _second or 
third reflection of the strain pulse hli_a: occurred. The 
values of >., and/!: required for a calclllation were 
chosen partly by gt1esswork and partly by methods similar 
to those described in the appendix, bt1t more primitive. 
The values used in each compt1ter rlln are given in 
Table 1, together with other relevant quantities 
describing the run. After each run had been plotted 
and analyzed, new valt1es .of )\ , If- or other relevant 
qllantities were selected.for use in the next rtln. 
Since no table of computer runs was inclt1ded either in 
Report I or Report II, a complete- table is included in 
the present report. All rt1ns ·that yielded llSeful in­
formation are listed. Omitted rllns had falllty programs, 
diverged very quickly, or had other defects. 

Results of three of the best rllns are shown in 
the present report. The first of these, Run 14, is 
shown in Fig. 7, where strain is plotted against position, 
with time as a parameter. The 6 solid lines are plotted 
from 6 ·rows of the compllter print -ollt·;· · one row being 
chosen to. correspond to each of the 6 llSable expostlres 
in Fig. 5-.- 'The common time of each exp~sure and the 
corresponding row -of the print-out is indicated near 
each pair .of curves in the figure. Good agreement 
between calculation and ex-periment is indicated i.!i each 
pair of curves, __ nearly coincides. In Fig. 7 the agree­
ment is only f~ir. One of the weaknesses .of earlier 
calclllations h~s been taken care of; Figure 2 shows _ 
regions of constant strain near x = b for two curves· 
( t = 0•479 and 0.613 ); it also shqws such regions 
near x = 50 for three curves ( t = 0.213, 0.346, 
and 0.479). The experimental data do not show these 
flat regions. Run 14 does not have the flat regions 
and in this respect represents an advance over the_ 
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Fig. 6. Various stress-strain curves for nylon; A, 
semi-static; B, linear; C and D, dynamic but 
developed with different assumptions. 
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Table l. Swmmary of CompQter RQns 

All significant compQter rQns are listed, inclQding 
those made for the present report and also those made for 
Reports I and IL ·The omitted rQns had faQlty programs, 
diverged at an early stage, or were considered not QSefQl 
for other reasons. 

RQn Stress- Notes 
Strain 
Relation R )\ I" 

l Lin a 
2 " 
3-lO c b 
ll " c 
12 " l/3 240 d 

13 " l/3 60 
14 " l 60 
15 Lin l 1 60 g 
16 D l 60 g 
20 Lin l l 24 

21 " l.l5 l 24 g 
22 " l.l5 2' 60 
23 II 0.85 l 60 
24 II 0,85 l 24 
25 " 0~.85. 2 120 

26 " 0.85 2 60 
27 yU 0.85 2 24 .u:I.J..I. 

28 " ·70 l 60 
29 " · .. 70 1 24 
30-33 II l l or 3 7·5 or e 

30 
35 " 25/16 l/9 61.218 
36-41 c l to 3·9 to 

25 30 
42 A 5 ll.25 
43-49 Lin (2) f 



Notes for Tabl.:e l 

a Runs 1-21 treated in Report l. .·· 

b Runs 3-11 1 tl:'.El~ted 'i'.n RECi\ork2. 

c Curve C unmodified (no linear·final section). 

d Runs 12-291 treated in .the present report; they 
refer to short specimens with strain reflections·. 

e Runs 30-33, 36-421 treated in the. present report, 
runs without reflections. 

f Runs 43-491 treated. in Appendix 2 of Report 2; 
stress-strain curve consisted of 2 linear sections 
of slopes 1:4. 

g Runs 15 1 161 21 gave best agreement with the ex­
perimental data of all runs made, with 21 probably 
the best of the 3. 

- ·. ~ 

'. 
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calcQlations shown in Fig. 2. However, the slopes of 
the calcQlated lines in Fig. 7 do. not agree. with the data 
and at t ~ 0.613 the slopes even have the wrong sign. 
These facts made it seem likely that the propagation 
velocities of varioQs strain increments were incorrect. 
Hence we conclQded that the faQlts of RQn 14 cOQld not 
be corrected if we' continQed to Qse CQrve C as OQr 
stress·strain cQrve. It seemed likely that cQrve Chad 
no fQndamental significance, that it was not a trQe CQrve 
of a time-independent material bQt was the resQlt .of· 
trying to represent time-dependent· data with a time­
independent model. PresQffiably, the representation was 
fairly good becaQse the experimental data came fnom 
a single experiment with a single time scale. If a 
mQch more rapid or mQch slower experiment were to be 
performed, the representation based on CQrve C woQld 
probably be worse. 

AssQming that CQrve C was not of primary significance 
and probably described the behavior of the material only 
for one particQlar speed of impact, we decided to try 
other stress-strain cQrves. The next one tried was a 
simple linear CQrve. The resQlt (RQn 15) was jQdged to 
be better than any previous run. In Run 16, the resQlts 
of which are shown in Fig. 8, a new stress-strain curve 

·was used. This curve (curve D of Fig. 6) was developed 
by the same met.hods QSed to develop CQrvl!! C; these 
methods are described in reference 4 Run 16 was 
judged to represent the experimental data somewhat 
better than RQn 15 and hence was the best rQn made up 
to that date. 

After 3 unsuccessful.runs (17, 18, 19), a set of 
10 runs (20-29) were compQted, all with linear stress­
strain cQrves. VarioQs valQes of~ and Ll were QSed, 
and in addition the valQe orR (::~~C.}ms assigned values 
ranging from 1.15 down to 0.70. For a linear CQrve, IS< 
is constant, of course, and assigning a valQe of R¢ I 
is simply a convenient way of changing the value of ~ 
for the material. Of the group of 10 runs, RQn 21, shown 
in Fig. 9, was judged to represent the experimental data 
best, and to give a slightly better fit than any of the 
earlier rQns. · 

To be usefQl, OQr model of a time-dependent material 
shoQld contain only a few disposable. parameters, and 
these parameters shoQld be QhiqQely determined by the 
experimental d_ata. If this is the case·we can QSe the 
model with some confidence to predict the response of 
the material Qnder oth¥r experimental conditions, for 
example when the' impact is more rapid or slower than the 
impacts. we stQdied. The resQlts presented in Figs. 8 and 
9 show that OQr model is not QniqQe; we were able to 
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represent the experimental data almost equally well with 
different sets of. parameters, including both linear and 
nonlinear stress-strain curves. 

One way of improving our model would be to include 
more than one time constant in the creep and relaxation 
mechanism. Our single ·dashpot ·has essentially only 
one time constant. Some authors have used a wide 
spectrum of relaxation times to explain polymeric 
behavior. However, we would need to have experimental 
data covering a wider range of impact velocities before 
we would be justified. in introducing a larger number of 
elements into our model. 

Since observations of impact at substantially higher 
velocities would have required major changes in our 
experimental equipment, we searched for other ways to 
cast more light on the behavior of our material. The 
set of experimental da.ta analyzed above were taken with 
a specimen 50 em long. This length was short enough 
so that reflections of the strain pulse occurred during 
the period of observation. The reflection of strains 
into the already-strained material made the data more 
difficult to .interpret. We decided to perform ex­
periments in which reflections did not occur. · Two 
such experiments are described in the following section. 

6. Experiments Without Reflections 

Specimens of nylon yarn 400 em long (8 times the 
normal length) were marked in the usual way at l-cm 
intervals and installed in the usual way. The camera 
was aimed at the end of the specimen where impact 
occurred, so that it could photograph a length of 
roughly 50 em of the yarn. The yarn was so long that 
the photographing was completed before the strain pulse 
could be reflected at the fixed end of the string and 
be propagated back into the field of the camera: After 
a considerable amount of work (synchronization of the 
impact and the photographing was a problem), two good 
photos of impact behavior were obtained. The data . 
obtained from these photos have been designated NC-6 
and NC-7. Fig. 10 shows the photo from which NC-6 was 
obtained. Figures ll and 12 show· typical curves 
plot.ted ·from each set of data. The plotted points were 
derived from the data and the curves were faired thru 
the points (they are not ~omputed curves). In each 
figlire the top curve refers to· the end of the yarn 
attached to the head mass and the bbttom curve refers 
to a point near the other ·edge of the field of view of 
the camera; the middle curve refers to a point 
intermediate between the other two. The two figures 
show strain as a function of •'time for periods of about 
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Fig. 10 . Photograph from which the data designated NC- 6 
were obtained . 
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2 milliseconds after impact. For details of how the high­
speed, stroboscopic photographs were taken and how 
the data (positions of marks on the strings) were 
analyzed, reference 4 should be consulted. 

We had expected all curves of the type shown in 
Figs. ll and 12 to show an initial rapid rise corres­
ponding to the arrival of the strain pulse, followed by 
a gradual rise corresponding to a further stretching 
of the material. Of the six curves plotted, only t~e 
top curve j,n Fig. 12 shows this behavior. The top curve 
in Fig. ll and the middle curve in Fig. 12 show essen­
tially no change in strain after the passage of the 
initial pulse. The three remaining curves all show a 
decrease of strain with time. Instead of continuing 
to elongate by creep, the material represented by these 
curves appears to be contracting after it reaches 
maximwn strain. There are wide variations in strain 
at different points on the specimen at a given time and 
also at a given point at different times. For example, 
Fig ll at t=2 msec has a strain of about 7% near the 
head mass and a strain of less than 3% at the point 
33 em downstring. Also, at the 33 em point the strain 
went above 4% at 0.6 msec and then fell to below 3%· 

The strains shown in Figs. ll and 12 show major 
departures from the behavior that is commonly assumed, 
in which a strain pulse of constant height travels 
along ulile specimen,, leaving uniformly strained material 
behind it. The possibility that the data are in error 
because of experimental difficulties has been con­
sidered, but we are not aware of anything that could 
invalidate these two experiments. The fact that one of 
the curves in Figs. ll and 12 slants upward, two are 
horizontal and three slant downward does not point 
toward any simple type of experimental error. Wavelike 
irregularities are evident in some of the curves, es­
peci.ally in the two top curves that describe the point 
nearest the head mass. Such waves have been observed 
in many of our experiments and have amplitudes that 
sometimes exceed twice the scatter of the data. We 
believe that the waves actually exist but can only 
specula~e on their cause. One possible cause is non­
uniformity of the nylon yaam. 

The mathematically simple picture of impact is one 
in which the head mass is instantly accelerated to some 
fixed velocity and travels with constant speed there­
after. Our actual experiments differed significantly 
from this simple ·picture. The head mass hs.d a finite 
velocity-rise time of roughly 0.3 msec, as can be seen 
from Figs. ll and 12 (the head mass velocity is very 
nearly the same as the particle velocity at x=o). · 
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After the head mass reaches its maximwn speed it 
gradaally slows down becaase of friction and becam'le 
of the force exerted on it by the stretching specimen, 
btlt the deceleration <is too small to be very noticeable 
in Figs. 11 and 12. The acceleration and deceleration 
of the head mass complicate the sitllation somewhat 
bt1t do not give any obvioas help in explaining the 
ct1rves shown in Figs. 11 and 12. 

7• Attempts to Calcalate the No-Reflection Date. 

The data taken in st1ch a way as to avoid strain­
Plllse reflections in the part of the specimen being 
observed were analyzed by the same methods as were ased 
in section 5· It was realized that if our model of 
the material was a good one it shoald predict the be­
havior when reflections were present and also when they 
were not present. Thirteen compater rans (30 - 42) 
were made, llSing a variety of combinations of the 
constants )I l J-land R and variolls types of stress­
strain ctlrves, inclllding linear "cllrves" and ct1rve C 
of Fig. 6. Since the specimen length was now 8 times 
what it had previoasly been, the distance between 
points of the comptltation .lattice was increased from 
1 em to 2 em. Even so th$'~'compllter time per ran was 
considerably increased, becaase all lattice points in 
each row had to be compated, althollgh the strain at 
most of them had not began to rise above zero. 

None of the 13 rans gave cllrves that looked like 
those in Figs. 11 and 12. A few of the calc alated 
ct1rves are shown in Fig. 13. In only one Tan did we 
Stlcceed in getting the strain to decrease with time; 
this was Ran 32. The three ct1rves for different valt1es 
of x differ from the experimental carves, however, in 
that all three calcalated ct1rves approach ea<ch other 
and become nearly coincident. The experimental ct1rves 
never get very close together and are diverging as the 
experiment ends. 

It seems best not to try to propose any specific 
mechanism for the behavior shown in Figs. 11 and 12. 
The resalts< were anexpected and int<;lresting; they 
cast some dot1bt on the validity of ollr three-element 
model. However,< it sJ;wuld be remembered that large 
amot1nts<of energy are released when the slider is 
accelerated by .the; rabber be.nds. Energy collld travel 
more rapidly in the ste<el tracks and possibiy in 
the sapporting table than it travels in the nylon 
yarn. It seems doabtflll <that any mechanism exists 
that cot1ld transfer energy to the fixed end of the 
string and set it in motion before the pulse in the 
string arrived, bat some Sllch mechanism cannot be 
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completely ruled ollt. Fllrther experiments are needed, 
in which the conditions and parameters of the experiment 
are varied. 

8. Concllls ions 

The integral-eqllation, sllccessive-sllbstitlltion 
method of analyzing and predicting the behavior of 
materials llnder tensile impact has been extended to 
inclllde time-dependency (creep and relaxation). A 
three-element model, consisting of a spring and dashpot 
in parallel, and a second spring in series with this 
combination was used. The behavior of short (50 em) 
specimens, in which the strain pulse experienced re­
flections, could be explained by this model. It was 
in fact possible to describe the behavior with various 
models, employing different stress-strain curves 
and other different model parameters. Since different 
sets of parameters described the observed behavior 
almost equally well, no unique set of parameters for 
the material could be chosen. 

Whgn long specimens were used, in which no re­
flections could occur during the time of the ex­
periment, no satisfactory model of the process was 
follnd. The material was observed to contract after 
.the strain pulse had passed over it instead of re­
maining at constant strain or co)1tino.ing to elongate 
slightly. A study of this somewhs.t-unexpected be­
havior appears to be the most fertile area for future 
work, when and if impact experiments are resumed. 





99 · Appendix 

A-l Determination of A and Jk 

The pQrpose of this appendix is to record certain 
~deas that were being considered when work on this 
project was discontinQed. These have to do with 
determining )I and IJ. more precisely. At present we 
have too mu.ch freedom in their choice; hence we shall 
consider additional restrictions which can be. applied 
experimentally. We note that the QSe of the parameter). 
implies that the two springs are of the same natQre, 
and differ only in length, spring 2 being A times as 
long as spring 1. 

Determination of )!. • Noting Fig. 3 and eqQations 
(10) - (14), we see that u.nder slow (quasistationary) 
loading a; :::0, e.nd 

rio- = a-'(E) d..E1 _ 

d.e ' dr:. 
rr'(E1) 

/ f}. • (la) 

Under fast loading 

• 
Initially <Tj.::. 0; hence €.2.:. (), and (2a) becomes 

(3a) 

It follows that 

~X =..Q, (4a) 
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Placing the initial va.lue E,:: Din (la.) a.nd dividing 
into (4a.), we obta.in finally 

A= - I 
(5a) 

where the Sllbscripts o, F, and S indicate "initial", 
"fast", e.nd "slow", respectively. This gives ).. after 
the derivatives on the right hand side have been 
determined experimentally. 

Determination of ~ o Let us suppose that the springs 
are linear, and have spring constant.s K1 and K2, re­
spectively. We then ha.ve 

f - f, + i2 ' ( 
a-'{:. K, (; 1: o-, + C72. = K2. e2 + jJ- E2_.] (6a) (_I 

Starting ~t t~o with the system unstressed let us 
maintain E' ::: / , then 

Taking Laplace transforms we have 

} 

5
,, ,_ 

(Ta) 

(Sa.) 



where the bars indicate transforms. Solving for E1 we 
obtain 

(9a) 

where 

K I 
- a + ----~~ 
- p. ./.b l (A-+ rf..) ..4 (Ad· ot ) 

K., + K2.. 
Jk • (lOa) 

Noting the partial fraction expansions 

I ,J 
4...,._ ..,....'\.....,:..( A..t-+~ot~} :::; o( .4 2. ... 

I I 
o( .2.,4 + 

I - ..J.._ -- d...A 
I (lla) 

and ~sing a table of Laplace transforms we find that 
the inverse transform of (9a) is 

M~ltiplying by K1 to obtain Q!, and noting (lOa) we 

obtain finally 

Differentiating with respect to t gives 

(14a) 
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• 
from which we see, that . 0" changes exponentially from 
one vallle to another with a time constant 

-- K,+Xa • 
(15a) 

We also note that the first term in (l4a) is the 
spring constant of springs land 2 in series •. If ~ 
is determined experimentally,· (l5a) gives ~ • 
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A-2 Further Constraints. Inclusion of Inertia. 

In the above it was tentatively assllll!ed that the 
experiments devised were such that inertia ·~·s un­
important. If this is not the case we can still proceed 
as follows if the springs are linear. vre· have the 
equations 

d~ ,A.; j)·<r 

F ,;) ;t -a. :::. d 1< ' 

.i Ea 
<J, =fJ:t' 

It follows that 

e = E, + E2. ' 

In view of (l6a) this may be written 

Differentiating with respect to x gives 
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(l6a) 

(l7a) 

(l9a) 

(20a) 



Stlbstitating from ( lTa) this becomes 

Since 

(22a) 

(2la) may be written 

(23a) 

where 

(2.5a) 

Placing 

(26a) 



(24a) becomes 

j_.c. 
')\ T ·-­- (27a) 

~~'1.: ~ and ~-:!' .._ are obtained from test data. 
For an 6:ssLUned val.Li.e of c - perhaps the initial "wave 
velocity"- ~/fJ:l and l/A · can be determined llsing 
least sqllares in connection with (27a), which is 
written for several points in the xt plane. We 
note that (27a) is linear in 1/A and p./ftC>" . · 
An approximation to c2 can also be obtained from 
(25a), in which we place 

K -:.(I+A)K, 
' 

(28a) 

wherein K is the spring constant of both springs in 
series - obtained by a slow (qllasistationary) test -
and )\ is a tentative vallle which is later improved. 
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A-3 FQrther Constraints. Use of SinQsoidal Excitation. 

In addition to tests involving transient motion it is 
also possible to devise tests involving sinQsoidal 
motion, or vibration. For example, let QS consider 
a string of length L fastened at, the qrigiJ:l and ex­
tending to PPint L a,n the x ax'is, Fig. 143 At the, 
right end x~L it is fastened to a device capable' of 
exerting tension, both constant and sinQsoidal of 
angQlar fre').Qency ().) • :ti'irst we prestretch ;the string 
so that it has a constant strain (;0 ; and then SQper­
impose a small sinQsoidal mot ilion on this. In the 
treatment which 'follows Ke :=: (1"''(~10)where , €10 is 
the initial valQe of ~~ :> Ka. ~K~and o-,,,<rj ~ a-.~~. 1 E: 
f1 J ~ ,4 A,l ' and ,4,:2. are the S:LnQSOidal parts of, 
the str.?ss~, strains, and' displacements which are 
the excess over the, prestressed valQes. (Incremental 
stresses, strains, and displacements.) 

Using complex notation to take care of the 
sinQsoidally varying ').Qantities, as is commonly done 
in solving alternating. cQrrent network' and transmission 
line problems, beam vibration problems, etc., OQr basic 
e').Qations become 

- f(Jj2~ 
cL"fF-- ' cL-.x. (29a) 

(30a) - - +- cr:-2. ' r:r- - (f'"l -
....- -

E - t:~+ e.~ ' (3la) 

-rr- - K1 E, - ' (32a) 

(33a) 

(34a) 



/K----L ---~~ 

Fig. 14. String subjected to special end conditions. 
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where the bars indicate the complex quant1.ties which 
correspond to the various sinusoidally varying 
quantities, and j is the imaginary unit. It follows 
that 

a:- = ?, -t ~2. 
:(KfL +J Wf') E2 ': J\ 1 f 1 j (35a) 

E = 'G,+ lfL 

= E; [r + Ha. ~'wpJ~ ~ ( ~+;;~ i36a) . 

Placing 

ru:l·(K1-/o KQ.+ jt»f) ::. cA. 2. 

K1 (K1 +Jw~) .. · .. ~ 

(29a) and (36a) give 

-o. 
' 

or 

= 0 II 

The general solution of this differential 
equation is 

(37a) 

(38a) 

(39a) 



where A and B are constants. Applying the botmdary 
conditions · 

(4la) 

we obtain 

(42a) 

which in (40a) give finally 

(43a) 

Differentiating with respect to x we obtain also 

.. (44a) 

In view of (32a) - (36a) it follows that 
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~ -:::. l<.a f2 ' .. (48a) 

cr :K E:::: tfK,(K2.+J(J.)~) ]· .. (49a) 
I I K,+ K:a, +JW/JJ " 

Substituting (44a) in (49a) we obtain 

or, noting (3Ta), 

(5la) 

At the end x;L this becomes 

which may be written 

-
(53a) 

where 

f3=t~...L.·. (54a) 
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For any value of W we can obtainAI./c[experimentaLj{'· 

(53a) then gives·~, after which (54a) gives o( . 
. 'x·we thus know ot as a function of W . This knowledge 
is used in connection with (37a) in. order to obtain 
Kl, Kf, and J4 . 

In so doing it may be desirable to take advantage 
of the fact that the spring c0ntant K for both 
springs in series is 

K I + K':L ' (55a) 

which relation can be used to reduce the number of 
unknowns by one if we are willing to determine K 
separately by obtaining a slow test value of r:J...rr/J..€: 
evaluated at E. = E0 . 

In any case we· can write (37a) .in· the form 

f w2.(K1 +Ka +Jw~) 

- k.,(K2.+Jw fk)rY-.'J. = 0, (56a) 

insert the su6cessive pairs of values (~t.) ~I) , 
(tl'>2.,o~.2.) ~ • • .. (C.O,.,~\>btained .by experiment,. 
(53a), and (54a); and ~e~rmine the unknowns so that 

I'll. a 
.~ lrw.t.(l<,+ka.+J~) . 
.A..-=1 · . · · · (57a) 

. ·K ( p ) 2,~ . . 
- •. K2.+J~~ ~ =~. 

* ·fj can be determined, from (53a) in several different 
manners; among which are the following. 

1. An interation procedure can probably be devised. 

2. An interpolation procedure can certainly be 
devised. 

3· Using a digital computer a table of values of 
the function ~tan /9 for complex arguments can 
easily be constructed. 



In so doing a digttal compllter can be llSed to cover the 
ranges of the llnknowns - two or three as the case may be, 
and choose the best combination of va1lles. 

Even withollt a digital compllter it is likely that 
a least square procedllre can be devised. 

Another possibility is to write· (37a) in the form 

or 

where 

- ft X, .... k,+ K'J. 

(58a) 

(59a) 

' 
(6oa) 

K is obtained separately, as 'indicat·ed in ··connection 
with (55e.); then since X1 and x2 appear linearly in 
(59a), a least sqllare procedllre can easily be devised 
to determine them so that · 

/)1.,1 
2 x ~x · ~ f UJ_i. , - rA;. 2. -J r I.IJ;,. 

.t, ... , . . 2. .. ,'2. •·. . .. . . + J. r/...;_ K -::::. . . w;. ... r~. 
(6la) 

Knowing X1, x2, and K, the other qllantities K1, K2, 
and f"' follow immediately. 

Since K appears linearly in (59a) it could, if 
desired, be inclllded among the llnknowns instead of 
being determined.by a.separate experiment. 
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