
AD— A031 325 ILLINOIS UNIV AT CHICAGO CIRCLE COMMUNICATIONS LAB FIG 9/5
TOPICS IN ADVANCED ANTENNA THEORY. (U)
JUL 76 6 FRA NCESCHETT I AF — A FO S R— 2 2 63— 72

UNCLASSI FIED 76—2 AFOSR—TR—76—11 2 8 NL

_____ 
!Ii~UI__

tls1t ’At_~•‘ ETh~_U!t !~t1_ 
i~r~ IS



1.0 ~~~~~~~~~~~~~~

Ii L~

IIII~1111ft25 IIIII~•~ 11111



- - — — - —--- ~r’r’ rr w~~r~ ~

rJ1 
~j  

COMMUNICATIQ~~S LABO RATORY
10 F - 

p rtmsnt of lnfermetion

11 - Unevsreit y af wince, at Chic.9o Circle
I 

- 

Box 4348. Chicago IL BOBBO.U8*

pr~r~ ~~-~ J•j .~J..._j E~’-~
~~~ OCT 9~ 

i916 !
~~~ ,

~~~~~~
. 

~~~~~ 
~~~~~~~ 

_____;
~I9~. ~~~~~~~~~

Acauetica~ EIectr’orn gnet~ca. Opti Cs - Circuits end Network.
end System. - EIectron~C Devices

-I-—-tt-—-.—.•
.—. “—..-•. ,----~~—-— • .-.---- .~~~~—-—-- — - .• -  - .- —. - .—~.---- -.- •-



- - - .—w• ~~~~~~~~fl’’ ‘~~~~~ ‘ “  ~~~~~~~~~~~~
F— ~~~~~~~~~~~~~~~~~~~~~~ —------ 

-

-
~~~~ COMMUNICATI9~~S LA~~DRATORY

I 0 _______ f~~ partment of Inform at ion Engine eringL, 1 
/ University of Illinoic at Chicago Circl e

_______  - Box 4349. Chicago IL 60690, USA

- IR- 7 0 ’ -  112 8
Giorgio Franceschettj

~op r cs IN ADVANCED ANTENNA THEORY

Communications Laboratory Report 76-2

July 1976 J

I

Grant AFOSR—72-2263
Air Force Office of Scientific Research

Air Force Systems Command
U.S. Air Force

~~~ 

~~~~~~~~~~
yv~

~•:~~•~ :
-; ~~ oci ~~

-

AcoustiCs. Electromegnatic., Optic* - C~r’cuits end Netwo rks
Cornrnunicatior, Theory and System s - E~eccr o nj c 0ev ic.~- ‘ • - -- -—~~~ • - •~~~-..-. .-~~ - - -• • -- — - -- — — -

__________________________________ — - ~~~~~~~~~ ~~~~~~~~~~ i~ , _  _~~~~~~~~~ _, _i~~~~~~~ -___ —-



Giorgio Franceschetti
Professor of Electromagnetic Fields and Circuits

University of Naples, Italy

TOPICS IN ADVANCED ANTENNA THEORY

Lectures held at the University of Illinois at Chicago Circle
U.S.A. , Spring 1976

“War 98 em Gott der diese
Zeichen schriebt?”
(Goethe, Fauet)

- -. . -- • - — -.•

~~~~~~“ - ‘ 1 r

~ • __ _L—

I,

_______ ___________Li~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
::r~~~~~~ T~~~~

—
~ -~~~ -- ..



- .  
~~~~‘----‘-— _ _

~~~‘
. 

-~~,—- --~~ .- - - -

41 COMMUNICATIONS LABORATORY
I 0 [ Oep.rtrnent o~ Infor mation Engineering

L...~ 1 Univ. raity of Illinois at Chicago Circle
I Box 4349. Chicag o CL 60680. USA

P RE FACE

This report contains a major portion of the lecture notes for a

graduate course in special topics on advanced antenna theory, that was

taught by Professor Giorgio Franceschetti of the University of Naples ,

Italy, during his visit at the University of Illinois at Chicago Circle

in the Spring of 1976.

The three chapters of the report are respectively concerned with

antenna admittance and gap problem , with transient radiation from

antennas, and with transform properties of radiated fields. Strong

emphasis is placed on unconventional techniques. Much of the material

represents original research by the Author, and is not yet available in

textbooks or scientific journals.

The members of the Communications Laboratory are grateful to

Dr. Franceschetti for his lectures as well as for many illuminating

discussions, and to the Air Force Office of Scientific Research for

supporting the preparation of this report.

July 1976 Piergiorgio L.E. Uslenghi
Director of the Laboratory
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CHAPTER I

ANTENNA ADMITTANCE AND GAP PROBLEM

“Wherein the reader ia led down
the hig~m~ay8 of aeriea manipu -
l42 t iOf l ~

1. The problem

An important problem in antenna theory in the RF range is the evaluation

of the input admittance, i.e., the ratio of the current to the voltage, at the

input terminals of the antenna itself. Motivation of this problem is not only

academic in nature - the solution of an elegant boundary value problem - but
has also deep roots in applications .

Radiation of broadband signals requires a careful matching between the

output admittance of the transmitter and the input admittance of the antenna.

For subsurface applications the latter is also depending on the dispersion

characteristics of the external medium. In the non-communication applications

of electromagnetics, measurement of the input admittance of the antenna, used

as a probe, allows possible determination of electromagnetic constants of the

external medium, e.g., in plasma applications and biological diagnosis.

The previous discussion highlights the importance of a rigorous theory of

antenna input admittance. This is required to give the proper dependence of

input admittance on antenna geometry, frequency of applied signal, medium elec-

tromagnetic parameters and feeding system characteristics.

The last one is probably the most difficult point to analyze. Let us con-

sider, in the most general case, the antenna as composed by two metal bodies

fed by a transmission line (fig. 1). The input admittance at terminals AA ’

will depend on the position of points (or small areas) AA ’ on antenna body as
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well as on the configimation of feeder structure close to the antenna itself.

Accordingly, the input admittance cannot be specified in terms of the antenna

only. This difficulty can be alleviated by considering antennas with a sym-

inetry axis and fed at a email gap . This leads to the idea of a d—gap, i.e.,

an infinitesimally thin gap across which a finite voltage (and, consequently,

an infinite electric field) is applied . However, this assumption implies an

inf inite value of the imaginary part of the input admittance of the antenna.

It is obvious that the above difficulties exist also in the zero-frequency

limit, i. e., in the definition of the input capacitance of the metal structure

of fig. 1. This suggests the possibility of exploring the g~~ problem under

quasi-static conditions, where the analytical difficulties connected to the

solution are mnaller. This procedure is presented in the following Sections,

first with reference t- the spherical symmetry - a simpler case - and then to
the spheroidal one. In the limit of a very thin prolate spheroid, the perfor-

mance of thin wire cylindrical antenna is recovered.

Al

~1Pig . 1 - Antenna geometry

The analysis which will be presented leads -to an analytical expression for

the input admittance which clearly exhibits the peculiar resonant performance

-
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of antennas. As an application, transient input responses are computed for

antennas in non-dispersive as well as dispersive media.

2. Relevant formulas and pertinent expansions

For the readers’ convenience, relevant formulas and pertinent expansions

used throughout this chapter are herein collected.

Sp herica l Hcznket func tions of the aecond kind

(note: the superscript (2) has been omitted for notational simplicity)

h2~~1 (z) = 
2n— 2 h2~~2 - h~~~2(Z) (2.1)

where a prime means derivative with respect to z.

2n- 22n-2 . r (2n-2+m) 1z h2~~2(z) = 1 exp[-iz) Lm m!(2n—2-m)! . m (2.2)
0 (2iz)

wher e h ( z ) = H (z)

For m = (z/2)~~
’3 >>l and ~ = [z-(2n-3/2)}/m>O and not large

2 3/2

~n (z h2~~2(z)) - ~ exp(i~~) 
H~~~ ( 3 t )  

(2.3)
t 

1
~~~~~~~~ (~~~~~~~ t )

For t~~O

~~~&n[Z h2 2 (Z)] - ~ exp(i~~ ) (3)~~
3 

1 - (0.46+i 0.80) (2.4)

• For z large and z > >  2n-l

~~~
. 9.n[z h2 2 (Z )]  - i (2.5)

For 2n-1 large and 2n-l > >  z

-5-
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Zn[z h2n 2 (z)] = 
2n-1 

- 

h2~~1(z) 2n-l 
- 

2 (2n-l) 
- 

2n-l 
~~ (2 6)

2n—l h2 1 (z) 8n2

2n-2 z

For z - ~0

2n-l h~~~1(z) (2n-l)(2n- .~.)

2n-2

Modified Bessel functions of the f irs t kind

Fo r t < < 1

t~~~ i1 (t) (
~~

- )  —
~
- , n ~ 1 (2.9)

For t > >  1

I Ct) exp(t) 
(2.10)

Eegend.re polynomia ls of the fir8t kind

Let r~ = cos8, ~ = ~r/2-e

f
~~~~~~~~~~1

(T~) 

~2m-i~~ 
d~ 

4n(2n-l) 
(2.11)

- / 2  
~~n~i

UT) = 2 ii 
~ “2n- 1~~~ 

- 2 n 
~2n~~

P~~~1 (O) = 2 n 
~~~~~ 

(2.12)

For 2n-1 > >  1 , (2n-l)O> 1

~~
n-i

~~ 
/c~~ne 

cos [(2n~ 4)e + =

= 
/~~ ~~~ 

c°s n~ cos((2n-4)a] (2.13)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~.._ -__a~~~
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2

(O) ( ) fl ,/~~ 
(2.14)

Series sisnmation

exp(ix)
exp(inx) = 1-exp(ix)

fdx 
~ 

exp(inx) = 

~n .
[ dx exp (inx) = 1 exp(inx)

dx 1-e~p (ix) 
= - ~~ ~n[l-exp(ix)]

Accordingly

~ 

ex~
,
~ix) = - £n~l-exp(ix)] 

.
- 9.n(2 sin .~ - )  - 1

cos(2n-1/2)x 
= ~~ 

cos 2nx + ~~ 
sin 2nx 

=

i
n fl fl ~~~ n

x 1 11 . X
— COS 2 2 ~~~~ 

+ ( -
~ 

-x )  sin -
~~~ (2.15)

Integra ls

f  ~~~~~~~ dx = 2 / l-x  + f  dx 
= 2 ~ 1-x + ~fl 

.‘l- x - 1 ( 2 .  16)
x x v ’Ti ~~~~~~~~~~~ ~

When the upper limit of the integral is +1 , compute the last term of

(2.1€) for x= x 0 and then let x0~~
l.

j x
V 1 (u x)~~

V exp(xt) dx r(~-v+i)r(v) u~ ~(v;~+1;tu) (2.17)

where ~ is the confluent hypergeometric function

= exp[z] ~(~-ct;$;-z) (2.18)

-7-
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(~;~ ;z) * p (a+l;8+l;z) (2.19)

1
~p (c&;2a;2z) a 

~ (~~+ -
~
.) exp(z)(~.) I

~~½
[zJ (2.20)

3. The spherical antenna. Input admittance

Let us consider the spherical antenna of fig. 2 to be referred to a

spherical system of coordinates (r,n=cose ,~) centered at the center of the

antenna. The antenna is assumed to be fed by a ~-independent voltage V0

exp(iwt) at a small finite eçuatorial gap of thickness 2s, s=aa~. The external

medium is assumed linear , homogeneous , isotropic , time-invariant and described

• by permit-tivity c and permeability I.~.

P(r,9)

-

Fig. 2 - Geometry of the spherical antenna

The boundary value problem associated with the radiation from the antenna

is the solution of steady-state source-free Maxwell equations subject to

(i) radiation condition at infinity

(ii) symmetry condition relative to ~p-coordina-te

(iii) boundary conditions at r=a.

Electromagnetic fields specified in a spherical coordinate system and

subject to condition (ii) decouple into two sets of modes characterized by

-8—
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components (Hr~
H0i E~,

) and (Er~
E
~ IH~)• 

For the assumed excitation which has no

•~-component of the electric field , the former modes are not excited . Accord-

ingly, the solution of MaxwelPs equations subject to condition Ci) in spheri-

cal coordinates is the following :

Er 
= 

i~c
1
sin0 

~~ 

2n- 1 
~ h2 1(kr) [P~~(~)-~ P~~~1(n)] (3.1)

— 

1 (2n-l) h2~ 1(kr)-kr h2 2(kr) 1
• E0 

= ~ t - 

r P2~~1(n) (3.2)
• in

= 

~ 
t h2 1 (kr) P~~~1(~) (3.3)

where hm (X) is the spherical Hankel function of the second kind, P
1 (x) the

associated Legendre polynomial of the first kind , k= .i /E~T, and t are as yet

unknown expansion coefficients. Note that the usual superscript (2) in the

notation of the spherical Hankel function has been omitted for the sake of

notational simplicity . Forcing of boundary condition at r=a requires

E0(a ,8) = E(0)

E being the 0-component of the applied electric field at r = a. Note that E = 0

save in the gap region,

E(ci) a da = - af 
/

~
!2) d~ = V0, (3.4)

no = sin a0.

If V(~) is the applied voltage distribution, the applied field distribu-

tion E(n) follows immediately from (3.4):

E(~) = - _ _ _ _  = - /l-~~ V ’( ~~) (3.5)

-9-

I



r _______ —~‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— C—  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —• - -. -~~~ •— -~- — • - ------- • _ -

The expansion coefficients t~ appearing iii (3.1-3.3) can be computed by

(i) evaluating (3.2) at r=a ,

(i i)  multiplying both sides of (3.2) by

(iii) integrating in a-domain between (-1,1)

(iv) taking advantage of orthogonality relation (2.11).

Hence:

= - 
(2n-1) h2 1(ka)-ka h2 jka) 4~

(2n_l)f 
/ 2  V’(~) P2 1 (~)d~ (3.6)

Let us define the input admittance Y as the ratio of the current at the

gap to the applied voltage

2-ira H (a,~ )
0 (3.7)

0

Using (3.3 and 3.6) into (3.7) the formal result

R (ka)
Y = iirwca 

~ (2n—1)2 Rn
(ka)_l V (n 0) (3.8)

(2n—l) h2 1(ka)R (ka) = ka h2 2 (ka) (3.9)

P~ ~C 
~ 
ç~o 1V~(n0) = - 
j  

/j -fl~ V’(~) P2 1 (ri)d~ (3.10)
no

is obtained .

The following comments are now in order.

(i) The expression Vn(10) can be considered as the normalized excitation

voltage of the (2n-l) mode. For a 5-gap excitation, i.e.,

V ’ (~) = - V
0
S(~~) ,  the result

A

-10- 
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[P 2 1(0)1
2 

2V n- 
= 2n [ 

~
‘2n~

0
~ 

(3.11)

is obtained . Note that use has been made of (2.12).

(ii) For large values of n and ka fixed , eqs . (2.7 and 2.14) show that

81i2 . -Rn (ka) —f , V~ ir . Accordingly, the series (3.8) diverges for

a 6-gap excitation.

(iii) Since this divergence process does not depend on ka, it is conve-

nient to add and subtract to the series (3.8) its value for ka=0.

Using (2.8), the result

Y(ka) =-Y(O) + [Y(ka) - Y ( O ) ] =

4n-l
= iwirca 2 V ( ~o) +

1’
~ 
(2n-l)

+ iwirca 
~~ (2n-1)

2 R (ka)-1 V( n 0) (3.12)

is obtained .

The first series in (3.12) is still diverging for a 6-gap excitation .

However, the second ser ies is now converging and , for < <  1, the 6-gap exci-

tation is a reasonably good approximation . Accordingly,

4n-iY = iwirca 2 V (n0) +
1n (2n-l)

+ iwir ea ~ 2n(4n-l) [P 2 (O) ~2 R ~a -1 
(3.13)

1
fl (2n-l)  n

Aside from the factor i , the f i rs t  term in (3.13) is clearly the susceptance

associated with the atatic capacitanc e of the antenna . Its value will , in gen-

era l , depend on the gap dimension (fl 0) and type of excitation (E (~ ) ) .  The second

-11- 
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series approaches zero as for w-’~O (see eq. (2.8)) in a lossless medium .

Accordingly, it is a typical dynamical term and will be called the dynamical

input admi t tance Yd.

The formal expression of the input admittance is then the following

Y = i w C5 + Y d (3.14)

4. The spherical antenna continued. Static capacitance

From (3.13) the expression of the static capacitance of the antenna is

given by

r 4fl-C = wca L 2 V (ii ) (4.1)
1~ (2 n— 1) ~

• In order to sum (4.1) the distribution of the field V’(n) applied across

the gap should be known; this, in turn , requires specification of the feeder

geanetry and the solution of a generally complicated boundary value problem.

It is, therefore, customary to assume a priori the voltage distribution across

the gap; this is acceptable only if C~ is rather insensitive to the field dis-

tribution across the gap. This is, however, a rather crucial point on which

the very definition of an input admittance of the considered antenna must be

founded . As a matter of fact, this definition is possible only on the assump-

tion that V is (practically) independent of the field distribution across the

gap and therefore does not (practically) need the feeder specification .

• Let us define

4n-1f~(n0) = 
, V(n 0), (4.2)

~2n—l)

where V~ i: the asymptotic expansion of V~ where n is ver y large. The expres-

sion for f~ can easily be computed by using the asymptotic expansion (2.13).

Hence:

• - 12—
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(i) P~ l~~O~ ~~~~i 1(
~ & 

-~~~~~ 1 (cos[(2n - -~ )(a+a0)] +n- ‘~- 

~ v’cosct~ cosa 
-

+ cos[(2n -~ -)(c&-a0fl}

(ii) 
J 

cos[m(ct-a0)]dct =J cos[m(a-s.ct0)]da;
-a0 -a0

this result stems from the change of variable a-- -a , and remains valid

when an even function of a is introduced inside the integral.

(iii) V ( ~ 0) = 
-2 

f 

~ /cosa V ’( a )  c o s [( 2 n -4 ) ( a + c t0)]da .
1T/cosa0 -a

0

Accordingly,

a

f~ ( )  = 
-2 

f 

0 
Icosct V’(a) cos[(2n -4)(a+a0)]da .

rn /cosc&0 -a0 0

Now the series (4.1) can be recast in the following form:

C5 = -rica 
~ 

f~ (r~0) + -rica 
~~~~~ 

V~ (n0) - f (~~
0)] 

(4.3)

Note that in the second series , each term behaves as 2/Tin plus terms of

order 1/n2 as n-~~. Accordingly, the series is uniformly convergent with

respect to n0, and its evaluation can safely be performed for n0 =O. Hence

~ 
~ 2n(4n-1) 

2n~°~~ 
- ~ l .l28 (4 .4)

The f irst  series which appears in (4.3) is also uniformly convergent wi th

respect to n0, thus allowing interchange of summation and integration opera-

tions. Using (2.15):

-13-
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-2 1
a0 V’(a) ~ a+a0 1

~ ~~~~ it v’cosa0 ~ -a0 
~0 

(
k
cos ~~~~ 2 sin(a+a 0)

a+a 
____

+ [
~ 

- (a+a 0)] sin 2 } I~~sa da

zj
~~~~~~0 Vt (ci) Zn 2(cL+ a0) ‘ 

(4 5)

the last result being valid for a0 < < 1.

Assume now V(-a0) =0; V(a) 
a _ V

0. Integration by parts of (4.5) leads to

~ ~
fl
(
~O
) = Zn + 2f 

v(x) dx (4.6)

v(O) = 0 ; v(l) = 1

Clear ly ,  on ly the second term of (4.6) depends on the voltage distribution

across the gap.

Summing up (4.4 and 4.5), the result

C~ 
= 2irca [0.564 + Zn ~~~~~ + lJ ~~ V (~() dx] =

= 2irca [0.882 + Zn ~~~
. + 1(v)] 2ca [Zn + 1(v)], (4.7)

with 1(v) 
,[ [‘

~~ 
- (4.8)

is obtained . Clearly, only the term 1(v) depend s on the voltage distribution

across the gap .

An idea of the magnitude of the quantity 1(v) can be obtained in two limit-

ing cases . For a constant applied electric field distribution across the gap

v(x) =x and 1(v) =0. For a gap with sharp rims the electric field should show

a square-root singular behaviour at the gap edges. Accordingly, a reasonable

- 1 4 -
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normalized voltage distr ibut ion is

v(x) = , ~~~~~~~

v(x)= l-

Using (2.16) for evaluating the integral (4.8 )  the result

— 

1 (v) = 1.404 (4.9)

is obtained . Accordingly, the static capacitance will be practically insensi-

tive to applied field distribution as long as

• Zn > >  1.404 (4.10)

For a/ s = 10 , i .e . , a0 =5.75°, the change in the static capacitance in the

two considered cases is as high as 32%; for a/s = 100 , i.e., a0 = 0.57°, it is

still 21%. The change becomes neglig ible for the case of wire antennas (see

Sec . 7 ) .

5. The spherical antenna continued. First term of the dynamical
input admittance.

From (3.13) the first term of the series representing the dynamical part

~d 
of the input admittance Y is given by

H . 3ir 
_ _ _ _ _ _= iwca 2 R 1(ka)- l  (5.1)

h (ka)1 l+ika
• R 1(ka) = ka h0(ka) = 

(ka)2 
(5.2)

wher e h1 and h0 can be computed via (2.1 and 2 . 2).

Substituting (5.2) into (5.1) the result

y = .~1L iwca (ka)2 
= 

(wca)2 
= 

~~~ (~~~)
2 

(5 3)1 2 l+ika- (ka) 2 2 

i~iua + + iwca y1 :~
- 

-

- 1 5-  

1 i
_ _ _ _ _ _ _ _  ~~
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is obtained.

• Expression (S.3) has the lumped equivalent circuit representation given

in fig . 3 , where the box represents a reciproca l gyrator such that the input

admittance Y1 equals Y~ divided by the output admittance /~~~7~~~~ y1. This

gyrator is the dual of a conventiona l transformer wherein the mutua l inductance

is replaced by a mutual capacitanc e / 3ir/ 2 ca and terminating inpedances by

• terminating admittances.

rj~~~~~~~~?wc
a~
2
~~~~~~

Fig . 3 - Equivalent circuit for the first term
of the dynamical input admittance.

The circuit of fig. 3 correctly represents the first resonance properties

of the antenna . The normalized admittance y1 is exactly a parallel resonant

circuit. Due to the presence of the gyrator, the network behavior of the first

resonant mode of the antenna is a sort of inverted resonance.

The admittance Y1 is purely real when y1 is purel y real , i. e.,  for

in a lossless medium. At this angular frequency, which is identified

as the first dyn~ in~~~l resonant frequen cy of the antenna ,

- 

(5.4)

For w << w1 
the term l/iwia is prevaling in the denominator of (5.3) and

~ 
.~!. ~~ z3 (5.5)
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where z =wv~ja can be considered as a normalized frequency. The contribution

of this m ode to the radiation process becomes negligible and the only effect

is the lowering of the (capacitive) static reactance iwC5.

For w > > w 1 the prevaling terms is, on the contrary, iwca and

- i ~!. ~~~ z (5.6)

Again the contribution of this mode to the radiation process is negligible and

only reactive local fields are excited. These results are valid also for

higher order modes, as shown in Sec. 6.

In the case of a dispersive medium, i.e., £=c (w) and/or i i=~ i (w) , the

above conclusions must be modified . However, the theory just presented allows

for an easy study of the input properties of the antenna in such media . For

instance, in the case of an imperfect conductor of conductivity a, it is only

necessary to substitute c+a/iw to c into (4.7) and (5.3). This is a great

advantage with respect to other antenna input admittance theories.

6. The spherical antenna continued. Higher order terms of the dynamical
input admittance

The general term

y = iwirca 2n(4n-l) [P2n(0)1
2 

R (z -l (6.1)
(2n-l) n

of the series appearing in (3 .13) is now considered.

Expression (6.1) can be recast in the following form

2n(4n-l) ir[P2 (0)]
2 w2e2a2

Y = (6 .2)

(2n—l) h2 1(z)
= + 

n- (6.3)n i h~~~2 (z )

- 1 7—
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Now (2.1) is used to transform (6.3) into

(2n l)2 
+ i(2n-l) ~~

— Zn (z h2~~2(z)]. (6.4)

Eq. (6.4) shows that v’~7~ y~ can be represented as a parallel connection

of three terms: a capacitance ca, an inductance i.za/(2n-l)2 and a residual

admittance 
~~~~~~ 

given by the last term of (6.4), as shown graphically in

fig . 4.

~~~~~fl (2n 1)4

C~ca

Fig. 4 - Lumped-circuit representation
of the term

Use of (2.2) simply shows that the normalized residual admittance is

the parallel connection of a normalized conductance (2n-l) and a normalized

admittance given by the ratio of two polynomials of degrees (2n-2) and. (2n-l)

respectively.

Clearly, the equivalent lumped-circuit representation of (6.2) is a

reciprocal gyrator closed on the normalized admittance (6.4). Accordingly,

the equivalent circuit for the total input admittance Y of the antenna is

given in fig . 5, wher e

= 
2n(4n-l) rr[P2~ (O))

2 w2e2a2 (6.5)
(2n-l)

The above results are exact. However, in order to get a physical insight

into the resonant properties of the antenna, it is convenient to have approxi—

mate expressions for y
~
. This, in turn, corresponds to an approximate evalua-

tion of the last term of (6.4) in different ranges of z.
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Y~~
2

~~~I~~
yn

Fig. 5 - Equivalent network for the input
admittance Y of the antenna.

We will restrict our attention to large values of z. For z 2n-l , eqs.

(2.3 and 2.4) show that

— 1/3 (0.46 + i 0.80).

Accordingly

y iwea + 0.80 
/

‘

~~~ 
~~~~~~~~~~ 

+ 
(2n 1)2 

[1 + 
(2f l _ 1)Z l/ 3]

iwea + 0.80 ~~~ ( 2n- l) 213 + 
(2n 1)2 

[1 + 
(2fl-1)4’3] 

(6.6)

The network behavior of the antenna is clearly that of a parallel resonant

circuit which resortates at a frequency slightly larger than 2n-1.

-19-
_ _ _ _ _ _ _  

- - - ~~~~~~~~~~~~ • - - -~~-~~~~~~~ --- -• • -~~-- — -~~~ -~~~ ---- ~~--~~-~~~——~



— -
• -~~~• -- •~~—~~~~~~~~~

For < <  2n-l , taking (2 .6)  into account

~ 
(2n ..1)~ (6.7)

while for z>> 2n - 1 , taking (2.5) into account

/ 

. y = iz . (6 . 8)

Accordingly, also for the general mode the network behavior of the antenna

is that of an inverted resonance. Each mode is strongly excited only in the

neighbor of its resonance at the normalized angular frequency

Z
2~~~l 

= 
~2n-l 

~/~ i a 2n-l.

7. The wir e antenna

The results shown under Secs. 3 through 6 are qualitatively valid also in

the case of spheroidal antennas, although the mathematical machinery becomes

much more complicated . However, the techniques of analysis already introduced

cart be successfully applied also to this case. Hereafter, only results for

thin prolate spheroidal antennas are quoted, i.e., for antennas characterized

by large values of the parameter

(7.1)

where 2a is the larger and 2b the smaller axis of the prolate spheroid . The

obtained results can then be applied to wire antennas of length 2a and diameter

2b wherever c2> > 1 .

The equivalent network circuit for the input admittance of the antenna is

still of the type represented in fig. S. Particularly, for the first few terms

we have

= c
~
ea, (.2)

-20-
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2iT{~~ + [Zn + I ( v ) } }  , (7.3)

2 3it 2 2 2
= -~~-- ~ c a , (7 .4)

/~ 
y1 = iwcac + b + i~~aZ (7.5)

where:

c = 
~~ 11 +0 . 0 8 2 6  

~~~~5)~~~ 1~ , (7.6)
L (~~+ ff )J

100 25 1g = —

~~~~~ ~~~~~~ 

—

~~~ 
, (7.7)

25 ~~~~~~

= ~~ 
+ 5/11 1 . (7.9)

Eq. (7.3) shows that the second term in the curly brackets is negligible

with respect to the first one when b/a is very small (thin antennas). Under

this assumption

~ 
~~~2it~~~ 7 1 0s ç~ 

( .  )

and this static capacitance becomes practically independent from gap thickness

and feeder characteristics. This is the very condition under which an input

admittance can be properly defined and also explains the reason why theories

which do not take into account the gap problem give acceptable results for thin

wire antennas .

In the low frequency range, when only the first mode of the antenna is

excited , the input admittance of the antenna is given by

= iWC~ + 
~l = ~ ~!. ~~~~ :: : ~~~ 

. (7.11)
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The antenna resonates when Y is purely real . For large values of ~ this

happens for (2z)2r4~- 9=0 and for z
2r~-9= 0 , as easily follows by neglecting the

term 9z respectively in numerator and denominator of (7.11).

In the first case

3 .
= , i.e., a 0.955 (7.12)

A being the wavelength: w1v’~~ = 2ir/X. This is the well-known first resonance

of the antenna. The input conductance at this resonance is given by

H 
G =  /~ 

~1L Ip (7 .13)

which correspond to the usual 80 ohm of input resistance at resonance.

The second resonance occurs at :3 , i.e., in a frequency range in which

the contribution of the second higher order mode is no longer neglig ible.

Accordingly, previous hypotheses are no longer valid . Furthermore, the conduc-

tance at this resonance turns out to be proportional to l/c2 , so that this

resonance is of no practical interest.

8. Transient response of the antenna. Free-space environment

Let us now consider the transient input current response 1(t) of the wire

antenna when a time-varying voltage V (t) is applied to the input terminals. It

is explicitly assumed that the frequency content of V (t) is negligible in the

high frequency range, so that the input admittance Y of the antenna can be

approximated by

Y iwC5 + . (8.1)

Let c~ and be the perinittivity an~ permeability of free space, and let

T = /c0ii 0 a. If the applied voltage is a pulse of time duration T, its frequency

content is of order l/T. On the other hand, assumption (8.1) requires
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~max~~O~
’0 a = 

~max
T ~ 2 . (8.2)

Accord ingly,

2ir ‘
< ~~

- , i.e., T 2 Itt . (8 . 3)

Note that 2-r is the time required for the signal to travel a distance

equal to the length of the antenna. Accordingly, the pulse duration should

exceed this time.

Let

p iwVc0~0 a (8.4)

be the analytical continuation of the normalized angular frequency w/c0~.i 0 a , and

i(t) = _____ exp(pt) dp (8.5)

~

be the normalized unit response (i.e., the current response to a voltage exci-

tation 5(t)) of the approximate circuit corresponding to (8.1). In (8.5), the

integration path F runs parallel to the imaginary axis leaving to its left all

the singularities of the integrand, and t is the time normalized to i t .

The input current response 1(t) of the antenna follows by superposition as

f l~~I
1(t) = 

/ ~~ j  
V(t’) i (t-t ’) d t ’  • (8 .6)

where normalized times are used.

In the general case the environment of the antenna is time-dispersive,

i.e. , ~i =~i0I A r (P) and c =c 0c (p), where the relative permeability ~~~~ 
and the

relative permittivity er(p) describe the dispersive properties of the medium.

It is also convenient to introduce the relative refractive index =

= Vc~~(p)l.1~~ (p) .
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By substituting the above into (7.11) and neglecting terms of order l/Q2

with respect to unity , the result

y 2 2 a - p n  1

_____ 
jT I ~

“
0 

+ 
~~ 

t
~r 

- 

~~o 2 2 
0 r 

2 I’ (8.7)
/c3/1A 0 r L ~r + 2a0 ~‘ 

1
~r 

+ Wo J

9 3a = 2 ‘

8c2~~

is obtained . Note that, insofar as the third term in (8.7) is concerned, the

integration contour r can be closed by means of a circle of infinite radius in

the left-hand plane for t > 0, so that the integral is simply given by poles and

branch-cut contributions .

Let us now consider the case of a free-space environment, i.e., n(p) =1.

In this case no branch-cut contributions are present, but only two poles at

p
1 

= - a0 ± i /~~-cL~ - a
0 ± i~0. Accordingly, the integral (8.5) can be

2
evaluated as

• i(t) = ~~ (6a
0 6(t) +6’(t) +3w~ exp(-a0t)[cosw 0t 

- 
~~~~~~~~~ sinw0t],

(t 2 0) .  ( 8 . 8 )

Eq. (8.8) can be recast in the same approximation under the following form

i(t) = ~~ [~
a~ 6(t) + 6’ (t) + 3~~ exp(-a0t) cos(w0t 

0
)] (t 20). (8.9)

Eq. (8.9) clearly shows that the unit input current response of the

antenna, for t > 0, equals that of a resonant damped circuit with resonance

frequency w0 and with damping constant a0. Obviously, the damping of the cur-

rent has a counterpart in the radiation losses of the antenna.

1-
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9. Transient response of the antenna continued. Dispersive environment

In the case of a dispersive medium, the more general expression (8.7) has

to be substituted into the integral (8.5). Accordingly, the following changes

ar~ generated.

(1) The locations of the poles in the complex p-plane are shifted , this

taking into account coupling of the antenna with the dispersive

environment.

(2) Branch-cuts should be made, due to the presence of the square-root

• r t (~ ) =

For example, for a conducting medium of conductivity a,

= 1 4 
‘ 

~r 
= 1 (9.1)

where y=aa//c0/~.i0 is the normalized conductivity, and now c~ 
is the dielectric

constant of the external medium (different from that of free-space).

The branch-cut is along the negative a-axis from a = 0 to a = -y (see fig. 6).

iw

- 

p—plane 

i iwo/1_ (y/2w0)
2

branch—cut 

~po1e

Fig. 6 - Plot of poles and branch-cuts in the complex
p-plane for the case of a conductive medium .
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Let us first consider what happens to the pole contributions due to the

zeros of the denominator of the third term in (8.7).

Let, as in the case of free-space, p1 = -a
0 

+ iw0, p2 = -a0 
- iw0;

a0 = 9/8~ wo = 3/2viV. In the case of a conductive environment , the poles

are possible solutions of the following equation

- 

~
‘
i~ ~~~ ~ 

- = 0, (9.2)

where cr is given by (9.1). The solutions of (9.2) are

p ’ = - + /[-ct0 ±i (w0 + ~)][-a0 ±i(w0 - ~
)] = -a~ ±iw~ (9.3)

where the plus sign has been chosen for the square—root in order to recover the

solution of Sec. 8 for y= O.

The pole contribution i~ (t) to the total current response (8.5) can be

easily computed as

i~ (t) = ~~ 3w~ ~~ exp(-c1~t) cos(w~t + —a), (t> 0), (9.4)

which is the generalization to the case y ~ 0 of the analogous term appearing

in (8.9). Accordingly, w~ is recognized as the new resonant frequency of the

antenna and as the new damping constant.

The following observations are now in order .

(i) For y < <  2w 0 ,  eq. (9 .2)  simplifies to

p ’ = - - a0 ± iw 0. (9.5)

Accordingly, only the damping constant is increased with respect

to the free-space case, whereas the resonant frequency remains

the same.

(ii) For increasing values of y the damping further increases and the

- 2 6-
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resonance frequency diminishes.  There is a crit ical value 1c = 2w0

of the conductivity for which

p ’ - w~ - /a0w0 ± i /a
0w0 . (9.6)

(iii) As the conductivity is further increased, the damping increases and

the resonant frequency of the antenna is still lowered . For

y>>2 w 0. we have

• 2aw
p ’ = -y ± ~ 

0 0 (9.7)

Lct us now consider the branch-cut contributions due to the square-root

of c
~
(p) which appears in the first and third term of (8.7). Note that the

closure of the F contour of integration in the left-hand plane requires the

subtraction from the first term in (8.7) of its limiting value for I~I -
~~

Then, letting x = -a, the expression that the sum of these two terms assumes

on the upper side of the cut is the following :

~~~~ 
- 1]- 

~ 2 
2a0i - (y-x) 

2 (9. 8)
• -x(y-x) - 2ia0/~(y-x) +

and is equal to the complex conjugate on the lower side of the cut.

Summing up the two contributions along the two sides of the cut and inte-

grating between (O,-y) gives 2tri times that part of the current response (8.5)

which is due to the branch singularity. Letting ib(t) be such contribution,

we have

I

~~O 1 3/2 W 0 + x(y -x)
ib (t) = 

~~~~~~~~~ 

& (y-x) 2 2 exp( -xt)dx (9.9)
‘
~0 

[w 0 -x (y - x ) ]

where terms of order (a0/2w0)
2 have been neglected .
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For w~ > y/2 we can safely neglect the term x(y-x) with respect to w~.

- 
Then , the integral can be computed by repeated use of (2.17) through (2.20) .

Hence

2-1Ta~ Ij ,2 

~ Yt 1’l~~ ‘2 cf~1
• i

b
(t) = 

2 
y exp(- r~L yt/2 + yt/2 J (9.10)

For yt/2 >-> 1, eq. (2.10) transforms (9.10) into

• 4/~~a~ L’
2 

~~ib(t) 2 (f) . (9.11)

• Eq. (9.11) shows that the branch-cut contribution is the dominant term at large

observation times . This is a general result whenever the branch-cut has at

least one point on the imaginary w-axis.

The remaining contributions to the total unit current response are straight—

forward to compute. The final result is:

i ( t )  = ô ’ ( t)  + ~~~ (6a0 +y)6(t) 
+ i~(t) + ib(t). (9.12)
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CHAPTER II

TRANSIENT RADIATION FROM ANTENNAS

“It is worth emphasizing that
our knowledge about the tran-
sient respons e of antennas ia
very meager indeed”
(T. T. Wu, in Antenna Theoru)

1. The problem

Although the steady-state radiation from antennas has been widely studied

in the past and the radiative mechanism is well understood, the radiation under

transient conditions is still an almost undiscovered field . In spite of this,

the problem is rather important from both theoretical and practical points of

view .

• In order to complete our knowledge in the field of antennas , it is certainly

highly desirable to have a complete understanding of radiation properties under

steady state and transient conditions as well. On the other hand , wide band

transmission of signals and pulsed propagation in non-dispersive and dispersive

lossless and lossy media (e.g., subsurface radiation , radio links between two

• satellites in the ionosphere) requires a sharp understanding of the mechanism

of transient radiation in non-dispersive and, even more , in dispersive media.

It is worth emphasizing , however , that the analytical machinery necessary

to correctly describe transient radiation is rather formidable. Accordingly,

it is very likely that the physics of radiation could be submerged into an ocean

of difficult mathematics. Therefore, it seems attractive to develop simple

models which could help in the understanding of the physical mechanism of radia- - -

tion with a minimum of mathematics .

29
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In the following , first some heuristic procedures are presented which allow

for an easy understanding Df the radiation from elementary sources, coaxial aper-

tures, wire and loop antennas in free-space. The problem of elementary sources

• in dispersive media is touched upon as well. Then , a rigorous solution of radia-

tion from an antenna of simple geometry - the spherical antenna - is presented.

2. Relevant formulas and pertinent expansions

Properties of the Dirac function

6 (at.b) -
~
- 6(t + ~

) (2.1)

t Ô(t) = - 6(t) ; t2 ~(t) - 2 t 6(t) (2.2)

Inverse Lay lace transforms

(Fourier transforms are obtained by letting p = iw)

F(p) f(t)

F(p) exp(-pt) f(t-t)

11(px) exp(-px) - !__ ~ (2.3)

for -x~~t~~x, and zero for t~ 
> x

1 1I (px) exp(-px) — 
______ 

(2.4)0 ~~~/ 2  2
fx -t

for -x~~t~~x, and zero for i t i >x

11(px) 1 “2  2
~ 

exp(-px ) ~~~ /x - t  (2 . 5)

for -x~~t~~x, and zero for It i >x

-30-
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1n~~~ 
exp(-p~) 

(1)n ~ 

~2 
cos [n cos~

1 (2.6)

for -x~~t<x , and zero fur t~ > x

~~~~~ 
exp(-p x) ( 1 ) fl ( cos[n cos~

1 u/x J  
5~~f l 1~~

. (t-u)l du (2.T)
(px) 2 + a 2 ‘Tax i;-2-..~

2 LX J

-x~~t~~x

In(PX) exp( -px) ( l ) nJ cos[n cos4 u/xj cos [-
~ 

(t_u)] du (2.8)
(~x) 2 + a 2 -x / 2  2 X

v - x - u

-X -
~~ t ~ X

‘2  2 J 1(x / t ( t + 2 t ) }  2 - •

exp (-r /p +x + -tp] 6(t) - 
_______  

x it U ( t )  (2 .9 )
x ft(t+2it)

exp [-r /p :x 2 
+ t~] U(t)f J0[x(t-u) ] J0[x~~~~u+2t) ] du (2.10)

~ 
I 1 [ - ~ ./ - t ( t +2 r ) ]  

x 2
exp[-t v’p(p+x) + tp] 6(t) • exp ( -

~~
- t) 

_______  
(~~~

.)  -t (2.11)

exp[-t /p(p+x) + rpj u(t) exp[~~!]f
t 

I0[~~(t-u)]I0[~/u(u#2t)]du (2.12) 

—

Bessel functions

= - J
1(ipx) = - i 11 (px) (2.13)
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J0(-i px) 
= J0 (i px) = 10 (px) (2.14)

J~(_i px) = (~~)
fl 

~~~~~~ 
= exp (-~- mw ) I~~(px) (2.15)

J 0 (x) = 4~ f exp(ix cos~ ) d~ (2.16)

J ’ ( x )  = J~~~1
(X) - !i J (x) = - J 1 (x) + ~~ J ( x ) =

= ~~
- (J ~~~ (x) - J~~1(x)1 (2.17)

f t J C w /~~ ) 
i cx

1 p dt = 
~I 

J 1 (x) dx = —  (2.18)
w 2rt w i t 1 w i tp p p

(The substitution w I ~~~ = x has been used.)

t 
1 

fX  x J ( x )

f 
J 0( w ñ ~~)du = 

-yj  
x J0(x)dt = , (2.19)

f _ _ _ _ _ _ _  1 
cx xJ 0 (x)

j  
J0(w~ /u(u+2it) )du = 

2 2 2 
dx =

~ /x + w i t

= L J 1 (x) + 1 
X 

2 3/2 
dx (2.20)

(x + w i t )p

(The substitution x = w /~~t+2t) and (2.17) have been used.)

-~~ Lf ~0(w~ 1u(u+2r))du = - it f Jf (x)
[l 

- 
w i t

_
2 2] 

=

0 i x + w it

fX W T X
= - it J

0
(x) —s--. + -rJ J 0 (x) 

2 2 2 3/2 
(2.21)

(x +~~~~ )

(The substitution x = w /t(t+2r) and (2.17) have been used.)
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~ 
/I;~: cos[x - ( ii + -

~
.)  i.] (2.22)

for x - ~~ and n fixed . -
•

Legendre and associated Legendre polynomials

- ~~~~~~~~~ P~~~ 1(~ ) = 2 n 
~ 

~~n-l~~ 
- 2 n 

~2n~~

= 2 n P2~(O) - 
(2.23)

= (_ )
fl /~ 

for ~~~ (2.24)

Spherical Hankel functions of the second kind

(note that the usual superscript (2) has been omitted for notational simplicity)

h (x) = in exp(-ix) (j~+m)! 1 (2.25)
fl X 

0
m m !(n-m)! (21X)m

h2 1 (z) = 
2~~2 h2 2 (z) - h~~~2(z) (2.26)

Modified Lerch function

L(s,q) = ~ n~~ exp(2irins) (2.27)

Upon use of Mellin transform

L(s ,q) = 
r(l-g)exp(i(1-q)1T/2] 

+

+ ~ (2’Ts)n R(q n) exp(inw/2) (2.28)

3. Transient radiation from elementary electric and magnetic sources

Suppose we have an infinitesimal oscillating electric dipole in a homoge-

neous isotropic environment, whose Fourier-transformed moment is 
~~~~~ 

The .]
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dipole is located at the ori g in of a spherical coordinate system (r ,0 ,~ ) and is

oriented parallel to the direction 0=0. The components of the dipole ’s elec-

tromagnetic transformed field are given by the well-known expressions

2 ue(w) exp(-iwt) c 1
E (w) 4wr 

- cosO L~~ 
+ —

~
-J (3.1)

ae (~ ) exp(-iwt ) 2
E0(w) = sin8 [ ~~~~ + 

~~~~~ 
+ E~.] (3.2)

~~~~ 
exp ( iwit) I (iw)2 iw 1H~(w) 4rrr sine 

~ 
+ 

~—J 
(3.3)

where ç = (i.~/ ~~ )
½
, it =r/c and c = l/(Eu)½ .

The transient fields can be easily obtained for the case of a nondisper-

sive environment, when the dipole moment varies arbitrarily in time. By taking

the inverse Fourier transform of (3.1)

Er(t) = 4~J ~r
(w) exp(iwt) dw, (3.4)

doing the same for the other field components and letting

,. + ~~

1 ’ue (t) = -
~~~J 

ue(w) exp(iwt) dw, (3.5)

it is easily obtained

2 r~~ 
(t*) cu (t*)1

Er (t) = :i4jj~
- cose

L 
e 

r + 
:2 

(3.6)

I Ü (t ’~) ~e (t*) cue(t *) 1
Ee(t) = ;i~;~ 

sin6
[ c + r + 

r 2 
_~ 

(3 .7)

Iü e(t*) ~e(t*) 1H~ (t) = 
~~~~~~ 

sineL_— ~
———_ + 

r J (3.8)

where ~~ t_r/c = t_r is the retarded time, and a dot means differentiation with

respect to time.
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The corresponding expressions for the magnetic dipole are immediately

obtained by dul i ty  (H -’~E , E -~ - H , ~~~~~~ U
e~

+ _ U
m)

~ 
Thus

2 I~m (t *) cu (t*) 1
Hr(t) = 4wr~ 

cose
L r + 

m (3.9)

1 I~~~ 
(t*) ~ (t*) cu (t*) 1

4Trr~ 
sinG

1 
+ 

lfl 
+ 

m 
- (3.10)

1 ru (t*) U (t~~~~~
E~(t) = - ~~~~~~~

. sine[ 
m m

r J (3.11)

Assume the applied signal to be a pulse of time duration T. Only the h r

terms will be shown to be important at distances larger than cT (see Sec. 4).

Furthermore, a p hysically rea lizable dipole can be assumed e’ementary as long

as its physical dimensions are small compared to CT.

Let C be the static capacitance and L the static inductance of an electric

dipole of effective height h and of a 1oop of area A, respectively; then the

relations

(i) dipole

1(t) = C V(t) 
~
1e = - h I (3.12)

• ( ii )  loop

V(t) = - L 1(t) , U = U A I (3.13)

are valid in the limit of elementary dipoles.

Substituting (3.12-3.13) into (3.6-3.8) and (3.9-3.11) respectively, the

result

(i) Electric short dipole of effective height h:

E0(t) = ç H,~(t) (3.14)

H~(t) = - sinG = - 
Ch~~

,

~~~~~) sine (3.15)
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(ii) Small hoop of area A:

I ( t* )A  - V( t *)A -H8 (t) = 2 sinG = - sinG (3.16)
4irrc 4irrc L

E~ (t) - ç H8 (t) (3.17)

is obtained for the field at distances larger than CT.

Equations (3.14-3.17) clearly show that the radiation fields are not a

faithful replica of the transmitted signals (currents or voltages on the

radiators). In particular, if the current is proportional to a Dirac pulse

6(t) for an electric dipole, or to a step function U(t) for a magnetic dipole ,

the radiation field turns out to be proportional to 6(t). Therefore, the radia-

tion field flip—f lot’s.

4. Radia :ed power and radiated fields under transient condit ’ons

Under steady-state conditions there is a clear distinction between radiated

and reactive fieZds. Radiated fields are the h/r components, arid these fields

only contribute to the real part of Poynting vector (in frequency-domain) in

lossless media. Reactive fields are the 1/r2 and 1/r3 components and these

fields are responsible for the imaginary part of the Poynting vector . Accord-

ingly, radiated fields are associated with the radiated power while reactive

fields are associated with the imbalance of the mean stored magnetic and elec-

tric energies within the period of the oscillating field .

Let us now examine what happens under transient conditions.

For the electric dipole the Poynting vector S has r- and 8-components

• giv en by

Sr(t) =E 0(t)H~(t) 
= “~~~~ ii(t) + ~~ + + ~~~ ~2] } (4.1)

S0 (t) = - E (t)H ~~~(t)  = - 2 ~ 
~~~~~~ + ~zu + 

1 ( c )
2 2 ]  (4 .2 )
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where the subscript “e” has been dropped . For the magnetic dipole the expres-

sions are the same provided that the magnetic moment is considered and that ~

• is replaced by 1/c.

When a time integration is performed between it1 and t2, the total flux of

power density within the time interval (t 1, t
2
) is obtained . Th i~. flux is com-

posed of a term proportional to

çt 2
J U2(t) dt (4.3)
tl

and a second term depending only on the values of u, Ci at the endpoin ts of the

time-integration interval. This second term can always be made equal to zero

by choosing u (t
1) 

= u(t2); ~(t1) = ~1(t2). For instanc e , when ~(t) is identi-

cally zero outside a finite time interval, integration between (-~~~,
+

~~~) makes

this term vanish. Accordingly, this part is identified as the reversib le part

of the power , i.e., that part which is stored in the medium during the radia-

tion process but can be recovered.

On the contrary, the other part of the power proportional to (4.3) is a

non-decreasing function of time. Accordingly, it is identified as the irrevers-

ible part of the power , or radiated part, with the understanding that radiation

means an irreversible process: the radiated power is absorbed by the sphere at

infinity and cannot be recovered.

Note that only the h/r field components contribute to the radiated power .

Accordingly, they will be labeled radiated f i e lds . The other fields contribute

to the reversible part of the power and will be labeled loca l f i e ld s .

A further characterization of the fields is obtained by computing in which

region of space each term can be considered as the dominant one.

Reference is made to a Gaussian pulse of electric moment
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7
I -2tu(t) = u0 exp~ 2 (4.4)
L T

T being the effective width of the pulse (distance between inflection points).

Substituting (4.4) in (3.6) one obtains

E (t) = ______ cosO [_4 .~~i ~~ + (�~
)2] (4.5)

E~(t) = 
(
~~ sinO [{( 

~~
)
2 } + (

~~~
)
2
] (4.6)

U~(t) = 

4wr cT2 
sine 

~~ 
( ~~
)
2 

- } - T 

~
] (4.7)

It follows from (4.5-4.7) that the radiation terms are always dominant

provided that

r > >  cT (4.8)

except in the neighborhood of t~~ = T/2, where the radiation terms are zero.

Identical results are obtained for the case of a magnetic dipole. It is con-

cluded that the spherical surface r = cT divides the space into two regions,

which can be labeled near space (inner region) where local fields are dominant

and deep space (outer region) where radiation fields are dominant . Accordingly,

the reversible part of the power is essentially located inside the near space ,

while the irreversible part resides and propagates in the deep space.

5. Physics of transient radiation from elementary sources

Let us now consider the case of an electric dipole.

Reference is made to Fig. 1. Two charges, +q and -q, are separated by a

distance 29... At a time t = - 2~/v the charge +q is suddenly accelerated and is 
• 

-

then mad e to travel at constant velocity v, so that it collapses on the charge

-38-
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-q at time it ‘-t/v. The plot of the electric moment u(t) of the system versus

time is given in Fig . 1. Accordingly, a pulsed current is flowing in the time

interval ~t( ~ 9./c, front z=~ to z= -~~.

I

O ’ac ØulsIs

I
V

Fig. 1. Relevant to physical model for calculating the
transient radiation from an electric dipole.

Formal expressions of current density in the time and frequency domains

are the fol lowing :

J(r ,t) = - ~ qv6 (x) d (y) 6( z+vt)
A Z 2..

- z qd (x) 6(y) 6(t + 
~~
.) , ~t t  ~

(see (2.1))

J(r , t) = 0 , it t  > (5.1)

J(r ,w) = - ~ q6(x) 6(y) exp [- iw 
~
.], i z i ~

J(r ,w) 0 , 
- 

Iz > 2. (5.2) 

-- 
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~ being a unit vector in the z direction . The transformed radiation fields

associated with (5.2) are

E8(w) ic q ~~~~~~~~~~~~~~~~~~ - c058)j sinG - (5.3)

A Ee (w) 
- cH~(w) - , - — (5.4)

By inverse Fourier transforming (5.3-5.4) into the time-domain, the result

E0(t) = ~~ ~1-~ —~~-~-~~~~-~~-. [6(t* + x) - 6(t* - x)] (5.5)

B 2.H~ (t) = -
~~~~

- , x = - ~~
. cos8 = — (ri-cosO) (5.6)

is obtained. Equations (5.5-5.6) clearly show that the radiation emanates from

the end points of the configuration at times -2./v (acceleration) and +2./v

(deceleration) , respectively (see the diagram of Fig. 1). Accordingly, the

radiated field is not proportional to the time derivative of the current (see

(3.14-3.15)) when a time scale less than 22./c is considered .

Th e transition from (5.5-5.6) - microscopic approach - to (3.14-3.15) -
rr~zcroscopia approach - is readily accomplished by letting 22./c approach zero.

One obtains

E8 (t) = lint ~ ~~~ 
6(t* + x) - 6(t* - x) 

= c 
~~~~~~ 

sin86(t*) (5. 7)
29./c~~0 

c x C

H~(t) = ~ E9 (5. 8)

thus recovering (3.14-3.15) , sinc e I ( t ) 2 2 .  - q6(t)22.= -u 06(t)

For the case of a magnetic dipole, reference is made to Fig . 2. A con-

stant current 10 is suddenly switched on at time it = - it
0 and switched off at

• time t = + it0. The current flows in a circular 1oop of radius R located in the

plane (x ,y) .
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Formal expressions for the current in the time and frequency domains are

the following :

1(t) = 1
0
[U(t+t

0
) — U (t-t0)] (5.9)

A 5iflwt
0• 1(w) = 21o w (5.10)

The transformed radiation fields associated with (5.10) are those of a loop

with spatially constant current (5.10). These are known to be

RI
H0 (w) = - ~~~~~2. sin(wt

0) 
J1 

(
~ R sinG) exp(-iwit) (5.11)

= - (5.12)

where J1(x) is the Bessel function of first kind .

By inverse Fourier transforming (5.11-5.12) into the time-domain the

result

ID + +
H8(t) 

= - 2nT sinO (H + H ]  (5.13)

E~(t) = - c H0 (5.14)

+ 
t~~± t 0 RH (t) = 2 2 ‘ l t t

0
i 

~ 
sinG (5.15)

[(R sinG/c) - (t* ±t 0) ]~
+ R - •

W (t*) = 0 I t±t01 > sinG (5.16)

is obtai ned . Use has been mad e of (2.3 and 2.13) .

Equations (5.13-5.16) clearly show that the antenna radiates at times

t = - it0, t = t0. For each direction of observation there is continuous radiation

for It-t 0 1 ~ R sinG/c, characterized by square-root singularities (see the dia-
gram of Fig. 2). The radiation emanates mainly from points AA’ ( f las h points)

at the intersections of the loop with the plane containing the direction of
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observation and the it axis. ~‘4o radiation emanates from points BB’ (b Zack points)

due to a cancellation effect. Accordingly, the radiated f ield is not propor-

tional to the second time derivative of the current (see 3.16-3.17) when a time

scale less than R/c is considered.

1 (1 )

I0 

f
t

0

,
/

I?

”

: 

“

s~~~t~~~ =

Fig. 2. Relevant to physical model for calculating the
transient radiation from a magnetic dipole.

The transition from (5.13-5.16) - microscopic approach - to (3.16-3.17) -
iracroecopic approach - is accomplished by letting R/c approach zero.

Reference is made to the radiation which takes place at t = - it0. For R-+ 0,

it seems quite reasonable to substitute for the actual radiated waveform some

equivalent pulses (see Fig . 3). Reasonable requirements are:

(i) the strength of each pulse must be equal to the time integral of the

actual waveform
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(ii) the time allocation of each pulse must div ide the actual waveform

into parts of equa l area . When these requirements are fulfilled ,

(5.14-5.17) transform into

I R (6 (t +t + ~.x) -6 (t +t 0- !x)] I irR2

H9 (t)a u r n  2irrc X 
0 4 

x = 2 sin86(t* .t 0) (5.17)
R/c~O 4-wrc

a - 

~ H~(t) x sinG (5.18)

thus recov er ing (3. 16-3. 17) , since 1(t) zU ( t + t 0) ,  apart from the factor

3 / r T s 0 . 9 9 5 = l  (depending upon the somewhat arbitrary identification between

actual radiated waveforms and equivalent pulses).

Dirac puissi

____ ~~~~ _____  ____________

N~~

Fig . 3. Relevant to transition from continuous
radiation equivalent pulses .

6. Heuristic approach to transient radiation from coaxial apertures

The heuristic approach presented under Sec. 5 for computing transient

radiation will now be applied to the case of a coaxial aperture.

Reference is made to Fig . 4 where the radiation from an open ended coaxial

cable of circular cross section is considered . However , the results which will 
.

•
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be presented can readily be generalized to apply to radiating apertures of dif-

• ferent geometry.

Fig . 4. Relevant to transient radiation
from a coaxial aperture.

First, the macroscopic approach will be exploited . Let V (t) be the inci-

dent voltage at the open end of the coaxial cable. The electric field in the

aperture has only a p-component which, under the assumption of perfect open-

circuit conditions, is given by

E~(t) = 
p 2. b/a (6.1)

and the magnetic field is zero.

By using the equivalence theorem, the radiated field can be computed as

due to an equivalent magnetic current density with only a ~-component,

J~~(t) aE~(t). A it-directed electric dipole of moment given by

Ue (t) a (f

b 
dp = pe 2.n b/a (b

2 
- a2)

‘ 2~CZ0 
V ( t) (6.2)

is therefore associated with the aperture. In (6.2), A z-TT (b2 _ a 2) is the aper-

tur e area and Z0 a 2.n b/a]/27r is the characteristic impedance of the coaxial

cable .

~

_ _ . •

~

_ _ JI

~ 

L~



When A is small compared to (cT)2, the higher-order moments associated

with the aperture are negligible , and the radiated field can be obtained from

the results of Sec. 3. Hence

• E6(t) 
= i—. 

~~~~~. ~~~~~ sinG (6.3)
0 471rc

E0 (t)
H~~(t) = (6.4)

Accordingly, the radiated field is proportional to the second time-

derivative of the incident voltage.

As a preliminary to the study of the radiation from the microscopic point

of view, a model similar to that of Sec. 3 for the electric dipole is considered .

A charge q at position z = - 2. is suddenly accelerated at time it = - z/v and is then

made to travel at constant velocity v along the positive direction of the z axis .

At t = 0 and z = 0, the charge is suddenly reflected and is again made to travel

at constant velocity v along the negative direction of the z axis. At t = z/v

and z = - 2. the charge is suddenly stopped .

The radiated field can be computed by following the same procedure as in

Sec . 5. Only the results are given in the following . The field is radiated at

times t = - 2./v. 0 , 2./v , from points z = -2 . . ,  0, 2 , respectively. Part icular ly,

th e field radiated at t = 0, z = 0 (reflection of the charge) is g iven by

E0 (t) = - C ~~~~~ usinG 6(t*)  (6.5)
n - cos 8

E0 (t)
H~~(t) = 

—i , = (6 .6)

Turning to the coaxial structure of Fig. 4, let 1(t) =q 6(t-z/c) be the

current propagating along the cable. The pulsed linear charge densities on

the inner and outer conductors wi l l  be q/2 ii a and -q2-n- b , respectively. These
I

L 

-45- 

gA
- -- - - —- ~~~~~-- --- - •  _ —-- ---S--- — — - —-a ~~-- -  ~•



~~~~-~~~~~
-- -

~~~~-- •- ~~~~~~~~~~ —- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —---- ~~~~~~~~~~~ —~~—  • -

pulsed charges will apparently propagate with velocity c along the cable.

Accordingly, the radiated field can be computed via (6.5) (with r i = l )  and by

using superposition. Hence

r ,2T r ,2Tr r
E
8

(t) = 
. 

- ~~)d~ -J 6(t - ~~.)d~
j 

(6.7)
(2-TI) r sinG 0

where ra,b are the distances of the point (r,8) from the inner and outer rims

of the cable , respectively:

r - a sinG cosp rb r - b sinG cos4 (6.8)

In order to calculate the integrals which appear in (6.7), it is convenient

to use the Fourier transform

J dt exp (-iwt)
f 

6(t* + sinG co$) d~

~
f

21T 
d~ f 6(t* + sinG cos~ ) exp( -iwt) dt

= exp (_iw-r)f dq, exp( ~~~~~
- b sinG cosc~)

= 2-TI exp(-iwt)J 0 (~~~b sinG) , (6 .8)

and similarly for the other integral . Note tha t use has been made of (2.16) .

By Fourier inverting (6.8) in the time-domain and substituting in (6.7), the

result

E 8 (t) = C 

~ 47rr sinG 
[Eb(t*) - Ea(~*)] (6.9)

~ t)H (it) =
C

-46-

~~~~~~~~~~~~~~~~~~~~~~~~ 

_ i ~~~
:-_-

~ 
—i-1_

~



~~~-
_—--_ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

- —•
~~~~

—
~~~~

_ - -
~~~~

- 
_ _

a ,bis obtained . In (6.9-6. 10) the functions E (t*) are given by

E
X
(t) 

1 
2 2 ½ t I . sinG (6.11)

((x sinG/c) - t  ]

EX (t) * 0 , ~~ > -~~
. sinG (6.12)

and use has been made of (2.4 and 2.14) .

A plot of the radiated field is given in Fig . 5. The preceding results

are in complete agreement with those of an exact analysis carried Out by using

Wiener-Hopf techniques when pulses such that cT << b are considered. This last

restriction does not appl y in the proximity of the forward direction.

—— IIA• sINS

~~~~~~~~~~ ~~~~~~~~~~ .—
~

-‘
-‘ ,.. i ;~ ~

- ~~ 

~7 ,-- ~~~~~~~ 

• 
-f r

Dirac pu~s•s

Fig . 5. Plot of the field radiated by a coaxial circular
aperture (sum of the negative and positive plots)
and transition to equivalent pulses .

Equations (6.8-6.12) clearly show that, for each direction of observation,

there is a continuous radiation for I t*~ ~ b sinG/c characterized by square-

root singularities . The radiation emanates mainly from points AA ’, SB’ (flas h

points) .  According ly , the radiated field is not proportional to the second .~~

-47-
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time-derivative of the incident voltage V (t) =Z 0q6(t) ¶16(t) (see (6.3-6.4)),

when a time scale less than b/c is considered.

Also in this case the transition from (6.8-6.12 ) - microscopic approach -

to (6.3-6.4) - macroscopic approach - can be accomplished by substituting for

actual radiated waveform equivalent pulses (see Fig . 5) as already done in

Sec. S. Then b/c and a/c are required to approach zero. One obtains (see

Fig . 5)

E
0

(t) = 
b/c-~O;a/c-sO ~~ 

4-n-r sinG

6(t* - x)
x:y

6(
~
t* - y) 

- (x-y) cs(t + Y)
x:y

6(t* + x) ]
= him

b/c-’O;a/c-’O ~~ 4irr (~c

•[(x+y) 
Ô [t* - ((x+y)/2)] - ~[t* + ((x+y)/2)]

x+y

~ A V6(t*) 0 613
0 4irrc

E
0

(t) 
b sinG a sinG

H (it) = x =  y =  (6.14)
1~c

thus recovering (6.3-6.4) , sinc e V(t )  =V6(t).

7. Heuristic approach to transient radiated from wire antennas

Transient radiation from wire antennas can be calculated by using trans-

mission line techniques for modeling currents and voltages.

A cylindrical antenna of height 2h and diameter 2a is considered (see

Fig . 6). If the assumption is made that the antenna is very thin, i.e.,

~ =2 2.n(Zh/a] > >  1, the current distribution in the frequency domain reduces to

-48-



- ~~~~~~~~~~~~~~~~~~~~~~ r - - : ~~~~~~~~~~~~~ fl!~~~~~~r :  
~~- r--~

-- -- - - - -  
~

— - 
_ _

Z ~0S

V aZQ
9 ‘

C C  Fl ~ii ~~ I~I 
Zh~c / 3h’/c k~

U U ~~~

Fig. 6. Plot of the field radiated by a wire antenna
fed. by a rectangular voltage pulse.

1 (z) = 
2ir~~ sinc~i(h-Izj)/~I (7 1)
C~ 

in -i cos(wh/c)

where is the transformed voltage at the antenna terminals. Equation (7.1)

is formally equivalent to that of the current distribution along an open-ended

transmission line of length h, characteristic impedance Z0 = CW27I and fed by

an ideal voltage generator of zero internal impedance. When the internal

impedance of the generator is different from zero and equal to ~Z0 (real) ,

(7.1) can be immediately generalized by using the preceding transmission line

analogy . Hence .

1(z) V sin f w ( h - j z I ) / c ]  (7 2)
1

0 ~ sin(wh/c)-i cos(wh/c)

wher e is the transform ed voltage of the generator .

The transformed fields associated with (7 .2 )  are readily seen to be
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C ~ exp (-i~r/c) cos(wh/c)-cos((w/c)h cosej
G Z0

(c~+l) iir sine i+i’ exp(-2i~h/c)

= 
Z

0
(1+a) ~ 

exp(-iwr/c) . [cos ’~ h/c)-cos [(~i/ c )h  cosO] } exp(-i  ~ h)

I c-r)’~ exp(-2niwh/c) (7.3)

..
~ 

E~ (7.4)

wher e F = (l-~ ) / ( l+c& )  is the reflection coefficient at the antenna terminals.

The radiated fields in the time-domain are obtained by inverse Fourier

transforming (7.3-7.4) . For a Dirac pulse excitation ¶1(t) = V 06(t ) , V = V 0 and

the radiated fields are g iven by

V
- • — C 0

0 
— 
Z0

(c~+1) 2irr sinG

•{6 (t*) + ( 1-F) ~ (-F)~ 6(t* - 
2(n+l)h)

C

- 

~n 
(-F)~ [6 (t* - 

2n+1 (h-h cosO))

+ 6(t* - 
2i~~~~1 (h+h cosG))J} (7.5)

E0 (t)
H~~(t) = 

C 
(7.6)

Equations (7.5-7.6) show that the transient radiation of the antenna con-

sists of a chain of Dirac pulses, each being a replica of the applied signal

(sav e for the amplitude and eventually the sign). The first pulse (first term

inside the curly bracket of (7 . 5 ) )  represents the radiation due to the launching

of the current along the antenna at time t =0. The second series in (7.5) rep-

resents the radiation from the upper and lower tips of the antenna due to the
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charges associated with the current and going back and forth along the antenna .

The f i rst series in (7 .5 )  represents the rad iation due to the currents

• relaunched toward the generator.  These currents are absorbed in the internal

resistance of the generator itself. When the antenna is short-circuited at its

• terminals, r = i  and these last terns disappear .

For an arbitrary app lied voltage V( t ) , the radiat ed field is easily

obtai ned from (7 .5-7.6)  by using convolution . -\ sketch of the transient field

radiated by the antenna when the applied voltage is a rectangular pulse is

given in Fig . 6.

The abov e results can easily be applied to the case of a tnonopole antenna

on an infinite perfectly conducting ground plane. The radiation from the lower

tip of the antenna disappears, but the transient pulses reflected from the

ground plane must be taken into account . In this way , a very  satisfactory

agreement with experimental results is obtained .

S. Heuristic approach for transient radiation from ioop antenna s

• The transient radiation from a circular loop can be obtained following

similar lines. The loop of radius R is fed by a voltage generator of internal

• impedance ~Z0 (see Fig . 7). The transformed radiation field due to a traveling-

wave current I0exp[-isX] along the ioop is known to be [see S.M. Prasad and

B.N. Das, “A circular loop antenna with travelling-wave current distribution ,”

IEEE Trans. Antennas Propagat., Vol. AP-18, No. 2, pp. 228-280, 1970]

J 1(wR sinG/c) (i) J’(wR sinG/c)
E~ = E 1 - 2s + 

~n 
2 2 (s cos n~ - in sin n q)  (8 .1)

1 s — n

. n
( i)  n 

~~~~ 
sinG/c)

E =E cosG ~ • (s sin n~~+in cos nd’ (8.2)
i (s - n ) (wR sinG/ c)

~ ~~x E  
-
.

H = 
— 

C 

— (8.3)
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[exp(- i2 rs) -1] exp[-iwt] (8.4)
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Fig . 7. Relevant to transient radiation from circular hoop .

Expressions (8.1-8.4) are the generalization of the field radiated by a

1oop with a traveling-wave current I0exp[ixnX], Tfl integer . Letting s = m + ~ and

then ~ approach zero , the conventional results are recovered.

Now, the transformed current along the loop is assumed to be coincident

with that of a tran smission line of l ength 1IR, characteristic impedance Z0
(real) and short-circuited at its end. Hence

~ 
cos[wRUr-IxI)/c]

0 cos(~ rrR/c)

cos [WR(71-JXI)/c]

~~ ~cos(wi~R/ c) # i sin(wirR/c) C ~~

where V is the transformed voltage of the generator .

Expression (8.5) can be recas t in terms of two traveling-wave cur-rents

moving in the positive and negative x angular coordinate directions. By alge-

braic manipulation
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exp( -iwRX/ c) + exp [-iwR(2 n -~~) /c ) (8 6)— 

Z
0

(c~+l) 1 - F exp( -2 IT iWR/c)

From (8.6) and (8.1-8.4) with s = wR/ c , and using superposition, the trans-

formed field radiated by the loop can be computed. It~ doing that , note tha t

for the second traveling wave s =~~R/c changes into -&I~R/ C and E1 into -E 1. Henc e

J 1(wR sine/c) (i) ’~ J ’(~ R sinG/ c)
E~ = E

~ wR/ c + 2 R 
~n (wR/c) 2 2 cos n~~ (8.7)

— 2 cosO (i) ” nJ (wR sinG/c )
E
~ 

=E 0 sinA 2 ~ sin n~ (8.8)
(~R/c) -n

#~ .‘

, r x E
(8.9)

where

= - ~~ 

~~~~~ ~~~~~~~~~~ 

[exp(-27riwR/c) -1] exp[-iwt] ~~p fl exp(-ZniTiwR/c) (8.10)

• The solution for the transient radiated field is obtained by Fourier transform-

ing (8.10) . In the case of a Dirac pulse excitation V( t )  = V 06(t) , and the

transform corresponds to the field radiated by a point charge going around in

the loop . This transform can be easily computed by using results (2 .5 , 2.7 ,

2.8 , 2.15 , 2.17) .

9. The effect of dispersion

Assume now that the electric dipole considered in Sec. 3 is surrounded by

a homogeneous isotropic dispersive environment characterized by relative per-

mitt ivi ty  £r (W) and relative permeability Ur (W)~ It is also convenient to

introduce the relative refraction index nr(w) =

• Letting 
~~~ 

= 
~~~~~~~~~~~~~ 

and p=iw , the generalization of eqs. (3.1-3.3) to

this situation is the following

- - 

-53- ~

- _ _ _
_

s__
~_,~~ - t h U  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- . 
~ • --



~ —-_
~~~~~~ --- _-

~~~~~~~~~~~ -~~~-- _ _- •
~12 ~ u(p)exp(-pn t) cosG

E “~~ = r r r 
+ 

c 
19 P 4• r u” “0 4Ttr Lrnr r2n2 J ‘ 

•

r

~ ( ) - C ~r u e  flr t) sinG 
~~~~~ + + ~~ i , (9.2)

0 ~ 0 4Irr Lc m r r 2n 2 J

u(p)exp( _ pn r t) sinG Ip
2nr 1

H~ (p) = 4Ttr L c + (9.3)

Assume now 
~r ’~ 

Relations (9.1-9.3) can be recast under the following

f orm

E (
~
) = C0 

2 exp(-pt) cosO [
~ 

F 2(p) + E~. (i - ~ ~~
.
~~~~~F

2 (P)] 
, (9.4)

E0(p) = C
0 
exp(-pt)sinG [

~
- F 1(p) + ~~ F2(p) + ~~~~ (i - r ~~ )F 2 (p) ] , (9. 5)

~~(p) = 
exp(-pt)sinO [

~ 
F1(p) + ~ (i -T ~~)F1(p)] , (9.6)

wher e

F1(p) = u(p) exp(_pt [nr(p) 
- 

‘ 
(9.7)

exp(_pT [nr(p) -1])
F2(p) = u(p) 2 (9.8)

nr(p)

Eqs . (9.4-9.6)  show that the transient radiation from the dipole can be

expressed in terms of the transforms of the two functions (9.7-9.8).

Let us now assume u(p) =u0, and consider the case of a collisionless cold

plasma for which

n (p) = . (9.9)

By using results (2.9-2.10), the transient radiated field can be cast

under the following form
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2 u cos6 1~ ~~ ~ a 2 1
Er(t) 

a C0 ~ rrc [
~ ~~~~~ 

+ 

~~ at*2 
(i - ~ ~~)f2j 

(9.10)

- 2 3u0 sinG ía ~ i 
a 2 

~ 1
E
0

(t) = C0 47rr
~~~[at*

2 + 

~~ at*3 
+ 

~~ at*2 
(i - ~ ~~)f2j 

(9.11)

r 2u0 slnG I 3 f
H~~(t) = 4iirc [at* 2 

+ 
~~

. 

~~~~~~~~ 
(i - ~ ~~~~ )f

1 
(9.12)

where

2 J 1(w ,/t(t+2T))
f1 (t) = 6(t )  - ~ t 

p U(t) (9.13)p w /t(t+2t)
p

f2(t) = U(t)f J 0[~~ (t-u)] J0[~ 
/~(u+2t)j du (9.14)

It is noted that the signa l is identically zero for t < t~’ =t -T =t -r/c ,

which is the usual causality condition.

The early time behavior of the field is now studied at large distances

from the source. For t-’O, w ~~~~ the funct ionp

J1(u~ 1€T~ +2T)) J1(w 12w)
______________ p (9.15)
u It (t+2t) ~

I 
p p

tends to coalesce toward t=0. Use of (2.18) shows that the time integral from

-
~~~ up to +c~ equals h/4 ’r . Accordingly, it is reasonable to substitute to

(9.15) a Dirac pulse of amplitude 1/w2T and centered at the center of gravityp

of the area of (9.15) (as already done in Sec. 5). This center of gravity is

readily computed from (2.18) to be equal to 3/2. Accordingly

/ 9 \ 9f1(t) 6(t) - 6(~t - 
2 

) 2 6(t) (9.16)

8~~~t’ 8~~~tp p

for ~~~~~~

I
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Let us now consider the function f2(t). For t -.- 0, u~ t -~~

c t j ( ~~~r~~~)
f (t) I J (~ 12~ti)du = 2t 1 

~ (9.17)
2 j  O p

0

where use has been made of (2.19) . Again the function J 1 (x)/x approaches a

Dirac pulse as ~~~~~~~~~~~~ Accordingly

f
2

(t) —
~-- t - 

~~ 
) (9.18)

p p

Substituting (9.16-9.17) in (9.10-9.12) and taking into account (2.2), the

result

ii 0sinG 
~E0(t) = C

0 4irrc 2 6(t*) (9.19)

E (t)
H H (t) = (9.20)

C
0

is obtained for t~~0, ~~~~~~~~~~~~ Accordingly, only the radiative ccrrrponents of

the field contribute to its early time behavior , and the field tend to be

vanishingly small for

The late time behavior of the field is now studied at large distances

from the sources, i.e., in the limit w~,t~ +co, ~~~~~~~~~~ t > > T .  From (2.20-2 .21)

it follows that

f 2 (t) ;;
~

-. J0(w t) J1(c~~t) (9.21)

- t -~~~~ - f
2

(t) - t J~ (w t ) (9 .22)

Substituting in (9.10-9.12) and using (2.22) the result
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Er(t) C0 

2
~o 

~~ ~~~~~ 

2 Sin 2wt

] 
(9.23)

E0(t) C0 ~° /~~~~~[~~ co s(w~t + 
~~ ~/~: _~~_ (9.24)

‘~ ~~ /J~[~ 
cos(~~t + 

~~~ 

cos(w t - 
(9.25)

is obtai ned.

Accordingly, the following conclusions are drawn:

Ci) The magnetic field is neglig ible compar ed to the electric field .

(ii) Both the h r  and h r 2 components play a role in the expression of

the electric field .

(iii) One or the other component dominates according to the relative

values of T/t and l/w t .

The case of a conductive med ium with

= (9.26)

with y=a/c.~ and a the conductivity, can be analyzed in a similar way. Tran-

sient radiated field expressions are similar to (9.12) with

2 I (X It(t+2t))
= 6 (t) + (i.) ~r _______ exp(~ t), (9.27)

~~
. /t (t+2t)

f2(t) = exp [~ 
~ t]f

t 
i~ [~ (t~u)] i~~[~ /u(u +2 T) ] . (9.28)

10. Transient radiation from a spherical antenna

Let us consider the spherical antenna of Fig . 8 referr ed to a spherical
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system of coordinates (r , fl =cos8 , ~) centered at the center of the antenna.

The antenna is assumed to be fed by a ~-independent voltage V(~) (in frequency-

domain) at a small equatorial gap of thickness 2s, s aa a~. The external medium

is assumed to be homogeneous , isotropic , non-dispersive and described by permit—

tivity ~ and permeability ~~~ .

P(r ,O ) 

Fig . 8. Geometry of the spherical antenna.

The boundary value problem associated with the radiation from the antenna

is the solution of steady-state, source-free Maxwell equations subject to

(i) radiation condition at infinity,

(ii) symmetry condition relative to the ~-coordinate,

(iii) boundary condition at r=a.

The solution of this problem can be obtained following the same procedure

of Ch. I , 3. In particular , the magnetic field has only a ~-component given by

ikV 0 4 1 h2 1(kr ) 1H~ (r ,0) 
~ 

2(2n-15 (2n-l)h 2 1 (ka) - ka h 2 2 (ka) P2~~1(n) V2 1 (T•10) (10.1)

wher e h~ (X) is the spherical Hankel function of the second kind, k=w/~~,

C (ii7~~, P~(x) the associated Legendre polynomial of the first kind and

V2~~1(r)0), the voltage excitation for mode of order 2n-l, is given by
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t
i

V
2~~~1

(n
0
) = - 

~~~~~~~~~~ f 
~~ /l~~~ P~~~1(n) dn; (10.2)

this is a definition slightly different from that of Ch. I , eq. (3.11). Note

that for a (spatially) 6-gap excitation V
n =V (0) and simplifies upon use of

(2 .23)  as

V2 1  
a ‘2n~°~ 

(10.3)

The other field components , i.e., E0 and Er immediately follow from

Maxwell’s equations:

____ a C 3
E = 

~~ ~~ (sinG H~) , E0 = - .-~~— ~~— (rH~). (10.4)

The expression of the field in time-domain is obtained , in principle, by

inverse Fourier (or Laplace) transform of (10.1 and 10.4) once the Fourier (or

Laplace) transform of the applied voltage has been chosen.

Assume that the external med ium is free-space and that the applied voltage

changes in time as V0U(t), i .e. , as a Heanside step function. Then, the general

term of the series expansion (10.1) that must be inverted is:

h2 1 (wr/c)

(2n_l)h 2n 1 (wa/c) - (wa/c)h , 2(cua/c) (10.5)

wher e c = l//~~j.z0

Firs t ly , consider the term n = l .  Use of (2.25) transforms (10.5) into

a iwa/c + a/r . r-a
2 exp (-iw —a—- ) (10.6)

i~a/c + 1 - (wa/c)

which exhibits two poles in the complex frequency plane p = iw at

C ./~cp 1 = - •~~~ . ± i 2a = - 

~~l 
± ~~ (10.7)
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The inverse-Laplace transform contour of integration can be closed in the

left-hand half plane for t > and the integral easily computed using the

residue theorem . Henc e

H~~ (t) = 2Cr sinG exp(_ c~1t*) [cos(w 1t* + ~
) ~~~~

. sin

t* a t  - ~~—~~~~> 0 (10.8)

At large distances from the antenna a/r÷0, the electric field has only

the EG1 C H~1 component and the radiated field is a damped oscillation with

period 4lTa/c and time attenuation constant 2a/c.

Let us now consider the general term (10.5). Use of (2.25) clearly shows

that its behavior for 
~~ 

-
~~~~~ is of the typ e exp [p(r-a)/c]/p. Accordingly, the

inverse-Laplace contour of integration can be closed in the left-hand half

plane for t > (r-a)ic and the inverse-Laplace transform computed as 2~i times

the sum of the residues at the poles of the integrand.. These, in turn, occur

at complex frequencies p5 given by

(2n_l)h 2n1
(_ip

sa/c) + i(p a/c)h2 2(-ip a/c) = 0 (10.9)

Note that the (2n-1) order pole of h2~~1
(-ipr/c) at p = O cancels wi th the

~.nalogous same order pole of the denominator .

Use of (2.25) shows eq. (10.9) to have 2n zeros; each residue can be

easily computed upon use of (2.26) , and is given by:

p exp(p t) h (-ip n c )
5 5 2n 1 ~~ u(t*) - (10 10)

2n(2n—l) + (p5a/c)
2 h2n_1 (_ip sa/c) 

‘

where

= t - !!. (10.11)

is the retarded time.
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Relation (10.10) clearly shows that the dominant poles are those closest

to the imaginary axis. On the other hand , the analysis of Ch. I , 6 showed that

these poles are approximately located at

p2n_ l a
~’

c = - 0.4(2n- l ) 2”3 ± i (2n-1) (10.12)

for a large. Accordingly, at (retarded) observation times large compared to

(0 .4) (2n-l) 213 a/c , the first few modes of the series (10.1) are already a

good representation for the radiated field . Then , the conclusion is reached

that the late—time behavior of the field is properly described by the inverse-

Laplace transform of the first, or first few terms, of the series (10.1).

Let us now study the early—time behavior of the field. For this purpose,

it is convenient to rearrange the general term (10.5) to be inverted under the

produc t of two functions , hence

h2 l (wa/c) h2 1 (wnic)

(2n- l)h2~~1(wa/c) 
- (wa/c)h 2 2 (wa/c) h2n i (wa/c) 

(10.13)

The inverse-Laplace transform of the first term can be immediately obtained

by using previous resul ts as

p exp(p5t)
— 

2 
U(t) (10.14)

2n(2n-l)  + (p5af c)

Analogously , the inverse-Laplace transform of the second term is readily

seen to be equal to

h2 1(- ip n c )
~ cS(t*) - 

~~ ~~q ~2n
(P q~”~~ 

exP(Pqt) U(t*), (10.15)

h 2n _ i (
~ iPqa/c) a 0, upon use of (2.25-2.26) . The inverse-Laplace transform of

(10.13) is now obtained by convolution of (10.14 and 10.15) . However , at small
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observation times only the convolution with the 6(t*) function will be impor-

tant, so that the field radiated by the antenna will be given by

V 0 4n-l 1 2n (p5a/c) exp(p t*)
- 

~~ ~n 
2(2n-h) ~

‘2n-1~~ 
V2n_l (fl0) 

i~ 2n(2n-1) + (p5a/c)
2

(10.16)

An idea of the convergence properties of the series (10.16) is obtained by

considering only dominant poles (s = 2n-1). the field in the equatorial plane

(fl = 0), and by using the asymptotic expression of the series term for n>> 1.

Hence

exp [i (2n_ l)c t */ a _ O .4 ( 2 n _ l ) 2
~”3 ct */aJ ] (10.17)

It is readily seen that the convergence of the series (10.17) is very poor

indeed when ct*/ a is very small , and that the series diverges for t~~=O.

Considering only the dominant term in the exponent and upon use of (2.27),

we have approximately

5.8 V0 1
HA 1/3 

(10.18)iT~r (ct*/a)

Although largely approximated, result (10.18) allows us to conclude that,

at small observation times, the inverse-Laplace transform of the series expan-

sion (10.1) is very poorly convergent and the field is inversely proportional

to a fractional power of the retarded time for a step time excitation.

On the other hand, the early-time behavior of the field can be computed by

using results of Sec. 5. As a matter of fact , at time t = 0  a magn etic r ing
-j

current

= V0U(t) (10.19)
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is applied at the equatorial plane of the antenna. For t~ 0 the transient

radiated field should not depend on the particular antenna excited by the mag-

netic ring current. Accordingly the transient field should be coincident with

that of a magnetic ioop on a metal surface. By modifying results of Sec . 5 for

8=90~ and by using duality we get, for ct*/a~~O,

V
H = 

0 1 
, (10.20)

~ v’~ tCr Vct*/a

• which exhibits behavior of the type (10.18). This proves that the early time

radiation from the antenna essentially comes out from the gap . Using the

results of Sec. 5 for any 8 we get

V
E
0 

= 
0 1 

, ct*/a sinG < <  1 (10.21)
)/~~,Tr /ct* sinG/a

= , t~~ = t - (10.22)

When a/c is neg ligible compared to the time resolution of the measuring

device, the procedure developed under Sec. 5 transforms (10.21-10.22) in

V a
E
0 

= - sinG ô( t*)  (10.23) 
-

•

E
0

= ~~— (10.24) - •

since only one half of the magnetic loop contributes to the radiated field , the

second half being screened by the metal body of the antenna. Accordingly, the

early-time transient field is proportional to the time derivative of the applied

voltage. Incidently, results (10.21-10.22) are in complete agreement with the

early-time behavior of the field radiated by an infinitely long cylindrical

antenna.
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CHAPTER I I I

TRANS FORM PROPERTIES OF RAD IATED FIELDS

Fourier , Fouri er, how many
errors are made in your name!

1. The problem

I n elementary antenna theory it is well known that the far field radiated

from a wire antenna is just the Fourier transform - within a proportionality

factor - of the current distribution. This is a rather important property from

the applications point of view . It is helpful from the analysis point of view -

calculate the field radiated from a given antenna current - and it is crucial

from the synthesis point of view - from a given radiated field , calculate the

current distribution.

The above properties of radiated fields can be stated in an elegant way

for the case of aperture antennas. It is assumed that an aperture exists in a

metal body and that a known field distribution is produced across it. When the

surface of the metal body coincides with a coordinate surface of a number of

coordinate systems - e.g., an infinite plane , a circular cylinder, a circular - -

cone, a sphere - it is possible to express the field associated with the aper-

ture as the superposition of elementary fields constituting a complete basis.

In the simplest case - an aperture in an infinite metal plane - the elementary

fields are plane waves, so that the plane-wave expansion of the radiated field

is considered. It can be shown that this plane-wave expansion allows for the

directivity diagram , the directivity and the superdir ectivi-ty ratio to be

easily computed .

A further transform property of the field is obtained by noting that the

aperture is space limited. Accordingly, it can be shown that Iii lbert-transforrn
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relations l ink real and imaginary parts of the radiated field. This is a

rather important property from the practical point of view , since it reveals

physical constraints to which the radiated field must comply. Knowledge of

this constraint allows for realistic synthesis procedures to be developed ,

for measuring procedures to be simplified , for numerical methods and computa-

tions to be verified , and so on.

2. Relevant formulas and pertinent expansions

Transformations of “del” operato r

V • [
~ 

exp(-ik~~r)] A -Vexp( -ik .r) = - i A •k  exp(-ik•r)’7• r =

= ~~~~~~ exp(-ik• r). Then, formally

‘7 • - ik. (2.1)

‘ 7 x [ A e x p ( - i k . r ) } = - AxVexp (-ik .r) = -ik xA exp (-ik.r)

Then, formally

V x -
~~ -ikx (2.2)

Bessel functions

= 
~~ 

f  exp(in~ + i x cos~ )d~ . (2.3)
2-rn 0

Asymptotic eva luation of integrals

Let I(~) =ff(z) exp~-i~q(z)]dz with q ’(z5) = 0, q”(z5) ~ 0; z5 is called a

saddle point. Then, in the neighborhood of z z5,

q”(z5) 2q(z) = q(z5) + 2 (z - z5) +

q”(z5) 2 2Letting 2 (z - z5) = s (stationary phase path), for ~ -
~
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= f(z~) exp[-i~q(z5)] 
La0 L 

exp(-is2)ds =

= 

~~~~~ 
f(z5) exp(~i~q(z5)] (2.4)

provided that the original integration contour G can be deformed into the

stationary phase path and the saddle point is sufficiently far from singulari-

ties of the integrand .

Similarly, in two-dimensions

f du f dv f(u,v) exp[-i~q(u,v)]
2iri -

- f(u5,v5) exp(-1~q(u ,v5)] (2.5)

whe re

2 2

3u2 3u~v

H = (2. 6)

• 
a
2
q

3v~u 23v

Parseval’s theorem in U~,o-dimensions

f dx f dy f (x ,y) g *(x ,y) = (27r)
2 f du J dv ~(u,v) ~*(u,v) (2.7)

where f(u,v) and ~(u,v) are the inverse Fourier transforms of f(x,y) and

g(x,y), respectively.

Integrals

y
2 
~vY)dY = ~~~~~~~~~ - 

~~
)+ sin ~~~~~~~~~ s(~~ - (2.8)

• 
- .- -

• 
~
--• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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J sin(~~~~y2~~vy)dy = ~~ 
vb

2 s(~~ 
- 

~~)- sin
!~~,C(~~ - (2.9)

where CCX), S(x) are the Fresnel integrals.

Fresnel integrals and auxiliary fun ctions

C(t)  = 4 + f ( t) sin (
~-~— )- g(t) cos (q_-

) 
(2.10)

S( t) = - f(t) cos(1~f)~ g( t) sin (F.~_) (2.11)

where f(t) and g(t) are the so-called auxiliary functions. For t -~ 0:

f(t) = 4 -  ~~ t
2 

+ . . . ~~~ g( t) = 4-  t + . . .  (2.12)

For t-’~~:

f ( t) 
~~~~~
. ; g( t) J.~. (2.13)

f’(t) = - irt g(t) ; g ’(t) = 7rt f(t) — 1 (2.14)

3. Plane wave expansion of electromagnetic waves

Let us consider the electromagnetic field (E,1-I), solution of the source-

free Maxwell equations

V xE = -i~~ iH (3.1)

V xH = i~~~ E (3.2)

V ’ E =  0 (3.3)

V ’ H =  0 (3.4)

The environment is assumed homogeneous and isotropic , and steady-state

• conditions are postulated .
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Assume now the spatial dependence of the fields to be of the type

exp(-ik’r) . Then , upon substitution into (3.1 through 3.4), the result

k x E  = (3.5)

Hxk = ~~cE (3.6)

0 (3.7)

k • E = o (3.8)

is obtained , where E and H are spatially constant vectors . Note that use has

been made of (2.1-2.2) .

Let us now cross-multiply eq. (3.5) by k from the right, and substitute

from (3.6). We get

i x ~~x i -  w 2 c i . t E =  0 (3.9)

2 2Eq. (3.7) shows that E and k are orthogonal . Then, letting w ~~~ 
= B , where

~ is the free-space propagation constant,

(k 2 - B
2
)~~ 

= 0 (3.10)

Accordingly, the absolute value of k is determined , and equals ~~~. Let u,v ,w

be the Ca~tesian components of k:

k = u ~~+vj+w 2 ; (3.11)

it follows from k = ~~ that

w = 182 _ (u2 +v 2) (3.12)

Accordingly, the (u,v) plane can be divided into two regions separated

by a circle centered at the origin and of radius B. For the inner region,

which is called the visible region, u2 +v 2 <B 2 and w is real . The square-root

in (3.12) is taken with the positive sign, so that propagation along the
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positive direction of the z-axis is assured. The propagation vector k is

determined by direction cosines

cosq 1 = ; cos~2 = ; cosO = (3.13)

which correspond to real angles (see Fig. 1).

z I

Fig. 1 - Relevant to the propagation vector k

For u2 +v 2 = B
2
, 0 = 90° and the propagation vector k is parallel to the

= 0 p lan e.

For u2 + v2 > B
2
, which defines the invisible region, w is pure imaginary,

and we take

w = - i ( w f  = - i /&2+v
2) -B

2 
, u2 +v 2 >82 (3.14)

so that damping of the wave along the positive direction of the z-~axis is

assured . Eq. (3.14) corresponds to a complex value of 0 angle, 0 = 9 0 0 +i 0,

where

cosO = - i sinh8 = - i ijL (3.15)

Real values of w correspond to the usual plane waves; imaginary values to

surface waves linked to the plane z= 0 and exponentially attenuated for z>0 .
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As k components are not all independent , also ~,H components are mutually

related. In particular
a

a k x E
= (3.16)

• f rom (3.5) , where ~ = v’ji7~ , and

u E  + v Ex y 
(3.17)

from (3.7) .

Under rather general conditions , an electromagnetic field (E,H) can be

expanded in a set of plane waves. Hence, for z > 0

(+
~ r+~E(x v,z) =J du J dv E (u ,v) exp(-i w z) e xp ( - i u x  - ivy) (3.18)

Note that ~~, which is (u ,v)-dependent , is a density of electric field per

square-wavenumber , i.e. , it is measured in volt”m . Obviously, the formal super-

position (3.18) is of practical use if the vector function E can be determined

onc e the sources of E are given .

4. Radiation from an aperture. Spectrum calculation

Let us now cross-multiply (3.18) by 2 from both left and right, and specify
the result for z = 0. We get

~ xE(x,y,0) x2 =L~ L~
Iv ~ x ~(u ,v) x2  exp ( - iux  - ivy ) (4.1)

Note that 2xE(x ,y,O) xz = E~ (x ,y) is the tang ential component of the electric

field in the plane z=0 , i.e., the applied tangential electric field across

the aperture. Letting 2 x E ( u ,v) x 2  = 
~t (u ,v) ,  eq. (4.1) can be rewritten as

E~ (x ,y) =f du .L~~ ~~
(u ,v) exp(-iux - ivy ) (4.2)
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Eq. (4 .2)  shows the tangential electric field across the aperture to be the

double Fourier-transform of the (x,y) components of the plane-wave expansion

of the electric field associated with the aperture. Accordingly, by inverting

(4.2), the result

a 
~ C I a . ..(u ,v) = 

2 I dx ~ dy E ,(x ,y) e x p ( iu x  + ivy) (4.3)
(2iT ) J J

-~~~ -~~

is obtained. Note that the integration in (4.3) can be limited to the aperture

itself, since E~(x,y) = 0 in the remaining part of the plane z = 0. The vector

~t
(u,v) is called the spectrum or spatial spectral components , associated with

the aperture; analogousl y, k is called the spatial frequency associated with

the aperture. The third component of the complete plane-wave expansion can

easily be obtained via (3.17).

If E~ (x ,y) can be factorized into two functions of a single variable , i.e.,

g~ (x ,y) = - V
t f 1(x) f 2 (y) , (4 .4)

(as it happens in rectangular waveguides for TM modes) , substitution into (4.3)

and integration by parts leads to the result

E
~

(u ,v) = i F~ (u) F 2 (v ) k
~ (4.5)

where

F1(u) = 

~~ 
f 1(x) exp(i ux )dx  (4 .6)

F 2 (v) = .

~~~~~ J f2 (y) exp(i v y ) dy (4.7)
-~~

are the inverse Fourier transforms of f1(x) ,  f 2 ( y) respectively, and

= u~ + v~ is the transversal component of the wavenumber vector.
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Let now (p , t~) be polar coordinates in the z = 0  plane , and let

~~~~~ 
cos r~~ + k~ sin , ~~. Should the facto rization

= - V
t 

f (p)  exp(in~) (4.8)

be possible (as it happens in circular waveguides for TM modes), we analogously

get

~4)+27r
= 

t f (p) p dp f exp(in~) exp(1 k~ p) d~ =

2ir
= ~~ 

e~~(~~~) f(p)pdp exp (in~~+ik~P co~~ )d~ (4.9)
~~ (2 rn )

0 0

Then, by using (2.3), the result

= ~ k . n  exp(in~) f (p )  J
~~~

(k
t

p ) p d p  (4.10)

is obtained . Accordingly, 
~ 

is factorized in terms of two functions of ~

and p respectively, the latter being the inverse Fourier-Bessel transform of

the aperture field function distribution f(p).

5. Radiation from an aperture continued. Far- field calculation

Let us investigate how the integral (3.18) simplifies when the electric

field is evaluated at large distances r from the aperture . A particular

spatial direction is determined by its directional cosines (~ ,~~,a):

r = r (~~ 
+ + a2) (5. 1)

where ~
2 +ri 2 +a2 = i . Along this particular direction, at a large distance from

the aperture, the electric field E(r) may be written as the superposition of

elementary plane wave fields according to (3.i8). However, at large dis tances
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from the aperture, the field is a locally plane wave . Accordingly, we can

reasonably surmise that the field wil l  be main ly set up by tho se plane wave

constituents whose propagation vectors are contained within a smal l cone whose

axis is the considered direction .

In order to make this intuitive reasoning mathematically sound, let us

compute the value of the argument of the exponential in (3.18), namely

g(u,v) = ux + vy + wz , when the propagation vector k is oriented in the neigh-

borhood of the considered direction ~~~~~~ This, in turn, requires the first

two cosine directions of k to be in the neighborhood of u0,v0, where

u0 = 8~~ ; v0 = (5.2)

Accordingly, we have

2 2 2g(u0,v0) = Br(~ +n +-a ) = Br (5.3)

= Br(~ - 

2 2 
= 0 ( 5 . 4 )

A _ ~ -n  /

-~~~~ = B r ( n
_
~~~~~~ 

2) 

(5.5)

u0, v0 l -~~ -n

It follows that g(u,v) is stationary in the neighbo rhood of (u ,v0). The main

contribution to the integral (3.18) then arises from an integration area

centered at (u0,v0) and vanishingly small as 8r-~~. As a matter of fact, out-

side this area the phase of the integrand is a rapidly varying function of

(u ,v) .  According ly, as Br -’~~

A +~~ +~~
E(u 0,v0) exp (_i Br)f du f dv e x p [ - i ( k ’r -  Br) ] =

= 2-rni B exP(;i Br) cosO E(u 0, v0) ( 5.6)

_ _ _ _ _ _ _ _ _ _ _ _ _ _  - 
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Note that use has been made of (2.5) for evaluating the integral.

Relation (5.6) states that the far—field radiation diagram of the aperture

is determined - aside from angular factor cose - by its plane-wave associated • 
-

expansion. For a given (spherical coordinates) direction (8,4) the values

(u0,v0) appearing in (5.6) are given by

u0 = B sinO cosc~ ; v0 B sinO sin4 (5.7)

6. Example. The rectangular aperture

Let us now consider a rectangular aperture of dimensions (2a , 2b) . The

aperture lies in the z = 0 plane. A system of rectangular Cartesian coordinates

is introduced, centered at the center of the aperture, with the x-axis parallel

to the side of length 2a and the y-axis parallel to the side 2b. The aperture

is illuminated by an electromagnetic field whose tangential electric field corn-

ponent is given by

= E 09cos (f x) (6.1)

The tangential component 
~~ 

of the spectrum assoicated with the aperture

is readily computed as 

E ~ b a
= 
~y ~ 

= 
0 

2 J exp(i v y)d y J cos (
~ 

x) exp(i u x)dx =
( 2 )  

-b -a

- E a 2ab sin vb cos ua
- o >’ T vb 

~~~~
_ 

2 u a 2 (6 . )

the z— component of the spectrum follows from (3.17), hence

A

a y E
________ (6.3)

,f~2 - (u2 + v2)

Let us now study the radiation diagram in two principal planes.
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The E-plane is defined oy ~ = ± 900 . For this plane we have, from (5.7),

u0 = 0 , V
0 

= ± B sinO . Then, from (6.3)

= ± tanO Ey (6.4)

Accordingly, the far-field will have components

E0 = - i E~ 
8 
~
ab exp (-i8r) fsin(B b sin6)] (6.5)r L Bbsin 0

Ee

where use has been made of (5.6).

The bracketed term in (6.5) is clearly the radiation diagram in the E-plane.

The first radiation null occurs at an angle 00 given by

B-bsin6 0 = r. (6.7)

For large apertures (Bb >> l), 60 is small and the width of the first lobe

is given by

A

The first lateral lobe occurs at

$b sinO = ~~~~
. (6.9)

Ets amplitude is equal to 213ff, i.e., lateral lobes are more than 14db below

the principal lobe.

The H-plane is defined by ~~ 0, 180°. For this plane we have , from (5.7),

u0 
= ± B sinO , v0 = 0. Then, from (6.3), ~~=0 and the far-field will have com-

ponents
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= - i E
0 ~~~~ cos8 exP(-i8r) [

72~~~~~~~~~
] 

(6.10)

(6.11)

where use has been made of (5.6).

The bracketed term in (6.10) times cosO is clearly the radiation diagram

in the H-plane. The first radiation null occurs at an angle e
0 
given by

3m8asin80 = —r (6.1 2)

Note that, at B a sinO = m/2, the radiation diagram is not zero, taking instead - 
-

the value -rr/4. For large apertures we have

3A
~e -r  ( .13)

The fi rst lateral lobe occur s at

$as in8  = 2ii (6.14)

Its amplitude is equal to 1/15, i.e., lateral lobes are more than 25 db below

the principal lobe.

Previous discussion hi ghlights the fact that an amplitude tapering of the

field in the aperture reduces the amplitude of lateral lobes at the expense of

an increase in the width of the principal lobe.

7. Examp le continued. The effect of phase tapering

The effect of phase tapering in the aperture is now examined. To this end,

the tangential component of the electric field in the aperture is assumed

equal to 
-

= E
0~ sin(~~ x)exp [i 1 - (7.1)
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Comparison of (7.1) with (6.1) shows that the u-dependence of E
0

(u ,v) is

the same as in (6.2), while the v-dependence is given by

Q(v ,a) = exp(i ~~~ a2)f
b
exp(i vy - ~ ~2 4)dy =

z 
~~

. 

~[g(~~ 
- a) - i 

f(~~~~~ 
- a)] exp(ivb)

- [g(~~~
+ a)- i f(~~~+ a)] exp (_ivb)

} 
(7.2)

where the functions f and g are defined by (2.10-2 11). If the further assump-

tion that a is small is made, the functions f and g can be expanded in the

neighborhood of ~~/mct and only the first two terms of the expansion retained.

Then , upon use of (2.14) , the result

Q(v,a) = ~~~~~~~~~~~~~~ [y.~. f(!~.)÷ i. 
~~

+ cosvb [_ ~~~f(~~ )_ i 
~~~g(~~ )÷ l]~ 

(7.3)

is obtained.

The effect of the (quadratic) phase tapering in the E-plane is now studied.

Two angle ranges are considered. Firstly, assume

Bbsin8 2b sin0- << 1 (7.4)
- 
ira

- 
- i.e., angles 0 much smaller than a. Then, upon use of (2.12),

- ‘ Q(v ,a) 2b cos(B b sine) (7.5)

Accordingly, the radiation diagram is not appreciably changed with respect to

the case of uniform phase illumination.

Conversely, assume

2b sin0 >> 1, (7.6)
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then, using (2.13), expression (7.3) reduces to

Q(v,a) = 2b [~~~~~~~~~ - i(~~ ) cosvb] . (7 . 7)

Accordingly, the radiation nuls are “filled up’t .

The previous discussion shows that a quadratic phase tapering (or quadratic

phase error, as is usually called) tends to smooth the radiation diagram.

8. Directivity and s~perdirec-tivity ratio

The (complex) power associated with the aperture is given by

= 4 J dx 5 dy E x H*, dx dy (2 x • !:!.* =

(2 x H * x 2 )  (8.1)

By applying Parsevals ’ theorem and (3.5), eq. (8.1) can be transformed as

follows

4J~ J dy(~~x E )  x (2x H)* 2 =

4~_ J ~~~u f dv(2 x~) x (Ix~.x~.)~~.I (8.2)

Relation (8.2) can be recast in a different way by letting ~~ = +

= + w~~, evaluating the vector products and recalling that u and v are

real. Then

= k~~
2 5 5 dv [w* (

~~t
i
2 

+ w 1E 1 1 2] (8.3)

Let us now distinguish, in (8.3), the integration in those regions for

which w is real (visib le domain) and imaginary (invisib le domain), respectively.
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Calling CR and C1 the two domains respectively, eq. (8.3) transforms into

= 
(~~~~)

2 J5 w 
I~~~

2 du dv + i 
( 27r ) 2 JJ H (l~~~I

2 
- fi

~ I 2)du dv (8.4)

CR CT

The first integral which appears in (8.4) is clearly the (real) radiated

(or active) power from the aperture; the second integral is the reactive power

associated wi th the aperture , i.e., 1/2w times the difference between the time-

averaged values of the magnetic and electric type energies stored in the half-

space z?0. Accordingly, that part of the integral (6.4) containing E
t 1
2

represents the (magnetic type) stored power while that part containing lE
~~~I

2

represents the (electric type) stored power. The total stored power is given by

(2ir)2 r r  IW~ a 2
= 

2~~ JJ —r ~I du dv (8.5)

C~

The directivity ratio of the aperture is defined as the (spatial) density

power radiated in the direction of main radiation divided by the (spatial) mean

radiated power. Assume the main radiation to take place along 0 =0~°, i.e. , in

the direction of the z-axis. Then, using (5.6 and 8.4), we get

4ir B3 !E(O ,0)12
D =  A 2 

(8.6)
ff w IE(u ,v)~ du dv
CR

Note that the (spatial) mean radiated power has been computed with reference to

the solid angle 4ir.

The superdirectivity ratio y of the aperture is defined as the total

(radiated plus stored) power associated with the aperture, divided by the

radiated power . Using (8.4-8.5) we get
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J d u  J d v  w~ E(u,v)J
2

I = (8 .7)

if w E(u,v)J 2 du dv
CR

Assume now the value E(0,0) to be fixed so that the value of the radiated

field in the direction 0=0 is determined via (5.6). Note that the electric

field is normal to z along this particular direction. From (4.3):

= 
~~~~~°‘°~ 

= 

~~~~ 5 dx 5 
dy E~ (x ,y) (8.8)

so that the (spatial) mean value of the applied electric field across the aper-

ture is fixed.

In order to increase the directivity D, the integral which appears in the

denominator of (8.6) should be kept as low as possible. This implies that the

spectral components of E in the CR domain should be kept as low as possible.

This result can be accomplished by illuminating the aperture with a tangential

field La which exhibits a (spatial) rapid variation , so that the (spectral)

low-frequency components of its associated spectrum will be lowered . Note that

the (spatial) mean value of La should be different from zero.

This type of aperture illumination has the consequence that the (spectral)

high-frequency components of the associated spectrum will  be enhanced. Accord-

ingly, the superdirectivity ratio will be increased and, consequently, the

;tored electric and magnetic power in the neighborhood of the aperture will

• -‘ - -r be very sensitive to a change in the (temporal) frequency of the applied

~s a consequence, the transmitted bandwidth will be decreased . In

- - the superdirectivity ratio should be chosen according to the band-

• -~nsmitted; this results in an upper limit to the possible obtain-
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9. Hu bert transfo rm properties of the fields

- 

- Let f(x) be a square-integrable function such that f(x) = 0 for x <0 and let

f(u) = ~~ f
f(x) exp(i ux)dx (9.1)

be its inverse Fourier transform. Let z = u + i u ’ and f(z) be the analytic con-

tinuation of f(u) onto the conplex E-plane . Inverting (9.1) we get

f( x) =f ?(u) e x p ( - i u x ) d x  (9.2)

The integration contour which appears in (9.2) can be conveniently closed by

means of a circle of infinite rad ius in the half-plane u’ > 0, for x <0. Then,

since f(x) = 0 for x < 0, it follows that f(z) should be singularity-free in the

half-plane u’ ~ 0, (the real axis is included).

Let us now consider the integral

5 f(z) dz (9.3)z - U0C

along the contour C depicted in fig. 2. Since, from (9.1), f(z) tends uniformly

to zero as I z i -
~~~~~~, the integration contour C can be conveniently closed by

means of a circle of infinite radius in the half-plane u’ >0. However, f(z)

is singularity-free in this half-plane. Accordingly, the integration along the

above closed contour equals zero, i.e.,

___ 
- rrif(u 0) = 0 (9.4)

where the integral is to be understood as the principal value and the second

term in (9.4) accounts for one-half of the pole contribution at u=u 0. Now ,

if real and imaginary parts of 1(u) are separated , namely if f(u) =f 1(u) + if 2(u),

relation (9.4) splits into
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~~ 1 (u)
f2

(u) - 

~~~~~~~ 

du (9.3)
-~~~ 0

1 
:= f2 (u)

f1(u) ~ u-u0 
du (9.6)

which are called Hilbert—trc.n.aforrn pair.

. /

(A.
0 

11

Fig. 2 - Relevant to the Hilbert transformn definition

The generalization of (9.4) to a two-variable function ?(u,v), double

inverse Fourier transform of f(x,y) such that f(x,y) =0 for any x < 0 and any

y < O , is the following

f d v  ~~~~ du (u-u 0) (v-v 0) - ir
2 f (u 0, v 0) 0 (9.7)

which splits into

a i (+~ 
f1 (u ,v)

f1 (u0,v0) = —
~~ J ’ dv 3’ du (u-u 0)(v-v 0) 

(9.8)

f2(u ,v)
f2

(u 0,~,0) 
= —

~~ dv du (u-u 0)(v-v~) 
(9.9)

4
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Relations (9.5-9.6) link real and imaginary parts of a function which is

analytical in the half-plane u’ <0 and tends uniformly to zero as ui -
~~~~~. How-

ever, their use is rather impractical if, let us say, the imaginary part should

be recovered from the knowledge of the real part. Accordingly, it would be

helpful to obtain approzimate relations between real and imaginary parts at

the same abscissa u0. To this end, let us consider an integral of the type

- +~~ 0
I = 1 ~~~~~~~ du = I g( u) du + ç g(u) du (9.10)..t~0 U-U

0 
J 00 

U-U
0 ~~ 

U-U
0

where the function g(u) is explicitly assumed to be even and, without loss of

generality, u0 has been taken positive.

Now let

u = u0 exp(t) , u>0 (9.11)

u = - U
0 
exp(t), u<0 (9.12)

Substituting (9.11-9.12) into (9.10), splitting the integration path of the

second integral in (_
~
,u
~
), (u~,co), integrating by part and rearranging terms

results in

(
~~ 

dg(-u0 exp[t])I = j dt Zn[l + exp(t)]dt

~~~~~~ 
dg(u0 exp [tJ)

- 
dt 9.n[1 - exp(t)i dt

~~ d ‘ t i

I 2~n coth dt (9.13)

Result (9.13) is still exact under the only hypothesis that g(u) is even . Note

also that the sign of principal value can be omitted , since the integral of the
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function 9.~n coth ItI/2 from -~~ to +~~ is finite and equal to ir2/2. This func-

tion peaks rather sharply in the neighborhood of t = 0 and can be approximated

— by a Dirac pulse of area ir2/2. Then,

= lu~I (9.14)

Assume now the function 1(u) of (9.1) to be also free of zeros in the

half-plane u’ > 0 (the real axis is included). Then the logarithm of the

absolute value of f(u) will be singularity-free in the half-plane u’ ?0. Letting

1(u) = 11(u)! exp[i t~(u)] ; ~.n 1(u) = 2.n ?(u) I + i i~ (u) (9.15)

use of (9.5-9.6 and 9.14) shows that

a ff d~ nlf(u) I
~~u) - — (9.15)2 d~ n Iu/u0!

The above considerations can be applied to the far-field associated to an

aperture of finite dimensions. As a matter of fact, eq. (5.6) shows that the

radiation diagram of the aperture is given by

B cosO ~(u ,v) = w E
~

(u ,v) - 
~t

z (9.16)

It is noted that is just the inverse Fourier transform of the tangent elec-

tric field in the aperture. Accordingly, 
~~ 

is singularity-free in the half

space U ’ 
~0, V

t ?0. The two factors and w do not introduce any further

singularity so that expression (9.16) still shares this property. However, the

asymptotic behavior of (9.16) is different compared to that of so that, in

general , real and imaginary parts of the radiation diagram are not a pair of

Hu bert transforms. However, E
~
(u,v) decays more rapidly than l//u2 +v 2 for

I u l -
~~~~~ and/or lv i  

-
~~~~~ if a spatial tapering in the aperture is present . In

this case, reasonings leading to Hilbert-transform properties of analytical func-

tions apply, and real and imaginary parts of the radiation diagram are a h’ilbert—

transform pair.
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APPENDIX

Exercises

1.. Derive Hallen ’s integral equation for a thin wire antenna fed at its cen-
tral point by an ideal current generator.

Hint: Express the ~-component of magnetic field in terms of the vector
potential . Substitute the expression of the vector potential in terms
of the current distribution along the antenna. Then, specialize the
result for z = 0 and take the source specification into account.

2. Consider an infinitely thin current filament extending along the z-axis
from -~~ to ÷~~. The amplitude I of the current is constant along z and
varies in time as exp(jwt). Derive the electromagnetic fields associated
with this idealized antenna.

Hint: Solve Maxwell’ s equations for the magnetic field and remember that
F42 ’ (x) ~1as x-. 0.

3. Discuss the transient current response of a wire antenna of length 2a and
diameter 2b driven by a gaussian voltage pulse v(t) =V 0exp[-2t2/T2]. The
pulse “width” T is larger than Trv ’c0~i0a. The antenna is surrounded by a
homogeneous isotropic collisionless cold plasma whose relative permittivity

is given by ~(jw) =1 -

w
Detailed computations are not required, although a clear statement of the
problem is expected.

Hint: Use the equivalent circuit representation for the input admittance
of the antenna, truncated after the first dynamical term. For a better
understanding of the branch-cut singularity, assume a small collision rate

v in the plasma , so that c(jw) = 1 - w(w-j~)

4. Consider an infinitely long cylindrical antenna of radius p =a. The
antenna is assumed perfectly conducting and driven at z = 0 by a voltage
V exp(jwt) applied to a ô-gap . Derive the modal expansion for the mag-
netic field generated by the antenna. Give the formal expression of the
input admittance of the antenna.

Hint : Assume the ~p-component of magnetic field to have a z-dependence
exp(-ju~zl) , ~~~~~~ Using Maxwell’ s equations, verify that the radial

dependence is of type Hf2~ ( /k 2 - U2 p). Use superposition to obtain the
general expression for the magnetic f ie ld.
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5. An elementary electric dipole of length h and capacitance C is driven by
a current 10U(t), where U(t) is the Heaviside step function. At large
distance r there is a receiving elementary dipole of length h and capaci-
tance C, parallel to the transmitting one. The receiving dipole is
closed on a purely conducting load G. Compute the voltage across the
load as a function of time.

Hint: Neglect radiation conductance of the dipoles. Take into account
only the radiation term in the transmitted field.

6. The elementary electric dipole of figure is driven by triangular current
pulses such that cT >>h. The dipole is vertically located and at a dis-
tance d from a perfectly conducting plane . Find the direction of
maximum and minimum (zero) radiation.

1(t)

r 
_ _ _ _ _  _ _ _ _ _ _ _ _ _

/ // / / / / / / /

Hint: Apply the image theorem.

7. A wire antenna of length 2a and diameter 2b, a>> b , is driven by a voltage
pulse v(t) =V 0 f(t), f(t) =1 for 0�t~~T, f(t) =0 otherwise. Assume cT
large compared with b. Calculate the input current as a function of time.

Hint: Use the equivalent circuit truncated after the first dynamical term.

8. The elementary electric dipole of figure is driven by a current 1(t). A
passive reflector is located at a distance d from the dipole. Assume the
reflector to be in the near field of the transmitting dipole. Compute
the field radiated along the end-fire direction z > 0.

~~~~~ f4±~.. - 
___

__I 
~~~~1 

-j

Hint: Consider the reflector as a receiving antenna closed on a short-
circuit.
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9. A loop antenna, of radius R and inductance L , is located parallel to a
perfectly conducting plane and at a height d above it. The loop is
driven by a guassian pulsed voltage

V( t )  =V 0 exp(-2t
2/T2), such that (cT)2 >>- -1TR2.

Calculate the transient far field.

Hint: Apply the image theorem .

10. Consider a rectangular aperture in an infinite conducting plane (see figure).

_ _  - 

-

The aperture is illuminated by an electromagnetic field (Ea,Ha) of angular
frequency w, and the tangential electric field distribution across the
aperture is given by

La = E0 cos(~~~) exp(ihBy) ~~~.

Determine the value of h for which the radiation diagram has a maximum at
0=30° in the E-plane (0 is the angle with respect to the z-axis, and the
E-plane is ~~ x = 0 plane).

11. Consider the rectangular aperture of exercise #10. Determine the dimen-
sion 2b such that the main lobe aperture (angular distance between main
lobe nulls) is equal to 10°. Determine the change in main lobe aperture
due to a 10% change in the operating frequency.

12. Consider the strip-line of figure, of known dimensions and characteristic —

I AY0~-’r-- tE 
_ _ _ _ _ _

4,iI

impedance Z0. The strip-line is excited with dominant TEM mode and a pulsed
voltage V = V 0~5(z-ct) propagates along the line. Assume the electric field
distribution to be uniform along x and y in the strip-line and compute the
transient far field in the E-plane (x = 0 plane) . Assume the thickness of
conductors of the strip-line to be infinitesimally small.

•1

-87-

-- I 

-.--~-~ -~--~-.-~—----—-—----—~--—---—-—- ---- -——--. -- 
- ---- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ _ ~~ ~~~~~~~~~~ ~. ~~~~~~~~~~~~~~~~



—~~~~~~~ -—-~~~-- 
— --_ - ---

SICj ~~i~~ ~ L4 i$ tF l CAY IO$  ,~ F 1~~ I5 ~~4G( (*)t~~% O.s. tjie.,sd~

~~~~~~~~~~~~ /r~’) RE~9flj’~9OCUM EHTATIOP4 PL’~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

— 
- 

AFC’SP(~~~~~~~~~~~~~~ 6 —  
1 1 2~~~~~~~~~~~~~~~~~~~~~~ 

GO VT ACC LUIO N ~~~ 3. ~ICIPI( NTSCA ? A ~ OG NUMS(R

— .~~~~
‘: 

~~ - ~~~~~ 
S. TV~~E OF ~LFORT 6 ~ E~ IOO COVC~ ZO

__
-;

~~ ~~~~~~~~
- TOPICS IN ADVANCED M(1tNNA THEORY.

’
1 ~~~~~~~ 

- 
______________

I 

- 

S. PI~~~~~~ tNO N UN ecn

~. ~~ TNO~~i) I. COs ~~AE~~ O~~ 0 AN~~~~UUS1A(I)

- - -  - 
—-- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- s. .c~ro~~iso O~ eAN~ZA flON NAM AND £DO*C13 t O. •*OO~~AM £LLM SNT. P~~OJEC ~t . ~ A S1C
A~~( A6 ~~~O~~IC U N I Y N U M SI R S

~~~~~ -

. Unavers~.ty of Illinois at Chicago Circle ,
• Co unications Lab /Dept. Inform. Engrg.~,/ 6 102F -— — _ —

Box 4348, Chicago, Illinois 60680 ¶12~ 4f_974~ -04 -~‘l’2) ~7’7~~~~ 
-

- H. CONTROLLING O.FICE NA NC AND AOO~I1S T 7 ~~ --~~~~ ~~~~~~~~~~

- - 
Air Force Office of Scientific Research/NM ~~~~~~~~~~~~~~ -

Boiling AFB , Washington , DC 20322 57 ~~
IL MONITO~ tNG AGINCY NAM( S AOa~ CU(1, dUIi.w e h-an, Canu.Wn4 OWe.) 5 SCCUAITY ~~~~~~~~~~~~~~~~~~~~~~ 4)~~~~~ _.J

- UNCLAS SIFIED
5.~ O(C~~ASSIFICA TION/OOWNG~~AO INO

-a-: - 
- SCNIDuL&

- - 

- 1$. 0~$T~~iIu?~O$ S?A?SM *N ? (.1 *i. Ra ean~)

Approved for public release; dist r ibution unlimited.

“ I?. OI*T~ qSu 1ION 1TA1’EM(N? (•S th . a6.~~~e .,~a,d ~e Plank 20. U ~~Ui,aii~ its.’ R.~ ant)

-- -
~~~~ :~~~

— - t$. SUP,I.SNCNTA mY NOTU

IL d Y  ~O~ OS (Caidnan an ,.,q. •. aid. it n...ana,y aid SdanUi~ by Sleek maib.?)

Antennas
~~~ Transien t radi at ion 

—

~~~~~ 
-. Dispersive environment

-: ~~~~~ Trans form properties 
- 

- -

- 
-~~~~~ - - 

20. AS $rUA CI (C.nff i ~us an , e~~~u aIde it A.qrnkIp aid lde.wffi’ by- bi..h .,an,S r)

-
‘

- 
-

- ‘These lecture notes contain new research results in (i) antenna admittance
and gap probl em, (ii) transient radiation from antennas , and (iii) tran s-
form proper ties of radiated fields .

- - 
~~~~~~~~~~~ 7~ ~ -

- 

~~~~~~~~~~~~ DO ~~~~~~~~ 1473 ID~?~O N S ~ I N OV S$ IS OS$OLCI g UNCLASSIFIED ~~~~~~
- ICCuRItY Ct.AlIt ~ICA t I~~~ OF Iwi l  øn Gt ‘0%., B... V.u. ,sd~ ~~

‘ (7
,
~
.

‘
- _

~
f _

9,

.•~~~~-~a ~~~~~~~~~~~~~~~~~~~~~~~

- - - -~~~~~~~~ - - -  -- - -~~~~~~~ — . —~~ ~~~~~~~~~ - ~~~~~~~~ - — -~~~~~~~~~~ —_ - -  ~~~~~~~~~~ - -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~~~~~~~~~~~~~~~~~~


