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i 1. INTRODUCTION

This report presents the results of three sets of studies concerning
the radiation hardness of metal-insulator-semiconductor (MIS) structures.
Section 2 describes an investigation of the electron-trapping properties
i of aluminum-implanted and neon-implanted silicon-dioxide films on silicon.
‘ Section 3 gives the results of a study of the effects of low-energy
electron irradiation on thermally grown silicon dioxide and shows that
such irradiation generates substantial concentrations of electron traps
in the oxide well ahead of the range of the primary electrons themselves.
Section 4 describes the results of a study of methods for distinguishing
between lateral nonuniformities and interface states in MIS structures
and for characterizing nonuniformities when they are found to exist.

Three new methods are proposed for detecting lateral nonuniformities,

and a new and simple method is proposed for determining the distribution

of flatband voltages in a nonuniform MIS structure.

2. ELECTRON TRAPPING IN ION-IMPLANTED SILICON DIOXIDE

2.1. Introduction

The implantation of impurity ions into the SiO_, layer of an MOS device

2
has been shown to reduce the sensitivity of the device to ionizing radiation

under positive gate bias.ln5 The radiation sensitivity of thermally grown

SiO2 films on silicon was proposed by Zaininger6 to be the result of strong

hole trapping and weak electron trapping following generation of electron-

hole paiis by ionizing radiation. Williams7 demonstrated that thermally

14

grown Si0, films are relatively free of electron traps (v 10 cm-3) and

2
Goodman8 found that the electron mobility is relatively high (v 30 cm2/V sec) .

The experiments of Powell and Derbenwick9 indicate that holes can drift through

the oxide but are strongly trapped near the Si-Si0_, interface. The following

2
model of the radiation effect thus emerges. When an MOS device is exposed to ionizing
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radiation, electron-hole pairs are generated in the oxide. For positive gate
bias the electrons drift through the oxide to the gate, with some recombination
probably occurring en route. Holes are transported to the vicinity of the
51-5102 interface where a significant fraction of them are trapped, thereby
giving rise to a negative shift in the flatband voltage of an MOS capacitor, or
equivalently to a negative shift in the turn-on voltage of an MOS field-effect

transiscor.m’11

This model suggests that the reduction in sensitivity caused
by ion implantation may be the result of electron traps and/or recombination

centers which are generated in the SiO_, by the implantation and which act to

2
reduce the buildup of a net charge during irradiation.

Here we present the results of a study in which photoelectric and MOS
capacitance techniques were used to investigate deep electron trapping in

aluminum~ and neon-implanted thermally grown silicon dioxide.

2.2. Experimental Procedure

Our samples were fabricated on 1-5 ohmcm n-type silicon wafers with
(100) orientation. The oxide films were grown in dry oxygen at 1000°C. Some
of the samples were implanted with aluminum ions, others with neon ions.
Unimplanted control sections were provided in all cases. Semitransparent
field plates of gold or aluminum were vacuum—evaporated on the exposed oxide
surface.

The experimental procedure that we used to study the electron traps in
the oxide was as follows. The metallic field plate of the sample was biased
positively with respect to the silicon substrate, and the structure was
illuminated from the front with photons having an energy smaller than the oxide
band gap but greater than the electronic barrier between the silicon substrate
and the oxide. For this purpose we used photons with an energy of 4.8 eV. A
substantial fraction of the incident photons penetrated the semitransparent field

plate and passed through the oxide to the Si-Si0, interface where they stimulated

an internal photoemission of electrons from the zilicon into the conduction
band of the oxide. These electrons were then drifted by the electric field
toward the positively biased field plate and were subject to capture by

electron traps in the oxide. The storage of negative charge resulting from

electron capture produced a shift in flatband voltage which could be determined




from the high-frequency MOS capacitance-voltage (C-V) characteristic.
Subsequent discharge of the traps could be accomplished by photodepopulation

or by thermal annealing with the contacts short circuited.

2.3. Electron Trapping in Aluminum-Implanted Silicon Dioxide

o
This study was performed on dry-grown 1400A SiO2 films. The oxide of one

section of the wafer was implanted with aluminum ions at 20 keV to a fluence
of lOlA cm-z. The other section was not implanted and served as a control
sample. Semitransparent electrodes of gold were vacuum evaporated on the
front surface.

The unannealed aluminum—implanted samples initially displaced flatband
voltages of approximately -15 V, indicating an initial storage of positive
charge. In contrast, the control samples showed only small initial flatband
voltages, typically - 1 V. The positive space charge in the implanted
samples was neutralized almost completely, and the flatband voltage was
brought essentially to zero, by irradiating the sample with 4.8 eV photons
with the contacts short circuited. Alternatively, the initial positive charge
could be removed by thermal annealing at 450°C for 30 min with the contacts
short circuited.

After the initial positive charge had been neutralized, the electron
trapping properties of the oxide were investigated by biasing the field plate
positively and illuminating the sample to produce an internal photoemission of
electrons from the substrate. The sample current was monitored and, at
intervals, the high-frequency (1 MHz) C-V characteristic of the sample was
measured to determine the charge storage.

The injection of electrons into the unimplanted control samples
resulted in essentially no change in flatband voltage, indicating negligible
electron trapping. In contrast, the aluminum-implanted samples showed strong
electron trapping. Typical results obtained on an Al-implanted sample are
shown in Figs. 1 and 2. Here the field-plate voltage was held at + 10 V
during photoinjection. As is shown in Fig. 1, the C-~V curves shifted to the
right as the photoinjection proceeded, indicating a buildup of negative charge
in the oxide. An important feature in Fig. 1 is that the steady-state value




of the flat-band voltage is virtually equal to the voltage applied to the

field plate during the photoinjection, indicating that the negative space
charge of the trapped electrons was great enough to bring the electric field at
the Si-—SiO2 interface approximately to zero. Corresponding to this, the
photocurrent fell to a small value which could be attributed to stray photo-
emission from other surfaces in the sample chamber (Fig. 2). An analysis,
the details of which are given in References 12 and 13, indicated that (1)
essentially all injected electrons had been trapped in the implanted oxide, (2)
that the centroid of the negative charge distribution was located approximately
670 ; from the field plate, and (3) that the observed decay in current could
be explained by the electric-field dependence of the photoinjection as
determined by Berglund and Powell.14 The negative space charge in the implanted
samples could be annealed either optically by photons of energy exceeding 4 eV
or thermally at 350°C. The traps themselves remained, however, and could
be recharged by a further photoinjection of electroms.

Figure 3 shows the effect of annealing the aluminum-implanted sample
at 600°C for 30 min in dry nitrogen. Curve A is the high-frequency C-V
relationship as measured immediately after the anneal. Curve B shows the
effect on the C-V curve of an internal photoinjection of electrons for 25 min
with a sample voltage of 10 V. This is a saturated curve; an additional
photoinjection of electrons produced no appreciable further effect. The
rightward shift of Curve B is smaller than that observed in Fig. 1, indicating
that electron trapping has been reduced below the amount which would bring the
electric field at the injecting interface to zero. Correspondingly, it was
observed that a steady-state photocurrent continued to flow. The posttrapping
C-V curve is stretched out in a manner such as would be caused by a laterally
nonuniform storage of charge.15 Further experiments along these lines were
discontinued when difficulties were experienced with adhesion of the gold
field plates to the surface of the samples. However, we can draw the following
conclusions:

The 1400-; Al-implanted sample trapped essentially all injected electrons,
and the resulting space charge brought the injected current approximately to

zero, indicating that. the electric field at the Si—SiO2 interface had been

reduced approximately to zero. Similar results were obtained up to the highest
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Fig. 3. Effect of an anneal at 600°C for 30 min. (A) Immediately
after anneal. (B) After photoinjection of electrons for
25 min with sample voltage of 10 V.
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field-plate voltages (35 V on these samples). With the centroid of the
trapped charge approximately at the center of the oxide layer, i.e., near the
front of the implantation profile, it seems clear that the total number of
electron traps must have been much greater than the observed number of trapped
electrons. At a field-plate voltage of 35 V, the concentration of trapped
electrons required to bring the interface field to zero is approximately
5. % 1012 cm—z, which is well below the implantation dose of 1014 cm-z.

In contrast with the almost complete electron trapping observed in the
unannealed Al-implanted sample, the trapping in the 600°C annealed sample
was incomplete, as shown by the results of Fig. 3. This indicates that the
annealing resulted in a considerable reduction in the number of electron
trapping centers, and we conclude, therefore, that a substantial fraction of
the electron traps found in the unannealed Al-implanted oxides were due to the

displacement damage caused by the implantation.

2.4. Comparison of Aluminum-Implanted and Neon-Implanted Silicon Dioxide

Further evidence regarding the electronic effects produced by displace-
ment damage as opposed to those caused by the implanted impurities themselves
can be obtained by studying samples which have been implanted with inert
atoms such as neon. For the purposes of comparison we used two sets of
samples which were identical except that one was implanted with neon and the
other with algminum. The SiO2
ness of 1000 A on 3 ohm-cm (100) n-Si substrates (sample designation HLH-01).

The aluminum was implanted at 20 keV to a fluence of 1015 cm-z. The neon was

implanted at 20 keV to the somewhat greater fluence of 1.5 x 1015 cm—2 to

films had been grown in dry oxygen to a thick-

compensate, to first order, for its smaller atomic mass., Semi-transparent
aluminum field plates were used.

Figure 4 shows the effect of electron photoinjection into an unannealed
aluminum-implanted oxide, using various gate voltages as indicated in the
figure. At each gate voltage, electrons were photo-injected for 15-20 min
to charge the traps and the high-frequency (1 MHz) C-V curve was then taken.
Except at the highest gate voltages, the flat-band voltage was approximately
equal to the gate voltage applied during the photoinjection. The time

dependence of the photocurrents is shown in Fig. 5. For gate voltages greater
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than 6 V a substantial photocurrent continued to flow, showing that a conduction
mechanism is important here that was not important in the more lightly implanted

cample of Figs. 1 and 2. Essentially the same results were obtained at

reduced temperature (128°C), indicating that the conduction mechanism which
makes itself evident at the higher implantation fluences may be quantum-
mechanical hopping betweer traps rather than thermionic (Poole-Frenkel)
emission from traps.

Of central interest here, however, is the fact that essentially the same
results as the above were obtained with the'neon-implanted sample, as is shown
by comparison of Figs. 6 and 7 with Figs. 4 and 5. The smaller currents seen
in Fig. 7 as compared with Fig. 5 are not necessarily meaningful, for the
alignment of the UV beam was not necessarily the same in the two cases. Also,
the curve for Vg = 24 V is not useful because the sample broke down during the
progress of this run. Our conclusion is that the neon-implanted sample, which
presumably had only displacement damage to cause electronic activity, showed
essentially the same features as the aluminum-implanted sample, and therefore
that displacement damage contributed substantially to the electron trapping
observed in the aluminum~implanted oxide.

As a further comparison between the effects of neon implantation and
aluminum implantation, we examined the radiation sensitivity of both sets
of unannealed samples. Figure 8 shows the results obtained with the aluminum-
implanted sample. Curve 1 is the original C-V relationship. Irradiation with
2.9 % 105 rads (silicon) with a field plate voltage of + 10 V resulted in

essentially no change. Curve 2 shows the effect of irradiation with 2.5 rads

(silicon) at a field-plate voltage of -10 V. Further irradiation with an

additional 1.5 x 105 rads at =10 V produced essentially no change in the curve. ‘
The sample was then biased with a field-plate voltage of +10 volts and exposed

to 2.5 x lOS rads (silicon), resulting in Curve 3. Additional irradiation of

1.5 % lO5 rads (silicon) at a field-plate voltage of +10 V produced Curve 4.

The curves are somewhat stretched out after irradiation, presumably because

of the generation of interface states, but the radiation hardness under

positive field-plate voltage is evident.

Figure 9 shows the results obtained with a neon-implanted sample. Curve

1 is the original C-V characteristic. Curve 2 was obtained after X-irradiation
Of 2 X 105 rads (silicon) with the field plate at +10 V, and Curve 3 shows
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the effect of an additional 1.5 x 105 rads (silicon) with the field plate at
- 10 V. The radiation effects shown in Figs, 8 and 9 are very similar, in-
dicating that displacement damage had an i.mportant effect.

2.5. Summary

The electron-trapping properties of aluminum-implanted, neon-implanted,
and control samples of thermally grown films of silicon dioxide were investi-
gated. The traps could be charged by electrons which were internally photo-
injected into the oxide and could be discharged either optically by photons of
energy exceeding 4 eV or thermally at 350°C. The voltage shift of the high-
frequency (1 MHz) capacitance-voltage curves provided a measure of the trapped
charge.

The contro% samples of dry-grown SiO2 showed negligible electron trapping.

Dry-grown 1400 A samples of Si0,, implanted with 1014 aluminum ions/cm2 at

s
20 keV, showed electron trappinz great enough to trap essentially all of the
photoinjected electrons during transit. A 600°C anneal for 30 min considerably
reduced the concentration of electron traps. From this, and also from an
observed similarity between the trapping effects in unannealed aluminum- and
neon~-implanted samples, it is concluded that a substantial fraction of the

traps were associated with displacement damape created by the ion implantation.

3. EFFECTS OF LOW-ENERGY ELECTRON RADIATION ON MOS CAPACITORS

3.1. Introduction

The objectives of this study were first, to develop effective methods
for measuring the transport and trapping parameters of thermally grown SiO2
films which have been exposed to radiation environments, and second, to study
changes in the defect structures in the oxide following exposure to electron
irradiation. It is well known that if a suitable injecting contact can be
provided to an insulator, the structure of the resulting one-carrier current-
voltage characteristic can serve as a powerful probe of the trap structure.
The major difficulty in employing this technique with SiO2 films is the wide

band gap of this material (v 9 eV) and the consequent unavailability of any
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conventional ohmic contact. This problem can be at least partially circum-
vented by using a low-energy electron beam to inject electrons just under the
surface of the insulator, thus providing a quasi-ohmic contact. The silicon
substrate, biased positively, serves as the anode. Curves of the relative
rates of electron-beam energy deposition in 5102, based on the work of
Everhart and Hoff,l7 are given in Fig. 10 for various electron beam energies.
Two distance scales are shown, corresponding to aluminum field plates of two
different thicknesses: 100 R and 500 2. It can be seen that with an
aluminum field plate of 500 ; thickness, a 3 kV electron beam will dissipate
almost all of its energy in the first 1000 ; of oxide. If an oxide of 5000 ;
thickness is used in the experiment, the remaining 4000 Z of oxide will serve
as the drift region for study of the transport and trapping properties of the
insulator. Section 3.2 describes typical results obtained by use of this
technique; Sec. 3.3 describes a study of the electron traps which are found

to be generated in the SiO, by the electron-beam irradiation. Further details

2
regarding these studies can be found in Reference 18.

3.2. Study of Electron-Beam-Induced Conduction in SiO

2

A typical set of results obtained in this study is shown in Fig. 11. The
sample had a 4000 ; layer of 8102
The substrate was n-type silicon, (100) orientation, 1-5 ohm—cm resistivity.
The field plate was of aluminum, 400 Z in thickness. The sample was bombarded

through an aperture with a 2.8 kV electron beam which had normal incidence on

which was grown at 1000°C in dry oxygen.

| the field plate. The field plate was grounded, and a positive voltage was
i applied to the substrate. The graphs of Fig. 11 show the steady-state J-V
relationships obtained at room temperature with two different beam currents
(open circles and solid circles) and at elevated temperature (100°C, triangles).

The following features can be seen in these results:

(1) The J-V characteristic has two distinct regions: an ohmic region and

a square-law region.

(2) The current at a given voltage is linearly proportional to the beam
current.

(3) The current is essentially independent of the temperature.
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A square-law J-V relationship is expected for single~-carrier space-charge-
limited conduction.16 When trapping is negligible, the expected relationship is
given by the Mott-Gurney formula:19

J = 2 £u !i (3.1)
8 L3

where € is the dielectric permittivity of the insulator, u is the charge-
carrier mobility, V is the voltage across the drift region, and L is the
length of the drift region. If some of the carriers are trapped, the trapped
space charge contributes to the voltage but not to the current, and the

current is correspondingly reduced:16

9 v2
J‘EBE“L—s (3.2)

where 6 is the ratio of free carriers to the sum of free and trapped carriers.
In the steady state, the trapping and emission rates are equal, and if the
emission from traps is thermally stimulated, the value of 6 is given by

N

=& 3 =
®thermal 8N, o Et)/kT] 3537

’

where Nc is the effective density of states in the conduction band, Nt is
the density of trapping centers, g is the degeneracy factor of the traps,
Ec - Et is the depth of the traps below the edge of the conduction band, k
is the Boltzmann constant, and T is the absolute temperature.

The square-law regions in Fig. 11 fit Eq. (3.2) with a value of 6 much
smaller than unity. Computation shows that the required density of trapped

17 2

elections is of the order of 10~/ cm , which is much greater than the den-

sity normally expected for electron traps in thermally grown SiO2

(v 1014 cm.z).7 Also, the electron traps must be in the bulk of the oxide,

not entirely at either interface. An interpretation of the foregoing result is
that the shallow electron bombardment resulted in the generation of electron

trapping centers in the bulk of the oxide, ahead of the range of the primary

electrons themselves.
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Substantiating evidence was as follows. Observation (2), namely that the
current was linearly proportional to the electron-beam current, can be
explained on the basis of photon-induced detrapping of trapped carriers, the
photons being produced by the primary electrons in stopping. The flux of
such photons, and the resulting rate of detrapping, would be proportional to
the beam current. An alternative explanation, namely that the current was
contact-limited, is inconsistent with the square-law characteristic, for
J « V2 is typical of space-charge limitation rather than contact limitation.
Finally, Observation (3), namely that the current was independent of
temperature, indicates that emission from the traps was not thermally induced.
This is consistent with the interpretation in terms of photon-induced emission.
The existence of an ohmic region preceding the square-law region, as seen in
Fig. 11, is also consistent with the foregoing interpretation, for photons
with energies considerably greater than the oxide band gap can penetrate
through the oxide and generate hole-electron pairs in proportion to the beam
current. The space-charge-limited square law is seen at higher voltages
where the injection of carriers from the electron reservoir dominates over
the pair production in the bulk.

In order to obtain independent evidence regarding the generation of
electron traps by the electron irradiation, a further study of electron

trapping was conducted, as described in the next section.

3.3. Study of Electron Traps Generated in SiO2 by Electron-Beam Irradiation

In this study of electron trapping in electron-irradiated SiO the

s
traps in the oxide were charged by an internal photoinjection of eiectrons

and were discharged thermally. The storage of trapped charge was determined
from C-V curves measured at 1 MHz. The internal photoinjection was accomplished
by biasing the field plate either positively or negatively depending on whether
electron injection was desired from the substrate or from the field plate, and
the structure was illuminated through the semi-transparent field plate with

4-eV photons.

Control samples showz2d negligible electron trapping (consistent with a

concentration of electron traps on the order of 1014 cm-3).
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Figure 12 shows typical results obtained on a dry-grown oxide of 4700 Z
thickness. The substrate was n-type silicon, (100) oriented), 1-5 ohm-cm
resistivity. The field plate was aluminum, 150 Z in thickness. Curve 1 is
the C-V curve of the sample before irradiation with electrons. Curve 2 shows
the effect of irradiation with a 4.5 keV electron beam which deposited most
of its energy within the first 2000 ; of the oxide. The dose of electrons
was 7 x 1015 per cm2. The stretch-out of the curve indicates the presence of
interface states. Curve 3 shows the result of a one-hour anneal at 300°C which
removed most of the interface states. The effect of negative charge storage,
presumably in electron traps, is now shown clearly by the positive shift of
flat-band voltage compared with Curve 1. Some electrons might, of course, have
been removed from the traps by the anneal. Curve 4 shows the result obtained

after photoinjecting electrons from the substrate into the Si0 Some of these

electrons were trapped in the oxide, increasing the positive fiat-band voltage
shift. Curve 5 was obtained after an additional photoinjection of electrons,
this time for the metal field plate. A small additional storage of negative
charge is seen here. Computation shows that the negative trapped charge, if
uniform, amounted to 4 x 1016 electrons/cm3, which is at least two orders

of magnitude greater than the negative trapped charge observed in the control
samples under similar conditions.

As is shown by Curve 6 of Fig. 12, an anneal for 2 hrs at 350°C discharged
the traps almost completely. The traps themselves remained after this treat-
ment, however, for a further injection of electrons restored a positive flat-
band shift similar to that shown by Curve 5 of Fig. 12. Alternate charging and
discharging could be carried out repeatedly without causing any apparent
reduction in the concentration of traps. The traps were deep, attempts at
photodepopulation at photon energies up to 4 eV producing no appreciable
effect. The stored charge was stable at room temperature over a period of
days.

The original interpretation of the J-=V curves, given in Sec. 3.2,
required the traps to be distributed through the bulk of the oxide. To check
this, the voltage dependence of photoemission was measured for samples which
had been irradiated with electrons, then discharged by a thermal anneal, and

finally recharged to saturation by electron photoinjection. When the bulk

contains a negative space charge, a photoinjection of electrons will not occur
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until the voltage has been raised higher than the threshold value above which
the electric field at the negative contact is in the direction which drifts
electrons from the contact into the insulator. The value of this threshold
voltage depends on the amount of charge stored in the insulator and on the
relative position of the centroid of the charge distribution with respect

to the negative contact. The measured I-V curves for the negatively charged
oxide showed approximately equal threshold voltages for the two polarities

of bias, indicating that the centroid of the negative charge distribution was
roughly at the center of the oxide layer.

A preliminary study was made of the effect of electron-beam energy on
charge storage, using HCl-steam grown oxides. The most complete results were
obtained with oxides grown on n-type substrates, In correspondence with the
results described above for dry-grown oxides, negative charge storage was
observed at the lower beam energies where the electron beam penetrated only
partially through the oxide. However, at larger beam energies, where the
electron beam penetrated to the interface, positive charge storage dominated.
Furthermore, when the energy of the beam was reduced into the nonpenetrating
range, net negative charge was restored, indicating that electron fluence
was not the important factor in determining the sigr of the net stored
charge. It would appear that two charge-storage effects are present: negative
charge storage in electron traps generated by the beam in the bulk of the
cxide, and positive charge storage, presumably near the silicon-oxide inter-

face, caused by the penetrating electron beam.
3.4. Summary

The J-V curves of thermally grown SiO2 films on silicon were investigated
by using a nonpenetrating beam of electrons to provide a reservoir of free
electrons immediately under a field plate and drifting the electrons toward
the positively biased silicon substrate. A square-law dependence of current
on voltage was interpreted in terms of single-carrier space-charge-limited
conduction with trapping of the carriers. Linear dependence of the sample

current on the electron-beam current and lack of temperature dependence were

interpreted in terms of deep electron trapping with photon-stimulated detrapping,

the photons being produced by the primary electron beam itself. Further study

UL, X -
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of the electron traps showed that they could be discharged by an anneal at
350°C for 2 hrs, and that they could subsequently be recharged by internally
photoinjecting electrons from either electrode. The absence of similar
electron trapping in control samples indicated that the electron-beam
irradiation was responsible for generation of the electron traps.
Measurement of the positive and negative threshold voltages required
to produce photocurrents through negatively charged oxides indicated that
the centroid of the negative charge distribution was roughly at the center
of the oxide layer, confirming an assumption made in the interpretation of

the J-V curves. This indicates that the traps are generated through the

bulk of the oxide, well ahead of the range of the primary electrons themselves,

*
4. STUDY OF LATERAL NONUNIFORMITIES AND INTERFACE STATES IN MIS STRUCTURES

4.1. Introduction

For the past several years the semiconductor-insulator interface has
been the subject of intensive study, first because it plays an important
role in the characteristics of metal-insulator semiconductor (MIS) devices
and secondly because it is the least understood part of the MIS structure.
Capacitance-voltage (C-V) curves are an important diagnostic tool in the
study of MIS structures. As is well known, the flatband voltage of an MIS
capacitor, as deduced from a C-V curve, provides a convenient measure of
the charge stored in the insulating layer. Commonly observed, however,
is an abnormal stretch-out of the C-V curve along the voltage axis. Two
entirely different mechanisms cause very similar stretch-outs: interface
states, and lateral nonuniformities.l5 Interface states are those
electronic states which exist at the semiconductor~insulator interface and
can exchange charge with the semiconductor. Lateral nonuniformities include
nonuniform insulator thickness, laterally nonuniform substrate doping, and,
most commonly, nonuniform charge storage in the insulator. C-V stretch-
out was originally attributed entirely to interface states, but it now seems

likely that some of the problems were due instead to lateral nonuniformities,

* This study was performed by C. C. Changzo and was supported in part by the
Bell Telephone Laboratories, Incorporated.
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since the effects of the two on the C-V curves resemble each other. It is
therefore important to identify the cause of C-V stretch-out correctly
and to characterize the effect properly.

When an MIS structure is laterally uniform, and any C-V stretch-out
is therefore caused only by interface states, the density of interface
states as a function of energy can be obtained by any one of a number of
well known and effective meth0d8.22_27 The situation regarding the identi-
fication and characterization of lateral nonuniformities is much less
satisfactory. The study of the a-c¢ conductance of MOS capacitors made by

Nicollian and Goetzberger27

indicated that a conductance measurement can be
used to distinguish the effects of lateral nonuniformities from those
of interface states. They related the area under the G/w vs. w curve
to the density of interface states and interpreted the broadening of the
conductance peak in terms of lateral nonuniformities. Castagne and Vapaille26
used several C-V methods in an effort to determine the density of interface
states of MOS capacitors after drifting ions to the Si-SiO2 interface. They
found that the different methods iudicatcd different densities of interface
states, and concluded that this discrenancy showed that the C-V stretch-
out which they observed was due not to interface states but to lateral
nonuniformities. Brews and Lopez28 have suggested two methods, based on
this principle, for testing for the presence of lateral nonuniformities.
In this work we have developed three new methods for distinguishing
the effects of lateral nonuniformities from those of interface states. Two
of the methods are based on the frequency dependence and temperature
dependence, respectively, of the response of interface states. The third
method is based on the principle (proved in Ref. 20) that if the C~V
stretch-out is caused by lateral nonuniformities, the quasi-static and high-
frequency C-V curves cannot both be fitted simultaneously by any distribution
of interface states. The converse of this statement is also true. The
convenient application of this principle makes use of a new and simple
method that we have developed for the determination of the distribution of
flatband voltages in an MIS structure that has a nonuniform charge storage.
As our model of a laterally nonuniform MOS capacitor we have taken

a parallel combination of nmoninteracting small capacitors, each of which
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can be considered to be uniform over a small characteristic area. As
Brews?'9 has pointed out, this model will not provide an accurate representa-
tion for lateral nonuniformities of small dimensions (e.g., individual ions)
that are laterally well separated. In addition, Gordon30 has shown that

in the inversion regime the individual elementary capacitors interact at
their edges through the minority carriers of the inversion layer. Despite
these faults, the parallel-capacitor model is a reasonable first-order
representation and has the advantage of being more readily amenable to

analysis than the more complex representations.

4.2. Frequency Method

As is discussed in some detail in Ref. 20, the C-V relationship of an
MIS capacitor without interface states is frequency-independent from
approximately 100 Hz up to the majority-carrier ohmic relaxation frequency
of perhaps 1012 Hz. In contrast with this, interface states near the
center of the silicon bandgap have response times on the order of a millisecond,
and in the depletion regime the interface-state capacitance will show a
frequency dependence over a range from perhaps 100 Hz to 1 MHz, i.e.,
within the range of easy measurement. An example of this is shown in Fig.
13 for an MOS capacitor in which interface states had been generated by
subjecting the oxide to a high electric field. The frequency dispersion
of the "high-~frequency'" C-V curves shows the presence of the interface
states. By contrast, Curve 1 of Fig. 14 was taken on a sample with
negligible interface states but having a laterally nonuniform charge
storage caused by bombarding the sample with a low-energy nonpenetrating
electron beam, after which the sample as annealed at 350°C for one hour.
The nonuniformity of charge storage was caused by spatial nonuniformity of
the bombarding electron beam. Virtually identical C-V curves were obtained
at measuring frequencies of 1 kHz, 10 kHz, 100 kHz, and 1 MHz. Calculated
ideal C-~V curves are shown by dashed lines for comparison. The departure
of Curve 1 from the ideal, together with the lack of frequency dependence,
shows the presence of Lateral nonuniformities.

The frequency method actually detects interface states rather than

lateral nonuniformities, and one can not be sure whether an observed
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frequency-dependent stretch-out is due to interface states only or due to
both. This problem can partially be solved by comparing the 100 Hz C-V

curve with the quasistatic C-V curve in accumulation and mild depletion;

these curves must coincide if the stretch-out is due to interface states

only. We say '"partially solved" because this observation is unable to

detect tiny nonuniformities., The low-temperature method (Section 4.3) and

the C-V comparison method (Section 4.4) are of aid in solving this difficulty.

4.3. Low-Temperature Method

At liquid nitrogen temperature the emission times of majority carriers
from interface states are very long except for those states near the
majority-carrier band edge. If the MIS structure is biased into accumula-
tion and the bias is then swept into depletion, the low-temperature high-
frequency C-V curve of a uniform structure will coincide with the ideal
(translated) C-V curve when the Fermi level has departed from the majority-
carrier band edge by a few tenths of a volt. The C-V curve of a nonuniform
capacitor will not show this coincidence but will remain stretched out.
This effect is illustrated in Figs. 15 and 16. The sample of Fig. 15 had
appreciable concentrations of interface states which had been generated by
high-voltage stressing. The lower solid curve was obtained at 100°K by
biasing into accumulation and then sweeping into deep depletion at the
rate of 5 V/sec. The dashed curve is an essentially ideal characteristic
which was obtained on the sample before stressing and which has been
translated into coincidence with the solid curve in the depletion region. This
coincidence indicates that the sample was essentially uniform. On the
other hand, Fig. 16 shows the result obtained from this test on a sample
which had an appreciable contamination of positive ions (presumably sodium)
which had been drifted to the insulator-semiconductor interface at
elevated temperature. The dashed curve of Fig. 16 is a translated,
essentially ideal, curve which was obtained from the sample before ion

drift. The lack of coincidence indicates that the positive ion concentration

at the interface is nonuniform.
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A further low-temperature test, illustrated by the upper curve in

Fig. 15, is useful when interface states are present. When the lower
curve has been completed, the sample is brought out of deep depletion by
temporary illumination. This process fills the interface states with
minority carriers. The gate voltage is then swept slowly toward accumula-
tion. When the density of majority carriers at the interface becomes
appreciable, the interface states begin to fill with these carriers,

causing a ledge in the characteristic.20’31

The average density of
interface states in (roughly) the lower half of the gap can be estimated
from AVgCox/q, where AVg is the width of the ledge. From Fig. 15 this

estimate yields the density 2 x 1011 cm-z.

4.4, C-V Comparison Method

The comparison method that we propose is based on the principle
(proved in Ref. 20) that when a C-V stretch-out is caused by lateral
nonuniformities, the resulting quasistatic and high-frequency C-V curves
cannot both be fitted by any distribution of interface states, and,
conversely, if the stretch-out is caused by interface states, the resulting
quasistatic and high-frequency C-V curves cannot both be fitted by any
lateral distribution of flatband voltages. The convenient application of
this principle utilizes the method for determination of the distribution
of flatband voltages presented in Section 4.5.

A convenient method for utilizing the foregoing principle is to

perform a combination of two tests, as follows:

1. Test for lateral nonuniformities by assuming the opposite, i.e.,

assume that all the stretch-out is due to interface states. Then: (a)

obtain the surface potential ﬁ(VG) by Berglund's method,24 (b) from this

result compute the corresponding high-frequency curve CHF(G(VG)), and

(c) compare the computed CHF-V curve with the measured CHF—V curve. A

mismatch between the two will indicate the presence of lateral nonuniform—

ities.




2. Test for interface states by assuming the opposite, i.e., assume that

all the stretch-out is due to lateral nonuniformities. Then: (a)
determine the distribution of flatband voltages from the measured quasi-
static and high-frequency C-V curves by the method described in Sec. 4.5
(this method is restricted to nonuniform charge storage, but this is the
most common case), (b) using this hypothetical distribution of flatband
voltages, regenerate the two C-V curves by computer, and (c) compare the
two regenerated curves with the measured curves. A discrepancy indicates

the presence of interface states.

Two examples will now be presented, one for a sample with interface
states and the other for a sample with lateral nonuniformities.

The solid curves of Fig. 17 are the quasi-static and high-frequency
(1L MHz) C-V curves for a sample in which interface states had been
generated by high-field stress (same sample as in Fig. 13). We test for
interface states by assuming the opposite. By use of the method of Sec. 4.5
we compute the hypothetical distribution of flat-band voltages caused by
lateral nonuniformities. The resulting distribution, shown in Fig. 18,
is then used in a computer-regeneration of the C-V curves, yielding the
results shown by the dotted curves of Fig. 17. The considerable mismatch
between these and the measured C-V curves indicates the presence of
substantial concentrations of interface states.

Next, we apply the test for lateral nonuniformities by again assuming
the opposite condition. The dotted curve in Fig. 19 is the high-frequency
relationship calculated from the quasi-static curve under the assumption
that the stretch-out is entirely due to interface states. The close
agreement between the reasured and computed high-frequency C-V curves
indicates that later~i nonuniformities are negligible in this sample.

Figures 20 and 21 show the results obtained with a sample that had
been bombarded with a nonuniform electron beam to produce a nonuniform
storage of charge. First we assume the distortion to be due entirely to

lateral nonuniformities, and use the quasi-static and high~frequency curves
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FLAT-BAND VOLTAGE (VOLTS)

Fig. 18. Hypothetical distribution of flat-band voltages
derived from the measured C-V curves of Fig. 17
and used as the basis for the computer-regenerated
(dotted) curves of that figure.
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Fig. 20. (a) Measured (solid lines) and calculated (dots) C-V

curves. (b) Lateral distribution of flat-band voltages
determined from the measured curves of (a) by the method
described in Sec. 4.5.
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[solid lines of Fig. 20(a)] to determine the corresponding distribution of
flatband voltages, thus yielding the results of Fig. 20(b). From this
distribution of flat-band voltages we then compute the quasi-static and
high-frequency curves, thus obtaining the points shown by dots in Fig.
20(a) . The correspondence indicates that interface states are not impor-
tant and that the observed distortion of the C-V curves is caused by a
laterally nonuniform storage of charge. As a check, we also compute the
high-frequency C-V curve from the measured quasi-static curve assuming

the stretch~out to be due entirely to interface states. The result is
shown in Fig. 21. The lack of correspondence shows the presence of lateral

nonuniformities.

4.5, Determination of Flatband Voltage Distribution

In this section we restrict our attention to MIS capacitors which
have a laterally nonuniform storage of charge in the insulator but are
otherwise uniform (insulator thickness, substrate doping), and which have
negligible interface states. The objective will be to devise a method
for determining the lateral distribution of flatband voltages from the
stretched-out quasi-static and high-frequency C-V curves, using the
parallel-array model. The problem is mathematically intractable unless
approximations are made, and the approximation that we have chosen can be
understood with the aid of Fig. 22. The top two graphs of Fig. 22
represent typical quasi-static and high-frequency curves for a uniform MIS
capacitor with negligible interface states and a flatband voltage VFB
(actually cgmputed for a p-Si MOS capacitor with NA =5 x 1015 cm-3 and
B ™ 1000 A). Part (b) of Fig. 22 shows the distribution function of
flatband voltages, this being a delta function of unit area. Part (c)
of Fig. 22 shows the difference between the two capacitance functions:

C (V) = CHF(VG)' This difference is essentially zero for gate voltages

QS" G

smaller than VFB + VT’ where VT is the turn-on voltage cf an ideal MIS
3

capacitor having the same insulator thickness and substrate doping.

|
|
|
|
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B + VT the difference in capacitances

rapidly approaches a constant value denoted by y. The approximation that

For gate voltages larger than V

we shall make is that CQS - CHF can be represented with sufficient accuracy

by a step function that is zero for VG < VF

for VG > VFB + VT'

The application of the foregoing approximation to a nonuniform MIS

+
B VT and has the value ¥y

capacitor is shown in Fig. 23. The nonuniform capacitor is taken to be a
parallel array of small capacitors which have a distribution of flatband
voltages described by a distribution function f(VFB). With the gate
voltage of the nonuniform capacitor at the value VG, all of the small
capacitors having flatband voltages less than V

G
those having flatband voltages greater than this value are turned off.

- Vi are turned on, and

An increment of gate voltage dVG increases the fraction of turned-on
capacitors by the amount f(VG - VT)dVG, thus causing an increment in the
capacitance~difference curve given by

d( C..) = Yf(VG = VT)dVG (4.1)

CQS ~ “HF

From this we obtain for the p-substrate MIS capacitor:

Luid
£V = V)= y gy [Cqs (V) ~ Cup(Vg)] (4.2)
The distribution function of flatband voltages, f(VFB), is obtained by
translating the function of VG given by Eq. (4.2) in the negative-Vc
direction by the amount VT'

In a similar manner it can be shown that the corresponding expression
for an n-substrate MIS capacitor is
BV, = %) =28 e (V) ~ C(¥)) (4.3)
G T Y dVG QS" G HF " G
where VT is now a negative voltage and f(VFB) is therefore obtained by
translating the result of Eq. (4.3) in the positive-vG direction by the

amount IVTi.
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The foregoing relationships were the ones used in the comparison
method of Sec. 4.4.

In order to obtain some idea of the amount of error introduced by
the step-function approximation, we conducted a computer study of two
examples. In each example we started with an assumed distribution of
flatband voltages, then computed the resulting quasi-static and high-
frequency C-V curves, and finally used Eq. (4.21 to obtain an approx-

imation to f(vFB)' An oxide thickness of 2500 A and a substrate doping
of 33 % 1015 cm_3 were assumed in the calculations. The results are

shown in Fig. 24(a) for a rectangular distribution and in Fig. 24(b)

for a smooth distribution of flatband voltages. The agreement is only

fair for the sharp-edged distribution but is reasonably good for the smooth
distribution.

4.6. Summary

We have proposed three new capacitance-voltage methods for distinguishing
between the effects of interface states and those caused by lateral
nonuniformities. The first method makes use of the frequency dependence
of the response of interface states. One measures the C-V curves at two
different frequencies, as widely separated as possible, in the range
between 100 Hz and 1 GHz. Any discrepancy between the two curves in
the depletion regime must be attributed to interface states.

The second method utilizes the freeze~in of charge carriers in
interface states at liquid-nitrogen temperature. The low-temperature,
high-frequency C-V curve is measured while sweeping the gate voltage from
accumulation into deep depletion at a reasonably fast rate, say 1 V/sec.
If the lower portion of this curve is not parallel to the ideal curve at
the same temperature, the sample has appreciable lateral nonuniformities.
If the lower portion of the curve is parallel to the ideal curve at the
same temperature, then all of the room~temperature C-V stretch-out is due
to interface states. .

The third method makes use of the fact that although the stretch-out

of either a quasi-static or a high-frequency C-V curve caused by interface
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states can be duplicated by a particular distribution of nonuniformities,
the combination of both quasi-static and high-frequency C-V curves can not
be so duplicated. The converse of this is also true. A method of
utilizing this principle is described in Sec. 4.4.

The comparison method described in Sec. 4.4 requires a means of
determining the distribution of flatband voltages of a nonuniform MIS
capacitor. Section 4.5 describes a simple procedure which we have

developed for this determination.
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