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At the current rate, a calculation requiring 10,000

elements and 1,000 time steps would cost about $1,500.00

(1's hours of 7600 time) and could be expected to run over-

night once the problem is set up.

In a recent preliminary calculation for the HARD PAN I-3

event, a full three dimensional calculation was made with 6156

elements (21,840 degrees of freedom) for 660 time steps.

This calculation required 32 minutes of CDC 7600 time and

cost $440.00 at the overnight rate (80%).
SAMSO Vulnerability Problems

Missile silo vulnerability studies are conducted by

using an applied air blast loading to simulate a nearby

nuclear explosion. Two air blast loading routines are now

available in TRANAL. Both loadings are based on Brode's

fits, Ref. [5], ke a noclear air burst. These two fits are

the Brode direct fit and the Brode simple fit. In addition,

two data generators have been built especially for the geometry

of the missile silo vulnerability problem in order to reduce

time and errors in the data generation process.
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[1I SAMSO-TRW TEST PROBLEMS

In order to check out certain capabilities of TRANAL,
a series of three simple test problems, designed by SAMSO
and TRW personnel, have been calculated. These problems

are designated by Pl; P2 and P3.

Problem 1 (P1)

This problem, called Pl, is the one dimensional, plain
strain response of a half-space of shale covered by 20 feet
of clay whiech is subjected to a pressure history corresponding
to a one megaton surface burst at the 600 psi peak overpressure

lecation (see Fig. 1).

Problem 2 (P2)

This problem called P2, is the two dimensional,
axisymmetric response of a half-space of shale covered by
20 feet of clay subjected to a pressure history corresponding
to a one megaton surface burst in ranges between 2,000 psi

and 200 psi peak overpressure (see Fig. 2).

Problem 3 (P3)

This problem called P3, is the two dimensional, axi-
symmetric response of a hollow concrete cylinder embedded

in 20 feet of clay overlying a shale half-space (see Fig. 3).

The cylinder, which is flush with the elay surface, is 40
feot in length, 10 feet In radius and has 4 feet thick wall
1 the top and bottor ind 2 feet thick side walls. Ihe

LS T
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clay/concrete surface is to be subjected everywhere to a
pressure history corresponding to a one megaton surface

burst at the 600 psi peak overpressure location.

Surface Pressure Time History

The pressure time history applied to the surface in all
problems was based on the Brode simple fit, Ref. [5]. The
response was calculated for 100 milliseconds after the time
the 600 psi peak overpressure begins, which is roughly
108 milliseconds after the detonation of the one megaton
surface burst. Thus, response curves for all calculations

begin somewhat after 0.1 seconds and extend past 0.2 seconds.
Material Models

Material models for the clay and shale were represented
by the soil CAP model, Ref. [6], in compression with mean
stress, Um,limited in tension. Uniaxial compression curves
for the clay and the shale are illustrated in Fig. 1. The
concrete in P3 was represented by a linearly elastic model
in compression with mean stress limited in tension. Since the
stresses in the concrete never exceeded the assumed value of
compressive failure (6,000 psi), this model is considered

adequate for P3. Values of the parameters used for the three

materials are given in Table I.

T A DR e v iy
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TABLE I. CAP MODEL PARAMETERS (Model as described in Ref. [6])

Clay Shale Concrete
o(pef) 120 137 150 -
K(ksi) 340 540 1600
G(ksi) 85 115 1250

- A(ksi) 0.1 0.866 -
B(ksi ™) 1.5 2.5 -
C(ksi) 0.07 0.361 =
B(kst™ 1) 2.0 0.5 :
W 0.04 0.0005 -
R 3.0 3.0 -
o (ksi) 0.010 15 0.667

tension
cuteoff

)

Calculational Grids and Time Steps

Based upon previous experience with problems of this
type and due to the desire to keep the calculational cost
down, it was decided that a coarse mesh would be adequate

for these problems. The meshes for problems Pl, P2 and P3

are illustrated in Figs. 1, 2 and 4, respectively. The time
increment for Pl and P2 was 1 millisecond and for P3 was
0.4 milliseconds. Thus, 250 time steps were used in P3 and
only 100 time steps in Pl and P2. The P3 mesh had 1,089

elements and was run without using external storage. The PZ

'k mesh had 4,840 elements and thus required external storage,
since fewer than 2,000 elements fit in main memory at one

time. Variable mesh generation was tested in P3 whereas Pl

12
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and P2 used only two mesh sizes. Thus, 2 variety of important 4
features of the code were exercised. The cost of running
problems Pl, P2 and P3 on the CDC 6600 was less than 52,00,

$150.00 and $75.00, respectively. ;
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- Problem Pl
- The vertical velocity and displacement histories for
problem Pl from TRANAL at a depth of 2.9 fr are shown in
Rdg s 5 Also shown in this figure are the corresponding res
from the LAYER code. The results from TRANAL and LAYER compare
.
§ quite well when the coarseness of the mesh and other code
‘d
3 details are considered. Some of the differences can be
4 ascribed to
ke © = time phasing details in applied surface loading
1
‘g - different modeling of tensile behavior
- - different approximation techniques
? (finite element and fintie difference)
The maximum velocity of about 360 in/sec is quite close
. » - . .
to the theoretical value expected from simple, one dimensional
B shock considerations. This value can be obtained by using
5y |
g | the shock condition
¢ ‘f,_. )
i v OM
{ A . . - A .
] where Ap is the jump in pressure at the shock front, OV 18
E
: the jump in particle velocity, is the material density and
E | : ; ; .
E | M is the secant modulus (Rayleigh line slope) corresponding
-
P/
3 to the shock loading of the material. From the stress~-strain
'fg curve in Fig. 1, the 600 psi level correspounds to a strain of
E % about 0.04; thus M = 15 ksi. The clay density, in consistent
A unite, f8 p = 18, Since Ap = .6 ksi, the value of Av is
1] - - 2 .
about 360 in/sec
Although not shown in this report, time histories at

NUMERICAL RESULTS

.,

sults
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other depths compare equally well when TRANAL and LAYER

results

are examined. Additional comparisons are presented in the

e

following discussion of the two dimensional problem P2

Problem P2
Velocity and displacement histories in both the radial
and vertical directions are shown in Figs. 6-10. Corresponding

time histories from the LAYER code are also shown in these

figures. Once again the agreement is seen to be quite good

when the factors mentioned for problem Pl are considered.

The largest percentage difference seems to appear in Fig. 7,
where the maximum radial velocity at the near surface point is
more than 100 in/sec in the TRANAL calculation and only 70 in/sec
in the LAYER calculation. The displacements are, however,
better.: This is normally the case in finite difference and
finite element wave propagation calculations of this type.
Generally speaking, maximum velocities are less reliable than
displacements since the nature of wave motion is that displace-

ments are continuous whereas velocities may be discontinuous.

2o Sa b

This is particularly the case near boundaries and interfaces.

In addition, peak values of velocity (vertical and radial) are :

sensitive to the introduction of viscosity. Neither the LAYER
or the TRANAL calculation used artificial viscosity. Further-
more, modification of the rise time of the applied surface
loading can affect the peak velocity. In both calculations,
the rise time was not modified so that the effective rise

time of the load was controlled by the speed of the load and

the mesh size. Slight differences in phasing of the applied
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load can then lead to noticeable changes in a potentially
discontinuous quantity such as velocity {(or stress).

Displacements are generally better behaved as observed.

In this problem, the airblast shock front is traveling
at about 7 ft/msec at the range of interest. The loading
wave speed in the clay is less than 1 ft/msec which leads to
a highly supersonic loading front in the clay. Thas radial
motions are generally small (compared to the vertical) at
the loading front and are affected substantially (percentage

wise) by differences in phasing. After the loading frout has

reflected from the clay-shale interface, larger radial motions

appear. However, by this time the coarse mesh coupled with

the discontinuous behavior of the velocities has resulted in

what appears to be a substantial error in the radial velocity.

In fact, the difference noted in Fig. 7 of 35 ian/sec between

LAYER and TRANAL is only 10 per cent of the maximum velocity

felt at that point in Ehe vertical directiom. In short; radial

velocities will always appear unreliable in finite element
and finite difference calculations of this type if they are
viewed on an absolute scale. It is necessary instead to
consider both components of the velocity in order to judge
the results. With this point of view in mind, approximate

values of maximum response for several depths are presented

in Table LE.

e
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TABLE II. MAXIMUM RESPONSE WITH DEPTH

(during first 100 milliseconds)

E | Displacements (in) | Velocities (in/sec) !
- Depth (Ft) Vertical Radial Vertical | Radial
/ T el AR G ARl N
4 0 12 1.2 400 100
3 10 7 1.5 300 100
20 2 .6 100 100
30 2 .6 80 80
40 2 6 80 80
%1 The results in Table IT are given with only one or two signi-

ficant figures because of the above reasons. A few observations

are in order however.

A vertical surface displacement of about 12 inches is
quite reasonable for the highly hysteretic clay used. Maximum

compaction at 600 psi is about 4 per cent. Since the clay

layer is 20 ft. deep, the maximum displacement should be
about 0.4 x 20 = .8 f£t, or about 10 inches relative to the

interface as observed.

The shale has very little hysteresis (see Fig. 1) and
thus there should be little change with depth below 20 f¢t,

as shown in Table 1I.

"l The shale has a wave speed of about 4.8 ft/msec. At this
rate the loading front in the shale should be at about 45 degrees

to the interface. Since the maximum velocity in the shale occurs

at the loading front, the jump in vertical and radial velocities

should be nearly equal below 20 ft, as shown in the table.
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Problem P3

Selected motion and stress histories for problem P3 from
TRANAL are shown in Figs. 11-20. It should be noted that,
away from the structure, the motions for problem P3 are
practically identical to those of problem Pl1, as they should
be. Such comparisons have not been reproduced here since they

would merely duplicate results in Figs. 5-10.

It should also be noted that certain conclusions are
drawn here which are obtained by studying integrated quantities
such as displacements and impulses. As discussed for problem
P2, integrated quantities are more reliable due to the nature
of wave propagation calculations of this type than are quantities
such as maximum velocity or maximum stress. This is particularly

true for a coarse grid calculation such as the one used here.

By looking at a point quite near the structure, it is
possible to observe the similarity of the free-field motions
(problems Pl and P2) to the results from problem P3. For
example, Fig.12 shows a point two feet away from the top corner
on the clay surface which should be compared with Fig. 5. In
both cases, the displacement rises quickly but smoothly to a
value of about 9 inches in less than 40 milliseconds and then
rises slowly during the next 60 milliseconds to a maximum of
about 10 inches or so. In essence then, the vertical motion
of the clay surface is not significantly modified by the presence

of the structure.
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On the other hand, the motion of the structure itself
is quite different from the surrounding clay at the surface-.
As can be seen in Fig. 11, the top corner of the structure
deflects rapidly about 0.4 inches, reverses slightly about
0.1 inches, further deflects quickly to about 0.9 inches,
oscillates twice at ~roughly this level with an amplitude of

about G.1 inches and then deflects to a maximum displacement

Bt i e

of about 1.6 inches. The oscillatory motion has a period of

about 16 milliseconds. Since the dilatational wave speed of

0.0 i e

the concrete is about 10 ft/msec and its height is 40 ft., this
period is just the time required for a wave to travel four

times the height of the concrete. Four times is the correct

S ——

number needed for a wave front to reflect (i) from the bottom,
(ii) then the top, (1ii) again the bottom and finally
(iv) the top so that the velocities and stresses are both back

in phase with the original wave front.

Again, by looking at a point about 4 ft. from the side

T O T T TR T

wall of the structure, it is a simple matter to observe the

e

similarity of the free-field motion and the results of problem

hg P3. In particular, Fig. 14 should be compared with Fig. 9.

l In both cases the displacement rises to a value of about 1.4
inches in 30 milliseconds and then rises more slowly during the
£4 next 60 milliseconds to a peak of about 2.2 inches. Maximum
velocities of about 100 in/sec occur in each case. Naturally,
high frequency motions are affected as can be seen by comparing
the velocity waveforms. However, judging from the displacements,

Bl the free-field is not significantly altered by the structure.




The maximum vertical impulse imparted to the surface
during the first 100 milliseconds is about 22 psi-secs

(calculated from the Brode simple fit, Ref. [5]). Figure 15

’ shows that the maximum impulse in the clay at a point near the
top corner of the structure is about 21 psi~secs. Figure 17

shows a similar value of 20 psi-secs at a depth of 18 ft in

the clay at a point next to the concrete wall. This indicates
that the impulse imparted to the surface is conducted vertically
through the clay to the interface without significant modifi-
cation. On the other hand, the concrete structure has maximum
impulse values in the wall of 52 and 54 psi-secs, as shown in
Figs. 18 and 20. This is due to the fact that the load applied
over the entire surface of the structure must be conducted

down the relatively thin walls since the cylinder is hollow.

In fact, the ratio of the wall impulse, Iw’ to the surface
impulse, IS, should have the same value as the ratio of the top
surface area of the structure to the wall area through which

the vertical stress is conducted; that is,

As 102
A =-—‘§———2—= 2ol
W 107-8

o<
n
|

Since IS is about 22 psi-sec, the value of Iw should be
about 61 psi-secs. The fact that the peak is somewhat less
in Figs. 18 and 20 probably reflects the fact that some impulse

4 is transmitted to the surrounding soil (although not much).

Maximum stress values, while somewhat unreliable in this
calculation, were always less than 2400 psi in the concrete

walls and, except for short durations (a few milliseconds),

S




maximum stresses in the side walls were less than 2,000 psi
which is much less than the assumed compressive strength
(6,000 psi) of the concrete. This indicates that the walls
of the structure will not fail in compression from a load of

the type used in problem P3.

The largest observed stress anywhere in the structure
was less than 6,000 psi and occurred in the middle of the top
for about one millisecond. The calculations for the top are
not particularly reliable though since only one element was
used through the roof and a great deal of bending and shear
behavior was evident. Additional study would be required to
resolve the question of whether or not the top could fail
under the assumed loading. Tensile failure in the Structure,
assumed to be 667 psi in mean pressure, was observed occassionally
but only for short durations and thus did not appear to be

important in this problem.

Thus, the picture that emerges from problem P3 when problems
Pl and P2 are considered is that (i) the structure and the
surrounding soil interact very little and (ii) the side walls
of the structure can survive the type of loading prescribed for
problem P3., Only the sutrvival of the top of the structure is in
doubt and this question can be studied more economically by
other methods. If a rapidly expanding load is prescribed, as
in problem P2, then additional modes of behavior (two and three

dimensional effects) can lead to additional interaction phenomena.
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- However, it appears highly unlikely that the walls of this §
! 4

strueture will fail from a loading of this type during the : 3

¥ s
s first 100 milliseconds (which is probably the most critical : ;
?r period). =
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\' SUMMARY AND CONCLUDING REMARKS

Vulnerability problems of interest to SAMSO require the
simulation of soil-structure interaction effects due to nearby
explosions. The SAMSO-TRW test problems have been used to
check out various features of the TRANAL code and many of the

capabilities required for such studies have been demonstrated.

For two of the test problems, TRANAL and LAYER results
were compared and the differences can be understood in terms
of code details such as surface pressure phasing and approxi-

mation techniques (finite element and finite difference).

The third problem, which involves an embedded hollow
cylinder, is studied and it is concluded that, for the prescribed
loading, (i) the structure and surrounding soil interact very
little and (ii) the side walls of the structure will survive.
However, these conclusions are based on a simple two dimensional,
axisymmetric problem. In order to understand the vulnerability
problem more fully, it is necessary to examine a three dimen-
sional problem with a more realistic structural model and site

profile.

Studies of the HARD PAN I-3 event are now under way (under
SAMSO contract) in order to study a full 3-D case. In order
to reduce this problem to manageable proportions, the soil-island

method, Ref. [7], is being used with soil-island boundary

motions produced from the LAYER code.
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ATTN: Jack Kahn, L-7
ATTN: J. Carothers, L-7
ATTN: Tech. Info., Dept, L-3
ATTN: Robert Schock, L-=437
ATTN: Larry W. Woodruff, L-96
ATTN: Richard G. Dong, L-90

Los Alamos Scientific Laboratory
ATTN: Doc. Con. for G, R. Spillman
ATTN: Doc. Con. for Al Davi
ATTN: Doc. Con. for Reports Lib.

Sandia Laboratories
Livermore Laboratory
ATTN: Doc. Con. for Tech. Lib,

Sandia Laboratories
ATTN: Doc. Con. for A. J. Chaban
ATTN: Doc. Con. for M. L. Merritt
ATTN: Doc. Con. for Luke J. Vortman
ATTN: Doc. Con. for 3141, Sandia Rpt. Coll
ATTN: Doe. Con. for W, Roherty
ATTN: L. Hill

U.S. Energy Rescarch & Development Administration
Albuquerque Operations Office
ATTN: Doc, Con. for Tech. Lib,

1.S. Energy Research & Development Administration
Division of Headquarters Services
ATTN: Doc. Con. for Class. Tech. Lib.

1'.S. Energy Research & Development Administration
Nevada Operations Office
ATTN: Doc, Con. for Tech. Lib.
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Union Carbide Corporation
ATTN: Doc. Con. for Tech. Lib,
ATTN: Civil Def, Res. Proj.

OTHER GOVERNMENT AGENCIES

Bureau of Mines
ATTN: Tech. Lib.

Central Intelligence Agency
ATTN: RD/SI, Rm. 5G48, Hdq. Bldg. for
NED/OSI-5G48, Hdgs.

Department of the Interior
Bureau of Mines
ATTN: Tech. Lib.

Department of the Interior
Bureau of Mines
ATTN: James J. Scoft

Department of the Interior

(7. 8. Geological Survey
ATTN: J. H. Healy
ATTN: Cecil B. Raleigh

Acrospace Corporation
ATTN: Prem N. Mathur
!¢y ATTN: Tech. Info. Services

Aghabian Associates
ATTN: M. Agbabian

Analvtic Services, Ine.
ATIN: George Hesselbacher

Applied Theory, Inc,
2 ey ATTN: John G. Trulio

Artec Associates, Inc.
ATTN: Steven Gill

Avco Research & Systems Group
ATTN: Research Library, A-830, Rm, 7201

Battelle Memorial Institute
ATTN: Tech. Lib.
ATTN: R. W. Klingesmith

I'he BDM Corporation
ATTN: Tech. Lib.
ATTN: A. Lavagnino

I'he BDM Corporation
ATTN: Richard Hensley

I'he Boeing Company
ATTN: Aecrospace Library
ATTN: R. H. Carlson

Brown Engineering Company, Inc.
ATTN: Manu Patel

California Institute of Technology
ATTN: Thomas J. Ahrens

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

California Rescarch & Technology, Inc.
ATTN: Ken Krevenhagen
ATTN: Tech. Lib.

niversity of California
ATTN: G. Sackman

‘alspan Corporation
ATTN: Tech. Lib

Civil/Nuclear Systems Corp.
ATTN: Robert Crawford

niversity of Davton
ATTN: Hallock F. Swift

University of Denver
Colorado Seminary

ATTN: Sec. Offic T Wisotski
ATTN; Sec. Off Tech. I
EGEG, Ine
Albuquerque Division
ATTN: Tech. Lib.
I'he Franklin Institute
ATTN: Zenons Zudans
General American Transportatior Y

General American Reses
ATTN: G. L. Neidhard

General Electric Company
Space Division
ATTN: M. H. Bortner, Space Sci. Lab

General Electric Company
Re- Entry & Environmental Svstems Division
ATTN: Arthur L. Ross

General Electrie Company
TEMPO-Center for Advanced Studies
ATTN: DASIAC

General Research Corporation
ATTN: Benjamin Alexander

1T Research Institute
ATTN: R. E. Welch
ATTN: Milton R. Johnson
ATTN Fech. Lib,

Institute for Defense Analyses
ATTN: IDA, Librarian, Ruth S. Smith

J. H. Wigginsg Co., I
ATTN: John Collins

Kaman Avidyne

Division of Kaman Sciences Corp.
ATTN: E. S. Criscione
ATTN: Norman P. Hobbs
ATTN: Tech. Lib.

Kaman Sciences Corporation
ATTN: Paul A. Ellis
ATTN: Frank H. Shelton
ATTN: Library
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Lockheed Missiles & Space Co., Inc.
ATTN: Tech. Lib,

Lovelace Foundation for Medical Education & Research
ATTN: Tech. Lib.
ATTN: Asst. Dir. of Res., Robert K. Jones

Martin Marietta Aerospace
Orlando Division
ATTN: G. Fotieo

McDonnell Douglas Corporation
ATTN: Robert W. Halprin

Merritt Cases, Incorporated
ATTN: Tech. Lib.
ATTN: J. L. Merritt

Meteorology Research, Inc.
ATTN: William D. Green

The Mitre Corporation
ATTN: Library

Nathan M. Newmark
Consulting Engineering Services
ATTN: Nathan M. Newmark

Pacifica Technology
ATTN: G. Kent
ATTN: R. Bjork

Physics International Company
ATTN: Doc. Con. for Tech, Lib.
ATTN: Doc. Con. for E. T. Moore
ATTN: Doc. Con. for Coye Vincent
ATTN: Doc. Con. for Fred M. Sauer
ATTN: Doc. Con. for Robert Swift
ATTN: Doc. Con. for Larry A. Bechrmann
ATTN: Doc. Con. for Dennis Orphal
ATTN: Doc. Con. for Charles Godfrey

R & D Associates
ATTN: Tech. Lib.
ATTN: J. G. Lewis
ATTN: Jerry Carpenter
ATTN: Henry Cooper
ATTN: William B. Wright, Jr.
ATTN: Bruce Hartenbaum
ATTN: Cyrus P. Knowles
ATTN: Albert L. Latter
ATTN: Sheldon Schuster
ATTN: Harold L. Brode

I'he Rand Corporation
ATTN: C. C. Mow

Science Applications, Ine
ATTN: David Bernstein
ATTN: D. E. Maxwell

Science Applications, Inc
ATTN: R. Secbaugh
ATTN: John Mansfield

Science Applications, Inc.
ATTN: Tech. Lib
ATTN: Michael McKay

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Science Applications, Inc.
ATTN: R. A. Shunk

Southwest Research Institute
TTN: Wilfred E. Baker
ATTN: A. B. Wenzel

Stanford Research nstitute
A1l : Carl Peterson
ATTN: George R. Abrahamson

Science & Software, Inc.
Thomas D. Riney
Ted Cherry

Donald R. Grine
ATTN: Tech. Lib.

Terra Tek, Inc.
ATTN: A. H. Jones
ATTN: Tech. Lib.
ATTN: Sidney Green

Tetra Tech, Inc.
ATTN: Tech. Lib.
ATTN: Li-San Hwang

TRW Systems Group
ATTN: Norm Lipner
Benjamin Sussholtz
Jack Farrell
William Rowan
Tech., Info. Ctr., S-1930
Paul Lieberman
Pravin Bhutta

TRW Systems Group
San Bernardino Operations
ATTN: Gregory D. Hulcher

Universal Analytics, Inc.
ATTN: E. 1. Field

URS Research Company
ATTN: Tech. Lib.
'N: Ruth Schneider

The Eric H. Wang

Civil Engineering Research Facility
ATTN: Neal Baum
ATTN: Larry Bickle

Washington State University
Administrative Office
ATTN: Arthur Miles Hohorf for George Duval

Weidlinger Assoc. Consulting Enginecrs
ATTN: Melvin L. Baron
ATTN: Joseph P. Wright
ATTN: John L. Baylor

Westinghouse Electric Company
Marine Division
ATTN: W. A. Volz
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