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. 1. INTRODUCTION

This paper proposes a new formulation of consumer demand
functions. The fundamental assumption of the formulation is that a
consumer spends his money in such a way that the marginal utility of
expenditure equals a constant, which is independent of prices and does
not change over time. This assumption will be termed the permanent
income hypothesis because of its similarity to the hypothesis of
Friedman [7].

The permanent income hypothesis proposed here is somewhat
different from that of Friedman. The hypothesis studied here is
intended to be a theoretical representation of a consumer's response to
short-term fluctuations in prices, his needs, and his income. Because
of the theoretical orientation, the hypothesis is stated in terms of an
unobservable, fictitious quantity, the marginal utility of expenditure.
Friedman is concerned with the relation between consumption spending
and current and past income and other variables. His hypothesis is,
roughly, that consumption spending consists of a random term plus a

multiple of some weighted average of past and expected future incomes

(Friedman [7, Chap. III]). Because of Friedman's empirical orientation

his hypothesis is a statement about quantities which are directly or
indirectly observable.

Both Friedman's hypothesis and that of this paper are based on
the same idea, that consumers try to compensate for economic fluctu-

ations by saving and dissaving. The same idea lies behind the life cycle

’
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model of Modigliani and Brumberg [10], which is very similar to !

Friedman's hypothesis.

Some economic implications of the permanent income hypothesis
of this paper are explored in two other papers (3,4]. These papers
attempt to show that this hypothesis clarifies the economic significance
of general equilibrium theory. This paper attempts to clarify and
defend the hypothesis itself by stating it precisely and demonstrating
when it is applicable.

The permanent income hypothesis may be stated mathematically

as follows. Let Un(cn) be the utility of the consumption bundle

cn—(cnl,...,

tiable and defined for all L-dimensional vectors with non-negative

an) purchased in period n. Suppose that Un is differen-

components. Let p_ = (Ppp>-v> an) be the vectors of prices in

period n. The hypothesis asserts that there exists a number X\ such

that the following is true for all n and i.

with equality if Chg = 0.

a1

X is independent of n, P, and of expenditure, p - C..

The permanent income hypothesis may be stated in terms consistent
with the usual model of the consumer. If money is included in the

list of commodities and if the price of money is set equal to one, then

the consumer's transactions must satisfy the accounting identity,

M + - A e Mn’ where Mn is the quantity of money he has at the begin-

ning of period n, c is the vector of commodities purchased, and M is




the quantity of money retained after the purchases. That is, in period

n the consumer is restricted to the budget set

B, ={(M,e){M+p -c=M,6M=0,c>o0}. :

The permanent income hypothesis may be interpreted as the following
two assertions. (1) The consumer chooses a point in Bn which maxi-
mizes a utility function of the form AM + Un(c). (2) Mn is so large that
if (M, c) is the point chosen in B , then M > 0.

The permanent income nypothesis is a mathematical representation
of a consumer who has in mind a definite idea of the value of a dollar and
spends money on a commodity up to the point at which the value of the
quantity bought with an additional dollar equals the value of the dollar
spent. The value of a dollar may also be thought of as the consumer’'s
willingness to spend.

Of course, one cannot believe that in reality a consumer's
willingness to §pend would be completely fixed. But it is not hard to
imagine that under certain conditions it would be nearly fixed, so that
it would be reasonable to assume, for simplicity, that it is fixed.

The conditions which could give rise to a nearly constant willing-
ness to spend include the following: (1) fluctuations in the economic
environment or the consumer's needs which are frequent, not very
large, and tend to offset each other over a period of a few years,

(2) nearly correct anticipation by the consumer of the
(statistical) nature of the fluctuations, and (3) possession by the con-
sumer of an adequate supply of liquid assets,

Economic common sense indicates that under these conditions,




a consumer would respond to fluctuations largely by saving and dissaving.

If he allowed his willingness to spend to fluctuate widely, he could
increase his total enjoyment by spending a dollar less when money was
worth relatively little to him and a dollar more when money was worth
a lot.

However, even if the conditions listed above were satisfied, one
would expect the consumer's willingness to spend to vary somewhat.
Oscillations in his holdings of liquid assets would certainly affect his
attitude toward money. Or, runs of good or bad luck could affect his
expectations about the future. But these influences would probably
cause only small and gradual changes in the consumer's behavior.

Such changes might be gradual even if the listed conditions were
not all satisfied. For instance, though a consumer probably would not
be willing or able to compensate for long-term economic oscillations
by saving and dissaving, such oscillations would be gradual. A con-
sumer's expectations might be incorrect, but the presence of rapid
fluctuations might make it impossible for him to discern his mistake
quickly.

The permanent income hypothesis would be completely inappro-~
priate if applied to a consumer living a hand-to-mouth existence or to
a consumer subject to abrupt and radical change. A sudden change in
expectations or a sudden large scaleloss of financial assets certainly
could be expected to affect a consumer's willingness to spend. Also,
the permanent income hypothesis should not be applied to long-term
changes. The consumer's willingness to spend might well change

markedly after a long period of time if some long-term change occurred




in his circumstances.

One might accept the permanent income hypothesis on the basis
of intuition and common sense alone. But since the hypothesis is stated
in terms of marginal utility and since it is traditional to assume that
consumers are precise utility maximizers, it is natural to give a demon-
stration of the hypothesis in terms of the consumer's maximization
problem. Most of this paper is devoted to such a demonstration.

There are many ways to formulate the consumer's maxi-
mization problem. For instance, the nature of his problem depends on
the form of his utility function and on whether he is allowed to borrow.

Since borrowing gives the consumer additional flexibility, it seems
clear that the permanent income hypothesis would be easier to demon-
strate if borrowing were permitted. For this reason, it is assumed
that the consumer cannot borrow.

Since the consumer cannot borrow, his money balances cannot
become negative. If he begins period n with Mn units of money and
buys a bundle, Ch» during the period at a price vector, Py then it must
be that p - ¢ < Mn‘ It will be assumed that the consumer receives
income at the end of the period. The income received at the end of
period n will be denoted by Y+t (The subscript n+1 appears because
the consumer does not necessarily know > at the beginning of period
n, but he does know it at the beginning of period n+1.) The consumer
begins period n+1 with Mn+1 = Mn *Pa’ %y PR units of money.

For simplicity, it will be assumed that : is a random variable
which is not affected by any of the consumer's actions. A more general

model would allow the consumer to vary the quantity sold of his endowment
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(of labor, for instance) and would allow this quantity to affect his income

and utility.

It is convenient, though probably not necessary, to assume that the

consumer's utility function is additively separable. That is, the utility
; : n :

of a consumption stream Cp:Cprev+sCyN-q- IS n};O é Un(cn), where c, is

the bundle consumed in period n and 6 is the discount rate on utility and

0 <6< 1. It simplifies matters to replace the functions Un with the

indirect utility functions un(x) = Inax
p,cCSXx
c=20
ture during period n and Py is the vector of prices during this period.

Un(c), where x is the expendi-

u, will be assumed to be random. Note that this randomness can

derive from randomness in both Un and Py -

It could be assumed that {yn} and {un} are sequences of independ-
ently and identically distributed random variables. (If this assumption
were made, our results would generalize only slightly work of
Schechtman [14] ., His work is discussed further below.) However, it
does not seem appropriate to make such an assumption in the context
assumed in this paper. The time periods are to be thought of as short,
as days, for instance. Hence, if the random variables were independ-
ently and identically distributed, fluctuations would persist for only one
day. This seems unreasonable. People learn from the recent past. In
a world in which the events of one day are independent of past events,
no learning is possible (once the probability distribution of the random

variables is known). Also, people have a great deal of information about

economic life and use it to anticipate future events.

One way to model

. e B Gl - 41
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this aspect of life is to assume that the consumer's economic environment

is described by a stochastic process. The consumer observes this process
and knows its probability distribution. Past observations of this process
form the consumer's information, Known correlations between past and
future events make it possible for him to use this information.

It is assumed here that there is in the background a stationary
stochastic process {wn}, and that u, and ¥y, are functions of W, - Because
¥y and u are functions of W {yn} and {un} form stationary processes
as well. It is to be emphasized that the consumer knows Wy and that W
may contain much information besides knowledge of ¥y and u - For
instance, it may contain the latest weather forecast or knowledge that
the consumer has the flu and will be sick for a week. Wy should be
thought of as a vector with many components which express all that the
consumer might learn during period n-1. At the beginning of period n,
he knows {wn: k < n}.

To assume that a stochastic process {wn} is stationary, is to
assume, essentially, that the probability distribution of future values
of the random variables Wy is inferrable from knowledge of the (infinite)
past. Hence, it is at least somewhat reasonable to assume, as is done
here, that the consumer knows the probability distribution of the
process, conditional on knowledge of the past.

Stationary processes allow for a wide range of stochastic
phenomena. In the next section, an example is given of a process for
which the time paths are periodic.

It is natural to formulate the consumer's maximization problem

as below. In the expression below, E( | .70) denotes the expectation

" i e i R e
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conditional on the information available to the consumer at the beginning

of period zero.

1.1 Problem

N-‘l
max E( Z énun(xn)|5’0>

XOJ"')XN_I n=0

subject to:
(1) For all n, X, is a random variable which depends only on
information available at the beginning of period n.
< <
(2) 0 x <M

, for all n.
n

(3) M is given and forn>0, M =M__, ~x _; e

The discount rate, 6, above, is assumed to be such that 0 < 6§ < 1.

If the fluctuations in \ and u, are rapid and one is concerned with
the behavior of the consumer over short periods of time, then one can
think of the horizon N as large and the discount rate § as close to one.
Therefore, the permanent income hypothesis has to do with the
asymptotic behavior of the solution to Problem 1.1 as N goes to infinity
and é goes to one.

The results proved in this paper may be sketched easily. Enough
assumptions are made so that it is not hard to show that Problem 1.1
has a solution. The u  are assumed to be differentiable, strictly con-
cave, and increasing, as is usually done in such problems. Certain
other more technical assumptions are made. The maximum value of
the objective function in Problem 1.1, VN G(M)' depends differentiably
on the initial stock of money, M. The derivative of this function with

respect to M, V'N 6(M), defines the marginal utility of money in period

zero for the N-period problem with discount rate 6, This marginal
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utility of money is a non-decreasing function of N and é, as is to be 3
expected. For if é is increased, greater value is given to future con-

sumption, and if N is increased the consumer has more opportunity to i

use his money. Certain assumptions are made which put an upper
bound on the marginal utility of money. Therefore, V{\Ié(M) converges
as N goes to infinity and é increases to one. The limit, )\O(M), will be
called the limit marginal utility of money. Clearly, )\O(M) is a non-

decreasing function of M. i
Observe that VNG(M) = max E( Z un(xn)lS’O) is a
xo,...,XN__1 n=

random variable. Hence, Vl'\lé(M) and )\O(M) are random variables

as well.

If one solves the problem
N+n-1
max E( Z 6
n’* " *N+n-1 k=n

k
uk(xk)lyn)
X

for n > 0 and goes to the limit with N and 6 as above, one obtains a limit
marginal utility for period n, AH(M).

The optimal spending policy for the N-period problem with discount

rate 6 prescribes expenditures in period n, xNén(Mn)’ as a function of

the consumer's stock of money, Mn’ in that period. The functions XNén

are non-increasing as functions of N and 6, as is to be expected since
money becomes more valuable as N and ¢ increase. Since xNén(M) =0,
lim xNén(M) exists. The limit will be denoted by xmn(M).

N+

6t1
The functions, Xeon describe a limit policy. This limit policy

corresponds to the limit marginal utility of money, )\n(M), in the sense

’ ’ e — "
that un(xmn(M)) < )‘n(M) with equality if an(M) > 0. The limit policy
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gives rise to a sequence of money stocks defined as follows: MO is given
3 and for n > 0, Mn = Mn = xm,n-l(Mn—l) ¥ The sequence Xn(Mn) is

the time path of the marginal utility of money if the limit program is

!
|
;
4
F

followed.

To each level, N, of the marginal utility of money, there corre-
sponds a unique level of expenditure, x, in period n, x is such that
| ur'l(x) < \, with equality if x > 0. x is, of course, a random variable. It
‘ will be shown that there is a unique constant, X, such that if the
}1 marginal utility of money were X in every period, then asymptotically
the consumer's average spending per period would equal his average

income per period. X would be the marginal utility of money if the con-

PRIy, VT T

sumer sought to maximize his asymptotic average flow of utility per ,
period and were constrained only to match his asymptotic average
spending to his asymptotic average income.

The main theorem is that lim X (M) =X, for all n. This theorem

M-—+oco
says that if the horizon were sufficiently distant and the discount rate

sufficiently close to one and if the consumer had a sufficient quantity of
money, then the optimal marginal utility of expenditure would be nearly

constant., Also, the consumer would behave nearly as if he were

B S SRS SORIS RRUT %

constrained only to match his average spending and income.

A second theorem (Theorem 3, 2) is that lim )‘n(Mn) =\, for all
n—+o
This theorem says that if the

et R i VN st i P s SOl T RN e

: | values of the initial money stock, M.
horizon were sufficiently distant and the discount rate sufficiently close “4
to one and if the consumer followed his optimal program, then he would

eventually accumulate enough money to bring the marginal utility of

gt money close to X, '
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The interpretation of these theorems would be suspect if the limit

policy, X on» Were somehow wrong. To check that the passage to the

limit from XN6n to X n 18 legitimate, it is proved that the limit policy

is optimal in the limit average sense (Theorems 3.4 and 3. 5).
Most of the results of this paper are proved by Schechtman [14]
in a special case. He assumes that the utility functions u are not

stochastic and do not depend on n. All random variation comes from

the 0 which he assumes to be independently and identically distributed.

(Also, he assumes that 6 = 1.) He proves that lim an(M) = Ey0 and
M-+oco
that if ¥ is not deterministic, then lim M_ = . The first of these
n-—oo
results corresponds to the main theorem here, and the second corre-

sponds to Theorem 3.2 (that lim )'n(Mn) = X).

n—-oo

Schechtman's theorem that lim M_ = « is true under the assump-
tions of this paper, provided thatr;l:e?e is sufficient randomness in the
incomes or utility functions. This fact is not proved here, but it is
worth noticing, for it draws attention to the fact that actual consumer
behavior should be fhought of as only approximating that implied by the
permanent incorme hypothesis. No consumer would go on accumulating
money indefinitely. However, average holdings of liquid assets by
American consumers, apparently, are fairly high. Holdings of liquid
assets (checking and savings accounts) and investment assets (stocks
and bonds) together amount to about 6 to 15 months' income. Holdings
of liquid assets alone are equal to one to two months' income [11,

pp. 100-103]. However, these figures are very rough, for there is

wide variation in the data cited, and the median ratio of assets to in-

come increases sharply with income,

yonre
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Returning to the work of Schechtman, it is clear that the results
reported here simply generalize those of Schechtman. There is, how-
ever, an important distinction between his methods and those of this
paper. He uses the techniques of dynamic programming. The key
arguments of this paper depend on the strong law of large numbers for
stationary stochastic processes.

Schechtman's method, essentially, is to study properties of a
solution to a limit form of the following dynamic programming equation

for Vys(M), V (M) = max [u(x)+6EVN(M-x+y)]. In his setting,

N+1,68 0<x<M
VNé(M) is deterministic, for the random variables, Y, are mutually
independent.

In this paper, VN«S(M) is a random variable. Because randomness
is generated by an arbitrary stochastic process, current information
may improve knowledge of the future and so affect the value of VN:S(M)'
Since VNé(M) is random, the dynamic programming equation for VNé(M)
loses much of its value.

The proof of the main theorem, given in section 7 of this paper,
is the most original part of this paper from a mathematical point of view.

It makes no use of dynamic programming, but is based simply on

economic common sense and the strong law of large numbers.

The assertion that nl_i.rgo kn(Mn) =\ (Theorem 3.2) is a direct con-

sequence of the main theorem and the convergence theorem for super-
martingales. This theorem is proved in section 8, The idea of using
the convergence theorem for supermartingales is borrowed from
Schectman,

The other two theorems of this paper (Theorems 3.4 and 3. 5)
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follow directly from the main theorem and Theorem 3.2. They are
proved in section 10,

The fact that VNé(M) is random introduces certain technical diffi-
“ culties into the proofs that there exist an optimal N-period program and
a limit policy. The difficulties arise from the fact that a conditional

expectation appears in the dynamic programming equation for VNG(M)'

1

This equation is V(M) = og?sxm [u(x)+6E(VN_1’6(M -x+y1)|y0)],
Conditional expectations are defined only up to sets of probability zero,

§ and there must be a different such expectation for each of the continuum

BT\

of possible values of x. If the conditional expectations were not chosen .

properly, the maximizing value of x might be undefined. (The maxi-

s it

mizing value is, of course, a random variable. )

The technical facts needed to deal with this and related problems

e i i it

are gathered in an appendix. With the help of these facts, one can adapt

to the context of this paper Schechtman's arguments which prove the

existence of optimal and limit policies. These adaptations are made in

o

sections 4 and 5.
Yaari [15] proves another asymptotic result bearing on the perma-

i
1
{
? nent income hypothesis. He assumes that the consumer can borrow
|

freely and formulates the consumer's maximization problem as follows.

4’ ; N-2

| i § g maxx E Z— u(xn)+u(MN_l) .
0’ *N-1 n=0

S

where M0 is given and for n > 0

M =M _ ,+*=X
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Like Schechtman, Yaari assumes that the utility function is determi-
nistic and that the random variables ¥, are independently and identi-~
cally distributed, Yaari's model differs from Schechtman's in that
u(x) is defined for all real numbers x and the real variables x, are not
constrained to be non-negative. The only constraint is that consumption
spending in the last period be MN—l' Yaari proves that
llr?o xNO(M) =E Yo- when xNO(M) is the optimal consumption in the
first period if the initial stock of money is M. His methods are simi-
lar to Schechtman's in that both use the techniques of dynamic program-
ming.

Yaari's theorem may be generalized to the context of this paper.
That is, it may be assumed that utility is random and that all random
variation is generated by a stationary process. The proofs are similar
to those given here. As is the case here, the key arguments involve
only economic intuition and the strong law of large numbers.

The use of stationary processes has appeared elsewhere in eco-
nomic literature dealing with models related to the one studied here,

namely, in Radner [12] and Mirman and Zilcha [9].

2. DEFINITIONS, NOTATION, AND THE MODEL

The Underlying Stochastic Process

The stochastic process known to the consumer is
{wn: n is an integer}. (Doob [6] is the reference used for stochastic
processes.) The random variables, w, , are assumed to take their

values in Q-dimensional Euclidean space, RQ. The underlying sample

i
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space of the process is assumed to be Q = {(. cesW_gs W0, Wy ): }
w, € RQ for all n}. w denotes an element of 22, and w, € RQ denotes

the nth

subvector of w. The measurable subsets of 2 are denoted by ¢,
and P denotes the probability on ¥. ¢ is the smallest complete o-field
such that all the random variables w, are measurable with respect to &.

Sets # such that P(S)=0 are called sets of probability zero. An event

occurs almost surely or for almost every w if it occurs for every w

except for elements of a set of probability zero.

E denotes the expectation operator corresponding to P, That is,
if X is a random variable defined on 2, EX = f X(w) P(dw).

If § is a sub-o-field of ¥ and X is a random variable on 2, then
E(X, F ) denotes the expectation of X conditional on §. That is, E(X}f}f)
is a random variable on 2 which is measurable with respect to § and

satisfies

fSX(w)P(dw)= | EX|F)wP(dw) -
S

for all S ¢ . E(X|F) is well-defined if E|X| < w. E(X|F) is not
uniquely defined, but any two versions of E(XI.‘F) are equal almost
surely. (See Doob [6, pp. 17-24] for a discussion of conditional
probability. )

9’n denotes the smallest complete sub-o-field of ¥ with respect to
which the random variables Wy s X € n, are measurable. Yn represents
the information available in period n, and E( ,an) is the expected
value operator conditional on this information. For emphasis, it is

recalled that .S’n may represent more information than knowledge

of past values of Yk and Uy, -
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The following are the basic assumptions made about the stochastic

process {wn} P

2.1 Assumptions about {wn}

The stochastic process {wn} is stationary and metrically transitive.

Let 7:2 - Q be the shift operator, defined by the formula

('rm)n =W {wn} is stationary if and only if T is probability preserving,

n+
that is, P(7S) = P(S) = P(T—IS), for every measurable set S. A measur-
able set S is said to be invariant if P(S) = P(SM71S)=P(7S). A process

is said to be metrically transitive if every invariant set is of probability

Zero or one.
Metric transitivity is not a serious restriction, since every
process is metrically transitive when restricted to an invariant set.
Stationary processes are quite general. If the w, are independ-
ently and identically distributed, then the Wy would form a stationary
process, If Wy, WysWo, ... aTe generated by a Markov process with
stationary transition probabilities, and if wo is distributed according to

a stationary distribution for this Markov process, then w s+ FOTY

e
a stationary process. Every stationary process can be represented as

a Markov process with random variables in an infinite dimensional
space, the space being {(..., Wy, wo)}. But, many stationary processes

cannot be represented as Markov chains with random variables belong-

ing to a finite d&mensional vector space. Consider, for instance, the

process w_ = Z Zk z , where the z, are independently and identi-
SR~ n-k k

cally distributed and uniformly bounded.

-

S eceiitts

s AR o A g




R S o SRS SERRT S N _ = el RS s gl - i iy

7,

-~ 17 - j

The realizations of a stationary process may be periodic functions ;

of n. For instance, let u and v be mutually independent, normally

distributed random variables with mean zero and variance one. Then, 1

the random variables W, = ucos an +v sin an form a stationary process

T T

where 0 < @ < 27. Observe that one can predict exactly the values of W,
forn > 1, from knowledge of Wo and wy.

Processes with independent increments are not stationary. A
martingale is not a stationary process.

Frequent use will be made of the following facts.

2.2 Let z be a random variable on € and let zn(w) = z('rnw). Then,

the process { z, :nan integer} is stationary and metrically transitive

(Doob [6, p. 458]).

3 The Economic Model

} 2.3 Assumptions About Incomes

The income received at the end of period n-1 is a random variable

on £, ¥a! 2 — (-w,w), which is measurable with respect to Vn. The -

—— i ‘

satisfy the following:

RGPS S NS

i)y, = yo('rnw) ’
ii) yo(w) > 0, for all w, and

iii) 0<Ey0< o0,

Observe that by 2.2,

BN T e %

2.4 {yn} forms a stationary, metrically transitive process.
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# will always denote the Borel o-field on [0,0) and #(X) ¥ or
.ﬂ@?n will denote the product o-fields of # and ¥ or # and ¥ _,
respectively. A function f = [0,w0) X 2 ~ [0, ) will be said to be

measurable if it is measurable with respect to. 8 X) ¢.

2.5 Assumptions About Utility

The consumer's utility function for period n, u : [0,0) X 2= [0,00),
is measurable with respect to # X fn and satisfies the following.

i) un(x,w) = uo(x,'rnw) for all x and w.
ii) uo(O,w) =0 for all w.

iii) For every w, uo(- ,Ww) is strictly increasing, strictly
concave, and continuously differentiable. u(')(x,w)

; d
will denote = uo(x, W) .

iv) u(')(O,w)S 1 for all w.

v) lim u(')(x,w) =0 uniformly in w.
X+
Assumption ii) involves no loss of generality,

The assumption that u, is measurable implies that ur') is measur-

able, since
+ -
u (x+e,0) - u(x,0)

ur'l(x,w) = lim
e-+0 £

Hereafter, proofs that the various functions appearing are

measurable will not be provided, since the proofs are routine.




HERES S S~

i

’[..
‘!_
i
5
3
\

s o 5 S 2055 00756 " B e SR g SRR - -

-19-

The Optimization Problem

The statement of the consumer's optimization problem given
in the Introduction, (1.1), is slightly ambiguous, for the conditional
expectation, E ( |9’0), appearing in the objective function, may be
defined only up to a set of probability zero. Hence, the objective
function may not be defined for every state of the world, w. For this
reason, the conditional expectation is replaced by an ordinary expec-

tation.

2.6 Problem ¢ 3

N‘-l s
maxx E Z 6 un(xn)
0 - **Na  n=0

subject to: X is a random variable measurable with respect to ?n and
n-1

0< X < Mn for all n, where Mn =M + kZO(ka-xk) for all n and M

X

is given,

It is always assumed that 0 < 6 < 1,
In discussing solutions of this problem, it is necessary to require

that the random variables, X depend in a measurable way on the initial

e L u———

stock of money M.

Definition. A program, X, is a finite or infinite sequence of functions
X [0,0) X 2 —= [0,o), n=0,1,..., where X_ is measurable with

respect to B(X) g

Xn(M,w) is the expenditure in period n if the state of the world is w and

the stock of money in period zero is M. Observe that Xn(M,w) is always
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non-negative. A program (X,,... ’XN-I) will be called an N-period
program,

A program may be described in a way which makes current
expenditures depend on past expenditures as well as on w and the initial
stock of money. But such a program may be reduced easily to one

which depends on w and the initial stock of money only and hence could

be described as above.
Mn(X,M,w), n=0,1,... will denote the sequence of money

stocks generated by the program X when the initial stock is M. That is,

=1
M (X, M,0) = M+ ), (y,, ()= X (M,0). :
k=0 E
Definition. A program is said to be feasible if for every n, ‘

Xn(M,w) < Mn(X,M,w) for all M and w.

If X is an N~period program, WNé(X,M,w) will denote

N-1
Z 6nun(Xn(M,w),w).
n=0

Definition. An N-period program, X = ()_(0, i ,)—(N_l), will be called

optimal if it is feasible and if for every M > 0, E WN(S(X’M)

R e e S

= qup E wa(X’M)’ where the supremum is taken over feasible N-

period programs.

Problem 2.6 may now be stated more compactly as follows.

Problem

N-1
max E ) & u (X (M)).
P n n
X feasible p=q




=

T T

— e e

o
o
& ‘.

_21_

It is often more convenient to deal with spending plans which make
expenditure depend on the current stock of money rather than the initial

stock of money. Such plans will be called policies.

Definition. A policy x is a finite or infinite sequence of functions
X : [0,0) X 2 —= [0,), n=0,1,... such that for eachn, x s

measurable with respect to.# X) ¥

A policy is said to be feasible if xn(M,w) < M for all n, M, and w.

If x is a policy, then xn(M,w) is the expenditure in period n if the
current stock of money is M. Policies will be denoted by lower case
letters, and programs will be denoted by upper case letters.

A policy x gives rise to a program X in an obvious manner.
XO(M,w) = XO(M'w)ri- 1Suppose that XO’ s ’Xn-l have been defined. Then,

M _(X,M,0) =M + kZ=0 (¥, 41(@) = X (M, 0)) is well-defined and one may let

Xn(M,w) = xn(Mn(X,M,w),w).

A feasible N-period policy is said to be optimal if the program to

which it gives rise is optimal.

Optimal Policies and the Limit Policy

It will be proved (Lemma 4. 1) that for every N and 6 there exists

an optimal N-period policy, Xys = (XNGO’ o XNe N—1>'
XNs = (XNcSO’ e XNs ,N-l) will denote the corresponding N-period
program, VN6<M’ . ) will denote a version of E(WNé(XN,M)'YO),
VNb(M’U) is (almost surely) the maximum expected N-period payoff given

the information available in period zero and an initial stock of money M.
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It will be proved (Lemma 4. 1) that VNé may be chosen so that for
almost every w, VNé(M,w) is continuously differentiable as a function of
M with the derivative bounded above by one. Vl'\lé(M’w) will denote a
function which is equal to adNT VNé(M,w) whenever this derivative is
defined.

In Lemmas 5.1, 5.6, and 5. 10 it is proved that for almost every w,

Vl'\w(M,w) is a non-decreasing function of N and 6, and x (M,w) is a

Né0O

non-increasing function of N and 6, for all M. Part iv of Assumption 2.5

implies that Vl'\Ié(M’w) is bounded above by one, so that lim Vi\w(M,w)
-1

exists almost surely. Let Robe any function such that Tijira:

XO(M,w) = lim VI .(M,w) whenever this limit exists. (Then, \, is
6—1 N6 0
N—o

measurable almost surely.) For each n, let )\n(M,w) = AO(M,'rnw)_
Similarly, xooO(M ,w) denotes any function such that 0< xooo(M,w) €M and

xooo(M,w) = 611_1‘:11 xNéO(M’w) whenever this limit exists. For n>1, let xoon(M,w)
N—+oo

= xooo(M,'rnw). Clearly, 0 < xoon(M,w) < M everywhere and X o is

measurable with respect to 8 (X SPn. Hence, x_ = (x i s |

ooO’xool’ 2

policy. x_ will be called the limit policy and the corresponding program

X will be called the limit program.
If 6 =1, then the subscript for 6§ will be dropped. Thus,
= 4 = ’ -
VN(M,w) = VNI(M,w), VN(M,w) = VNI(M,w), an(M,w) = len(M,w),
and XNn(M,w) = XNln(M,w). Similarly, if 0 < 6 < 1, then

Vé(M,w)= lim VNé(M,w), and xan(M,w)= lim xNén(M’w)' X'5 will

N-—o0 N—-o0

denote the program corresponding to the policy Xg - It will be shown
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il

(Lemma 9. 1) that

V,(M,0) = E(nzo 6™ (X, (V)] ) (w)

>E( ) 6" (X (M)|#,) ()
n=0

almost surely for all feasible programs X. That is, Xg is optimal for
the infinite horizon problem with discounted utilities, and VG(M’ o)
gives the optimal expected total discounted utility, conditional on the

information availabie in period zero.

Policies With a Constant Marginal Utility of Expenditure

Define Ny (0,1) X 2 — [0, ) as follows. no(t,w) is the unique
value of x such that t = u{)(x,w) with equality if x > 0. no(t,w) is the
quantity of money the consumer would spend in period zero if his
marginal utility of money were t and he were not constrained by a lack

of money. no(t,w) is well-defined, for u{)(x,w) is strictly decreasing as

a function of x and lim u'o(x,w) = 0. Clearly, ny(1,w) =0,

X—+00
1im no(t,w) = o and no(t,w) is continuous as a function of t. Also, if
s :
t1 t2 and no(tz,w) > 0, then no(tl,w) < no(tz,w). It is very easy to see

that no(t, . ) is measurable with respect to .‘/’0 for every t. Since

lim u!/(x,w) = 0 uniformly in w, no(t,w) is bounded and so
X->00 0

(2.7) Eno(t)<ao for all t.

E no( 1) = 0 and by the monotone convergence theorem (Lo&ve [8, p. 124]),

1im E no(t) = o0,
t+w0
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(2.8) Ifty >t and Eno(tz) > 0, then Eno(tl) <E "0“2)'

2

It €(0.1] forn=0,1,2,... and lim t = t.,
n P 0

< < i <
to no(to,w) for all w and 0 no(tn,w) no(mf(n tk,w) o for all n and w.

then no(tn,w) converges

It follows from the Lebesque dominated convergence theorem (Logve

[8, p. 125]) that lim E no(tn) =E no(to). Hence,

n—*00

(2.9) E no(t) is a continuous function of t.
In conclusion, one obtains the following.

(2.10) There exists a unique value of t, N, such that

Eno(x)=Ey0. <K<,

It will be proved that X is the asymptotic value of the marginal
utility of money.

nn(t,w) will denote no(t,'r"w). (nO(t),nl(t), ...) forms a program
(and also a policy) which will be denoted by n(t). This program keeps
the marginal utility of expenditure equal to t. n(t) is not necessarily

feasible.

3. THEOREMS

3.1 Main Theorem

For almost every w, A(M,w) > X forall M = 0 and

lim \g(M,w) = X.
M~

3.2 Theorem

For almost every w, the following is true for every initial stock of money.

1im xn(Mn(Xw,M,w),w) =\,

N-+o0o
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It may be said that X_ is optimal in the limit average sense if

N-1 N-1

(3.3) lim ﬁE Z u (X (M))—suphm 1nf—-E Z u (X (M)),
N-+ow n=0 X N-+w» n=0

where the supremum is taken over feasible policies, X.

Observe that
N-1 N-1
sup lim 1nf—-E Z u (X (M)) < lim inf sup = N E Z L% (X (M))
X N-w n=0 N-+wo X n=0

P il e
= 1lim mfNEVN(M).
N =+ o0

Therefore, to say that

N-1
1 %
lim g B Z u (X (M) = hm —EVN(M)
N—-+x n= N-»

is a stronger assertion about the optimality of Xoo than is (3.3). Hence,

the following theorem asserts that Xm is optimal in a limit average sense.

3.4 Theorem

N-1
’ 1

lim & E Z u (X (M) = lim & V(M)

N-+wo n= N“’

More generally, the following is true.

3.5 Theorem

For almost every w, the following equalities hold for all M:
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| ;
N-1
i lim & ) u (X (M,w0),0) ]
b N n- R -
N—>w 2 3

n=0 g

[

[*0]
y g 1-6 n
= lim o s Z é un(Xwn(M,w),w)
Al n=0

)A&W .

N-1
= 1 l.
: ﬁfi“ NE ) u(X_ (M)
s n=0
0
3 - 1: 1-56 n
3 lim ~—— Y, 6 Eu (X _ (M)
¢ 61 Adl

Eug(ng(X))

= 1im INVN(M,w)

2 N—+w

3 Jn=so

3 =1im 122 v (M, 0).

o 61

i

{

- 4, THE OPTIMAL N-PERIOD PROGRAM

The proofs given in this section and the following one are brief,

for they are, for the most part, simply modifications of arguments

given by Schechtman [14, section 1].
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4.1 Lemma F

There exist measurable functions

:1 VN6: [0,0) X 2 — [0,), ‘
2 ;
Ay [0,00) XQ —= [0,0), and i

Né ;

XNon' [0,0) X 2 — [0,m), ?

for n=0,1,...,N-1 and N=1,2,..., and 0<& < 1, | 3

E

3 1 ’ which satisfy the following.
i) XN " (XN60’ e ’xNé,N-l) is an optimal N-period policy. ;4

g n 8

XN(Sn(M’w) = xN-n,éO(M’T w) for all n. _

]

ii) For every M = 0, VNé(M’ . ) is a version of '

N-1 n 3

E(n}; 6 un(XNén(M))|V0> , where X . is the program A

corresponding to the policy XN§-

2 o N : 3
i
s

iii) If M: 2 — [0,) is measurable with respect to ¥, and if

X is any N-period policy, then

N-1
Vs M), 0) E( y 6nun(Xn(M))|.‘¥’0)(w) almost surely.

Mt can iy R T e
: Tk
e el ... o et

n=0 i
% iv) For almost every w, VN5(M:‘*’) and qNé(M ,w) are continu-
1 * ously differentiable as functions of M. The derivatives ;
A l are positive, less than or equal to one, and strictly % -
decreasing.

Vl'\lé(M’w) and q{\lé(M’”) denote any functions equal to

d
am Vns

(M,w) whenever these derivatives

d
(M,w) and qué

exist.




(M,w) denotes VNé(M,'rw) and

]VNé

’ ’
IVNG( M,w) denotes VNé( M,Tw).

v g (N, ) =E(1VN6(M+y1)l.‘/'O) and

aps(M, - ) = E( 1V{\us<1\/1+yl|sf’0), for all M.
vi) For almost every w, xNéo(M,w) solvesthe problem
max [uo(x,m)+é’>q1\1_1 6(M—x,w)], for all N, 6, and M.
0<x<M ’
vii) For almost every w,
’ 4 2
VN+1,6(M"") Z bqp (M XN+1,60(M’w)’“) for all M,

with equality if M - XN+1,6O(M’°)) > 0.

ol ¢ r 14
viii) For almost every w, VNé(M,w) = uO(xNGO(M 6} )

for all M, with equality if xNéO(M’w) >10.

ix) For almost every w, xNéO(M’w) and M -xNéo(M,w)

are continuous, non-decreasing functions of M,

Proof

The proof proceeds by induction on N.
For N=1, let xléO(M’w) =M and Vlé(M,w) = uO(M,w). X160 and

V, . clearly satisfy conditions (i)-(iv), (viii), and (ix) of the lemma.

16
Applying Lemma A.3 with Q(M,w) = lVm(M+yl(w),w) =u1(M+y1(w),w),

one obtains A which satisfies conditions (iv) and (v). This completes

the first step of the induction.

i e W
a




1 o AR i AR NN 5 g i o 52 3 - . 2 6 e S S S

- 29 -

Suppose that N > 1 and that Vk6’ A5 and X1 6n have been defined

for k < N and satisfy the conditions of the lemma.

By condition (iv) of the lemma and the assumed properties of U, 3

for almost every w the following problem has a unique solution for each M.

o~

+ max [u,(x,w)+8qy_, (M-x,w)].
1% 0<x<M 0 N-1,6

P LY -&is el o

Let xys0° [0,2) X 2 - [0, ) be any function such that 0 < xNaO(M,w) <M

and xNéO(M ,w) solves the above problem whenever the problem has a

solution. It is easy to show that XN60 is measurable with respect to # X 9’0.
= n >
If 1sn<N-1, let xNﬁn(M’w)—XN—n,éo(M’T w). Clearly, XNs 1S 2

feasible policy.

Let VNé(M,w) = uo(xNéo(M,w),w) + 6qN-1,6(M-xN60(M’w)’w)' Since

E | qN-l,é(M-xNéO(M’ .), . ) is a version of E(IVN-I,6(M_xN60(M)+yl)|y0)

‘ by the induction hypothesis, it follows that VN6(M, . ) is a version of

] N

E(nzo * un(XNén(Mm‘(’O) : 3

It is now proved that VN6 satisfies condition (iii). Let
M: 2 — [0,w) be measurable with respect to 9’0 and let X be any feasible

N-period program. By condition (iii) applied to VN—l 5

N-1
-1
IVN_I’é(M(w)-XO(M(w),w)+y1(w),w)ZE( Zl " un(Xn(M)|.</0)(w)
n:

{ almost surely. By condition (v) and Lemma A.4,
_ L Ay -1 s(M(w) - XO(M(w),w),w) - E(lvN-l s(M —XO(M)+y1)l9’O) (w). i

Hence,

t47

n-1
6" (X (MD)]9;) ()

Gyo1 5 M(9) = X (M), 0),0) > E ;

=
"

almost surely.
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It follows that

N-1
B( Y " (x m)#,)
n=0

N

uO(XO(M(w),w),w) + 6qN_1 ,6(M(“) - XO(M(w),w),w)

A

uO(XNO(M(w),w),w) + 6qN_1,6(M(w) - Xns0tMlw), w))

VNé(M(w),u)

almost surely, where XNcS is the program associated with the policy NG
The second inequality follows from the definition of XNcSO' This
completes the proof that VN6 satisfies (iii).

Clearly, (iii) implies that XN 6 is an optimal N-period policy.

It follows from elementary calculus and the definition of XN 60 that
XN60 and VN6 satisfy conditions (iv), (vi) -(viii). Again by elementary
calculus, for almost every w, XN&O(M’(") and M - xNéo(M,w) are non-
decreasing functions of M. Since the sum of these functions is M, it

follows that x O(M,w) is Lipschitz with constant 1 and hence continuous.

Né
(This argument is borrowed from Brock and Mirman [ 5, p. 490].)
This proves (ix).

By Lemma A. 3 applied to the function VNb(M +y1(w),'rw), there

exists a function aNs satisfying conditions (iv) and (v).
Q.E.D,

5. THE LIMIT PROGRAM

In order to avoid problems with sets of measure zero, from

now on it will be assumed that 6 is restricted to the following countable

set {6]|0<6 <1, ¢ is rational}.

iR s

Sk
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5.1 Lemma
For almost every w, V&B(M,w) is a non-decreasing function of N

for all M.

Proof
In what follows, it will be assumed that w is such that the following

are true for all N, 6, and M:

(5.2) Vl'\lé(M’w) 2 ua(xNéo(M,w),w), with equality if
XNBO(M’w) >0 and

(5.3) VI'\I+1,6(M’U) > q{\w(M -xN+1,60(M,w),w), with equality if
M ) > 0.

- XN+1, 50(Mow

By Lemma 4.1, almost every w satisfies the above.
The lemma will be proved by proving that almost surely both
Vl'\lé(M’w) and qi\w(M,w) are non-decreasing functions of N for all M.

The proof is by induction on N, for N = 2,

Suppose N = 2, By (5. 2),

V'ZB(M’(‘» = O(M,w),w) > ub(M,w) = V'M(M,w). for all M,

4
up(Xgs

It is next shown that

(5.4) for almost every w, q'zé(M,w) > q'lé(M’“’) for all M.

By what has just been shown, for each M




ahs(M, . )=E(VE(M+y )| #) = EGV, (M+y ) &) = g} ,(M, . )

almost surely. Hence, q'26 - q’lé satisfies the conditions of Lemma A.6
and so (5.4) is true,

Suppose that N > 2 and it has been shown that for almost every w,
V{{(S(M,w) and ql"é(M,w) are non-decreasing functions of k for all M
and for k <N. It will now be assumed that w satisfies the following as

well as (5.2) and (5. 3).

(5. 5) q{( s(M ,w) is a non-decreasing function of k

for all M and for k < N.

It is now proved that V sM,w) = (M, w) for all M.

N16

(M,w)>0. Then, x (M,w) < x (M, w).

Né60 Né60 N-1,60
For if xNéO(M’w) > xN-l,éO(M’w)’ then by (5.2), (5.3), and (5. 5)

Suppose that x

u6(x (M,w),w)>u;)(x (M,w),w)=V1'\]6(M,w)

N-1,60 Né60

’ s ( -
> qu_l’é(M XNs0(M W), W) = 6qi\]_2’6(M Xngol M. @), w)

(M, w),w).

r
Z8ay.y §M=xy_ 50

This implies that x\_, 60(M w) = M, which is impossible.

Since xN_l,éo(M,w)Zx (M,w) >0,

Né60O

Vi\w(M,w) O(XNéo(M w),w) = uo(xN 1 GO(M w),w) = N - s(M, W),

as is to be proved.

Suppose now that xNaO(M,w) =0 B xN-l,éO(M’w) > 0, then

N ay M, w) = ( N_liéo(M,w),w)<u0(0,w)$ Vi%(M,w). If
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(M,w) = 0 as well and M > 0, then V{\]_l,é(M,w) = q&_z’é(M,w)
(M,w) = Vi\l 6(M,w). This completes the proof that VI'\M(M"")
2 Vi\]_l,é(M,u) if M>0. Since V(. ,w) and V{\I-l,é( . ,w) are continuous
’ 4
almost surely, VNG(O"") > VN—l,a(O’w) almost surely.
This completes the proof that for almost every w, V&G(M,w)
’
2 vN—l,é(M’w) for all M.

The argument that proves (5. 4) proves that for almost every w,

qN(M,w)z qN_l(M,w) for all M. & o

5.6 Lemma

For almost every w, V{\M(M,w) is a non~decreasing function of é

for all M,

Proof

By Lemma 4.1, it may be assumed that w is such that the following

are true for all N, 6, and M.
(5.7) VNé(M,Q) and qNé(M ,w) are differentiable

and strictly concave.

(5.8) VN«S(M’“’) o uo(xNé(M,w),w) + éqN_l’é(M—beo(M,w),w).

(5.9) beO(M’w) solves the problem
max [un(x,w) +8qy_q &(M-x,0)].
0<x<M 0 N-1,6
It is now proved by induction on N that for almost every w,

V{%(M,w) and qi\w(M,w) are non-decreasing functions of é for all

N and M,
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If N = 1, there is nothing to prove since V'lé(M,w) = u'l(M,u) and
Q'w(M-‘*’) = E(u'l(M+y1)|£/’0)(u) do not depend on §.

Suppose by induction that almost surely qi\l-l, 6(M ,w) is non-
decreasing in é for all M. From (5. 7)-(5.9) it follows by elementary
calculus that almost surely Vi\w(M,w) is non-decreasing in 6. Since
qi\m(M,w) = E(IV{\m(M+yl)|Sf’O)(w), if follows (using Lemma A. 6) that
for almost every w, q{\m(M ,w) is a non-decreasing function of 6 for

all M.

Q.E.D.

5.10 Lemma
For almost every w, xNéO(M’U) is a non-increasing function of

N and 6 for all M.

Proof
This lemma follows immediately from the previous two and the
fact that almost surely, Vl'\w(M,w) = “E)(XNéo(M"")"") for all M with

equality if xy (M, w)>0.

Q.E.D.

Recall that )‘0 and x000 are defined to be functions such that

= i 4
for almost every w, xo(M,w) llll:n VNé(M,w) and xwo(M,w)
o1
- %2 N n
= lim xNéO(M’w) for all M = 0, Also, )\n(M,-w) hO(M,f w) and

N—>owo
6-+1

& n ; k
xam(M,w) xwo(M,‘r w). The following lemma says that )‘n gives the

marginal utility of money in period n consistent with use of the limit

policy X, =(X_q.%X 1s--- ).

=

it

it b i
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5.11 Lemma

For almost every w, xn(M,w) > u;!(xoon(M,w),w) with equality if

an(M,w) >0forn=0,1,... and for all M.

Proof

: = n [] = n n
Since )\n(M,w) )\O(M,'r w) and un(xoon(M,w),w) uo(xooO(M,'r w),T w),
it is sufficient to prove the lemma for n = 0.
’ ’
By Lemma 4.1, for almost every v, VNé(M,w) 2> uo(xNéo(M,w),w)
for all M and N with equality if xN60(M,w) > 0. Since ub(M,w) is a

continuous function of M, it follows that

(5.12) for almost every w,

S ’ - . 4
XO(M,w) 1\}un VNé(M,w) 2 lim uo(xNéo(M,w;,w)
— 00 N-+o

61 61

=
uo(xcoo(M,w),w), for all M.

If xwo(M,w) >0, xNéO(M’w) > 0 for all N and é so that one has equality

throughout (5. 12).
Q.E.D.
6. THE ERGODIC THEOREM

In this section, a precise statement is made of the strong law of
large numbers or ergodic theorem for stationary processes and also

of all the applications of this theorem made in this paper.

paiil i
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Ergodic Theorem (Doob [6, p. 465])

Let Zo n=0,1,2,... be a stationary metrically transitive

stochastic process with E] ZOI < o, Then, lim l(z0+. : .+zn_1) =E Z,
n—o

almost surely.
Recall the definition of the program n(t) = (n(t), nl(t), ... ) given

at the end of section 2. Let MN(T)(t),M,w) be as in section 2, that is,

N-1
MN(n(t),M,w) =M+ ) (yn+1(w)~ nn(t,w)).

fod
n=0

By (2.2), {nn(t,w)} forms a stationary and metrically transitive

process. By (2.7), E| nO(t)l <, By(2.4), {yn} is a stationary and

metrically transitive process. Therefore, by the ergodic theorem

(6.1) forall M = 0,
1 1 = -
I\%er:oN—MN(??(t),M,u)) E(yo no(t)) almost surely.
By (2.8)-(2.10),
(6.2) E (yo— no(t)) is a non-increasing, continuous function of t,

for 0 <t <1, and E(y,~ny(t) = 0 if and only if t = k.

Consequently,
(6.3) for allM = 0,

lim MN(n(t),M,w) = o almost surely if t > _):,

N-w

lim My(n(t),M,w) = -= almost surely if t < X, and

N-+o

(n(X),M,w) =0 almost surely.

1
im NMN

N-—+oo
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It will be necessary to use the fact that
(6.4) if t>X, then

lim [MN(n(t),O,w) -1 (n(t),w)] = © almost surely.

N-—+oo

(6.4) follows from the obvious fact that

N N
5 [My(n(8),0,0) - n (n(D), )] = & Zl y, () - ZO np(M(£), w)
n= n=

converges almost surely to the positive number E(yq~ Ny(t)).

The ergodic theorem also implies that

N-1
. 1 =
(6.5) 1\}1:1; N ZO un(nn{t,w),w) =E uo( no(t)) almost surely for all t.
n:

7. PROOF OF THE MAIN THEOREM

The proof of the main theorem is broken up into two lemmas. The
economic intuition underlying the argument is explained in the course of
proving the lemmas.

Recall that Vg = Vo, VL = Vl'\ll’ XNn = *N1n 2nd Xy = Xyqp-
That is, VN’ etc. correspond to the N-horizon problem with no
discounting of utility. This notation will be used frequently in the next

two sections.

7.1 Lemma

For almost every w, )\O(M,w) > \ for all M.

L S s
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Proof
By Lemma 4.1, VN(M,w) is concave as a function of M almost

surely, so that V{\I(M,w) = VN(M+1,w) - VN(M,w). Since

lim Vl'\I(M’“’)’ it is sufficient to prove the following.

N-+co

XO(M,w) =

(7.2) Given € > 0, for almost every w

lim sup [VN(M+1,u)-VN(M,w)] > x-¢ forall M.
N+

The following is proved.

(7.3) Given € > 0, there exists a program KN such that for each M,

E (WK, M+ £0N0) - Vig(M,0) 2 X - & = 5(M,0)

almost surely, where the functions 6N are measurable and are
such that for almost every w, 1) 6N(M ,w) is continuous from the

right as a function of M and 2) lim 6N(M,w) = 0.

N—+co

Clearly, Vy(M+1,0) > E(WN(X:N,MH)IS/’O)W) almost surely.
Since almost surely VN(M+1 ,w) and 6N(M,w) are continuous from the
right as functions of M, it follows from Lemma A.6 and (7. 3) that for
almost every w, VN+1(M+1,w)- VN(M,w) = e éN(M,w) for all M.

Hence, (7.2) follows from (7. 3).
The idea of the proof of (7.3) is as follows. Suppose that the

consumer has M +1 units of money initially. )_CN treats one unit of

money as extra money to be spent at an opportune time. )_(N requires

the consumer to follow his optimal N-period program with initial stock

mitramn A s

DAY LI .
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M until the marginal utility of expenditure exceeds X - €. He then spends
as much of his extra money as he can without bringing the marginal
utility of expenditure below X - &. He continues in this way until he
spends all his extra money or reaches the last period. If he spends all
his extra money before the last period, he will increase his total utility
by at least X-¢€. If he reaches the last period without having spent all
the extra money, then the marginal utility of expenditure must always
have been at most A-¢. This implies that he will have spent at least as
much as he would have if he had followed the program n(X - €) described
in the previous section. By (6.3), the stock of money left by this policy,
MN_I(n(X'-s),MH,w), converges to minus infinity almost surely. Since

the consumer can never let the stock of money become negative, it is

very unlikely that if N is large, the consumer could reach period N-1

without having spent the extra unit of money.

This argument is now made precise,

X

Nn is defined by induction on n as follows.

it u'O(XNO(M,w),w) < X\ - ¢, then

XNO(M+1,w) & XNO(M,w).

If up(Xyo(M,w),w) > X - &, then

XNO(M+1,w) = min(XNO(M,w)+1, nO(X-S,w)).

Suppose that XNk has been defined for k <n and thatn > 0,

If U;I(XNn(M,w),w) < N - &, then

XNn(NH-l , W) = XNn(M ,W).
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(iv) If u' (X, (M,w),w) >\ - €, then
n  Nn

Ky (M+1,0) = mm(an(M, O+ M (K, M+1,0)

- M (X

= N,M,w),nn(k-&:,w)) .

The following facts are immediate consequences of the definition

Mn(XN,M+1,w) = Mn(XN,M,w) for all n.

(7.4) If w is such that M (XN,M+1,w)=M (XN,M,w), then

N-1 N-1

WN(XN,M+1,w) = WN(XN,M,w) =N - &

(7.5) Hwis such that MN_I(XN,M+l,w) > MN—I(XN’M’U)’ then
u' (X (M,w).u)$i-c for all n < N-1, so that
n  Nn

XNn(MH,u‘ > nn()\—s,w) for all n < N-1,

(7.5) implies that

(7.6) If wis such that M _1()_(N,M+l,w)>M _1(Xy M, ), then

N N

0< MN_I(XN,MH,L.)) < MN_I(n(x-e),MH,w).

Let fN(M,w) be the indicator function of the set

Sy(M) = {w| My _ (n(X-£),M+1,0) > 0}. That is,

1 2 w(—‘,SN(M)
fN(M,w) =

0 , otherwise.
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It follows from (7.4) and (7.6) that

(7.7) wN(iN,Mn,w) - WXy M, w) > (K—s)(l-fN(M,w)).

Applying E( lsPO) to both sides of (7.7), one obtains

(7.8) E(W (X, M+D] £)(0) = VoM, 0) = X - &= (R-2) E(f (M)| #)(w) i

almost surely.

Observe that for every w, fN(M,w) is continuous from the right

and non-decreasing as a function of M. Also, since

e ek

lim M, (n(X-g),M+1,w) = -« almost surely, lim f_(M,w) =0 almost .
N N
N—o0 N—
surely for every M. Hence, by Lemma A.5, there exists a sequence of

s aciecd sl

measurable functions 6N(M,w) which satisfy the following conditions.

(1) oM, .) = (R-€) E (f(M)|#,) for all M,

(ii) For almost every w, GN(M,w) is continuous from the right as a

function of M.

(iii) For almost every w, lim 6N(M,w) =0 for all M.
N— oo

By (i) and (7.8),
E(WN(XN,M+1)|9’O>(w) - V(M ,0) > X-£-6y(M,w) almost surely.

This completes the proof of (7. 3). 1
Q.E.D. i

7.9 Lemma

lim )\O(M,w) < X almost surely.
M-+
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£ Proof

By the almost sure concavity of VN(M,w), for almost every w,

V{\I(M,w) < VN(M,w)— VN(M-I,w) for all M = 1. Since almost surely 5
)\O(M,w) = lim V{\](M,w) for all M, it follows that for almost every w, :
N-—oc0 3

Ap(M,w) < lim inf [VN(M,w)- VN(M-l,w)] for all M > 1. Therefore,

N+

it is sufficient to prove the following.

(7.10) Given € > 0, for almost every w

71 VN(M,w)—VN(M-l,w)SX_+ €+ 6(M,w)

e

for all M = 1 and for all N, where

lim 6(M,w) = 0 almost surely.
M-+

The following will be proved.

(7.11) Given € > 0, there exists a feasible policy fN such that

for each M = 1

rea

V(M 0) - E(WN(P_(N,M—l)le’O)(w) < N+e+ 6(M,w)

E | almost surely and for all N, where for almost every w
E | lim 6(M,w) =0 and 8(M,w) is continuous from the left

M-o0

: 1 as a function of M.

] l | Clearly, VN(M-I, )= E(WN(XN,M—I)IVO) almost surely. Hence,

(7.11) implies that

{7.12) For each M > 1, V((M,w)- V(M-1,0) < N+E+ 6(M,w)

almost surely for all N,
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Since for almost every w, the functions VN(M,w)— VN(M-I,w) and 6(M, w)
are continuous from the left as functions of M, it follows from (7. 12)
and Lemma A. 6 that for almost every w, VN(M,w) - VN(M-I,w)
<X+ &+ 6(M,w) for all M > 1 and for all N, That is, (7.11) implies
(7.10).

The idea of the proof of (7. 11) is quite similar to that of (7. 3).
The object of XN is to enable the consumer to give up one unit of money
while losing no more than X + ¢ + 6(M) units of utility, where M is the

3 initial stock of money and where lim &(M) = 0.
M-

)-IN instructs the consumer to reduce his expenditure, if possible,
only when the marginal utility of money is less than X+ &. If he spends
less only at such times, he gives up no more than X\ + &€ units of utility.
The consumer could be prevented from waiting for times of low
| marginal utility of expenditure only if lack of money or arrival of the

- final time period forced him to spend less. Let n be a period in which

i he is forced to spend less. In period n, he spends all his
! money. Also, his expenditure in this period is at most nn(f+ £, w).
Otherwise, he would not be losing utility in period n at a rate greater
& than X\ + & units per dollar. In the periods preceding n, the marginal
| utility of expenditure must be at least N+ &€, so that expenditure in these
periods does not exceed that prescribed by the program n(X+¢). Hence,
his stock of money in period n is at least Mn(n(f+ €),M-1,w) and
M (n(A+e),M-1,0) € n (X+e,0).

Observe that no matter what happens, the consumer gives up no

more than one unit of utility, since the marginal utility of expenditure

is bounded above by one,




In conclusion, either the consumer gives up X+ € units of utility

or he gives up at most one unit of utility and an event occurs, the

probability of which is at most

§(M) = Prob{ inf [M_(n(X+g),M-1,0)-n (X+e)] <0}
1<n<oo R o

That is, the consumer's loss is dominated by X + € + 6(M).

Since by (6.4), lim [Mn(n(fﬂ:),M-l,w)— nn(IH:,w)] = o almost

n-—+oco

surely, it follows easily that lim ¢&(M) = 0.

M-+

This argument is now made precise.

XNn is defined below by induction on n. It may be assumed that

M=21.

. ' -~
(i) If uO(XNO(M,w),w) =2 N+ g, let

XNO(M-l,w) = min(XNO(M,w),M-l).

. £
If uO(XNO(M,w),w) <N+ e, let

fNO(M-I,w) = min {max [XNO(M,w)— l,no(f+£,w)] ,M-1}.

Suppose that ka has been defined for k <n and n > 0. Then,

Mn(iN,M-l,u) is defined. It may be assumed that Mn()fN,M—l,w)

;¢ < M (X, M,w).

| (iii) If M (X, M-1,0) = M (X, M,0), let

XN(M-l,w) = X (M, w).

higmens A b

Suppose that M (Xy,M-1,0) < M (X, M, w).

. ’ k-
(iv) If un(XNn(M,w),w) 2 N+ ¢, let

Ryn(M-1,0) = min (X (M, ), M (X, M-1,0)).

- —— oo

AR W T A T
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{(v) If ul'_l(XNn(M,w),w) <N+ ¢, let
Xyn(M-1,0) = min { max [Xyp(M.w) - M (X, M, w)

+ M (X, M-1,0) ,n (X+e,0) ],Mn(XN,M-l,w)}.

The following facts should be clear.

Mn(XN,M-l,w) < Mn(XN,M,w).

(7.13) If Mn(XN,M—l,w)=Mn(XN,M,w), then

Mk(XN,M-l,w) = Mk(XN,M,w) for k > n.

(7.14) If Mn(XN,M-l,u)<Mn(XN,M,w) and
XNn(M-I,w) > r,*n(k+s,w), then

Mk(iN,M-Lu) = Mk(XN,M,w) for k > n.

Define k(M ,w) as follows. If for some integern=0,1,...,N-1,
M (X, M-1,0) <M (Xy.M,w) and M (X . M-1,0) € n (N+g,0), let
k(M ,w) be the smallest such integer. Otherwise, let k(M,w) = o,
k(M ,w) is, roughly speaking, the first period in which the consumer
could be forced to spend less at a time of high marginal utility of
expenditure,

It follows immediately from the definition of k(M ,w) and from
(7.13) that if k(M,w) < =, then M (X, M-1,0) <M (X, M,w), for all
n € k(M,w). Consequently, by (7, 14) and the definition of k(M,w),

iNn(M—l,w) < nn('):+ €.w) for all n < k(M,w), and so

IR E), M=1,0) € My (X, M=1,0) € (K +e,0),

Mym,

Rl

g M o el e

SRR P T AN
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In summary,
(7.15) if k(M,w) < «, then

MM, o)1+, M-1,0) = my (R +e,0) < 0.

Since ux',l(x,w) €1,

(7.16) WN(XN,M,w) - WN(XN,M-I,w) < 1 for all w.
Clearly,
(7.17) if k(M,w) = o, then

WN(XN,M,w) - WN(XN,M—I,w) <N+ e

Let f(M,w) be the indicator function of the set

S(M) = {u] igf[Mn(n(f+ €),M-1,0) - n (X +¢,w)] < 0}.

(7.15)-(7.17) imply that

(7.18) WN(XN,M,w) -WN(XN,M-l,w) < (N+¢g)+ f(M,w).

Applying E ( ].‘f’o) to both sides of (7. 18), one obtains

(7.19) VM, ) - E(W(iN,M-l)IS’O)(w) sN+e+ E(f(M)lSPO)(w)

almost surely.

Since S(M) = {w| M-1+inf[M_(n(X+¢),0,0) - n (X+e,0)] < 0}, it
follows that for every w, f(M?w) is continuous from the left and non-
increasing as a function of M. Therefore, by Lemma A. 1, there exists
a measurable function 6: [0,«) X Q - [0, 1] such that
(i) &M, .)=E(f(M)|#) forall M and

(ii) for almost every w, 6(M,w) is continuous from the left and non-
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decreasing as a function of M. By (7.19),

VN(M,w) - E(W(XN,M-I)Iyo)(w) <€ X+ e+ 6(M,w) almost surely.

In order to complete the proof of (7.11), it is necessary to show

that lim 6(M,w) = 0 almost surely. By (6.4),
M —o0

lim [Mn(n(i+ £),0,w)- nn(f+ €,w)] = © almost surely. It follows that
n-—+=co

lim f(M,w) = 0 almost surely. Therefore, by (A.2),
M-+

lim 6(M,w) = 0 almost surely. Since for almost every w,

M —
M an integer

6(M,w) is non-increasing as a function of M, it follows that almost surely

lim &6(M,w) = 0.
M —

8. PROOF OF THEOREM 3.2

The outline of the proof is as follows. The fact that
Vl'\1+1(M’w) = q{\I(M_xN+1,O(M’w)’w) implies that the random variables
)\n( Mn(Xn,M,w),w) form a supermartingale. By the convergence theorem
for supermartingales, these random variables converge almost surely.
Since A (M,w) > X, the limit is at least X. If it exceeds X\, then for
some & > 0, Xoo’n(M,w) will be less than nn(f- €,w) for all n. Hence,
Mn(Xoo,M ,w) converges to infinity, Consequently, by the main theorem
xn(Mn(Xco,M,w),w) will converge to X. This contradiction implies that

)\n(Mn(XOO,M,w),w) converges to \,
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8.1 Lemma
The random variables \ (M (X ,M,w),w) form a supermartingale.

That is, for all n, N (M (X ,M,w),w) > E[\

M (X M # ) ()

almost surely.

Proof
For brevity, M (X ,M,w) will be denoted by Mn(w). Let

n
(M w) = (M, ") and an\](M,w) =q{\I(M,'r w).

N

(8.2) nVi\](Mn(w),w) > (Mn(w)-an(Mn(u),w),w)

’
nIN-1

\%

nqi\l —I(Mn( w) - X onl Mn( w),w),w)

= E(, 41V M M) ).

The first inequality above follows from Lemma 4.1, part vii and from
Lemma A.4. The second follows from the inequality M - an(M,w)
> M- xy (M, w) and the fact that an\]_l(M,w) is decreasing in M almost
surely. The equality follows from Lemma 4.1, part v and from Lemma

: : ' !
A.4. Since l\}l—Too n+1VN- 1(Mn_"l(w),u.J) )\n+1(Mn+1(w),w) almost surely

it follows by (A.2) that lim E(
N-—-oo

almost surely. Also, lim V' (M (u) w) =\ (M (w) w) almost surely,
N——oo

' =
VA M DL =EX M )

so that by passage to the limit in (8.2), A (M (w),w) L

> E()\n+1(Mn+1)|an)(w) almost surely. i
QR.E.D.

By the convergence theorem for supermartingales (Doob [6, p. 324,

Theorem 4. 10]), Xn(Mn(Xw,M,w),w) converges almost surely. Let
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)\w(M,w) be the limit. Clearly, )\OO(M,'rw) = )\w(M,w) almost surely.
That is, )\w(M, . ) is an invariant function. It is easy to see that
because the stochastic process {v } is metrically transitive, every
invariant function is equal to a constant almost surely. Let A _ be the
constant corresponding to A _(M, . ).

By the main theorem, xn( M (X .M ,w),w) = X almost surely, so
that A > X. It must be shown that A = .

In what follows, use will be made of the concept of convergence
in probability. A sequence of random variables, z,, is said to converge

to z in probability if for every € > 0, lim Prob{| z -zl > e}=0. z
n—wo

n

converges to infinity in probability if for every K >0,

lim Prob{zn < K} =0, If z  converges almost surely, z  converges
N—o0

in probability.

Suppose that X > X. Observe that

Xwn(M,w) = nn(.\n(Mn(Xoo,M,w),w),w) by Lemma 5.11. Since

rlxi—r?ao )\n(Mn(Xoo,M,w),w) = )\w almost surely, it follows that

A+

o0

(8.3) for almost every w, Xoon(M,w) < nn( 5 z w) for n

sufficiently large.

A+A

o0

2

Since lim Mn(n( ) ,w) = o almost surely (by (6.3)), it follows

n-—-o
from (8. 3) that Mn(Xw,M,w) converges to infinity almost surely and

hence in probability. SinceT is probability preserving, it follows that

Mn(Xw,M,'r_nu) converges to infinity in probability.

-

-
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By the main theorem, lim )\O(M w) =\ almost surely and hence

M-+
in probability. It follows easily that the sequence of random variables

xo( Mn(Xoo, M,'r_nw),w) converges to X in probability. Again using the
fact that 7 is probability preserving, it follows that

5 e L - . s
).O(Mn()xoo, M,w),T W) = )\n(Mn(Xoo,M,w),w) converges to \ in probability.

But this is impossible, since )\w > X and hn(Xoo,M,w),w) converges to

Ao almost surely and hence in probability. This proves that X = X.

It has been proved that for each M, lim A (M (X_,M.uw),w) = N
o0

n—+o

almost surely. Clearly, lim )\n(Mn(Xoo,M,w),u) is non-increasing as
n—oo

a function of M, for almost every w. Therefore, for almost every w,

lim )\n(Mn(Xw,M,w),w) =\ for all M.

n—eo0
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9. THE INFINITE HORIZON, DISCOUNTED PROGRAM

The lemma below is needed in the proof of Theorem 3.5. Recall

that if 6 < 1, Vé(M,u) = lim VNé( M, w) almost surely and
N-—ow °
xan(M,w) = }\}r_n.waén(M,w) almost surely. Since VN,5<M»“) is a non-
decreasing function of N almost surely, lim VNé(M’w) exists almost
N—=co

surely. X, is the program corresponding to the plan Xg-

9.1 Lemma

Ifé6 <1, then
o0
i v o0
v 0 = E( ) 6" (X, (M)]#,) (w)
n=0
almost surely, and if X is any feasible program,
[ce]
Al o
v,o > E( Y, 6™ (X (MN]#) ()
n=0 -
almost surely.

This lemma says, of course, that X6 is an optimal program for

the infinite horizon problem with discounted utilities.

Proof

If X is any feasible program, then
o0

o0
n n

Y 6T (X (M,0),0) € ), 6"X (M, w)
n=0 n=0

o0
n
< ), "M _(X,M,0)
n=

: ¢

00 n f

) 5H(M+ ) yk(w)).
n=0 k=1
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The terms of this last series are non-negative, so that it converges,

though perhaps to infinity. However, by the monotone convergence

theorem (Loéve (8, p. 124]),

E (M+ Z ¥y) = }: 6™ (M +(n-1)Ey) <,
n=0
00 n-1
y oD A o
so that the series Z 6 (M -+ Z yk(w)) converges to a finite limit
n=0 k=1

almost surely. It has been proved that

(9.2) For almost every w, there is a convergent series which

dominates Z énun(Xn(M ,w),w) for every feasible policy X.
n=0

It follows that Z 5nun(Xn(M,w),w) converges almost surely.
n=0

Next observe that since %\;r_’rzw XNén(M’w) = xén(M,w) almost

surely, lim M (X w) = Mn(Xé,M,w) almost surely. Hence,

it No ' M

(9.3) lim ( (M,w),w) =u (X (M,w),w)

N— Nén

almost surely for all n.

It follows from (9.2) and (9. 3) that

N-1 00
. ; n
(9.4) - L 8 (X (M,0),0) = ), 8% (X, (M,w),0)
—=Rn=0 n=0

almost surely.

(9.4) and (A.2) imply that

S—
UL U




—_— " ) ;e i P N S e’
L s d) N e e - Ll Bt 5 Wipal nFs b < st - g . g ” e
b SR Y R AT AT (3 o e 4 o -

— 53 -
o0
: < T LN
(9. 5) lim V(M) B( ,_Joa u (X, (M)[#, ) () almost surely.
L n:

Let X be any feasible policy. Then, by Lemma 4.1,
N-1
n
VNa(M"") > F( ZO ) un(Xn(M)) Isf’o)(w) almost surely,
n:

Hence, (using (A.2) and (9. 2))

o0
= : ~ i n
VG(M’“’) = %\}Tw VNé(M’w) > h( zo 5 un(Xn(M))|9’0)(w) almost surely.

n=

Q.E.D,

10. PROOF OF THEOREM 3.5

In this section use will be made of the following well-known

theorem.

Abel's Limit Theorem (Ahifors [1, p. 42])

N-1
If a is a sequence of numbers such that lim IN Z a_ exists,
N—ew " p=g "
o N-1
then lim 132 ) 6"a_ = lim
641 n=0 N —o0

J

L
N & an X
n=0

” FLTNY
lim N L un(Xwn(M,w),w)

o0
: 1-6 © n

lim w 2 24 6 un(an(M,w),w)
6’1 n:O

1}

=E uo(no({)) almost surely.




Proof

By Abel's theorem, it is sufficient to prove that
1 N-1
Er_n‘w N ZO un(Xoon(M,u),w)=E uo(no(k)) almost surely.
n:

By the main theorem, A (M, w) > X for all M almost surely.

Therefore, Xoon(M’w) = nn()\n(Mn(Xoo,M,w),w), w) - nn(i, w) almost surely

for all n. Hence,

N-1
lim sup-;J— Z un(Xcon(M,w),w)
N — o n=0
1 N-1
Slimsup & ), u (n(X,0),w) = E ug(n4(%))
N — o n=0

almost surely. The equality follows from (6. 5).
Since E uo( r;o(t)) is a continuous function of t, it is sufficient to

prove that

(10.2) for every €>0,

N-1

p 3 1 -
l;\]m inf N Z un(Xoon(M ,w,w) = E uo(no()\+ €))
ST n=0

almost surely.

Since lim X (M (X _,M,w),w) =X almost surely, it follows that
n—-oo
for almost every w, Xoon(M,w) > nn(f+ €,w) if n is sufficiently large.

Therefore, for almost every w,

N-1
: p 1
%\}T;nfﬁ Z un(Xoon(M,w),w)
n=0
N-1

! 1 - -
= ~
Nlmoo n;o un( nn(k+e,w),w) Euo(no(x+e)).
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This proves (10.2). Q.E.D,

Since no(f, w) is uniformly bounded (by Assumption 2.5, part v)
and since X_ (M,w) < nn(x,w) = no('):,'rnw) almost surely, it follows

that the functions

N-1
2 un(Xao(M ,w),w) are uniformly bounded. Therefore, by the

n=0

2
N

Lebesque dominated convergence theorem and Lemma 10.1,

N-1
! 1 £ =
Em N E un(Xoon(M)) =E uo(no()\)) .
e n=0

By Abel's theorem, it follows that

o0
5 1‘6 n.. = K %
lim === ) §"Eu (X_ (M) = Euy(ny(XN).
641 n=0

This proves the first four equalities of Theorem 3.5 for fixed M,

It is next shown that

(10.3) for each M, lim inf 1ﬁVN(M,w) 2 Euo(n (X)) almost surely.
N —- =

By part iii of Lemma 4.1,
N-1

V(M0 > E( ZO u (X, (M) 2, ) (0)
o

almost surely. Therefore,
N-1

ALY 1 e 1
lim inf N—VN(M,w) > lim inf N—E( Z un(Xwn(M))l.S’o)(w)
N—o N —- o n=0

almost surely. By (A.2) and Lemma 10.1,

."“r":\—’*": g 5 Y e g
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lim inf B( néo u (X (M)[#)) = Euy(n (%)

almost surely. This proves (10. 3).

Similar arguments prove that

A k

(10.4) 111\Im_’1£1°f ﬁE VN(M,w) > Euo(nO(X)),

(10. 5) i it 1—;—‘5— Vs(M,0) > Eug(n(X)) almost surely, and
541

(10.6) ¥im inf l-;—ﬁ EV4(M,0) > Eug(n,(¥).
541

The proofs of (10.5) and (10. 6) require the use of Lemma 9.1,

Next, it is proved that

» 1 =
(10.7) hmfip N VN(M,w) < E uo(no()\)) g
Since
1 N-1
nl 3y =13 cx \ -
Eu ”0“‘)) }\}m N E( b # un(nn(h))|9’0>
oo n=0

almost surely, in order to prove (10.7) it is sufficient to prove that

N — oo N—-wo

N-1
0 = lim sup &V (M,) -1im L1m( Y u (n_(X)|&
N N N 0 n n 0

n:

]

N-1
tim sup g | VM0 -2( Y, u (n (W2,

N = n=0
i N-1
= 1?_’5210;) NE,(néo (un(XNn(M))—un(nn()\)))ly’o) almost surely.

For each N, n, M and w, there exists a unique number ZNn(M,w) such that
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un(XNn(M,w),w) - un(nn(f,w),w) = u;z(ZNn(M’w)’w)(XNn(M’w)- nn(i),w)).

Therefore,

N-1
1lim sup —lﬁ E( Z (uO(XNn(M)) ‘un(nn(x))”y’o)
N-—+ n=0
L h
- 1im sup L E( Y ul(Zy (MN(Xy (M) -0 (N[ () .
o2 n=0

Since
N-1

3 1 T
hlfln N ( Z (XNn(M) - nn()\))lyo) = 0 almost surely,
T n=0

N-1
tim sup LE(Y ulz (M) (M) -n (] ¥g)
s n=0
(e
- lim sup LE( ) @z, (0 -RXg (M) -n (X))
e n=0

< 0 almost surely.
The last inequality follows from the fact that
j = R
(! (Z (M, w),w) M(Xyp(M,w) - n (N, w) < 0.

This completes the proof of (10.7).

Similar arguments prove that

2 1 e
(10.8) llgln sup N—E VN(M) < Euo(no(h)) "
-+ 00
(10.9) lim sup 1—;—‘5—v6(M,w) < Euy(ngN) , and
541

(10.10)  lim sup 132 E V(M) < E ug(ng(X) .

6t1




(10.3)-(10. 10) imply that for each value of M, the last four

equalities of Theorem 3. 5 hold almost surely. Since all of the limits

appearing in the theorem are almost surely non-decreasing functions

of M, it follows that for almost every w, all the equalities of the

theorem hold for all values of M.

11. REMOVING THE UPPER BOUND ON u'(x,w)

It has been assumed that u’(0,w) < 1 for all w. This assumption

was made in order to put an upper bound on the marginal utility of

money. This bound may also be obtained by assuming that income is

bounded away from zero.

(This point was made by Schechtman in his

dissertation [13] .) Specifically, if it is assumed that for some a > 0,

yo(w) 2> a almost surely, then one may allow lim ub(x) to be infinity
x—=0

(x) to be minus infinity. It is, however,

’, and one may even allow lim ug
E x+0

necessary to require that sup u:)(a,w) < o, If these assumptions are
w

made, all the theorems of section 3 remain true. Their proofs require

only a few modifications.

The following example shows that if the restriction on Yo is not

PSR

imposed, then the main theorem is false, The problem is that if the

consumer is not guaranteed a positive income and if running out of

income is disastrous, then the limit policy could require the consumer

to save all his income, no matter how rich he might be.

Example

X -2
For 0 <x < o, let u(x) = f e dt.
1




Let the incomes, ¥» be independently and identically distributed and

suppose that Prob(yn=0) = Prob(yn =1) =§1. :

N-1
= i <x <
Let V(M) = max E n;() u(xn), subject to 0 X Mn’ where

MO = M and Mn = Mn a8 ¥oit for n > 0. It will be shown that

+1

lim V! (M) = oo,

N—o N
4 = = = "\ = = =
Clearly, V(M) = Prob(y0 e TYNS O)E(u(l\"N_l)|yo - TYN-170).
Also, ify, =.. . = =0,then M, . €M  Thaerefore
» B dg T T Mg ™ W N-1 N ’
2
N 2\N
3 a5 Ui N/M
Vi(M)= 2 Nu'(M—)= 2 Ne M) L | T Clearly,
N N 9
N/MEN
lim _— = o, for all M,
N—x 2

12, POSSIBLE GENERALIZATIONS

[t has been assumed throughout this paper that the utility function
is differentiable, strictly concave, and additively separable. It should
be possible to eliminate the differentiability and concavity assumptions
altogether and to weaken the separability assumption considerably.
Elimination of the differentiability and concavity assumptions introduces
only technical difficulties. If the separability assumption is eliminated,

it must be replaced by some other set of restrictions. It is not clear

what these should be.




= el

The intuitive arguments underlying the proof of the main theorem
do not depend on the differentiability and concavity assumptions at all.
It might seem that the proof would collapse because the policies n(t)
would be undefined. This is not so. It is true that if un( . ,w) were not
strictly concave, nn(t,w) could be multiple valued. Nevertheless,

E nO(t) could be defined in the usual way as {Ef! f(w) € nO(t,w) almost
surely and f is measurable }. (See Aumann [2] for a discussion of
integration of multiple-valued functions. ) By choosing points from nn(t,w)

randomly, it is possible to define a policy X for which lim 11\7 2 X (M, w)

- . n
would exist almost surely and would equal any preassigI:]ler?tJ oi?xzoin
E no(t). Also, E no(t) would be a decreasing, upper-semi-continuous
multiple-valued function. For these reasons, it seems that it would be
possible to carry out the proof of the main theorem and the other
theorems as well. However, the author has not checked the proof in

detail,

If the separability assumption were eliminated, some restriction‘
would have to be placed on interactions across time within the utility
function. The utility function should be time invariant. The effect on
the consumer's decisions in one period of changes in consumption in
another period should become negligible as the.time separating the periods
goes to infinity. Similarly, the effect on the consumer's near term plans

of a change in the time horizon should become negligible as the horizon

goes to infinity. It is not clear how these conditions should be formu-

lated.
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APPENDIX

CONDITIONAL EXPECTATIONS OF RANDOM VARIABLES

WITH A PARAMETER

Let C be some set of properties of a real valued

function of a real variable.

Definition

C is said to be conservable if the following is true.

Let Q: [0,0) X @ — [0,1] be any measurable function such that for

almost every w, the function Q(. , w) = [0,») — [0,1] has properties C.

Then, there exists a measurable function q: [0,%) X 2 —~ [0,1] which
satisfies the following:

(i) q(M,.)= E(Q(M)!S’O) for all M.

(ii) For almost every w, q(., w): [0,o) — [0,1] has properties C.

A.1 Lemma
Any of the foliowing pairs of properties is conservable:
continuous and strictly decreasing; continuous from the right and non-

decreasing; continuous from the left and non-increasing.

Frequent use will be made of the following fact.

A.2 Let § be a sub-o-field of ¥ and let 2y be a sequence of random

variables on £ such that lim z) =7 almost surely and | zk(w)l < Z(w),
k-

almost surely for all k, where EZ < «, Then, lim E(zkl F)=E(z|F)

k—=+o

almost surely. (Doob [6, p. 23].)

A it 3 e bkl ¢

b
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Proof of Lemma A.1

g T DL L e

Continuous and Strictly Decreasing

For every non-negative rational number M let q(M, . ) be any
version of E(Q(M)(SPO).

For each pair of positive integers, k and N, let
fy(k,w) = sup{IQ(M,,0) - QM &)l | 0 M <N, M, <M, < M, +k 7},
It is easy to show that for every Kk, fN(k,w) is a measurable function of
w. Also, since for almost every v, Q(M,w) is continuous in M, it
follows that 1lim fN(k,w) = 0 almost surely. Therefore, by (A.2),

k—o0

lim E(fN(k)ISVO) = 0 almost surely. Also, if M, and M, are rational

k—w

and 0< M, <N and M; < M, < M1+k'1, ther |q(M,,w)-a(M,, )|

s E (fN(k)‘S”O)(w) almost surely. It follows that for almost every w,

lim lim \q(Ml,w)-q(Mz.w)l =0
M;—~M Mgy —~M
M1 rational M2 rational

for every M such that 0 € M < N. Since this statement is true for each
of the countably many values of N, it follows that it is true with N =,

If M is irrational, let

q(M,w) = lim q(M',w),
M'—M
M' rational

provided that this limit exists. Otherwise, let q(M,w) be arbitrary.
It follows from what has just been proved that for almost every w,
q(M,w) is everywhere well-defined and continuous as a function of M.
It is easy to see that q is measurable.

It is next proved that q(M, . ) = E(Q(M)I.S’o) for all M. Let M_ be
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a sequence of non-negative rational numbers converging to M. By

. definition, q(Mn, L) = E(Q(Mn)ly’o) for all n. Since almost surely,
q(t,w) and Q(t,w) are continuous as functions of t, q(Mn,w) and Q(Mn,w)
converge to q(M,w) and Q(M,w), respectively, almost surely. There-
fore, by (A.2) q(M, . ) = E(QM)|#,).

It remains to be proved that for almost every w, q( . , w) is
strictly decreasing as a function of M. If M1 and M2 are rational and
M1 < M2, then q(Ml,w) > q(Mz,w) almost surely. Since there are only
1 countably many pairs of rational numbers, it follows that for almost
' every w, q(MI,w) > q(Mz,w) whenever M, < M, and M, and M, are

1 2 1 2
rational. Since q(. , w) is continuous for almost every w, it follows

L, 2 7 R BRI L o T T o 2it oo
e s oSl Sl i i aaos Vi

s bl

that q( . , w) is strictly decreasing for almost every w.

Continuous from the Right and Non-Decreasing

For every rational M, let q(M, . ) be a version of E(Q(M)l.‘/o).

T T

Since Q(M,w) is almost surely non-decreasing in M, it follows by the

argument just made that for almost every w, q(M,w) is non-decreasing

e ———

as M varies over rationals.

' 2D T Y e et

If M is irrational, let q(M,w) = 1lim q(M,w). For almost
i M’ M
B M' rational

every w, this limit exists for all M, since q(M,w) is almost surely non-
decreasing on rationals,

By definition, q(M,w) is almost surely continuous from the right
at irrational values of M. It is now proved that the same is true at

rational values. For each rational M and each positive integer k, let

f(M,k,w) = sup{Q(M’,w)-QM,w)| M<M'<M+k '}, Since QM,uw) is
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continuous from the right almost surely, }{i_rpo0 E(f(M ,k)ls"o) = 0 almost
surely. Therefore, for almost every w, lim (g(M',w)-q(M,w))=0.
M'\M
M’ rational
Since there are only countably many rational numbers, M, it follows that
for almost every w, lim (a(M',w)-q(M,w)) = 0 for all rational M.
M'| M
M' rational

In order to prove that (M, . ) = E(Q(M)|.‘/O) for all M, let 1\/1n be
a sequence of rational numbers converging to M from the right and use
(A.2).

Arguments similar to those just given prove the lemma for the

case of functions which are continuous from the left and non-increasing.

Q.E.D.

A.3 Lemma

Let Q: [0,0) X @ — [0, ) be measurable and suppose that for
almost every w, Q(M,w) is continuously differentiable as a function of
M and such that EdMQ(M,w) is positive, less than or equal to 1, and
strictly decreasing. Let Q'(M,w) be any function which equals
%ﬂ— Q(M,w) whenever this derivative exists.,

There exists a measurable function q: [0,©) X @ — [0, )

satisfying the following.

(i) For almost every w, q(M,w) is continuously differentiable as
a function of M. The derivative is positive, less than or equal to 1,

and strictly decreasing.

Let q'(M,w) denote any function equal to ade q(M, w) whenever this

derivative exists.
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(ii) q(M, .) =E(Q(M)’£fo) and
(M, . )= E(Q’(M)fyo) , for all M.

Proof

Since is measurable, Q' is so as well. Therefore, one ma
Y

apply Lemma A.1 to Q' and obtain q' as in the lemma to be proved.

M
Let g(M,w) = f q'(t,w) dt. It follows from the Fubini theorem
0

(Loéve [8, p. 125]) that q satisfies property (ii) in the statement of

the lemma.
Q.E.D.

A.4 Lemma

Let Q: [0,00) X 2 = [0,») and q: [0,) X @ ~ [0, ) be measur-
able and such that for almost every w, Q(M,w) and q(M,w) are continuous
functions of M. Suppose that for every M, g(M, . ) = E(Q(M)’H’O). If
z: 2 —~ [0, =) is measurable with respect to ¥y and such that
E|Q(z)] < «, then q(z(.), .) = B(Q(2)|#,).

Proof

Let zZ,: 2 — [0,») be a sequence of simple functions, which are
measurable with respect to 90 and converge to z almost surely. Since
z, is simple, q(zn(. ),.) = E(Q(zn)|5"o). By (A.2) and the continuity

properties of q and Q, q(z(.),.) = E(Q(z)lVO),

Q.E.D.
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A.5 Lemma

Let £ : [0,o) X 2 = [0,1] be a sequence of measurable functions.

Suppose that
(a) for almost every w, t'n(M,w) is continuous from the right and
non-decreasing as a function of M, and

(b) for almost every w, lim f (M,w) = 0.
n—o

Then, there exists a sequence of measurable functions
5 [0,) X 2@ — [0,1] with the following properties.

(i) 6 (M) = E(fn(M)iy’O) for all M.

(ii) For almost every w, 6n(M,u)) is continuous from

the right as a function of M,

(iii) For almost every w, lim 6n(M,w) =0 for all M.
n—+oo

Proof

By applying Lemma A.1 to fn’ one obtains cSn satisfying (i) and
(ii) above. Clearly, for almost every w, ll,xi_rpoo 6n(M,w) = 0 for every
positive integer M. Since 6n(M,w) is non-decreasing in M for almost
every w, it follows that lim 6n(M,w) =10 for akl M,

n-~+=oo

Q.E.D.

A.6 Lemma

Let f: [0,0) X @ — (-, ») be measurable and such that

(i) for each M, f(M,w) > 0 almost surely and

(ii) for almost every w, f(M,w) is continuous from the

right as a function of M, or

i o o M




e iy ¥t s o i S e

YT T

A s
ISR <SS S A TR D

B

¢ fimiad
4

g » 3
———— e

Nt

Then, for almost every w, f(M,w) = 0 for all M. ]

f(M,w) 2 0 for all rational values of M.

s Al B A SRR e 555

(iii) for almost every w, f(M,w) is continuous from the

I ey

left as a function of M.

Proof

The lemma follows at once from the fact that for almost every w,

Q.E.D.
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13 ABSTRACT

.

This paper defends the view that in dealing with a consumer's reponse to

j‘ short-term changes, it is reasonable to assume that the marginal utility of
. 9 money is constant. A theoretical defense of this view is made in terms of the
%; consumer's intertemporal maximization problem. It is assumed that the consumer

may hold money, but may not borrow. The consumer's utility function is assumed
to be additively separable with respect to time. Prices, the consumer's income,
and his utility function for each period are assumed to fluctuate according to a
stationary stochastic process. It is proved that if the time horizon of the
consumer's problem is sufficiently distant, if his discount rate for future
utility is sufficiently small, and if he has a sufficient quantity of money, then
the marginal utility of money is nearly independent of current prices and income
and is nearly constant over time. The proof of these facts is based on economic
common sense and the strong law of large numbers for stationary processes.
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