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COAGULATION IN TURBULENT FLOW - THEORY AND EXPERIMENT

Michael A. Delichatsios1 and Ronald F. Probstein

Department of Mechanical Engineering, Massachusetts Institute
of Technology , Cambridge, Massachusetts 02139

Abstract

The coagulation of colloidal particles in turbulent flows is in-

vestigated theoretically and experimentally . A coagulation model is

developed for destabilized particles in an isotropic turbulent flow.

Simple binary collision mean free path concepts are employed and for

monodisperse systen~ coagulation rate relations are derived for particle

sizes less than and larger than the Kolmogorov microscale of turbulence.

Polydisperse systeme are also considered and some general results con-

cerning their behavior are obtained . Also discussed are the effects of

interparticle repulsion on the coagulation rates.

Coagulation experiments are reported on inside fully developed

turbulent pipe flows using an approximately monodisperse UCAR latex

dispersion in which the particle sizes are less than the Kolmogorov

microscale. The flow rate, destabilizer concentration and volume frac-

tion of the dispersed phase were varied in these experiments. The

experimental results for destabilized particles are shown to agree very

well with the theoretical predictions. Brownian motion coagulation

experiments for partially destabilized systems are compared with the

corresponding turbulent motion experiments and the results indicate

that the coagulation efficiency does not appear to depend on the par-

ticle transport mode.

1. Present address: Factory Mutual Research, Norwood , Massachusetts.
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NOMEN CLATURE

A ( t )  dimensionless coefficient characterizing polydispersity , Eq. [15]

cf turbulent friction coefficient , Eq. [29) (dimensionless)

d particle diameter (cm)

U pipe diameter (cm)

f(v ,t) particle volume probability density (cm 6)

L Eulerian macroscale of turbulence (em)

n particle number density (ctn ’3 )

cumulative particle number density (cm 3
)

Q flow rate in pipe (gal/mm )

Re Reynolds number, UDIv (dimensionless)

t time (sec)

turbulent friction velocity , Eq. [27] (cm/see)

u . induced relative velocity between particles due to repulsive

effects (cm/sec)

ur 
relative particle velocity during collision (cm/sec)

(U) ff effective collision velocity for partially destabilized

particles (cm/sec)

U average pipe velocity (cm/sec)

v particle volume (cm3)

V characteristic potential energy of interaction between particles

(ergs)

x distance along pipe measured from first sampling station (cm)

~Br 
Brownian coagulation stability factor (dimensionless)

W
t b  

turbulent coagulation stability factor (dimensionless) 
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Greek

rate of turbulent energy dissipation per unit mass (ergs/g eec)

n Debye length (cm)

A Kolmogorov microscale, (v~ /c)~~~ (cm)

viscosity of continuous phase (g/cm . see)

v kinematic viscosity of continuous phase (cm 2/sec)

dimensionless particle volume, nv/4

T Kolmogorov time scale, (v/c)h/
’2 

(sec)

volume fraction of dispersed phase (dimensionless)

volumetric concentration of destabilizer (dimensionless)

~( E ~, t) dimensionless particle volume probability density, Eq. [l3a]

particle coagulation (collision) rate (sec~~)

retarded coagulation rate (sec~~)

~(v ,v) volume swept by each particle per unit time during collision

(cm3fs ec)

~(~~~
‘) dimensionless collision frequency function, Eq. [13c]

Subscripts

1,2 reference to two monodisperse systems 1 and 2 with different

particle volume fractions, diameters and number densities

Superscript

reference to particles of diameter d’ and volume v’

-— ~~
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INTRODU GTION

Coagulation of particles in turbulent flows is a phenomenon which

arises in ma ny engineering systems . In particular , an understanding of

the coagulation mechanism is of primary importance with regard to the

behavior, handling and treatment of dispersions .

Particles dispersed in a liquid medium genarally acquire an elec-

trical charge , usually negative. As a result of the potential field

surrounding each particle , coagulation is inhibited at short inter—

particle distances by the repulsive action between the particles . It

follows that coagulation may be considered as a two—step process (1):

a) kinetic transport of particles; b) actual particle aggregation after

the interparticle repulsion is overcome. Particle transport may take

place as a consequence of Brownian motion, shear flow or turbulent

motion. The repulsive interparticle forces can be neutralized , that is,

the dispersion can be destabilized , by the addition of appropriate

chemicals usually called coagulants or coagulant aids (1).

It was Camp and Stein (2) who first suggested that the coagulation

rate in turbulent flows inside agitator tanks can be estimated using the

theory developed by Smoluchowski (3) for shear flow coagulation . In

deriving their result for the coagulation rate they replaced the rate of

strain in Smoluchowski ’s expression by an effective turbulent rate of

strain equal to (t/v)1’
12
. where c is the average turbulent energy dissipa—

tion rate per unit mass inside the agitator tank and v is the kinematic

viscosity of the continuous phase [see also (1)].

Later Saffman and Turner (4) proposed a theory to estimate the

coagulation rate of drops in turbulent clouds in which they considered

the nature of the flow field around a drop . The drop sizes in their
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theory were smaller than the Kolmogo rov microscale of turbulence. The form

of their results for  the collision rate , which they identified with the

coagulation rate , agreed wi th  the equation proposed by Camp and Stein to

within a constant factor .

Finally Levich (5) developed a coagulation model based on a diffusion

equation for the relative particle motion , and estimated the coagulation

rate for particles of a size less than the Kolmogorov microscale. His

model led to the same functional form for the coagulation rate as the one

obtained by the previously mentioned authors but with a value larger by

approximately an order of magnitude. This discrepancy may be attributed

to t h e  inability of a steady diffusion model to correctly describe the

relative motion of particles in turbulent flows due to the non—Markovian

nature of the turbulent dispersion process.

Experiments carried out in agitator tanks [see Birkner and Morgan

(6) ) have verified the functional form for the coagulation rate predicted

by the various theories but were unable to establish which of the pro-

po rtionality constants was correct among the different  values predicted .

The main reason for the uncertainty is that the turbulent conditions in

an agitator tank are far from isotropic (7), so that the use of average

turbulent properties in correlating the experimental results (6) introduces

an error.

In this work a new model is developed for destabilized systems

based on simple binary collision mean free path concepts for noninteract—

ing particles. For monodisperse systems coagulation rate relations are

obtained for particle sizes less than and larger than the Kolmogorov

microscale of turbulence. Polydisperse systems of unequal size spherical

particles are also considered and some general results concerning their

-- ~~~~~~~~~~~~~~~~~~~~ -~—-----~~ ~~~~~~~~~~~~~~~~ -- :
~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~--
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behavior are obtained . Also discussed are the effects of interparticle

repulsion on the rate of coagulation between particles . The theoretical

results are compared with coagulation rate experiments carried out inside

fully developed turbulent pipe flows. Fully developed turbulent pipe

flow was selected because its characteristics are well known and because

the f-low is nearly isotropic at the core of the pipe (8). A further

reason for carrying out these experiments was that no coagulation measure-

ments in turbulent pipe flows have been reported previously in the

literature.

KINETIC MODEL FOR COAGULATION IN TURB ULENT FLOW

In what follows the particles are considered to be sufficiently

small that we may neglect inertial effects  so that the particles can be

assumed to follow the turbulent motion , which in our analysis we take to

be isotropic. Particle—particle interactions, gravitational forces and

any breakup of particles due to turbulent forces are neglected. The

particle volume fraction is taken sufficiently small (~ ‘~~ 3%) that only

binary collisions need be considered. At first we examine a destabilized

system in which the interparticle repulsion has been reduced to zero by

the addition of appropriate chemicals (1).

Under the assumptions outlined we may apply simple binary collision

mean free path concepts for noninteracting particles to calculate the

coagulation frequency associated with the statistical nature of a tur—

bulent flow . Thus for a monodisperse system , cons isting of equal si ze

spherical particles , the volume swept out by each particle per unit time

during collision will be

~ (v ,v) — ~d
2 

U [1]

- -— -- -- —~~~~~ -- V 
--  —~ --
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He re v is the part icle  volume , d its diameter , rd 2 the effect ive colli-

sion cross section and U
r 

the relative part icle velocity during collision .

I t  follows that the coagulation rate , equa l in ef fec t  to the par-

tic le collision rate , is given by

1 ‘~, 1 2
w - -

~~ n w(v ,v) - -
~~ n wd U [2 ]

whe re n is the particle number density and the factor 1/2 ensures that

each collision of two equal size particles is counted only once.

The decrease of particle number density with time due to coagula-

tion will be

dn (3 1

Th e relative particle velocity appearing in Eq. (1] is approximately

equal to the root mean square relative turbulent velocity between two

points at a distance of a particle diameter apart. From the Kolmo gorov

theory of isotropic turbulence the relative velocity depends on the tur-

bulent scale and its magnitude is given by the relations (9)

U — 
4~~ 

(~)1a’2 d d < A [4a]

U • 1.37 (cd)~~
3 d > A (4b]

U ~ (CL)
U3 d “.. L f4c l

Here, L is the Eulerian macroscale of turbulence and A is the Kolmogorov-

~ 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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microscale defined by the relation

A ( 3/ ) l/4 [5 ]

whe re c is the rate of turbulent energy dissipation per unit mass and

v is the kinematic viscosity of the continuous phase. We note that

Eq. [4b] is applicable only when an inertial subrange of turbulence

exists , that is , f o r  sufficiently large Reynolds numbers where L >> A

(9). Furthermore, it is assumed here that the inacroscale is of a size

which could be acquired by a dispersed particle (e.g., L ~ 0.1 cm).

Using the appropriate value for the relative velocity ur in Eq.

[2 ] ,  we get after some rearrangements

• 0.77 d < A [6a]

• 4.11 ( A ) 2/3 d > A [6b]

(A~T % 3(
L)l/3 ~~ d ‘~.. L [6c]

In these equations -r is the Koinogorov time scale defined by

1/2
1• • (v/ c) [7]

and ~ is the volume fraction of the dispersed phase,

•~~~~~n n d
3 [8] 

— —------- - -~ -~~-.—-—----- ----V----—-- -- — .
~—- V- V 
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We have p lotted in Fig . 1 the dimensionless coagulation rates wr/4

given by Eqs. (6] as a function of d/~.. In plotting Eq. [6c] we have

assumed by way of example that L/A — lO
s
, which implies sufficiently

large Reynolds numbers that there exists an inertial subrange of tur—

bul~nce. In Table I the theoretical dimensionless coagulation rate of

Eq. (6a] derived for particle sizes less than the Kolmogorov microscale

is compared with the comparable results of previous authors . The value

of 9.24 attributed to Levich was obtained by taking the constant of

proportionality in his effective turbulent diffusion coefficient to be

equal to /17i5, consistent with the Kolmogorov result (cf. Eq. [4a l).

TABLE I

TH EO RETICAL COAGULATION RATES FOR PARTICLE SIZES SMALLER THAN

TUE KOLMOGOROV MICROSCALE

Author wT/4

Camp and Stein (2) 1.27

Saffman and Turner (4) 1.23

Levich (5) 9.24

Present study (Eq. [6a)) 077

For a spatially homogeneous polydisperse system, consisting of un—

equal spherical particles of volume v, it is necessary to introduce the

partic le volume probability density f(v,t) at a time t. The kinetic

equation governing the temporal evolution of f or population balance is

then written (10)
.

~~~

_________________________________________ 

___________________________________ 
________ _ _ _ _ _  V . - -  - -~~~~~ - V~~~~~~~~~~~~~~~~~~- _  

---~~~~~ 
-
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df(v ,t) 
• 

~ J 
~(v’ ,v—v ’) f ( v ’,t) f(v-v ’,t) dv ’

- J ~ (v ,v ’) f ( v ,t) f(v ’ ,t) dv ’ [9]
0

wrierc ~(v,v ’) is the volume swept per unit time by each of the particles

with volumes v and v ’. According to our simple collision model,

~i(v,v ’) = ~(
d + d’)

2 
u [10]

where d ,d’ are the diameters of particles of volume v and v ’ respec-

tively , and the relative velocity U
r 
is equal to the root mean square

velocity between two points at a distance (d + d ’ )/ 2  in an isotropic

turbulent flow [see (9)].

Integrating Eq. [9] with respect to v over all volumes and introduc-

ing the definitions of the particle number density n and volume fraction 41

n • J f (v ,t) dv flla)

- vf(v,t) dv [llb ]

leads to the kinetic equation

• - un 
i J  J ~(~~~ ‘) 41(~ ,t) ~i(~~’,t) d~ d~ ’J [121

00

in terms of the dimensionless variables (10)

— ____________
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• 
~~~~~ f (v ,t) [l3a]

= 
~~

-
~~

- (l3b J

-
~~ ~ (v ,v ’) [13c ]

We note that fo r a monodisperse system with the same volume fraction 
~~,

V w in Eq. [12] is the coagulation rate defined in Eqs. [2] and [6], if

we assume that  no more than one value of U
r in Eq. (4] is applicable

for the entire spectrum of particle sizes in evaluating the volume

swept per unit time by Eq. [10].

For dispersed systems where the particle sizes are less than the

Koltnogorov microscale we can readily show from Eqs. f4a1 and (10] that 
V

- 
I 
(~ l/3 + ~~1/3) 3 [14)

It follows that we may write Eq. [12] in the form

• - wit A(t) (iSa]

with A (t) a coefficient characterizing the polydisperseness of the system

defined by

A( t) J J ( /3 + ~~~~3)3 ,t) ‘,t) d~ d~ ’ [ l5b]

and with w given by Eq. [6a].

Sd ..w.. S ~~~~~~~~~~~~~~~~~~ - —

- 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - .
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The coefficient ACt) will be time dependent since as recently shown

by Pulvermacher and Ruckenatein (11) a self similar ~olutLon for 41((~,t)

V independent of time cannot exist for the collision frequency function

of Eq. (14].

Another important result we can derive is that A(t) satisfies the

inequalities

0.25 ~ A( t) ~ 1 [16]

The above result may be derived from the definition of A(t) in Eq.

[15b ] through the use of the algebraic inequalities

(~ + ~~) < (~ l/3 + ~~1/3)3 ~ 4(~ + ~‘) [17]

and the conditions obtained from introducing the dimensionless variables

of Eq. [13] into the definitions of Eq. (iii,

J q,(~ ,t) d~ — 1 [ISa]

J ~~(~~t) d~ = 1

o

The coefficiel?t A(t) can be shown to take on the value of 1 for a

monodisperse system, and the minimum value of 0.25 for a system con—

slating of two monodisperse systems with widely differing volume

fractions << $~) where the number densities are also widely dif—

ferent but in the inverse order (n 1 >> n2). The derivation of this

result is outlined in the Appendix.

~~~~ — 

~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~V - - .  V — — —

— —  V V . ~~
á V_

~~~~~~
_ãV_ V_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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EFFECFS OF INTERPARTICLE REPULSION

In the analysis so far it has been assumed that charge repulsion

effects  between particles could be neutralized by the addition of appro-

priate chemicals (1). Colloidal particles usually acquire a negative

surface charge in solution so that they tend to repel each other upon

collision. Thus coagulation between particles is retarded or t otally

i~ihibited , when the particle surface potential (zeta potential) is

different from zero.

Due to the complex character of turbulent flows it is not feasible

to describe analytically the retarding effects on coagulation of inter—

pa rticle potentials . In this retard , the use of the turbulent diffusion

model suggested by Levich (5), in which potential effects would be incor-

porated as was done by Fuchs (12) for Brownian motion, is not justified

because of the non—Narkovian nature of turbulent flows.

In what follows a rather qualitative description of the effects of

interparticle repulsion is proposed for particles of a size less than

the Kolmogorov microscale. The characteristic potential energy of inter-

action between the particles is designated by V and typically may be

taken equal to the maximum interparticle potential energy . The range

over which this potential energy is effective is characterized by the

Debyc length q which is the characteristic thickness of the double layer

surrounding the colloidal particles (13). In general, the particle size

is large compared to the Debye length r~, which typically is like 50

The other force acting on the particles is fluid dynamic in origin

and, for particle sizes less than the Kolutogorov microscale, is the low

Reynolds number Stokes drag

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~
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F ~b 3 wu u d  (19 ]

where Ur is the relative particle velocity during collision (cf. Eq. [1])

and .~i is the viscosity of the continuous phase. The approximately equal

sign has been used here because the drag force will be somewhat smaller

than indicated as a result of the fluid dynamic interactions between the

particles as they approach each other . -

Comparing the electrostatic potential force to the fluid dynamic

drag force, it can be seen from dimensional arguments that the retarded

coagulation rate w~ is expressible through the functional relation

V
— w I cit c Urd ) [20)

Here w is the coagulation rate for the fully destabilized sys tem and the

function represents a coagulation efficiency which tends to 1 as V + 0

and to O a s V + .

The motion of a particle of a size less than the Kolniogorov micro—

scale in the potential field of another particle is characterized by

three time scales, the particle motion characteristic relaxation time

(d
2 /18v) , the characteristic Kolmogorov eddy time scale [(v/ c) 112 3, and

the time required for the particle to move a distance equal to the

Debye length (fl/U
r)• 

We may estimate that the relaxation time for

micron size particles is much less than the time required for the par— V

tid e to move a Debye length, while the characteristic turbulent eddy

time is much larger. It follows that the change in turbulent velocity

k— -— ~~~~~~~~~~~~~~~~~~ ~~~~ V V~~ V- • _____ -.-~~~-— - - ---~~~~~~~~~~~~~~~~~~~~~~~
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during the time the particles interact can be neglected . The amount by

which the coagulation frequency is reduced when the interparticle

potential energy V is small may then be estimated in the following way .

At a distance of the order of a Debye length ~~, the repulsive potential

energy between the particles induces a relative particle velocity of

the order of

- 

(21]

V 
Therefore at short interparticle distances the instantaneous relative

turbulent particle velocity will be reduced by an amount given by u~ .

The effective collision velocity between the particles can be

found from the requirement that the instantaneous relative turbulent

velocity must be absolutely larger than the induced velocity in order

for a collision to lead to actual particle coagulation. For small

values of the induced velocity in comparison with the root mean square

velocity difference Ur ( c f .  Eq. [1]), the effective collision velocity

may be approximated by

(u) — u  — u  [22)r eff  r i

Using the same simple mean free path model defined through Eq. (2],

with an interparticle velocity (ur)11, we obtain the following

expression for  the reduced coagulation rate

‘~# w[l — 

~~ ‘1r d~
1 [23]

~~~~~~~~~~~~~~~~~~~~~~ 
V_VV~~ V VVV ~~V __ —.—~~- - - - - —  — ~~~~ V 

~~V _ ~~~~~~~ VV — —------ - - - ~~~~~.~~~~~~~~~~..~~~~~~~~~~ . . . ~~~ V V V ~~~~~~~~~~~~~~ ~~
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where we have used the value of u
1 given by Eq. [211 and have assumed

r~/d -< 1.

EXPERIMENTS

Experiments were carried Out to measure the coagulation rate of

colloidal particles inside a fully developed turbulent pipe flow. The

principal advantage of this configuration in contrast to say a stirred

tank, is that the turbulent characteristics of such a flow are well

known [see, e.g., (8)]. Furthermore, in a fully developed flow the

turbulence is nearly isotropic in the pipe core. Commercial latex par-

ticles having a narrow size distribution were dispersed in water. The

particle sizes and the number of particles per unit volume were measured

using a Coulter counter [see, e.g., (14)].

Figure 2 shows a diagram of the experimental setup . The flow is

established by means of a centrifugal pump. The flow rate is measured

by a rotameter and controlled by the overflow arrangement shown in the

figure. Two honeycomb filters are used in the feed line to filter the

supply water. The stable latex emulsion was released, at a measured

rate , at station I into the pipe flow from a pressurized tank, through

a solenoid valve controlled by an electric timer. Destabilizer is in-

jected , at a measured rate, at station II, where the latex particles

are known to be completely mixed with the turbulent flow. This in-

jection system is similar to that for the emulsion.

Latex particles manufactured by Union Carbide (878 UCAR) with an

average size of 0.6 ~im were used in these experiments . A mixture of

1 mol/liter of HC1 and 5.6 no] /liter of CaC12 
was used as the de—

stabilizer . A special construction for the injection port at station 

— ~ V —~~~ V~~ V~~~ — ~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - _ __...&__ V_ 
~~~~~ Sd._ - - •_ ~~~. -~~ V ~~~~~~~~~~~~~~~~~~
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II ensured complete mixing of the destabilizer with the flow in a short

distance . Sufficient pipe length is provided after each bend , so that

fully developed turbulent flow prevails.

After steady flow conditions are established (for the present

experiments , approximately 10 sec after the release of the latex emul-

sion) samples are withdrawn at five stations along the pipe. The sample

at each station is withdrawn automatically by a solenoid valve, through

a 1/4 inch I.D. pipette in the wall of the pipe. The velocity through

the pipette was much larger (~ 500 cm/sec) than the average pipe

velocity (~ 180 cm/sec), so that the withdrawn sample is representative

of the conditions at the core of the pipe flow. The coagulation inside

this pipette was estimated to amount to less than 2% of the total

particle number density . As shown in Fig. 1 each sample is diluted

directly in a 1 liter flask containing distilled water. The dilution

is sufficient to ensure that Brownian coagulation effects are negligible ,

prior to the time at which the actual analysis of each sample is carried

out.

Prior to carrying out the measurements, each sample is further

diluted by a known amount in a pure aqueous solution of 1% sodium

chloride. These samples are then analyzed using the Coulter counter.

The theory behind the operation of the Coulter counter is quite simple.

The dispersed particles suspended in the 1% aqueous solution of sodium

chloride are forced to flow through a small aperture which has an im-

mersed electrode on each side. As each particle passes through the

aperture it replaces a volume of electrolyte equal to its own value 

~~~~~~ V V V  V ~~~~~~~ . _ _
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within the aperture, thus momentarily changing the resistance between

the electrodes . This produces a voltage pulse of short duration which

has a magnitude proportional to the particle volume. The resulting

series of pulses is electronically amplified , rated and counted . Thus

for each sample not only is the total number of particles in a measured

volume counted, but the particle size distribution is also measured.

Apertures of different sizes can be used for different ranges of par-

ticle size. Detailed inforiz~ation on this measurement technique may be

found in the previously cited paper of Wachtel and La Mer (14).

Calibration of the counter was done using latex particles of a

known size. Sufficiently diluted samples (41 ~ l0~~) were used for the

analysis so that corrections due to coincidental passing of two or more

particles throug~t the aperture were unnecessary. Aperture sizes of 19

um , 50 u rn and 200 u.n were used in the present experiments.

Additional details of the apparatus, including dimensions of the

various components , may be found in (15).

RESULTS

Prior to carrying out detailed measurements in the turbulent pipe

flo~: system described , the Brownian coagulation rate was measured for

different destabilizer concentrations for the latex dispersion to be

used in the pipe flow experiments . Samples from a dilute dispersion

= to l0~~) were taken from a beaker at specified time intervals

and analyzed with the Coulter counter . The purpose of these tests was

to determine the destabilizer concentration required for the dispersion

to be fully destabilized .

- — — — 
~~~~~~~~~~~~~~~~~~~~~~ . . _ -~~~~ -~~~- - ; V~~~~ - ~V~V ~~~V_ -- - - - —— -~~~~~



~ NV’~ W?W rnVS V .! - — Z~~~~~~ V . T ~V~~’ V~~~~~~~T~~~~~~~~~~~~~~~~~ V - - 1

— 19—

Fi gu re 3 shows the experimental results . In this figure the

stability factor WBr is plotted as a function of the volumetric de—

stabilizer concentration The stability factor is the ratio of the

coagulation rate for a fully destabilized system to the coagulation rate

fo r a partially dest abilized system (13) (c f .  Eq. [20]) .  From this

figure we conclude that the destabilizer concentration necessary for

complete destabilization of the present dispersion is approximately 4.5%.

The experimental linear fit for destabilizer concentrations less than

4.5% has been drawn consistent with previous results (16).

Experiments in the turbulent flow system shown in Fig. 2 were

carried out in which the flow rate through the pipe, the volume fraction

of the dispersed phase and the destabilizer volume concentration were

varied . The flow rates Q ranged between 5 and 15 gal/mm for which the

corresponding Reynolds number based on pipe diameter ran between 17,000

and 51,000. The volume fraction 41 of the latex particles was varied

between l0~~ and 6 x l0~~ while the volumetric fraction of the de—

stabilizer was controlled between 1 and 10%. Brownian coagulation

was always negligible compared to turbulent coagulation and the particle

size in these experiments was always less than the Kolmogorov microscale.

In each experiment the particle size distribution was measured at

every sampling station along the pipe (see Fig. 2). A typical set of

results is shown in Fig. 4 for a pipe flow rate of 15 gal/mm . In this

figure the cumulative particle number density n,~ is plotted as a func-

tion of the particle volume at different sampling stations. The

cumulative particle number density gives the number of particles per

unit volume of the continuous phase with volumes larger than a certain
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volume v. It is defined by (cf. Eq. [h a])

— J f ( v , t) dv [2 4 ]

From Fig. 4 it can be seen that the total particle number density

decreases along the pipe due to coagulation.

Figure 5 shows the same experimental points as in Fig. 4 plotted

in the reduced dimensionless similarity variables suggested by Eqs.

[13]. This figure would seem to indicate that over the length of pipe

in which the experiments were conducted the cumulative particle size

distribution at each sampling station remains approximately similar to

the initial particle size distribution at the first station. A best

I it curve through these points is drawn in Fig. 5. Using this curve

the coefficient A(t), which was introduced in Eq. [15] to characterize

the polydisperseness of the system , Vj5 found to be

A(t) = 0.90 (25)

where any time dependence has been suppressed through the use of the

“best fit similarity curve.”

Due to the limited length of the pipe in the present setup, no

experiments could be run for t imes much larger than the characteristic

coagulation time, in order to test whether the particle size distribu-

tion was or was not self similar. However, as we have discussed

previously , a self similar solution independent of time cannot exis t

-V ~~~~~~~ ~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—
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for the collision frequency function consistent with the present

theoretical model (Eq. [14]).

Figure 6 is a typical log—linear plot of the total particle number

density as a function of distance along the pipe. The ordinate in this

figure is the ratio of the total particle number density at a sampling

station to the total particle number density at station one. The

abscissa is the time required for the dispersion to flow to the sampl-

ing station

t = x/U (26]

where x is the distance along the pipe measured from the first sampl-

ing station and U is the average pipe velocity .

For the same degree of destabilization, the experimental points

lie on a straight line in agreement with the theoretical Eq. [3] for

a constant coagulation rate c~. As may be seen in the figure, the slope

of the lines which define the coagulation rate increases absolutely

with an increase in the volumetric destabilizer concentration

In Fig. 7 we have shown a typical set of results for the measured

coagulation rates as a furAction of destabilizer concentration The

Kolmogorov time scale (Eq. [7]) was calculated from the characteristics

of turbulent pipe flow . Experiments by Laufer (8) have shown that

fully developed turbulent pipe flow is vety close to homogeneous and

isotropic to within about 90% of the pipe radius. As previously

described , the sampling stations ~n the experiment were designed in such

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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a way t~iat the sample withdrawn from the pipe is representative of the

conditions at the core of the pipe flow. It follows that in calculat—

ing the Kolmogorov time scale, the turbulent characteristics repre—

sentative of the core of the pipe flow are the ones to be used .

From the experimental work of Laufer (8) the rate of energy dissipa-

tion per unit mass corresponding to the core of the pipe flow is

[27]

Here 1) is the pipe diameter and u,~, the pipe friction velocity, which

may be found from the relation (17)

— U ,“c1/8 (28]

where cf 
is the turbulent friction coefficient. Measurements of the

pressure drop in the piping system of the experiments gave values of

cf 
equal to those obtained from the standard friction coefficient

for turbulent flow in smooth pipes (17),

0.316
C

f 
= 1/4 [291

Re

where Re is the pipe flow Reynolds number (Re — UD/v).

It can be seen from Fig. 7 that for “ 5% the reduced coagula—

tion rate wT/41 ~ 0.78 and thereafter remains essentially constant

witu increasing destabihizer concentration. This indicates that the

dispersion is effectively f ull y destabilized for destabilizer

I

~~~~ ______________________ _ _ _  _ _ _ _ _ _ _ _ _
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concentrations larger than 5%. Taking into account the correction factor

characterizing the polydispersity of the system (Eq. [25]) the reduced

coagulation rate for a monodisperse system becomes (see Eq. (l5a]),

ut 0.78
(30]

It can be seen that this value agrees very well with the theoretical

result of Eq. [6a].

For destabihizer concentrations less than 57. a linear fit has been

drawn through the experimental points of Fig. 7, in analogy with the

behavior observed in Brow-nian coagulation. However, we note that this

behavior is in agreement with the predicted dependence shown in Eq.

[23J. This follows from the fact that near the critical destabilizer

concentration for full destabilization of the dispersion the potential

energy V is linear in ln [see (18)].

In Fig. 8 we have plotted the turbulent stability factor W
turb

as a function of destabilizer concentration for different flow rates.

The stability factor is the ratio of the coagulation rate for the fully

destabilized system to the coagulation rate for the partially destabilized

system and is just the inverse of the “coagulation efficiency” function

defined in Eq. [20]. We may make the following remarks concerning the

results of Fig. 8:

a. The slope of the linear fit for partially destabilized

systeme ~ 5%) is independent of the flow rate and hence of the

turbulent rate of energy dissipation per unit mass (Eq . [27] ) .  This

does not agree with the approximate result represented by Eq. [23] ,

_ _ _ _  
_  __ _ _ _ _ _ _  _ _ _  _ _  _ _ _ _  - -



where the relative velocity U
r 

is a function of the energy dissipation

i (see Eq. (4a)).

b.  The slope of the l inear  f i t  in Fig. 8 is almost the same

as t~ic slope for the Brownian stability factor in Fig. 3, although we

might expec t that turbulent motion would lead to higher relative rates

of coagulation when compared with B rownian motion . This same behavior

has been observed by other i r V v ~~~t~~gators  in experiments conducted in

agitator tanks (see (.-.)j.

c .  The e~per i~r~ t~ - ~ -
~~~ the destabilizer  concentration

f o r  ful L ~est~ btliz.i ~~V ~ t tne u l s : u r s ion is approximately the same

for dr~~ r~~~:. ua , . a t.i  V~~~ t) ar . ~ t d en t  coagulation (5%).

In the course of the ~re aent s : u - ’ - experiments were carried out

wit~ particles iar,’tr thar~ t r~e Kolmogorov nicroscale. For this purpose

the UCAR la tex eniuls ion was allowed t c~ coagulate in the emulsion tank

(see Fig. ~) to the required degree by the addition of small amounts

of destabilizer. The sane procedure , as described in the previous

section , was used to carry out an experimental run. Unfortunately, the

results could not be intelligently interpreted because breakup of the

particles took place simultaneously with coagulation. A comprehensive

study and understanding of the breakup rate of particles in turbulent

flows is not available at this time to enable the proper interpretation

of the results of turbulent pipe flow coagulation experiments with

particles larger than the Kolmogorov microscale.

WNCLUS IONS

A model based on simple binary collision mean free path concepts

_ _ _ _ _  
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was developed for the prediction of the coagulation rates in isotropic

turbulent flows of destabilized monodisperse particles less than and

larger than the Kolmogorov microscale. The same simple mean free path

concepts were applied to the description of the temporal evolution of

the particle volume probability density in coagulating polydisperse

systems. It was shown that polydisperseness of the system resulted in

a decrease in ~he total particle number density coagulation rate in

comparison with the rate for a monodisperse system of the same volume

fraction. For particles of a size less than the Kolmogorov microscale

an est imate was made of the reduction in the coagulation rate as a

result of the interparticle repulsion associated with charged particles

in a partially destabilized system. This estimate was based on com-

parison of the fluid mechanical (Stokes drag) forces to the electro-

static potential forces.

Experimental results on coagulation of destabilized particles in

fully developed turbulent pipe flows, where the particle sizes are

small compared to th e Ko lmogorov microscale , shoved excellent agree-

ment with the theoretical prediction of the coagulation rate. The

coagulation efficiency for partially destabilized systems appeared to

be independent of the particle transport mode, that is, Brownian or

turbulent, as has been observed by previous investigators (19).

Experiments in which the dispersed particle sizes were larger than the

Kolmogorov microscale could not be successfully analyzed because of

simultaneous breakup of the particles in the flow.

h~L 
~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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APPENDIX

In a monodisperse system the dimensionless particle size distribu-

t ion defined by Eq. [13a ] Is a delta function centered at 1. It follows

directly from Eq. (l5b J that for a monodiaperse system at the onset of

coagulation the coefficient A(t )  = 1.

In a system consisting of two monodisperse systems with pa rticle

volume fractions , diameters and number densities •l’ d1, n1 and 
~2’ d2,

~2 respectively, the evolution of the total particle density with t ime

at the onset of coagulation is given by

d(n1 + n 2
) 1 2 1 2

dt 
— — 

2 u11 ii ~ — W 12 fl1fl2 
— 

2 ~22 n2 [A. 1]

He re the symmetric tensor w
1~
(i1J = 1,2) represents the volume swept

per unit time by particles with diamet ers di and d~ during collision

and can be found from Eq. [10]. For particle sizes less than the

Kolmogorov microscale

d1 + d  
~w1 — ~ 2 

i ) [A.2]

where the proportionality coefficient

a ~~~ (c)112 [A.3 ]

Then Eq. [A.h] can be rewritten in the following form

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1 + 112
) 4(n~d~ + n~d~) + (d

1 
+ d

2
)3 n1

n
2

(n
1 

+ n
2
) 
— 

dt - — 
4(n

1 
+ n

2
) (n

1
d~ + n

2d~
) 

[A.4]

wherein Eqs. [A.2] and [A.3) have been used and w is the coagulation

rate of a monodisperse system of volume fraction 
~~ 

+ +2) (cf. Eq.

ElSa]).

It follows that the coefficient A(t 0) (cf. Eq. [iSa] at the onset

of coagulation) will be equal to

4(n2d~ + n
2
d3) + (d1 

+ d2)
3 
n1
n~

A(t=0) = 
1 2 2 [A.5]

4(n
1 + ‘~2~ 

(n1d1 
+ n

2
d
2)

After some rearrangements it is found that

~ 
(d1 

— d2)
2 (d1 

+ d2) n1
n2

A(t—0) — 1 — 3 3 (A. 61
(n1 + n2) (n

1
d1 + n2d2)

For the special case of two widely differing volume fractions (+
1 

<< +
2
)

and widely differing number densities in the inverse order (n1 
>> n~)

we have using Eq. [8]

n
1 

d
2 31 << — << (-a-—) [A.7]

n2 V

and the value of the coefficient ACt) becomes

A(t=0) — 0.25 [A.8]
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Fig. 4. Cumulative particle size distribution at different
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