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: ABSTRACT
b ,

A criterion of fracture under proportional straining has been derived
for materials that undergo plastic deformation prior to failure. This has
been done using endochronic theories of plasticity and fracture proposed by
Valanis. The strain criterion for fracture of britfle materials, proposed
by Wu, falls into the class of more specific criteria encompassed by the
criterion proposed here.

The criterion suggests that fracture will occur when the magnitude s of
the strain vector in strain space reaches a criticgluvalue. More specifically,
in the event that s depends only on the angle Q_’betveen the stfain vector
and hydrostatic strain vector, it then follows that s = s(¢), thus giving
rise to a polar form of a fracture surface which is rotationally symmetric
with respect to hydrostatic strain vector. This polar form allows for a one
parameter representation of the fracture surface in a triaxial strain field.

In Part II of this paper we show that the theory is fully corroborated
by extensive experimental data on gray cast iron.
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I. INTRODUCTION

Fracture of materials under proportional loaéing has been a frequent
topic of investigation since it plays an important role in the establishment
of safe working loads in engineering design. Numerous fracture criteria have
been proposed in the past. A summary of the available theories, though not
exhaustive, can be found in Nadai [1] and Paul [2].

In this treatment, we have taken a new approach in obtaining a solution
for this old problem. This approach stems from the previous works of the
authors.

An energy-probability theory of fracture has recently beer proposed by
Valanis [3]. This theory is based on the concepts of probabili;y and
intrinsic time; the latter was originally introduced by the first author in
the development of the endochronic theory of viscoplasticity [4]. According
to the aforementioned theory, fracture occurs on an intrinsic time scale ¢

which, in the case of plasticity is given by:

2
a0 = Py snn 9B, 95, S o

where is a positive semi-definite ~ymmetric material tensor which

Pike

may depend on the Green tensgor E Fracture of a microelement will have

i3°
occurred if the intrinsic time ¢ of the microelement has reached a critical

value Ces which is given by the equation:

c -y
f {1 - M }d; -1 1.2)
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where Y is a material parameter; k 1is the Boltzmann constant; T the
absolute temperature; and y 1is the change in energy of the microelement
(relative to its unstressed state). The fracture activation energy wo
introduced in Ref. [3] has been assumed to be zero in the present
discussion.

In the same paper, Valanis discussed the case of fracture under pro-
portional straining when the material obeys Hooke's law. A brief account
of this discussion is given in the following:
In the Euclidean principal strain space (el, €y 63) let:
de? = de, de (1.3)
3 i ¢
Proportional straining is then defined by the relation
dc1 = ds (1.4)

where li are constant direction cosines of a radial stain path of length s.

Under conditions of small deformation, the Green tensor E in equation

1j

(1.1) is replaced by the small strain tensor This equation in con-

€q°
junction with equation (1.4), reduces now to

2 2
dg Pijlizj ds (1.5)

In Ref. [3] a more restrictive assumption was made, for simplicity, that
Pij depends only on the direction of the vector €4 but not on its
magnitude, in which event, the scalar product Pijzizj is a function of

li only. In addition, a function f(zi) was defined such that




2
£f° = Pijxizj (1.6)

Fquation (1.5) may therefore be written as

dg = f(li) ds .7y

In the case of elastic materials obeying Hooke's law, the strain energy,

which is the free energy at constant temperature, is given by

P (1.8)

1
2 cijlizj and cij is the matrix of elastic constants defined

by the linear relation o

where o =

= ¢ .£,, where o, are the principal components

1 %135 1

of the stress tensor.
Substituting equation (1.8) into equation (1.2) and integrating, the

following transcendental equation is obtained for the critical values 8.

of s:

- o IET 55 Ve
£(2,) {sc ‘[;;a erf y13 sc} 1 (1.9)

The solution of this equation is of the form:

., - sc(zi) (1.10)

Equation (1.10) defines, in strain space, a fracture surface on, or within,

which all fracture initiation events will have occurred.
Valanis then considered the case where the fracture surface possesses

rotational symmetry with respect to the hydrostatic strain vector (Fig. 1).

For this type of fracture surface, 5. is a function only of the angle ¢
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4
between the strain vector ei and the hydrostatic strain vector, where
34 3
cos ¢ =W =—— (2, + 2+ 2,) (1.11)
312 /3 1 2 3
and i, = tre i, = tr( 2)
1 W 2 it
g
|
The function s, depends on 11 through u(li) and f(zi). It was shown,

however, that any asymmetry of the fracture surface with respect to the null
hydrostatic strain plane: ¢ = %; must be due to the function f(zi). y
In this paper, the same approach as described above with the fracture

surface having rotational symmetry about the hydrostatic axis has been

followed to investigate fracture of a class of materials which undergo
plastic deformation prior to fracture. In particular, a fracture criterion
for this class of materials has been derived. It is shown in Part II of
this paper, that in the case of gray cast iron, the form of this criterion
is identical to the strain criterion of fracture proposed by Wu [5].

The appropriate constitutive equation used in the derivation, is given
in the Appendix. This equation becomes linear in s, as s 1increases
beyond the "elastic range', though the magnitude of the strain field remains
small in the accepted kinematic sense. The physical consequence in simple
tension, for instance, is that the stress-strain curve becomes asymptotically
linear, for larger '"plastic' strains.

The asymptotic (linear) form of the constitutive equation plays a signi-
ficant role in the prediction of fracture of plastic materials. The obtained
solution is a lower bound.

In the final section, we discuss at length the material temsor P

13




which appears in equation (1.5). This tensor is pivotal in the prediction
of fracture after the material has experienced a more general deformation
history. It will be shown that, under the assumption of isotropy of the
tensor Pij in the null hydrostatic strain plane, the fracture surface is
rotationally symmetric about the hydrostatic strain vector. This result

will be justified by experimental data on gray cast iron in Part II of this

paper.

II. The Free Energy

For plastic materials under proportional straining, an expression for
the free energy function y 1s obtained in this section, which, in the
next sectfon, is substituted into equation (1.2) to obtain the fracture
criterion.

In the case of small deformation and under suitable smoothness
assumptions regarding the functional dependence of ¥ on ¢ and g“.
one can express the free energy density in a quadratic form in ¢ and ga,
where ga (¢« =1, 2, ..., n) are n internal state variables. In an one

dimensional stress field, a direct comparison with a mechanical model shows

that the appropriate form is:

221-:(: - 2 (2.1)

where Ea are the spring constants and € and qg are, respectively,
the strain and internal state variables corresponding to the one-dimensional

field.




In a three-dimensional situation, isotropy allows a simple decomposition

of ¢y 1into the form:
w = wn -+ wD (2.2)

where Yy and b are the parts of free energy associated with volumetric
deformation and shear deformation respectively, as can be readily seen in

Appendix II of Ref. [4]. We thus have:
by = Z utr [(e - p7) (2.3)
D a - - ¥
a
1 o2
and wH -5 i Ka (e - q) (2.4)

where

g =ty ¢ (2.5)

The constants Yo and Ka are the spring constants corresponding to shear

and volumetric deformations, respectively.
Using equations (2.2 - 2.5) and following Ref. [4], the rate equations
of the internal state variables are obtained in the principal strain space

in the following form:




a
a udg £

Kuq + bo = Kcl €ty (o not summed) (2.6)
.

2uup1 + b2 A - Zua e, (o not summed) $2.7)

where bg and b; are the volumetric and the deviatoric parts of the
viscosity tensor respectively and z 1is the intrinsic time scale.

Integration of equations (2.6) and (2.7) gives:

z =\ (z-z'")
qu = ¢(z) -f i -g—i. dz' (2.8)
o
and
= 2 -Aq(z-z') de
pi = ei(z) - e 'a—z‘f dz' (2'9)
o
where, for constant Poisson's ratio*,
Ka Zua
Au e (2.10)
=k
o 2

One can combine equations (2.R) and {(7.9) to ohtain:

z ~\ (z-2') 3¢
aq ey - f . T -
o

We now observe that since for proportional straining €4 = zis and

AN, & s < .
o Ry e

e =/3s cos$, equation (2.11) can be reduced to:

* This is a reasonable assumption as has been demonstrated in Ref.'s [6]
and [7].
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a -a
= 12
ay liq (2.12)
where
o a
P (2.13)
/3 cos¢

Equation (2.12) shows that for proportional straining, the internal variables

and the strain vector are collinear in strain space - if Poisson's ratio is a

constant function.

Equations (2.2), (2.3), (2.4), (2.8) and (2.9) lead to the expression:

1 2 cos cos
v = '5[31(0(:08 $ + 2“0 Z (9.1 = = )(21 — s )]
z -\ (z-2') 2 .
‘ Zc [f e " a8 dz'] (2.14)
af Jo 2z

where, for constant Posson's ratio, the heredity functions are given by:

u(z) = u 6z , K(z) = K G(2) (2.15a)
where
G() =1 (2.15b)
T
G(z) = ZG"e R an =1 (2.15¢)
and

u =uG ’ K =KG (2.15d)

g i S0 MBI o




The integral in equation (2.14) can now be expressed in closed form by
use of equation (1.7) and the following relation previously introduced by

Valanis in Ref. (4],
1
z =% log (1+80) cr it

where 8 1s a constant. The resulting expression is:

-n 2
1 2 2 1+ gfs)|, _ a
Y o= —2-(3Kocoa ¢ + 2u_sin ¢) . Z cu%(-———-—ﬂfncL )[1 (1 + sfs) ]}

(2.17)

where

le

(2.18)

Equation (2.17) represents the free energy for plastic materials under
proportional straining. For large s, the free energy ¢ has the

asymptotic representation wA‘ where

o 2 -3 T E: 1 + pfs)\2
Ya 2(3K°cos ¢ + Zpo‘ in ¢) ¢ Ga( Bfnu > (2.19)
or
vy %[3& cosZ¢ + 2y ain2¢]{l-lﬁ—f-§]2 (2.20)
o o -
gfn
where 3
1
g !
b o i
L.) =2 @.21)
n n .
» :




It will be shown in the Appendix that for large s, the asymptotic

representation of the constitutive equation under proportional straining

has the form:

vl _ cosé 1 + Bfs
9y [Zuo(zi s ) + /3 Kocos¢:| 8fn (2.22)

G
Z a
n = l/ . ;‘: (2.23)

Direct substitution of equation (2.22) in equation (2.19) gives rise

to the following expression for large s:

G
s
2
_-g -
n
Qe

where wo is given by equation (2.25):

2

1 %4% 1 1 1

wc 2 Z 2. [Z Ui] 3(2u i ) (2.25)
(o] o o

and has the physical significance of the recoverable energy which would be

obtained if the material unloaded in a linear elastic fashion from the

stressed to the unstressed state.

As a result of equation (2.24) we have the following consequence:

The free energy of a plastic material under proportional
loading and large s, 1s a quadratic function of the
stress.
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In other words, WA is a quadratic function of 01.

Also one can show that:

C(! G“ 2
E - > E -t‘-l— (2.26)
n o
o

This may be shown as follows:
From equation (2.15c) and since Gu are all non-negative it follows

that Gu.i 1 for all a. In that event,

Gu 2 Ga
ol o Z:_z. (2.27)

a n

a

However, as a result of the Bessel Inequality:

G, |2 "an 2
a Q.

Hence, equation (2.26) follows directly. As a result of inequality (2.26)

we have the following consequence:

Yp 2V, (2.29)

For instance in simple tension:

2

L.
E (2.30)
o

N=

Va2

which is a revealing result. Note that for one internal variable WA is

precisely equal to %-ozlEo.
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TET. The Fracture Criterion

Substitution of equation (2.17) in equation (1.2) yields a fracture

criterion which has a representation of the type:

F(@.sc) =1 (3.1)

from which 8. of s at fracture may be determined. This fracture criterion

has a number of features which are worth discussing. It is of a polar form

sttt e b

which can be written as:

- F* (¢) (3.2)

The significance of equation (3.2) is that it is an one parameter represen-
tation of the fracture surface in the presence of a three dimensional strain

field. It is analytically defined in terms of a small number of parameters,

and a function £(¢).

In the particular case where fracture occurs for a sufficiently large
s (in simple tension this would be on the straight part of the "plastic" :

portion of the stress-strain curve), then the asymptotic expression WA of

¢ given by equation (2.20) may be used as an approximation; this leads to
a closed form solution. Substitution of equation (2.20) in equation (1.2),

then gives the following expression for 8.+

n

Y¥o 3v 2
ZJ;ﬁ:(l + 1-2v cos ¢
YU 3y 2 1+ stc ;
. erf @ <1 + == cos ¢>- (———:—— =1 (3.3) |
[ kT 1-2v gfn £
3
|

f (cos¢) sc -

e TR VI VT T TS S 4 A e T
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where Vv 1s Poisson's ratio.

It may be noted that the free energy is, thus, continuously overestimated
and the critical value . determined from the resulting equation (3.3) is,
in fact a LOWER BOUND.

In Part II of this paper we show that the lower bound is a good
approximation to the actual value s.» as far as gray cast iron is concerned.

Equation (3.3) has been derived on the basis of the assumption that the
fracture surface is rotationally symmetric about the hydrostatic strain axis.
This assumption will be further discussed later. We also notice from equation
(3.3) that any asymmetry of the fracture surface with respect to the null
hydrostatic strainu plane ¢ = g- must be due to the function f(li). This
conclusion has been obtained for elastic materials by Valanis [3] and has

been shown here to be valid for plastic materials as well.

Symmetries of the Fracture Surface

The fracture locus in the deviatoric plane (¢ --% ) must possess certain
symmetries for isotropic materials on the basis of the following considerations:
(1) With veference to Figure 1, the shape of the fracture locus should
remain invariant with permutation of the indices 1, 2 and 3 of the strain-axes.

The cons:raint resulting from this consideration is that the fracture locus

must pcssess a three-fold symmetry with respect to the axes and

€15 € €qe
(2) It is observed that the fracture properties remain invariant with
a reversal of the sign of the shear field in the presence of uniform hydro-
static strain. The implication of this consideration is that the fracture
locus in the deviatoric strain plane should be symmetric with respect to the

point of intersection of this plane and the hydrostatic axis.




14

The first consideration requires that, in so far as isotropic materials
are concerned, a proposed fracture surface must be symmetric with respect to

the axes and €q3 the second consideration requires that it is also

ko Ll
symmetric with respect to the axes ei. Eé and 55 which are orthogonal to

the axes €10 € and €3 respectively, at 0. Therefore, OA1 = OAi,
0A, = OAE and OA, = OAa in Figure 1. Combination of the above two consi-

*
derations requires of the fracture surface a six-fold symmetry with respect
to the six axes €19 €» Eq3 Ei’ eé, eé. Thus, only a 30° sector of the
fracture locus need to be found for the entire locus to be completely

determined.

Material Tensor P

13

If the matrix P1j were known, f would be completely determined in
consequence of the relation (1.6), and the fracture surface would, therefore,
also be determined. Conversely, equation (3.1) contributes toward the deter-

mination of P, ,.

1]
The material matrix Pij is now shown to be a second order temsor in the
tensor space e,. This follows from the axiom below:

Axiom: The functional dependence of dcz on de1 is form~invariant
with respect to rotation of the coordinate axes in the tensor

space ¢ i.e.,

i!

2 L} 1 A
dg” = Pij(ek) dey dej = Pij(ek) dei dej (3.4)

These arguments are reminiscent of similar ones in conjunction with the
yield locus in the classical theory of plasticity. There, incompressibility
and absence of Bauschinger effect were assumed. Such coneiderations do not
arise in this discussion.
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where

dci = Q1j dcJ (3.5)

and Qij is a proper orthogonal transformation.

This axiom is then a necessary and sufficient condition for P to be a

i3

tensor. To prove the sufficient condition, we note that equations (3.4) and

(3.5) lead to the expression
- Pt = 6

Since de1 is an arbitrary vector and P is symmetric it follows that

1)

Pro = QuQypPyy (3.6)

which establishes the aforementioned tensorial property of Pij'

Conversely, if P is a second order tensor, then substitution of (3.5)

i3
and (3.7) into (3.4) gives

2 '
g = Py, dey dey = Qu QpPy,Q,, dep Q deg

= 1 \J ' = ] ] (]
Gkrdzspkz der dea sz dek de2 (3.8)

Thus, the above axiom is recovered.

We remark that the above proof that Pij i{s a tensor in the tensor
space ¢, follows directly from the definition of the endochronic time given
by equation (1.1), and does not involve the fracture properties of a material.

Furthermore, the above proof may be easily generalized to include the case

of six-dimensional tensor space ¢

13°




Symmetries of Pi

J

It is convenient to introduce a primed orthogonal coordinate system such
that 3'-axis is also the axis of the hydrostatic strain (see Figure 2).

Symmetries of P can now be deduced from the 6-fold symmetry of the fracture

ij
locus in the deviatoric plane. The latter also implies a 6-fold symmetry for
the function f(li) on the same plane. Thus, the value of f 1is the same
at points A, B, C, D, E and F. In the particular case, when the fracture
surface is rotationally symmetric with respect to the hydrostatic axis, the
value of f remains the same everywhere on the circle ABCDEF. Let P! be

1]

the components of tensor P referred to the primed axes; let Qi and R; be

the direction cosines of two proportional strain paths that correspond to the

same value of f(li). These direction cosines are related by

ll= |
2y Rijlj (3.9)
where
cosf singd 0 l
Rij = | -gind cosf 0 (3.10) 1
0 0 X

and 6 1s the angle between the projections of the vectors 2; and l; in the

deviatoric strain plane. For the case of 6-fold symmetry, 6 1is a multiple

15%1%y * 1484

of %. ]
For the class of vectors 1; for which f2 remains constant we have 13

the relation ]
f2 - P' !"," - Pl "2’" (3.11) %Eo

i
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Substitution of equation (3.9) in equation (3.1l1) yilelds readily the important

relation

. '
Pij RikRj!.Pkl (3.12)

which defines the symmetries of the tensor P.
In particular, substitution of equation (3.10) in equation (3.12) and in
the event that © 1is a multiple of %, it transpires that, for these values

of 0O:

0 CEy ' Rt R S
Pll P22 + P33 ’ PIZ P23 P31 0 (3.13)

Therefore, at the axes of symmetry, the tensor Pij has only two independent

components. The off-diagonal terms are zero. This does not imply, however,

that Piz, 953 and Pi3 are zero at other locations in the deviatoric strain
plane. In fact, all components of Pij are periodic in magnitude with an
angle of periodicity %n Furthermore, Pij is positive semi definite. Pij also

enjoys the reflective symmetry with respect to the axes ei, eé and eé

(see Figure 1). This implies that in determining the fracture locus of an
isotropic material experimentally, only a 30 degree sector need be
investigated as stated previously.

In the particular case where the fracture locus in the deviatoric plane
is circular then equation (3.12) is true for all Rij defined by equation
(3.10), i.e., for all 6. In this event Pij is independent of 6 and

2 = Pt et » D 2 12 ¥ gt I 2 ' 2 i 2
f(li) Pijzilj Pll(ll + 22 ) + P33E3 Pllsin ¢ + P33C08 ¢ f (¢)
(3.14)
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That is, f 1s only a function of ¢ . If ¢ 1s fixed, then f 1is a
constant. Conversely, if PiJ is independent of 6§, then the fracture locus

in the deviatoric strain plane 1s a circle.

Finally, we show that the material tensor Pi can not be fully isotropic.

J

This can be shown by assuming P1 to be isotropic and then show that this

3

leads to a consequence which is not in agreement with observation. For isotropic

P we can write

i3’
Piyle) = Pij(ekel) = Pij(a, Bk y) (3.15)
The most general isotropic of Pij form is
Py = Po(8)6yy + Py(s)lyy + Pz(a)Likij (3.16)
where
Lij = lilj ’ tr L= tr Ez = tr E3 =1 (3.17)

Equation (3.16) can further be simplified to obtain

Pij =P8yt (P1+P2)2ilj (3.18)
Substitution of (3.18) in (1.6) yields
fz L S | =P +P P
137173 o 1 2
= a function of s only (3.19)

Thus, f 1s independent of ¢. In particular, if Pij is a function

of Li only, then f 1s also independent of s. Therefore, as the result




of fracture criterion (3.3), the fracture surface must be symmetric with

respect to the deviatoric plane in contradiction with observation.
It 1s interesting to remark that the assumption of transverse isotropy
of Pij with respect to the hydrostatic strain axis leads readily to the

following result, though the application of equation (3.6):

P1j =N|M 1-M M (3.20)
M M 1-M
where
(P' - P')
W 3 ot o .
M R N =3 (7 +283), (3.21)

In the above equations, Pi and Pé are the two independent parameters in Pij'

We note that P is thus determined by two independent parameters M and N.

1j

This last form (3.20) also follows if P is of the special

ijke

isotropic form:

1
Poke ™ F1%14%0 * 3 %5 Siuqn * Sqa04x (3.22)
where, however, P1 and P2 are functions of cos ¢ which is given

by eq. (1.11); in other words P1 and P2 are not constants but are functions

of a certain sort of the invariants of eij'

IV.  APPENDIX - THE STRESS-STRAIN RELATION UNDER PROPORTIONAL STRAINING

In the discussion of fracture of plastic materials, a stress-strain

relation is useful. This can be derived from the endochronic theory of

plasticity, in which




This equation, in conjuction with equations (2.2 - 2.4), gives rise to the

following equation in the principal space:

9y ---Z[Zum(e1 - q(;) R -g- ) (e - q“)] (A.2)

which, by use of equations (2.8) and (2.11), can be reduced to

z =i (z-z2")
g, - [éu (% - 2251) + /3 K _cos¢ a ™ 2 , dz' (A.3)
a\i /3 [+1 o z

or, for proportional straining:

o, = [2p° (zi - 9—‘%‘1’->+ /3 Kocos¢] Z:{cu<}..é;'_n§f_£)[l A m)-na]}

(A.4)

W

The above equation governs the relation between the stress components 9y and
the strain magnitude s for a given angle ¢. For large s, the stress-

strain relation (A.4) may be approximated by the following asymptotic form:

o = [Zuo (9,1 - %:_9-> + /3 KOCOS{I(LEEEE;') (A.5)

where

G
:1-1/2;1g (A.6)
o a

The parameters n and Bf 1in equation (A.5) can be determined from the

uniaxial tension test. In this test, one has a proportional stress path; one
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also has a proportional strain path if Poisson's ratio i1s a constant. In

particular,
€) = €3 = -V &, (A.7)
2 = 1 h Ly =2, = —_— (A.8)
/1 + 2v Y1 + 2v
and
cos¢ = Aol (A.9)
/3 V1 + 2y

Furthermore, equation (A.4) becomes

Eo Z (1 + 8151)[ -na]
O G \———=])|1 - (1 + B.¢e (A.10)
1 a + 2v! - o gfn 11
@ where

B, = /1 + 292 pf (A.11)

1
It is easily shown that

n = EO/Et (A.12)

i Bl - Etloo (A.13)

and




mf“/
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where E(o) denotes the initial slope of the uniaxial stress-strain curve,
Et is the tangent modulus at large strain (the slope of the asymptotic
straight line), and % the intercept of the asymptotic straight line with
the stress axis. Equations (A.12) and (A.13) are used to determine the

parameters n and 81 for a given material.
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FIGURE CAPTIONS

Figure 1 Fracture locus in the deviatoric strain plane (¢ = %9

Figure 2 The transformation Rij
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