
MOLECULAR DYNAMICAL CALCULATIONS
TZ) OF THE THERMAL DIFFUSIVITY OF A

"PERFECT LATTICE

by

R.A. MacDonald and D.H. Tsai

National Bureau of Standards
Washington, D.C. 20234

DDC

!',; OCT 29 11 IIII

Reprinted from THERMAL CONDUCTIVITY 14, Proceedings of the Fourteenth
International Conference on Thermal Conductivity held in Storrs, Connecticut,
June 2-4, 1975, eds. P.G. Klemens and T.K. Chu (Plenum Press, New York and
London, 1976) pp. 145 - 152.



U1J-lkLt1i iea

SECURITY C ASIFICATION Of THIS PAGE Often Dae Entered)

(q REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPO MSe 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AR6 2922.3-PI _
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

14OLECULAR DYNAICAL ,ALCULATIONS OF THE Reprint
_THIERMAL DIFFUSIVITY OF A PERFECTY LATTICE2  6. PERFORMING ORG. REPORT NUMBER

A~iWQ~jA1 . CONTRACT OR GRANT NUMBEROa)/ R. A. lMacDonaldj
D. If./Tsai (g ARd-3-76 1

6. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGR1AM ELEMENT. PROJECT. TASK

National Bureau of Standards
Washington, D. C. 20231,

It. CONTROLLING OFPICE NAME AND ADDRESS j-A92_Afa

U. S. Army Research Office ' 96_
Post Office Box 12211 c 0Y UBRO AE

14N. OIN eGENCY9 6W AblE di "Oin ADRS om C troling Office) 15. SECURITY CLASS. (of this freport)

IS, DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution 'unlimited. [ ) *

17. DISTrI OUTION STATEM ENT (of the sbetroct enteredlIn Block 20. If different frog" Report) UL 17

I@. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

It. KEY WORDS (ContInue on revereie tifnecoeamy and Identity by block numb.,)

Molecules Thermal diffusion Profiles Computation
DyamcsC taJ. lattices Temperature Atomic motions

Wehave use the method of molecular uyna ucsg o make
a detailedst~udy of thermal diffusivity i efc

20.ABTRCTmonatomic lattice. The interatomic potential ish
fo ion W-4mi he atomic motions4 toappropriate frio. e-410 It A

two dimensions in order to sort nteom Ifation.
We ni~tI ane end of the lattin a; a gmen kinetic

temperature And obtain the temperature profile in the
lattice as a function of time. The total energa d
to the system is recorded. WeE*4ifusive cu ^-a
the temperature profiles and thus o tain the thermal

diffusivity of the lattice. Its value isQ(4C1lO 6 M2SeC4&V
DD ~~ at a mean lattice temperature of 75K., nlsse
DD1473 EDITION oil I NOV016 IS O2ISOE K .. A.a --. Qbn I&



iI

MOLECULAR DYNAMICAL CALCULATIONS OF THE THERMAL DIFFUSIVITY OF A

PERFECT LATTICE*

R. A. MacDonald and D. H. Tsai

National Bureau of Standards

Washington, D.C. 20234

We have used the method of molecular dynamics to make
a detailed study of thermal diffusivity in a perfect
monatomic lattice. The interatomic potential is that
appropriate for iron. We limit the atomic motions to
two dimensions in order to shorten the computation.
We maintain one end of the lattice at a given kinetic
temperature and obtain the temperature profile in the
lattice as a function of time. The total energy added
to the system is recorded. We fit diffusive curves to
the temperature profiles and thus obtain the thermal
diffusivity of the lattice. Its value is 4xl0- 6 m2sec- 1
at a mean lattice temperature of 75K.

1. INTRODUCTION

We have used the method of molecular dynamics to study the
transport of thermal energy in a perfect monatomic lattice. The
complexity and immensity of such calculations make it desirable to
relate our results to physical reality in as many ways as possible.
To this end, we obtained a rough estimate of the lattice thermal

*This work was performed with partial support from the U.S. Energy

Research and Development Administration and from the U.S. Army
Research Office, Durham, N.C.

145

7!



146 R.A. MacDONALD AND D.H. TSAI

conductivity from an earlier calculation of heat pulse propagation
in a three-dimensional lattice(1 ). This led to the present, more
detailed study of thermal diffusivity in a lattice. We have limit-
ed the atomic motions to two dimensions in order to shorten the
computation time, otherwise, this restriction is insignificant.

We shall first describe our model, then in section 3 we shall
treat the problem using conventional theory of heat transfer by
diffusion in a continuum. In section 4 we present the results of
our molecular dynamical calculations and compare them with the
continuum theory. In the final section we discuss our results.

2. MODEL

Our two-dimensional system is made up of bcc unit cells forming
a ribbon-like filament 25 units wide, 250 units long, and I unit
thick. This ribbon is placed in Cartesian coordinates with x de-
noting the width, z the length and y the thickness. Two-dimension-
al motion is obtained by limiting the motion in the y direction to

zero. Mirror boundary conditions are imposed on the transverse
boundaries in the * x directions and at the heated end, z - 0. The
interatomic potential is that constructed by Chang(2 ) for a-iron.
Initially, this lattice is in thermal equilibrium at a temperature
Ti . Then, the first ten lattice (x-y) planes are heated quickly to
an average temperature Th and maintained at that level for the rest
of the calculations. The amount of energy added to these ten planes
is recorded. The classical equations of motion for the lattice
atoms are solved by numerical integration, yielding the position
and velocity of each atom. The average kinetic energy, potential

energy, stress components and density of lattice planes are obtain-
ed as functions of time. These results show the transport of
energy into the lattice.

We use the rigid mirror boundary condition in the transverse
direction to prevent lateral displacement and distortion of the
filament. This was necessary because we found that when periodic
boundary conditions were used, as in earlier calculations, the
filament would drift laterally from the equilibrium position, due

to accumulation of small errors in the position and velocity of the
atom, and perhaps also due to the procedure of numerical Integra-
tion. Since this motion was not uniform along the length of the
filament, and since the undisturbed end was constrained to stay in
place, the filament became laterally distorted and strain energy
developed. Over the duration of a run (400 time units) the strain
energy was such that a two fold increase in the total energy was
observed. This strain energy is eliminated when the mirror bound-

ary condition is applied.



MOLECULAR DYNAMICAL CALCULATIONS AND THE PERFECT LATTICE 147

3. CONTINUUM THEORY

Since the lattice is at a moderate initial temperature (-0.1 Do
where 0 - Debye temperature) the mechanism of heat transfer can be
expecteR to be diffusive. It is therefore appropriate for us to
test our ;1ults against those of the continuum theory of thermal
diffusion . We proceed as follows:

When a time-dependent boundary temperature Tb(t) is imposed on

a system initially at a uniform temperature T1, the temperature
profile is given by (see ref. 3 pp. 273-4)

T(z,t) - Ti erf(u) +(2/ f Tb(-z2/4au2)exp(-u2)du (1)

where u2 - z2 /4o(-t), erf(u) - (2/ exp(-t2)dt,

a is the thermal diffusivity and z is the distance in the direction
of heat flow. Although we maintain the average value of the kinetic
energy in the first ten planes of the lattice at a constant value,

the local kinetic temperature of the tenth (boundary) plane varies
considerably on an atomic scale. For the diffusive calculation we
need the average temperature of the boundary plane. In the present
calculation, this may be approximated by three linear segments (see
'ig. 1) :

Tb(T) - TO+ CIT, 0 < T < 'I

Tb(T) - T1+ C2 T, T" < T ;6 '(2 (2)

Tb(T) - T2, T2< T,

Substitution into Eq. 1 yields the following expression for the
temperature profile:

T(z,r) = Tt+ [To - T i+ CIr]F(uo ) - [T - Tt+ (C1- C2+)' F(u 1 )

t [T2- TI- C2T]F(u2)

+ 2 C r[uoF(u2) - u° *xp(-u2 )/ ,]V

- 2(c1- C2 ) (T-T)[uF(uj) - u exp(-u2)//,,J

- 2C2 (T-r 2 )[u2F(u 2 ) - u2 axp(-u 2)//wl. (3)

where F(u)- 1 - erf(u), uo - z/2 T,

u z/2 r-, u2 -2).
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T(z,T) can be fitted to our computed temperature profiles at one
value of T. Since the diffusive profile is given in terms of

u(-z/24v'), the distance scale is arbitrary when a is unknown.
This arbitrariness is removed by requiring that the area under the

diffusive curve be equal to the total energy added to the system up
to the time T. With the value of a thus obtained, the diffusive
curves at other times are obtained by appropriately scaling the

distance. The area under these other diffusive curves must also be
in agreement with the total energy added to the system at their
respective times. If this is so, it can be concluded that the heat

transfer in our system is indeed diffusive.

4. RESULTS

In Fig. 1, we show the boundary temperature as a function of
time, Tb(T). Even though we have averaged the kinetic temperature
of planes 6 to 15 to obtain Tb(T), there is still considerable

fluctuation in the boundary temperature and we approximate it by
the dashed curve C, as given in Eq. 2. The constants in these
equations have the following values:

T0 - 59 K, T1 - 102 K, T2 - 115 K,

T, - 20, r2 - 208, CI = 2.214 K and C2 - 0.0628 K.

The time T is measured in units of lattice plane spacing d divided
by longitudinal sound velocity (equal to 0.264x10-13s). The initial
temperature of the lattice, T , is 44 K. These values are used in
Eq. 3 to calculate the diffusive temperature profiles.

In Fig. 2 we show the kinetic temperature, density and longitu-
dinal stress profiles in the lattice at time T - 300. Each point
is the average of 10 neighboring planes. The kinetic temperature

300

100 0" "v" -V V "'j I
Tb

0 j

0 1O too 300
TIME. 1

lig.l. Boundary temperature ([alvin) as a function of time T (unit

of T - 0.264x10-13 s). Tb is the average kinetic temperature

of planes 6 to 15. The boundary is at plane 10. C labels

the approximate value of boundary temperature used in the

continuum theory. G denotes a gap in computer output.
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Fig.2. Kinetic temperature (Kelvin), relative density and longitudi-

nal stress (Pascal) versus lattice plane number. Each point

is the average over 10 neighboring planes. For the density

p/p and stress, S , T - 300; for the kinetic temperature,

0 -0298 (A) and T z-z 303 (V). Continuum theory diffusive pro-

file, C, is at T - 300 (--). Ti = 44 K is the uniform

initial temperature of the lattice.

of a plane is defined as O(V
2)/2k " where m is the mass of an atom,

V its velocity, <**) indicates te average over all atoms in the

plane, and kB is Boltzmann's constant. We plot two temperature

profiles at slightly different times, i - 298 and T - 303, to show

how much local fluctuation there is in the temperature. The diffu-

sive curve, C, is calculated frqp q. 3 at T - 300. The prominent

pulses in the stress and density profiles near lattice plane 300

are due to the stress and strain in the heated planes (and their

image across the mirror) generated during the initial rapid heating.

These pulses propagate with the longitudinal velocity of sound, 
as

may be determined from their trajectories in a series of 
profiles.

Although there is a slight drop in pressure near the heated

L
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Fig. 3. Energy in lattice (eV) as a function of time T. D is the
energy added to the heated planes, per filament of unit cell
cross section. G denotes a gap in computer output. C is
energy added to the filament as calculated by continuum
theory of diffusion with a - 4xl0- 6 m2 s- 1. E is total
energy in filament alnus its initial energy content.

boundary at this particular time (T - 300), our data show that both

the time average and the spatial average of the stress have a
constant value of 1.84xi08 Pascal (1.84 kilobar) behind the initial
pulse. This indicates that, as expected, the stresses equilibrate
with the velocity of sound. The density profile shows that the
density near the heated end is definitely lower than the average
density. This is clearly due to the higher temperature at the
heated end and is, in our view, responsible for the observed fall
of the computed temperature profile below the diffusive curve C
near the heated end of the lattice. These results therefore show
quite clearly the thermoelastic coupling in the lattice, a feature
that is usually ignored in the continuum theory of thermal diffusion.

In Fig. 3, curve D is the energy added to the lattice at the
heated end per filament of unit cell cross-section as a function of
time. We calculate the diffusivity of the lattice from the diffu-
sive curve C at T - 300 in Fig. 2, by requiring that the area under
that curve be equal to the value of curve D at T - 300 in Fig. 3,
as described in section 3. We obtain the following diffusivity,

- 4.oxlo6 i 2 g-1,

.K ---
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or conductivity

K - 9.4 W m- K71

where we have used the relation

K - ctPC = Ak /2d3.
p B

We use this value of a to obtain diffusive curves at other times
from Eq. 3. The areas under these curves are plotted as curve C

to in Fig. 3, in good agreement with the computed curve D.

The curve E shows the total energy that is actually in a
filament of the lattice minus the energy that was in the lattice at
uniform temperature T before heating. The difference between
curves D and E shows the lack of energy conservation in the system
due to truncation error in the numerical procedure. By the end of
our run, this error amounts to about 3% of the total energy of the
system.

5. DISCUSSION

The present calculation is an outgrowth of our earlier study
of the propagation of a heat pulse in a lattice. One of our major
objectives here is to seek additional confirmation, beyond what has
been established in previous calculations, that our model is indeed
realistic. Toward this end, we are able to show that the heat flow

in our model is diffusive, as we expected. There is no experimental
value of the lattice thermal conductivity of pure crystalline iron
with which to compare our value of K, but for the alloy Fe (99.5%)
Ni (0.5%) there is a recent estimate viz., K = 28.2 W m-1 K- 1 at
75 K(4). Considering the fact that the effective interatomic
potential for iron is not known at all accurately, we feel that the
agreement obtained here is really quite satisfactory. In addition,
our results provide a wealth of detail: for example, we see that
there is thermoelastic coupling in the process of heating, and thereI is energy non-conservation due to the unexpected strain energy in
the lattice caused by the cumulative errors in the numerical proce-
dure. In this connection, we are able to show that when mirror

b boundary conditions are imposed the residual numerical error is in-

deed small, a few percent. There is also evidence of second sound,
albeit heavily damped, propagating at this moderately high tempera-
ture. However, we shall not pursue this intriguing problem here.
Further tests of the model may be devised. For example, it would be
useful to investigate the effect of temperature on the lattice
thermal conductivity. If the result should also prove to be reason-
able, it would then be of interest to investigate thermal conductiv-
ity under conditions not easily accessible by present-day theory or
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experiment, e.g., under conditions of extreme pressure. Our expe-
rience indicates, however, that the calculation of thermal diffu-
sivity by the method of molecular dynamics is so lengthy as to be
too costly and too inefficient. If the transient nature of the
heat flow is not under study, then we believe that a model for
steady heat flow, from which the thermal conductivity may be obtain-
ed directly(5), would be considerably more economical and more

convenient to investigate than the diffusive model employed here.
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