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Pump Wavenumber Dependent Effects in the Parametric In-
stabilities of a Plasma

Thesis directed by Professor Martin V. Goldman

We have derived a linear kinetic theory of parametric
instabilities in an infinite, homogeneous, fully ionized
plasma, with no magnetic field. Our derivation reclaxes
three assumptions usually made in the linear theory of cer-
tain parametric instabilities:

1). We do not assume that 50, the wavcnumber of the
pump (the driving field of the instability),is much smaller
than any other inverse distance in the plasma;

2). We do not restrict ourselves growth of the in-
stability in one dimension; and,

3). We consider a standing-wave pump, in addition to
the usual travelling-wave pump.

Using this generalized formalism, we have studied the
important problem of the parametric instabilities, in three
dimensions, pumped by a monochromatic, longitudinal pump
of arbitrary wavevector. By solving a dispersion relation
derived for these instabilities, numerically and analyti-
cally, we have found a number of new, three-dimensional
effects:

1). Only under quite restrictive ccnditions on kKo

does the oscillating two stream (OTS) instability have its

fastest growing daughter waves with wavenumbers that are
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parallel to k,; when kolz k, these daughter waves can grow
at as much of an angle to ko as 200,

2). The Langmuir-pumped electron-ion decay (EID) in-
stability, for arbitrary Ko+ has regimes in which it is a
forward scattering instability (as well as the usual back-
scattering regimes in the case that koj>ﬂ~5&73).

3). A rev instability, which is only seen in three
dimensions, is possible. This instability, the stimulated
modulational (SM) instability, can produce daughter waves
at an angle to k,, with wavenumbers slightly larger than Ko

We have applied these results to three physical
situations modelled on an electron stream quasilinearly
generating a Langmuir spectrum of sufficient intensity to
act as a pump:

l). Type 1II solar radio bursts. We find that three
dimensional effects are critical in understanding the re-
laxation of Langmuir waves at distances less than 450 RQ.

2). Auroral streams. Our results show a one-dimen-
sional treatment is sufficient in this case, although
three dimensional effects are very likely to be important
in determining the saturated state of the instability.

3). Laboratory electron beams. Ve conclude here
that parametric effects dominate the wave dynamics for a
"slow" beam, but that this is not the case for faster

beams.

In none of these cases do we find parametric processes that

kit i
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grcatly affect the quasilinear decay of the beam, contrary
to the findings of several authors who have examined

similar applications of parametric instabilities.

We have also studied the effects of a standing-wave
pump of arbitrary k, for two parametric instabilities, the
2vpe and LCID instabilities. The most important result of a
standing-wave pump for these instabilities is a reduction
of the effective power of the pump. This is a result of
different modes of the plasma beinag excited by each of
the two components of the standing-wave pump; these ex-
citea moces are coupled more strongly (raising the effective
pump power) as the (ko-dependent) frequency separation of
the modes decreases relative to the growth rate of the in-
stability. As kg goes to zero, and a standing-wave becomes
indistinguishable from a travelling-wave, we recover the
travelling-wave results. When we apply our results for the
EID instability to ionospheric modification data, we find
the decrease in the effective pump power resulting from
a standing-wave pump, lowers the theoretical predictions

for the Langmuir turbulence produced in these experiments.
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CHAPTLCPR I

INTRODUCTION

The couplinag of normal modes of a linear svstem by
a time-deperdent irteraction is a phenomenon first noted b
Faraday1 in 1831 and studied theoreticallv by Lord Pav-~

leigh?

in 1883. Now called parametric excitation, the
study of thesec processes provides a aeneral anc powerful
framework for studying linear responses of a svstem. 1In
this dissertation, the thecory of the parametric excitations
of an infinite, homoageneous, fullv-ionized plasma is ex-
tended to include two effects dependent on the wave-
vector, k., of the driving field of the instability:

l). The effects of this driving field (the "pump")
being a standing-wave field rather than the usual travellina-
wave field.

2). Three dimensional effects of a longitudinally
polarized pump with arbitrary wavevector.

We have found that in a large number of physical situations

the spatial dependence of the parametric coupling, depend-

ent on k

kor is imnortant in determinina both qualitative and

quantitative features of this nlasma interaction.
The first systematic observations of parametric ex-

citation were done by Michael Faraday, when he noted that
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“~

he could maintain water waves at half the frequency of the
vibrating support which generated them. In 1859, F. Melde3
published results of an exhaustive study he had carried out
of the excitation of transverse modes of a vibrating wire
which could be amplified by a longitudinal vibration of the
wire at twice the transverse frequency. Lord Rayleigh made
several theoretical studies of this problem, and his re-
sults exhibited the two characteristic features of
parametric excitation: the existence of approximate fre-
quency matching (in the examples given above, the excited
disturbances occurred at half the frequency of the driver,
or "pump"), and a threshold power for the pump, above which
the normal modes of the system begin to be amplified.

A much more commonplace example of this phenomenon is
the energy transfer that occurs in a child's pumping a
swing. The time-varying element in this otherwise simple
pendulum is the raising and lowering of the effective
length of the pendulum; the child raises his center of
gravity as the swing goes up and lowers it as the swing
comes down. The frequency of this variation is twice that
of the natural frequency of the swing. This "pumping"
couples together the two, here degenerate, normal modes of
the pendulum, with the frequency matching condition:

CJ’“,.’={(U:[ +lw| = {wl* )—Cu, z2w.
And, if this pumping is of sufficient amplitude, then both
normal modes become unstable and enerqy is transferred to

these modes.

T TT—




3
In general, parametric excitation occurs when several

otherwise independent resonances of a system are coupled
together by some time-varying parameter of the system. If
amplification of these normal modes is to occur, the time
varjation of this parameter is not arbitrary, but rather is
fixed by a condition, dependent on the frequencies of the
normal modes which are being amplified. When there is dis-
sipation in the uncoupled modes, then a "threshold" power
of the time-varying parameter exists, above which energy is
transferred to the now-coupled normal modes. Notice that
we have made the implicit assumption that the energy trans-
fer is small enough that the pump remains essentially un-
affected by the excitation of modes in the system; this is the
origin of the term "parametric," the time-varying parameter
being treated as having constant amplitude over many
periods, and entering the calculations as a parameter in
the growth rates of the excited modes. Current application
of this principle is being made in many fields, including
circuit design4, non-linear optics5, and several areas of
plasma physics.

In the case of a plasma, parametric couplings occur
in amazing variety, as a result of the multitude of waves
possible in a plasma and the richness of the interactions
among them. If we restrict ourselves to an infinite, homo-
geneous, unmagnetized, fully-ionized plasma, there are only
three linear resonances possible, each with a well-known

dispersion relation:
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1). the electromagnetic wave, 8°1 = 0 (see page 12 for

our notation):

2‘3‘5‘ = [' + ('R “io:)]/z, %’k; =Wpe = 4”"52/7'":;
pe

2). the Langmuir wave, ek =1

\
o o (1 + 3Kkl )?, ko = 4TNEV6e ;
Wpe

3). the ion-acoustic wave, ek = oy
we [ 7 (me/m)*k /by | Eem0
“""‘ (me /m )% k /Ry ” E. 3E. .
Each of these waves has a well-understood dissipation
which we list herec as the imaginary part of the above fre-

quencies:

1). the electromagnetic wave, &

i e o o Ik [z cs]
(3

2). the Langmuir wave, ©

Jo b (2" (B onp (ko) + Rafn Be/hend/fevEnn™),

3). the ion-acoustic wave,7
9 " 0.4/ , Be =6, ;
e (me/m Ve(Ve)> . 6 €.

In a quiescent plasma, these thrce waves are independ-
ent; however, an intense high frequency field can paramet-
rically couple together various combinations of these
modes . 8 Physically, this high-frequency field acts as the

pump, by setting up currents in the plasma. These currents

change the susceptibility of the plasma, nonlinearly, in
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such a way that the equations describing the resultant
fields in the plasma have source terms which depend on a
power series in the pump power. Thus, for example, the
equation describing the amplitude of a low-frequency ion-
acoustic wave contains a term due to the beating of a high-
frequency pump and a high-frequency daughter field. Given
that the appropriate frequency-matching condition is sat-
isfied, both the high-frequency daughter field and the ion-
acoustic wave can be amplified. The frequency matching con-
dition for all parametric interactions which depend on the

lowest power of the pump is:

wbkm :‘U.lu,un..,.“ * lwda Léer-tn" .
. -y

These lowest order interactions couple the pump wave to
L two other waves and are called three-wave interactions.
Table I lists the possible three-wave couplings in an homo-
geneous, unmagnetized plasma.

In addition to these three-wave processes, the pump
can couple modes of the plasma through interactions in which
two pump waves are involved. These processes are frequently
called second-order in the pump, even thouah the phvsics of
the interaction is similar to the first-order processes
which lead to the three-wave interactions. These "four-
wave" interactions couple together two pump waves and two

high frequency modes of the plasma through a low frequency

resronse of the plasma. This low frequency response of the

nlasma has the effect of makina the expected freauency




TABLE I

THREE-WAVE PARAMETRIC INSTABILITIES

Pump Daughter Name Diagram
Wave

Lor T L, L 2“939 N’*<M'-NQNL
wg ~2u~ W e .,
Lor T L, A Electron-

ion decay 8 Wv<do‘(—‘ T We

Wo = e W GWa

T Ly T Stimulated (AICINE IR
Raman /\/\/\<
scatteringlO . W Wy

T T, A Stimulated \/W\‘Q/\/V"w,—wz Ay

Brillouin

scatteringll = e v
| T ?, T Degenerate @y - v =
i electro- wvx{:f\/J 1 i
i magnetic w, NP




matching condition:

prmp" 'wdou,uer-mb, + lwdﬂ,“er- twe | -

hold only aprroximatelv. In contrast to the three-wave
case, the greatest amplification does not occur when this
condition is satisfied. These four-wave interactions
are tabulated in Table II. 1In both Tables I and II, the
diagrams that are used to schematically represent these
interactions are taken from an analogy with quantum mecha-
nics. Thus, the freaguency matching condition becomes a
condition quaranteeing enerqgy conservation in the wave in-
teraction.

The general formalism for parametric interactions in
a plasma is well-known for the case that the pump field is
homogeneous, i.e., has a wavevector, Eo' equal to zero. In
the following two chapters, we present a generalization of
a kinetic formalism of parametric instabilities to the case
of pumps with more complicated dependence on the wavenumber
of the pump. As we will show, the most striking of the
results of this generalization come from the wavevector

matching condition that must be satisfied:

-ko i '-Qdauyhter-am +'.édau9/|£¢r-éwo ) i

In our quantum analogy, this is a requirement for conser-

vation of momentum. In general, this results in important

changes in the character of the parametric instabilities,

g i

which now have a sensitive dependence on the vector char-

acter of the pump wavenumber. We have restricted our study




TABLE II

FOUR-WAVE PARAMETRIC INSTABILITIES

Pump Daughter Name Diagram
wWaves
T L, L Oscillating e i
two-stream!? Bl liim: & comitas
o~
PR e Ve ST NS
y - Tt T Filamentation13 Wy -ts T N
We = \
Lig* ) = Wt
T T' L W, = &p iRepadis dor
Ve, v
L 4 & Modulational T T L i el
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of arbitrary k, effects to two general types: the effects

of a standing-wave pump, and the three-dimensional aspects
(in a cylindrical symmetry about ko). As will be shown,
both of these situations are frequently applicable in astro-
physical and laboratory plasmas in which parametric in-
stabilities play a role.

In Chapter II, the general formalism for a kinetic
theory analysis of parametric mode coupling is derived for
a pumo of more general form: the pump can be a standina
wave (or travelling-wave) with arpitrarv wavevector, 50.
This more aeneral pump introduces two general kinds of
effects:

1l). ELffects due to qualitative changes in the mode
couplings possible with a standing wave pump, and

2). Three dimensional effects due to the finite
size of Eo and its vector character (independent of the
standing-wave character of the pump).

The problem of a standing-wave pump driving paramet-
ric instabilities arises in several important plasma config-
urations; whenever a transversely polarized pump wave is
reflected from a critical surface in a plasma, for example,
a standing-wave pump field is set up by the superposition
of the incident and reflected waves. A longitudinally
polarized standing-wave pump field can arise from the
decay products of another parametric instability if these
daughter products have almost equal and opposite wavenumbers,

and equal freauencies. This is sometimes the case for a

Ly me——
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four-wave instability known as the oscillatina two-strcam
(0OTS) instabilitv (sece Table II). At the end of Chapter II
we apnlv our aeneral formalism to the specific case of the
2w, and clectron-ion decay (EID) instabilities driven b
a standing-wave pump. The most important effect here is
a lowering of the effcctive power of the pump when the
pumn is a standina-wave. This reduction is a result of
different modes of the plasma beina excited by each of the
tvo components of the standing-wave. We find, in addition,
the these modes are coupled more strongly (raisina the
cffective pumn power) as the separation in freocuency of
these waves decreases (with smaller ko), relative to the
arowth rate of the instability. As k, goes to zero, and a
standina-wave becomes indistinguishable from a travellinc-
wave, we are able to recover the travellinag-wave results.
when we apolv our results for the EID instability to
ionospheric modification data, we find the decrease in the
effective numn power with a standing wave nump
lowers the theoretical predictions of the Langmuir turbu-
lence produced in these experiments.

After this application of our general formalism,
the third chanter is devoted to the more complicated, and
more important, problem of the parametric instabilities
driven by a longitudinally nolarized pump. The dispersion
rclation we have derived makes possible a unified treat-
ment of all Langmuir pumped instabilities which have longi-

tudinally polarized daughter waves. We find that the




parametric processes in this case arc of thrce tvres,
of which demand a trcatment in three dimensions with
arbiltrary wavenumber pump:

1). & non-oscillatory process, which we have called
thie oscillating two-strcam instability after Nishikawa.!?
For non-zeroc ko' the OTS instability is one dimensional only
under gquite restrictive conditions, and, in many cases, has
tts fastest agrowing daughter waves at a large angle to k

2). The well-known electron-ion decay (pID) in-
stability. For ko on the order of the mass ratio, we find
that the LID instability can be a forward scatterina pro-
cess.

3). A new instability, which is only seen in three
dimensions, called the stimulated modulational (S!!) in-
stability. This instability produces daughter waves at an
angle to kg, which can have wavenumbers sliqhtly larger
toan Ro.

The third chpater concludes with an application cf
these results to three physical situations in which the
lonaitudinal pump is modelled on the quasilinear decav of
an electron beam. In all three of the situations examined,
Type III solar radio bursts, auroral arcs, and non-relati-
vistic laboratory electron beams, we have concluded that
parametric effects do not substantially affect thé beam

relaxation, which still proceeds quasilinearly. Other

aspects of these situations, however, do require the para-

metric processes of a Langmuir pump for their understandina:

e



12
e electromaagnetic radiation associated with solar bursts,

the anomalous resistivity encountered by the auroral streams,
and the low frcquency spectra observed in lahoratory

electron experiments.
Notation

We have attempted to follow conventional notation
whenever possible. All wavenumbers and wavevectors are
represented by lower case, Latin k's; all frequencies are
denoted by lower case, Greek omega. In every case, a sub-
script zero refers to the pump (for example, ko is the pump
wavenumber). We use a system of units in which time is
given in terms of the inverse plasma frequency and distance
in units of the inverse Debye wavenumber, kpe, defined
above (note that this gives velocity units of the electron
thermal velocity). Finally, ne always is the ambient
electron number density per cm3’and é% the temperature, in
ergs, of the s species. Vectors are denoted by underscoring,
and unit vectors by a circumflex; thus, the clectric fiecld
of the pump is E, and has direction ¢, or éko (this is not

to be confused with an unsubscripted e, standing for the

electronic charge).
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CHAPTER 11
THE GENERAL FORMALISM

The first studies of parametric instabilities were
done using threce simplifying assumptions:1'2

l). The pump wavenumber is much less than any other
wavenumber in the plasma;

2). A one-dimensional treatment is sufficient to
determine the fastest growing modes; and,

3). The pump is a monochromatic, travelling wave
field.

Assumption one sometimes implies that the pump is
homogeneous, the so-called "dipole approximation," and
frequently is applicable to parametric instabilities. From
the frequency matching condition for the EID instability,
(see Table I, page 6), to take one example, we can derive
the following relation between ko, and k, the daughter

wavenumber, for a transversely polarized pump:

A = 3utk?
so that k,<< k. If the pump is a travelling wave, this
allows us to ignore k,. (As we shall see, assumptions one

and three are related, and the condition ko<< k is not

sufficient to guarantee a dipole opump if the pump is a

standing-wave). In the derivation of a kinetic theorv of
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parametric instabilities in this chapter, we have relaxed
this assumption. The necessity of studying more general
pump field ic clear if we repeat the above calculation
for a longitudinally polarized pump, a Lanamuir wave. In

this case we have:
R =2_é'é§e -26/3 ,

where cg is the sound speed in the plasma. Clearly, k and
ko can be comparable in maanitude. We have found the most
important effects of a finite ko pump do occur for lonai-
tudinally polarized pumps. In Chapter III we vill derive
detailed results for the ko dependent effects in para-
metric effects pumped bv a Langmuir wave field.

Furthermore, when k,<< k, we wouléd expect that the
parametric processes would not depend on the direction cof
ko (except as this is determined by the polarization of
the pump), and hence, that a one dimensional treatment
would be sufficient. This is the content of assumption
two. However, to be consistent, if we relax assumption one,
we must be ready to examine possible three dimensional
cffects. 1Indeed, our formalism, especially in the reaimes
when k, = k, predicts important three dimensional cffeccts
for all parametric instabilities. These will be examined
in detail in Chapter III, for the case of a Langmuir pump.
ror the EID instability, to compare with our example

above, driven bv a Langmuir pump, not only are k and ko

comparablec, but, in addition, the anale between k and ko

R —— —
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enters critically into the condition for maximum qrowth.

Our general formalism is derived in a three dimensional

geometry in which we have assumed a cylindrical symmetry
about L9
Finallyv, our motivation for relaxinqg the assumption
concerning a travelling wave pump field (assumntion three--
although we have kept the assump.ion of a monochromatic
opump) 1is the evidence that in many experimental situations
the pump is not a simple travelling-wave. It is freaquently

the case, for examole, that the theory of parametric in-

stabilities is apolied to experiments in an inhomogeneous

plasma. In this situation, one approximation to a treatment

of the problem which take the density variation intc
account, is based on the observation that an electromaq-
netic pump will be reflected in the region cof anv

critical density surfaces in the plasma (where the local
plasma frequency equals the frequency of the pump wave),
and, the superposition of the reflected and incident waves
will create a standing-wave electromagnetic field in the
plasma. If the absorption of energy from the pump is small
enough, this standing-wave will double the local amplitude
of the pump field, but with a new wavenumber and frequency
dependence. This is thought to be the case for the plasma-
radiation systems occurring in ionospheric modification ex-

periments and in laser-irradiated pellets.3 The other

general class of problems in which a standing-wave pump
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arises is that of the saturation of parametric instabil-
ities. One example of this, which will be examined in more
detail in the next chapter, is the non-oscillatory
interaction of a small wavenumber pump whose daughter
waves are a pair of Langmuir-like waves with almost equal
frequencies and equal, but opposite, wavenumbers.

The superposition of these two dauaghter waves sets up a
standing-wave field, and the saturation of the process
depends then on the dynamics of the standina-wave pump
acnerated by the original daughter waves.

In this chapter, we begin with a kinetic theory
derivation cf parametric excitation in an homogeneous,
infinite magnetic field-free plasma. Our derivation
relaxes assumptions one, two and three. We have dividea
our applications of this formalism into two parts:

1). At the end of this chapter, we study the effects
dependent on the standino-wave pump. The most strikino
cffect we find is a lowering of the effective power of the
pump. This is an effect we explain by a dctailed consider-
ation of the new mode couplings that a standing-wavec allows.
These new couplings arise from the different wavenumber
matching conditions possible with each component of the
standing-wave. The key concept concerning these phenomena
is that of the "closeness" of modes; that is, the separation
in frequency of two modes compared to the arowth rate of
the instability. Using this idea, we have derived rela-

tions between ko' the number of modes coupled in the plasma,
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and the effective power of the nump These results are
applied to ionospheric modification experiments, where our
predictions of a lowcred effective pump power

changes the theoretical predictions made of the observed

Langmuir turbulence.

2). All of Chanter III is devoted to a study of
the three dimensional and finite ko effects of parametric

instabilities driven by a Lanamuir wave pump.

THE NOPMAL MODE EQUATIONS

Maxwel.'s equations in a medium are efficiently
solved Leginnina with the equation relatina the ensemble-
averaced electric field, F, the external currents, and that
part of the internal current which has a higher than linear

dependence on the field, izL:

T :ext :
(1) m (i, w)E(R,w) = -4 [ j* (bw) ¢ g"‘(k.w)J,
vhere m (k, w) is the generalized susceptibility, related
to the linear dielectric function, E(E,ad) through the

relation:

2 1
(2) m,. (kw) = < t:k-" C‘w’l s welm (&)w)'

The dielectric function itself is derivable from the

equations describing the plasma. Our strateay in solving
this equation is as follows:
1). Bv limiting ourselves to lincar stability ana-

lysis, to look at the solutions to the equation when there
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are no external currents, j€*% = 0, and concern ourselves

only with the normal modes of the system, whose dispersion

relation is civen by roots of:

(3) m (k,w)-E(kw) = -4n/ ) e (k,w);

-

2). To find an expansion of the non-linear current
in powers of the field; and,

3). To introduce an ordering among the contributions
to the field, distinguishing between the pumn field, an
externally aoplied field which is assumed to be of fixed
amplitude, frequency, and wavenumber, and the much smaller
fields that the pump drives up (this is the so-called para-
metric approximation).

The solution to (3), using onlv the internal current
which is first order in the pump, i.e., second-order in
the total field, gives the three-wave parametric interac-
tions; the current which is third-order in the total field
(second order in the pump) gives rise to the four-wave
processes. To solve equation (3), we must evaluate the
internal current; in general, we can write the current in
terms of the non-linear susceptibilities and the fields in

the plasma. The linear susceptibility is given by the

linear dielectric function:

(4) i (kw) = -1 £ (R,w) Em (k,w), «;

where:

‘x" (k‘w) - Slm = 4“}‘-‘ (k)w) 9




The non-linear currents can likewise be written in a

series expansion which comes out of a Fourier transform of

an expansion of the current in terms of the electric field:

)_'“(k,w) = 2'(:) (‘S,W)* ‘jl') (’S,w) ¥

where:
(5) J.,m (B.W) =‘7(A’/d’(.2 le (k.U;B.,w:,'L(,,w,) Em (R, w.) En(é‘z,‘*ﬁ),

and:

J‘l(l)(&’w) '.‘.‘-IU/CIK:;’ }'lnmp (_k_,W,'&,Wt,' &z,wn g!;""‘!)

(6) “ Em(kr) En(Rs,ws) Ep (ks ;) -

with the definitions:

(19 dKip = d""é“;f.‘k‘d“" 5 (R-k-ky) S(w-co,-w;),

(8) d an; - d ku dw, d(;(:r)d‘:h J’k]dk’l Sz(é‘é.’k; _k,) 5(""":'“:’6\/3),

It is important to note that the model of the plasma-field
interactions used to derive the susceptibilities is sepa-
rate from the model used to evaluate the dielectric function
in equation (2). We have, in the Appendix, evaluated Xg..
and Xbm» for several important cases usinag a fluid model. 4
From equations (A.7) and (A.8) in the Appendix, we have
explicit forms for the non-linear susceptibilities, and

we use them with the definition:

(9) Z(kwi ko, Roon) = €1€mén Xgpn (RwRywiks,w2)

where &) =€, , ¢, = €, etc. are the unit polarization

vectors of the E(k), E(k;), etc. The next step is to make




the parametric approximation:

(10) E(&“’) = Eo(kyw,) + E'(Lz,w),

where E, is the pump field amplitude and E' the amplitude

of the self-consistent fields generated by the plasma. We
require that the following condition hold on these am-

plitudes:

/)Eol‘d’h » /)E’I‘ dk ,

and that Eo still be small enouagh to ensure the converaence

of the current expansion (a sufficient condition for this

convergence is that:

/lE.Itd’k << nBe

whose details are discussed in reference 5). Physically,
our zero order (in E') state is that of a large amplitude
known field interacting with a plasma. Our object is to
calculate the effects linear in E'. 1In general, Eo has
the effect of coupling together previously independent
modes of the plasma (resonances in E') and, in some cases
amplifying these now coupled resonances. This is a para-
metric process since we take IEOIZ as fixed, and the time
and space variation of E, provide the coupling mechanism,
We now relax the assumptions listed in the beginning

of this chapter, on the form of the pump, and write:

Eo(c,t) = |Eo| €, [(l—u) sin (Regswot + ) + X sfn(k,-r»w,tr?)}
(11)

= [Eo| €6 §m [((-() g Srtuteg) o Chet tusst up)J.
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where ¢ is an arbitrary phase factor. This pump is a standing-

wave of arbitrary k, when ol = % and a travelling-wave when
€ = 1 or 0. The local amplitude of this pump is always )Ey|
for any value of . We write the Fourier transform in

space and time of the pump as:

Eeauns= S [(’i-"“) 5 ko sh)So-t)+ (510 Eu §'(Bosk) 5 s

Sui~t

Substitution of this expression for E5 in (10) and then

into (5), (€), and their higher order analogues, immediately
gives the various currents in (4). The second order
current is, for example:

3¢
‘@) G S ol -
(12) J!u (k)w) 1w ”Z'.:| [( z )E"'Eﬂ (‘5'5&.“""-)]’”(‘!,M‘Sbiu;}_usg.,w-u.)

+ (35 - ) Eum En (R5Ks, 000 0) X (k01 5he ke S 0|

In an isotropic plasma (B, = 0), we can choose m(k, w)

diagonal, ard equation (3) becomes:

(13) €(k,w) Ef (Rw) =~ 4__5._ [il.w(k.wh ] :
This equation generates a system of equations connecting
fields at various values of the wavenumber and frequency,
shifted in their arguments by letting k go into kik, and
wgo into Wtw,. The result is an infinite, homogenoceus
set of coupled equations for E’(kink,, Witw,).

Physically, the pump has coupled previously indepen-
dent modes of the plasma; there is, for example, the
term in these equations proportional to Eofimn which couples

the mode at (k, W) with the four modes at (ktky, w:wo)
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and (5!50, W¥FwWy). Our object is to solve this system
of equations. Given that we know the susceptibilities,
substitution of (12) and the like expressions for 1(3), etc.
into (13) gives a homogeneous set of equations for the
E' fields at different wavenumber and frequency, and the
determinant of the coefficient matrix of this set of

equations gives us a dispersion relation which descrites

the new normal modes of the plasma. We now turn to an

evaluation of the dispersion relation.
THE DISPERSION RELATION

The fundamental difficulty in solvina the matrix
equation that follows from (13) is that it is infinite.
The infinite number of variables that we have are the
fields E" E'(k, w), E'(kik,, wWtw,), E'(kiko,wW74),
E'(gtzgo,cd), etc. We must find a way to truncate this
doubly infinite group of variables in wavenumber and
frequency, if we are to get a finite set of equations. We
will show that truncation in frequency and wavenumber is
provided by a restriction that allows us to take into account
only modes that fall near a resonance of the unperturbed
system. However, our ability to truncate the series of
variables in wavenumber will be a sensitive function of
Kor which is not the case for the truncation in frequency.
In this section we will reduce our infinite equation to
an m x m determinant, where m is a function of kg,. We

then will apply this m x m determinental dispersion




rclation to several parametric instabilities driven by a
standina-wave pump.

We now turn to the problem of truncating the infinite
matrix equation that follows from (13). We first make the
convention that 0 < W <wWg. This gquarantees that all the
arguments in frequency, winWg are different for different

values of n. One consequence of the condition that

f’Eolld’k <« th,

1s that the predominate response of the plasma, E', will
be very near the normal modes of the unperturbed plasma.
It is in this sense that the pump is said to couplec the
normal modes of a plasma; that is, if w, is a high fre-
quency normal mode of the plasma, so that:

€(Ra ,wa) = 0,
and, if W(k) is a solution to our new dispersion relation,
then:

‘(A)-— (A)al L Wy -
This is easily verified a posteriori. Now the normal modes
of the unperturbed plasma are well known, and we can con-
clude that we need only keep fields, L', which have a
frequency near a normal mode of the plasma. Since we will
choose the pump frequency, w,, to be a high freauency (on
the order of the plasma frequency), it is easy to verify
that, for the responses of a homogeneous plasma, Table I
(page 6) gives the possible excited fields for the couplinas

allowed by j(z). Let us call, for such a three- wave
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process, wa(Ea) and wb(ﬁb) = wb(Ea-go), the normal modes
of the unpumped plasma; the daughter waves of the insta-
bility must be near these two frequencies. Thus, for
example, to excite the 2w, . instability (see Table I), wve
must satisfy the frequency matching condition, at least
approximatelv:

W= w.ike) = UO(K’.))

W-w, x —w, (ka-Re) = Wo(R,-k)

(In the case of the 2upe instability, w, and ¥, the natural
resonances of the plasma that the pump excites, are both
Lanamuir waves). We can choose k, so that these equations
are satisfied. But, the other modes, at:

Wr+w, = JWpe,

w- 2w, % -2 W,
will never be near a resonance of the unpumred plasma. The
more exact meaning of "near a resonance" is straiaht-
forward. Fhysically, we want w(k), the new normal mode, to
be within a growth rate of the "old" normal mode of the
system. Expressing this in terms of the dielectric fun-

ctions, which are more properly a measure of the plasma

response:

| Re €Ck,w) = Ra € (ko ,wis)] < | Jwm € (R, ,
[Re € (&, w-w)-Re€ (Ro,ca)| < | Sm € (R w-w)]

Figure one a) shows schematically what is required. These

inequalities allow us to truncate our equation in frequencv.
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Figure one. Qualitative diagram of the plasma
y response as a function of wavenumber and frequency. In a)
» we have the criterion for determination of which frequencics
are "close enough" to a natural resonance of the plasma
- (shown by the dotted lines at W,(k,) and -Ub(kb)) The
mode at W-v, is close enough; the mode at w-2w_ is not.
In b) the criterion for determination of which wavenumbers
will be excited. Modes at (katkg, Ww-wg), (ky, W), and
(ky- » W) are “"close enough" to a natural resonance, but
the moges at (ka=3kg, W=¥g) and (ka+2ky, w) are not.




Notice that if w is a low frequency, that it is

possikble to have three daughter frequencies necar resonance:

W-We =~ Wp , Welo = Wpe , W = Wy

This enables E' (k, w), E'(5+50, w+wy) and L' (k-k, , w-w,)
all to be excited. We shall see that is the case for the
four-wave instakilities (see Table II, page 8). In the
remainder of this chapter, however, we assume:

JRe. €(w-w,) - Re € (ws)[< Im€w-wa) < | Re € (wewo) - Re€lws)],

and we will defer discsssion of four-wave effects to

Chapter III.

We now specialize our results to this case, and make
the related assumption that only 2(2) needs to be consider-
ed. This is admissible as long as we can neglect small
corrections to Re u,4 and are interested only in three-wave
effects. 1In chapter III we will include effects due to
both the up-shifted wave at L' (k+ky, w+e ) and due to
couplings introduced by 2(3). This leaves us with the

following equations, obtained from a substitution of (12)

into (13):
(14) e%“)g'(“:“) = a%t” (k-h,,w ~wo;-Ro,-Wy; R, W) Eu'(k' ko, w-ts) Eom
+ (l’“) le(h*ha,w“uni k‘;'ﬁb; k,u) Ey’ (k*h, w-ws) Eom .

(15) €(k.h'u.“%$i(k’h"w. we) = & }.lnm (h’ wj kg,Wn' k"b.lﬂ‘w') En’ (‘:‘4) Eo:n
(=00 X goun (ke 2, 005 ~koy 010 R- o, 0= w) E (k-2 0) Eom
(16) € (o, 0-00) Eg (Rt Roy - ) = & }JM(“"kfz‘k'f Re,We; h"‘;“""’) Es (k+2ko,w)Eom

4
4(1=%) X goun (k5 - R, ; ReRs, w-100) Ept (K,0) Eo ;

(17) EkZho,ta) itt GZhoi) = & X, (k3o -kt B2t 10) En B, -1,

HOR) X g (R~ o - b R, i k- 206, ) E (o, w-004) Eti
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(18) €(R+2 iy W) E;L'(k’Zko.@ = 0 X gaan (R R, - ;- ko 0; B Zho 16) En (Rt ko, -6 Eom
+ (17 &) Xtnn (R4 3o w-t0; Ro,wo; Re2 ke, w) B (Ro2R0 1) Econ

When®= 0 or 1, and we have a travelling-wave oump,

only equations (14) and (l15) are necessary. That is, with
a travelling-wave, a truncation in frequency also truncates
the series of equations in wavenumber. This is a result
of the fact that a travelling-wave can only couple modes in
which the wavenumber and frequency are shifted by the same
rnultiple of (ko, Wy) . However, a standing-wave can couplc
modes a more complicated fashion. Equation (19) shows, in
matrix form, the infinite set of equations gecnerated like
(14)-(18) by a standing-wave pump. These equations have
been truncated in frequency, but not yet in wavenumber. Arn
analogous truncation is possible for the shifts in wavenum-
ber, since, for large enough k,, €(ktk,, W-wy) and
€ (kt3k,, W-u,) cannot both be on resonance simultaneously.
That is, if we assume that €(k-kg, W-wgp) is very close to a
resonance of the unpumped plasma, then the mode at (ktnkg)
with frequency (W-w,) will be "near" this same resonance
cnly if:
|Re €(k,w) - Ree(Remsko,w)| < | Sm € (k.0

or, in terms of the other mode:

|Re € (B-ke ,00)- R € (Renuks, - 05) | < | I €(R-ke, w0-000)]
Our wavenumber and frequency matching conditions and

equation (19) allow these equations to be written:

(20a) |Re €(Ra,wa)- Re €[ Rat(n-) on,wa]'< I-Q—m € (lg,w)l
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(20b) | Re G(&‘&,M)'R%(Batn&p,m)} < 1 dm e(ig;g,,w-wo)l.

llotice that the same integer, n, enters both (20a) and (20b).

This reflects a physical property of (19), namely, that two f
conditions must be satisfied for a given mode to be ex-
cited (thus, not excluded by our truncation scheme) :
1). The rsde must be "near enough" to a resonance
of the unpumped system (this is expressed in (20a)); and,
2). This mode must be coupled, in (19), to another
mode that satisfies the first condition.
This second requirement is a result of the fact that the |
second-order susceptibilities can only couple modes shiftec
by (:ko, o) and both of these modes must be close to
resonance. For example, in the LID instability (sece Table

I, page 6), when W, is a Langmuir mode and @, is an acoustic

mode, the n,; and np may be different. We must piCk the
smaller of n and np, i. e., the one that satisfies (20a)
and (20b) simultaneously (n and np are defined in the
two inequalities immediately preceeding (20a) and (20b)).
In the next section, we will show results from a numerical
test of this second requirement, by evaluating (19) in
the case when we use (20a) and (20b) to eliminate modes, and
in the case when we evaluate (19) without taking the
smaller of n, and Ny

Equations (20a) and (20b), then allow us to truncate

(19) 1: wavenumber. Figure one b) shows the situation
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wvhere modes at (katko, u-uo), (ka,wW), and (ka-2k°,w )
will be coupled together. The other modes shown, at
(ka+2ko, V), (ky-3kg, w-uo) are not "near enough" to a
natural resonance of the system to be excited. In most
problems of interest, all frequencies of the daughter waves
will be functions of the wavenumber which are slowly varyino,

and so we can write (20a) and (20b) as:

) o, 26064 < dm el

gty IR | = Rattn-ke
JRLLT < | Sme (kb sa)]
(21b) W L penk, e b)) -

where, again, n is the largest positive integer for which
both inequalities hold. Examining (21) or (20) we can
determine the total number of modes that a pump with a
given k, can couple together:

1). Ifn=1, and |k, (k,) +@p(ka-kg) - wol >lIm o,
we cannot satisfy the basic frequency matching condition,
In the three-wave approximation, there are no parametric
interactions possible for this pump (note that this case
could also arise if there were no value of n, besides
zero perhaps, which could satisfy (20a) and (20b) together).

2). 1fn=1, and | wa(k,) + Wp(ky-kg) - wof<|1mw{,

we have two possibilities. If equation (20b) holds only for

the upper sign, then the following modes are coupled:

‘JJ(&), w‘(&' &o) -

any
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This is the same couplings that exist in the usual travel-

ling - wave pumped instability. If, however, (20b) is satis-

fied for both signs, then the following modes are coupled:
Walk), Wo (R-ko), W, (k+é&.)-

This is the simplest standing-wave coupling.

3). If n>1 (for both signs of (20b)), then we
couple together m modes, where m = 2n + 1.

Thus the inequalities (20) or (21) allow us to
truncate the infinite matrix, (19) in wavenumber, keeping
only an m ¥ m matrix out of the center (the 2 x 2 matrix and
3 x 3 matrix described by case two abcve are marked by
dotted lines on equation (19)). 1In the 2 x 2 case, we get
immediately the determinental condition:

E(B.'w) € (k’ko, w- Wa)
- ot X(Rw; Ko, te; R Row-wo) X (R-Ro, -t key @, - R, ) &S’ =o0.

Whenda = 1, this is the res-lt of the usual travelling-wave

(22a)

calculation. Notice that for a standing-wave pump, when
X = %, we have a lower effective pump field. The conse-
quences of this will be examined in the next section. For

the 3 x 3 determinant:

€ (Rw) €(R-ko,w-0%) E(Rt ks, w-we)
) = 0 X (10 Ko 0 o, - (bR, -t Ry R, ) o €0 )

S (X e ) (T N R AL LR

This is the dispersion relation we will study in detail in

the next section, anplvina it to the cases of the FID and
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z”pe instabilities. One feature of this equation, which
bears on the meaning of our truncation schemc, should be
noted; (22b) implies (22a) whenever (20b) is not satis-
fied for both signs. That is, if €(k+k,, Ww-ug)» € (k-kg, V-wg)
which is equivalent to (20b) being violated for the upper
sign, then (22b) simplifies to (22a). This is a result of
the fact that our truncation scheme does not introduce any
new physics; it only serves to make the problem mathemati-
cally tractable by agiving us a method of predicting which
modes will be important (i.e., coupled together) and which

we can afford to ignore.

APPLICATIONS

We now apply our general formalism to specific
situations in which a transverse pump decays into longitu-
dinal waves. There are two possible three-wave processes
in which this happens:

1). The z‘be instability. Here a pump wave near
twice the plasma frequency decays into two Langmuir waves.
We will show that the geometry and growth rates of this
instability are changed considerably by a standing-wave
pump. The qualitative changes are due to the superposition
of two instabilities, each due to one component of the
standing wave.

2). The EID instability. 1In this instability, the

pump wave decays into an acoustic wave and a Langmuir
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vave. As was noted beforc, this instability always has

k > ko, and the ecffects of a standing wave are confined to

a decreasc in the effective power of the pump. Lven so,

an analysis of the EID instability in the interpretation

of ionospheric modification experiments shows this

effect to be significant. For both instabilities we cxamine

the limit of small ko to recover the standard travellina-

wave results.
6

The 2 w Instability

The 2u,, instability can be visualized as the decay

P
of the pump wave, here at near twice the plasma frequercy,

into two plasma waves. The approximate freauency matchina

condition for this decay process is:

(22) Wo(ke) = Wi(kR) + wi (R-Ke)-

This matching condition and the results of inequality (20)
determine the qualitative aspects of the instability. 1In
the initial work on this instability, Goldman derived
results for arbitrary k°.6 The 20pe instability, in fact,
does not exist for a homogeneous pump. He found maximum
growth vhen (22) is satisfied and }';o = 1/V2. The only
generalizaction our results offer is that of a standirg-
wave pump. We find two regimes in the effects a standing-
wvave pump produces. One is the regime in which the daughter
waves pumped by each component of the standing-wave are
independent; this results in two, travelling-wave in-

stabilities, pumped, however, by a field of only half the
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local amplitude. 1In this case we recover the geometry of
the travelling wave, where ﬁ-ﬁozz 1/(5. In the other
regime, the daughter waves interact. This results in a
growth rate intermediate bctween the other standing-wave
regime and the growth rate that would result from a travel-
ling wave pump. The geometry is essentially unchanged.
Finally, we use physical araquments to show that in the
k> k, regime, the standing-wave and travelling-wave results
agrece. Let us look at the simplest case of a standing-
wave driving a Z“pe instability, when m = 3, and our dis-
persion relation is given by (22b). 1In this case, we have

the followina three modes coupled:

(23) Ry (k) ~t(k), Relw(kRek)-w]=x —w. (kik)
and, from (20) we get the exact conditions on ko:

(24) 3k (koth) < IMEW,R) < &Ko (Ri2ks) -

Using the symmetry properties of the susceptibilities given

in the Appendix, the equation describing the new normal
modes of the plasma is (from (22b)):
2 5
€(R,w) €(k-Rs, - we) € (Reko , 60096 106 Eol ™ | X (ki Koo K- koot

(25) € (Re ko, Ww-00) Pt !
+ (1- %) Eol” |ﬂk.w;'ko,w.;k*ka,u%)l'é(k—le.,“*'o) 8. ’

The Appendix gives the general form for these susceptibilities: ?
26 (k,w; 2R R -l(t*.‘-)" We" (€,R) !*Zb-swh: ]:_. 2. s
( ) K ) 'Ur’ ‘hw%)“ 2 T - L lB:Bp! (A)F' )

,v'




where:

T= 90./9‘. ;
Wo = Eo'/[4une (6 + 6:)] .

Since all the high-frequency modes are well-defined, we

also make resonance approximations for all the dielectric

functions;
(27a) G(é,w):_a.z):': [w-w‘_(g)4ia:] :
(27h) 6(&!&"‘/-“):-%[w—w',*%(ét&)*z.x] '

This reduces equation (25) to an algebraic equation, cubic
in the frequency:

[0 -, (k) +iy [ W-wo sk (hee) 47y 1[w-twos i (k) +7)]
(28) -0 [ w-wo+ Wi (k+ha) 47 Y]

- (1) I [w- wer wi(k-RY4i¥] = O

Although it is not necessary, we will also assume that the
only damping of these modes is collisional, and, so not
dependent on k. This cubic equation is intractable in its
full generality, but it can be solved approximately in two
regimes where the instability exists. Defining the fre-

quency mismatch factors:
5: = wo"wl.(&t_k_o),

we have the following conditions under which the solutions
to equation (28) will have a positive imaginary part and can

be dealt with analytically:

A). Independently excited daughter waves. 1In
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this case, one of the daughter waves is much nearer to

being resonant than the second, or:

Ime (w-w)> € (Rotk, w-w,) > € (koFl,w- W)
or:

|w-8:| >> |w- 8§57

Equation (28) can be approximately written:

-a)?
@9 [w- k) iyle - 5s +1y] + {('o? B =0

This is the equation describing the usual, travelling-wave
pumped instability, except that the coupling between the
two Langmuir waves, F;, is only one-quarter the coupling
for a travelling wave pump; this is a result of the local
amplitude of the effective pump being one-half Eg. In
other words, only one component of the standing-wave pump
drives the instability. The growth rate is then, solving

equation (29):

-a)* w(k)- 8] 1"
(30) Inw = ‘X*HO }l" -—-———-———[ Z :J ] )
which has its maximum value of:

‘um l.u'”m’l {(' d)} r* e

when W (k) = 3,. Notice that the maximum growth occurs
when equation (22) is satisfied; this is the condition that
determines k for maximum growth, as a function of k,» and
so we have deduced the frequency matching condition in a

natural way out of the dispersion relation, In addition,
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there is a regime, for values of [: very near the threshold

2
value of r;'=41‘, at which the maximum growth rate is pro-

portional to F‘ rather than [, Figures two and three show
a numerical solution to equation (28) in the regime of
case A. Figure two shows the real and imaginary parts of
W, with i-io = 459, and Fiqure three is a plot in polar
coordinates of the imaginary part of the frequency (the
growth rate of the instability) as a function of k. lotice
that for this case, equation (20), which requires the
modes at ktk, to be "close enough" to resonance, is at
best, marginally satisfied; we have, physically, two, es-
sentially uncoupled (except near 90°) instabilities, each
pumped by a travelling-wave.

B). Coupled excited daughter waves. When §,=5 _,
both daughter waves can be near resonance for the same k,

and equation (28) becomes (for k= 1-R):

(31) [w-wk)+if][w-5+iy] + 202 = 0

where:

6= (5++5.)/2
- = (r-r*r:)/l-

The maximum growth rate here is larger by 42 than for case a:
(32) In . =fzoal, w(k)=§.

Figure four shows the real and imaginary parts of the solu-

tions to equation (28) in this regime, and Figure five
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Figure two. Independently exﬁited daughter waves
driven by a standing-wave pump at ¥.k, = 1//2. The real
parts of the three roots of (28), given in the top solid
lines, and the imaginary part of any root which greater
taan the Langmuir damping, are shown on the same graph.
The following paramcters put this example in the regime of
case A of the text for the 2 .o instabilitg: Ky = .056;
Wo = 1.6x10~4; (vo/c)? = 10-37 and ¥ = 10-3, The maxi-
mum growth rate occurs when (23) is satisfied. 1In this
regime, equatjon (29) is a good approximation to the
above solution in the regions of growth,

-7

0 e a0 1=
S
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Figure three. Growth rate as a function of k for
independently excited daughter waves in the 2wpe instability.
This is a polar contour plot of the imaginary part of the
solutions to (28). The symmetries come from the mathe-
matical properties of (29), such that, for example, in-
verting k changes the upper for lower sign in (29). The
signs in the center of each region of the instability cor-
respond to the appropriate sign in (22) and also indicate
the wave coupling that produccs the instability (¢ cor-
responds to (k) and @(kik,) being coupled). The para-
meters for this graph are the same as in Figure two. The
units in the contours are:

0 -1xl0-3 w

e
1 0 7

2 +1x1073 ype.
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103 A

1.02 -

(L1 A

Figure four. Coupled excited daughter waves driven
by a standing-wave pump at ﬁ-fgWi,the 26, instabiiity. The
real roots of (29) are given on top., and the imaginary part
of any root when it is positive, given in the lower curve.
The following parameters put this example in the regime of
case B: Kk, = .028, Wy = 1.6x10"2, (ve/c)2 = 2.5x10-447107%
kekgy = cos (450). For this smaller ko, the disjoint struc-
tures of Figure two have coalesced. We can write the condi-
tion for this coalescence in terms of [ and kg:

IRm-Re £ 2T,

when . (Rm)- 5(ka)=0, from considerations of the width of
the unstable regions and the distance between the regionsof
instability. Notice that when & w » y , that this is auto-
matically guaranteed to be the case by (20). The broader
region of instability is due to the larger value of ¥ used
in this graph.
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90°

Figure five. The growth rate as a function of k
for coupled excited daughter waves of the 2w, instability
driven by a standing-wave pump. This is a pglar, contour
plot of the solutions to (28), with the parameters of Figure
four. The symmetries are the same as in Fiqure three. The
units on the contours are:

0 0

1 2x1073 wpe

2 4x1073 .
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shows a polar plot of the positive imaginary part of this
solution.

Thus, the most important change that a standing-
wave pump brings about is a change in the effective field
strength that drives the instability. As we have seen
above, when each component of the pump drives independent
daughter waves, the effective pump field amplitude is down
by one-half from the travelling-wave case, and, when both
act simultaneously, the amplitude is down by a factor of 2.
In this second case, the pump fields seem to add incoher-
ently, with powers rather than amplitudes adding. The
difference between cases A and B can be one of ko getting
smaller; as k, decreases, and we approach a uniform pump,
the effective field strength increases. The inequalities
in (20) determine whether the daughter waves are "broad"
enough to be pumped by both components of the pump simul-
taneously (see Figure one b), page 26).

Indeed, if we can solve the full equation (19) in
the limit of k, = 0, we should recover the travelling-
wave results. The limit of (19), however, is subtle.
Strictly speaking, the instability does not exist when
ko = 0, since all the susceptibilities are proportional
to ky when kg << k. Thus, we can look at the limit ko< k,
but with kg still non-zero. There are at least two ways
of taking the limit:

1). In (11),
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Eo = |E.l [("“) SIn(y X st +) ~o Sin (Ko x -t oq)] :
let & go to one, followed by ko getting small. This limit
presents no problems; whena= %, it easily gives the results
for a standing-wave pump, and, whenx = 1 or 0, it gives the
properly normalized amplitude for a travelling-wave.
2). If, we setx =%, but take the limit k << k,
the inequalities in (20) demand that more and more modes be
coupled together. If we require that nko<< k for any n,
then we must use an arbitrarily large matrix cquation of
the form of (19). In the limit, all the susceptibilities

are the same, and we have to evaluate the following deter-

minant, with the definitions:

(33) X =5 (29" wr (@k) (ReR).
i €w=R =2 [w-w(k)riy]
€(w-th) =~ [w-6+1y]

evaluated at the k for which Wy (k) = $,so that

G(W'wo) = "'R,

<
3
t
o
=
»
=
o
1]
C
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We have not been able to mathematically reduce this

infinite determinant to the equation for a Z”pe

pumped by a travelling-wave with amplitude twice the ampli-

instability

tude of either component of the standing-wave (this is the
limit that would be expected); however, we have been able
on physical grounds, to derive a limit on the size of

the determinant, and within this limit our large deter-
minental condition reproduces the travelling-wave results.
That is, an m x m determinant (m is the limit we are able
to derive), for large m, gives the same results as the
center 2 x 2 determinant (marked by dotted lines in (35))
does with E, doubled. Physically, this describes tre fact
that as ko, becomes negligible compared to k, the two com-
ponents of the standing-wave become indistinguishable,

and the local amplitude of the field goes from:
[Eo(ke,00) + Eobhowd]y to  Eclwe)

In a straightforward, although tedious, calculation
it is possible to derive recursive relations relating the

determinants of different dimension, m.

(36) Dm = RDmot =(*/2) Dm-z , modam=o0,
(37) Dm =RDm-t +(#/2) D2 , mcdgm=1,
(38) Dm =-RDma +(XA2)' Om-2 | modem =2,

(39) Dm ='RD,“.4 "(xll)le-z : YY\Odgm =3,
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where mod, m is the modulo, base 4, of m (i.e., the integer
remainder upon division of m by 4). There are four rela-
tions because of the alternating sign of the diagonal
elements in (35).

Keeping terms fourth order in Eo, but no higher
powers, we can write the determinental conditions for the
two cases of interest, mody m =« 1 or 3 (which have the same

value to this order in Eo):
¥ 5 4 21
(40) Dew ;-{R4 +(m-1) X'R'/s - ('_“'_5_21_5.) X/,s] B =0

It is easy to factor this quadratic in R2 and wri‘e its

generally complex solutions in the form:
2 2
(41) Om o R'=-p(X/2) -
For a travelling-wave pump we have, in this notation:

Dm A Rl"4(X/2.)l)

Our 3 x 3 results are that:

Dm « R*-2 (X/2).

For m& 9, we get the expected result, that f} approaches
four; at m = 9, ﬁ== 3.94., This is physically equivalent

to the two components of the standing-wave field coalescing,
doubling the local field amplitude and thus quadrupling X.
Numerical results showing this dependence of p on m are

presented in the next section. However, after a gradual

asymptotic-like approach to }3- 4, B begins to increase as




We must look for a physical explanation for the

breakdown of our matrix formalism. Physically, the problem
seems to in our continuing to treat all the modes as dis-
tinguishable as ko decreases, no matter how close they are
to each other. That is, as ko decreases, all the modes at
kt2nk, must coalesce with the mode at (k, w) and all the
modes with wavenumbers of (k2(2n+1)ko) must coalesce with
the mode at (k, w-wo). Physically, this will not be a
discontinuous process, obviously, collapsing an infinity
of modes for any non-zero ko, to only two when ko equals
Zero. Rejecting that possibility, we must examine the
criteria for being able to distinguish modes which are
Close to each other.

Referring back to Figure one b) (page 2¢), it is

clear that if kg is small enough so that for n»>»1, we have:

|92 (- Wa (ke 200)] << | (k) - co(le-na ko)
and, then, in this case, it will be difficult to distinguish
between W, (k;) and &4 (k,t2k,). Both of these modes will
overlap entirely and so must, physically, be considered
identical. This result puts a rough upper limit on n:
n £ 10, and on m, the size of the determinant, mg£ 20. This
consideration gives an upper bound on the number of modes
which can be put in this matrix formalism of (19) and
still remain physically meaningful. That is to say, for

m large enough, say greater than 10, we expect the linear
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results for these modes to bhe meaningless, because the

modes are no longer distinguishable. And, it is at this
point that our mathematical results begin to give physically
suspicious results. Another way of looking at this situa-’

tion is to say that only on the order of ten modes with the i

same frequency can be excited, and the coupling of these
ten modes is given by (34). When this many modes must be
taken into account, we have the standing-wave pump duplica-
ting the coupling given by a travelling-wave pump.

It is important to note that this argument is a
physical and intuitive one. Mathematically, in an infinite,
homogeneous plasma, there are no limits on the number of
nodes that can exist. If two modes have different wavenum-
bers, no matter how close these wavenumbers may be to each-
other, they are distinguishable. For a reason that remains
unclear, our matrix formalism does not mathematically
allow us to take the limit ko0 and, by doing so, to

reproduce the travelling-wuve results.

THE ELECTRON~ION DECAY INSTABILITYl:2

In the case of the electron-ion decay instability,

the decay of a high frequency electric field near the plasma

frequency into a low frequency acoustic mode (or quasi-mcde)

and a high frequency Langmuir wave, the new mode coupling

effects of a standing-wave pump are similar to those for

the 2”pe instability. The important differences between
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the standing-wave treatment of these two instabilities
come from the fact that the daughter modes for the decay
instability are different resonances of the system. Thus,
to begin with, we must interpret the inequalities in (20)
differently. The number of modes of the acoustic branch

which are close enough (in the sense above) is ng:

43) 2 (1) (Me/m:)* ko < Im € (wa, Re)

and of Langmuir waves, is np:

(44) € Ny Ko (R +nyko) > Im E (Wi, k ok, -

In the case where:

n A
(45) 3k, +3kcCcos¥ > (mc/m.-)y‘, #-—-w:"(k-ko),
these relations imply that the standing wave pump will

couple together first modes at:
Welk), walk+ke), wa(k-k,),

and then additional modes as allowed. When (45) holds,
there cannot be a coupling of one acoustic wave and two
Langmuir waves. This follows from the frequency matching

condition:

WOzWA wa;

which, for a transverse pump, assures that k is always
much greater than ko. Thus for any value of kg n, will
be greater than n.

We have looked in some detail at this case, the

simplest standing-wave coupling, that of wp, (k) coupled
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with Wp(ktk,) = Wo-lp (k). Corresponding to equation (28)
for the 2wpe instability, we have (from (25)):
[w-w k) +igTlw-werw, (ker)tiya] [ W-w,t o (k-le)+1y.]
(46) ~x [ Wt (R-Ro) iYa ]
~ (1= T w-we+wa(kri)+iya] =0,

where (see (A.8) and (A.9)):
(47) = - 7 (HE)Wo wnthe k) (RE)*

This equation is valid as long as (using (43) and (44)),

and ny = n, = 1:

(48a) (me/mYs &, < ¥,
anda:
(48b) Imew < 6k ke + 6k

Notice that as long as 9:*91, then Ja = O(me/mi)%k), so
that (48a) is easily satisfied; (48b), however, is a re-
strictive condition on Imé€(ey). It is always the case,

furthermore, that:
| Ga (k- ko) = s (ke ka)| << o

This means there is no regime corresponding to case A for

the 2w,e instability, and it is always a valid approximation

to write for (46), when a= %:

9a)  [w-bh(k) +ry][w-Wh ¢ walh) ) -2(r/2) =0.
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That is, for the decay instability with a standing-wave pump
and ko in the range prescribed by (48a) and (48b), the
coupling is half what it would be for a travelling-wave
pump with the same local amplitude. The effective pcwer

is down by a factor of two. The formal solutions to this

type of equation (49a) have been studied in detail else-
vhere, 4% and the growth rate is gotten straightforwardly

by solving (49a):

ﬁ’mw XQ'YL t z‘J—i( ) [I(XA L)*L}z

where:
A = Wa(k) + Welk) = Gy, .

This gives, with 4= 0:

r’%&a > rlﬁcxh) 51<<UA,

= iy \K 2
I [y = 4 ("78) e e e,
i R SRR e b o A

(49b)

We note here only the consequences of a standing-wave puup.
These changes all result from the factor of two in (4%a).
This halving of the effective power means that, given a
local field amplitude, the threshold is doubled if this
field is a standing-wave rather than a travelling wave. In
the case of a travelling-wave with local amplitude E,, the

threshold for the decay instability is:

(50a) (l"c/;,)' =Y¥¥a




and the maximum growth rate is:

I‘t/4XA ) FI«U‘ 1 14 <<XA/

(50b) hewl e ® App o Py ey

P74UL; r‘<<xt ) Xﬁ<<Xl'

But if the pump field is a standing-wave with total, local

amplitude, I,, then the threshold is given by:

(51) (Fe/2) = 2 ¥

and the maximum growth rate is given by (49b).

Let us look at one situation where this factor of
two may be important. In several icnospheric modification
experiments, it has been claimed that the observed enhanced
level of Langmuir waves is due to a non-equilibrium spectrum
crcated by the decay instability.3'10'15 Physically, the
scenario is as follows: the relatively intense electro-
magnetic wave from the ground (a wave of ordinary polariz-
ation) travels upwards from the antenna through the iono-
sphere. The inhomogeneity of the ionosphere has three
effects: it results in an Airy swelling factor in the ampli-
tude of the modifier wave, in an absorption which becomes
a function of altitude, and in a reflection of the modifier
wave when the critical density is reached (when wbe(height) ;
= Wgp). Since this absorption is usually small, the modifier ]
wave has sufficient power to exceed the decay instability

threshold at the reflection point and at altitudes somewhat :

lower. If this threshold is exceeded, part of the energy
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from the modifier wave is transferred to Langmuir turkulence
by the EID instability. The instability is driven by the
sum of the incident and reflected waves, a standing-wave.
The saturation of this instability then provides a steady
state level of Langmuir turbulence that is measured from
the earth using a second wave (which is scattered by this
enhanced turbulence in the "modified" ionosphere).

Attempts to understand the experimental data on
this scattering revolve around estimating the ratio of
modifier intensity to the EID instability threshold, then
calculating the enhancement of the Langmuir spectrum that
would be created by such a pump, and finally, calculating
the scattering that such an enhanced spectrum would pro-
duce. Our results will k= relevant, since the modifier
wave, is, in fact, a standing-wave whenever it is of
sufficient intensity and satisfies the frequency matching
condition for the instability.3 In a detailed study of the
problem, DuBois, et al. show that even with considerable
absorption of the incident wave, a standing-wave field
is set up considerable distances from the reflection point.
Using the parameters of this paper,3 which correspond to
a height about 560 meters below the reflection point, we
have: kg = 4x10™° (in units of the Debye wavenumber, which ﬁ
is here 220m~l), the fastest growing mode's wavenumber,
k = 0.05, and Q-Qo = 0.85. In addition, DuBois, et al,,

calculate a local, average power flux of 800 W/m2 at this




height, for an antenna inensity flux of 50 W/m¢. This is
about five times the threshold of the EID instability, so

that:

b e@W=2%mw = 25107

(in units of the plasma frequency). Thus, inequality (48b)
is satisfied. Notice, however, that even for a slightly
higher power, (48b) would not be satisfied, and we would
have to solve a more complicated coupling of waves.

Thus equation (49) describes the decay instability
in this case. The correct way to account for the reflected

wave in the ionosphere is not to add amplitudes, but rather

to add fluxes or powers of the two components of the standing

wave (that is, consistent with our homogeneous approximation,
we must "decompose" the actual Airy function amplitude
modulation of the modifier wave and look at it as made up
of two waves, with different relations betweeen«, and kg
for each). Thus, the estimates of the effective power in
the papers referred to above are too high by a factor of
two. Even given the large uncertainty in all the calcul-
ations of the ionospheric problem, a increase by a factor
of two in the threshold is critical. Perkins, et al., for
example, estimate the field at a value only twice the
threshold,l4 and DuBois and Goldman use a figure of five
times threshold.3 In the graphs which DuBois and Goldmanl5

show of total (saturated) Langmuir energy as a function of
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pump power, a change by a factor of two in the effective
pump power, from 5.0 to 2.5, results in a decrease in the
peak Langmuir wave energy by a factor of 100, and in the
integrated Langmuir energy by a factor of 20. Since all
the calculations of the scattering that should be observed
are several orders of magnitude too large, this changed
threshold helps in accounting for the discrepancy. Cer-
tainly, this is not a conclusive demonstration of the
effect of a stancing-wave pump, but our interpretation of
the ionospheric modification experiments does open up a
means of testing the effect of a standing wave pump. This
factor of two may be observable in the comparison of low
power modification experiments (with flux densities of less
than 50 W/m?), which have the simplest coupling of three
daughter waves described above, and higher power experiments,
in which (48b) is no longer satisfied and morc modes are
coupled. The theory of the case when kg is smaller, or the
power greater, so that (48b) is no longer satisfied, is

treated next.

As in the case of the ZMpe instability, we have also
looked at the problem of the travelling-wave limit of the
decay instability. Rather than an analytic treatment, we
have numerically solved the equivalent of equation (34) for
the decay instability. Specifically, we tested each mode,
at the k for perfect matching, to determine whether it was

"close enough" to (k) to be coupled. Thus, the results
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of our calculations were based on Table 111, where the
number of modes of the form W.(k ¢ nky), @Wo - Wa(k ¢ nky)
that are within daw of Wi(k) are listed. Thus, coupling
three Langmuir modes means that there are 26 acoustic modes
that are close enough to be coupled. We actually evaluated
a 29 x 29 matrix equation in this case, rather than taking
advantage of the inequalities (43) and (44) which would
have allowed us to neglect 22 of these acoustic modes.

This test cf the assumptions in (43) and (44) showed, in
fact, that these are good assumptions. Figure six

shows the results of this numerical work, where we have
graphed the growth rate of the instability as a function
ko. Here the growth rate for k, = .006 has the value from
by equation (49). As more modes are coupled together, the
growth rate increases. It approaches the value that wculd

obtain for the solution to:

(W=, (R) +iY)(W-we +Wa(k)eiy) - M =0,
exactly the result for a travelling wave-pump with the
same local amplitude as the sum of the amplitudes of the
two components of the standing-wave pump. Figure seven
presents the same results as a function of the number of
modes coupled together. This shows the dependence on the
smaller of ny and np that we noted above; it is a result
of our matrix equation which allows no coupling between

waves which have wavenumber shifts which differ by more than
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TABLE TII
MODES COUPLED IN THE DECAY
INSTABILITY AS kg—0.
zna. znb-l »
K Number of Number of Y
o Acoustic Modes Langmuir Modes max
.0062 1 1 .76x10~4
.0031 2 1 1.20x1074
.00041 8 1 1.34x1074
.00020 14 1 1.33x10~4
.00016 18 1 1.34x10°4
.00014 22 3 1.79x10~4
.00012 26 3 1.81x10°4

NOTE: n, and nj, and the number of modes are
calculated according to equation (19). The limit as kg0

was taken keeping w, constant. In this case, Y. = 10-4
ar‘d ﬁ' o} = 06-
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Figure six. The growth rate of the electron-ion
decay instability, pumped by a standing-wave electro-
magnetic wave, as a function of the pump vavenumber.

For this figure, Wy, = 4.x1077, (mg/mj) = 5.x1073. The
growth rate increases as the number of modes coupled to-
gether increases.




59

P 0
{
12s10°
& ——
{1507
|
|
{
|
{
T .
o) NUmeER AcaosTic meoes 10
]
) NUMBER LAMMUR IOES ;

Figure seven. The growth rate of the electron-ion
decay instability, pumped by a standing-wave electromagnetic
pump, as a functior of the number of waves that are coupled
together; the parameters here are the same as in Figure
six.
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2ky. In Figure eight, we have fitted the following equation

to the growth rates:

(52) (w"wt(n)"‘X) (w‘wo*QA(B)+f¥A)"’ﬁ(%)1=0’

and graphed p against the number of modes. The analytic
description of this limit, derived for the 2upe instability,
is also applicable here. Note, for example, that in the

case that m = 7, here corresponding to three Langmuir waves

coupled with four acoustic waves, equation (35) predicts
that = 3, as our numerical work confirms.

Finally, we note that when k:ko = 0, our analysis
(see equation (44)) predicts that the standing-wave effects

will be negligible whenever, in addition:

Physically, this is a consequence of the fact that, given

k > kg, the variation of wr (ktkgy) with ko comes almost

entirely from the k-<ko term:

wikek)= (1 + Th* ¢+ FTh £ 36 A) .
If k-kg = 0, all the Langmuir waves at &y (kink,) will be

very close together, and (+4 as these modes are coupled.
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Figure eight. "Effective pump power,” A, as a function
of the number of modes coupled together. A is defined
in equation (52). 6= 4 corresponds to the amplitude of
the field contributing as in the case of a travelling-wave.
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CHAPTER III

LANGMUIR PUMPED PARAMETRIC INSTABILITIES IN

THREE DIMENSIONS

In this chapter we will study the four-wave pro-
cesses which have longitudinally polarized Langmuir-like
waves as koth pump and daughter waves. These instabili-
ties are well-known in one-dimension (for references sec
Table 1, page 6, and 1I, page 8), when the daughter

waves have wavevectors parallel to Eo'

These well known
one dimensional instabilities for the Langmuir-to-Langmuir
case are tne oscillating two stream instability (OTS),
which couples the high-frequency daughter waves with a
zero frequency response of the plasma, and the modified
EID instability, which couples the high frequency daughter
waves with a resonant ion acoustic mode. In our analysais
of these instabilities, we have derived a single dispersion
relation wich includes all these instabilities, and which
includes regimes where these instabilities exist for wave-
numbers other than those parallel to k,. We have, in ad-
dition, discovered another instability, the stimulated

modulational instability (SM) which only appears in three

dimensions. Our treatment for these instabilities in-

cludes thc effects of an arbitrary wavevector pump and
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an exact ion equation (rather than the usual fuild treat-
ment) .

As the kinetic theory derivation of the last
chapter implied, we can express the susceptibility of the
plasma in a power series in the fields, so that, at least

formally, we have:

(1) X (€) = *E- X E rE(E-XsE) +.

Physically, based on an analogy with quantum mechanics,

the higher order terms correspond to the plasma coupling
with more than one pump field photon. 1In the last chapter,
by restricting our work to phenomena involving only lz: we
were able to deal with only two daughter fields, a

plasmon and photon, two plasmons, or two phctons. However,
important new effects occur with the couplings involvead

in §3. the so-called four-wave interactions. To treat the
these interactions, we must include effects due to both

%! and arbitrary kg, since, in the case of a Langmuir or
Langmuir-like wave (for both pump and daughter wave)

one has a dispersion relation which allows daughter waves
with wavenumbers comparable to the pump wavenumber. This
follows since the dispersion of a Langmuir wave is pro-
portional to ve2 rather than c2, as in the case of an
electromagnetic wave. The larger pump wavenumbers make
thrce dimensional effects important. After a theoretical

study of the linear stability of a Langmuir pump to




1
|
z

65

parametric growth, we will make specific applications of
our results to the Langmuir spectra associated with electron
beams in scveral parameter regimes: the solar corona, the
ionosphere, and low density laboratory plasmas. Our
general conclusion from thesc applications is that para-
metric processes do not greatly affect the dynamics of

the beam plasm interaction (as has been theorized), but,
even so, that these instabilities can account for a number

of other phenomena associated with these beam plasma systems.

DERIVATION OF THE DISPERSION RELATIONI

Using the formalism developed thus far, it is
straightforward to write down the determinental conc .tion
describing the parametric processes induced by a pump made
up of Langmuir waves, that is, a pump that is high fre-
quency and longitudinally polarized, with frequency @, and

wavenumber Kk, (w is a low frequency for all of this chapter) :

E(kw  Klhkowwghnholy  Xlkshporskaholk, | [Elk w0

Rows; ‘s't"“'""'/‘ W W)

@ [ Hsoitmbsts Elbkuu)  Flbuka ey, o,

KO8 oo Rk o)Ee Kl E ks, o) | \Elboks, | |
o ton; Rk, o) E2 we,) /

where, the entries in the first row and first column are
the susceptibilities derived in the Appendix from the ?

second order current, and the entries in the (2,3) and




66

(3,2) positions are the susceptibilities derived from the
thrid-order current. These higher-order susceptibilities
also enter into the definitions of the diagonal elements,

"renormalizing" the dielectric functions:

il

(2) € (k,w) €(k,w) "}'(B,l»’rl_b,’wo;'jo,wo; kw) ES

Notice that the upper 2 x 2 matrix gives the usual decay
instability, in which case, as is well-known, the higher-
order susceptibilities are not necessary. However, when
both the Stokes and anti-Stokes modes are coupled in the
problem, they are each coupled (in first order) to the
low frequency field at E(k, w) and (in second order) to
each other. Since we are dealing with Langmuir oscil-
lations, these matrix elements must be evaluated for ar-
bitrary kgo; we cannot use the previously published results
which assumed either k >> kg, or %-ﬁo = 1.

The rather tiresome derivation of the susceptibil-
ities is deferred to the Appendix. Even without the ex-~
plicit form of these elements, we can use the following
relations to write the determinate of (1) in a strikingly

simple form (see (A.8), (A.10), and (A.ll) from Appendix):

(3) l(g*.k‘) Liw,, BD; we, .é"-“"; kt&/ W u): hl}X <k*k°lwt“‘l tk" Wy B'w)! ;
and:

f,( ke koot w,; 2k, £, ko tw,; jgls.,w?u.,)ﬁh’ ,f(}y& Wewe £ Kot Ly; B w):
(4) X (e, 0704 %50, 70, R ) | -




With these relations, all terms third-order or higher

in E, cancel and we get, after rearrangement:

bl

(M\ 48 _/Y(/_“é‘.“""ci koo, o, -, foofo, wowe) £
k*E(x, ) -1 / E(k+bs, o)
(5)
b X(k'ko'w'bh,'b. Wo, 8o, 020, kKo, W0-tu) £V =0 i
€k i Efo

This equation shows very clearly the coupling of the three
resonances of the plasma, two with high frequency and one
with low frequency, in a form characteristic of mode-
coupling in non-linear optics, for example. Using the
explicit expressions for the susceptibilities (equations
A.8, A.10, and A.11, from the Appendix), we have:

[ R € (k) ) Me? 2 1
<2 K e t »- e
(6) -7l + [G(B*&,w*wo) + 5(5'&,“""’)-" ¢,

\R*E (kW) - | 4
where:

T= 65,

o a”,é Ea‘(k-)'Ec(k)
W, = ./(zu)’ﬁﬁne (9:'9-')]
s (B (o)) Th [kt KT

Several aspects of equation (6) should be noted:

(7) d

1). The two high frequency waves, the daughter

(Langmuir-like) waves at k t k,, are coupled together
through a low frequency response of the plasma. As Tsyto-
vich noted in his book, these couplings dominate all other

Langmuir wave interactions.? i

2). This low frequency response of the plasma is
not given by the plasma dielectric function, except in the

limit that € (k, w) goes to zero. Let us call:
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T [ Kelk,w)
W Rk 3 2 [k‘e(&.w" ]

At frequencies for which kze(ﬁ. w) is not smell comapred to

one (k is in units of k_ ), the plasma's low frequency

De
response is complicated. This "compensation" has been noted
before,3'4 and arises from the terms that the third-order
current contributes. Figure one shows "diagrams" of the
contributions to the wave-wave interactions from the second-
order current (in Figure one a)) and the dominant contri-
bution from the third order current (in Figure one b)).
The terms that contribute from the third order current
are essentially second order effects coupled together by
a low frequency response of the plasma; the "four-wave"
diagram can be viewed as two of the three-wave diagrams
joined by a (virtual) low frequency response.

3). Equation (6) also comes out of a more careful
analysis of the linear stability of an arbitrary Langmuir
spectrum, if that spectrum, centered about W (k,), has a

spread, 8ky, in k-space about kg, such that a condition on

the narrowness of the spectrum is satisfied:

0 2 In ( X (Rt ko, ot wt; Ko bt b - wo ke 2, Uw))
ak. { E(R*ko, w2 w,) J

+LiRe 44}

This condition insures that the resonance is a broader

function in k-space than the spectrum, so that the detailed

shape of tne spectrum can be ignored.

et add P T Speg ey 1




&-k' W,- W= W (&'/\)

a).
' —
wo,Bo &f[z,uuwzwl (fp*t}
i
o
!
- -
wo,/,@. éo'é,wo-wzwl (@"é)
b).

Fiqure one. Three-wave (a) and four-wave (b)
interactions. The pump wave has wavevector k_ and
frequcency ; the low-frequency electrostatic disturbance
has wavevecgor k and frequency w; and, the Langmuir
daughter waves have wavevectors kg ¢ k and frequencies
Wo * w. In the four-wave case both of these high
frequency waves are excited and in the three-wave case,
only one of them,the Stokes wave, at k. - 5, Vg =W.

The wave at Wy + w is called the anti:gtokes wave.
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The question of the lincar stability of a Langmuir
pump has been treated, in various approximations (althouah
never before in thrce dimensions), by many at.n'.l'xoz:ss;1'4'8
our results generalize these previous treatments in thrce
respects: we have k, arbitrary; we have treated the
problem in three dimensions, with cylindrical symmetry
about 507 and, we have used an exact, kinetic, expression

for 50:

(10) R'€(kw) = | +T+ (hv‘:)ﬁ‘)z(kvt)ri) gl (T:’ﬁ) L (k:ﬁ) )

where Z is the Fried-Conti plasma dispersion function.?
We can connect our results with previous theoretical treat-

ments which used the following "fluid" form for D(k, w):

(11) D(k,w)=(w*- w2 +iww)/wa,

where #, is a phenomenologocal damping of an ion-acoustic
mode or quasi-mode at W= Wh-iV,/2. Our exact equation for

D(k, w) reduces to (ll) when:

Rv; ¢« w ¢« Rve ,

and we then can use the asymptotic forms for the Z-function:

2% . ; ; KLl
- g C—— - ._é—-
Substitution of these forms for 2 into (10) and the defini-

tion of D(k, w) gives the real part of (l1); the imaginary

part can also be gotten similarly. However, the fluid
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treatment goes on to use (ll) for all values of W. A speci-
fic problem arises with the zero frequency limit of (11).
For w= 0, (11) gives the value -1. This is also the value
of the static limit of the exact expression for D(k, w).

In fact, (1l1) and the exact form for D(k, w) agree only
when W= 0 and W= O(wp). As we shall see, this is not a
severe limitation on the fluid expression, since it is
only in these two regimes that interesting solutions exist
for our dispersion relation, (6), and quantitatively satis-
factory results can be obtained with a suitable choice of
W and V.

In the calculations presented here, we have made a
resonance approximation for the high-frequency dielectric

function:

(12) e(ﬂt’y’ W) = t?.[wtw,, Fw, (R tk.)«o ixt] 5

¥, being phenomenological damping (either collisional or
Landau) and an exact expression for the low frequency
€(k, w) in terms of the Fried-Conti Z-function given in
equation (9). Finally, in the frequently valid approxi-
mation that:

+ 5 ————;‘:j ;f;z ‘ )

(which is usually guaranteed because ’g,ﬂ*’k_), (6) becomes:

Jw) << | Xo

an DWW, +ix)'~ 87+ 2 (uis.+p2s,) =0,

YT T

PRy e




~J
r

where:

0 = Wo-w, (Rtk) = FXo-3,

28 = Zwo - wilkele)-th(k-ky)= - 3K,
2X 9-- 8¢+ = 6‘5‘30 )

in dimensionless units of wavelength in units of kDe-l and

frequency in units of the plasma frequency. M, is the

cosine of the angle between the pump wavevector, Eo'

wavevector of the duaghter waves, ktk,. The three deltas

and the

are different frequency mismatches: St being the mismatch
between the up- (or down-) shifted wave and the pump; and
® being the average of these mismatches.

Before proceeding to applications of equation (6),
we need some way of systematizing the large number of
regimes in kg, Wo, V4, and Y in which qualitatively differ-
ent solutions to (6) exist. We will restrict our results
in tihis section on analytic results to the case that w<«Ry.
This is almost always satisfied. We have organized our
study of the analytic solutions to (6) as follows: we first
divide the solutions with positive imaginary parts into
three groups on the basis of the physical processes
which account for the unstable solutions. Each of these
physical processes has a group of parameters which deter-
mine its gqualitative features.

1). Oscillating two-stream instabilities (OTS).
There are a class of growing solutions to (6) character-

ized by their non-oscillatory nature, Re w<Im w. By
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analogy with the well-known OTS instability,4,10 we call
these OTS-like instabilities, even though we will include
a much larger class of behavior under this name, This is
a four-wave interaction, schematically shown in Figure one.

2). Electron-ion decay instabilities (EIﬁ). These
solutions occur when Wz w,, and only one of the high
frequency dielectric functions is near resonance. This is
a three-wave coupling, and is shown in Figure one.,l1,12

3). Stimulated modulational instabilities (SM). Also
known as a "modified electron-ion decay instability," this
is a four-wave interaction, in which both high frequency
waves participate. Several special cases of the SM insta-

bility have been studied for an electromagnetic pump.6'13

OSCILLATING TWO STREAM INSTABILITIES

The character of this class of instabilities is
sufficiently determined by W, and k,. For the OTS insta-
bility, both k and Im « depend on W,, and we have been
able to solve (6) analytically in the following regimes:

Ao Jwl &« Wi s R&Ro , or Wo & 640./T , We <10k
B. lwl «w \kR»Re, o0 Wo KO04/T | We 2 [0Ks;
c. Wl »w, ,R&Re,or Wo2642/T ) We & |0k

D. lwl »w, kDR, or Wo »6da/T , Wy 3 [Ch- :

where:

az 5 (Me/m)(T) 7
a)'l = (m‘/'"l)yl (Wp
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In the intermediate regions, where k is on the order of kg
N\
and “»l on the order of Yy; , numerical solutions are found

which connect the analytic solutions.

n. |wl« Wy, k << k., . under these conditions:

)
Roe

clkw) = ¢(k o) =)+ —=—
) Ro; + Roc
D(k,o):'—l)
so that (6) becomes:
; 2 2 !
(14) (w*‘)&‘)lo) =3 'haf‘g(/“#zs-"’/l.‘zéo) = G -
If we call W= x + iy, then an OTS solution exists when

AN
= x°l

Y=y s vﬁsz— Wa (S pt+ 5. /e

(15)

The threshold, maximum growth rate and wavenumber for
maximum growth are easily gotten; solving for y = 0 in

equation (15) gives the threshold value for W,

¢ =

Wot = 16%, 5/ (uesauzse) -

To get the maximum growth rate by differentiation of (15),
we need to deal with the angular dependence iJlF@ We can

write the angular factor in (15) as:

= /‘:5’ */u‘z,s..." =] — s/nt —k:( |+ Wt 44’y )§
it 25 895 "{k.’ | + 2012 +RYir— AR cor’ il '

where:

Y = cos™ (keko) -

i

e g




In the limit that k2<¢< kozz

M= = Risin Y [}
and differentiation of (15) with respect to K gives a con-
dition for maximum growth independent of k: k=290°.

Now, differentiating (15) with respect to k gives the k for

which maximum arowth occurs:

= e Z Lt = WO l. '* -l
s s = B P
and
16b Im R T L T
gL L -é-(“—‘;:rwo) -

In fact, differentiation of the general angular dependence
of M shows that the growth rate, in all regimes, has
extrema at ¥= 0° and 90°, This is a gencral result as long
as the growth rate has its only explicit angular dependence

through M. Our approximation requiring that:

Imw > Rew << w

demands that we choose the maximam at 90°, The original

assumption that:

lw) << W,

gives the strictest upper bound on Wo and the lowest bound

on koz for this case:

)

|s]7 << x*
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or:

Wout << 6404,
so that:

{8 \Nz/ul :
Figure two a shows numerical solutions of (6) in this
regime. The OTS instability is the small, roughly cir-
cular feature perpendicular to the axis at the point
ko = k = kp.

B). “dl<<505, kR >> R, . In this case, equation (14)

also describes our results; however, when k >> ko, then we
must have i-io = 1 (this is the other maximum of M noted

above). Thus, while x and y are again given by (15), the

maximum growth occurs on axis. For this regime to be ap-

plicable:
Y > X

for the OTS generally. This, combined with the other

conditions gives:
We L 04ua/T , 10k <<w,.

Figure three shows a case not strictly in this para-
meter regime, but which has the same qualitative features.
The k for maximum growth is given by (16a), and we have
the figure eight structure of the previous regime now on
axis rather than perpendicular to the axis. More inter-
esting is the transition from the k >> k, case, where
growth occurs for i-ﬁo = 1, to the k << k, case, where it

occurs for k-ky = 0.




Figure two a). Solutions to the dispersion re-
lation, equation (6), showing contours of constant growth
rate, Im @w, as a function of the wavevector, k.-k, of one
of the excited daughter Langmuir waves. Here, w; = 4x10-6,
The pump wavevector is shown with an arrow, with magnitude,
ko = 0.05. Other parameters are:o = 7,3x1074, 0./0; = 1,
and ¥ = 10”9, The nugbers on the contours give the growth
rate in units of 2x10™' wye. The feature on the left is
the EID instability (here in the resonant backscattering
regime). The butterfly-like pattern centered about the
point kg-k = kg, is the SM instability, and the small
structure perpendicular to this same point is the OTS in-
stability (here in the regime described under case A in
the text). These parameters are appropriate to a pump
generated by an electron stream associated with a Type III
solar radio burst at 1 R, (about 7x105 km from the sun).
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Figure 2b. Contours of constant growth rate, Im &,
as a function of the wavevector of one of the excited
Langmuir waves (see Figure one). Here W, = 1.4x10-6 and
k, = 0.026. The other parameters are the same as in E
Figure two a). Although it is now obscured by the other
contours, about the point k, - k = k, is a structure
qualitatively similar to tﬁgt in the previous fiqure,
which is the OTS instability. These parameters are ap-
propriate to a pump generated by an electron stream of the
kind associated with a Type I1I solar burst at 30 Rg.

Figure 2c. Contours of constant growth rate, Im &,
as a function of the wavevector of one of the excited
Langmuir waves (see Figure one). Here W_ = 5x10-6, and
ko, = 0.013. The other parameters are th& same as in
Figure two a). The EID instability is here a resonant,
forward scattering instability, marked by contour "3"
on axis. These parameters are appropriate to a pump
generated by an electron stream of the kind associated
with a Type III solar radio burst at 215 Ry

e
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Figure three. Solutions to the dispersion relation,
equation (6), showing contours of constant growth rate,
Im w, as a function of the wavevector of one of the daughter
Langmuir waves, ko-k. These solutions all occur in a
regime intermediate between cases B and D for the OTS in-
stability, where 10ko? « W, and Wy = O(64%). Kere Wy = 0.04
and ko5 = 0.0067. The othe * parameters are given in Table V.
These parameters are those of a pump generated by an auroral
streamer. In this regime, the EID has disappeared and the
the OTS instability is on axis. The numbers on the contours
give the growth rate in units of 2.5x1074 wpe.
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This occurs when 10k°2 is on the order of W,. A set of
parameters in this transitional regime generated the solu-
tions shown in Figure four. 1In this regime, the condition
that y > x is only marginally satisfied on axis. Qualita-
tively, the transition occurs as the growth rates on axis
and perpendicular become nearly equal and growth is almost
isotropic in k. As Figure four shows, in this transitional
regime, nowhere is the growth its maximum value of Wo/8
for the OTS instability, even though the (now-decreased)
maximum does occur at the 8§ given by (l16a). Equation (l6a)
describes an ellipse about the point k, -k = k..

These features of the k = O(ky,) regime (with
lW <« w; ) can be understood using the approximate expression
for & at maximum growth rate (from (16a) to first order in
Wo) g

1e,2 =l
§=- Mo (|4 2hlsintt ’,:;" .

As soon as kg, = O(4k), the sin?f term degrades the growth
rate at y = 90°. The increase in the growth rate for small
sin2f, shown in (16), then competes with the decrease in
growth rate that comes irom the violation of the condition
yo> x = 3kko(1-sin2})%, that occurs when sin?f is small.
This regime is the transition among all four regimes con-
sidered here.

C). |w)>» w;, k,>7l!. This limit occurs when 64w/r« LR

and wo L 10k°2. In this case, we have:
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90°

Figure four. Contours of constant growth rate, Im &,
as a function of the wavevector, k., - k, of one of the

daughter Langmuir waves (see Figure one). Here Wo =6.5x10" 4,

6.5x10-4 and k,, shown by an arrow, has magnitude, 0.028.
Other parameters are: & = 7.3x10-4, 0e/6f = 1, = 10-9.
The numbers on the contours give the growth rate in units
of 3x10-5. The contour labelled "3" is the maximum
growth rate for the EID instability, which here is in

the resonant forwardscattering regime. The four smaller
lobes at acos (Mi) = 15° are the SM instability. The

OTS instability here is intermediate between regimes A and
C of the text, and its maximum growth rate is shown by the
“1.7" contour.

RPN N,



D (k,“) ~ (WA +1 Vaw) wa

so that (13) becomes:

(17 wt(w-§t) - X2 Wo/u =0,

where we have assumed that Imy >> Yee The solution to

"\.\A}. ‘VHL

(17), we have found numerieally, is only applicable for
very large powers, W,> 1. However, it does give good
gualitative descriptions for WO;IO'Z. The solution for

W 1is:

2a'= S’[l -y XWopt/ 52 J
Again, we differentiate with respect to ¥ and k, and get,
for this limit, that f = 90° for maximum growth
independent of k as long as k « kg. The value of k is

determined by a cubic equation for § (or k2) which comes

from the differentiation of (l17a) at ¥ = 90°

- HEF (2R £ (5)-
(17b) (3.‘) 8(5, 5E o _,_( O,
where §, = -3k°2/2. The asymptotic growth rate, for
5»40\\}\1. is (from (17a)):

(17¢) Imwl oy = (“w)

Figure five gives a solution to equation (6) in this re-

gime. For these parameters, we predict, from (17b) and

PR SCRNPPOr TWNTE.

(17¢c), that k = 0.044 and Imw = 6x10~3, The numerical

results give k = 0.038 ard, for the growth rate, Imw= 2x10-5.




Figure five. Contours of constant growth rate, Im w,
as a function of the wavevector, k5 - k, of one of the
daughter Langmuir waves (see Figure one). Here W, = 0.15
and k., = 0.05. The other parameters are; o = 7.3x10-4,

Yo = 109 and 6./0; = 1. The numbers on the contours give
the growth rates in units of 10-3, 1In this regime the

OTS and SM instabilities have coalesced and the EID in-
stability is still centered near the condition given by
perfect frequency matching.
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(Sce Table IV for these results.) The conditions that must

obtain on k, and LS for self-consistency are:

Wo 5> 64/ | W, <,‘<,\lo S

D). |wl» w,-,h»ko. This is the large amplitude
pump region for the OTS instability, when we require
Vi, >> 64K, W, >>10k 2. For a large Wo, relative to kg2,
as is shown in Figure three , equation (17) gives the
asymptotic growth rate, but now we have growth concentrated
on axis, 'l\v/)zo = 1. The solution to (17), however, has no
maxima, but only a asymptotic limit, for large &, of:

Ao (9(_4_\;.\,_'!)'/1

Notice that for large &, that is k> kos that the
daughter waves set up a standing Langmuir wave field. For
the parameters of Figure three, for example, we have com-
puted the relative amplitudes and phases of the Stokes
and anti-Stokes waves for the OTS instability, and they
are equal. Since the frequency of each wave is almost
equal: Wy,+ w T We - @ , and since they have nearly
equal and opposite wavenumbers, they combine to form a
standing-wave. This has important eZfects, one of which
we will examine in an application of the fields generated
by auroral streams.

The lower bound on W, for this regime is given by

the condjtion that k »> ko and wl» wa which give:
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TABLE 1V

NUMERICALLY DETERMINED SOLUTIONS TO THE DISPERSION RELATION, EQUATION (6)

k

Fig. W, k, Name Yoan % ©n ® jw-s_] [o+8.]
2a 4.0x10"6 .05 oOTs 4.9x10-7 ¢10™8 1.8x10°5 4.7x10~7 s5.6x10-4 =128 =125
sM  6.0x10-7 2.4x10-4 1.9x10"4 5.4x10°5 6.0x10"3 10°5 1074

EID 6.1x10-7 2.9x10-3 2.3x10~3 8.2x10"3 7.4x10"2 10~5 10-2

2b 1.4x10°% .026 oTs 1.7x10~’ <10°8 1.1x10°5 1.7x10°7 3.4x10"4 =V25 =V25
sM  2.0x10-7 2.0x10-4 2.0x10-% 5.4x10"5 6.0x10-3 10-5 107¢

CID 2.2x10-7 1.0x10-3 8.2x10"4 9.4x10"4 2.5x10"2¢ 10°3 10-3

2¢ 5.0x10"® .014 oOTs 6.0x10”’ <1078 2.0x107° 5.9x10"7 6.3x10-4 =¥25 =V256
EID 7.5x10-7 7.6x10~> 5.4x10-5 4.0x10°6 2.0x10-3 106 10°3

3 4.0x10-2 .007 oTs 7.7x10-% 8.6x10"> 5.9x10% 2.6x10"° 4.2x10°2 310-3 10-3

&

RPN, R
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TABLE IV (continued)

Fig. Wg k, Name vy .. x wp $ k Jw=5.1 |o+5]
6.5x10-4 .028 OTS 5.6x10"° <108 2.6x10"4% 9.6x10"° s8.0x10"3 104 10-4
SM  6.6x10-5 2.9x10~% 3.3x1074 1.s5x10-4 1.0x10-2 10”5 107¢
EID 8.6x10~5 1.1x10-3 1.3x10"3 2.3x10"3 3.9x10"2 10™% 10-3
1.5x10"1 .05 ors 1.9x10"3 <1076 1.3x10"3 2.5x10-3 4.1x10"2 10-3 1073
SM  1.9x10-3 ¢10°% 1.3x10°3 2.5x10-3 4.1x10"2 10-3 1073
EID 3.4x10-3 2.5x10°3 3.4x10"4 1.5x10"2 1.o0x10"! 1073 1074
1.0x10"2 .032_ OTS

k-ko=0 4.3x10"4  <10-7 6.0x10"4 4.9x10"% 1.8x10"2 1073 1073

R 4 2 -3
k-ko=1 5.6x10"4 1.3x10-3 8.3x10"% 9.4x10"% 2.5x107% 10 10°3
EID 7.9x10-% 1.5x10-3 1.5x10-3 3.3x10-3 4.7x10"2 10-4 1072
4.0x10-6 .005 OTS 6.0x10~7 <10-7 1.9x10°5 5.0x10-7 s5.7x10°4 10”° 10-5
FTD 1.6x10~7 2.6x10-° 7.3x10~3 7.3x1076 2.2x10-3 10°® 10-4

R
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TABLE IV (continued)

Fig. Wy kg Name Yinas x Op ® k |W-5.] |w+3.]
lla 6x10-2 .25 oTS 5.6x10-3 4.5x10-2 3.0x10-4 9.6x10~5 8.0x10-3 10°2 102
EID 1.4x10-3 1.4x10-3 1.9x10-3 3.7x10~3 5.0x10-2 1072 1072
11b 6x10-2 .1 0TS 2.6x10~2 <106 6.8x10"° 4.9x10% 1.8x10"2 102 107°
EID 2.1x10-3 3.4x10-2 5.3x10"4 2.9x1072 1.4x10"1 10"2 102

2




Wo >> 10 ke
Wo >> bt/

The transition between k»k, and k« kg when |w|>> wa , is
shown in Figure six. The features evident in Figure
two are again the qualitative determinants for this case,

similar to Figure four for smaller w .
ELECTRON-ION DECAY INSTABILITIES

In contrast to the OTS instabilities, the decay
instabilities depend critically on the resonance of the
low freguency mode, that is: Re w=z w,. Our general
schema for classifying the decay instabilities uses this
resonance condition; after Fried, et al. we distinguish
three regions of k-space, depending on their resonance
properties:

l). resonant, backscattering, when kg 2V2a/73,

2). resonant, forward scattering, when V&/32k > /3/€ ,

3). ncnresonant, forward scattering, ko‘({&7€“.
Each of these regions must be examined for the case of
the low frequency resonance being a quasi-mode (6g= 6;)
and for the case of a well-defined mode (6, > 6;). We will
examine these six regimes separately.

Physically, the EID instabilities are
the decay of a plasma wave into a plasma wave at lower
frequency and an acoustic mode (or quasi-mode). However,
to treat these instabilities analytically is not entirely

straightforward. The problem is one of approximating

it




Figure six. Solutions to the dispersion relation,

equation (6), showing contours of constant arowth rate, Imuw,

as a function of the wavevector of one of the daughzer
Langmuir waves (see Figure one). Here W_ = 1x10~¢ and
kys shown as an arrow, has magnitude 0.032, Other para-
moters are: % = 7.3x10"4, % = 10-9, and 6o/6; = 1. The
numbers on the contours give the growth rate in units of
2.5x10~4. 1In this large W, regime, the OTS and SM in-
stabilities have merged ang the OTS instability itself
is almost isotropic in k. The maxima labelled "3" are
the EID instability. The OTS instability is in a regime
intermediate amona the four cases described in the text.

§ Rl
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D(k, ¢) for a range of ion temperatures. When 6; =~ €,
particle effects predominate and the EID instability would
be more properly called "induced scattering off ions,"2,11,15
since the low frequency resonance is not well defined.
When 6, >>©;, however, the acoustic mode is well-defined.

We have derived an approximation which treats the @ez6;
and €70 regimes reasonably well, using a recursive approach
due to DuBois and Goldman.ll we begin by noting that the

EID instabilities obtain when only one high-frequency

dielectric function is near resonance:

E(Rotk, o +w) >> €(k-kRy, w-w.)
so that 're could write equation (6) as:

Wonuts

S kFC(k,w)

(18) €M (kb w-w)= €(Rko, w-w,) —

2 S

R*€(R w) << 1
/('2 = /4~l :
The growth rate (or damping) of this new, non-linear mode

is:

-

- _ Wom2§, '
Yne = Yo —“—_—"4 J’Vn[h, E(B,N)J

The maximum growth rate depends on the maximum of:
-1
Im [ R ek

We will treat the 6,% @; case, in which there is not a well-

defined modc at the acoustic frequency by choosing «,' and

VA' in the fluid form:




(18a) Re(R,w) = (W-Wi+i1wve)/wit

in such a way that the Im k2€Qﬂ_, w) -l for the fluid case
agrees with the exact result. Now:
! & _ oW
I [k, W] fluia-max = 2oy
The fluid model attempts to approximate the bell-shaped k-

dependence of D(K, w) near the acoustic frejuency with a

i.xroad Lorentzian. The exact result is:

~1
Jm[klé(t.“’)] aract-wax = 098
We will attempt to use the fluid model by normalizing the
fluid Lorentzian so that the maximum value of (l8a) agrees
with the exact result, and so that this maximum occurs at
the same value of k; this requires:

VAI = 0'90 WA'

(18b) '
W =1.70 (Mme/m)*k .

These are the values (in units of w and kDe) which we

pe
will use if ec:eei. The results guoted in the first
chapter can be used when Oe>>91. With this approximation
scheme for D(k, w), let us look at these six regimes for
the electron-ion decay instabilities.

A). Resonant backscattering, Ge7>91. For this
temperature range, the acoustic mode is well-defined,

Re WpAJ> ¥a = \’A/Z, and we can use a resonance approximation

for D(k, W):
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(20) D{k,w) = 211'_‘.1(«}:_ W2 4+ DA W) & %'.- (- b + '.XA) )
and we have:

E(R R Wotw) =45,
so that equation (€) becomes: é

, @ Wold' W
(21) (W~ Wat 1Y) (W -Xo= & *1Y) el
This equation has been studied in detail by DuBois and
Goldman,> and we note here only the simplest of their

results. The maximum growth rate occurs when:
wch_—zxofS:S_.
which is merely the frequency matching condition:

Wo (ko) = Uy (k) + W, (k- k).

For a Langmuir pump, this can be written:

(22) R =24, cos ) - V255

The requirement for resonant backscattering is then a

condition on ko, since here fc-'}\ko = 4]1:

ko >255 .

Note, however, that in addition to the well-known. solution
with cos } =1, that (22) actually defines a locus in
phase space; it will turn out that only the cosf =1

solution is truly a decay instability, and so we defer

discussion of the other parts of the locus to the section
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on the SM instabilities. The growth rate on this locus

18

,_(XA*Y‘-) ]Wo ? Wa g
(22a) Imw = 7 T4 ':Ae = 7’;(2{.»&)‘

The threshold is, then, approximately:
W - |6X1XA/NA -

and the maximum growth rate is:

(SR

Wa W, &.‘) %

(23) :‘}Mwm‘-’ < ( lo

, Wo > ¥, W, wa »Y,;

| 2 A
k 33'/“‘ WO (i;'.") ) Wo<<XL) yA <<XL .

The qualititive features of the resonant, backscattering
EID instabiltty are evident from Figure two a), although
this is for a different temperature ratio. The structure
on the left of the graph, showing growing backscattered
waves, is the EID instability. Since the maximum growth
is on axis, /«f 21“":' and the detailed angular depend-
ence of M4 only serves to determine the spread of the
backscattered region of growth.

B). Resonant backscattering, Te = Tj. In this
case, the resonant approximation for D(k, w) is not ac-
curate; to get approximate analytic results, we use a

normalized Lorentzian form for D(k, w) given by (18a)
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and (18b). Our numerical work was done, however, with thec

exact expression for D(k, w). Approximately, then:

! 2 a4t
| (24) (w’-a&‘*z‘wvx)(w-s"&)'wf_=o.

We have been able to solve this equation in the frequently

applicable limit that Y. is negligible (i.e., much smaller

; than either Im w or x&). To treat (24), we look at two
regimes, Im W << Ya,» and Im w » Ya - In the latter,

high power regime, (24) reduces to equation (21) of the
previous case. In the low power limit, a perturbation
analysis, in the small parameter Y/ ¥4 9ives the follow-
ing results (again we restrict ourselves to the case that
ﬁnaﬁsz“f M_, which is easily satisfied a posteriori).

To first order in y/y} » the imaginary part of equation

(24) gives:

i 5.2 - w?
ans substitution of this into the real part of (24) gives:

- MWew! 5 . ]
(26) 3%\ W = 8 (s’z_w‘-z)l 1 %:S2 |

We can maximize Im& with respect to k, and we derive a

condition analogous to (22), a wavenumber matching condi-
tion:
2%

From this, the imaginary part of can be calculated and

maximized, when /f- 1l:




24
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(28) I g = 1AW/ 751

Figure two a) shows these resuits. The growth rate and k
for maximum growth are predicted very well by (27) and
(28) (within 5%). The condition on k, for resonant back-

scatter is easily gotten from (27):
Re 7 .00

C). Resonant, forward scattering, @g > 6. In
the backscattering case considered above, the frequency
matching condition resulted in the condition on the wave-

numbers that:

R=2k.cos y - 7

)

and kg - k < 0. However, we can still have resonant scat-

tering in the regime where kg - kX >0, or, in terms of kot
L2
(29 55> k> L

When this is the case, the daughter Langmuir wave is scat-
tered in the forward direction; however, the instability is
still described by (21) and the growth rates given by (23).
Notice that the growth rates may differ, since k is smaller
in this regime and the growth rates depend on k. Figure
four presents numerical solutions to the full dispersion
relation, equation (6) in the equal temperature regime.

The numerical results for the regime here, °e”°i' are

qualitatively very similar.
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D). Resonant, forward scattering, 6o = 6;. As
for To>> Tj, the analysis from the resonant backscattering
for equal temperatures can be applied to the forward
scattering case with equal temperatures. The condition

that k  must satisfy is:
0.9Y*% > Ro > 045V -

At this point, we must examine a feature of equation

(29a)

(7) which we have thus far ignored. We begin by noting
an important property of the symmetries in (6); if we make
the transformation:

k—-k

W — - w*
the equation remains unchanged. That is for a given growth
rate at (Re(wo-w), ko-k), the growth rate at (Re(wg+w),kg+k)
will be the same. 1In Figure four this symmetry is evident,
and the EID growth is present for wavenumbers larger and
smaller than k,. Thus, strictly speaking, in Figure
two a), for example, we should have drawn a forward lobe
corresponding to the backscattered instability, gotten
by inversion of the backscattering lobe through the point
kok = ko

To understand why this other decay instability only

exists under certain conditions (whose exact nature is

closely tied up with the SM instabhility), cven though the

symmetry in (6) seems to demand it always, we must go
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back to equation (1), and ask the question: What arc the
amplitudes of the excited fields? To answer this, we use
a result from normal mode theory, noting that the
solution of (6), our dispersion relation, is essentially
a solution for the eigenvalues of the matrix in (1). It
is well-kncwn that this normal mode analysis can precict
the relative amplitudes of the excited waves, as welli as
the normal mode frequencies. These amplitudes will be
given by the norm of the eigenvectors associated with the

zero eigenvalue. That is, given a matrix equation:

€, d. 8»)/E
on €z du || E2 |=0
o Es

then we know for non-trivial E;:

Ex _ _ 3u32u-6€02n
E, 01ndi2-€,013

For the matrix in (1), we have:

E (b'BO, W- o) & M- 6(&0&’ W+ o) T e(&*_k_o, VT ts)
E (keko,wtie) Mo E(R-Ro,w-to)  E(R-Ko, w-o)

As either a look at the frequency matching condition or
the numerical results in Table IV show, only the branch of
the EID instability involving the Stokes wave is near

resonance, and for that case:

(30a) [E(R-Ro,v-wo)i > | E (k+ ke, wrws)|.
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vihen (30a) 1s satisfied, only the EID instability growth
rates occuring on the left-hand side of our graphs will
correspond to a wave with a large parametrically excitec

amplitude. 1In the opposite case, when:

|Re € (R-Ro,w-t) = Re €(R¥ko, wrwa) < Y € (w-c),

then both the Stokes and anti-Stokes modes may simul-

taneously bc resonant. We can then write (using (11)):

(30b) |5: +6.] € Imw.

If (30b) is satisfied, then our three-wave treatment
breaks down. A treatment of the case when (30b) is sati-
fied is taken up in the next section, on the SM instabi-
lity.

E). Nonresonant, forward scattering. As ko de-
creases further, and k, < 5{3::7;’, it becomes impossible
to satisfy the resonance condition for the Langmuir wave,
but, the growth rate of the EID instability does not drop
off sharply once k, decreases beyond s{i;rq. To treat the
nonresonant case analytically is difficult, since the
equation we must then solve is intrinsically quartic.
liowever, the growth rates (approximately), and a quali-
tative feeling for the depence of the instability on Lo
can be obtained in the limit that the dampings of the waves
are much less than the growth rates, while Wo& <« 1. 1In

this somewhat artificial limit, (6) can be written:

b it




t 1
(31) (W~ W3t) (W= x, )t - Wela B2
Now, if Re w« Xgo then:
t _ Wowa'spm e )

As k, decreases, Im w decreases. Figure seven shows sol-
utinns to eauation (6) in the nonresonant forward scatter-
ing case, although here, k<k,. It should be noted that

a recent paper by Fried, et al. treats the decay insta-
bilities driven by a Langmuir pump in one dimension.’ They
present very detailed results on the dependence of the

growth rate on ko.
STIMULATED MODULATIONAL INSTABILITIES

Under the name stimulated modulational instabili-
ties, we include those interactions which require the
Stokes and anti-Stokes high frequency waves and a resonant
low frequency response be treated. In this case, three
dimensional effects are critical; in fact, the instability
cannot exist in one dimension. (Notice that the OTS in-
stability, while it involved both high frequency waves,
had a non-resonant low frequency response. The OTS is
properly called a modulational instability, but not a
stimulated modulational instability.) Inclusion of a

third resonant wave complicates an analytic treatment, and

we have been able to treat this case only in the very low
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Figure seven. Solutions of the dispersion relation,
equation (6), showing contours of constant growth rate, Im w,
as a function of the wavevector, k., - k, of one of the
daughter Langmuir waves (see Figure one). Here W, = 4x10-6
and k_ has magnitude 0.005. Other parameters are the same
as fo? Figure six. The numbers on the contours give the
growth rate in units of 2x10-7. 1In this regime, the EID
instability is no longer resonant, and hence has the much
degraded maxima at the two, small contours labelled "1."

The other maxima is the OTS instability, here almost iso-
tropic in k.
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and very high power limits.

Even so, the general result of the inclusion of both
the Stokes and anti-Stokes waves is a lowering of the
growth rate. This an effect well-known in nonlinear
optics and was noted in the case of a plasma instability
by DuBois and Goldman.3 They showed that, in fact, for
an electromagnetic pump, the threshold for the four-wave
instability is higher by a factor Ua/4ya - We have used
perturbation methods to study the effect of the coupling
of both high frequency waves and have been able to show,
directly that in the limit y&y, and the limit y>>y, that
the coupling of the anti-Stokes wave reduces the growth
rate of the instability. This seemingly general result is
essential in understanding the SM instabilities.

We have gotten analytic results for these four-wave,
resonant instabilities in two regimes. 1In the low power
regime, when we have:

Ya > Imw sy,
Figures two a), on page 77, and four, on page 8], give
numerical results. In the high power limit, when (OS> cua,
the SM instability reduces to the high power limit of the
OTS instability (case C and D); analytic results deduced
for that case also describe the SM instability in the high
power limit. Essentially, as Figure five (page 83) shows,

the SM and OTS instabilities merge for large powers.

T Fp v
ot y

T
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A striking feature of the numerical results for the
lower power regime, as shown in Figures two a) and four, is

the wing-like structures at ko - k = k These lobes are

_o-
the SM instability. We begin with equation (13) written

as, using the ordering Yo << Imw e Ya:

(32) (W@ (W5 )(wes,) + WeSwip/4 = O

(it turns out that even off axis the approximation that
/A.'=/4¢z is adequate to second order in Yjy. for the small

W, here). The solution to (32), to first order in y, is

given by equations (25) and (26) and their anti-Stokes

cournterparts:
_ Y (5s2-wi ]
(33) Rew= %5 [1 - %(-E2 &x‘) ;
=M1w°w"{ S*YA
(34) b= I s | -

and these have their maximum growth at:

_')‘-2& 2.2x)2 2
sy k=2kemy [ TEE B £ ]
where we have defined:

= Yaf3’ |

1= &2

Notice that when we take the upper sign in (34), we

recover the three-wave EID results. The reason for this

is clear if we notice that, to first order in y:
(W-8)(w+$,) = [ts, +1y-§_ -0y )}[* S +1y + 5, '(7(5)]
=26 [ty + ()] j

PD—
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which is putting one high frequency wave off resonance and
fixed at (k tk, wty,) = 25 . That is to say, four-
wvave effects are also second orxrder in y (or W)

We were able before, retaining only three-wave
effects, to predict the maximum growth rate along the locus
given by (35), and this is also the maximum growth rate
for the SM instability. However, the three-wave treat-
ment always predicts maximum growth for k = 0. Our numeri-
cal work shows that the maximum growth rate occurs for

small, but non-zero, k. This is because, as k goes to

zero, we have, from (30b):
|8+ + 8| = 26 — 0,

so that both high frequency waves can be near resonance
(and so we cannot ignore the anti-Stokes wave). As the
interactions becomes truly four-wave, the threshold qoes
up, the growth rate goes down; and, we get the maximum
growth rate off-axis. There are two competing effects
here:

1). M has its maximum when k = 0; that is, when
50 and kntk are parallel. Thus, as k goes to zero, the
effect is to increase JA and increase the growth rate:;

2) But, when k gets smaller, the resonances
of the Stokes and anti-Ztokes waves get closer. This
means that as k = 0, the anti-Stokes modes is more and

more strongly coupled, which has the effect of lowering
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the aqrowth rate.

T A S g

It is the competition of these two effects which determines
the k for which maximum growth occurs. i
To calculate this k requires a second order pertur-

-

bbation analysis of (32). We have done this, beginning

B A S 8 i

by writing (32) in the form: 1

n
o

(Wi-wal v 1WYa) (€+1Y) (25 +€ ¢1y) t WoSwiti /4

L AT 9

(37)
using the definition:

w=§_tEr1y .
We have four small parameters:

€,Y, Wo, R'Wo/p2

since the last is necessary to treat the dependence of

/A‘ on k:

(38) /«"SI—k‘Sin‘)‘/koz s )L:cos"('l}.;;),

The result of this perturbation analysis is that the maxi-
mum growth rate, on the locus given by (35) occurs at the
k for which:

250 -
(39) o

This result is independent of L for low powers. It pre-

dicts the k values for Figures two a) and four within 5%.
In general, the locus given by (35) defines an

angle at which the SM instability will occur for very small

k, like those prescribed by (39), namely:

6

(40) s ¥ = __'__[_n:_g_“.+ [y & ] . i

2Ro




This 1s also a condition on koz

0.46V2x/3 , Bex8; ,

ko 0.50124/3 , Qe?> 8-
It was these conditions that assured (see (29) or (29a))
in the casc of the LID instability, that the instability
was a resonant one. For ko less thap this critical ko,
the SM instakility, now on axis, becomes part of thc
forward scattering nonresonant EID instability. Thus, for
ko<(l45¢i;? the SM and EID become identical instabilities,
while for Wgy>> 64&/T, the SM and OTS merge.

Figures eight through ten summarize the above
results, by labelling the dominate instability for a
Langmuir spectrum as a function of kg, wo' and the ambient
plasma temperature ratio. These diagrams give qualitative
results, based on the instability with the largest growth
rate. Two results are striking:

l). For small enough kor only the OTS instability
is strong;

2). For large 6,/8i, the EID instability dominates
all other parametric processes. These results are only
applicable to the case when we can ignore the damping of
the high frequency modes. For large )i, different results

are possible in a few regimes.

APPLICATIONS TO BEAM-GENERATED SPECTRA

We now turn to several applications of the
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Figure eight. Qualitative features of Langmuir
pump decay, as a function of Wo, the normalized pump
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is the wavenumber o f the fastest growing daughter wave.
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dispersion rclation, equation (6), which describes the
linear stability of a Langmuir pump. Ve will examine three
physical situations in which an enhanced spectrum of
longitudinally polarized waves is created by an electron
beam:

1). Type III solar radio bursts. These are radio
signals associated with electron streams ejected from the
sun which generate electromagnetic radiation through an
intermediate step involving an enhanced Langmuir spectrum.

2). Auroral arcs. The ionosoheric electron
streams associated with these arcs create a non-equilibrium
Langmuir spectrum which probably acts as a pump for
parametric processes.

3). Laboratorv electron beams. In
experiments using a non-relativistic electron beam
travelling through an almost homogeneous plasma with no
magnetic field, parametric effects due to beam generated
Langmuir spectra are sometimes evident.

One of the commonest sources of enhanced Langmuir
radiation is an electon beam travelling through a plasma.
Through quasilinear growth and stabilization,l6 this

beam generates asspectrum with characteristics:17-19

(41) Bo= W Vu/ue , AR/y, = By,
N. av
= W ¢ Bg

where vy, is the beam velocity, 4vp the spread in the beam,
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Ak, is the spread in the spectrum, and np/n, is the

ratio of beam density to ambient plasma density. Equation
(41) is a statement of the fact that the beam generates
waves through a "resonant" wave-particle interaction,
which requires the phase velocity of the waves to Le the
same as the velocity of the particles. Equation (42)

is an upper bound on the energy that the beam can trans-
fer to the wave spectrum.

Strictly speaking, the dispersion relation of
these beam generated waves is not Langmuir-like; accord-
ing to O'Neil and Malmberg, the dispersion relation of
these "beam modes" is given by a product of the plasma

dispersion relation and a factor due to the beam: 20
. 2
E(R,w) (W-KkV + 1A V)" = Ni/n.

They have studjed this equation in detail, and their re-
sults for weak beams may be summarized by noting that when

the following inequality is satisfied:

(.u)"/’ AV Ve ¢ &5,
2“. 'V. ‘V‘

then we can conclude that the dispersion relation of the

waves is essentially that of Langmuir waves, with:

L}
w= (1 +3r2)" + 0(")-
This condition is satisfied for all of our applications

except the last. Since it is also the case that:

2 gy M
Tkt
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we have ignored beam corrections to the Lanqmuir dispersion
relation of the pump in this limit.

We are making a further approximation in applying
a single-mode pump theory, when we apvply our dispersion
relation, equation (6), to the case of a finite bandwidth
pump. Mathematically, we are making an assumption about
the narrowness of the Langmuir spectrum in k-space; we
are requiring essentially, that the spectrum be narrower
in k than the high frequency dielectric function (see
equation (9) for an exact version of this). The effect
of a broad pump in three dimensions is discussed in
reference 8. llere, we only note the most important result,

namely that the condition on the spectrum can be written:

lwF 2h* =3k-ke| >> |3k kol ,
where it is important to realize that it is the spread of
the spectrum in the direction of the fastest growing mode
that appears in this equation. Note also that the left
side of this inequality depends on the growth rate of the
instability.

In the further approximation that the beam-wave in-
teraction is unimportant, we can study the properties of
the spectrum itself. This will be appropriate in a number
of circumstances. If for example, the beam passes through
the system quickly, but the Langmuir spectrum remains
at a high level for times long compared to the beam duration,

or, if the beam-wave interaction has characteristic times
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much longer than the growth rates predicted by equation (6),
then the predominant processes in the beam evolution will
be parametric. 1In any case, given an assumed, enhanced
spectrum, equation (6) gives growth rates and wavenumber
shifts for the linear relaxation of the spectrum.

While our dispersion relation, equation (6), will
describe the simplest, linear relaxation of the beam-en-
hanced spectrum, our formalism does not directly give any
insight into the actual evolution of the beam-plasma system.
Our methodology in the following applications is to ase
the properties of the daughter waves predicted by equation
(6) to make qualitative statements about the importance

of linear, parametric effects on the beam-plasma evolution.

We can examine, for example, whether spectral evolution
might be able to compete with quasilinear relaxation of the
beam, if it turns out that the parametric growth rate is
comparable to the quasilinear growth rate. Our thecory of
the linear relaxation of the spectrum offers important
qualitative insights into features of these beam-plasma ﬂ
interactions, but it cannot make guantitative predictions
of the detailed evolution of the beam or spectrum. Thus,
our descriptions of these three applications only touches
on the highly nonlinear processes that actually determine
the physics; but, we apply (6) in an effort to find regimes

where parametric effects most likely plav a role in the ;

total (nonlinear) interaction. j
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We take three cases of current interest and compare §

the results of numerical and analytic solutions of (6) with

experimental data from the beam-generated spectra associated
with Type III solar radio bursts, with auroral arcs, and

with nonrelativistic electron beams (with no magnetic

field). Table V summarizes the physical parameters of

each of these beam generated spectra.

Type III Solar Radio Burstsg8r14:,15,21-25

It is believed that the radio discharges of solar

origin, at 200 mH to 10mH, with durations of one to ten

seconds and having a distinctive harmonic structure--Type
III solar radio bursts--are due to high energy electron
bursts ejected from the sun. These streams of electrons
are then thought to interact quasilinearly with the sur-
rounding plasma (either the solar corona, solar wind, or
interplanetary plasma) to generate an enhanced Langmuir
spectrum, which, in turn, is responsible for

the observed radio signals. The role of the parametric
instabilities in the evolution of this beam-spectrum
system has been considered by several authors, the EID 1
instability by Zheleznyakov and Zaitsevl5 and the OTS in-
stability by Papadopoulos, et al.22 and by Smith, et al.26

The basic attack on the problem, from a suggestion by ﬁ
Kaplan and Tsytovich.14 is to study the relaxation of

the Langmuir spectrum and determine whether this relaxation

e ok . A
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TABLE V

PARAMETER REGIMES FOR PHYSICAL APPLICATIONS

Plasma- Figure n v T./T. n,_/n avy /v A=2c k W
beam system (om®3) (emPs) * * PO ol B # ko 9
Type III

solar burst

st L R, Sdeg 10%  Sxo%F 1 1077- 1/4 1079 1073-1 o5 10-5.4

at 30 Ry, 2b 103-2 108-4 1 10-6.9 172 1079- 1073-1 026 10-5-8

at 215 Ry 2c  100.9 108-1 I 172 107%- 1073-1 014 10-5-3
Auroral

streamer 3 103:3 107-3 1 10-5- 172 1078 10-3.9 ,007 10-1.4
Laboratory

eclectron

beam

"slow" 11a 108-7 107-8 15 10-1.3 1/5 Landau

+10-5-5 10°5 1071-2
“fast" 11b  108-7 107.8 15 10-1.3 «&1/5 Landau

+107°+3 1073 10-1.2
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occurs in such a way as to affect the quasilinear decay of
the beam. Two considerations are relevant:

l). Do the parametric processes involved in the
relaxation of the Langmuir spectrum take the energy of
the spectrum out of resonance with the beam (and so destroy
the quasilinear beam-spectrum interaction); that is, are
either of the following inequalities satisfied:

V-V > Vg * U
(43) Y +AVe € Vyuse W ?

2). Does this transfer energy occur rapidly enough
to compete with the quasilinear processes?

The second of these gquestions has been answered partially
by references 8 and 15, where it is shown that neither the
OTS or EID instability occur fast enough to actually
prevent quasilinear decay of the beam.

With our dispersion relation, (6), we have studied the
behavior of the enhanced Langmuir spectrum and have found
some parameter regimes in which the parametric processes can
play an important role in the beam dynamics, even though
they may not be able to actually prevent decay of the beam.
We begin with a numerical solution to the beam-spectrum
interaction in the case of solar bursts, recently done by
Magelssen.2’ This numerical work solves the quasilinear
equations in two dimensions, but assumes a one-dimensional

spectrum and neglects the nonlinear relaxation of the

B e

i ——
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spectrum. From Magelssen's data we have taken the para-
meters necessary for a study of the spectrum, namely, ko
and W,, as a function of the distance from the sun that the
electron pulse has travelled (after it has left the
surface of the sun). Table V includes the parameter§'for
three distances from the sun, and Figure two (pages ;7ﬁand
58) shows contour plots of the parametric growth rates
predicted by equation (6). We have used Magelson's data
rather than the approximations from a homogeneous theory
of the beam generated waves given by (41) and (42) for
ko and W,.

Magelssen's results show that k, is about 0.05
(in units of the Debye wavenumber) near the sun, and ko
decreases to 0.016 at the earth's orbit (about 215R.,
where lRo is one solar radius, a distance of about 7%x10° km).
His calculations of the Langmuir wave spectrum intensity,
which include effects due to wave reabsorption and "pile-

up"? give typical values of W, of 106 to 107°

(the
wave intensity normalized to the thermal energy of the
plasma).

The OTS instability, in this regime, always has its
maximum growth for a k perpendicular to ko, and for values
of k much less than kg Indeed, it would require stream
densities higher by several orders of magnitude to result

in the OTS instability having any growth on axis for even

the smallest Ko given by Magelssen. This contradicts the
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results of both references 22 and 26, both of which use
the OTS instability to provide for energy transfers
which satisfy (43)and so could account for beam stabiliz-
ation. We believe that the OTS instability will have a
minimal effect on the beam-spectrum system, because of the
impossibility of satisfying (43) for the powers of the
spectrum appropriate to Type III solar bursts.

However, as Zheleznyakov and Zaitsev noted, the
EID instability can transfer energy to Langmuir waves with
velocities sufficiently different from the velocity of the
beam to satisfy (43) only when it is not a backscattering
instability. For the values Magelssen qgives, we find that,
the EID instability from 1 Ry to 80 Ry is a backscattering
instability. From 80 Ry, to 450 Ry, somewhat beyond the
ecarth, the EID instability is a forward scattering instabil-
lity. And beyond 450 Ry» ko is so small that the condition
obtained from combining (43) and (28a) is violated and the
EID instability becomes a nonresonant forward scattering
process. Note that for the low values of wo for these
spectra, that there is no possibility of satisfying the
four-wave coupling condition, equation (20). Thus, if we
accept Zaitsev and Zhelesnyakov's argument that multiple !
scattering, from the backscattering EID, prevents its
being able to transfer energy to nonresonant waves (that i
is, waves not in "resonance" with the beam), we conclude

that only between 80 and 450 R° can the EID instability
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shift energy out of resonance with the beam. We also note

that the SM instability occurs for all these sets of para- ﬁ
meters for distances less than about 450 RQ, but at such
small k-shifts as to violate (43).

Our conclusions here are dependent on two striking
features of Magelssen's results:

l). The small values of W,. Many authors have
conjectured much larger values of Wy. If this were the
case, the OTS instability, for example, could have
growth on axis, if: wo'»'IOkoz. In addition, at higher
powers, the OTS instability will result in an angular
spreading of the spectrum, even if k, is not small enough
to satisfy the above inequality (this effect is well
shown in Figure five, page 83). However, to get into
cither of these regimes, even for the smallest of the
ko, appropriate to the solar problem, k, = 0.013 (in units
of kpe)» requires a power several orders of magnitude great-
er than Magelssen finds. If W, were on the order of

0.1, it is even possible to use the dipole approximation

for this problem, as Papadopoulos has done.22

2). The large values of k,. Most recently, Smith,
et al.%% have presented a calculation using a value of kg
of 0.013. 1In this regime, the SM instability has merged
with the now four-wave EID instability. Wwhile it seems

that Smith, et al. have called this nonresonant forward

scattcring an OTS instability, their numerical results




show the interaction to important in the evolution of

the becam and spectrum. They show numerically that this
growth rate shifts energy out of resonance with the beam
quickly enough to stabilize the electron beam. Magelssen's
data, however, shows that the value of ko, that they use,

as appropriate to the spectra that should exist near

the earth, does not in actuality occur except for distances
on the order of twice the earth's orbit (near 450 Ryl .

We have used Magelssen's data, in spite of thesec
other considerations, because his results so closely
mirror the best observations at this point; the essential
effects that he includes are the inhomogeneity of the
ambient plasma, and the finite size of the beam. The com-
bination of a sharp beam front and an inhomogeneous plasma
can stabilize the beam without the inclusion of mode-
coupling effects. Even with his very low values of W
the observed shape of the spectra are nicely accounted for.
What 1s necessary now to improve his numerical work, is
the inclusion of these mode~coupling effects. Our results
above give some guide to the regimes where these effects
will be most important.

While our qualitative considerations seem to show
that the parametric instabilities cannot stabilize the
electron stream associated with Type III bursts (at least %
betwcen the earth and the sun), it has been theorized that

they be important in understanding the production of
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electromagnetic radiation. The critical consideration

is the conversion of Langmuir radiation to electromagnetic
radiation, at the second harmonic, for example (the char-
acteristic feature of Type III radiation is the presence
of both the fundamental and second harmonic), is the
anqgular relations between the Langmuir wavenumbers which
can allow Coalescence of two Langmuir waves to form a
transverse, electromagnetic wave at twice the plasma fre-
quency. (The electromagnetic rati&tion at the plasma
frequency is usually attributed to scattering by ion fluc-
tuations.?3 We will not consider that process here.)
Conservation of energy and momentum in this wave-wave
process require that the wavenumbers of the Langmuir waves
be approximately equal and opposite. Our results for the
OTS and SM instabilities in this regime show that this is
impossible to obtain for the daughter waves (contrary to
the findings of Papadopoulos, et al.22), In addition, our
results show that the EID instability is only a back-
scattering process in which kgo-k = -k, for distances with-
in 16 Ry. Beyond this point, k,< 0.03, and we have, from

equation (27):

ko-h = -k, +0.920/3 =-0.0/ .

making koy-k and k, unsuitable for this process of generat-

ing radiation at Zabe. Our analysis shows that the observed

radiation at the second harmonic must be due to processes

other than parametric ones.




Auroral Arcs?28,29 -

Papadopoulos and Coffey have suggested the OTS in-
stability as a mechanism involved in the production of
another astrogeophysical phenamenon, the auroral arcs. In
a situation similar to the Type III solar bursts, experi-
mental data show distinctive electron distributions pro-
pagating along magnetic field lines in the ionosphere,
which are associated with auroral discharges. There are
two pieces of data that naive, homogeneous, quasilinear
theory does not predict: the relative stability of these
beams and the anomalous resistivity that they encounter
along the magnetic field lines.

Our analysis of the linear stability of a spectrum
of Langmuir waves enhanced by a stream typical of those
associated with auroral discharges shows that, indeed,
the OTS instability will have a profound effect on the
resonance relations of the electron beam and the Langmuir
spectrum. Figure three (page 77) shows the regions
of highest instability for parameters associated with an
auroral discharge and, given the fact that, k »'ko' we
have a geometry with the fastest growing mode parallel to
ko . The large value of k allows us to satisfy (43), even
though the beam, and hence spectrum, are relatively broad;
it appears that the OTS instability, in one dimension, for
these parameters, can transfer energy from regions of the

Langmuir spectrum in resonance with the beam to regions not
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in resonance, and thes possibly stabilize the beam,

However, this is only a necessary condition for
stabilization. As Kaplan and Tsytovich were the first to
point out, these nonlinear processes also must proceed
quickly enough to change the spectrum before the beam has
relaxed. Zheleznyakov and Zaitsev give the following
condition on the ratio of the rates of quasilinear relax-

ation and wave transfer:15

(44) €ln [6 Wao(t) /W’,(£=o)] Gl e R
Using the results for the wave transfer rate from equation
(17b) and the usual quasilinear relaxation rat:, we get

the condition:
v e )os
(45) & 5 8(%)

There is a discrepancy between (45) and the results of
Papadopoulos and Coffey, which appears to come from their
expression for the maximum growth rate, taken from Nishi-
kawa, which is incorrect in this regime. Although data on
the auroral plasma is approximate, we know that Avp/vy is
on the order of 1/3 and that ny = 0.02 cm-3, so that,

(45) gives: ng ? 2x10° cm~3. This is 100 times greater
than the result of Papadopoulos and Coffey, and an exami-
ration of ionospheric electron densities shows that this
condition is never satisfied in the ionosphere. The

highest electron densities observed 30 are about 10%, which

occur at about 300km, much higher than the observed height

4
————— i
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of auroral discharges. Thus, we conclude that are no

parametric processes sufficiently fast to stabilize the
beams associated with auroral discharges. However, the
other important features of these discharges, the high
anomalous resistivity and power law tails on the electron
distributions, for example, may require the details of the
linear stabiltiy of a Langmuir spectrum to be fully under-
stood (and Papadopoulos and Coffey have examined a number
of these questions), but in a situation where the OTS in-
stability does not stabilize the beam. In recent paper, 22
Matthews, Pongratz, and Papadopoulos correct their formula
for the growth rate and derive a formula similar to (45)
for np/ne. They also report new data which shows that

ng, &~ 2x10°.

We have developed a formalism sufficient to treat
another aspect of the problem. The dynamics of the Lang-
muir spectrum, after an initial OTS instability transfers
energy to large wavenumbers, ko ¢ k  $0.05, will be
determined by the instabilities of these daughter waves.
The interesting feature of this situation is that the large
wavenumber daughter waves form a standing wave field. It
is straightforward to write down the 5 x 5 determinental
condition that describes the coupling of the low-frequency
response at (k, &) and the high frequency waves at

(kg ¢ k, Wet W) and (kg t k) WoFw). The ko is now the

fastest growing mode in Figure three, and the Wy will
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be determined by the saturation of the OTS instability in
the auroral streamer. On this value of W,, we can only
speculate; the studies of the nonlinear saturation of the
OTS instability, even in an homogeneous plasma (which the
auroral plasma is not) are vague.30,31 We have looked at
a range of values of W, from 1.6x10-6 to 4x10-2 (fjguvred
on the local amplitude of the field, that is, the sum of

the amplitudes of both components of the standing wave).

At low powers, our numerical results are straight-
forward in that we get directly the travelling-wave
results for a pump of one-quarter the power. For the L
appropriate to the daughter waves of the auroral streamer,
ko = 0.05, the numerical work we have done for a travel-
ling~wave pump of the same k, (see Figure two a), paage 77)
gives the same results that would obtain for a standing-
wave pump with W, = 1.6x10"°. That is, as we saw was
possible in Chapter I1I, only one component of the standing-
wave pump is driving the instability. This means, most im-
portantly, that the auroral streamer parameters generate
a set of daughter waves which must be treated in three
dimensions, even though the parent instability occurs all
in one dimension. The relaxation of the spectrum of the
auroral stream occurs in three dimensions.

At higher powers, Wy > 1x10'3, we have been unable
to solve the dispersion relation. The exact reason for

this is unclear, but there is evidence that our expansion
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t in I'y brecaks down. The major difficulty is that the can-

celation of third and fourth order terms in Eo' which

occured in deriving our travelling-wave dispersion relation,
equation (6), does not occur for the standing-wave case.
This results in terms remaining in the dispersion relation
which, as W, gets larger, begin to dominate some second

1 order terms. The conclusion we drew above about the im-

portance of three dimensional effects does not seem to

be affected by this difficulty in our formalism, but, for
Wo greater than 1x10'3, a more careful study of the para-
metric processes driven by a starding-wave pump must be
done.

Laboratory Electron Beams”'34

Quon, et al. have done a series of laboratory ex-
periments involving nonrelativistic electron beams in
which parametric processes in the beam-produced wave
spactrum are evident. Their overall results show that the
specific parametric interaction depends sensitively on the
velocity of the electron beam, or equivalently, on the
characteristic wavenumber of the enhanced spectrum of plasma
waves that the beam drives up. The linear stages of the
decay of the Langmuir spectrum that this beam produces

should be described by the results we have derived.

We first note that the parameters of Quon's plasma

are very different from the astrophysical plasmas; the mass
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ratio is much smaller for the laboratory situation anc
the electron temperaturc is much greater than the ion
temperature. The ageneral results we have derived for this
regime show that the LID backscattering instability will
dominate, when parametric cffects arc evident.

In the experimcnts done by Quon, et al. two beam
velocities are examined. In the case of the slower becam
our analysis can be used directly; for the faster beam,
hwwever, some modifications are required. In the case of
the first beam, the growing solutions to equation (6) are
shown in Figure eleven a). The large wavenumbers in this
regime required our using Landau damping for the high
frequency waves. As Quon suggests, the dominate process
is the well-known decay instability, and the parametric
part of the results he presents are described by the
well-known theory. We note that it is only under conditions
of small x and T> | that the usual results (of a back-
scattered wave at -k, and ion fluctuations at kj = 2k )
obtain. The maximum growth rate that we predict from our
analytic results (equation (23)) is 1.6x10-3, which cor-
responds to the lowest value of Wy that Quon, et al. look
at, with a beam density of 5% of background. We have in-
troduced no phenomenological constants: the damping is
purely Landau damping; the fields have been calculated from
(41). In addition to the decay region, our numerical

results predict another rcgion of growth. This corresponds
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Figure eleven a). Solutions to the dispersion
relation, equation (6), showing contours of constant
growth rate, Im W, as a function of the wavenumber of
one of the daughter Langmuir waves, kg-k. gere, W, = 0.0C;
ko = 0.25. Other parameters are; & = 9x107°, 6,/0; = 15,
and the high frequency damping is the sum of Landau damp-
ing and a collisional contribution equal to 3x10-6. There
parameters are appropriate to the pump generated by a
typical laboratory electron beam passing through an argon
plasma.

b. The same plasma as above, but with a
beam which is now faster by a factor of 2.5. The pump this
beam generates is here a beam mode with k, = 0.1l.




128

to a resonance of the Stokes wave at k, - k and a low
frequency response which cannot be treated by a fluid ap-
proximation. Since it is no longer true that w<<kve, we

have had to make the approximation:

(47) D(k,w) = (w*-k*vet)/ w2

In addition, we have used the ordering:

YlRik) << Gmw << Y (Rork) | |w-51 << 8. [wese[#25.
Under these conditions, the solution to (6) has a maximum

growth rate:

3W, 5.5
I w = Gk G

The SM instability has disappeared because of the heavy
damping of the anti-Stokes mode.

To understand why Quon, et al. do not observe this

OTS~like structure, we must study the narrow beam approx-

imation, equation (9), on which our application of (6) to

a beam-produced spectrum is based. Indeed, it appears that

this region of growth only exists in the narrow beam case,
While the decay region easily satisfies the narrow beam

condition, for the OTS instability, we have:

|w-5_| << 3kRAR,

Jmw > 006 -

Since this is not the case for our parameters, the broad

or

bcam has washed out the OTS instability, so degrading the

syt
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growth rate that Quon, et al. do not observe it.

Two changes occur in this electron beam experiment

when the beam velocity is increased, as in the second

cxperiment by Quon et al.:

1). k, becomes smaller. This is clear from the
fact that the fastest growing mode of the beam instabil-
ity has wavenumber:

Bo‘ u%‘%h/vb'

2). There are electrostatic accelerations which
cause the beam spread to decrease. This not only provides
a relatively cold beam, but also generates a high frequency
longitudinal wave with non-Langmuir dispersion, a beam
mode as described above. For Wong's parameters, based on

O'Neil and Malmberg's results for a narrow beam, we get:

We=1.037 , Ro=0.1.
We have been able to treat the linear stability of this
wave with equation (6), by merely using the above relation
for w,(ky) instead of the usual Langmuir dispersion. No
other change in (6) is required, since its derivation
depends only on the pump wave being high frequency and
having longitudinal polarization. The numerical solution
of (6) for these parameters is shown in Fiqure eleven b).
This figure shows two parametric processes, a decay-like
region to the left, and an OTS-like region near k, - k = k.

The decay region is not, as Quon, et al., state, any more
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difficult to excite than in the case of the slower beam.
In fact, since the matching condition can be satisfied for
somewhat smaller values of kg - k, the Landau damping is
smaller and the growth rates for this case slightly larger
than for the previous experiment. Notice that perrlect

matching occurs when:

wo’LUL(Bo' ‘S) F wl(k) -

This demands that k = 0.26 or kg ~ k = -0.16. The growth
rate is well accounted for by equation (23). Again, (47)
must be used to account for the OTS-like region of g-owth,

although here we have the ordering:

Imw »> N(ktk) Xo=0-

so that the solution to (6) can be approximated:

L0=ei4hhﬁyk §

since here, 8= 8,+%. = 0.022, Interestingly, Quon, et al.
report neither of these kinds of plasma behavior. Since
these are the results of a linear relaxation of the keam-
induced spectrum, we have concluded that the effects that
Quon,et al. do observe are due to non-parametric processes.

The strongest parametric interactions possible are those

that (6) predicts. That they are not observed points
towards other effects, most probably trapring effects,
being the processes that Quon, et al. observe in their

second experiment.




CONCLUSIONS

We have developed a theory which allows us to treat
the problem of linear relaxation of an enhanced Langmuir
spectrum without approximation in Eo and taking into con-
sideration multidimensional effects. Three new results of
note come out of our analysis:

1). In a number of regimes, it is possible to have
the Langmuir pump decay into daughter waves with wavenumbers
larger than the pump wavenumber. Particularly, at equal
temperatures, the SM instability, has daughter waves at

ko + k 2 k,. Thus, these waves have a phase velocity
slightly greater than the phase velocity of the beam. These
waves may be able to accelerate electrons, and, for a
beam-induced pump, draw out a tail on the beam.

2). 1In every regime, there is significant three-
dimensional structure, which will lead to a spreading of
the spectrum in angle. The full problem of the three-
dimensional, nonlinear relaxation of the spectrum has not
been investigated, but our linear results show that
this is essential. Especially, when the OTS instability

is off-axis, large growth rates can occur at angles exceed-

ing 20° to k,. The angular spread of the spectrum, es-

pecially in the study of relativistic beams, is a critical

parameter, and the wave effects that we have studied here




affcct it greatly.

3). For a range of parameters with 6¢/6; » 1 and
ko in a critical range, the dominate process of decay is
forward scattering. This result, coming uniquely from a
study of the ko dependence of the spectral decay, has im-
mediate bearing on especially the theories relating to
Langmuir-to-electromagnetic mode conversion. A whole new
set of kinematic relations is possible with these daughter
waves; the kg = 0 result of daughter waves with equal and
opposite wavenumbers to the pump is true only for values
of k, large compared to the root of the mass ratio.

To be sure, our results are only qualitative guides
to the understanding of the real problem of Langmuir tur-
bulence. What the linear theory we have presented here,
offers is a physical understanding of the first stages of
the process of relaxation of a narrow, Langmuir spectrum in
a homogeneous, field-free plasma. The most important next
step in this study is to extend our results to the case
with a magnetic field, expecially since applications of
our results to spectra enhanced by electron beams frequent-
ly occur in magnetized plasmas. And, of course, the full,
nonlinear problem of the spectral decay, must be solved.

Our results are only a beginring to that study.

'-i
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DERIVATION OF THE SUSCEPTIBILITIES

The method used here to derive the susceptibilities
is due to unpublished work by Martin V. Goldman. We Legin
with a fluid equation for v as a function of E; all other

fields and densities have been eliminated:
UK) = T €09 + [dk, (- £)- T -v(« ) E(K,)
+ 18 [dKa y(k) -k, [TCK) 2(0) + 15 T0E)]

(A.1)
+85 [dKa k- T(KQ) YD -UK) 1

+ e ew k- T(K) dem V(K): U(Ks) 3 V(K)

where:
K’a k,w’ ; I(K)-‘-:l,%(',! Wi- xve'k*)
JKn & dkd“d‘xd‘d: 5’(&_&_&)5({‘)_&/‘-&/‘)’.

(ame

Ay = Sitseledendbods gy 1 4 4) Stor-si-irp.

The strategy is now to calculate the various terms in the
expansion of the velocity in terms of the field, use that
in the integral for the current, and then group terms by

powers of E to find the various susceptibilities:

(A.2) k) = T(K)-E(K),

Ry o

. gt
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| v = 258 f dka { 22 } TR (k] - [T0ky-EK)]
f (A.3)
| - B TT0) T E)]
Now: 1

100 = -¢fdka [0 )veii) +nKy O (k)]

- 05 (K, {12 ke TOOE(K) [2T00) T+ (T T i)

(a0 + TR)-E) [52 Tk -EC)]
v T EC) [T -E )] -

Comparing this with the definition:

sy 3000 =i [dKe XK, K, En(K)EK) &

we get:
_dmene [Tk -é. [.wa.wz &, T()-TIk) & m*
Xk )= 2w, @, {T e? |
_ iM W, é\, ‘T(K:) 'gl m = 'l-wna’&é\. T‘Kl)é\l ]
(A.6) e -

el e!

and since two of these frequencies will always be high, we

_ ok T 6 G TR E iw, m ke TTK)-E, B0 TIKD <& }
)

Fave for any instability:

v =3
(KK, K = dmen, { £o8..
X 2 ‘)’U.)) VGkn 2M ww'u,l LE:;S'LQ - x‘ktk\/ut i

1 l + l -

Where the &y are the polarization vectors of the fields

(A.7)

E(kj). For the case when one of the fields is a low
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frequency field, only one term contributes:

(a,8) }(xgx.' o, K) = e’no 4 {mu } f Ko (i ko) }

2m' W (ubtw) Re [kt

The third-order velocity is gotten similarly and
consists of seven integrals, which must be then substi-
tuted in the expression for the third-order current. The
integrals which are dominant for the case of two high

frequency waves are:

o= - e { 4Ky, TUOMECS (k) T(kk) k- ECQOEG)
J ™m

W2 (w-wy)

+ T(K) -EG) (R-ky) - TUK-R)- (k-ks) ECK:)- E(Ka)

W) (w-tn)
+ TCKDEK) (R-ke) TUK-KD) -(k-k) E(Ks)-E(Ks)
.9 Wa(w-w)
s JK)ER) (k). r(g-g.zgg-n.z E(K)-E(k:)
W,(w )
4 TUKD-EKa) (k-ke)- TTK-K)-Ck-lea) ELKG)-ECK,)
Wi (w-Ww;)
o TUG) ECKs) (R-ke): TTK-Ked ko) E(K): ELKy) }
Wi (W -twy)

Comparing this expression with the definition of the third-
order susceptibilities, and using a travelling wave pump,
we find:

X (K Ko, ke, ¥Ke, K=o )
(A.10) 4w/ en, AN aAAn

== C, e;C-
G (ew) (W)Wt les
and:
e Y (KtKo, Ko, FKe, Ktko)
e 4mietns g8 €6

= Fm }(Wor W) (we ) W' Ve*
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We also note here some symmetry properties of
these susceptibilities, which can be derived from either
the integral definitions of the susceotibilities, or from

the explicit forms we found for them:

(A.lz) Xl"\n (KDKlpKl) ” Xjnm (K. Kz, K.)
X/nmp( K, Ki, Kp, k) = X(m'n (K Ki, Ky, Kz)
- K, KK,
(A.13) llnmr( K, Ks)
=%lrnm (K’ KthK') '

And, using the these relations:

(A.14a) xlln (-K, ’Kl,’Ka.) =}z:. K, K, Ka.)"' Koot (KK, K),

A.14b) Ko (K Kin Q) = Xnmt (-Key K1, KD = Xomga CK, K, K2).




