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I. INTRODUCTION

In spite of many years of theoretical and experimental effort, there is

still no convincing picture of ring current dynamics during geomagnetic

e e

g

i storms. Even such mundane processes as charge exchange do not seem to play
|- .
F e a simple, clear role. For example, the apparent agreement between observed

ring-current decay and calculated charge-exchange lifetimes [Liemohn, 1961]

as found by Swisher and Frank [1968] and Smith et al. [1975] has been

3
4 challenged by Tinsley [1976] and by Lyons and Evans [1976], partly on the
grounds that Liemohn's lifetimes are too long (in view of recent results on

neutral hydrogen density) and partly on the grounds that pitch-angle

§ distributions of low-energy ions do not behave in agreement with calculation.
E1 These authors conclude that, after a few hours of recovery phase, a large
fraction of the ring current is He® (which for E < 50 keV has a longer
charge-exchange lifetime than a proton of the same energy). The picture is
further complicated by the discovery of energetic precipitating 0" ions

apparently associated with the storm-time ring current [Shelley et al., 1974]

which also have a long charge-exchange lifetime.

Charge exchange is an important source of anisotropy for ring-current

protons. When this anisotropy becomes large enough, it leads to the generation

of ion electromagnetic cyclotron (EMC) waves [Cornwall et al., 1970] which can

cause further proton losses and possibly make SAR arcs by heating electrons

[Cornwall et al., 1971]. In this paper we explore the interplay between the

{
{
1
!
{
,é charge-exchange process, the rate at which energy and anisotropy is lost
during the wave-emission process, and the influence of heavy ions on wave
f- g - emission and absorption. Four major features emerge:
f“i ‘f (1) With the aid of simplifying (but realistic) assumptions, a convenient

analytic expression for the wave growth rate as a function of time, of the

.
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parameters of the distribution function, and of the cold plasma density is

found, for the case of an initially isotropic distribution. During recovery
phase, as the cold plasma density increases, the maximum growth rate occurs
at a ratio of frequency w to proton gyrofrequency Q of w/Q = 0.4 ,
independent of time.

(2) The proton anisotropy A grows (while the flux decays) to the point
where finite-amplitude ion-EMC waves are emitted, if the initial flux is
large enough. For some time thereafter, A is roughly constant, because
there is near-balance between charge-exchange growth of A and decrease of
A by wave emission. During this phase, the anisotropy is roughly governed

by the well-known expression

B2 )

E. = — ——— (].])

where ER is the resonant parallel proton energy, B the earth's field, and
N the total plasma density. Relation (1.1) is fairly well satisfied ex-

perimentally [Williams and Lyons, 1974a]. The fact that the anisotropy ceases

to eyolve after a certain time is an important consideration for comparing
observations with theory. Eventually A begins to grow again, in order to
keep up the wave growth rate in the face of a decaying flux of ring-current
protons.

(3) The rate at which protons lose energy to the waves is governed by
the charge-exchange loss rate, when the only source of anisotropy is charge
exchange. At first sight this may seem somewhat surprising, in view of the
gross discrepancy between charge-exchange time scales and wave-growth time
scales. The simplest statement [Cornwail, 1975b] of this effect follows from

the single-particle emission picture put forward by Brice [1964]. A more

wilfia

.
e
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realistic treatment is based on the quasi-linear moment equations of Cornwall
[1975a]. We show that sufficient energy is generated to power SAR arcs.

(4) If heavy ions (He+, He++, O+) are initially isotropic, charge exchange
will do little to change this during the first few proton lifetimes (except

for He'' above ~ 10 keV). Consequently, these ions act to damp the proton-

EMC waves; a heavy-ion fraction of 0.2 at beginning of recovery phase is

&
0 T S 1 oy sl AN A M 5 0 4 < g oy

enough to prevent wave growth altogether. This damping is quite sensitive

to the very-low-energy (< 1 keV) part of the heavy-ion distribution function,
which remains unmeasured. In this paper, we do not consider time scales so

' T Tong that heavy ions have acquired large anisotrcpies by charge exchange.

A clear idea of the role of charge exchange in ring-current dynamics can
only be gotten at the expense of ignoring other potentially important effects.
For example, there are most likely additional sources of both proton flux and
anisotropy (e.g., radial diffusion), and there is experimental evidence

[Williams and Lyons, 1974a,b] that the plasmapause is a boundary inside or outside

of which certain effects do not act. This evidence is that the pitch-angle

distributions for E < 50 keV protons outside the plasmapause do not evolve
into the sort of anisotropic distributions seen inside; rather, they become
isotropic except for the loss cone (flat-topped). This could be because of
an additional source (convection) or relatively weak pitch-angle diffusion

mechanism, such as an electrostatic instability, which acts only outside the

plasmapause. Or it could be, as Joselyn and Lyons [1976] point out, that

E < 50 keV protons pick up their anisotropy as they are irradiated by ion-EMC
waves generated off the equator by higher-energy protons, which are continually
anisotropic. (We note that the required cyclotron-resonant energy of the
higher-energy off-equatorial protons varies rather steeply with distance from

24

the equator, roughly like sin “"9 , where 6 is the colatitude.) The fact

N




that we do not consider such effects here does not mean that we consider them
unimportant; we omit them only for the sake of clarity.

Finally there are the questions of what the initial anisotropy of the
low-energy (E < 50 keV) ring current is, at the beginning of recovery phase,
and whether these initial distributions evolve consistent with charge exchange

3

losses. The general impression from the S™ data for the December 17-18,

1971 storm [Williams and Lyons, 1974a, b] is that it is reasonably isotropic
inside the plasmasphere (although not really flat) and that the anisotropy
grows some during recovery phase, except at energies below = 10 keV. (This

latter effect has motivated Tinsley [1976] and Lyons and Evans [1976] to

suggest that this part of the ring amount is largely He' .) However, there
is by no means quantitative evidence that the ring current 10-50 keV evolves
consistent with an initially flat distribution, with charge exchange as the
only major effect, or that the total flux decay rate of the December 17-18
storm is consistent with charge exchange. We persist with our idealized
scenario of initially flat pitch-angle distributions evolving according to
charge exchange because: (a) To some extent, the effect of pre-existing
anisotropies at the beginning of recovery phase can be modeled by shifting
the time axis and renormalizing the growth rates; (b) it is important to know
something about the theory of the mutual influence of charge exchange and
wave emission on the pitch-angle distributions; and (c) whatever other effects

act on the ring current, charge exchange is always there.

by




[I. GROWTH RATES AS DETERMINED BY CHARGE EXCHANGE

A. Contributions from Protons

Because the magnetospheric hydrogen density is greatest at low altitudes,
the charge-exchange loss rate A(E,L,a) is a function of equatorial pitch

angle o , or of y = sina . It is reasonably well-fit by a power law:
A= (EL) y" (2.1)

Liemohn [1961] first calculated X for magnetospheric applications, and
found n =~ 2 . We agree with Tinsley [1976] that Liemohn's values of A

are too small, because he used too small a value for the neutral hydrogen
density. In fact, orbit-averaged neutral hydrogen densities calculated some
time ago [Cornwall et al., 1965] are reasonably close to Tinsley's values,
and larger than Liemohn's. The proton charge-exchange rates based on

Cornwall et al. are shown in Fig. 1. A fit to Eq. (2.1) gives a value of n

somewhat less than 2 (as already noted by Cornwall [1975a]), but throughout 3
this paper we use n = 2 because it results in simple ana]y;ic expressions
for the ion-EMC growth rate. Note that from Fig. 1 the time scale A;] for
protons has a minimum value of ~ 4 hours at L = 3, E = 3-15 keV. The time
scale is even less off the equator.

At t = 0 (beginning of recovery phase) we assume, in accordance with
the scenario of Section I, that the protons of E < 50 keVY near the plasma-
sphere (which has shrunk to L = 3 ) have an isotropic distribution function.
An eyeball fit to smoothed-out data of Williams and Lyons is roughly ex-

ponential with an e-folding energy E0 of . 15 keVat L =3 . The

differential flux J evolves in time as

™
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J(E,ysLst) = I (E,L) exp-Ay(E,L)t y™2} (2.2)

-E/E, _
I (EsL) = 9 (L) e : (2.3)

Let us calculate the growth rate y of proton-EMC waves, normalized
to the convective loss rate vG/Zl » where Yg is the group velocity and

£ a length characteristic of the field Tine:

xfdsdya(y-yo)[-f+%[g-1}yg—§ : (2.4)

Here Vp is the phase velocity, M the proton mass, and

1/2
241/2 E 3
o Q-w i —m (1-x
yo-[l-[_kv]] -[]-Ex } (2.5)

with Em = BZ/BnN as the magnetic energy per particle. The distribution
function f is related to J by f = M2(2E)"1J . Using this, (2.2) and
(2.3) in (2.4) yields

2
2y _ noeMa [ 1-x Eyy 1+ [ 12 ”]
v N X E "0 2 0
G £ xyo -

(-
g

x exp{-E/E0 ~ ¥

Aot (2.6) -

;i Dol
where E. ™ Em(l-x) X ndy 1 (EC/E) .

As t increases, the anisotropy factor (in square brackets) increases,

while the current decreases exponentially. Therefore ZYlvé] has a maximum;

for finite-amplitude ion-EMC waves to occur, this maximum must be greater

9o
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than unity. The integral in (2.6) is manageable if we approximate A, by

a constant independent of E (but depending on L ); Fig. 1 shows that this

L
# is reasonable for E < 30 keV . We then find, as shown in the Appendix,
aye L) e g 1-x
Ve = T [ - ] exp{-Aot - EC/EO}[ZAOt [—X—J Ko(z)-Q(a,z)]
(2.7)
AEE. /2 E 1/2
z= 2{ °_£ ] s [ < J = 52— (2.8)
Eo AOEEO ZAOt

Ko(z) is a Hankel function of imaginary argument. The closely-related
function Q is non-standard, but easy to handle. It is described in detail

in the AppendiX, where it is shown that

Q(a,z) + Q(a™',2) = 2K, (z) (2.9)

Q(0,2) = 2K (2); Q(1,2) = K (2) (2.10)

Furthermore, Q is a positive decreasing function of a for 0<a <=,
all z , thus bounded by 0 and 2K°(z) . A simple approximation to Q(a,z)
which satisfies (2.9) and (2.10) is

2Ko(z)
Qla,z) = 47— - (2.11)

Although strictly speaking the derivation of (2.11) is only valid for large
z , (2.11) can be used with acceptable accuracy (~15%) down to z = 0.1 , and
is accurate to < 3% for z -~ 1 . Substitute (2.11) into (2.7) to find the

normalized growth rate

-{0-
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(2.12)
The first term in square brackets, proportional to t , represents the buildup
of anisotropy from charge exchange. The term exp(—Aot) shows the decay of
the total flux. The interaction of the two terms lends to a growth rate <y
which builds up and then decays.
It seems natural, by comparison with the growth-rate formula for a bi-
Maxwellian or for a distribution function of the form yZAf(E) » to identify

the anisotropy from (2.12) as

& . 1
Aeff = Aot(]+a) = Aot tsz. 2 at3)

However, (2.13) is both frequency-dependent and dependent on E/E, - In
Section III, we use another definition of the anisotropy A , which is
adapted to the quasi-linear moment equations [Cornwall, 1975a], and which is
independent of x and Em/E0 . One may remove the frequency dependence in
(2.13) by evaluating the right-hand side at the frequency x at which the
growth rate is maximum; the corresponding Kéff depends only slightly on
Em/Eo . (This is because x 1is not far removed from that value of x

which makes E_ = E ; by the definition (2.8) of z , it follows that Kéff
depends mostly on Aot ]- Kéff does not quite agree with A as defined

in Section III, but the maximum difference is < 0.18 over the physically

interesting range of variation of other parameters. The reasonable agree-

ment of these two definitions is a signal that the quasi-linear moment equations

more or less fairly represent the physics of a ring current decaying by charge

exchange and emitting ion-EMC waves.

. 1-x % e & )
= N [ = ) Ko(z)[:xot [ = } - } exp{—xot - EC/EOJ -

7‘ P R S GRS »
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We now distinguish two different physical circumstances under which

(2.12) might be used: (1) N is constant in time; (2) N increases with
time. Case (1) is appropriate to protons well inside the plasmapause, while
case (2) is appropriate to protons just inside or outside the plasmasphere,
as it refills and expands during recovery phase. For simplicity we suppose

that N grows linearly with t , from an initial value of zero:
N =Nt, N = const. (2.14)

Observe that, from (2.8) and the expression for Ec » Z 1s constant in
time (at fixed x ) for case (2), and a decreases like t'] ;
In Fig. 2, we plot the expression

= 1- 1- 1
y - Ko(z)[xot [ —;i] A m—] exp{-A t - E_/E ) (2.15)

for the special case Em/Eo =0 21 lalg. L = 3, Eo = 15 keV, N = 103) :

The normalized growth rate Ztha] is, by (2.12),

2 4
2 3 &
= 4[ %] [1—3—] (J (L) x 107%) ¢ (2.17)

where N is in units of cm™>, JO(L) in units of (keV cm? sec ster)'] :

and £ = LRe s With Re = one earth radius. According to Williams and Lyons
data, JO(L) is typically in the range 106-107 . Fig. 2 is useful for
calculating the growth rate in case (1).

In Fig. 3, we plot the expression ?(Aot)-] , useful for calculating

the growth rate in case (2), for the special case Aot E/E, = 0.2 (e.q.

«l2~
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Figur_e 2. Growth rate divided by group velocity (unnormalized), for case
' I (N = constant), Em/Eo = 0.21. To normalize, see Eq. (2.17).
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L=4, N= 103 cm'3day']) . In this case, the normalized growth rate is :
2 !
2 MO 5
&b _ 0

okl J (L) rzf (2.18)
3
]
3 2 ]03A° e :

. 4[ E] [ , ) (9(0) * 10775 (2.19)

Figs. 2 and 3 show a rather similar change with time of the maximum growth
rate; the main difference is that for case (1) the maximum goes to increasing-
ly large values of x , while for case (2) maximum growth occurs at x = 0.35 .

When numerical values for JO(L) fit to the December 17-18 storm are
used in (2.17) and (2.19), they reveal that 2ylvé] exceeds unity for a ‘\t
period ranging up to 3A;] » or three charge exchange lifetimes. This is
roughly the period of time in which proton EMC waves can be emitted by an
initially flat distribution, although important modifications to the growth
rate from heavy-ion damping and from anisotropy from wave emission will
shorten this time.

It is most important to note that the formulas and figures of this
Section are not applicable once 2yﬁvé] exceeds unity. As we discuss in
Section III, the anisotropy becomes locked and ceases to evolve once ion-EMC
waves are emitted.

Even when the initial distribution is not isotropic, the formulas of
this Section can be used for case (1) to the extent that the initial anisotropy
can be fit to the charge exchange law (2.2) for some value of t , say
t=1t . It is only necessary to shift the time axis backward by an amount

0

t° , and to remember that JO(L) no longer has the significance of the

initial perpendicular flux at the equator. In case (2), it is necessary also
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Figure 3. Growth rate divided by group velocity and time (unnormalized),
for case II (N proportional to t), Aot Em/Eo = 0.21. To normalize,
see Eq. (2.19).
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to assume that the initial plasma density is not zero, but rather Noto 2
Normally this has little effect on the final growth-rate formulas, for

t > to .

B. Contributions from Heavy lons

1 coming from heavy ions,

Let us calculate the contribution to Zylvé
specifically He' » Within the spirit of the same approximations that went
into (2.12). It is no longer true that AO(L,E) is roughly constant over
the low-energy range; a much better approximation is that AO is linear in
energy. For He' , a suitable fit to Ao is:

A (L)
Ag“?)(L,E) = AMLE 5 ANL) = pelrer (2.20)

In (2.20), AO(L) is the proton charge-exchange rate, assumed independent

of energy for 3 < E < 3C keV . Above 30 keV, the proton charge-exchange

_rate falls sharply, and Ao(He) = Ao(p) at E = 50 keV . Eq. (2.20) is

valid up to about this energy.

For He' ions, the fundamental rate formulas (2.4)-(2.6) become

zzﬁ ¥ ﬂzﬁm [ l;x] fgg [_J +% {ﬂt‘)ﬁl 1 J y%]y% (2.21)

F58 e b e e
= (1 - gyE)'/?

oo 58)( -

=16




where, as before, x = w/2 , M the proton mass, and £ 1is the proton
- gyrofrequency. We assume that the helium ions are not present in sufficient
numbers to modify the phase or group velocity appreciably.

Note that for x = 1/4 , Eé is much smaller than the corresponding
value EC for protons. For x = 0.35 , the frequency of maximum growth as
shown in Fig. 3, E“:/EC = 0,02 . Since the integral over E in (2.21) runs
down to Eé , the He' distribution function (~J/E) 1is probed at very Tow
energies, hundreds of eV or less. This is also so if the ions are He++ .
but the corresponding ratio Eé/Ec for 0" s not as small by nearly an
order of magnitude. Even with a positive anisotropy, heavy ions yield a
negative contribution to y as long as w > Q(ion) . A positive heavy-ion
contribution to y is possible for w < Q(ion) , if the heavy-ion anisotropy
is large enough. For He' , Charge exchange probably does not contribute
dominantly to this anisotropy, since a typical He+ charge-exchange time
scale is ~60 hours at the equator at L = 3 . (It is about one day for
0" at the same place.)

If we were to calcul?te the heavy-ion contribution to y wusing
Jgion)(E,L) = 9, (L) e ©,and (2.20) for Aolion) , a fornula similar to
(2.12) would emerge. However, this formula would be logarithmically singular
at EL =0, feflecting the £ singularity in the heavy-ion distribution
function f -~ J/E . This is no problem for protons, where Ec can never
become too small, but the singularity in f must be removed for the heavy
ions. Let us (in the absence of very-low-energy measurements) assume the
He' current J' to be, at t=20:

-E/E6 ;

3'(L.E,t=0) = Ji(L) Er e (2.24)
0

o




This Maxwellian phase-space distribution function may be used either for

the thermal component or for the ring-current component (in which case pre-
sumably Eé = E° ). In analogy with the calculation of (2.12), we find, lél
using (2.20)-(2.24) |

2¥§.He+ - Efﬁﬂ& { liz-} Jo(L) exp(-Xt-El/E;) [ fégi }

(2.25)
where the Ki(z) are Hankel functions of imaginary argument. In (2.25),

the following parameters appear:

= ] ) 1] =
A Ao EC * z

(T EL Y1/
)

m

£} = Eé[] + 'Xt[ f‘é’- ] J-] i (2.26)

This expression is well-behaved at Eé =0 ; it is worth noting that the heavy-
ion contribution to the growth réte does not decrease exponentially at
E.* 0.
First, consider the contribution of ring-current (> keV) He' ions .
For all practical purposes, we may set Eé =0 in (2.25), and ignore the
terms in square brackets; this approximation breaks down only after many

proton charge-exchange lifetimes or for very small x . Then we find

28

2
= L. [‘—;"—]n ey e (2.27)

He+

-18-
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Then let us take Eé = EO = 15 keV . The term in square brackets is nearly

equal to unity for many proton lifetimes. Finally, let us take the He'

flux at E = Eo and at t = 0 to be constant fraction of the proton flux

for all L , that is, Ja(L) =g JO(L) . A very simple modification to the

growth-rate formula (2.15) emerges: simply subtract % c{ lil } from the

Lo NI 7 o
il

right-hand side of this expression for ? . This may be done directly on
Figs.v2, 3. Since ¢ might range from 0.05 to 0.2, this can be a very

significant negative contribution to the growth rate. In fact, if ¢ > 0.2 ,

e A i A AN 55505

2y£vG] will never exceed unity, and proton EMC waves will not be generated.

For 0+ , the charge-exchange rate is also rather small, about an order
of magnitude less than that for protons. We may roughly incorporate the
effect of 0+ ions by taking z to be the ratio (He+ + 0+)/p s

For He'™ » the situation is somewhat different. Between 10 and 30 keV,
the charge-exchange rate for He++ > He+ is comparable to the proton charge-
exchange rate. The He'™ contribution is, crudely speaking, given by (2.12)

except that inside the square brackets 1-x is replaced by 0.5-x , and EC

is found from (2.23) using Q(He++)/9 = 0.5 ; the values of a,z from (2.8)
are correspondingly modified. In contrast to He+ » the He++/p ratio

(at least from 10 to 30 keV) is roughly constant in time. With c(He++) ~ 0.05

to 0.2 , these ions contribute modestly to growth for x = 0.35 , when
Aot > 2 , but their main effect is to build up the He' population. This
can be accounted for by letting c(He*) be time-dependent.

As for the thermal heavy-ion contribution, it is negligible, since

Eé >> Eé for all practical purposes.




III. COUPLED CHARGE-EXCHANGE AND ION-EMC EMISSION EFFECTS

To understand this Section, the reader will have to shift mental gears
from Section II, where growth rates was calculated without considering the
effect of wave emission on the distribution function f . The point is
that f will become more anisotropic, thus increasing y according to
(2.12) only up to the time where R = 2ytvé] reaches unity. Let us call
this time t.l . After t] , finite-amplitude ion-EMC waves are emitted, and
it is well-known that a necessary condition for wave-particle equilibrium is

R =1 for those frequencies at which finite-amplitude waves are present

[Cornwall, 1966, 1975a; Kennel and Petschek, 1966]. (Note: R =1 1is only

appropriate if there is no heavy-ion damping of the waves as they pass
through the ring current. If the heavy-ion damping rate is “YHe® R =1

L This qualifica-

should be replaced by the larger value R =1 + ZYHezvé-
tion should be kept in mind whenever we discuss the condition R =1 .) For
conditions appropriate to the December 17-18 storm, Figs. 2 and 3 and Egs.
(2.17) and (2.19) suggest that Aot] can be as small as 0.2, which corresponds

to fairly small values of the anisotropy (to be defined below).

The constancy of R in time for t > t is achieved through a balance
1 of the rates of change of the shape of the distribution function in y , of
| the cold plasma density, the decaying omnidirectional flux, etc. It is an

; ' enormously complicated job to evaluate the precise y-dependence of f which
|

(a) keeps R =1 over a finite frequency band width, (b) is consistent with

SR 5

particle losses from charge-exchange and pitch-angle scattering. (See %

Etcheto et al. [1973] for an attempt to solve a similarly complicated

problem.) We try a much more modest program [Cornwall, 1975a], in which the

shape of the distribution function is parametrized by just one number, the
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anisotropy A . Now it is no longer possible to make R =1 over a finite

frequency bandwidth; instead we impose only the condition R = 1 , where R

H is the value of R at the frequency x which maximizes R . (The idea is

that the fastest-growing waves largely determine the equilibrium between
wave growth and loss.)

It is especially important to realize that A is a dynamical parameter,

no longer given by a simple formula like (2.13). That is, A responds not
only to charge-exchange growth (as in (2.13)) but also to loss of anisotropy
by wave emission [Brice, 1964] and to increase of anisotropy from precipita-

tion into the loss cone. Indeed, A must respond very rabidly by wave

T O T I T T AT AN T VDR

T emission in order to keep R at its equilibrium value of unity; no other

parameter (e.g., Eo’ Em’ Aot) can change at a rate comparable to the wave-

growth time scale.
We have noted before [Cornwall, 1975a] that, of all the quantities on which

R depends, it depends most sensitively on A (at least if A is less than one).

onis 7e bt

Thus the condition R = 1 serves to determine A , primarily, and the

constancy of R suggests a similar near-constancy for A . As a first

approximation, anisotropy growth from charge-exchange balances anisotropy

loss from wave emission, and the shape of f evolves much more slowly during

the period of wave emission than before. This approximation breaks down

also at later times, when the flux has iecayed so much that greater and

greater anisotropy is needed to keep growth going.
We turn to the calculation of R . The first problem is how to para-
metrize the shape of f by a single parameter A , in order to calculate

R . The actual shape is unknown, and such a parametrization will be useful

only if similar results are achieved for a variety of (smooth) shape functions.

2A

For a shape given by a power law f . y or a bi-Maxwellian (A = (Tl/T" )-1)

numerous results are available in the literature. Numerical results for R

2l =




R

are given in Cornwall [1975a] for the bi-Maxwellian case. In the present paper

we consider instead distribution functions whose pitch-angle shape is given

A NG D A i vl b

by (2.2), the chardge-exchange form, except that Aot is replaced by a

dynamical parameter T equivalent to the anisotropy:

J(E,y,L) = 9 (Lsty) e’ exp{-E/E - %) . (3.1)

Of course, at the time t] when finite-amplitude wave emission begins,

T = Aot] , but thereafter T (or A ) is determined by the condition R =1 .
How is Tt related to the anisotropy? For purposes of the quasi-linear

vﬁr moment equations, the anisotropy must be defined in terms of the expectation

va]ués <NE> and <NE;> of the total energy and of the perpendicular

energy. The expectation values would be correctly defined by

<Q = f du dJ fQ ~ J dEdy yT(y) Qe\/2 f (3.2)

for any function Q . The integrals are taken over the first two invariants
u, J at fixed L , and T(y) is the normalized bounce time as defined by

Schulz and Lanzerotti [1974]. Unfortunately the curvature of the field lines

obscures to some extent some simple physical points we wish to make later on,

so we define expectation values as simply integrals over the equatorial

velocity components (as if the Earth's field lines were straight). Then the

anisotropy A is defined as:

<NE;> = <NE> [ At

5 ] : (3.3)

N o —

The relation between t and A 1is shown in Fig. 4; note that A grows at
roughly twice the rate 1t does. A comparison of A as defined by (3.2)

=23.
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with Kéff (see (2.13)) shows discrepancies at the lowest values of A , but
these are unimportant.

Given the distribution function (3.1), the calculation of R (or
equivalently the maximum growth rate) is the same as the calculations of
Section II, except that Aot is replaced by Tt , and except that f no
longer decays in time in quite the same way as it would if only charge
exchange were acting.

To explain this latter point, we observe that if A 1is roughly constant
in time, protons must be scattered in pitch angle through a substantial
fraction of 90° in one charge-exchange lifetime so that anisotropy loss from
pitch-angle scattering can balance anisotropy growth from charge-exchange.

In turn, this means that protons do not experience charge-exchange losses
appropriate to a fixed pitch angle, but rather that all protons are lost by

charge-exchange processes at a pitch-angle averaged rate A , defined by

. <y > ‘
A= xo_{.B_ (3.4)

A s, in fact, the Toss rate which occurs in the quasi-linear moment-

equation for <N> or <NE> as we discuss below. Fig. 5 shows a plot of
AA;] vs. A . Note that A 1is roughly twice xo at small A , but at

large A tﬁere are very few protons at small y , and here A = Ao v AN
addition, protons are lost by precipitation into the loss cone due to pitch-
angle scattering, and energy is lost by wave emission. These effects may be
incorporated by allowing JO(L,t]) and Eo into (3.1) to be functions of
time, whose time dependence is governed by the quasi-linear moment equations

of the next Section as well as by the condition R =1 .
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Figure 5. Pitch-angle averaged charge-exchangé'rate A vs. anisotropy A .
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The upshot of all this discussion is the following formula for R :

R=2r’ g (Lsty) —i“,-‘&MAxx{( —;—"] KO(E)[T[ ]—xi] - T«l»g] exp[-E_/E -A(t-t;)] }

(3.5)
where JO(L,t]) is the flux factor corresponding to the time t] at which
wave emission starts (i.e., R first attains the value of unity). In (3.5),
z and a are calculated as in (2.8), with Tt substituted for Aot (ex-

cept in Ec ). As a function of A, R shows the same features as it would

ST T T R e

for a bi-Maxwellian: a steep dependence on A for A <1 . This is
illustrated in Fig. 6, where the A-dependence of R is isolated in the ex- i

pression

-1

2 At=ty)
B EiR A ! [an Jg(toty) ’—‘%—e-] (3.6)

for Em/EO = 0.21 . The interested reader should compare Fig. 6 to Fig. 1
of Cornwall [1975a] which gives R for a bi-Maxwellian; the A-dependence of
R is quite similar for the two cases.

In the next Section, we use R = 1 as a dynamic equation relating the
parameters which appear in (3.5). This equation is adjoined to the quasi-
linear equations for the distribution function, yielding a set of equations

from which the emitted wave energy can be calculated, as well as the evolu-

tion of A, <N> , and <NE> .
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Figure 6. Dependence of the maximum growth rate I‘m on anisotropy A .
To normalize, see Eq. (3.6).
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IV. DYNAMICS ACCORDING TO THE MOMENT TRANSPORT EQUATIONS

In addition to the equation for R = 1 discussed in the last Section,
there is the quasi-linear diffusion equation expressing the rate of change
of f as determined by charge exchange, loss-cone precipitation, and wave-
induced diffusion. We replace this equation by a set of moment equations
[Cornwall, 1975a] for the moments <N>, <NE> , and <NE;> . Actually we need
only consider equations for <NE> and <NE;> , since <N> does not appear
in these two moment equations.

The main objectives of this Section are to determine the rate at which
particle energy is lost to waves, and to discuss the evolution of the aniso-
tropy dufing the period of wave emission. It will be very helpful to
consider a simplified version of the energy-loss problem, following Brice
[1964]. He points out that the conservation of energy and momentum during
the elementary process of emission of a wave quantum by a single particle
lends to a relation between the rate Ew at which the particle loses energy

to waves and the rate élw at which it loses perpendicular energy:

g /E w/Q (4.1)

A

Assume that E/El = <NE>/<NE > ; then with the aid of the definition (3.3)

of the anisotropy A , we find

3
Tz' El-E

=3 (4.2)

A =

It is simple to combine (4.1) and the time derivative of (4.2) to find

3 x A , -1
e [1 - x AA:]§ ] (4.3)
2
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where x = w/Q . Here Au is the rate at which anisotropy is lost by
wave emission. Note that, since the emission frequency is bounded by
X < A(H-A)"l » the square brackets in (4.3) are always positive. If (as
argued in the last Section) A is roughly constant, then -Aw must roughly ;
be equal to ACEX » the rate at which A increases by charge exchange. For .

a distribution function of the type (3.1), we have

=2 1= 2= 2) (4.4)

where we consulted Fig. 4 for dA/dt . Thus (4.3) yields EN/E in terms of

A,» A, and x . For typical values of A and x , E/E is 15-20% of

Ao ; in words, the particles lose energy to waves at -15% of the rate at which

they lose energy by charge exchange. We shall see below that this rate is

somewhat larger when (4.3) is modified to account for precipitation losses, but

even this rate is enough to power SAR-arcs. For example, during recovery :
phase of the December 17-18 storm, the total energy stored in the ring

current is of the order 5 x 103 ergs cm°2 (energy per unit area at the iono-

sphere), and it is dissipated at a rate of = 0.3 ergs cm'z sec'] by charge

exchange. Twenty percent of this is 0.06 ergs cm'2 sec'], while it is estimated

by Williams et al. [1976] that roughly 0.05 ergs en? sec™! is needed to

power the observed SAR-arcs during this storm. The SAR arc begins to fade
rapidly about 10 hours (or 2A;1) into recovery phase.

Eq. (4.3) does not take into account a number of effects; to remedy
this, we turn to the moment-transport equations. We refer the reader to

Cornwall [1975a] for all details. The equation for <NE > reads
) == =1 .
5F NEp> = -NEp> - Y WX . (4.5)

-30-




W is essentially the energy density of the waves. Note that there is no

precipitation loss term, since the equatorial value of E s very small in

the loss cone.

The first step is to express all the terms in (4.5) in terms of A and

<NE> . Since X = Aoy'z, E = Eyz, <ANE ;> A°<NE> . The process is com-

pleted by using the definition (3.3) of A , and we express the result as an

PR 0 ST CITORege

equation for 2y W :

T A+1)3 S -A
2y W = X{ ~A°<NE> - [m] 3T <NE> : 3 <NE> } . (4.6)
2 2[A+-2-] |
4

i Skt

The idea is to combine (4.6) with the moment equation for <NE> , eliminate

wali

3/3t <NE> , and thus arrive at an equation for 2y W which contains no time

derivatives. The <NE> moment equation is

a X e - ~ W -
13 <NE> A<NE> - 2y W <Ap NE> (4.7)

where we have used (3.4) to write <ANE> = A<NE> . The last term in (4.7)
represents precipitation into the loss cone produced by wave diffusion. By

eliminating 2y W from (4.7) we find

3 <NE> = d']{ -(A-xx_)<NE> + A <NE> - <A NE> } (4.8)
ot 0 3 2 p
[a+3]
where

A+ 2 -1
d=1- x[ S ] > [ §-A + 1 ] ’ (4.9)

A+ 35

2
3] =

 — -
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The inequality follows from x < A/(A+1) . Alternatively we eliminate
3/9t <NE> from (4.6) to find

_ -1 A+ A+ A<NE>
2y W =4d x{[l\ - A ]<NE>+[-——3-}<A NE>-——————},
A+ o A+S P 312
(4.10) ;
|

The analog of -ENE') in the simplified Brice model (4.3) is 2y W'<NE>'1 .

ke - A

It is easily checked that, if the charge-exchange and precipitation loss

terms in (4.10) are dropped, (4.10) reduces to (4.3) (with, of course,

Bl

A= Aw) . Furthermore, the term in square brackets in (4.10) represents the ‘
growth of anisotropy from charge exchange. To see this, substitute
3/3t <NE > = -A°<NE> and 3/3t <NE> = -A<NE> 1in the time derivative of the

definition (3.3) of A , and come to :

| i°f"-z-r' ) =

which, in turn, is easily shown to be identical to (4.4) with the help of

(3.1), (3.3), and (3.4). Since A= ACEX + AW , (4.10) can be written

<NE>
HW=d - a + AL T o wes (4.12)
Ty A3l P
(aed] (A0
2
which is again the simple Brice relation (4.3) except for the <Ap NE>

term.
It only remains to discuss <Ap NE> , the precipitation-loss term
coming from pitch-angle scattering. We have already argued that a particle

changes its pitch angle at about the charge-exchange rate, so we expect

«32=




<Ap NE> - A0<NE> or possibly A<NE> . This means that the waves are in the

weak-diffusion regime, because the characteristic pitch-angle diffusion time

0

A'] is considerably smaller than the average minimum lifetime

.’I:

. 2
MIN = Tg/ 2%

where TB is the bounce time and a, the loss-cone pitch angle. However,

it is possible that there is a transient regime in which strong diffusion

occurs, if <NE> at the time t] (when the waves switch on) is quite large

compared to a critical value (discussed in Cornwall [1975a]) which is roughly

comparable to the stably-trapped limit of Kennel and Petschek [1966]. This

transient regime ends when strong diffusion has reduced <N
comparable to the critical value <NE>c a

In order to discuss both the strong-diffusion transient

E>

to a value

and the weak-

diffusion regime together, it is necessary to take into account the non-

linear dependence of <Ap NE> on 2y W . In an earlier work [Cornwall, 1975a]

we introduced the form

L )
<\ NE>=27W<NE>[<NE> A”3" + Ty 2‘fw] ;
P - A+‘§'

(4.13)

The term linear in W (found by setting TﬁIN = 0 ) yields the weak-diffusion

limit, while in the strong-diffusion Timit <A  NE> > <NE> Ty .

value <NE>C is approximately

= 3

2 ¢V di A + >

<NE> ,_,%_[_P_} ‘
C oM Atmt hET)

Use (4.13) in (4.10) to find

2dT,

AT [A+;][Q+(Qz+4TMINY<NE> )‘/2]
MmN At 2 p

«33-
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electron EMC waves generated by energetic electrons, for which there is no

X
Tt

where

Q = <NF> - <NE>c + TMRN { (4.16)
3
- A+ = .
2 . A<NE> 2
Y=1|n4- [ ] i ]<NE> . A (4.17) \
L Axyl 0 2(A+1)F+%) .=.

From (4.15) various limits can be found. When TﬁIN

we find that 2y W is given by the right-hand side of (4.10), with <A, NE>

Y >> |<NE> - <NE>c| .

set equal to zero. When <NE> - <NE>_ >> ?ﬁIN Y , we find
Hu=2 [A+;)[<NE> - <NE> ] ; (4.18)
dT A+ 3 .
MIN 2

This is the limit which was studied earlier [Cornwall, 1975a]. It amounts to
saying that precipitation losses are much more important than charge-exchange

losses, which is true for several special cases. The first case is that of

charge exchange. The second case is the transient regime mentioned above for
the proton ring current, when the waves switch on in a very strong ring
current. The waves grow rapidly, and precipitation losses reduce <NE> - <NE>C
to order of THIN Y , at which time all quantities begin to change more or
less on the charge-exchange time scale.

We may estimate the size of 2y W in the weak-diffusion regime by
supposing <NE> - <NE>C x TﬁIN Y . There is, under these circumstances, a

)—1/2

term in (4.15) of order AO(AO T <NE> , plus terms of 0(A0<NE>) :

MIN
Since a typical value of (Ao TMIN)-I is about 5, this square-root term is
not an order of magnitude greater than the terms of O(Ao) » and the whole of

(4.15) is, practically speaking, 0(A°<NE>) . In other words, the precipitation

=34 <
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loss term <Ap NE> in (4.12) is of order AO<NE> , as would be expected if
the pitch-angle diffusion coefficient is O(Ao) :
As time goes on, another sort of weak-diffusion regime sets in. In this

regime, it is no longer true that A is small and that Y = 0(A0<NE>) :

Rather, Y = O(TMIN A2<NE>) » which means that the anisotropy is growing at

very nearly the charge exchange rate (cf. (4.17) and (4.11)). Also,

|<NE> - <NE> [ = 0(A TMIN<NE>C) ,and 2y W = 0(A0<NE>) . Ultimately, as the ;

flux decays, this ordering of <NE> - <NE>C will be violated and one finds

YW= Az TMIN<NE> . At this point wave emission has effectively ceased, if

it has not already been forced to cease because it is no longer possible to

satisfy R=1.
The quantitative statement of these effects requires simultaneous solution

of the equation R =1 (see Eq. (3.5)) and the o<NE>/5t Eq. (4.7) which can

be written, using (4.13) and (4.15), as

<NE> = -A<NE> - Z [gdx :+1 2<N$E> J (4.19)

=Q+ (g% + T \(<NE>C)”2 : (4.20)

Although some preliminary efforts have been made in this direction, they do
not add appreciably to our qualitative understanding as described earlier.

This understanding may be summarized as follows:

MR T A

There are three terms in 2y W as given in (4.10). The first (in
square brackets) corresponds to the growth of anisotropy from charge exchange.
The second (precipitation-loss) term is estimated to be = A°<NE> . The
third term involving -A s smaller than the other two terms until wave

growth is about to end, when it nearly cancels the first term (i.e., Y in
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(4.17) becomes small). During the main wave-growth period when A=o0,

the precipitation-loss term may add significantly to 2y W , perhaps even
doubling the result coming from charge exchange alone. That is, the naive
Brice relation (4.3) may only yield one-half the energy lost to waves, which
could thus be 20-40% of the energy lost by charge exchange. In view of the
imperfectly efficient processes by which wave energy is used to heat electrons,

this should be approximately right to drive SAR-arcs.
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: APPENDIX
.i
g The mathematical task is to evaluate Eq. (8), for constant Ao . The
¥ relevant integral is
' Lt E AtE
IR Seee TR £ 0%
I-f Efae el i e SR o g
E c 0 c
c
The change of variables
j q = =& (E-E,) (A.2)
13 (o :
() .
yields
-E/E_ [T Xt 3
- o &0 1-x 0 Z i
e qu[ ot [ 5] ew{-2[a03)} @
0
With the aid of a standard formula for Hankel functions of imaginary argu-
* ment ‘
2
i ] Sl 1 b?
] - RV V- _Z b~ ;
§ K,(bz) = 3 b J dt t exp{ 2[t+ t}} (A.4) |
3 0 |
¢ i
! A o
L 8 we find P 3
| § € /E | ¥
NE [sg © °[2[ -‘—;i] Aot Ko(2) - Q(a,z)] (A.5) k-
i . where %
f - d 1 %
;' = .8-_ - -Z- —_—
| oo« [ frenf - (421} g
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Evidently Q(0,z) = 2Ko(z) , from (A.4), and Q 1is a positive decreasing
function of a for positive a . In (A.6), the change of variables q -~ q']

easily yields, along with (A.4),
Qlasz) + Qa5 2) = 2K (2) (A.7)

from which Q(1,z) = Ko(z) . One may give a formal expansion of (A.6) as a
power series in a (or in a'] ), with coefficients KN(z) « But this s

not very useful. By writing the denominator of (A.6) in the form

E
§ -

ql—a = | deMatra) (A.8)
0

some use“ul forms can be derived. We quote only one of them:
T az -1 o 1172
Q(a,z) = 2K (z) - e die K [[-——-] ] - (A.9)
(s 0 a
az

Finally, a very simple and useful approximation follows from the

steepest-descent evaluation of (A.6) for large z . It is:

iivon i i

| ZKO(Z)

s ﬁ Q(a,z) = i (A.10)

2

-i This satisfies (A.7) for all z . The approximation (A.10) is an overestimate
-

of Q for 0<a< 1. It is useful even for small z ; the maximum error

};.
i is about 15% for z = 0.1 .




REFERENCES

Brice, N., Fundamentals of Very Low Frequency Emission Generation Mechanisms,

J. Geophys. Res. 69, 4515, 1964.

. Cornwall, J. M., Micropulsations and the Outer Radiation Zone, J. Geophys.
Res. 71, 2185, 1966.

Cornwall, J. M., Moment Transport Equations for Wave-Particle Interactions

«n the Magnetosphere, J. Geophys. Res. 80, 4635, 1975a.

Cornwall, J. M., Density-Sensitive Instabilities in the Magnetosphere,

4 invited talk at the IUGG General Assembly, Grenoble, France, August
2 1975b.

; Cornwall, J. M., F. V. Coroniti, and R. M. Thorne, Turbulent Loss of Ring

Current Protons, J. Geophys. Res. 75, 4699, 1970.

] , Cornwall, J. M., F. V. Coroniti, and R. M. Thorne, A Unified Theory of SAR

k| Arc Formation at the Plasmapause, J. Geophys. Res. 76, 4428, 1971.

Cornwall, J. M., A. R. Sims, and R. S. White, Atmospheric Density Experienced

by Radiation Belt Protons, J. Geophys. Res. 70, 3099, 1965.

Etcheto, J., R. Gendrin, J. Solomon, and A. Roux, A Self-Consistent Theory

of Magnetospheric Hiss, J. Geophys. Res. 78, 8150, 1973.

E | Joselyn, J. A., and L. R. Lyons, Ion Cyclotron Wave Growth Calculated from
Satellite Observations of the Proton Ring Current During Storm Recovery,

J. Geophys. Res. 81, 2275, 1976.

4 | & Kennel, C. F., and H. E. Petschek, Limit on Stably Trapped Particle Fluxes,
i J. Geophys. Res. 71, 1, 1966.

Liemohn, H., The Lifetime of Radiation Belt Protons with Energies between

1 keV and 1 MeV, J. Geophys. Res. 66, 3593, 1961.

Lyons, L. R., and D. S. Evans, The Inconsistency between Proton Charge Ex-

change and the Observed Ring Current Decay, submitted to J. Geophys. Res.,

1976.

z
[
£

-39 .




T — TRETO v S e e

Schulz, J., and L. Lanzerotti, Particle Diffusion in the Radiation Belts,

Springer-Verlag, Berlin, 1974.
Shelley, E. G., R. G. Johnson, and R. D. Sharp, Morphology of Energetic

0+ in the Magnetosphere, in Magnetospheric Physics, ed. B. M. McCormac,

p. 135, D. Reidel, Dordrecht, Netherlands, 1974.
Smith, P. H., R. A. Hoffmann, and T. Fritz, Ring Current Proton Decay by
Charge Exchange, J. Geophys. Res. 81, 2701, 1976.

Swisher, R. L., and L. A. Frank, Lifetimes for Low-Energy Protons in the

Outer Radiation Zone, J. Geophys. Res. 73, 5665, 1968.

g1 Tinsley, Brian A., Evidence that the Recovery Phase Ring Current Consists of

Helium Ions, submitted to J. Geophys. Res., 1976.

Williams, D. J., and L. R. Lyons, The Proton Ring Current and its Interaction
with the Plasmapause: Storm Recovery Phase, J. Geophys. Res. 79, 4195,
1974a.

Williams, D. J., and L. R. Lyons, Further Aspects of the Proton Ring Current

_ Interaction with the Plasmapause: Main and Recovery Phases, J. Geophys.
Res. 79, 4791, 1974b.

Williams, D. J., G. Hernandez, and L. R. Lyons, Simultaneous Observations of
the Proton Ring Current and Stable Auroral Red Arcs, J. Geophys. Res.
81, 608, 1976.

BRI Sl it SoR SRR

————

-40-




o AR e AR Sl g 20 T e ——
S ; ’ MR sl b s s s - ¥ & ” ‘ b vy SR i e
g s L~ o

i v’ 'r“k;’w-_‘.&;m;;}'éf& s ai“ i PR

TR S

T
A

dibeding ivilr

DETEEN

sl A Bt

LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
8 application of scientific advances to new military concepts and systems. Ver-
3 : satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
Expertise in the latest scientific devel-
The

e

developing space and missile systems.
opments is vital to the accomplishment of tasks related to these problemas.

laboratories that contribute to this research are:

G TP O}

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-
fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,

1 atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos-
pheric optics, chemical reactions in polluted atmospheres, chemical reactions
of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sensitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of law enforcement and biomedicine.

.

a
Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics; quantum electronics,
5 lasers, and electro-optics; communication sciences, applied electronics, semi-
i3 conducting, superconducting, and crystal device physics, optical and acoustical
imaging: atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms of carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals,

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy; the effects of nuclear explosions,
magnetic storrns, and solar activity on the earth's atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-

tions in space on space systems.

THE AEROSPACE CORPORATION
El Segundo, California
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