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SUPERIORITY OF FIT

1. INTRODUCTION

Do discrepancies between observations and predictions indicate

true population differences? A statistical test, which in the

Neyman—Pearson formulation (4] can answer this question either

yes (with the risk of a Type I error) or no (with the risk of a

Type II error), can also , in the Fisher formulation (1, Chapter 2],

fail to answer the question (an insignificant result) or, answering

it , answer it only in the affirmative (a significant result).

Neyman (3] reviews the controversy between these two opposing

formulations. Though the tendency over the years has been increas-

ingly to adopt the Neyman-Pearson formulation in both textbooks

and research reports, the practice in specific subject—matter areas

has not always been consistent. In psychology , for example, while

textbooks typically present the Neyman—Pearson formulation, research =

reports continue to reflect the influence of Fisher in such state-

ments as “The result is significant (p < .05)” or “The result is

not significant (p > .0 5), ” where p indicates the probability

that the result (or a more extreme result) is simply due to

sampling error. The purpose here1, however , is not to evaluate

either formulation, espscially relative to the other , but rather

to present a hybrid formulation applicable particularly to the

evaluation of numerical predictions.

2. A HYBRID FISHER * NEYMAN PEARSON FORMULATION

This formulation rests on a widespread belief among philo-

sophers of science (e.g., 2, Chapter 4, particularly p. 78] that

no numerical prediction is precisely accurate. Testing the 
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accuracy of a single numerical prediction thus makes no sense:

Use of a large enough sample will always lead to the rejection

of the p:ediction as inaccurate. To rule out tests of goodness

of fit, however, is not to rule out tests of superiority of fit.

Testing the relative accuracy of two different numerical predic—

tions on the same set of observations does make sense. The null

hypothesis (H0) of such a test (the hypothesis to be nullified,

in Fisher ’s terminology) is simply that the two predictions are

equally inaccurate. Equal inaccuracy implies that the population

value is midway between the two predictions so that their mean is

itself a precisely accurate prediction . The null hypothesis of

equal inaccuracy must thus be false.

If this hypothesis is false, however , then one of the two

predictions must be more accurate that the other. Deciding that

one prediction is more accurate than the other when the reverse

is true is thus an all-inclusive error having unconditional , or

total, probabilitya

— ct1P1 + 
~2~

’2’ (2.1)

where a.~ (i=l ,2~ is the conditional probability of incorrectly

deciding that prediction i is less accurate and 
~~ 

(il ,2) is

the (prior) probability that prediction i is in fact more accur-

ate. Fairness to both predictions requires that 
~~~~ . 

= =
so that

= cs(P1 + P2). (2.2)
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If equal inaccuracy is impossible, P1 + P2 1, and thus aT
The total probability of error is equal to either one of the two

equal conditional probabilities of error.

This formulation thus resembles Fisher~~ in its exclusion of

the acceptability of H0 and Neyman—Pearson ’s in its inclusion of

the probability of error.

3. TESTING SUPERIORITY OF FIT

Application in the form of a statistical test requires speci-

fication of the null hypothesis and sequential data collection until

the rejection of this hypothesis occurs.

Since the null value (9) is midway between the two predicted

values and 
~2~ ’ 

the null hypothesis is H0: 9 = (9 ,~ + 
~2
)/2. The

equality sign in this hypothesis shows that the test is two-tailed.

Rejection of H0 occurs when the test statistic falls in either tail

of the sampling distribution that the test statistic would have if

H0 were true. The decision that follows, that one or the other

prediction is more accurate, depends on which tail this is. Either

decision has a probability of error equal to a, the area under

each tail, which is also the total probability of error.

Sequential data collection is necessary to avoid the acceptance

of H0, which, according to the belief that no prediction is pre-

cisely accurate, is impossible. Sampling thus proceeds one sampling

unit at a time. Computation of the test statistic (or an equivalent

value) T follows the sampling of each sampling unit along with the

determination (if necessary) of appropriate critical values, t1

—3—
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and t2 (t 1 
< t2). The decision depends on the relationship between

T and t1 and t2: If T < t1, the decision is that prediction 1

is more accurate than prediction 2; if T > t2, the decision is that

prediction 2 is more accurate than prediction 1. If t1 < T <

however, the decision is to continue sampling.

4. AN ILLUSTRATION OF THE METHOD

On the first day of school, an instructor of a large class

administers a preliminary examination consisting of many items,

each scorable as correct or incorrect. Automatic scoring inunedi-

ately following the examination shows that the mean proportion of

items answered correctly is l.  Knowing ii , the instructor then

asks a student selected randomly from the class a question selected

randomly from the examination in a process that continues, if nec-

essary, for a parallel succession of students and questions until the

answer received is correct. Recording the number (X) of answers

received prior to the correct answer, the instructor repeats the

process for trial after trial in order to determine whether a geo—

metric distribution with parameter ii or a Poisson distribution with

parameter (1 - lr)/-!r more accurately predicts the variance of X.

Each of these distributions predicts the same mean: M (1 - 11)/iT .

If the variance of X is C for the Poisson and a2 for the

geometric distribution, the null hypothesis is H0: a2 (a~ + a~ )/2,

where

= (1 - l ) / 1 1  (4.1)

and

~ 
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— (1. — i~)/ir~~~. (4.2)

The test statistic is chi. square divided by its degress of freedom:

N 2 2T ~ (X 
— p )  /Ns, , (4 .3 )

which (u being known) has N degrees of freedom after the sampling

of N sampling units. Using ~ and a2 as constants, an elec-

tronic calculator determines T for each pair of X and N values,

and the instructor plots these values on a graph on which two lines

join the critical values t1 and t2 for successive values of N.

Figure A shows the results for it = .2 and a = .05. After fiveT
quee-t4en~~yielding the succession of X values 2, 5, 4, 6, and 4,

the instructor rejects H0, deciding with a probability of error

equal to .05 that the Poisson distribution predicts the variance

4 . more accurately than the geometric distribution.

N
5. DISCUSSION OF THE ILLUSTRATION

Since the succession of incorrect and correct answers consti-

tutes a Bernoulli process, the distribution of X ought to be geo-

metric , not Poisson. The result, however, is not one of the five

errors that can occur in every one hundred repetitions of the test.

The illustration is fictitious. The product of simulation, the five

observations tend in fact to follow a Poisson distribution with

parameter equal to 4. The histogram in Figure B describes this

distribution. As a general rule, for samples as small as five, the

probability of error approximates its nominal value to the extent

that the observations follow a normal distribution. Since the histo-

gram in Figure B tends to be unimodal and symmetrical like a normal 
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FiGURE A. TEST STATiSTIC (DOTS) AND CRITICAL
t VALUES (t1 AND t2) AS A FUNCTION

4 ° OF TRIAL NUMBER (n)
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FIGURE B. HISTOGRAM OF POISSON
DISTRIBUTION WITH
PARAMETER 4
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curve, therefore, the total probability of error ought to be close

to its nominal value of .05 despite the small sample size.

Such early rejection of H0 in a sequential test is ordinarily

not so defensible. If the sampling distribution of X were closer

to the geometric than the Poisson , for example , the histogram in

Figure B might be skewed suff iciently to have a substantial ef f ect

on the total probability of error , particularly for low N. Since

f ive observations were necessary to reject H0 in favor of a

Poisson distribution even when the distribution of the observations

was in fact Poisson , however , a sample considerably larger than five

would li kely be necessary to reject H0 inappropriately in favor of

a Poissoit distribution. The requirement of large samples for the

occurrence of error keeps the test honest. Regardless of the form

of the distribution of observations , the probability of error gener-

ally tends more and more closely to approximate its nominal value as

samples increase in size.

Statistics other than the variance tested here are , of course ,

also possible targets of inference in tests of superiority of fit.

The number of sampling units required , however , may depend on the

statistic chosen for testing . This number generally ought to be

smaller for predictions that are far apart than for predictions that

are close together. The two distributions compared here thus allowed

no choice: The predictions of the mean were equal , and the predic-

tions of the variance were particularly far apart (4 versus 20) .
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