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1. INTRODUCTION

This paper proposes a new formulation of consumer demand

functions . The fundamental assumpt ion of the formu lat ion is that a

consumer spends his money in such a way that the marginal uti lity of

expenditure equals a constant , which is independent of prices and does

not change over time. This assumpt ion will be termed the permanent

income hypothesis because of its similarity to the hypothesis of

Fr i edman  [7 1

• The permanent income hypothesis proposed here is somewhat

differen t from that of Friedman . The hy pothesis studied here is

intended to be a theoretical representation of a consumer ’ s response t o

shor t - term fluc tuations in prices , his needs , and hi s income . Because

of the theoretical orientation , the hypothesis is stated in terms of an

unobservable , f ic titious quantity , the marginal uti l i t y of expenditure .

Friedman is concerned with the r elation between consumption spend ing

and current and past income and other variables . His hypothesis is ,

rou ghly,  that con su mption spending consists of a random ter m plus a

mul tiple of some weight ed average of past and expected future incomes

( Friedman [7 , Chap. III] ) . Becau se of Fr iedman ’s empirical  orie ntat ion ,

his hypothesis is a statement about quantities which are directly or

indirec tly obs e rvable .

Both Friedman ’ s hypothesis and that of this paper are based on

the same idea , that consumers try to compensate for economic fluctu-

~tio ns by saving and dissaving. The same idea lies behind the life cycle

A _ _ _ _  _ _ _
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model of Modigliani and Brumberg [10 1, which is very similar to

Friedman ’s hypothesis .

Some economic implications of the permanent income hypothesis

of this paper are explored in two other papers [3 , 4 j  . These papers

• attempt to show that this hypothesis clarifies the economic significance

of general equilibrium theory. This pa per attempts to clarify and

defe nd the hypothesis itself by stating it precisely and demonstrating

when it is applicable .

The permanent income hypothesis may be stated mathematically

as follows . Let U~(c~ ) be the utility of the consumption bundle

• en (c~ 1 , .. .,  cflL ) purcha sed in period n . Suppose that is differen-

tiable and defined for all L-dimensional vectors with non-negative

components . Let 
~n ~~n l ’~~~ ~~~~~ 

be the vectors of prices in

pe ri od n . The hypothesis asserts that there exists a number K such

that the following is true for all n and i .

~U ( C ) — .

—
~

--
~
---— <X p11~ , 

with equality if c~ 1 > 0 .
ft

• X i s  independent of n , p~ , and of expendi ture , ~~~ c~ .

• The permanent income hypothesis may be stated in terms consistent

with the usual model of the consumer . If money is included in the

list of commodities and if the price of money is set equal to one , then

the consumer ’s transaction s must satisf y the accountin g identity ,

M + p~~ c Mn~ 
where is the quantity of money he has at the begin-

ning of period n , c is the vector of commodities purchased , and M is

~:f-
_
- •_, •j

~~~~~ 1
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the quantity of money retained after the purchases . That is , in period

n the consumer is restricted to the budget set

B~ ~~{(M , c) I M + 
~~~~~ 

c = ~~~ M ~ 0 , c ~ o}.

The permanent income hypothesis may be interpreted as the following

two assertions. (1) The consumer chooses a point in B~ which maxi-
•1

mizes a utility function of the form ~.M + U~ (c) .  (2 )  is so large that

if ( M ,~~) is the point chosen in B~~. then i~i >  0.

The permanent income hypothesis is a mathematical re presentation

of a con sumer who has in mind a definite idea of the value of a dollar and

spends money on a commodity u p to the point at which the value of the

quan t i ty bought with an addit ion al dollar equals the value of the dollar

spen t . The value of a dollar may also be thought of as the consumer ’s •

willingness to spend .

Of course , one cannot believe that in reality a consumer ’s

willingness to ~pend would be completely fixed. But it is not hard to

imagine that under certain conditions it would be nearl y fi x ed , so that

it would be reasonable to assume , for simplicity , that it is fixed .

The conditions which could give rise to a nearly constant willing-

ness to spend include the following: (1 )  fluctuations in the economic

environment or the consumer ’s needs which are frequent , not very

large , and tend to offset each other over a period of a few years ,

(2)  nearly correct antici pation by the consumer of the

(statistical) nature of the fluctuations , and (3) possession by the con-

sumer of an adequate supply of liquid assets : •

Economic common sense indicates that under these condition s , N

H
___ •
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a consumer would respond to fluctuations largely by saving and dissaving.

If he allowed his willingness to spend to fluctuate widel y ,  he could

• increase his total enjoyment by spendi ng a dol lar less when mon ey was

worth rela t ively little to him and a dollar more when money was worth

a lot .

However , even if the conditions listed above were satisfied , one ~ I

w ould expe ct the consumer ’s willin gness to spend to vary somewhat .

Oscillations in his holdings of liquid assets would certainly affect his

attitude toward money. Or , runs of good or bad luck could affect his

expectations about the future . But these influences would probably

cause only small and gradual changes in the consumer ’s behavior .

Such changes might be gradual even if the listed conditions were 
• 

-

not all satisfied. For in stance , thou gh a consumer probably would not

be willing or able to compensate for long-term economic oscillations

by savi ng and dissaving , such oscillations would be gradual . A con-

sumer ’s expectations might be incorrect , but the presence of rapid

L fluctuations might make it impossible for him to discern his m i~~t~~~E

q uickl y.

The permanent income hypothesis would be comple te l y inappro -

priate if app lied t o  a consumer  l iving a hand -to-mouth exi st enc t ’ or ~~o

a cons umer  subject to abrupt  and radical change . A sudden change  ~‘i

expectations or a sudden large scale loss of financial  assets cer t ; i in lv

could be expected to affect  a consumer ’s willingness to spend . -\lso ,

the permanent income hypothesis should not be app lied t o long-term

chan ges . The consumer ’ s wil l in gness to spend might  well change

mark edl y after a long period of t ime  if some long-term change occurred
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in his circumstances.

One might accept the permanent income hypothesis on the basis

of intuition and common sense alone . But since the hypothesis is stated

in terms of marginal utility and since it is traditional to assume that

consumers are precise utility maximizers , it is natural to give a demon-

stration of the hypothesis in terms of the consumer ’s maximization

problem. Most of this paper is devoted to such a demonstration .

There are many ways to formulate the consumer ’s maxi-

mization problem. For instance , the na ture of hi s problem depe~ ds on

the form of his utility function and on whether he is allowed to borrow .

Since borrowing gives the consumer additional flexibility, it seems ‘

clear that the permanent income hypothesis would be easier to demon-

strate if borrowing were permitted . For this reason , it is assumed

that the consumer cannot borrow .

Since the consumer cannot borrow , his money balances cannot

become negative . If he begins period n with M~ units of money and

buys a bundle , en , during the period at a price vector , p~ , then it must - •

be tha t p . c ~ M It will be assumed that the consumer receives - 

—

n n fl

income at the end of the period . The income received at the end of

period n will be denoted by 
~n+l’ (The subscript n+l appears because

the consumer does not necessarily kn ow ~~~~ at the beginning of period

n , but he does know it at the beginning of period n4- 1.)  The consumer

begins period n+l with Mn+i 
= M~ - p~~• c~ + units of money.

For simplicity , it will be assumed that y~ 
is a rando m var iable

which is not affected by any of the consum er ’s action s . A more general . -

model would allow the consumer to vary the quantity sold of his endowment

L
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(of labor , for instance) and would allow this quantity to affect his income
and utility.

It is convenient , though pr obabl y not necessary , to assume that the
consumer ’s utility function is additively separable . That is , the ut ility
of a consumption stream c0, c 1, . . , . , 

- ~ 
is ~ o~’U~( ca ) . where c~ is

n 0the bundle consumed in period n and 6 is the discount rate on utility and
O < 6 < 1. It simplifies matt ers to replace the func t ions U~ wi th the
indirect utility function s u (x) max U~ ( c) ,  whe re x is the expend i—n

c~~- 0
ture during period n and p~ is the vector of prices during this period .

u will be assumed to be random . Note that this randomness cann
derive f rom ran domness in both U and p .

It could be assumed that {~ } and {un} are sequences of independ-
ently and identicall y di st ributed rand om variables . (If this assumption
were made , our results would generalize only slightly work of

Schechtman [ 14 1.  H is work is discus sed furt her below .)  Howeve r , it
does not seem appropriate to make such an assumption in the context
assumed in this paper . The time periods are to be thought of as short ,
as days , for instance . Hence , if the random variables were indepen d-
ently and identicall y distributed , fluctuations would persist for only one

day . This seems unreason able . People lea rn from the recen t pas t . In
• a world in whic h the events of one day are independent of past events ,

no learning is possible (once the probability distribution of the random
variables is known) .  Also , people have a great deal of information about
economic life and use it to antici pate future events . One way to model

I

—•-—— .- -• - — —• —.----—--- • - __ __ & &__ ___ ~~~~~~~ 
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this aspect of life is to assume that the consumer ’s economic environment

is described by a stochastic process . The consumer observes this process

• and knows its probability distribution . Past observations of this process

form the consumer ’s information . Known correlations between past and

future events make it possible for him to use this information .

It is assumed here that there is in the background a stationary

stochastic process {w~}, and that u~ and are functions of w~ . Because

y~ and un are functions of Wn) ‘1~n~ 
and {un} form stationary processes

as well. It is to be emphasized that the consumer knows w and that wa n

may contain much information besides knowledge of y
~ 

and un. For

instance , it may contain the latest weather forecast or knowledge that

the consumer has the flu and will be sick for a week. w should be

thought of as a vector with many components which express all that the

consumer might learn during period n-l . At the beginning of period n ,

he knows {wn: k ~ n}.

To assume that a stochastic process {~
} is stationary , is to

assume , essentially, that the probability distribution of future values

of the random variables is inferrable from knowledge of the (infinite)

past. Hence , it is at least somewhat reasonable to assume , as is don e

here , that the consumer knows the probability distribution of the

process - conditional on knowledge of the past.

Stationary processes allow for a wide range of stochastic

phenomena . In the next sect ion , an example is given of a process for

which the time paths are periodic.

It is natural to formulate the consumer’s maximization problem

as below . In the expression below , E( denotes the expectation 

~~~~~~~~~ -— —- -—-— •~~~ ~~~~~-•------  - -
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conditional on the information available to the consumer at the beginning

of period zero.

1.1 Problem
N—i

I v ’  n• max Et / ô u ( x )~~°n f l  0
X

0 
XN_ 1 n’O

subject to:

(1) For all n , x is a random variable which depends only on

information available at the beginning of period n .

• (2) 0 ~ x ~ M for all n .

(3) M0 is given and for n > 0, M~ 
= M~~ 1 

- x~_ 1 + y~
.

The discount rate , 6, above , is assumed to be such that 0 < 6 ~ 1.

If the fluctuations in y~ and u~ are rapid and one is concerned with

the behavior of the consumer over short periods of time , then one can

think of the horizon N as large and the discount rate 6 as close to one .

Therefore , the permanent in come hypot hesis has t o do wi th the

asympt otic behavior of the solution to Problem 1. 1 as N goes to infini ty

and t5 goes to one .

The results proved in this pape r may be sketched easily. Enough

assumptions are made so that it is not hard to show that Problem 1 . 1

has a solution . The u~ are assumed to be d i f fe ren t iab le , s tr ict ly con-

cave , and increas in g, as is usually done in such problems . Certain

• other more technica l  assumptions are made . The maximum value of

~~~~~~~~~ 
• the objec t ive fun ct ion in Proble m 1 . 1 . VN o ( M ) ,  depends dif ferentiably

on the initial stock of money , M . The derivative of this function with

respect to M , Vf~~( M ) , defines the marginal utility of money in period

zero for the N-period problem with discount rate 6 . This marginal

_ _ _  - ~~ • ~~~~~~~~~~~~~~~~ ~~~~~~ — ----- -~--•• 
- - • -— -  —

~~~~~
- -

~~~
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utility of money is a non-decreasing function of N and 6 , as is to be

-
‘ expected . For if 6 is increased , greater value is given to future con-

sumption , and if N is increased the consumer has more opportunity to

use his money . Certain assumptions are made which put an upper

bound on the marginal utility of money. Therefore , Vf~6( M) converges

• as N goes to infinity and 6 increases to one . The limit , X 0( M ) ,  will be

called the limit marginal utility of money. Clearly , X 0( M) is a non -

decreas ing function of M .

Observe that VNo (M) max E (~~ u ( x ) 190) is a
X

0 
XN_ l n 0

rando m variable . H ence , V~~6( M ) and X 0( M) are random variables

as well .

If one solves the problem

N+n- 1
max E( ~Y oku(x )If,~)

X X N+fl l k n

for n > 0 and goes to the limit with N and 6 as above , one obtains a limit

marginal uti li ty for period n , k (M ) .

The optim al spending policy for the N-period problem with discount

rate S pr escribes expenditures in period n , xNófl (M
fl

) ,  as a function of

the consumer ’ s stock of money , M , in t ha t period . The functions XN on
are non-increasing as functions of N and 6 , as is to be expected since

money becomes more valuable as N and 15 increase . Since XNSn ( M )  > 0,

lim xN on (M) exists . The limit will be denoted by x~~~(M) .
N — ~~or~
S t i

The functions , ~~~~ describe a limit policy. This limit policy

corresponds to the limit marginal utility of money, X ( M ) ,  in the sense

J that u~
(x

~~~
( M)) ç X~ (M)  with equality if x~,~( M ) >  0. The l imit  policy

• ~~~~~~~~~ .-.—--• - - -
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gives rise to a sequence of money stocks defined as follows: M 0 is given

and for n> 0, Mn 
= 1’

~
1n- 1 

- x~~~ ..1(M~~1) + y~~. The sequence Xn(M n ) is

the t ime pat h of the mar ginal ut ility of money if the limit program is

followed .

To each level , )~. , of the marginal utility of money , there corre-

sponds a uni que level of expenditure , x , in period n . x is such that

u~(x) ~ X , with equality if x> 0. x is , of course , a random variable . It

will be shown that there is a unique constant , K , such that if the

marginal utility of money were K in every period , then asymptotically

the consumer ’ s average spending per period would equal his average -•

income per period . K would be the marginal ut i l i ty of money if the con-

sumer sough t to maximize his asymptotic average flow of u t i l i ty  per

period and were constrained onl y to match his asymptotic  iverage

spending to his asymptotic average income.
-, The main theorem is that lim )~ (M )  = 

~~~~, for all n . This  theorem
ri

M-*oc

says that if the horizon were suff icient ly distant and the discount  rate

suf f ic ien t ly close to one and if the consumer had a s u f f i c i e n t  quan t i t y  of

money , then the optimal mar g ina l  ut i l i ty  of expenditure would ~c nearly

cons t an t . Also , the consumer would behave nearl y as if he w e r e

• constrained only to match his average spending and income .

A second theorem (Theorem 3. 2) is that u r n  K (M ) = K for all
• n n

• • n—~~
values of the initial money stock , 1\l~~. This theorem says that  if the

hori zon were sufficientl y di st ant and the discoun t ra te sufficien t ly close

t o one and if t he cons um er followed his opt imal pr ogram , then he would

eventually accumulate enough money to bring the marginal ut i l i ty of

- 

~~~~
• money close to K.
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The interpretation of these theorems would be suspect if the limit

policy, x , were somehow wrong. To check that the passage to the

li mit from to x~~ is legitimat e , it is proved that the limit policy

is optimal in the limit average sense (Theorems 3, 4 and 3. 5).

Most of the resul t s of this pape r a re proved by Schechtman [ 14J

in a special case . Fle as sumes that the utility functions u~ are not

stochastic and do not depend on n . All random variat ion comes f rom

the y ,  whi ch he assumes to be independentl y and identically distributed.

( Also , he assumes that 6 1. )  He proves that lim x~~~(M ) E y 0 and
M-~oo

that  if y is not de terminis t ic,  then lim M = oc. The first  of thesen n• n-~oc

res ults corresponds to the main theorem here , and the second corre-

spon ds to Theorem 3. 2 (that u r n  X ( M ) =

-

• 
n — ~

Schech t man ’s theorem that lim Mn 
= oc is true under the assump-

tions of’ this pape r , provided that  there is sufficient randomness in the

incomes or util i ty functions . This fact is not proved here , but it is

worth noticin g, for it draws attention to the fact that actual consumer

behavior should be thoug h t of as only approximat ing that implied by the

permanent incom e hypothesis . No consumer would go on accumulat ing

money indef in i te ly . Howeve r , average holdin gs of liquid assets by

A m e r i c a n  con sumers , apparently , are fairl y hi gh . H oldings of li quid

assets ( checking and savings accounts) and investment assets (stocks

and bonds) together amount to about (3 to 15 months ’ income . Holdings

of l i q u i d  as sets alon e are equal to one to two months ’ income [i i ,

pp. 100-103 1 . However , these figures are very rough , for there is

wide varia tion in the data cited , and the median ratio of assets to in-

come incr eases sharply w ith income .

_ _
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Returning to the work of Schech t man , it is clear that the results

reported here simply generalize those of Schechtman . The re is , how-

ever , an important distinction between his methods and those of this

- paper. He uses the t echn iques of dynamic programming. The key

arguments of this paper depend on the strong law of large numbers for

stationary stochastic processes .

Schechtman’s method , essentially, is to study propert ies of a

— solution to a limit form of the following dynamic programming equation

for VNo (M ) ,  VN+l 5(M)  = max [ u(x ) + SE V ~~( M_ x ~I.y)1. In his setting,
0~~x~~M -•

VNo (M) is deterministic, for the random variables , y~ , are mutually

independent .

In this paper , VNS ( M) is a random variable . Because randomness

is genera ted by an arbi trary stochastic process , cu rren t inf or ma t ion •

may improve knowledge of the future and so affect the value of VNo (M ) .

Since VNo ( M) is random , the dynamic programming equation for VNS (M )

loses much of its value.

The proof of t he main theorem , given in section 7 of this pape r ,

is the most original par t of this paper from a mathema t ical point of view .

It makes no use of dynamic programming , bu t is based simply on

economic common sense and the strong law of large numbers .

The assertion that X (M ) = K (Theorem 3. 2) is a direct con-

sequence of the main theorem and the convergence theorem for super-

martingales. This theorem is proved in section 8. The idea of using

the convergence theorem for supermartingales is borrowed from

1 -  
Schectman .

- ~~~~•~• The other two theorems of this paper (Theorems 3.4 and 3.5)

-- --— —~~~~-
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follow directly from the main theorem and Theorem 3. 2. They are

proved in section 10.

The fact that VNo ( M) is random introduces certain technical diffi-

culties into the proofs that there exist an optimal N-period program and

a limit policy. The difficul t ies ar ise from the fac t tha t a condi t ional

expectation appears in the dynamic programming equation for VNS ( M) .

This equation is vNo (M )  = max [u(x ) + SE (V N_ l  6(M - x+ y 1) 19’ 0)1.
0~~x~~M

Conditional expectation s are defined only up to sets of probability zero ,

and there must be a different such expectation for each of the continuum

• of possible values of x . If the conditional expectations were not chosen

prope rly,  the maximizing value of x might be undefined . (The maxi-

mizing value is , of course , a random variable .)

The technical facts needed to deal with this and related problems

are gathered in an appen dix . Wi th the help of these facts , on e can adapt

to the context of this pape r Scheehtman ’s arguments which prove the

• existence of optimal and limit policies . These adaptations are made in

sections 4 and 5 .

Yaar i  [15! proves another asymptotic result bearing on the perma-

nent income hypothesis . He assumes that the consumer can borrow

~ 
•
~ ~ freely and formula tes the consumer ’s ma ximiza t ion problem as follows .

~~~~~ 
. 1~’*~2 1

max 
EL ~ 

u(x ) + u(M N_ l )jx0,. . . , XN_ 1 n 0

1:
where M 0 is given and for n > 0

M M - x  + yn n-I n-I n
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Like Schecht man , Yaari assumes that the utility function is determi—

nist ic and tha t the rand om variables 
~n are independently and identi-

cally dist ribut ed . Yaari ’s model differs  f rom Schech tman ’s in that

u(x) is defined for all real numbers x and the real variables x are not

constrained to be non-negative . The only constraint is that consumption

spending in the last period be MN_ i . Yaari proves tha t

u r n  x~~~(M )  E y~ , when x~~,-~(M)  is the optimal consumption in the
N —0- 

U i~~ ~J *

fi rst period if the initial stock of money is M . His methods are simi-

lar to Schechtrnan ’.~ in that both use the techniques of dynamic program-

ining.

Yaari ’ s theorem may be generalized to the context of this paper .

That is , it may be assumed that utility is random and that all random

varia tion is generated by a stationary process . The proofs are similar

to those given here. As is the case here , the key arguments involve t
only economic intuition and the strong law of large numbers .

• 
• The use of stationary processes has appeared elsewhere in eco-• i nomic li terature dealing with models related to the one studied here ,

namely, in Radner [12] and Mirman and Zilcha [9] . 
- •

2 . DEFINITIONS , NOTATION , AND THE MODEL

The Underlying Stochastic Process -
•

The stochastic process known to the consumer is

{c~~ : n is an integer} . (Doob [61 is the reference used for stochastic

processes .)  The random variables , w~ , are assumed to take their

values in Q-dimensional Euclidean space , R~~. The underlying sampl e
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space of the process is assumed to be ~2 ={ ( . ..  ~~~~~~~~~~~~~~~~~~

~n € R~ for all n}. w denotes an element of f2 , and ~~ denotes

the 0th subvector of w. The measurable subsets of ~2 are den oted by 9

and P denotes the probability on 9’. .9’ is the smallest complete a-field

such that all the random variables ~ a re measurable with respect t o 9 .n
Sets 9 such that P (S) =0  are called sets of probability zero. An event

occurs almost surely or for almos t every ~ if it occurs for eve ry ~
except for elements of a set of probability zero .

E denotes the expectation operator corresponding to P . That is ,
• if X is a random va riable defined on 12 , EX = 

f X(~~) P(dw).

If ~ is a sub-a-field of 9 and X is a random variable on 12, then

E(X~ iy )  denotes the expectation of X conditional on 3~. That is ,

is a rand om variable on ~2 which is measurable w i t~ respect to fl~ and

satisfies

f X(u) P(dw) f E (X l~~)( u)P( dc,)
S S

for all S € i~ . E(X t ~~) is well-defined if E l  xl <~~~~~~~ . E(XI~T) is 1121

uniquely defined , but any two ve rsions of E(X t ~~) are eq ual almost

sure ly. (See 000b [6 , pp. 17-24 1 for a discussion of conditional

probability. )

denote s t he smallest complete sub-a-field of 9’ with respect to

• which the random variables 
~k ’ k ~ n , a re measu rable . .9~ represents

the information available in period ii, and E( I ~~~ is the expected

value operator conditional on this information . For emphasis , it is

recalled that 
~~ 

may represent more information than knowledge

of past values of 
~“k and Uk.

I - ~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The following are the basic assumptions made about the stochastic

pr ocess {~~ }.

2 . 1 A ssum pt ions abou t

The stochastic process {
~ n} is stationary and metrically transitive .

Let r : 12 -
~~ 12 be the shif t operator , defined by the formula

(‘r u) ~~~~~ ‘E~wn} is stationary if and only if T is probability preserving ,
• that is , P( ’r S) = F ( S)  P(’r~~S), for every measurable set S . A measur-

• able set S is said to be invarian t if P (S )  = P ( S f l T S) P ( T S ) .  A p rocess

is said to be metrically transitive if eve ry invar iant  set is of probability

ze ro or one .

Me tric transitivity is not a serious restrict ion , since every

process is metrically transitive when restricted to an invariant set .

Stationary processes are quite general . If the are independ-

ently and ide ntically distributed , then the w would for m a st at ionary

process . if u0, u 1, w2 , . . .  are generated by a Markov process with - •

sta tionary transition probabilities , and if w0 is distributed according to

a stationary distribution for this Markov process , then w,-~, w 1, . . .  form

a stationary process . Every stationary process can be represented as —

a i~larkov process with random variables in an infinite dimensional

space , the space being {( . . .  , w~~ , w,.~)}. But , many sta t ionary p rocesses

can not be represented as Markov chains with random variables belon g-
4-ing to a finite dimensional vector space . Consider for instance the

0 ‘

pr ocess u~ ~ 2” Zn _ k  , where the Zk are independently and identi-

• cally distr ibuted and uniformly bounded .
— F
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The realizations of a stationary process may be periodic functions

of n . For ins t an ce , le t u and v be mutually independen t , n or m ally

di stributed random variables with mean zero and variance one . Then ,

the random variables = u cos an + v sin an form a stationary process

where 0 < a  < 2~’r . Observe that one can predict exactly the values of Wn~
fo r n > 1 , from knowledge of and w 1.

Processes with independent increments are not stationary . A

mar tingale is not a stationary process .

• Freq uent use will be made of the following facts .

2. 2 Let z be a random variable on 12 and let z (u )  = z (T~
’w) . Then ,

the process { Z
n

: n an integer} is station a ry and metrically transi tive

(D oob [6 , p . 458 1) .

The Economic Model

2. 3 Assumptions About Incomes

The income received at the end of period n - i  is a random variable

on 12 , y~~ : 12 —
~~ 

(- oo , oo) ,  whi ch is measurable with respect to 9 . The

sat isf y the following:

= y0
(7~~~)

ii) y0(~~) ~ 0 , for all ~~~~, and

i i i)  0 < E y0 < •

Observe that by 2 . 2 ,

2 . 4 {y0} for ms a stat ionary , metrically transitive process . 

~~~~~~~~ ---—~~-- -~~~~--- . --—.—~--- ----- -— -~~~~~~~~ ---  • - - ——- ~~~~ •- _ _
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•~~ will always denote the Borel a-field on [0 ,~~) and ~~(5~’ 9 or

• 
~~~~~

9’n will denote the product a-fields of ~ and 9 or ~ -and

• respectively. A function f [O , oo) X 12 — [0 , ~ ) will be said to be

measurable if it is measurable with respect to ,~ ~~ 9 .

2 . 5 Assumption s About Utility

The consumer ’s utility function for period n , U :  [0 , oo) X 12 -
~~ 

[0 , oc) ,

• is measurable with respect to ~~~~ 
9n and satisfies the following.

i) u~ (x ,~~) = U
0

(X ,T
r
~L~)) for all x and w.

ii) u0(0 , u) = 0 for all ~~~.

iii) For every w , u0( •  , o) is strictly increasing, strictly

concave , and continuously differe ntiable . u~( x ,
dwill denote

iv) u~(0 , w)~~ 1 for all w .

v) u r n  ub( x , w) = 0 uniformly in ~~~~.

H x- oo

Assumption ii) involves no loss of generality .

The assumption that u~ is measurable implies that u~ is measur-

able , since
u ( x + c , w) - u (x ,~~)

u ’(x , w) lim ~n £-0-0

Hereafter , proofs that the various fun ctions appearing are

measurable will not be provided , since the proofs are routine .
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The Op t i m i zat ion Pr oblem

The statement of the consumer ’s optimization problem given

in the Introduction , (1 . 1), is slightly ambiguous , for the conditional

expectation , E (  I9
~~
). appearin g in the objective function , may be

defined only up to a set of probability ze ro . Hence , the objective

function may not be defined for every state of the world , w. For this  -•

reason . the conditional expectation is repla ced by an ordinary expe c-

tation .

2 . 6 Problem

N-i
~ç -  n

• max E ó u ( x ) I ;L_j
X f y • • •~~ , X N_ 1 n 0

subject  t o: x~ is a random variable measurable with respect to 9 and

0 ~ x ~ M for all n , where M~ M +
~~~~~~

(y
k÷i

_ X
k

) for all n and M t
is given .

~t is always assumed that 0 < 6 ~ 1.

In di scussing solutions of this problem , it is necessary to require — 
-

that  the random variables , x~~. depend in a measurable way on the ini t ia l

st ock of money M . —

Definition. •\  program, X , is a finite or infinite sequence of function s

X : [0 , oc) X 12 —
~~~~ [0 , oc ) ,  n = 0 , 1, . . . ,  where X~ is measurable wi th

respect to 
~~~~~~ 

9 .

X ( \ l  w) is the expenditure in period n if the state of the world is ~ and

the stock of money in period zero is M . Observe that X~(M , w) is always

p -- -- -•
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non-negative . A program (X 0 , . . .  , XN_ 1 ) will be called an N-period

program .

A progra m may be described in a way which makes current

eApendi tures depend on past expenditures as well as on w and the initial

stock of money. But such a program may be reduced easily to one

which depends on i~i an d the ini t ial st ock of money only an d hen ce could

be described as above .

M (X , M , w) ,  n 0 , 1, . . .  wi ll den ote the sequence of moneyn
stocks generated by the program X when the initial stock is M . That is ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Definition. A program is said to be feasible if for every n ,

X (M w) ~ M (X M ~) for all M and w.n ‘ n

If X is an N-period program , WN o (X , M , w) will denote 1
~ 6~ u ( X (M , u) , w) .

Definition. An N-period program , X = (~~~~~~~ , . . .  ‘~~N 1~ ’ will be called

optimal if it is feas ible and if for every M ~ 0 , E W No (X , 1VI )

= s~ p E W No (X , M ) ,  where the supremum is taken over feasible N-

period programs .

Problem 2 . 6 may now be stated more compactly as follows . - J

Problem
N— i

• max E 
~~, 

6’~u ( X ( M ) ) .
X feasible n 0

I
.

.4~~~~~~~~~~~~.
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It is often more convenient to deal with spending plans which make

expenditure depend on the current stock of money rather than the initial

stock of money. Such plans will be called policies .

Definition. A policy x is a finite or infinite sequence of functions

x :  [0 , oo) X 12 —. [O , oo) , n = 0,1,... such that for each n , x~ is

measurable with respect to .~q 
® 

9 .

A policy is said t o be feas ible if x~(M ,~~) ~ M for all n , M , and ~~~.

If x is a policy , then x~(M , w) is the expenditure in period n if the

current stock of money is M . Policies will be denoted by lower case

let ters , and programs will be denoted by upper case letters .

A policy x gives rise to a program X in an obvious manner .

X (M , w) x0(M , w) .  Suppose that X , . .  have been defi ne d . Then ,
0 n -i  0 fl

M ( X , M , u) = M + 
~ 

(y k+l
( u ) _ X k(M ,~~

)) is well-defined and one may let
k 0

X~(M~ w) = x ( M (X , M , u ) ,~~) .

A feasible N-period policy is said to be optimal if the program to

which it gives rise is optimal .

Optimal Policies and the Limit Policy

It will be proved (Lemma 4 . 1) that for every N and 6 there exists

an optimal N-period policy, XNÔ 
_ ( X

N ÔO XNÔ

~~~~~~~

- 

1’ 

XNo 
= (X N a O , . . .  ~~~ N~i~ 

will denote the corresponding N -p er iod

program . VN6 (M , . ) will denote a version of E ( W No (X N , M ) I 9o).

VNo (M , w) is (almost surely) the maximum expected N-period payoff given

the informat ion available in period zero and an initial stock of money M

-I-•,
~~~~~~~~~ - —---- -—-•-•--.-— • --- -—--—--—--’-- —----—- ’ •— - • - — ——— ———•-~ ••-- - --•—-.-.‘~~~ — - — — —  *__ •___ _ ~~ ———-- •----—-—- •--—-• -- ---—------- -‘•- -~
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It will be proved (Lemma 4 . 1) that VNo may be chosen so that for

almost every w , VN6 (M , (f) ) is continuously differentiable as a function of

M with the derivative bounded above by one . V~~6(M , w) will denote a

function which is equal to ~~ VNo (M , w) whenever this derivative is

defined .

In Lemmas 5. 1, 5. 6 , and 5. 10 it is proved that for almost every cu ,

V~~6
(M ,~~) is a non-decreasing function of N and 6 , and xNoo (M ,~~

) is a

non -increa~ in g function of N and 6 , for all M. Part iv of Assumption 2 .5

implies that V~~6(M , w) is bound ed above by one , so that u r n  V~~6(M ,~~)
6-~1

exists almost surely. Let X0 be any function such that N — ~~

X0(M ,~~) lirn V~~6(M , w) wheneve r this limit exists . ( Then , X ,~ is
N—o c

measurable almost surely. ) For each n , let k ( M , w) =

• . 
Similarly,  x 0(M , w ) denotes any function such that 0 - ~ x~~0(M , w ) - ~ M and

x (M , w) lim x (M ,~~) whenever this limit exists . For n > 1  let x (M , w)ocO N60
N- oc

x oc0(M , T
~

w) .  Clearly,  0 ~ x~~~(M~~w) ~ M everywhere and x is

measurable with respect to .
~~~ ® 

9~ . Hence , x = (x 0, x 1, . . .  ) is a

policy. x oc will be called the limit 2~~~~Y and the corresponding program

X~~ will be called the limit program.

If 6 1, then the subscript for 6 will be dropped . Thus ,

VN(M , w) VN1(M , w) ,  V~~(M , w) Vj~ 1(M , cfJ ) , xN (M , u) xNj (M , w) , •

and XNn(M , w) XN 1fl (M , w) . Similarly , if 0 <  6 < 1, then 
t

V 6(M ,~~) = lim vN6(M ,w) ,  and x 6~ (M , w) = lim XNÔn (M , W ) . X 6 will
N— oo N-boo

denote the program corresponding to the policy x 6. It will be shown
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(Lemma 9 . 1) that

V6(M , u) = E ( ~~~ 6’~u~ (X 6~ ( M ) ) ) 9 0 ) ( L )

almost surely for all feasible programs X . That is , x6 is opt imal for

the infinite horizon problem with discounted utilities , and V6(M , . )

- gives the optimal ~xpected total discounted utility , conditional on the

information available in period zero .

Policies With a Constant Marginal Utility of Expenditure

Define ~~: (0 , 11 X ~ [0 ,~~) as follows . ~0(t ,~~) is the unique

value of x such that t ~ u~(x , w) with equality if x >  0 . ?l
0

( t , c~ ) is the

quant ity of money the consumer would spend in period zero if his

marginal uti l i ty of money were t and he were not constrained by a lack

of money. ni0(t , i ,)  is well-defined , for u~(x , w) is strictly decreasing as

- - a function of x and u r n  u~(x , w) 0 . Clearly,  n10
( l , w) = 0 ,

• x—0- oo - •
I 

Urn T7 (t , w) = oc an d r~ (t , w) is continuous as a function of t . Al so , if- - 0 0

> t2 and fl 0(t 2 , w ) >  0 , then r10(t 1, w) < r10(t 2 , w) .  It is very easy to see

• that r~0(t , . ) is measurable with respect to 9~ for every t . Since

lim u~(x , w) = 0 uniformly in ~~, r7
0

(t ,~~) is bounded and so
Ii, ‘ X—0- 00

- ( (2 . 7) E r~0( t) < oc for all t .

E r ~0( l )  = 0 and by the monotone conve rgence theorem (Loève [8 , p . 124 1) ,

u r n  E r~ (t ) =

• t-’oø 
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(2 . 8) If t 1 > t2 and E ~0(t 2 ) >  0 , then E ~0(t 1) < E fl 0(t 2 ) .

If t ~ (0 , 11 for n 0 , 1, 2 , . . .  and u r n  t = t0, then ri0(t , w) converges
f l - o c

to n10(t 0, w) for all w and 0 ~ T~0
(t , u)~~ T)0

( rn.1~
n t k, CJ) < oc for all n and u .

It follows from th~ Lebesque domina ted convergence theorem (Loève 4
• [8 , p. 1251 ) that u r n  E i’~0( t )  = E r~0(t 0) . Hence ,

fl—~oo

• (2 . 9) E p
0

( t )  is a contin uous fun ct ion of t .

In conclusion , one obtains the following.

(2 . 10) There exists a unique value of t , k , such that •

E r ~0(X ) E y0 .  0 < X < 1 .

i-I

It will be proved that X is the asymptotic value of the marginal

utility of money.

~~(t ,~~) will denote I~0(t , Tn w ) . (~~0
( t ) , r~1( t ) , . .  . )  forms a pro gra m

(a nd also a policy) which will be denoted by r~( t ) . This program keeps

the marginal utility of expenditure equal to t. ~ ( t )  is not necessarily

fea sible .

3 . THEOREMS

3. 1 Main Theorem

For almost every w , X 0(M , w) � ~ fo r all M ~ 0 an d
-
. I u r n  X (M ,~ ) =

M - o o 0

3. 2 Theorem

For almos t eve ry w , the following is true for every ini t ia l  stock of money .

1 i r n X ( M (X , M , w), w ) = ~~. I
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It may be said that is optimal in the limit average sense if

N-i N-i 
-

•

(3 .3)  u r n  E ~ u~(X~~~( M))  = sup u r n  inf E ~ u ( X (M )) ,
• N-’cx, n 0  X N-~oo

where the supremurn is taken over feasible policies , X.

Observe that
N-i N-i

sup lim inf~~~E ~ u~(X ~ ( M )) ~ u r n  inf sup~~~E ~ u1~(X~( M ))
-

- X N — o c  n=O N — o o X n 0

lim t h f~~~E V N (M ) .
N-.-~~

Therefore , to say that

u r n  ~~E u ( X r (M)) u r n  ~~E V N(M)
N~~ o~ n 0  N~~oo

is a stronger assertion about the optimalit y of X than is (3 . 3) . Hence ,

the following theorem asserts that X is optimal in a limit average sense .

I -

3. 4 Theorem

N-i
u r n  ~~E ~ u ( X (M) )  u r n  

~ -v N (M ) .
N~~ oo n 0  N ’oo

More generally , the following is true .

3 .5  Theorem

For almost every w , the following equalities hold for all M:

• ~r-
,
~ --
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Urn 
N-i 

u~(X~~~(M~ w) . w)
n 0

3

= ~ 
1 - 6 

n 0  
6nl u ( X ~~~(M , L)) , w)

N-i
= 

~~~~~~ 

~~~
- E 

n~ 0 
u ( X ~~~( M ))

— 

= 
1 - 6 

n 0  

6~~E u ( X ( M ) )  

.4

~~~~~~~~~E V N (M)

= lim 1 - 6 E V (M )
6 6

= u r n  N V N
(M ,~~N- co

= lim 1 - 6 V 6(M , w ) .

• 4 . THE OPTIMAL N -PERIOD PROGRAM

The proofs given in this section and the following one are brief ,

for they are , for the most part , s imply modification s of arguments

given by Sche chtman [14 , section 11.

~f

-
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -__ _ _ _
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4 . 1 Lemma

- There exist measurable functions

VN Ô : [O , oo) X ~2 —b [O , oo) ,

• 
- q~~6 : [O , oo) X~ 2 — [0 , ao) ,  and

XN6fl : [O , oo) X ~2 - [0 , oo ) ,

• for n = 0 , l N -i and N =  1, 2 , . . . ,  and 0 < 6 ~~ 1,

which sa tis fy the following.

i) )CN 6 
= (x N 6 0 , . . .  , xN 6 N-1~ 

is an optimal N-period policy .

xN on (M , w) xN_ fl , óO (M , ’r w) for all n.

ii) For eve ry M ~ 0 , VN 6 (M , . ) is a version of

N-i

~ ã ’
~uf l (X N ó f l ( M ) ) j 9 O)  , where XN 6 is the progr am

n 0
corresponding to the policy XN Ô .

iii) If M : ~2 —— [O , oo) is measurable with respect to and if

X is any N-period policy , then
p
, N-i

VN6 ( M ( w ) , w) ~ E(  ~ 6~u~(X~( M ) ) I 9 0 ) (w )  almost surely.

iv) For almost every : V N Ô (M w) and q~~6(M w) are continu-

ously differentiable as functions of 1VI . The derivat ives

• 
are pos itive , less than or equal to one , and strictly

decreasing.

V~~6(M , w) and q~~6(M , w) denote any function s equal to

~j~ç~j- 
VNo (M , w) and 

~~~ 
q~~6(M , w) whenever these derivatives

- 

.
i.& exist ._
~) •

I,)

- 

‘ ‘“‘

~~~~~~~ 

‘ -• - - -—--—-- — - “ “ -  — .--- - -— . -.-- ~~‘‘  - I I
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I
VNÔ

(M , w) denotes vN6 (M , ’T w) and

1Vj ~6(M ~ w) denotes V~~6(M ,Tw ) .

v) q~~6(M . ) E( i VNo (M+y l )
~
9o ) and

• q~~6(M , . ) = E( 1V~~6(M+y 1~90), for all M .

vi) For almost eve ry w , xNoo (M , w) solv~~the proble m

max [u 0(x , w ) + 6 q~~~1 6
(M - x , w) 1 , for all N , 6 , and ~1 .

0~~x~~1V1

vii) For almost every w ,

V~~~ 1 6 (M , w) ~ 6 q~~6
( M _ x ~~÷1 60

(M , W)~~W) for all Pd ,

with equality if M - XN+1 60
(M ,w) > 0 .

• viii) For almost every w , V~ 6(M , w) ~ ub (xNoo
(M ,w),w)

~~ j  

for all M , with equality if xNoo (M , W) > 0.

I

ix) For almost eve ry w , xNoo (M , w) and M _ x
Noo (M , w)

k 
ar e continuous , non-decreasing functions of Pd .

Proof

The proof pr oceeds by induction on N .

For N l , let x 160(M ,~~) Pd and V 15
(M , w) = u

0
(M ,w). x 160 and

V~ 6 clea rly satisfy condition s ( i ) - ( iv ) , (viii) ,  and (i x) of the lemma .

A pplying Lemma A . 3 with Q(M , w)

one obtains q 16 which sati sfies condition s (iv ) and (v) .  This com pletes

the first step of the induction .

— —
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Suppose that N >  i and that Vko ,  ~~~ and Xkon have been defined

for k < N  and satisfy the conditions of the lemma .

By condition (iv) of the lemma and the assumed properties of U0,
• for almost every w the following problem has a unique solution for each M .

max [u 0(x , w ) + 6 q~~_ 1 6(M-x , w)] .
0~~x~~M ‘

Let xN60 : [0 , Go) X £2 -
~~ [o , oo) be any function such that 0 ~ xNÔO (M , w) ~ M

and XN 6 O (M , w) solves the above problem whenever the problem has a

• solution . It is easy to show that X
N ÔO  

is measurable with respect to .
~~~

‘ 
® 

9~.

If i~~ n~~
N-l , let xNÔfl (M , w ) x N_ f l  60(M , i~~w). Clearly , XN6 is a

fea sible policy .

Let VN6 (M , w) = uo(x Noo (M , w ) ,  w) + ó~~~_ 1 ó(M-x NóO (M , w) ,  w) .  Since . 
- •

) is a version of E( I VN .l &( M _ x Noo ( M ) + y l ) I 9 0)

by the induction hypothesis , it follows that VN o (M , . ) is a version of

E(~~~~~6~ u ( X Nó ( M ) ) I 9 O ) .

It is now proved that VN o satisfies condition ( i i i ) .  Let

£7 — [0 , co) be measurable with respect to and let X be any feasible

N-period program . By condition ( i i i)  applied to VN_ i o ,

1VN_ i  , 6(~~1(w) - X 0(M (u )  , ~) + y 1(w ) , w) ~ E 
( 

~~~ 6~~~u~(X~( M ) (  
~~~~~~) 

w

• 
•~~~~ almost surely. By condition (v )  and Lemma A . 4 , j

Hence ,
N-I

I 

q~~~1 6 ( M ( w ) - X 0(M( w ) , t~) . w) > i-~ ( 
\~ 6’~~u~(X~( M ) ) I 9 0) (~ ) 4

1.
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It follows that

E 
( ~~~ ônun(X n( M ) ) (  9~ )  ( w)

~ u 0(X ~( M ( w ) , w ) ,  w) + 6
~~~~~1 6

(~ 1(w) 
- X0(M(w), w), 

u)

~ u o(X No ( M ( u ) ,  u ) ,  w) + 
~~~~~~~~ 6

(M( w )  - XNoO(M(u),w))

= VNo (M ( w ) , w)

almos t su rely,  where XN6 is the program associated with the policy X
N 6.

The second inequality follows from the definition of This

completes the proof that VN6 satisfies ( i i i ) .

Clearly ,  ( i i i )  implie s that XN 6 is an optimal N -period policy.

It follows from elementary calculus and the definition of xN ô O  that

XN 6O and VN Ô sat isf y conditions (iv) , (v i ) - ( v i i i ) .  A gain by elementary

calculus , for almost every u , xNÔO
(M , w) and i\i - xNoo (M , w) are non-

decrea sing functions of M . Since the sum of these functions is M , it

follows that xN6O (M , w) is Li pschitz with constant 1 and hence continuous .

( This argument  is borrowed from Brock and Mirman [ 5 , p . 490 1 . )

This proves ( ix) .

By Lemma A . 3 applied to the function VNo (M + y 1(u ) , rw) , there

• exists a function ~~~ sat isf ying conditions (iv) and (v) .
Q. E . D .

5. THE LIMIT PROGRAM

In order to avoid problems with sets of measure zero , from

- 

- now on it will be assumed that 6 is restricted to the following countable

set {o 0 < 6  ~ 1, 6 is rational}. 
•

____  

_ _ _ _ _ _ _ _ _ _
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5. 1 Lemma

For almost every w , V~~6 (M , w) is a non-decreasing function of N

for all M .

Proof

In what follows , it will be assumed that w is such that the following

are t rue fo r all N , 6 , and M:

(5 . 2) V~~6(M , w) > u~(x NóO (M , w) , w),  with equality if

xNo o (M , w ) > o  and

(5 . 3) V~~~1 6 (M , w) � q~~6(M - XN+ 1 60(M ,w),w), with equality if

M - XN+l 60(M ,w ) >  0.

By Lemma 4 . 1 , almost every u satisfies the above .

The lemma will be proved by proving that almost surely both

V~~6(M , w) and q~~6(M , w) are non-decreasing functions of N for all ~l .

The proof is by induction on N , for N ? 2 .

Suppose N 2 . By (5 . 2) ,

V~6
(M ,w) u~(x

260
(M ,w),w) ~ u~(M ,w) V~ 6(M ,w), for all M .

It is next shown that

(5 . 4) for almost every w , q~ 6(M ,~i) ~ q~ 6(M , w) for all M .

By what has just been shown , for each M 
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q~ 6(~ l , . ) E ( 1 V~~6( M - ~-y 1
)~s’0

) > E(
1V~ 6

( M + y
1
)~90

) = q~ 6(M ,

almost surely . Hence , q~ 6 -q~ 6 sa t isfies the condi t ions of Lemma A .6

and so (5 . 4) is t rue .

Suppose that N > 2 and it has been shown that for almost every w ,

V~ 6(M ,w) and q~ 6(M ,w) are non-decreasing functions of k for all M

• and for k < N .  It will now be assumed that u satisfies the following as

well as (5 . 2 )  and (5 . 3) .

(5 . 5) q~ 6(M , w) is a non-decreasing function of k

-

- for all M ancl f o r k < N .

It is now proved that V~~6(M , w) ~ V~~_ 1 6(M , u) for all !\1 .
- •  

Suppose that xNoo(M,w)> 0 . Then , xN6O (M , w) 
~ x N l o o (

~ l , w) .

For if xNóO(M ,w )>xN 1 6 0(M ,W), then by(5.2),(5.3), and(5 .5)

u
~
(x N_l óO(M,u),w)> u

~
(xN6O(~

l ,w),w) = V~ 6(~ l ,w)

This implies that XN_1 60(M,w) = M , which is impossible .

Since xN _ l , oo (M , w) ~ xNöO (M , w ) >  0 ,

V~~5(M , w) = u~
(x N6O (M , w) , w) > u~

(x N .l  60(M , w) , w) = V~~. 1 6 (M , w ) ,

as is to be proved .

Suppose now that xNoo (M , w) = 0 . If xN l o o (M , w ) >  0 , then

V~~_1 , 6(M , w) u~
(x N_ i , 6O(M , w) , w) < u ~(0 , w) ~ V~~6(M , w) . If



‘~~-~~~~-—-.-~~ ‘~~~~~~w — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
* ~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

-3 3 - 

- -
.

X
N_ l  ó~

( 1
~
v1 , w) = 0 as well and M > 0 , then V~~~1 6(M , w) = q~~_ 2 6 (M , w)

~ q~~_ 1 6 (M , u) V~~~6(M , w) . This completes the proof that V~~6(M , w)

~ Vj ,~~ 6(M , w) if M > 0 . Since Vj ~6( . , w) and V~~_1 ~< - , w) are continuous

almost surely , V~~6(0 , w) ~ V~~_~ 6(0 , w) almost surely .

This completes the proof that for almost every w , V~~6(M , w)

~ V~~~1 6
(M , w) for all Pd . ‘

The argument that proves (5 . 4) proves that for almos t every w ,

q (M , u) ~ q _ 1(M , w) for all M.
N N Q .E. D .

5. 6 Le m ma

For almost ev ery w , V~~6(M , w) is a non-decreasing function of 6

for ali M.

Proof

By Lemma 4 . 1, it may be assumed that w is such that the following

are true for all N , 6, and M .

(5 . 7) V No (M , w) and q~~6(M~ w) are differentiable

and strictly concave .

( 5 . 8) VNb (M , w) uo(x No (M , w ) , w) + 6 q~~_ 1 6 ( M x ~~6Ø (M . W ) s W ) .

( 5 . 9) xN6O (M , w) solves the problem

max [u Ø(x , w ) + ó q ~~_ 1 6( M - x , w) ) .
0
~

x
~

M ‘

~~ it is now proved by induction on N that for almost eve ry ~~,

V~~6(M , w) and q~~6(M , w) are non-decreasing function s of 6 for all

N and M .

- t
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If N = 1, there is nothin g to prove since V’~6(M , w) u~ (M , u) and

q~~6
(M , w)  = E(u~(M+y 1)I 90)( W ) do not depend on 6 .

Suppose by induction that almost surely q~~_ 1 ~ 
Pd , w) is non -

decreasing in 6 for all M . From (5 . 7) - (5 . 9) it follows by elementary

calculus that almost surely V’ (M , w) is non-decreasing in 6 . Since
N6

qj ,,16(M , w) = E( 1V~~6( M+y 1)I 90)( w ) ,  if follows (using Lemma A . 6) that -
•

for almost every w , qf~6(M , w) is a non-decreasing function of 6 for

all M .
Q. E . D .

4

5 . 10 Lemma

For almost every w , XN oO (M , u) is a non -increasing function of

N an d 6 for all M .

Proof

This lemma follows immediatel y from the previous two and the

fact that almost surely,  V~~6(M , w) ~ u~(x Noo (M , w) , u) for all M with

equality if X~~60
(M , w)>  0 .

Q. E . D .

Recall that X and x are defined to be functions such that •- -

0 coO

for almost every w , X (M , w) = Urn V 1 (M , w) and x (M , w)
0 N 6  coO

= u r n  xNoo (M , w) for all M ~ 0 . Also , X ( M 1 w) = X 0(M , TnW) and k~- - •

N-’~co

x~~~(M ~ w) = x 0(M , T~w) . The following lemma says that X~ gives the

marginal utility of money in period n consistent with use of the limit

TIco
11TI1_

~
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5. 11 Lemma

For almost every w , K~(M~ w) ~ u~(x con(M
~

w)
~

W) with equality if

xGon(M , w) >  0 for n = 0 , i , . .. and for all M -

Proof

Since Xn(M , w) = X 0(M , T~ w) and u~(x Gofl(M , w ) , w) u~(x GoO(M , T~ w), 7’
~w) ,

it is sufficient to prove the lemma for n = 0 .

By Lemma 4 . 1 , for almost every w , V~~6(M , w) ~ u~(x NÔO (M , w), w)

for all M and N with equality if xN ~ ~
( M , w ) >  0. Since u~( M , w) is a

continuous function of M , it follows tha t

(5 . 12) for almost every w ,

X 0(M , w) = lim V~~6(M , w) ~ u r n  u~ (x NÔO (M , w) , w)
N-~ cc N-b oo
o-. 1

u~(x~~0(M , w ) , w ) ,  for all M .

If x GoO(M , w ) >  0 , xNÔO (M , w) > 0 for all N and 6 so that one has equality

throughout (5 . 12) .
Q. E . D.

6 . THE ERGODIC THEOREM

In this section , a precise statement is made of the stron g law of

large numbers or ergodic theorem for stationary processes and also

of all the app lication s of this theore m made in this paper.
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Ergodic Theorem (Doob [6 , p. 465) )

Let Zn~ 
n = 0 , 1 , 2 , . . .  be a stationary metrically transitive

stochastic process with E )  z0 j < oo. Then , lim -~-(z 0 + . - ~
+ Z n i ) = E z 0

almost surely .

Recall the definition of the program vi(t) (710(t ), r11( t ) , .  - .  ) given

at the end of section 2. Let MN(zl(t),M ,w) be as in section 2, that is ,

N-i
M N( t ) , M ,

~~ 
M + 

~~~~ n+i~~~~~ n(t
~~~~n 0

By (2 .2), {~~~(t ,~~)} forms a stationary and metrically transitive

process . By (2 . 7) , Ef r10(t ) l < Go~ By (2 . 4) ,  {y~} is a stationary and

metrically transitive process. Therefore , by the ergodic theorem

(6 . 1) for all M ~ 0 ,

u r n  ~~ M N( T l ( t ) , M ,~~
) E (y ~ - ‘70( t ) )  almost surely .

By ( 2 . 8 ) - ( 2 . 10) ,

(6 . 2) E ( y 0-r 10( t ) )  is a non - increas ing ,  continuous function of t ,

for 0 <t < 1 , and 1- (y 0- ~0( t )) 0 if and only if t = K ,

Conseq uently,

(6 . 3) for  all M 0 ,

u r n  M N (r J ( t ) , M , w) = ‘
-- almost surely if t >  K ,

N --oo

lirn M N( f l ( t ) , M , w) = -
~~~~~ almost surely if t < K , and

~ M N ( n (
~

) , M , w) = 0 almost surel y.
N— oo

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _

j
________.

~~~

—•-—-- .

~~~

,.

~~~

-& 
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• It will be necessary to use the fact that

(6 .4) if t > X , then

- u r n  [M N(~~
(t),0,

~~
)_
~~N

(r7(t) ,c
~
.))} = oo almost surely.

N -I- Go

- (6 . 4) follows from the obvious fact that

N N

converges almost surely to the positive number E(y 0 -

The er godic th eorem also implies tha t

(6 . 5) u r n  1 
N
v
_i 

Un (
~ n (t , W) , W) = E u0( f l 0( t ))  almost surely for all t .

-~~~~~ N~~~~~~~~ n 0

7 . PROOF OF THE MAIN THEOREM

I - The proof of the main theorem is broken up into two lemmas . The
S

economic intuition underl y ing the argument is explai ned in the course of

proving the lemmas .

Recall that VN VN 1,  V~~ = V~~1, XNn 
= XN in and XN 

= XN in ~
That is , VN ,  etc . correspond to the N-horizon problem with no 

- -

discounting of utility . This notation will be used frequentl y in the next

two sections .

- 7 . 1 LemmaI

~~~~~~ 
For almost every w , X 0(M , w) ?- K for all M .

L J 
—— —
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Pro of

By Lemma 4 . 1, VN(M , u) is concave as a function of M almost

surely ,  so that V~~(M , w) 
~ 

VN(M+l ,
~~

) - vN (M
~

w) . Sin ce

X0(M,~ ) lirn V~ (M,u), it is sufficient to prove the following.
N— co

(7 . 2) G iven e > 0 , f or almost ever y u

lim sup [V N (M+ 1 , w ) _ V N (M , w) } ~ A - i for  all \1 .

The following is proved .

(7 . 3) Give n ~ > 0 , there exists a program XN such that  for each \T -

E ( W N (X N , M + 1) I ~~o
)(

~~
) V N (M ,

~~
) ~ X - - 6 N ( M , w)

almost surel y ,  where the funct ions 6N are measurable and are

~~ j  

such that for almost every ~~, I )  o N (M , w) is continuous f rom the

4 
right as a function of M and 2) u r n  6N

(
~

\ l , w) 0 .

Clearly ,  V N( M + l , W ) > E ( W N (X N ,~~T + 1 ) L ~
’o)( Li) almost surely.

Sin ce almos t sur ely VN (M +l ,~
i) and 6 N ( I

~
l , L )  are continuous from the

right as functions of M , it follows from Lemma A . 6 and (7 . 3) that  for

almost eve ry w , VN+i ( M + i , U ) _  VN (M , L)) ~ X - e - ó N (M ,~~
) for all Pd .

Hence , (7 . 2 )  follows from (7 .3) .

The idea of the proof of (7 . 3) is as follow s . Suppose that  the

- 
I consumer has M +1 units of money init ially. 

~ N treats one unit of

money as extra money to be spent at an opportune t ime . XN requires

the consumer to follow his optimal N -per iod  program with initial stock

_ _ _ _ _ _ _  — --~~~~~ —- — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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M until the marginal ut i l i ty  of expendi ture  exceeds X -  € . He then spends

as much of his extra money as he can without bringing the marginal

utility of expenditure below X -  C. He continues in this way until he 4

- spends all his e~:tra money or reaches the last period . If he spends all

I his extra money before the last period , he will  increase his total utility

= by at least ~~~~
- C . If he reaches the last period without having spent all

- • 1
- the ex t ra  money , then the marginal  ut i l i ty  of expenditure must always

- have been at most K -  r . This imp lies that he will have spent at least as

- 
much as he would have if he had followed the program i~~(~~~

- e) described

in the previous section . By (6 . 3) , the stock of money lef t by this poli cy,
• 

- 
M N 1 ( n ( X c) , M+l , w) , converges to minus infinity almost surely. Since

— 
the consumer can neve r let the stock of money become negative , it is

very unl ikely  that if N is large , the consumer could reach period N - I

without having spent the extra uni t  of money .

This argument  is now made precise .

I ¶ 
XNn is defined by induction on n as follows .

( i )  If u
~

(X NO ( I\I ,~~
) , u) ~ X - t , then

M+ 1 , w) = XN o~~’ , u) .

( i i )  If ub( XNo (M , w) , L~
.) > 

~ 
- C , then —

XNO (M + i , W) = m i n (X NO
( i

~.1 , w ) + l , X -~~,~~)) .

- 

—

- 

Suppose that has been defined for k < n  and that n > 0 .

( i i i )  If U ’ ( X N (M  , w) , u) ~ - c , then

F ~Nn (M + l
~~~~

_ X
Nn (M

~~~~

~~~~~~~~~ 

1’ 

_ _ _ _ _ _ _ _• ~~~~~~~~~~~~~~~~~~~~~~~ - - - - - -
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(iv) If U~(X Nn (M~ W)~ W ) >  K - C, then

XNn (M+ 1
~

L)) = min(XN (M , W ) + M  (~~~~, M+ 1 , u)

_ M
n(X N , M , u ) , f ln

( X _ C , IJ) ) .

The following facts are immediate consequences of the definition

• o f X N .

M (X , M+l i~) ~ M (X M w) for all n .n N n N

(7 . 4) If u is such that M N l(X N , M+l , u) = M N l
(X N , M , w) , then : 

—

WN (X N , M+ i ,
~

)) - WN (X N , M ,~~
) ~ K - c .

(7 . 5) If u is such that  M N l(
~~N , M + l ,~~

) >  M N l(X N , M ,~~
), then

u ’(\  - ( M ,~~) , w) ‘~ K — C for all n < N - u , so thatn N n
4

X - (M-1- 1 ,~~~ 
‘ q ( ) ~ - c ,~~) for all n < N - i .

N f l  n

(7 . 5) implies that

(7 . 6) If w is such that  M N 1 (X N , M+l , w ) >  M N l (X N , M , w ) ,  then

0 
~ 

M N l(
~~N , M+l , w) 

~ M N _ l ( n ( X _ c ), M+l , w) .

Let fN(M , w) be the indicator function of the set

SN (M ) {w I M N _ l (TX~~
_ c ) , M+u , w) ~ o}. That is ,

1 , if W E SN ( M )
fN (M , w) =

0 , otherwise .

—--. —----— •- - — —- ~~~~~~ • • • —.---- - - __________
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It follows from (7 .4) and (7 . 6) that

(7 . 7) wN(x N , M+1 , L)) wN(X N , M .W ) .
~

(K e) ( i fN (M I w )) .

A pplying E( I 9 ’
~~

) to both sides of (7 . 7),  one obtains

(7 .8) E(W N (X N , M+ 1) 19’o
) ( w ) _ V

N(M , u) 
~ ~~~~~

- C - ( K - C ) E ( f N( M ) j S 0o)( W)

almost surely . -:

Observe that for every 
~~
, fN (M , w) is continuous from the right

and non-decreasing as a function of M . Also , since

u r n  MN ( r ) ( X _ c ) , M+i , w) -co almost surely , lim fN(M , w) = 0 almost
N — c o  N — c o
su rely for every M . Hence , by Lemma A. 5 , the re exis ts a sequence of

4 

measurable functions 6N (M , w) which satisf y the followin g condition s.

~~ 6 N~~~ ’ - 
= (

~~
_ c ) E ( f

N(M)
~
.9o ) for all M .

( i i )  For almost every 
~~
, 6N (M , w) is continuous from the right as a

function of M .

( i i i )  For almost every w , lirn 6 N(M , w) = 0 for all M .
N- oo

By ( i )  and (7 .8) ,

E ( W
~~

(
~~~~

, M + l ) l 90)( U ) - V N(M , w) > 
~~~~~

- c - o N (M ,~~
) almost surely.

This com pletes the proof of (7 . 3) .
Q. E . D .

7. 9 Lemma

u r n  X0(M ,~~) < K almost surely.
M -’-oo

i i
- -- --~~~~-- - -  —- -- • - -~~~~~~~~~~ ~~~~~ -- - . --

~~~ ~~~~
---. --

~~~~ 
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~~~~~~~~~
--- --- 

~~~~~~~~
- 

~~~~-
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Proof

By the almost sure concavity of VN(M , w) ,  for almost every u ,

V~ (M , w) 
~ VN (M ,~~

) _  VN( M _ i ,
~~

) for all M ~ 1. Since almost surely

-~ X
0

( M , w) u r n  V~ ( M , ~) for all M , it follows that for almost every ~~,

N-.- oo

A0(M , w) ~ lim inf [V N(M , w)
~ 

VN( M _ l , w)I for all M ~ 1 . Therefore ,
N -~~~~~~~

it is sufficient to prove the following.

( 7 . 10) Given C >  0 , for almost every ~

VN (M , w ) V N ( M 1 , w)
~~~

x + C + o (M , u)

for all M -? 1 and for all N , whe re

lirn 6( M ,~~) 0 almos t surely.

The following will be proved .
J

(7 . 11) Given C>  0 , there exists a feas ible policy 
~ N such tha t

fo r each M~~ 1

- - 
•

-

~ 
VN(M ,

~
)) - E ( W ~~(~~~~, M _ 1) l 9 0)(U ) ~ ~~+ c +  6( M , w)

almost surely an d for all N , where  for al most every w 4

lim 6(M , w) = 0 and 6(M ,~~) is continuous from the left
M—~ oo

as a function of M .

Clearly , VN( M l , - ) 
~ E ( W N(

~~N , M _ 1) l $ ”o) almost surel y. Hence ,

(7 . 11) implies that

(7 . 12) For each Pd a 1, VN (M , w ) _ VN( M _ l , w) ~ K + c+ o(M ,~~)

a almost surely for all N .

-
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-~ Since for almost every ta. , the function s VN (M ,~~
) _ V

N ( M _ l , 1l3) and 6( M ,~~)

are con tinuous from the left as functions of M , i t follows from (7 . 12)

and Lemma A . 6 tha t for almost every w , VN(M , w) - VN ( M 1 , w)

<K  + C + 6( i\-l , u) f or all M ~ 1 and fo r all N . That is , ( 7 . 11) implies

(7 . 10) .

The idea of the proof of (7 . 11) is quite similar to that of (7 . 3).

The object of XN is to enable the consumer to give up one unit of money

while losing no more than K + C + 6(M) units of util i ty,  where M is the

initial stock of money and where lim 6(M)  0 .
M— oo

instructs the consumer to reduce his expenditure , if possible ,

only when the ma rginal utility of money is less than K + C . If he spends

less only at such times , he gives up no more than K -i- C units of utility .

The consumer could be prevented from waiting for times of low

marginal u t i l i ty  of expenditure only if lack of money or arrival  of the

final time period forced him t o spend less . Let n be a period in which

he is forced to spend less . In period n , he spends all his

money. Also , hi s expenditure in this  period is at most

Otherwise , he would not be losing uti l i ty in period n at a rate greater

than X + c units per dollar. In the periods preceding n , the marginal

util i ty of expenditure must be at least ~~+ C , so that expenditure in these

• periods does not exceed that prescribed by the progr am T l ( X + C ) .  Hence ,

his stock of money in period n is at least M ( q ( ~~+ e ) , M- l , w) andn
• M ( r 1 ( K + c )  M- 1 , w) < r~ (~~~~~ + C  

~~~ ) .fl ‘ n
Observe that no matter what happens , the consumer gives up no

more than one unit of utility , since the marginal utility of expenditure

is bounded above by one .

I
-- -~
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In conclusion , eithe r the consumer gives up X +  c units of utility

or he gives up at most one unit of utility and an event occurs , the

probabili ty of which is at most

6 ( M) Prob { inf [ M ( i i O -i-c), M- 1 , w ) - i i (~ +c)]~~ o}
i~~n<oo

That is , the consumer ’s loss is dominated by ~ + C + 6( M) .

Since by ( 6 . 4) , u r n  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = co- almos t
n~~co

surely,  i t follows easily that u r n  6(M) = 0.
• • M—~co

This argument is now made precise.

XNn is defined below by induction on n . It may be assumed that

M ~ 1.

( i)  If u~
(X No(M , w) , w) a ~~~+ C , let

XNO (l
~~~

1, w) m in(X NQ(M , w) , M-1) .

~ I 
(i i)  If u~

(X NO (M ,~~
) ,~~

) <~~~+ C, let

XNO (M -1 ,~~) = m r n { m a x[X NO (M , u ) _ 1 ,~~O(X +E ,~~) ] , M_ l } .

Suppose that XNk has been defined for k < n  and n > 0 . Then ,

M
fl

(~~~ , M - 1~ W) is defined . It may be assumed that M (
~~N , M _ 1 ,~~

)

~~M ( X , M w).

(i i i)  = M
fl

(X N , M , w ) ,  let

ti
Suppose that M

fl
(
~~N , M- 1,~~

) < M
fl

(X N , M ,~~).

(iv) If u~
(X Nfl (M , w ) I w) 

~~~ ~~~~~
+ t , let

~
( M-1 , w) = m t h (XNfl(M ,~~

) , M
fl

(i
~N , M_ 1 , A ) ) .

~
..• _i 

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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= (v) If u ’(X Nfl (M ,~~
) , w) <~~ + C, let

XNn ( M l ~ U) = min{max [X Nn (M I i
~

) _  M ( X N , M , w)

+ M
fl

(X N , M - l , w) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following facts should be clear .

M
fl

(X N , M- i , w) ~ M ( X N , M , u) .

(7 . 13) If Mn(X N~~
M _ i

~~
)) = M ( X N , M , w) ,  then

M k
(
~~N , M_ 1 , w ) M k(X N , M , u) f o r k > n .

(7 . 14) If Mn(X N~
M_ l

~ W ) < Mn(X N~ M~ W) and

XN 
( M 1 , aj ) > q ( X + e , w) , thenn n

Mk(X N , M~~l , w) = Mk(X N , M . u) f o r k >  n .

Define k(M , w) as follow s . If for some integer n 0 , 1, . . .  , N - 1 ,

M (K M-1  u) < M ( X  M ~,) and M (X M - l  L~~) ~ r~ (~Z + c  w) letn N n N  n N n ‘

k (M .~~) be the smallest such intege r . Otherwise , let k( M , w) co. 1. -

k (M ,~~) is , rough ly speaking,  the first pe riod in which the consumer I 
-

could be forced to spend less at a time of high marginal utility of -- 
-

expenditure .

t 
It follows immediately from the definition of k (M ,~~) and fro m

(7 . 13) that if k(M , w) < ~~, then M
fl

(
~~N , M_ 1 , w) < M

fl
(X N , M , w) , for all •

n ~ k(M , w) . Consequentl y ,  by (7 . 14) and the definition of k(M ,~~),

XNn ( M l
~

W) < ~~~~~~~~~ for all n < k ( M , w ) ,  and so

~ M k(M )(X N~~
M - l

~~
W) 

~ nk M , W) (
~~

+ c ,
~~

) .

--
• - -  -- -. -• —--- - - --



_________

In summary ,

(7 . 15) lf k( M ,w ) < a o , then

~~~~~~~~~~~~~~~~~~~~~~~ 
- fl k ( I l , w) + c ,~~) ~ 0 .

Since u ’(x , t. ) ~ 1,

(7 . 16) WN(X N , M , w ) W N(X N . M 1 , (dL)) ... 1 for al1~~ .

Clearly ,

(7 . 17) if k(M , c~) = co , then

WN(X N , M ) CA) ) - W N (X N , M 1, w) ~~~ + ~~~ .

Let f (M ,~~) be the indicator function of the set

S(M) = {~~J in f [ M ~ +c) , M- 1 ,~~) -v i~(~~+ c~ w)] ~ o}.

(7 . 1 5 ) — ( 7 . 17) imply that

(7 . 18) WN(X N , M , w ) W N (X N , M 1 , w) ~ (~~+g) + f ( M , w) .

L .

~~~
Ii

A pplying E (  15 0

0
) to both sides of (7 . 18), one obtains

(7 . 19) V
N

(M , w ) _ E ( W ( ~~ N , M _ 1 ) L S 0
o

)(~~)~~~~~~+ e + E ( f ( M )j 9
o

) ( w )  
•

almost surely.

Since S(M) = {~~( M - 1 + i n f [ M ~ (~~(~~+c) , O , w ) -  ~~~~~~ ~ o}, it

follows that for eve ry w, f ( M , w) is continuous from the left and non-

Increas in g as a function of M . Therefore , by Lemma A . 1 , there exists

a measurable function .5 : [0 , co) X ~ -
~~~ [0 , 11 such that

(i) 6(M , . ) E ( f ( M ) 15 00) for all M and

(II ) for almost every w , 6(M , w) is continuous from the left and non -



- 

~~~~~~~~~~~~~~~ 

• 

~~~~ :~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 
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decreasing as a function of NI . By (7 . 19),

VN
(M , w) - E (W( XN , Nl_ 1) 19’o ) ( w )  

~ ~~+ 
g +  6(M , w) almost surely.

In order to com plete the proof of (7 . 11), it is necessary to show

that lim 6(M , u) = 0 almost surely. By (6 . 4) ,
M— oo

lirn ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = cc almost surely. It follows that

u r n  f ( M , w) = 0 almost surely. Therefore , by (A . 2 ) ,
M- oo-

lim 6(M , w) = 0 almost surely. Since for almost every u ,

M an integer
ó(M , w) is non-increasing as a function of M , it follows that almost surely

u r n  6( M , w) = 0 .
Pd — c o

Q. E .D.

8. PROOF OF THEOREM 3. 2

The outline of the proof is as follows . The fact that

q~~(M -x ~~~1 0 (M , u) , i~) imp lies that the random variables

X I M W ) , L)) for m a superrnar t ingale . By the convergence theorem

for supermartingales , these random variables converge almost surely .

Since ~n(M
~~~ 

a K , the limit is at least K . If it exceeds K , then for

some r >  0 , X~ ~(M ,~~) will be less than n~O -  C ,L,) fo r all n . Hence ,

M~ (X , M~ w) converges to inf ini ty .  Consequently, by the main theorem

X ( M ~ (X , M , w ) ,~~) will conve rge to $ . This contradiction implies that

K (M (X M ~ ) w) converges to ~~~ .
• 

- n n oc
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8. 1 Lemma

The random variables Kn(M n(X
cc~

M
~

L))
~

U) form a supermartingale .

That is , for all n , K ( M (X , M , w),~~) a E [X +i(M n+i (X
co~

M))
~

50O 1(L) )

almost surely .

Proof

For brevity , M~ (X , M , u) will be denoted by Mn(w )
~ 

Let

V~ (M , 4 = V~ (M ,r~ u) and q~ (M ,~~) = q~~(M , r ’~~).

(8 . 2) n~~~
(M n~~

)
~ 

w) a 
~~~~~~ 1(M (w) - XNfl(M n(

~~
)
~ W ),  ( U )

a

= E ( + i V~~~i (M +i ) l 5 0 ) ( L ) ) .

The first inequality above follows from Lemma 4 . 1, par t vii and from

Lemma A . 4 . The secon d follows from the inequality M - X con(M
~

W)

~ 
M _ X Nn (M

~
U) and the fac t that ~q~~~1(M ,~~) is decreasing in M almos t

surely. The equali ty follows from Lem ma 4 . 1 , pa rt v and from Lemma

A . 4 . Since lim n+l 4 _ i (M n+1(
~~~~~ 

K~~ 1(M~ ÷ 1(w) , i) almost surely
N— co

it follows by ( A . 2 )  that lim E ( n + i V~~_ i I% Mn+i ) i 5 0n ) = E K n+i (M n+i ) I 5 0n )
N- oo

almost surely. Also , lirn n \T~~M (~~) , w) K (M~ (w) , w) almost surel y,
N — c o

so that by passage to the limit in (8 . 2 ) , X~ (M ~ (w) , w)

a E ( X  ~ 1(M 
~~~~~~~~~~~~~~~~ 

almost surely.
Q. E . D . 1~1-;

By the convergence theorem for supe rmartingales (Doob [6 , p. 324 , 
-

~- 
-

Theorem 4 . 10 1) ,  Xn (M n(X
co~ M~

w)
~

w) conve rges almost surely. Let

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~— - - ~~~~~~~~~~~~~~~~~ r~~~~~j - -
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X ( M , w) be the limit . Clearly , K~~(M , Tw) = K ( M ,~~) almost surely. ~• 
-

That is , K
00

(M , . ) is an- invariant function . It is easy to see that

because the stochastic process {w~} is metrically transitive , every

invarian t function is equal to a constant almost surely. Let K be the

constant corresponding to K ( M , . ). - -

By the main theorem , Kn(M n(X
co~

M
~

W)
~

W) 
~~
‘ ~ almost surely , so

that K a ~~~~. It must be shown that K ~~~ .

In what follows , use will be made of the con cept of convergen ce

in probability . A sequence of random variables , Zn~ 
is said to converge

to z in probabili ty if for every ~ > 0 , lim Prob { I z - z I > = 0 . z
n— co

conver ges to in finity in probabili ty if for every K > 0 ,

lim P rob{zn < K} = 0 . If Zn converges almos t surely, Zn converges
N — c o
in pr obability .

Suppose that K > K . Observe that
00

X (M ~) = r~ (K  (M (X M u) u) w) by Lemma 5. 11 . Since
con ‘ n n n cc’ ‘ ‘ ‘

u r n  X ( M (X , M , w) , w) = K almost surely,  it follows that • 
-

n— co

(8. 3) for almost every w , X 0(M , w) ~ 
n (

K
~~~~o- 

,~~~) 
for n

sufficiently large .

Since lim M~~(n( 
cc) ,

~~) 
= cc almost surely (b y (6 . 3)) ,  it follows

from (8 . 3) that M~ (X~~, M , w) converges to infinity almost surely and

hence in probability . Since ~ is probability preserving , it follows that •

M n( X , M , T n(&; ) converges to infinity in probability.

I

rn -- - - -•-~~~~~~ --• -- •~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~
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By the main theorem , u r n  X 0(M , lj. ) K almost surely and hence
M- oc

in probabili ty. It follows easily that the sequence of random variables

X0(M (X , M , 7~~ U) , U) converges to K in probability . Again using the

fac t that r is probabi lity preserving, it follows that

K0
( M ( X

00
, M , w) , T~~ U )  = Xn(M n(X

co~
M

~~
W)

~~~
) converges to K in probability .

But this is impossible since K > X and K (X , M , w) ,~~) conver ges to

almost surely and hence in probability . This proves that X~ ~~~~
.

I
It has been proved tha t for each M , lim K (M (X , N1 . u) , ~)

n n

alm ost surely . Clearly,  lirn X~ (M~ (X
00

, M , w)~ w) is non-increasing as

a f unction of ~l , for almos t every w . Therefore , for almost every ~~, • -
•

u r n  X ( M (X , M , u) , w) = K for all M .
fl~~ ;~ Q. E .D .

I-; -

;t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~~~. THE INFINITE HORIZON , DISCOUNTED PROGRAM

The lemma below is needed in the proof of Theorem 3. 5. Recall

that if 6 < 1, V (M , w) u r n  V N Ô (M , cU) almos t surely and6 N — ~--
x60(M , u) = u r n  xNb fl (M , w) almost surely . Since VN & (M , w) is a non -

N — c o
decreasing function of N almost surel y ,  u r n  VN6 (M , cU ) exists almost

N — c o
surely. X 6 is the program corresponding to the plan x 6.

9 . 1 Lemma

L f ó < l . then

V 6(M ,~i) = E(~~~ onu ( x o ( M ) ) 15 00 ) ( w )

almost surely , and if X is any fea sible program ,

V6(M ,~~) a E(~~~ 6~ un(X n(M ) )
~~~0 ) ( w )  

• 

- -

almost surely .

This lemma says , of cour se , that is an optimal program for

the infi nite horizon problem with discounted utilities .

Proof

If X is any fea sible progra m , then

n 0  
6°u~(X~(M~ w)~ w) 

~ n~ 0 
6nX~(M , W) 

4:

~ 6~ Mn(X
~ M~

W)
nIr O

~ ~~~6~~(M + 
k 1

~ 

~~~~~~~~~~ ____
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The terms of this last series are non-negative , so that it converges ,

though perhaps t o inf inity . H owever , by the monotone conver gence

theorem (Loève [8 , p . 124 1) ,

E
~~~~

6
~ (M+ ~~~~

yk) ~~~6
n(M÷(~~~~Ey0

)<co ,

cc n — i
v- n f . .so that the series 6 ç~M + 

~ 
y~ ( L ) )  converges to a fin i te  l imit

n 0  k 1

almost surely. It has been proved that

(9 . 2) For almost every ~~, there  is a convergent series which

dominates 
n-0 

~~~~~~~~~~~~~~~~~ for every feasible policy \ .

It follows that 
n~ O 

b
~ un(X n(M

~
u)

~~
) converges almost surely .

Next  observe that since u r n  x 
~ 

(M , w) x (M , w) almost
N — oo N n  6n

surely ,  lim NI (X N a , M ,~~
) = M (X ~~, M , w) almost surely. Hence .

N — c c  ~ n o

( 9 . 3 )  u r n  u (X (M , u) ,~~) u (X (M , w) , w)
N - c ~ 

fl N6n 6n

almos t surely for all n .

It follows from (9 . 2)  and (9 . 3) that

N-i cc

(9 . 4) u r n  ~ 6~ U ( X No (M , L ) , L )  = 
~~~, 

6’1un(X ón(M
~

w)
~~

)
N c c n c O  n 0

almost surely.

(9 . 4) and (A . 2) imply that

-
~~~~

)_  • •
~~~~~~ - •- ~~~~~~~

-‘

.~~~~~~~
-
-—-- - - -—--- -

~~ 

— —------ —• - -i
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(9 . 5) Urn VN 6 (M , u) = E(  ~ 6 n un(X ón ( M ) ) f 5 0O ) ( ~~) almost surely.
n 0

Let X be any feasible policy . Then , by Lemma 4 . 1,

- • VN o (M , (U) ~ E(~~~ 6~~Un(X (M))  I 500)(~~~) alm ost surely.

Hence , (using (A.2) and (9 . 2))

V 6(M ,~~) Urn VN o (M , w) ~ E(  ón u ( X ( M ) ) 15 00) (w)  almost surely.

Q. E . D .

10 . PROOF OF THEOREM 3. 5
- - I

In this section use will be made of the followin g well-known

theorem .

AbePs Limit Theorem (Ahifors [1 , p. 42 ] )
N-i

• If a is a sequence of numbers such that Urn ~~
— ~ a exis tsN~~~ nN — c o  n 0

cc N-i
. 1 — 6  V n . 1then u r n  — -

~~
--- 

_ 
6 a = lim ~~ — 

a .
n 0  N — c o  n 0

10 . 1 Le m m a

i_ I_ _ I
l im ~ u ( X  (M w) w)N 

n~~0 ~

- lim -
~
--.-.

~~
- 

~ 6’1u (X  ( M , w) w)6 ~ n ~n

= E u 0
(~~0

(~~)) almost surely.



- --
~~~~~~~~~~~~

-
~~~~~~~~~~~~~~~~~~~

- -
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Proof

By Abel ’s t heorem , it is sufficient to prove that
N-i

u r n  ~ U
~

(X cc~
(M

~~
i)
~
W)=E u0(~ 0(~~)) almost surely.

N—cc

By the ma in theorem , X ( M ,w) ~ ~ for all M almost surely.
- I Therefore , X (M w) = r~ (K (M ( X , M u) o) , w) 

~ n (~~ , 
w) almost surelycon n n n ~ n

for all n . H ence ,

N -i
u r n  sup 

~ Un(X n(M~ u) , w)
N — c c  n 0

N - i
< lim su p 

~~~ 
Un(f l n (

~
Z , L)) , w) = E u 0(r i 0

(~ ))
N — c c  n 0

almost surely . The equali ty follows from (6 . 5) .

Since E u0(r i 0(t ) )  is a continuous function of t , it is sufficient to
prove tha t 

- 
-

(10 .2) for every e>0 ,

N -i
1 —lim inf ~~ ~ 

un(X ccn(M , w) , u) ? L u 0(r i 0( X + ~~))
N — c c  n 0

almost surely.

Since u r n  K ( M (X , M , w ),~,~) K almost surely,  it follows that
for almost every w , Xccn(M~ W) ~ ri~( K + c , w) if n is sufficiently large .
Therefore , for almost every w , 

.

N- i
lim inf 

~ 
u (  X

00~( M , w) , w)
N—cc n 0

N - I
? Urn ~~, u~( q ( ~~-~-e , w) w) = E u 0(~~0(~~+~~)) .

- c c  n 0

________ ~~~~~~~~~~~~~ ~~~~ •A~
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This proves (10.2). Q.E.D.

- 
- 

Since ~~~~~~ is uniformly bounded (by Assumption 2 . 5 , par t v)

and since X
00~(M 1 w) 

~~ 
ij~ (X ~, w)  = ~0(~~,r

’1L) al most surely,  it follows

that the functions

N - I

~ un(X (M , w), w) are uniformly bounded . Therefore , by the
- 

- n 0

Lebesque dominated convergence theorem and Lemma 10 . 1,

u r n  E ~ u ( X ( M ) )  = E u 0
(~~0(~~) ) .

N— co nIcO

By Abel’s theorem , it follows that . -

lim 1-6  
~ 6n E u ( X ( M ) )  = E u0

(~~0
(~~) ) .

n 0

This proves the first four equalities of Theore m 3 . 5 for fi xed M .

It is next shown that
$ 11 —( 10 . 3) for each M , Urn inf 

~~ V N (M , w) a E u 0
(~ ( K ) )  almost surely.

N — c o  0

By part iii of Lemma 4 . 1,

VN (M u)
~~~ E(~~~~~

un(X ( M ) ) l 5 00 ) ( w )

almost surely. Therefore ,

~~~~~nf 
~~

VN (M , w) ~ lirn inf ~~E(~~ u ( X ccn(M )) 1500) ( w) 
I ~

almost surely. By (A . 2) and Lemma 10. 1 ,

• • --._.~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _
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N - i
lim inf ~ E (  ~ u (X ( M ) ) ~90) = E

N — ’~cc n 0

alm os t surely . This proves (10 . 3) .

Similar arguments prove that

( 10 . 4) lim inf 
~~E V N (M , w) a E u 0( z ~0(~~)) ,

( 10 . 5) lim inf 1-j-~ V 6(M , w) > E u 0( v ~0(~~)) almos t surel y,  and6~~1

(10 . 6 u r n  inf -~--j --~ E V 6(M , w) > E u 0( i ~0(X ~)) .
6 t l

The proofs of (10 . 5) and (1 0 . 6) require the use of Lemma 9 . 1.
Next , it is proved that

(10 . 7) lirn sup N VN (M ,~~ ~ E u
0(r 7 0(~~) ) .

Since
N - I

E u 0(~~0(~~) ) = lj r n  ~~ E (  ~ u ( n (X) ) 15P0)N —’- oo i-i = 0

almos t surely,  in order to prove (10 . 7) it is sufficient to prove that

N - i
• 0 a lim sup 

~~~~
- VN (M , ~) - lirn E ( ~~ 

Un
( hm

n~~~~~I 
~~~~~N —’- oo N — c c  n=0

= l~~~~s~~ ~~ [VN (M ,~~~~ E(~~~
1 

u ( ~~~(~~))~~~0)]

N- i
= Urn sup ~ E(  ~ 

(U
fl

(X Nn ( M )) - u~(m i~(~D)I .90) almost surely.N — o o  n 0

For each N , n , M and w , there exists a unique number ZNfl(M ,~~) such that

Htj



I

- 57 —

U ( X N (M , u) , w) - u (n  (~~~~~ , LU) , U) u~(Z Nfl (M , w) ,~~
)(X Nn(M , w)-

1-

Therefore ,

lim sup~~ E(~~~ (U O(X Nn
(M))

~~
Un( f l n

(
~~

)) ) I
~~O)

= lim sup ~~ E(~~~ u ’(Z Nn (M))( XNn (M)
~~%

(
~~

)) l
~~O ) .

Since

Urn 
~ 

(
~~~1 

(X Nn ( M )  - n~(~)) l 
~~~)  0 almost surel y,

Urn sup ~~ E(~~~ u~
(Z Nn

( M ) ) ( X Nn (M )
fl

(
~~

)) I
~~O)

lim su~ ~~ E(~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~N — c c  n 0

~ 0 almost surely.

The last inequality follows from the fact that

~ 0.

This completes the proof of (10 . 7) .

Similar arguments prove that

(10 . 8) u r n  sup ~I E V N (M)  ~ E u 0(r u 0( K ))
N — c o

~~ ( 10 . 9) lim sup ij—~- V 6(M , w) ~ E u 0( r ~0~ ’.)) and
6 t 1

t 5 (10 . 10) u r n  sup !j_~.E V6(M )  ~ E u0(r i 0
(~~))

6 t 1

____ _______ • - —---- --- .~~~--- .--—.----- —.. . —---S — -—
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(10 . 3) - (10 . 10) im ply that for each value of M , the last four

equalities of Theorem 3. 5 hold almost surely. Since all of the limits

appearing in the theorem are almost surely non-decreas ing functions

of M , it follows tha t for almost every u , all the eq uali t ies of the

theorem hold for all values of M .

• 11 . REMOVING THE UPPER BOUND ON u ’(x , i)

It has been assumed that u ’(O , u) ~ 1 fo r all u . This assumption

wa s made in order to put an upper bound on the marginal utility of

money . This bound may also be obtained by assuming that income is

bounded away from zero . ( This point was made by Schechtman in his

dissertation [131 . )  Specifically ,  if it is assumed that for some a > 0 ,

y (w) -
~ a almost surely ,  then one may allow lirn u~(x)  to be infinity0 x—0

and one may even allow lim u 0(x )  to be minus infinity . It is , how ever ,
x -.-0

necessary to require that sup u~ (a , u) < co~ If these assu m ptions are
(U) ‘~ Fmade , all the theorems of section 3 remain true . Their proofs require

only a few modifications .

The follow ing example show s tha t if the rest ric t ion on y0 is not

• imposed , then the main theorem is false . The problem is that if the - --

consumer is not guaranteed a positive income and if running out of

income is disastrous , then the lim it policy could req uire the consumer

• to save all his income , no matter how rich he might be.

• ~~• Example
x -2

For 0 < x < co , let u ( x )  f et dt .
1

- ----.•~~~
—--—- - -- •“ - ---,.•--— - --- —~~~~~~~~~~~~~ -~ -•-- .• •.•—- -—--•—- 
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Let the incomes , 
~n ’ be independentl y and identically distributed and

suppose that Prob(y =O) = Prob(y = i)

N - i
Let VN (M )  max E ~ u(x ) , subject to 0 ~ x~ ~ M , where —

n 0
M 0 = M and Mn+i - M ~ ~~ ~~~n+i for ri > 0 . It wifl be shown that

u r n  V~~(M)  cc
N-.cc

Clearly,  V~~( M )  a Prob (y 0 = . . .  =Y ~~..1 = O) E (u ’(JY T~~~1) 1y Ø= 
~N l ~

-°
~

.

Also , if y0 = . . .  = MN - i  = 0 , then MN _ i  ~ . Therefore ,

V~~( M ) a 2 ~~~u’(~~ )=  ~~~~~~~~~ = ( 1 M 2)N . Clearly,

• NI M 2\N
lirn e 

J = cc for all 1\I .
N— co 2 

J

12 . POSSIBLE GENERALIZATIONS

It has been assumed throughout this paper that the ut i l i ty  function
is differentiable , strictly concave , and addi t ively sepa rable . It should
be possible to eliminate the diffe rent iabili ty and concavi ty assum pt ions
altogether and to weaken the separability assumption considerably.
Elimination of the differentiability and concavity assumption s introduces
only technical  diffi cult ies . If the separability assumption is eliminated ,

- 

- 

~~ ~
- it must be replaced by some other set of restrictions . it is not clear

what these should be .

- 

~~~~~-
•
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The intuitive arguments underlying the proof of the main theorem
do not depend on the differentiability and concavity assumptions at all .
It might seem that the proof would collapse because the policies r~(t )

would be undefined . This is not so. It is true that if un ( . , w) were not
strictly concave , ~~(t ,~~) could be multiple valued . Never theless ,
E i0( t) could be defined in the usual way as { E f J f ( w )  E fl0

(t , w) almost
su rely and I is measurable}. (See Aumann [21 for a discussion of

- • integration of mult i ple-valued functions .)  By choosing points from p ( t , u)

randomly , it is possible to define a policy X for which j im X (M , w)
N— cc fl~~~~~~ 

n 4 
-would exist almos t surely and would equal any preassignec~ oint in

E ri0(t ) .  Also , E r~0( t )  would be a decreasing, upper-semi-continuous
multi ple-valued function . For these reasons , it seems that it would be

possible to carry out the proof of the main theorem and the other
the orems as well . However , the autho r has n ot checked t he proof in
detail .

If the separability assumption were eliminated , some restriction
would have to be placed on interactions across time within the ut i l i ty
function . The utility function should be time invariant. The effect on
the consumer ’s decisions in one period of changes in consumption in
another period should become negligible as the time separating the periods
goes to infinity . Similarly , the effect on the consumer ’s near term plans
of a change in the time horizon should become negligible as the horizon
goes to infinity. It is not clear how these conditions should be formu-
lated .

--~~~~~~~~~~~~~~~~~~~~~~~~~
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APPENDIX

CONDITIONAL EXPECTATIONS OF RANDOM VARiABLES

WITH A PARAMETER

Let C be some set of prope rties of a real valued

func tion of a real variable .

Defin it ion

C is said to be conservable if the following is true .

Let Q: [0 , oo) X ~l -
~~ [o , iJ be any measurable function such that for

- • almost every w , th e func t ion Q (  . , w) = [0 , co) — 
[0 , 1] has proper ties C. 

U 
-

Then , there exists a measurable function q: [0 , oo) X ~2 - [0 , 11 which

satisfies the following:

( i )  q ( M , . ) E ( Q ( M ) 19 ’0) for all M .

( i i )  For almos t every w . q (  . , ia): [0 , co) — 
[0 , 11 has prope rties C.

A . 1 Lemma

Any of the following pairs of prope rties is conservable:

continuous and strictly dec reasing; continuous from the right and non-

decreasing; continuous from the lef t  and non-increasing.

t Frequent use will be made of the following fact .

\ . 2 Let ~ be a sub-a-field of ~ and let zk be a sequence of rand om

variables on ~l such that u r n  = z almost surely and zk(u ) l  5 Z(w) .

almos t surely for all k , where E Z  < co~ Then , Urn E ( z k l ~ ) E(z~~ )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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Proof of Lemma A. 1

Continuous and Strictly Decreasip,g

For every non-negative rational number M let q(M , . ) be any 4

version of E(Q (M) ( S °0) .

For each pair of pos itive integers , k and N , let

fN (k , w) sup {lQ( M 2 ,~~) -Q( M 1, ~~) I I  0 
~ ~ N , M 1 M 2 M 1~~ k 1 }.

It is easy to show that for every k , fN
(k ,

~~ 
is a measurable function of 

- -

-

w . Also , since for almost every w , Q(M , w) is continuous in Ni , it —

follows that lim fN (k , w) = 0 almost surely . Therefore , by ( A . 2 ) ,
k—co

lirn E ( f N ( k ) I 9 20 ) 0 almost surely. Also , if Ni 1 and are rational
k—co
and 0 ~ M 1 ~ N and M 1 ~ M2 ~ M 1 +k ~~

, then ~q(M 1, w ) - q ( M 2 , w)~

~ E ( f N(k)
~
9o)(w) almost surely. It follow s t ha t for almost every w ,

Urn Urn ~q (M , w ) - q ( M ,w ) I 0
M 1— M  M 2 —M 1 2

M 1 rational M 2 rational

for every M such that 0 ~ M < N .  Since this s ta tement  is true for each

of the countably many values of N , it follows that it is true with N =

If M is irrational , let

q ( M , w) lim q ( M ’ , w ) ,
M’ —M

— M’ rational

provided that this limit exists . Otherwise , let q(M ,w) be arbitrary.

- - 
It follows from what has just been proved that for almost every w ,

q (M ,~~~
) is everywhere well-defined and continuous as a function of M .

It is easy to see that q is measurable .

It is next proved that q ( M , . ) = E(Q (M) 90) for all M . Let M~ be

F- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - -- -----
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a sequence of non-negative rational numbers converging to M . By

definition , q(M~ . . ) E (Q( M~ ) J 
~
‘O~ 

for all n . Since almost surely,
- - 

q ( t , u) and Q(t ,~~) are continuous as functions of t , q ( M ~~, w) and Q(M n~
W)

converge to q ( M  , w) and Q(M , w ) ,  respectively ,  almost surely. There-

fore , by (A . 2) q ( M , . ) = E ( Q ( M ) I $ 90) . —

It remains to be proved that for almost every u , q (  . , w) is

strictly decreasing as a function of M . If M 1 and M 2 are ra t ional and

M 1 < M 2 ,  then q ( M 1, w) > q ( M 2 ,~~) almost surely. Since there are only

countably man y pairs of rational numbers , it follows that for almost

every w , q(M 1,u) > q ( M 2,w) whenever M
1 

< M
2 and M 1 

and M
2 are

rational. Since q( . , w) is continuous for almost every ~~, it follows

that q(  . , w) is strict ly decreasing for almost every w.

Continuous from the Right and Non-Decreasing

For every ra t ional M , let q ( M , . ) be a version of E ( Q ( M ) I $~0) .

Since Q(M , 1i) is almost surely non-decreasing in M , it follows by the

argument just made- that for almost every ~~, q ( M , w) is non-decreasing I —

as M varies over rationals .

If M is irrational , let q ( M , u) lim q( M , w) . For almost
M ’4 M
M’ rational —

eve ry ~~, th is  l imi t  exists for all M - since q ( M , u) is almost surely non-

decreasing on ra t ion als .

By defi nition , q (M , w) is almost surely continuous from the right

at irra tional values of NI . It is now proved that the same is true at

rational values . For ea ch ra t ion al M an d each positive integer k , let

f ( M , k , w) Sup {Q(M ’ , w) _ Q( NT , w ) I M < M ’ ~~ M + k ~~ } Since Q( M , L,) is
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continuous from the right almost surel y,  ~~~~ E ( f ( M , k ) 1500
) = 0 almost

su rely. Therefore , for almost every w , li rn (q(M ’ , w)- q( M ,~~) ) - 0 .
M’~ M
M’ rational

Since there are Only coun tably many rational numbers , M , it follow s t ha t

for almost every w , lim ( q(M’ 
* ~) - q(M , ~~

)) 0 for all rat ional M .
M’~ M
M’ rational

In order to prove that q(M , . ) E(Q(M ) 19 ’0) for all M , let M be

a sequence of rational numbers converging to M from the right and use

(A . 2) .

Arguments similar to those just given prove the lem ma for the

case of functions which are continuous from the left and non-increasing.

Q.E.D.

A .3 Lemma

Let Q: [0 , cc) X Q — [0,oo) be measurable and suppose that for

almost eve ry u , Q(M , w) is continuously differentiable as a function of

NI and such that Q( M , 1U)) is positive , less than or equal to I - and

str ictly decreasin g. Le t Q’( M , w) be any function which equals

whenever this derivative exists .

There exists a measurable function q: [0 , co) X ~2 — [0 , oo)

satisf ying the following.

-
. 

( i )  For almost every w , q( M ,~~) is continuously differentiable as

a function of M . The derivative is positive , less than or equal to 1 .

and strictly decreasing.

Let q ’(M , w) denote any function equal to q(M , ~~) whenever this
- 

- - : derivative exists .
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(i i )  q( Nl , . ) E (Q (M)~$”0) and

q ’(M , . ) = E(Q’(M)~ $90) , for all M .

Proof

Since Q is measurable , Q’ is so as well . Therefore , one may
apply Lemma A . i t o  Q’ and obtain q ’ as in the lemma to he proved .

M
Let q(M .w ) = J q ’(t , w) dt . it follows from the Fubini theorem0
(Loève [8 , p . 125j ) that q satisfies property ( i i )  in the statement of
the lemma .

Q. E . D .

A . 4 Lemma

Let Q: [0 , oo) X ~2 — [0 , co) and q: [0 , co) X ~ — [0 , oo) be measur-
able and such that for almost eve ry ~~, Q( T~.1 ,~~) and q(M , w) are continuous
functions of M . Suppose that for every M , q( N 1 , . ) E( Q(M)~ 9’0). If

-
~~~ lo , ~ ) is measurable wi th  respect to and such that 

J
EJ Q( z )  < -

~~~~ , then ~(z( . ) , . ) E( Q(z) I .90)

Proof

Let i~~: ~2 — [0 , co) be a sequence of simple fun c t ions  - whic h are
measurable with respect to and converge to z almost surely.  Si nce

.‘ Z~~ is s imple , q( z~ ( . ), .)  = E ( Q (z )~ $90 ) .  By ( A , 2 )  and thr-  continuity
properties of q and Q. q( z ( . ) , .)  E(Q(z ) )~~0) .

Q . E . D .

-a- i
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A .5 Lemma

- Let fn : [0 , co) X ~2 — [0, 1] be a sequence of measurable functions .

- - 
Suppose that

- 
I (a) for almost every w , f~(M , U ) ) is continuous from the right and

- non-decreasing as a function of M , and

- (b ) for almost every w , u r n  f (M , w) = 0 .n
-

- Then , there ex ists a sequ ence of’ measurable function s

b~ : [0 , co) X ~2 — [0 , 1] wi th the following properties .

( i )  ôn(M)  = E(f ( M ) 19 ’0) for all IVE .

- 
( i i )  For almost eve ry U, o~( N I , u) is continuous from

- the right as a function of M .

( i i i )  For almost every w , lim ó (M , w) = 0 for all Ni .
n— co n

I~
Proof

H

By applying Lemma A . i t o  f , one obtains ó~ s n t i s f y i ng  (1) and

( i i )  above . Clearly ,  for a lmost  every w , ~~Wcc 
o~ (M ~~~) = 0 for every

- 

- 

positive integer NI . since 6~ (M , w) is non-decreas ing in M for a l m ost

• every w , it  follows that  u r n  ó (M , w) = 0 for all M .
n— cc

Q.E.D.

A. 6 Lemma

• Let f: [0 , oo) X ~ — (-co , oo) be measurable and such that

( i )  for each M , f(M , w) > 0 almost surely and

( i i )  for almost every U , f (M , U) is con tinuous from the

right as a function of M , or 

--- - ---—---- _a_•__*_ - —---~~~----- --—-— -.—--——- -- - -
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( i i i )  for al most every LU), f ( M , w) is continuous from the

left as a function of M .

Then , for almost eve ry w , f ( M , w) ~ 0 for all M .

Proof -

The lemma follows at once from the fac t that f or alm ost every w ,

> 0 for  all rational values of M .

Q. E . D .
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I )  A B S T R A C T

This paper defends the view that in dealing with a consumer ’s reponse to
short—term changes , it is reasonable to assume that the marg inal ut i l i ty  of
money is constant. A theoretical defense of this view is made in terms of the
consumer ’s intertemporal maximization problem . It is assumed that the consumer
may hold money , but may not borrow . The consumer’s utility function is assumed
to be additively separable with respect to time . Prices , the consumer’s income,
and his u t i l i ty  function for each period are assumed to fluctuate according to a
stationary stochastic process. It is proved that if the time horizon of the
consumer’s problem is sufficiently distant, if his discount rate for fu ture  ~ -

~~~

ut i l i ty  is suff ic ient ly  small , and if he has a sufficient quantity of money , then
the marginal utility of money is nearly independent of current prices and income
and is nearly constant over time. The proof of these facts is based on economic
common sense and the strong law of large, numbers for stationary processes.

DD ‘~~.~1473 (PAGE 1) 
-

~~~~~~~~~~ Unclassified ’
~~~~~~

’ 
~~~~~~~~~~

‘ - -‘
~

- ~~~~~~~~~~ ~~~~~~~~~~~~~~ - -~~~ ~~~~- ~~~~~~~~~~~ - - - - - ~~~~~~~ ty C1e.,L~~k-.tjo ~~ 
- -

-, —- —- ,-—-- — — — ___.s•__ - •~~~~~ -------—---- , -  a ama A fl


