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ABSTRACT

$

A criterion of fracture under proportional straining has been derived

for materials that undergo plastic deformation prior to failure. This has

been done using endochronic theories of plasticity and fracture proposed by

Valanje. The strain criterion for fracture of brittle materials, proposed

by Wu, falls into the class of more specific criteria encompassed by the

criterion proposed here.

The criterion suggests that fracture will occur when the magnitude s of

the strain vector in strain space reaches a critical value. More specifically ,

in the event that s depends only on the angle $ between the strain vector

and hydrostatic strain vector, it then follows that s — s($), thus giving

rise to a polar form of a fracture surface which is rotationally symmetric

with respect to hydrostatic strain vector. This polar form allows for a one

parameter representation of the fracture surface in a triaxial strain field.

In Part II of this paper we show that the theory is fully corroborated

by extensive experimental data on gray cast iron.
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I. INTRODUCTION

Fracture of materials under proportional loading has been a frequent
I

topic of investigation since it plays an important role in the establishment

of safe working loads in engineering design. Numerous fracture criteria have

been proposed in the past. A summary of the available theories, though not

exhaustive, can be found in Nadai (1] and Paul [2]. -

In this treatment, we have taken a new approach in obtaining a solution

for this old problem. This approach stems from the previous works of the

authors.

An energy—probability theory of fracture has recently been proposed by

Valanis [3]. This theory is based on the concepts of probability and

intrinsic time; the latter was originally introduced by the first author in

the development of the endochronic theory of viscoplasticity (4]. According

to the aforementioned theory, fracture occurs on an intrinsic time scale C

vhich, in the case of plasticity is given by:

d~
2 

— P
iJkL

dE.KLdE.KL 
- - (1.1)

where is a positive semi—definltc ~ rmaetric material tensor which

may depend on the Green tensor E
1~
. Fracture of a inicroelement will have

occurred if the intrinsic time r of the microelement has reached a critical

value which is given by the equation:

J ~l — e  ~d~~~’l (1.2)

0
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where y is a material parameter; k is the Boltzaann constant ; T the

absolute temperature ; and ~i is the change in energy of the microelentent

(relative to its unstressed state) . The fracture activation energy 
~~~

introduced in Ref. [3] has been assumed to be zero in the present

discussion.

In the same paper , Valanis discussed the case of fracture under pro—

portional straining when the material obeys Rooke’s law. A brief account

of this discussion is given in the following:

In the Euclidean principal strain space (ci, € 2~ € 3) let :

da 2 
— dc~ dci (1.3)

Proportional straining is then defined by the relation

dc1 — L~ ds (1.4)

where are constant direction cosines of a radial stain path of length s.

Under conditions of small deformation , the Green tensor ~~ in equation

• (1.1) is replaced by the small strain tensor c~~ . This equation in con-

junction with equation (1.4), reduces now to

dC2 — P
1~L~L~ ds2 (1.5)

In Ref. [3] a more restrictive assumption was made, for simplicity, that

P
1~ depends only on the direction of the vector c~ but not on ita

magnitude, in which event, the scalar product P~J
L~ L~ is a function of

L~ only. In addition , a function f(L~) was defined such tha t

iA— 
- -
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f2 — P~1
&1

L
J 

(1.6)

Equation (1.5) may therefore be written as

d~ — fUr
) ds (1.7)

In the case of elastic materials obeying Rooke’s law, the strain energy,

which is the free energy at constant temperature, is given by

— 
2 (1.8)

where a — 
~ 

cijLj&j and C
jj 

is the matrix of elastic constants defined

by the linear relation = cjjcj~ 
where are the principal components

of the stress tensor.

Substituting equation (1.8) into equation (1.2) and integrating, the

following transcendental equation is obtained for the critical values

of a:

f(i~){s 
— if erfif~~~sc}.~ 1 

(1.9)

The solution of this equation is of the f~~in:

— s
~

(Lj) (1.10)

Equation (1.10) defines, in strain space, a fracture surface on, or within,

which all fracture initiation events will have occurred.

Valanis then considered the case where the fracture surface possesses

rotational symmetry with respect to the hydrostatic strain vector (Pig. 1).

For this type of fracture surface, is a function only of the angle +

—
~~~~

--
~~ I
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between the strain vector and the hydrostatic strain vector, where

cos • — ~~~ (L~ + L2 + t3) (1.11)

and i
1 

— trc , i2 — tr(~
2)

The function s~ depends on L~ through a(L~) and f ( L 1). It was shown,

however, that any asynmietry of the fracture surface with respect to the null

hydrostatic strain plane: ~ 
.
~~

-
, must be due to the function f(21).

In this paper, the same approach as described above with the fracture

surface having rotational symmetry about the hydrostatic axis has been

followed to investigate fracture of a class of materials which undergo

plastic deformation prior to fracture. In particular, a fracture criterion

for this class of materials has been derived. It is shown in Part II of

this paper, that in the case of gray cast iron , the form of this criterion

is identical to the strain criterion of fracture proposed by Wu [5].

The appropriate constitutive equation used in the derivation, is given

in the Appendix. This equation becomes linear in s, as a increases

beyond the “elastic rangc”, though the magnitude of the strain field remains

small in the accepted kinematic sense. The physical consequence in simple

tension , for instance, is that the stress—strain curve becomes asymptotically

linear, for larger “plastic” strains.

The asymptotic (linear) form of the constitutive equation plays a signi-

ficant role in the prediction of fracture of plastic materials. The obtained

solution is a lower bound.

In the final section, we discuss at length the material tensor P~3

— _t_  - .
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which appears in equation (1.5). This tensor is pivotal in the prediction

of fracture after the material has experienced a more general deformation

history. It will be shown that, under the assumption of isotropy of the

tensor in the null hydrostatic strain plane, the fracture surface is

rotationally symmetric about the hydrostatic strain vector. This result

will be justified by experimental data on gray cast iron in Part II of this

paper.

II. The Free Energy

For plastic materials under proportional straining, an expression for

the free energy function 4’ is obtained in this section, which, in the

next section , is substituted into equation (1.2) to obtain the fracture

criterion.

In the case of small deformation and under suitable smoothness

assumptions regarding the functional dependence of 4’ on ç and q
a
,

one can express the free energy density in a quadratic form in ~ and

where 9
a (a — 1, 2, ..., n) are n internal state variables. In an one

dimensional stress f ield , a direct comparison with a mechanical model shows

that the appropriate form is:

* — 4 Ea(€ j. 
— q~)

2 
(2.1)

where Ea are the spring constants and and q~ are, respectively,

the strain and internal state variables corresponding to the one—dimensional

field.

[ _•~~~~~~~~~~~~~~~~~ -
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In a three—dimensional situation, isotropy allows a simple decomposition

of ~ into the form:

4’ 4’R~~~~~~
4’D 

( 2 . 2 )

where and are the parts of free energy associated with volumetric

deformation and shear deformation respectively, as can be readily seen in

Appendix II of Ref . [4]. We thus have:

[( — p
5)2] (2.3)

and 4~ 
K (c — qa)

2 (2.4)

where

a a 1 a
~ — g  — •

~~~~q

a aq — tr q

1e c

t — t r c (2.5)

The constants j i  and K are the spring constants corresponding to shear

and volumetric deformations, respectively.

Using equations (2.2 — 2.5) and following Ref. [4], the rate equations

of the Internal state variables are obtained In the principal strain space

in the following form:

I

_ _ _ _ _ _ _ _ _  _ _ _ _ _
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K~q
a 

+ b — Ka € (a not summed) (2.6)

adp
2~~p~ + b~ ~~~ — 2ij e~ (a not summed) (2.7)

where b’1 and b~ are the volumetric and the deviatoric parts of the

viscosity tensor respectively and z is the intrinsic time scale.

Integration of equations (2.6) and (2.7) gives:

z —A (z—z’)
qa — c(z)  — j  e a 

~~~ 
dz ’ (2.8)

and
a —A (z—z ’) ae

-
~ p~ — ei (z) — j  e a dz ’ (2.9)

where, for constant Poisson ’s ratio*,

K 2~
A — ~~~

•
~~

•
~ 

. —_
~~ (2.10)

o 2

One can combine equations (2.R) and ~‘.9) to ohtain:

z —A (z—z’) a€
e a 

~-4 dz’ (2.11)

We now observe that since for propor tional straining c~ — ~~s and

£ — a cos$, equation (2.11) can be reduced to:

* This is a reasonable assumption as has been demonstrated in Ref.’s [6]
and (7].

4 ’ 
_—__ ---~~---- _i ~~~~~ _ —— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -=:~ 
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q~ 
- (2.12)

where

a—a 
— 

q (2.13)
/ ~ coa$

EQuation (2.121 shows that for proportional straining, the internal variables

and the strain vector are collinear in strain ~pace — if Poisson ’s ratio is a

constant function.

Equations (2.2), (2.3), (2.4), (2.8) and (2.9) lead to the expression :

- 113k cos2~ + 2~~ Y’ (~ - - 
cos~2 L ° o~~

U..rl
~~~\ i  / ~~J \ i ,~

e

_

~~~~
_Z
~

I 

~~~~ dz?] (2.14)

where, for constant Posson’s ratio, the heredity functions are given by:

u G(z) , K(z) KG(z) (2.lSa)

where

G(O) — 1 (2.15b)

G(z ) — ~~~~G e a 1 (2.l5c)

and

~ p G , K — K G  (2.15d)
a o n  a o a  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The integral in equation (2.14) can now be expressed in closed form by

use of equation (1.7) and the following relation previously introduced by

Valanis in Ref . [4],

z — log (1 + 8C) (2.16)

where B is a constant. The resulting expression is:

4(3K cos2q + 2u s1n2
4) . .{(l

.4-
Bfs)[i — (i + ) c ~~]} 

(2.17)

where

A
(2.18)

Equation (2.1.7) represents the free energy for plastic materials under

proportional straining. For large s, the free energy 4’ has the

asymptotic representation 4’A ’ 
where

or 

4’A 
- f(3Kcos2~ + 2~J~~~n

2,) . ~~~~G (l~~~~f8)2 (2.19)

— 4[3K ~~~~~~~ ÷ 2u0sIn
2
*][1

+
~~~8]2 (2.20)

where

-.2~
’
~~~~~~~2 (2.21)
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It will be shown in the Appendix that for large a, the asymptotic

representation of the constitutive equation under proportional straining

has the form :

a - I2~i (L - cos4
’
~ + / ~ K cos~l 

1 + Bfs (2.22)
~ L ° \ ~ ~/5~! ° j ~~

where

— -~~ - (2.23)

Direct substitution of equation (2.22) in equation (2.19) gives rise

to the following expression for large a:

_ _ _= 

[

~~~~G]2 
4’o 

(2.24)

where iji is given by equatIon (2.25):

4’0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 2 . 2 5 )

and has the physical significance of the recoverable energy which would be

obtained if the material unloaded in a linear elastic fashion from the

stressed to the unstressed state.

As a result of equation (2.24) we have the following consequence:

The free energy of a plastic material under proportional
loading and large a, is a quadratic function of the
stress. 

—

_11~~
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In other words , 4’A ~s a quadratic function of o~ .

Also one can show that

E
r 

(2.26)

This may be shown as follows:

From equation (2.l5c) and since G are all non—negative it follows

that C < 1 for all a. In that event ,

I (2.27)

However , as a result of the Bessel Inequality:

E{Ga]2 ~~~~~G ] 2  (2.28)

Hence , equation (2.26) follows directly. As a result of inequality (2.26)

we have the following consequence:

(2. 29)

For instance in simple tension:

4’A~~~ 2 E  (2.30)

which is a revealing result. Note that for one internal variable is

1 2precisely equal to a /E0.
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III. The Fracture Criterion

Substitution of equation (2.17) in equation (1.2) yields a fractur:e

criterion which has a representation of the type:

F(~~ ,s~~) — 1 (3.1)

from which s of 8 at fracture may be determined. This fracture criteriot

has a number of features which are worth discussing. It is of a polar form

which can be written as:

— F* (4’) (3.2)

The significance of equation (3.2) is that it is an one parameter represen-

tation of the fracture surface in the presence of a three dimensional strain

field. It is analytically defined in terms of a small nuu~er of parameters,

— 
and a function f (~). —

In the par ticular case where fracture occurs for a suff iciently large

a (in simple tension this would be on the straight part of the “plastic”

portion of the stress—strain curve) , then the asymptotic expression of

4’ given by equation (2.20) may be used as an approximation; this leads to

a closed form solution. Substitution of equation (2.20) in equation (1.2),

then gives the following expression for

f(cosp )  a — ___________________

c 
+ i:i~~ 

cos~~)

erf 
[

~
!13

~o 
(1 + 

~~~~ 
cos2

,). 
(

l +~~~~8~)]~~ 
— i ( 3 . 3 )  

__. — _ .—_-_ _
~~~~- — — - - —-———- —_.- —_- .- ---

~~~~~
--- -

~
—---- :~~~~~~~~~~
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where V is Poisson’s ratio.

It may be noted that the free energy is, thus, continuously overestimated

and the critical value determined from the resulting equation (3.3) is,

in fact a LOWER BOUND.

in Part II of this paper we show that the lower bound is a good

approximation to the actual value as far as gray cast iron is concerned.

Equation (3.3) has been derived on the basis of the assumption that the

fracture surface is rotationally symmetric about the hydrostatic strain axis.

This assumption will be further discussed later. We also notice from equation

(3.3) that any asymmetry of the fracture surface with respect to the null

hydrostatic straiu plane • — must be due to the function fU~). This

conclusion has been obtained for elastic materials by Valanis [33 and has

been shown here to be valid for plastic materials as well.

Symmetries of the Fracture Surface -

The fracture locus in the deviatoric plane (~ f ) must possess certain

symmetries for isotropic materials on the basis of the following considerations:

(1) With ~eference to Figure 1, the shape of the fracture locus should

remain inv~riant with permutation of the indices 1, 2 and 3 of the strain—axes.

The cons raint resulting from this consideration i~ that the fracture locus

must pc-ssess a three—fold symmetry with respect to the axes £1, £2 and £3. j
(2) It is observed that the fracture properties remain invariant with

a reversal of the sign of the shear field in the presence of uniform hydro-

static strain. The Implication of this consideration is that the fracture

locus in the deviatoric strain plane should be symmetric with respect to the

point of intersection of this plane and the hydrostatic axis. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—“-_----- _~~~~ - _  .- - -
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The first consideration requires that, in so far as isotropic materials

are concerned , a proposed fracture surface must be symmetric with respect to

the axes cli £2 and £3; the second consideration requires that it is also

symmetric with respect to the axes Ej~ 4 and c which are orthogonal to

— the axes cli £2 and £3 
respectively, at 0. Therefore, 0A1 — OA~~~.

0A
2 

— OA~ and 0A3 
— OA~ in Figure 1. Combination of the above two consi—

derations requires of the fracture surface a six—fold symmetry with respect

to the six axes Eli £2 , £3; 4, 4, c .  Thus, only a 30° sector of the

fracture locus need to be found for the entire locus to be completely

determined .

Material Tensor P
1

If the matrix P~~ were known, I would be completely determined in

consequence of the relation (1.6), and the fracture surface would, therefore,

also be determined . Conversely, equation (3.1) contributes toward the deter—

mination of P~~.

The material matrix is now shown to be a second order tensor in the

tensor space This follows from the axiom below:

Axiom: The functional dependence of d~
2 on dc1 is form—invariant

with respect to rotation of the coordinate axes in the tensor

F space c~ , i.e.,

d~~
2 

— P
~ j (ck) dci dc~ P~~ (c1~) dc~ dc~ (3.4)

- I * These arguments are reminiscent of similar ones in conjunction with the
yield locus In the classical theory of plasticity. Ther e , incompressibility
and absence of Bauschinger effect were assumed. Such considerations do not
arise in this discussion. 

- - - -.-- 
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where

dc~~ — Q~~ dc~~ (3.5)

and Q1~ is a proper orthogonal transformation.

This axiom is then a necessary and sufficient condition for to be a

tensor. To prove the sufficient condition, we note that equations (3.4) and

(3.5) lead to the expression

- 
~ij~ ik~j~) 

dc k dc~ — 0 (3.6)

Since dc 1 Is an arb itrary vector and P
1~ 

is symmetric it follows that

— 

~Ik~jL”ij 
(3.6)

which establishes the aforementioned tensorial property of P
1~ .

Conversely , if P~~ is a second order tensor, then substitution of (3.5)

and (3.7) into (3.4) gives

d~
2 

- P
1~ dc~ de~ - 

~ki~Lj~~i~ ir dc Q~ dc~

— 

~~~~~L8~
’ dc dc ’ — P~~~ dc~ dc~ (3.8)

Thus, the above axiom is recovered.

We remark that the above proof that is a tensor in the tensor

space c~ follows directly from the def inition of the endochronic time given

by equation (1.1), and does not involve the fracture properties of a material.

Furthermore , the above proof may be easily generalized to include the case

of six—dimensional tensor space

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Symmetries of P1~

It is convenient to introduce a primed orthogonal coordinate system such

that 3’— axis is also the axis of the hydrostatic strain (see Figure 2 ) .

Sinzsetries of can now be deduced from the 6—fold symmetry of the fracture

locus in the deviatoric plane. The latter also implies a 6—fold symmetry for

the function f (~ 1) on the same plane. Thus, the value of f is the same

at points A , B, C, D , E and F. In the particular case, when the fracture

surface is rotationally symmetric with respect to the hydrostatic axis, the

value of f remains the same everywhere on the circ le ABCDEF. Let P~~ be

the components of tensor P referred to the primed axes; let and R.’~ be

the direction cosines of two proportional strain paths that correspond to the

same value of f(i ). These direction cosines are related by

£ ‘~ — R
1~~~~ ( 3 . 9 )

where

cosO sinG 0

— —sinG cosO 0 (3.10)

0 0 1

and 6 is the angle between the projections of the vectors and L’ in the

deviatoric strain plane. For the case of 6—fold symmetry , 0 is a multiple

of~~~ .

For the class of vectors R.’~ for which f 2 remains constant we have

the relation

f
2 

— P
J
LjL~ — P L ~~i~~ (3 .11)  •1

_ _ _ _ _  _ _ _ _ _  

41
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Substitution of equation (3.9) in equation (3.11) yields readily the important

relation

— R
ik
R
JL
P
~L 

(3.12)

which defines the symmetries of the tensor ?.

In particular , substitution of equation (3.10) in equation (3.12) and in

the event that 8 is a multiple of ~~~, it transpires tha t , f or these values

of 3 :

p
11 

— 

~
‘22 ~~ 

~~~~~ ‘ 
— a 0 (3.13)

Therefore, at the axes of symmetry , the tensor P~~~ has only two independent

components. The off—diagonal terms are zero . This does not imply, however ,

tha t Pj 2 , P~ 3 and P 3 are zero at other locations in the deviatoric strain

plane. In fact, all components of P~~ are periodic in magnitude with an

angle of periodicity ~. Furthermore, P~~ is positive semi definite. Pj~ also

enjoys the reflective symmetry with respect to the axes c~ and

(see Figure 1). This implies that in determining the fracture locus of an

isotropic material experimentally , only a 30 degree sector need be

investigated as stated previously.

In the particular case where the fracture locus in the deviatoric plane

is circular then equation (3.12) is true for all R
u 

def ined by equation

(3.10) , i.e., for all 0. In this event P~~ Is independent of 8 and

f ( & 1) 2 
- P L ~ L~ - P~1(L~

2 + q2) + P~~ L~~ — P~ 1sin
2

+ + P 3cos 2
~ - f

2
(~~)

(3.14)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A
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That is, f is only a func tion of ~ . If ~ is f ixed , then f is a

constant. Conversely , if P~~ is independen t of e, then the fracture locus

in the deviatoric strain plane is a circle.

Finally , we show that the material tensor P~~ can not be fully isotropic .

This can be shown by assuming P~~ to be isotropic and then show that this

leads to a consequence which is not in agreement with observation. For isotropic

P
11, we can write

P ij (c k) P
1~~(c.~ c~~) — P~~(s~ £kL t

) (3.15)

The most general isotropic of P~~. fo rm is

— P (s)6~~ + P1
(s)L

1~ + P2(s)LIkL.Kj (3.16)

where

L
1~ 

— , tr L a tr L2 — tr — 1 ( 3 . 1 7 )

Equation (3.16) can further be simplified to obtain

~~~~ + (P
1
+P2)11L1 

(3.18)

Substitution of (3.18) in (1.6) yields

— Pij&itj 
— P

0 
+ P

1 
+ P

2

a function of s only (3.19)

Thus, f is independent of $. In particular, If P
1~ is a function

of £~ only, then f is also independent of a. Therefore, as the result

I

______ 

____________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I
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of fracture criterion (3.3), the fracture surface must be symmetric with

respect to the deviatoric plane in contradiction with observation.

It Is interesting to remark that the assumption of transverse isotropy

of P~~ with respect to the hydrostatic strain axis leads readily to the

following result, though the application of equation (3.6):

1-N N M

— N M 1—M N (3.20)

M M l-M

where

N - 4 ( P ~~+ 2 P ~ ) ,  (3.21)

In the above equations, P~ and P are the two independent parameters in P~~.

We note that P
1~ is thus determined by two independent parameters M and N.

This last form (3.20) also follows If is of the special

isotropic form:

~~ij k ~ ~~l~~ij ~~k& ÷ 4 ~~2 ~~ik
6

1~~ 
+ 

~ i~~~ jk ( 3 . 2 2 )

where , however, P
1 

and P
2 are functions of cc~ ~ which is given

by eq. (1.11); in other words P
1 

and P2 are not constants but are functions

of a certain sort of the invariants of c
ii
.

IV. APPENDIX - THE STRESS-STRAIN RELATION UNDER PROPORTIONAL STRAINING

In the discussion of fracture of plastic materials, a stress—strain

relation is useful. This can be derived from the endochronic theory of

plasticity, in which

— _—____ m#nt-

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~--— ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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— (A.l)
ij

This equation , in conjuction with equations (2.2 — 2.4), gives rise to the

following equation in the principal space:

Oj  
a~~~~~ 2~~~(c~ — q~ ) + (K0 — 4 ~~)(c — q0)~ (A.2)

which, by use of equations (2.8) and (2.11), can be reduced to

z —A (z—z’)

~~ 
a~~~~~~~~~~{23i (t 

— c054) + v’iKcos
$] j  e P~

, dz’} (A.3)

or , for proportional straining:

a — c~~~)+ v’i~~~cosi~] 
~~~~{G0(1~~ 0:fs)[l 

— (i +

(A.4 )

The above equation governs the relation between the stress components o~ and

the strain magnitude s for a given angle •. For large s, the stress—

strain relation (A.4) may be approximated by the following asymptotic form:

— 

~ 
(
~ 

— + J~ K0cos,](’ ff5) (A.5)

where

- n — (A.6)

The parameters n and Bf in equation (A.5) can be determined from the

uniaxial tension test. In this test , one has a proportional stress path; one 

- — —--‘~ -~~~~~~ -~-~--— —~~~~ -

— - —----- -- --- — —- —--- -_ 
- ---—-— -- -- ~~~~~~--
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also has a proportional strain path if Poisson’s ratio is a constant . In

particular ,

£ 2 
£

3 ~~ 
£
1 (A.7)

— 1 
a t  a —v (A 8)1 

/ 1 + 2v
2 ‘ 2 3 /j+2v2

and

- 
- 2v~~~ (A.9)

~ V’ + 2v /
Furthermore , equation (A.4) becomes

~ / 1 

E 

~~~~ f (  
+ B 1c

1)[ — (1 + 
)

—~
0]

~ 
(A .lO)

where

— i[+ 2v 2 
~~ (A .ll)

It is easily shown tha t

a E / E
~ (A .l2)

— E
~/o (A.l3)

and

— E • E(o) (A.14)
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where E(o) denotes the initial slope of the uniaxial stress—strain curve,

E
t 

is the tangent modulus at large strain (the slope of the asymptotic

straight line), and a the intercept of the asymptotic straight line with

the stress axis. Equations (A.12) and (A.l3) are used to determine the

parameters n and 8
~ 

for a given material.
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- 
FIGURE CAPTIONS

Figure 1 Fracture locus in the deviatoric strain plane (+ —

Figure 2 The transformation Ru
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