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20. Abstract, continued

2) We do not restrict ourselves growth of the instability
in one dimension ; and,

3) We consider a standing-wave pump, in addition to the usual
,-.‘, l.i , travelling-wave pump . 

— - .—- .--- — .

~~~~
— -~—-—-1~~i~g this ~~~~~~~~ T~~ d formalism , we—have; udied--the~impor-

tant problem of the parametric instabilities,, in three dimensions,
pumped by a monochromatic , longitudinal pump or arbitrary wave-
vector. By solving a dispersion relation derived for these in-
stabilities, numerically and anal~tica],1y,..we have fouAd a number
of new, three-dimensional effectsg~ ~~~~~~~~~~~~~~~~~~~~

1) Only under quite restrictive corj~itions on ko does the
oscillating two stream COTS) instabi].it~ \ave its fastest growingdaughter waves with wavenumbers that are p~ralle l to k0: when
k0 ~ k, these daughter waves can grow at as much of an angle to

as 20°.
2) The Langmuir-pumped electron-ion decay (EID) instability,

for arbitrary icc,, has regimes in which it is a forward scattering
instability (as well as the usual back—scattering regimes in the
case that k ‘ /2cz/3).

3) A n~w instability , which is only seen in three dimens ions ,
is possible. This instability , the stimulated modulational (SM)
instability , can produce daughter waves at an angle to k , with
wavenuinbers slightly larger than k~ . °

-
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Pump Wavenuznber Dependent Effects in the Parametric In-

stabilities of a Plasma

Thesis directed by Professor Z’Iartin V. Goldman

We have derived a linear kinetic theory of parametric

instabilities in an infinite, homoqeneous, fully ionized

plasma , with no magnetic field. Our derivation rclaxes

three assumptions usually made in the linear theory of cer-

tain parametric instabilities:

1). We do not assume that ~~~, the wavenumber of the

pump (the driving f ield of the ins tab i l i ty) , is much smaller

than any other inverse distance in the plasma ;

2 ) .  We do not restrict ourselves growth of the in-

stability in one dimension; and,

3). We consider a standing-wave pump , in addition to

the usual travelling-wave pump.

Using this generalized formalism, we have studied the

important problem of the parametric instabilities, in three

dimensions , pumped by a monochromatic, longitudinal pump

of arbitrary wavevector. By solving a dispersion relation

derived for these instabilities, numerically and analyti-

cally, we have found a number of new, three-dimensional

effects:

1). Only under quite restrictive conditions on

does the oscillating two stream lOTS) instability have its

fastest growing daughter waves with wavenumber~ that are 

-~~~ — 
-- 
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parallel to ~~~ when k0Z k, these daughter waves can grow

at as much of an angle to k0 as 200.

2). The Langmuir-pumpcd electron-ion decay (EID) in-

stability,  for arbitrary ~~~, has regimes in which it is a

forward scattering instability (as well as the usual back—

scatter ing regimes in the case that k0 ) ~~~2~~ /3) .

3). A r.ew instability , which is only seen in three

dimensions , is possible. This instability , the stimulated

modulational (SM) instability , can produce daughter waves

at an angle to k0, with wavenumbers slightly larger than icc,.

We have applied these results to three physical

situations modelled on an electron stream quasilinearly

generating a Langmuir spectrum of sufficient intensity to

act as a pump:

1). Type III solar radio bursts. We find that three

dimensional effects are critical in understanding the re-

laxation of Langmuir waves at distances less than 450 R® .

2). Auroral streams. Our results show a one-dimen-

sional treatment is sufficient in this case, although

three dimensional effects are very likely to be important

in determining the saturated state of the instability.

3). Laboratory electron beams. We conclude here

that parametric effects dominate the wave dynamics for a

M sl~~~w beam, but that this is not the case for fas ter

beams.

In none of these cases do we find parametric processes that

— - - -S .--— — ~ S - •--__ ~~~~~~• _ - ---- ~~ — —5—- ..—- -----•—- — .5. —-- ---.. - .—-— —-—
~
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greatly affec t the quasilinear decay of the beam, contrary

to the findinas of several authors who have examined

similar applications of parametric instabilities.

We have also studied the effects of a standing-wave

pump of arbitrary 
~~ 

for two parametric instabilities , the

and LID instabilities. The most important result of ~

standing—wave pump for these instabilities is a reduction

of the effective power of the pump. This is a result of

different modes of the plasma beina excited by each of

the two components of the standing-wave pumD; these ex-

citea modes are coupled more strongly (raising the effective

pump power) as the (k -dependent) frequency separation of

the modes decreases relative to the growth rate of the in-

stability . As k0 goes to zero , and a standing-wave becor~es

indistinguishable from a travelling-wave, we recover the

travelling-wave results. When we apply our results for the

EID instability to ionospheric modification data, we find

the decrease in the effective pump power resulting from

a standing-wave pump s lowers the theoretical predictions

for the Langmuir turbulence produced in these experiments.
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Ch APTER I

INTRODUCTION

The couplinq of normal modes of a linear system by

a time-dependent interaction is a phenomenon first noted i~:

Faraday1 in 1831 and studied theoretically by Lord Pay-

leigh2 in 1883. Now called parametric excitation , the

study of these processes provides a general ana powerful

framework for studying linear responses of a system . In

this dissertation , the theory of the parametric excitations

of an infinite , homogeneous, fully—ionized plasma is ex-

tended to include two effec ts dependent on the wave-

vector, k~~, of the driving field O c the instability :

1). The effects  of this driving field (the “pumo’)

being a standing-wave field rather than the usual travellina-

wave field.

2). Three dimensional effects of a longitudinally

polarized pump with arbitrary wavevector.

We have found that in a larqe number of physical situations

the spatial dependence of the parametric coupling , depend-

ent on k~,, is imnortant in determining both qualitative and

quantitative features of this r~1asma interaction.

The first systematic observations of parametric ex-

citation were done by Hichael Faraday , when he noted that

L~~~ .. 
- . - -
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2
he could maintain water waves at half the frequency of the

vibrating support which generated them. In 1859, F. Melde3

published results of an exhaustive study he had carried Out

of the excitation of transverse modes of a vibrating wire

which could be amplified by a longitudinal vibration of the

wire at twice the transverse frequency. Lord Rayleigh made

several theoretical studies of this problem , and his re-

sults exhibi ted the two characteristic features of

parametric excitation: the existence of approximate fre-

quency matching (in the examples given above, the excited

disturbances occurred at half the frequency of the driver ,

or “pump”), and a threshold power for the pump , above which

the normal modes of the system begin to be amplified.

A much more commonplace example of this phenomenon is

the energy transfer that occurs in a child ’s pumping a

swing. The time—varying element in this otherwise simple

pendulum is the raising and lowering of the effective

length of the pendulum; the child raises his center of

gravity as the swing goes up and lowers it as the swing

comes down. The frequency of this variation is twice that

of the natural frequency of the swing. This “pumping”

couples together the two, here degenerate, normal modes of

the pendulum, with the frequency matching condition:

~1p~ap tA.~ 1 4. I 6ia. I = ( WN  ) -& ~~ j ~~2cQ .

And, if this pumping is of sufficient amplitude, then both

normal modes became unstable and energy is transferred to

these modes.

_ _ _  _ __ _ _ _ _ _ _ _ _ _ _ _ _  

.5” .

_ _  .5 --
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In general, parametric excitation occurs when several

otherwise independent resonances of a system are coupled

together by some time-varying parameter of the system. It

amplification of these normal modes is to occur, the time

variation of this parameter is not arbitrary , but rather is

fixed by a condition, dependent on the frequencies of the

normal modes which are being amplified. When there is dis-

sipation in the uncoupled modes, then a “threshold” power

of the time-varying parameter exists, above which energy is

transferred to the now-coupled normal modes. Notice that

we have made the implicit assumption that the energy trans-

fer is small enough that the pump remains essentially un-

affected by the excitation of modes in the system; this is the

origin of the term “parametric,” the time—varying parameter

being treated as having constant amplitude over many

periods, and entering the calculations as a parameter in

the growth rates of the excited modes. Current application

of this principle is being made in many fields, including

circuit design4, non—linear optics5, and several areas of

plasma physics.

In the case of a plasma, parametric couplings occur

in amazing variety, as a result of the multitude of waves

possible in a plasma and the richness of the interactions

among them. If we restrict ourselves to an infinite, homo-

geneous, unmagnetized, fully-ionized plasma, there are only

three linear resonances possible, each with a well-known

dispersion relation:

_ _ _ _ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1). the e]ectromaqnetiC wave, 0 (see page 12 for

our notation)

[i + ( C1 
/~ e1k o )}’~, ~ a 4~ -Z 

~~~

2 ) .  the Langmuir wave , = 1,

~~~~~~~~~~~ (it 3k2/k~~ )~
’2 A 411fl e2/6€ ;

3). the ion-acoustic wave , = 1,

4.’A ( 1.  7 (me/m~~ k /~~~rj~ G~ ~~
,

Each of these waves has a well-understood dissipation

which we list here as the imaginary part of the above f re-

quencies:

1). the electromagnetic wave ,6

_ _ _  ~ k1~ ~~~~~~~~~~~~~
2). the Langmuir wave,6

~~ 
(-~r~’~ ~~~~ 

(-t~/k~) + ~~ (9~,ik ~~)/(6~ flTr ~~)~

3). the ion-acoustic wave,7

~l~~ h - ~ [
0.4!

~ (m~/,r~, )
Yz (P.’~ )~

. 0 ~~ ~~~) ~~~~
•

In a quiescent plasma, these three waves are independ-

ent; however, an intense high frequency field can paramet-

rically couple together various combinations of these

modes.8 Physically, this high-frequency field acts as the

pump , by set t ing up currents in the plasma. These currents

change the susceptibility of the plasma, nonlinearly , in 

5-. —.5 5— -.5 —~~~ 5- —.5 -~~~~~ — ~~~~— —5--



such a way that tkae equations describing the resultant

fields in the plasma have source terms which depend on a

power series in the pump power. Thus, for example , the

equation describing the amplitude of a low-frequency ion-

acoustic wave contains a term due to the beating of a high-

frequency pump and a high—frequency daughter field. Given

that the appropriate frequency-matching condition is sat-

isfied, both the high-frequency daughter field and the ion-

acoustic wave can be amplified. The frequency matching con-

dition for all parametric interactions which depend on the

lowest power of the pump is:

A/piii,~~~ ~~ 
I .~.qAO ...,,, IL I ~ I ~~4ii.. ,Lker .iw’ (

These lowest order interactions couple the puzw wave to

two other waves and are called three—wave interactions.

Table I lists the possible three-wave couplings in an homo-

geneous , unmagnetized plasma.

In addition to these three—wave processes , the pum n

can couple modes of the plasma through interactions in wh ich

two pump waves are involved. These processes are frequently

called second-order in the pump, even though the physics of

the interaction is similar to the first-order processes

which lead to the three—wave interactions. These “four-

wave ” interactions couple together two pump waves and two

high frequer4cv modes of the plasma through a low frequency

resnonse of the nlasma. This low frequency response of the

nlasma has the effect of making the expected freauency

.5- - ——-.5---—- - .5--— —~ -- —------
-
~~- . ------.5—-- - ---. 5------- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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6

TABLE I

THREE-WAVE PARAMETRIC INSTABILITIES

Pump Daughter Name Diagram
Wave

L or T L, L 26pe9 ~~~~~~~~~~~~~~~~~~~~
~~~~~~ ~~~~~~~~~~~~~~~~~~~

L or T L. A Electron-
ion decay8

T L, T Stimulated

scattering10 ~~
•

T T, A Stimulated -‘.-‘~~~~~‘,

Brillouin
scattering11 

1.),

T T, T Degenerate
e]ectro-

magnetic 

-- .5.
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matching condition :

~ I ~~~~~~ ~~ + I ~~~~~~~ ~~~~

hold only apnroximatelv. In contrast to the three-wave

case , the qreatest  amp lif icat ion does not occur when this

condition is satisfied. These four-wave interactions

are tabulated in Table II. In both Tables I and II , the

diagrams that are used to schematically represent these

interactions are taken from an analogy with auantum mecha-

nics. Thus , the freauency matching condition becomes a

condition guaranteeing energy conservation in the wave in-

teractjon.

The general formalism for parametric interactions in

a plasma is well-known for the case that the pump field is

homogeneous, i.e., has a wavevector, 
~~~

, equal to zero. In

the following two chapters, we present a generalization of

a kinet ic  formalism of parametric instabil i t ies to the case

0F pumps with more complicated dependence on the wavenurnber

of the pump. As we will show, the most striking of the

results of this generalization come from the wavevector

matching condition that must be satisfied:

= ÷

In our quantum analogy, this is a requirement for conser-

vation of momentum. In general, this results in important

changes in the character of the parametric instabilities,

which now have a sensitive dependence on the vector char-

acter of the pump wavenumber. We have restricted our study



- : ~~~~~~~~~~~ 
-
~ ..~~~

TABLE II

FOUR-WAVE PARAMETRIC INSTABILITIES

Pump Daughter Name Diagram
Waves

T L, L Oscillating
two—stream1’2 .~~~~~- .  I

-I •) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

T T, T Filamentation~’~
.•‘.- ~~

T T, L ~‘. ~~~~~~ 
“—~~~~“~ ~~~~~
&J. P~~i~~ £./

L L, L Modulational ~~~~~~~~~
—.5- ~~~‘

I ~~~~~~~~ 1”T

L L, T
—.*t-~~~~ -~

’

- 
.5 

-

L T, T ~

- -- .5 ., .5 .—-~~~~~~~~~ ~~~~~~ ~~~ -— .— —  ~-- -—— -5 . .5 -— --.5~~~
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of arbitrary ~~ effects to two general types: the effects

of a standing-wave pump, and the three-dimensional aspects

(in a cylindrical symmetry about k0). As will be shown ,

both of these situations are frequently applicable in astro-

physical and laboratory plasmas in which parametric in-

stabilities play a role.

In Chapter II, the general formalism for a kinetic

theory analysis of parametric mode coupling is derived for

a punt’, of more general form : the pump can be a standjnq

wave (or travelling-wave ) with arbitrary wavevector , ~~~~~~ .

This more aeneral. pump introduces two aeneral kinds of

ef fec t s :

1). Effects due to qualitative changes in the mode

couplings possible with a standing wave pump , and

2). Three dimensional effects due to the finite

size of and its vector character (independent of the

stanciinq—wave character of the pump).

The problem of a standing—wave pump driving paramet-

ric instabilities arises in several important plasma Config-

urations; whenever a transversely polarized pump wave is

reflected from a critical surface in a plasma , for example,

a standing-wave pump field is set up by the superposition

of the incident and reflected waves. A longitudinally

polarized standing-wave pump field can arise from the

decay products of another parametric instability if these

daughter products have almost equal a:~d opposite wavenumber3,

and equal frequencies. This is sometimes the case for a

-.5--— .5.-- --- - .5- _ .5_-5~~~~~ -.5 .5-5--.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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1 0
four-wave instability known as the oscillatini two-~ t-- c-a.--~
COTS) instability (sec Table II). At the end of Chapter II

we aonlv our aenera l formalism to the specific case of the

2w~~ and electron-ion decay (EID) instabilities driven }r~’

a standing—wave rump . The most imoortant effect here is

a lowering r~f the ef cctive power of the ourno when t~~’:

punto is a standina-wave . This reduction is a result of

difF erent modes of the plasma heina excited by each of tnc

t~.-o components of the standing—wave . We f i n d , in addi tion ,

the these modes are coupled more stronqly (ra i s ina  the

effective puntn power) as the separation in frer~uer.cy of

these waves decreases (with smaller k0), relative to the

arowth rate cf the irtstabilitv. As k0 goes to zero, and a

~tandinci-wave becomes indistinguishable from a travellinr~-

wave , we are able to recover the travellina -wave resul ts .

When we apoiv our results for the EID instability to

ionospheric modification data, we find the decrease in the

effective oumn power with a standing wave nump

lowers the theoretical predictions of the Lanqmuir turbu-

lence produced in these experiments.

After this application of our general formalism ,

the third charter is devoted to the more complicated , and

more ix~portant, problem of the parametric instabilities

driven by a longitudinally nolarized pump. The dispersion

relation we have derived makes possible a unified treat-

ment of all Langmuir pumped instabilities which have lonqi—

tudinal ly  polarized daughter waves. We f ind  that  the 
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rar~ ;-etric processes in this case are of thrtw t/~~ r~~~, iii

of which demand a treatment in three dimensions wj j.

arbi :r~ rv w.wenurnber pump :

1) .  1- non—oscillatory Drocess , whicn wo have callc~

t~~e oscillatinq two—stream instability after NjShjkc’.’.~j.’2

r~~r ~on-zero kc~ 
the OTS instability is one ~i~~:ris~~ n.~, Of li~~

unue~ ouite restrictive conditions, and , in many cases , ~~

tts fastest arowina daughter waves at a larg e annie to k~~.

2). The well—known electron-ion decay (tID) in-

stability . For on the order of the mass ratio . y e  fi~~

that the EID instability can be a forward scatterir .s nro-

cess.

3). A new instability~ which is oni seen in three

di -~iensions , called the stimulated modulational (Sn ) ifl—

stability . This instability produces daughter waves at ar-.

~nqlc to k0, which can have wavenuxnbets sliqhtl1 larger

t :-ar

The third chpater concludes with an apoiication c’

these results to three physical situations in which t h ~

lono i tud inal  punin is modelled on the quas il inea r  deca - of

an electron beam . In all three of the Situations exam~~n c -~ ,

Typc  Ill solar radio bursts , auroral arcs , and non-rcl-~ti-

vist ic laboratory electron beams , we have concludeci th a~
parametric effects do not substantially affect the b~ari

relaxation , which still  proceeds quasilirtearly . Other

aspects of these situations, however, do require the para-

metric processes of a Langmuir pump for their understandina :

=
- .

-
. -—-— .-- ~- -~-- - — , - .- -.5— -
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~e clcctromaanctic radiation associated with solar bursts .

the anomalous resistivity encountered by the auroral streams,

and the low frLquency spectra observed in laboratory

electron experiments.

Notation

We have attempted to follow conventional notation

whenever possible. All wavenumbers and wavevectors are

represented by lower case, Latin k’s; all frequencies are

denoted by lower case, Greek omega. In every case, a sub-

script zero refers to the pump (for example, k0 is the pump

wavenumber). We use a system of units in which time is

given in terms of the inverse plasma frequency and distance

in units of the inverse Debye wavertumber, kDe, defined

above (note that this gives velocity units of the electron

thermal velocity). Finally, 
~e 

always is the ambient

electron number density per cm3 and ~~ the temperature, in

ergs, of the s species. Vectors are denoted by undcrscorirtq ,

and unit vectors by a circumflex; thus, the electric field

of the pump is and has direction 
~~ 

or 
~k0 

(this is not

to be confused with an unsubscripted e, standing for the

electronic charge).

—--.5 .— - - -. -.— - —. 5— —-— -_— - •__..—-— -—-——— ~~~~~~~~~~~~~~~ -
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CHAPTER II

THE GENERAL FORMALISM

The first studies of parametric instabilities were

done using three simplifying assumptions :1’2

1). The pump wavenumber is much less than any other

wavenumber in the plasma;

2). ~ one—dimensional treatment is sufficient to

determine the fastest growing modes; and,

3). The pump is a monochromatic , travelling wave

field.

Assumption one sometimes implies that the pump is

homogeneous , the so—called “dipole approximation ,” and

frequently is applicable to parametric instabilities . From

the frequency matching condition for the EID instability ,

(see Table I , page 6), to take one example , we can derive

the following relation between k0 and k , the daughter

wavenumber, for a transversely polarized pumD:

c’A.2 
~~ 3Ve’k2

so that k0(( k. If the pump is a travelling wave, this

allows us to ignore k0. (As we shall see, assumptions one

and three are related, and the condition k0 c k is not

sufficient to guarantee a dipole oump if the pump is a

standinq-wave). In the derivation of a kinetic theory of

—- --- ~~~.-— -~~~~~ -a,-~~~ - -
-
-~~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-
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parametric instabilities in this chapter, we have relaxed

this assumotjon. The necessity of studying more general

pump field is clear if we repeat the above calculation

for a longitudinally nolarized oump , a Lanamuir wave. In

this case we have:

k~~ 2fr ~~ , 2 C c/ 3

• whe re c~ is the sound speed in the plasma . Clearly , ~~. and

can be coi~parab1e in maanitude. We have found the most

imnortant e f f ec t s  of a f i n ite k0 pump do occur for lon-i i-

tudirially polarized pumps. In Chapter III we ~“ill derive

detailed results for the k0 dependent effects in para-

metric effects pumped by a Langmuir wave field.

Furthermore, when k0<( k, we would expect that the

parau~tric processes would not depend on the direction ef

k0 (except as this is determined by the polarization of

the pump), and hence , that a one dimensional treatment

would be suf f ic ient. This is the content of assumption

two. However, to be consistent, if we relax assumption one,

we must be ready to examine possible three dimensional

e f f ec t s . Indeed , our formalism , especially in the rea i mes

when k0 ‘ k, predicts important three dimensional effects

for all parametric instabilities. These will be examined

in detail in Chapter III, for the case of a Lartgmuir pump .

ror the FID instability , to compare with our example

above , driven by a Langmuir pump, not only are k and

comparabic , but , in addition, the anale between k and

- .  - -- -- - ~~~~~~~~~~~ —.—- —~~~~ ~~~

—- -
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enters critically into the condition for maximum qrowth.

Our general formalism is derived in a three dimensional

geometry in which we have assumed a cylindrical symmetry

about

Finally , our motivation for relaxinq the assumption

concerning a travelling wave pump field (assumntion three--

although we have kept the assump -~.ion of a monochromatic

nuinp) is the evidence that in many experimental situations

the pumo is not a simple travel].inq—wave. It is freauently

the case, for examole , that the theory of parametric in-

stabilities is applied to experiments in an inhomogeneous

nlasma. In this situation, one aporoximation to a treatment

of the problem which take the densi ty variation in to

account, is based on the observation that an electromaq-

rtetic pump will be reflected in the rcaion of any

critical density surfaces in the plasma (where the local

plasma frequency equals the frequency of the pump wave),

• and , the superposition of the reflected and incident waves

will create 3 standing—wave electromagnetic field in th~

plasma. If the absorption of energy from the pump is small

enough, this standing-wave will double the local amplitude

of the pump field, but with a new wavenumber and frequency

dependence. This is thought to be the case for the plasma-

radiation systems occurring in ionospheric modification ex-

periments and in laser-irradiated pellets.3 The other
general class of problems in which a standing-wave pump

‘L
~~~iL - —~~~~~~____ ~~. . .. •~~~~~ ~~~~~.• • 
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arises is that of the saturation of parametric instabil-

ities. One example of this, which will be examined in more

detail in the next chapter, is the non—oscillatory

interaction of a small wavenuinber pump whose daughter

waves are a pair of Langmuir-like waves with almost equal

frequencies and equal, but opposite, wavenumbers.

The superposition of these two daughter waves sets un a

standing-wave field, and the saturation of the process

depends then on the dynamics of the standine-wave pump

a .~nerated by the original daughter waves.

In this chapter, we beqin with a kinetic theory

derivation cf parametric excitation i~ an homogeneous ,

infinite magnetic field—free plasma. Our derivation

relaxes assumptions one, two and three. We have divideu

our applications of this formalism into two parts :

1). At the end of this chapter, we study the effects

denendent on the standino—wave pump. The most strikjno

effect we find is a lowering of the effective power of the

pump. This is an effect we explain by a detailed consider-

ation of the new mode couplings that a standing-wave allows .

These new couplinq s arise from the different wavenuxnbcr

matching conditions possible with each component of the

standing-wave. The key concept concerning those phenomena

is that of the “closeness” of modes; that is, the separation

in frequency of two modes compared to the growth rate of

the instability . Using this idea, we have derived rela-

tions between k0 , the number of modes coupled in the plasma ,

.5.- -- -—__-—- - •~~~~~~~-.---
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and the effective power of the ntsnp These results are

applied to ionospheric modification experiments, where our

predictions of a lowered effective pump power

changes the theoretical predictions made of the observed

• Lanqmuir turbulence.

2). All of Char~ter III is devoted to a study o~

the three dimensional and finite k effects of parametric

instabilities driven by a Lanamuir wave pump.

THE NORMAL MODE EQUATION4

Maxwel l’ s equations in a medium are efficiently

solved heg innina wi th the equation relatina the ensemble-

averaaed electric field , F, the external currents , and that

part of the internal current which has a higher than linear

dependence on the field ,

(1) ~~(~,w)~~(~ ,w) ...4f [ j e Z L (k w) +

~-‘here ~ (k, Ar, ) is the generalized susceptibility , related

to the linear dielectric function, ~(k, w) through the

rela tion :

lkL  ak*
(2) mj m (k, w)= —a, - -~~~~ — +  t1~ 6Lm (~ ,4)).

The dielectric function itself is derivable from the

eauations describing the plasma. Our strateay in solving

this equation is as follows:

1). Rv limiting ourselves to linear stabiiity ana-

lysis, to look at the solutions to the equation when there 

- — - —.--—--~~-~~~~~~- - — ~~~-. _ _ _ _  _ _ _ _ _ _ _ _ _
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are no external curren ts, 1cxt = 0 , and concern ourselves

only with the normal modes of the system , whose dispers ion

relation is aiven by roots of:

2). To find an expansion of the non-linear current

in powers of the f ield ; and ,

3). To introduce an ordering among the contributions

to the field , distinguishing between the puznn field , an

externally applied field which is assumed to be of fixed

amplitude , f r equency , and wavenumber , and the much smaller

fields that the pump drives up (this is the so-called para-

metric approximation).

The solution to (3), using only the internal current

which is f i rst order in the pump , i.e., second—order in

the total field , gives the three—wave parametric interac-

tions; the current which is third-order in the total field

(second order in the pumo) gives rise to the four-wave

processes. To solve equation (3), we must evaluate the

internal current; in general , we can wri te the curren t in

terms of the non-linear susceptibilities and the fields in

the plasma. The linear susceptibility is given by the

linear dielectric function :

(4) ,j
~(i) (~,w) ~~~ 

-i L~~~
)

~~~~~~~ (~~~1
t~;) ~~~~~~~~~

where:

= 
~~~~~~ 

(~)w).

___
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The non-linear currents can likewise be written in a

series expansion which comes out of a Fourier transform of

an expansion of the current in terms of the electric fie ld:

j~~(~,w) ~~~(k1w)+ ~:‘ ~~~~
where:

(5
~~ 

j
CL) (k~~ ) .

~fd~2 ~~ (~,~ j~,,wq k2,w1) E ,,, (k~,w1) E~1(~~,w1)~

and :

j ’~(~,h.?) ~—iwf d i4zi ~~~~~~ ~~~~~~~~~~~~ ~~~~ k,,&,)
(6)

E,,,(k.,w,) ~~~~~~ E?(~ ,&l) ’
with the defini t ions:

( 7)  
d ’k di.~ d~k2 cI~’1 s ’(k ~t-~,) 

~~~~~~~~~~~~~

(8)  d ~~ ~ d’k1th~.).d ’k3 d~.~2d ’k,d,~ SYk ,-.~ -~,) ~ (&~
,-

~~-&,,.&3)(Z n )

It is impo:tant to note that the model of the plasma-field

interactions used to derive the susceptibilities is sepa-

rate from the model used to evaluate the dielectric function

in equation (2). We have, in the Appendix , evaluated

and /Sf,J~~~ 
for several important cases usina a fluid model.4

p rom equations (A.7) and (A.8) in the Aopendix, we have

explicit forms for the non—linear susceptibilities, and - •

we use them with the definition:

(9) ~~~~~~~~~~~~ ~~~~
‘&) êLe*,.,ê,i Xt ~~~~~~~~~~~~

where c1 = ek~ ~ f l  
~ 
ekl. etc. are the unit polarization

vectors of the E(k), E(k1), etc. The next step is to make

- —  - ~~~~~~~ - _~~ 
.
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the parametric approximation : 
-

(10) ~~(~,w ) =  ~~~ D ( ~~~~.~~~ 4’.) ~~

where E0 is the pump field amplitude 
and E’ the amplitude

of the self-consistent fields generated by the plasma. We

require that the following condition hold on these am-

plitudes: f  ~0I~d’k d 3 k

and that E~ still be small enough to ensure the converaence

of the curren t expansion (a s u f f i cien t condition for this

convergence is that:

fj LIt i1k (( f l e e

whose details are discussed in reference 5). Physically ,

our zero order (in E’) state is that of a large amplitude

known field interacting with a plasma. Our object is to

ca lcu late the effec ts linear in E ’. In qeneral, E0 has

the effect of coupling together previously independent

modes of the plasma (resonances in E’) and, in some cases

amplif ying these now coupled resonances. This is a para-

metric process since we take jE012 as f ixed, and the time

and space variation of E~, provide the couDling mechanism.

We now relax the assumptions listed in the beginning

of this chapter , on the form of the pump, and write:

= i~~ €. f (i~ ~) ~in (~~~ 4~).t ~ 
+ ~

(11) 

IE.f ~ 9M {o_~c ~ i~~~~r4 ~hit ~~ )
÷ ~x ~~~ ~~~

- —. —-- -- • —~~~.• .-.——— .•
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where is an arbitrary phase factor. This pump is a standing-

wave of arbitrary k0 when o( = ½ and a travelling-wave when

= 1 or 0. The local amplitude of this pump is always )E~

for any value of ~~. We write the Fourier transform in

space and time of the pump as:

(zn)~~~ ±L~) E.~
’ S’(~~~ .)~

(
~-w. 4 

(
~2..L I~

) 
£.

Substitution of this expression for Ec in (10) and then

into (5), (€), and their higher order analogues , immediately

gives the various currents in (4). The second order

current is, for example:

(12) ~ 
1(~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

+ ~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~
In an isotropic plasma (B0 = 0), we can choose r~ (~~, ~~

)

diagonal, and equation (3) becomes:

(13) 1.

This equation generates a system of equations connecting

fields at various values of the wavenuznber and frequency ,

shifted in their arguments by letting k go into k±k0 and

wgo into W±w0. The result is an infinite, homogcnoeus

set of coupled equations for E’(~±nk0, ~J t (J 0 ) .

Physically, the pump has coupled previously indepen-

dent modes of the plasma; there is, for example, the

term in these equations proportional to ~~~~~~ which couples

the mode at (ic, W)  with the four modes at (k±k0, 
~~~~~~



---y--.--- -—-.5~
-- -- --

23

and (k±~~~, c~;u0). Our object is to solve this system

of equations.  Given that  we know the susceptibilities ,

substitution of (12) and the like expressions for 
~~~~~~ 

etc .

into (13) gives a homogeneous set of equations for the

~~~~
‘ fields at different wavenumber and frequency, and the

determinant of the coefficient matrix of this set of

equations gives us a dispersion relation which descriLes

the new normal modes of the plasma. We now turn to an

evaluation of the dispersion relation.

THE DISPERSION RELATION

The fundamental difficulty in solvina the matrix

equation that follows from (13) is that it is infinite .

The infini te number of variables that we have are the

fields E’: E’ (k, c.i) , E’ (k
~~c,, 

W±(J~), E’

E’ (k±2k0, W), etc. We must find a way to truncate this

doubly infinite group of variables in wavenumber and

frequency , if we are to get a finite set of equations. We

will show that truncation in frequency and wavenumber is

provided by a restr iction that allows us to take into account
only modes that fall near a resonance of the unperturbed

system. However, our ability to truncate the series of

variables in wavenumber will be a sensitive function of

~o’ which is not the case for the truncation in frequency .

In this section we will reduce our infinite equation to 
I -

an m x rn determinant , where m is a function of k0. Pie

then will apply this m x m determinental dispersion

I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-•~~~~~ - •- • - _ -~~~~~~~~—~~~~
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• relation to several nararnetric instabilities driven by .
~

standina-wave pump .

We now turn to the problem of truncating the infinite

matrix equation that follows from (13). We first make the

convention that 0 < W <W 0. This quarantees that all the

arguments in frequency , 4±ncJ0 are different for different

values of n.  One consequence of the condition that

fIE0 ( d~k < rGe

is that  the predominate response of the plasm a , E’ , will

be very near the no rmal modes of the unperturbed plasma.

it is in this sense that the pump is said to couple the

normal modes of a plasma; that i~S~ if k)a is a high fre-

quency normal mode of the plasma , so that :

E(~ b ,w.) ~~O,
and , if ~

(&) is a solution to our new dispersion relation ,

then :

W — Wa~ ~~( W 0

This is easily verified a posteriori. Now the normal modes

of the unperturbed plasma are wel l known, and we can con-

clude that we need only keep fields , C’ , which have a

frequency near a normal mode of the plasma. Since we will

choose the pump frequency , g,~~, to be a high frequency (on

the order of the plasma frequency), it is easy to verify

that, for the responses of a homogeneous plasma, Table I

(page 6) gives the possible excited fields for the couplinos

allowed by ~(2)~ Let us call, for such a three- wave

____ .5 
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process , 
~aQa~ 

and “%Qb) = 
~b~~~~~&’ 

the normal modes

of the unpumped plasma ; the daughter waves of the insta-

b i l i ty  must be near these two frequencies. Thus, for

• example, to excite the 2
~ ne instabil i ty (see Table I ) ,  we

must sa t i s fy  the frequency matching condition , at least

arproximatelv :

ttJ~~ ~AJL (k~) E W a ( t ~O ) )

c~) - w o ~~~- w e -~~. )~~ Wb ( ~~~~~0)

(In the case of the 2
~pe 

instability , 
~a 

and 
~
“b’ the natural

resonances of the plasma that the pump excites , are both

Lanamujr waves). We can choose 
~a 

so that these eauations

are sat i s f ied .  But, the other modes, at:

~~

- 2w~ ~ -2 w~~

will never be near a resonance of the unpurnned plasma. The

more exact meaning of “near a resonance ” is straiaht-

forward . Physically , we want w(k), the new norrtal mode , to

be within a growth rate of the “old” normal mode of the

system. Expressing this in terms of the dielectric fun-

ctions , which are more properly a measure of the plasma

response :

IRa.~
(
~ w ) — R ~. ( ~~,(4,,)J < ),~lA~ E( i~,w)I

I .~~~~~~~~~~~~~
(k’ w - 4

~~)1

Figure one a) shows schematically what is required . These

inequalities allow us to truncate our equation in frequency .

---. -~~~~~~.--—~~~ 
_______
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I

(
~ImE(~~w~Zus)

I 
~*E~~~w) I

a) 

~ (k4~w-~)

I ~~~~~~~(7

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~

Figure one. Qualitative diagram of the plasma
response as a function of wavenumber and frequency . In a)
we have the criterion for determination of which frequencies
are “close enough” to a natural resonance of the plasma
.(shown by the dotted lines at 

~~ (ka) and -~~~(kb)). The
mode at ~~~

&)
O is close enough; the mode at 4I-2~~ 

is not.
In b) the criterion for determination of which wavenumbers
will be excited. Modes at (katko, ~~~~~~~~ (ka,(~

)), and
(ka~

2k , . i)  are M close enough” to a natural resonance , but
the mc es at (ka~ 3k~ , w-ø~) and (ka+2k0, 4 )  are not.
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Notice tha t  if ~ is a low frequency, that it is

possible to have three daughter frequencies near resonance:

— W, ~~~ — W • ~~~ Wp..s.. , 4) 
~~~ 

W A .

This enables E ’ ( k , C ’) ) ,  E ’ ( k + k 0 , w+’. 0 ) and t ’ (k - k 0 , 4~-w0)

all to be excited . We shall see that is the case for the

four-wave instabil i t ies (see Table II , page 8). In the

• remainder of this chapter , however , we assume:

IRi_ 
~
(
~~~L&1~) 1~4~~ (”a)j <  ~~~~~~ &~.) 

(I ~~~~~~~~~~~

and we will defer discsssion of four-wave effects to

Chapter I I I .

We now specialize our results to this case, and make

the related assumption that only J (2 )  needs to be consider-

ed. This is admissible as long as we can neglect small

corrections to Re and are interested only in three-wave

effects. In chapter III we will include effects due to

both the up-shifted wave at C’ (k+k0, c.+w0) and due to

coupl ings introduced by j~~~~~~ . This leaves us with the

following equations , obtained from a SUbStitut~~ 0~~ of (12)

into (13)

(14) 
€(.k1w)Eg’(~t,w) ~~~~ (k

.h.,w -w.;-k.,-w.; k~ ~~ ) 
E,~’(k. k. ~‘-w.) E.~..

.+ - ci~) ~j ,,.,,(k+it.,w-c.,,; h.,-i~~~~ k,~) E,~’ (k4 k., , c ~.) E.rs ;
(1 5)  £Ck.k.,t- t ~.)E. (k-h,,ww.) 

~c ,x1,~,. (I w, ~~ w.; h-~,w- *) E,~(*~.~) E,~.
+ (I-o() ;?Q,~1 (k .2k, t~,;-k.~ ’.; k-k~,c.i-w.) E~(k Z&.,~~L~;

(16) €(k.1~.1 )E ~’(k.k.,w- w.) • ~~~ ) , k~.2A., Jt.,W,1 k. E k.2 k .~ )~~~
+(i~~~) ~~~~~~~~~~~~~~~~~~~~ ~~~~~~(k ,L4) L~1

(17) ~~~~~ (~) Ej (k~2 ~~~,‘~‘) ~ ;x~.,111 (k- 3 k..k-~J,;- ~~~~ k-z~ .1) E~
’ 3k..~.’-w.)L

+(I~~I~~~ (k.k0,w.t~,; *s,c,,.. ~~~~~~~~~~~~~~~ E,~’(k k,,w-w,) ~~

k. 
_ _ _ _ _ _ _ _ _- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(18) E~ k42 k.!.L!A;LE( ‘(k+2 k. ~c..i) ~ )t 4 J i,,t.i. t.~, -p,,
. 
~~.; 

k4 2k0,L4) Ep’(k ~ k~ ~ 
.
~~~
) E~~.

+ (i - ~~~~ (kd 3h.,c.~~,; k.,~~~~4; ~~~~~~~~~~~ E~ rn

When o( = 0 or 1, and we have a travelling-wave oump ,

only equations ( 14)  and (15) are necessary . That is, with

a travelling-wave , a truncation in frequency also truncates

the series of equations in wavenumber. This is a result

of the fact that a travelling-wave can only couple modes in

which the wavenumber and frequency are sh i f ted  by the same

multiple of (k0, ~~~~ However , a standing-wave can couple

modes a more complicated fashion. Equation (19) shows, in

matrix form , the infinite set of equations qenerated ike

(14)-(l8) by a standing-wave pump. These equations have

been truncated in frequency , but not yet in wavonumber. An

analogous truncation is possible for the shifts in wavcnuri-

ber , since , for large enough k0, £(k±~~~, C, -w,~) and

eQ~± 3~0, w-w0) cannot both be on resonance simultaneously.
That is, if we assume that E(k—k0, £~ —~~~~~) is very close to a

resonance of the unpumped plasma , then the mode at ( k ± n k 0 )

with frequency (Ci—w0 ) will be “near ” this same resonance

only if:

I R L E(~~) w)~~ R1E,(kt na ka ,w)I  < I ~~~~~~~
or, in terms of the other mode:

I ~~ € ( k-k. ~~
,-

~u,)- ~~ E ~~~~ ~-c~) I 
<)
~~ ~(k-%., t~-w,)I

Our wavenumber and frequency matching conditions and

eauation (19) allow these equations to be written :

(2 0a )  ~PL ~~~~ .a,~ ’1a) R~.E1k3 t(n-~)~~ o,WaIJ< (.2~~~ € ~~~~~ 

------~ - --~~- . ----- ‘-—-- -— -.~m---. ~ —---~~~~~~.---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~
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(20b) 1 ~~ ~~~~~~~~~~~~~~~~~~~~~~~~ < I~~~~~ € (k .~~~~~ 0)j .

Uotice that the same integer, n, enters both (20a) and (20b).

This re flects a physical property of (19), namely, that two

conditions must be satisfied for a given mode to be ex-

cited (thus, not excluded by our truncation scheme):

1). The r)de must be “near enouqh” to a resonance —

of the unpumped system (this is expressed in (20a)); and ,

2). This mode must be coupled , in (19), to another

mode that satisfies the first condition.

This second requirement is a result of the fact that the

second-order susceptibilities can only couple modes shifted

by (±k0, ~i0 ) and both of these modes must be close to

resonance. For example, in the LID instability (see Table

I, page 6), when 1
~a 

is a Langmuir mode and 4))~ is an acoustic
mode, the na and ~b may be different. We must pick the

smaller of na and ~b’ i. e., the one that satisfies (20a)

and (20b) simultaneously C~a 
and n~ are defined in the

two inequalities immediately preceeding (20a) and (20b)).

In the next section , we will show results from a numerical

test of this second requirement, by evaluating (19) in
the case when we use (20a) and (20b) to eliminate modes, and

in the case when we evaluate (19) without taking the

smaller of 1
~a 

and

Equations (20a) and (20b), then allow us to truncate

(19) i,~ wavenumber. Figure one b) shows the situation
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~There modes at (ka±ko~ 
w-~~ ), (ka,C’J ) ,  and (ka~ 2ko~

(4)

will be coupled together. The other modes shown , at

(ka+2ko, C’) ) ,  (ka 3ko, w-u0 ) are not “near enough” to a

natural resonance of the system to be excited . In most

problems of interest, all frequencies of the daughter waves

will, be functions of the wavenumber which are slowly varyina ,

and so we can write (20a) and (20b) as:

21 
~~~~~ ~~~~~~ ‘-

~~ J ~~na) dk k~~k51(t~i)k.

~ 
E(~~L~) < 1~~~~

-
~ ) !(21b) ~~ 
- ‘

where , again , n is the largest positive integer for which

both inequalities hold. Examining (21) or (20) we can

determine the total number of modes that a pump with a

given k0 can couple together:

1). If n = 1, and lLt~a~~a
) +w b (ka—ko) - (4)oJ~~~Im4.(,

we cannot satisfy the basic frequency matching condition.

In the three-wave approximation , there are no parametric

interactionb possible for this pump (note that this case

could also arise if there were no value of n , besides

zero perhaps , which could satisfy (20a) and (20h) together).

2 ) .  If n = 1, and ! 
(la(k a) + Wb (ka ko) - ~oI<I1m~I,

we have two possibilities. If equation (20b) holds only for

the upper sign, then the following modes are coupled :

41a&) , k’~(~ -~ .)

_____ - ___ ___ ._._ “- . . .~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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This is the same couplinas that exist in the usual travel-

linq - wavc pumped instability . If, however, (20b) is satis-

fied for both signs, then the following modes are coupled:

(
~Jo(k) ,~”e, (‘~

-
~ .) , ~~~~~~~~~~

This is the simplest standing-wave coupling.

3). If n> 1 (for both signs of (20b)), then we

couple together m modes, where m = 2n + 1.
Thus the inequalities (20) or (21) allow us to

truncate the infinite matrix , (19) in wavenumber , kecpinq

only an m x in matrix out of the center (the 2 x 2 matrix and

3 x 3 matrix described by case two abcve arc marked by

dotted lines on equation (19)). In the 2 x 2 case , we get

immediately the determinental condition:

(22a) 
E(~ ,k,) €~~~~ .~ u-wo)

- 
~ ~X(~w; ~.,L4J,; ~ t~,,w-wo),X C o,~~~~~~ ,w)JEol ~O•

When~ = 1, this is the res.dt of the usual travelling—wave

calculation. Notice that for a standinq-wave pump , when

= ½ , we have a lower effective pump field. The conse-

quences of this will be examined in the next section. For

the 3 x 3 determinant:

€ (~.,w E(k~~.,c~J -c~,) ~~~~~~ ~‘-~ ‘.)

(22b) — K2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
— 
~I ~~ ~~~~~~~~~~~~~~~~~~~ 

ti
~~~ X(~j’s iV~(di

1k ;W., k,~1) ~EGI1
~

_’ ~~~~~~~~~~~ =
This is the dispersion relation we will study in detail in

the nex t section , anplvina it to the cases of the EID and
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instabilities. One feature of this equation , which

bears on the meaning of our truncation scheme, should be

noted ; (22b) implies (22a) whenever (20b) is not satis-

fied for both signs. That is, if C(k+)&0, w-~’0) >) ~

which is equivalent to (20b) being violated for the upper

sign , then (22b) simplifies to (22a). This is a result of

the fact that our truncation scheme does not introduce any

new physics; it only serves to make the problem mathemati-

cal ly tractable by giving us a method of predicting which

modes will be important (i.e., coupled together) and which

we can afford to ignore.

APPLICATIONS

~~ now apply our general formalism to specific

situations in which a transverse pump decays into longitu-

dinal waves. There are two possible three-wave processes

in which this happens:

1). The 2&pe instability. Here a pump wave near

twice the plasma frequency decays into two Lanqmuir waves.

We will show that the geometry and growth rates of this
instability are changed considerably by a standing-wave

pump. The qualitative changes are due to the superposition

of two instabilities, each due to one component of the

standing wave.

2). The EID instability. In this instability , the

pump wave decays into an acoustic wave and a Langmuir

- -~~~~~~ - - _ _ _ _ _ _
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~‘ave. As was noted bcforc , this instability always has

k )) k0 and the effects of a standing wave are confined to

a decrease in the effective power of the pump. Even so,

an analysis of the LID instability in the interpretation

of ionospheric modification experiments shows this

effect to be significant. For both instabilities we examine

the limit of small k to recover the standard travellincy-
0 

-

wave results.

The 2 0 Instability6

The 2C4pe instabil i ty can be visualized as the decay

of the pump wave , here at near twice the plasma frequency ,

into two plasma waves. The approximate frecuency matchina

condition for this decay process is:

(22) A), (~ .) 
~~~ 

t ~~~~~ ~~~~ 
.

This matching condition and the results of ineauality (20)

determine the qualitative aspects of the instability . Ir.

the initial work on this instability , Goldman derived

results for arbitrary k0.
6 The 2t

~pe instability , in fact,

does not exist for a homogeneous pump. He found maximum

growth when (22) is satisfied and ~k•k0 ~ i~ 1~
’. The oni

generalization our results offer is that of a standir.g-

wave pump. We find two regimes in the effects a standing-

~zavc pump produces. One is the regime in which the dauqhtcr

waves pumped by each component of the standing-wave arc

independent ; this results in two, travelling—wave in-

stabilities, pumped, however, by a field of only half the

- .5- .5-- -- —-.5 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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local amplitude . In this case we recover the geometry of

the travelling wave , where ~ .k0 ~~ 1IIT. In the other

reg ime , the daughter waves interact. This results in a

growth rate intermediate botween the other standing -wave

regime and the growth rate that would result from a trave l-

ling wave pump . The geometry is essentially uncharged .

rinally , we use physical arauznents to show that in the

k ‘ k0 regime , the standing—wave and t ravel l ing-wave resu l t s

agree. Let us look at the simplest case of a standing-

wave driving a 2ts~pe instabili ty, when in = 3 , and our dis-

pers ion rela tion is given by (22b). In this case , we have

the following three modes coupled :

( 23 )  
~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~ -

and , from (2 0 )  we get the exact conditions on

(24) ~~~~~~~~~~~~ < iv~6~~,~~) <

Using the symmetry properties of the susceptibilities given

in the Appendix , the equation describing the new normal

modes of the plasma is (from (22b)):

~~~~~~~~~~~~ ~~
,-iJ. )E(ktk0 , 

c~~w .~) t~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(25) E (k+Ji4.,~~-tJu)

t O-  ~)tI Eu~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
‘

~~

The Appendix gives the general form for these susceptibilities:

(26) ~~(kj~~i k;k~w ~( (~~~~~) 
~~~~~~~~ z1r~

~

---
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where :
T= 9e/~,

= E.1/f4nri~(9e +

Since all the high-frequency modes arc- well-defined , we

also make resonance approximations for all the dielectric

functions;

(27a) ~(k,eA.’) ~~

(27b) ~ (~k~~.,W-14) -  ~~~~~~~~~~~~~~~~
This reduces equation (25) to an algebraic equation , cubic

in the frequency :

(28)

= 0

Al though it is not necessary , we will also assume that the

only damping of these modes is collisional, and, so not

dependent on k. This cubic equation is intractable in its

fu l l  generality, but it can be solved approximately in two

regimes where the instability exists. Defining the fre-

quency mismatch factors:

St

we have the following conditions under which the solutions

to equation (28) will have a positive imaginary part and can

be dealt with analytically :

A). Independently excited daughter waves, i f l

- 

. 

- 
I - 

—
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this case , one of the daughter waves is much nearer to

being resonan t than the second , or :

€ (w ‘c ~) >  £ (~.* k , ~u-e4) >> ~ (k~ ~~~~ , ~~~~
or:

>> I &-S ;l
Equation (28) can be approximately written :

(29) 
~~~~~~~~~~~~~~~~~~~~~~~~~~ + f(i~~] r

2

This is the equation describing the usual , travelling-wave

pumped ins tabi l i ty, except that the coupling between the

two Langmuir waves, r±, is only one-quarter the coupling
for  a travelling wave pump; this is a result of the local

amplitude of the effect ive pump being one-half E0 . In

other words , only one component of the standing-wave pump

drives the instabil i ty. The growth rate is then , solving

equation ( 2 9 ) :

~ 
2 [WL(k ) ’ 5*] 1~~~(30) -, 

1~ 

—
J ‘

which has its maximum value of :

~ I ~~~ 
= ((I 

~~~ ~ r± —

when 
~
JL(k) = 

~~~
. Notice that the maximum growth occurs

when equation (22) is satisfied; this is the condition that

determines k for maximum growth, as a function of ~~~, and

so we have deduced the frequency matching condition in a

natural way Out of the dispersion relation. in addition ,

-- - -  - - - - -
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there is a regime , for values of It very near the threshold —

va lue of r~
& =4~z , at which the maximum growth rate is pro-

2

portional. to I rather than 1’. Figures two and three show

a numerical solution to equation (28) in the regime of

case A. Figure two shows the real and imaginary parts of

C~ w i th  k ’k c, = 45° , and Figure three is a plot in polar

coordinates of the imaginary part of the frequency (the

g rowth rate of the instabil i ty) as a funct ion of k .  ~.ctice

that for this case , equation ( 2 0 ) ,  which requires the

r~odes at to be TM close enoughTM to resonance , is at

best, marginally satisfied ; we have , physically,  two, es-’

sen tially uncoupled (except near 900) instabilities , each

pumped by a travelling-wave .

B). Coupled excited daughter waves. When 6.4.= S .,.,

both daughter waves can be near resonance for the same k,

and equation (28) becomes (for ~~= l-~ ):

(31) [w-w ~~) + i ~J [ w -  s +  ifl ~ a~zr 2 0

where :

s= (s +~ s_ ) / z
r~ (r+~r..)/z.

The maximum growth rate here is larger by ‘~~
‘ than for case A:

(32) c9~ wI~~ ~ ~ r, (4~,(~ ) S. —

Figure four shows the real and imaginary parts of the solu-

tions to equation (28) in this regime , and Figure f ive

.5-- - -  .5 -- --— ---- -- --—-.5- 
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Figure two . Independently ex~ ited daughter waves
driven by a standing-wave pump at i~.k 0 = l/ i~~. The real
parts of the three roots of (28) , given in the top solid
lines, and the imaginary part of any root which greater
taan the Langmuir damping , are shown on the same graph.
The following parameters put this example tn the regime of
case A of the text for the 2 pe instability : k = .056;

= l.6x10”4; (v
~/c)

2 = l0”~
3; and 1 = l0~~ , T~e maxi-mum growth rate occurs when (23) is satisfied . In this

regime , equation (29) is a good approximation to the
above solution in the regions of growth.

_ _ _ _ _ _ _ _  ~~~~~
- _ - _

~~~~~ 
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Figure three. Growth rate as a function of k for
independently excited daughter waves in the 2 W pe instability .
This is a polar contour plot of the imaginary part of the
solutions to (28). The symmetries come from the mathe-
matical properties of (29), such that, for example , in-
verting k chanaes the upper for lower sign in (29). The
signs in the center of each region of the instability cor—
respond to the appropriate sign in (29) and also indicate
the wave coupling that produccs the instability Ct cor-
responds to 0(k) and 0(ktk0) being coupled). The para-
meters for this graph are the same as in Figure two. The
units in the contours are :

0 -lxlO 3 
~‘pe1 0

2 +j,x],O”3

- -
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Figure four. Coupled excited daughter waves driven
by a standing-wave pump at ~‘~~‘YJi,the 2~’~ne 

instability. The
real roots of (29) are given on top , and the imaginary part
of any root when it is positive, given in the lower curve.
The following parameters put this example in the regime of
case B: Ic — .028, W0 — t.6x10’2, (v5/c)2 2.5x1O (~.’l0~~— Co5(4g0). For this smaller k0, the disjoint struc-
tures of Figure two have coalesced, We can write the condi-
tion for this coalescence in terms of r and Ic0:th t3. $ 2r,
when ~~~~~~~~~~~~~~~~~~~~~ 5(I~.~)%O , from considerations of the width of
the unstable regions and the distance between the regions of
instability. Notice that when ~~~~~~ ~ , that this is auto-
matically guaranteed to be the case by (20). The broader
region of instability is due to the larger value of 

~L 
used

in this graph.
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Figure five. The growth rate as a function of k
for coupled excited daughter waves of the 2

~”oe 
instability

driven by a standing-wave pump. This is a pblar, contour
plot of the solutions to (28), with the parameters of Figure
four. The symmetries are the same as in Figure three. The
units on the contours are:

0 0
1 2x10 3 &,

2 4x10 ’3
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shows a polar plot of the positive imaginary part of this

solution.

Thus, the most important change that a standing-

wave pump brings about is a change in the e f fec tive f ield

strength that drives the instability . As we have seen

above, when each component of the pump drives independent

daughter waves , the effective pump field amplitude is down

by one-half from the travelling-wave case, and , when both

act simultaneously , the amplitude is down by a factor of iT.

In this second case , the pump fields seem to add incoher-

ent ly , with powers rather than amplitudes adding . The

difference between cases A and B can be one of Ic0 getting

smaller; as Ic0 decreases , and we approach a uniform pump ,

the effect ive  field strength increases. The inequalities

in (20) determine whether the daughter waves are sibroaduu

enough to be pumped by both components of the pump simul-

taneously (see Figure one b), page 26).

Indeed, if we can solve the full equation (19) in

the limit of ~~ = 0, we should recover the travelling-

wave results. The limit of (19), however, is subtle.

Strictly speaking , the instability does not exist when

= 0, since all the susceptibilities are proportional

to k0 when k0-(< Ic. Thus, we can look at the limit k0< ( k,

but with k0 still non—zero. There are at least two ways

of taking the limit:

1). In (11),

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ _ _ _ _ _ _ _ _ _ _ _  
_ _
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let ~ go to one , followed by Ic0 
getting small. This limit

presents no problems; when~ - = ½, it easily gives the results

for a standing-wave pump, and, whenx= 1 or 0, it qives the

properly normalized amplitude for a travelling—wave .

2). If, we set~ = ½, but take the limit k0-< k,

the inequalities in (20) demand that more and more modes be

coupled together. If we require that nk0<< k for any n ,

then we must use an arbitrarily large matrix equation of

the form of (19). In the limit, all the susceptibilities

are the same, and we have to evaluate the following deter-

minant, with the definitions:

(33)

(34) E(’-~
)
~ R’~ ~z,., [~ )-~~~(~~).-~~ ]

E(
~~~
J-(A

~~)~~~~~~~~~
-
~~~~~~ [t4 ~

i - S + 1
~~~~~]

evaluated at the k for which 
~‘JL
(k) = 5 ,so that

6(L ~~
-L

~~,) —R ,

R )Vi 0 0 0 ’ ’ -

~/z rR viTo ’ a ’  -

Dm ‘ ‘ 0  ~~ R :~~~. ~~~~~~
-

( 3 5 )  — — —— — - -J

0 i_ o_ ~/z~~~J ~/a ’ ‘

0 9 C) ‘/2. ~ 
‘ 
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We have not been able to mathematically reduce this

infinite determinant to the equation for a 20pe instability

pumped by a travelling-wave with amplitude twice the ampli-

tude of either component of the standing-~.’ave (this is the

limit that would be expected); however, we have been able

on physical grounds , to derive a lir.it on the size of

the determinant, and within this limit our large deter-

miriental condition reproduces the travelling-wave results.

That is , an m x in determinant Cm is the limit we are able

to derive), for large in , gives the same results as the

center 2 x 2 determinant (marked by dotted lines in (35))

does with E0 doubled. Physically , this describes t1~e fact

that as K0 becomes neglig ible compared to k , the two com-

ponents of the standing-wave become indistinguishable ,

and the local amplitude of the field goes from:

LEo (
~~w~ ~ Eo -~,,w,~I/z to

In a straightforward , although tedious, calculation

it is possible to derive recursive relations relating the

determinants of different dimension , in.

(36) = RD,~1 _ (X/L)1Dm~L ) mod4 ~ ‘
~~

-

37 RDm-’ +(~/2.)2 D,1~-2 , nicd4 Yfl 1

(38) 
~~ ~~~~~~~~~~~~~ ÷(X/~)~D,~..1 

) 
mod4 p~~ 2,

(39) RP~-4 - (x12 f0,,,..2 ) rflOd4J~ 3.
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where mod4 m is the modulo, base 4, of in ( i . e . ,  the integer

remainder upon division of in by 4). There are four rela-

tions because of the alternating sign of the diagonal

elements in (35).

Keeping terms fourth order in E0, but no higher

powers, we can write the determinental conditions for the

two cases of interest, mod4 m 1 or 3 (which have the same

value to this order in

(40 )  Dm =[R 4 + (m-I)tRt/4 - (!~~~~~~5’~~~ ~€) X ~f16} R~.+ c-

It is easy to factor this quadratic in and wri’..e its

generally complex solutions in the form:

(41) ~~ °‘~

For a travelling-wave pump we have, in this notation :

~~

Our 3 x 3 results are that:

~ Ra _ z C x I 2..)L .
For m~~ 9, we get the expected result, that j3 approaches

four; at m = 9, f3 3.94. This is physically equivalent

to the two components of the standing-wave field coalescing ,

doubling the local field amplitude and thus quadrupling ~~.

Numerical results showing this dependence of on in are

presented in the next section. However, after a gradual

asymptotic-like approach to f l -  4, ft begins to increase as 

----.5-  -~~~~~~~-- - - -~~~~~~~~~~~~~~~~~~~~ - — --- - -- ,~~~~~~~~~~ ---- ---~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We must look for a physical explanation for the

breakdown of our matrix formalism. Physically , the problem

seems to in our continuing to treat all the modes as dis-

tinguishable as Ic decreases, no matter how close they are
to each other. That is, as Ic decreases, all the modes at

0

k±2nk0 mus t coalesce wi th the mode at (k , w) and all the
modes with wavenumbers of (k±(2n+l)k0) mus t coalesce wi th

the mode at (Ic , w-w
~
). Physically,  this wil l  not be a

discontinuous process , obviously , collapsinq an infinity
of modes for any non-zero k0 to only two when Ic0 equals

zero. Rejecting that possibility , we must examine the

criteria for being able to distinguish modes which are

close to each other.

Referring back to Figure one b) (page 26), it is

clear tha t if K0 is small enough so that for n)7l, we have :

(~Ja[k~)- a(~.-Z~ I (< j t~~~( 
- 
C’(~~~

-fli ~o) 
I

and , then , in this case , it will be d i f f i cu l t  to distinguish

between tu)a (ka) and ~~~~a
±2!

~o
) Both of these modes will

overlap entirely and so must, physically , be considered

identical. This result puts a rough upper limit on n:

n 4. 10, and on m , the size of the determinant, m .~ 20. This

consideration gives an upper bound on the number of modes

which can be put in this matrix formalism of (19) and

still remain physically meaningful. TI~at is to say , for

m large enough , say greater than 10, we expect the linear 
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results for these modes to be meaningless , because the

modes are no longer distinguishable. And , it is at this

point that our mathematical results begin to give physically

suspicious results. Another w~y of looking at this situa-
’

tion is to say that only on the order of ten modes with the

same frequency can be excited, and the coupling of these

ten modes is given by (34). When this many modes must be

taken into account, we have the standing-wave pump duplic~-

ting the coup ling given by a travelling-wave pump.

It is important to note that this argument is a

physical and intuitive one. ?lathematically, in an infinite ,

homogeneous plasma, there are no limi ts on the number of

i~odes that can exist. If two modes have different wavenum-

bers , no matter how close these wavenuinbers may be to each-

other, they are distinguishable. For a reason that remains

unclear , our matrix formalism does not rna’them atically

allow us to take the limit k0-.’O and , by doing so, to

reproduce the travelling—w~.ve results.

THE ELECTRON-ION DECAY INSTABILITY1 ’2

In  the case of the electron-ion decay instability ,

the decay of a high frequency electric field near the plasma

frequency into a low frequency acoustic mode (or quasi-mode)

and a high frequency Langinuir wave, the new mode coupl ing

effects of a standing-wave pump are similar to those for

the instability. The important differences between 

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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the standing-wave treatment of these two instabilities

come from the fact that the daughter modes for the decay

instability are different resonances of the system. Thus,

to begin with, we must interpret the inequalities in (20)

differently. The number of modes of the acoustic branch

which are close enough (in the sense above) is na:

J (43) 2 (ii
~~~ 

I) ~~~~~~~~~ ~~ < ~~~~~ £ (LI k~~)

and of Langinuir waves , is nb:

(44) 
~ 

>

In the case where:

(45) -‘- 3k ccs i9~ ) ( jy~j.)V& ~~~~~~~~~~
these relations imply that the standing wave pump will

couple together first modes at:

(t)L(I~), &A (~t~Q), 4(~~ -~~.),

and then additional modes as allowed. When (45) holds,

there cannot be a coupling of one acoustic wave and two

Langmuir waves. This follows from the frequency matching

condition:

~~~~ ‘(44 
t ( 4~~ ~

which , for a transverse pump, assures that k is always

much greater than k0. Thus for any value of k0, na will

be greater than 
~b•

We have looked in some detail at this case, the

simplest standing-wave coupling, that of (‘~(k) coupled

— - —. 5  -.5 .5-—--— -- ~~~~~~~~~ -—-—



— —--~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

50

with WA (k±~~ ) = W0-Ø~(k). Corresponding to equation (28)

for the 2”pe instability , we have (from (25)):

- $ i~~J [  (.-‘ — CJ ,+ kJ ~ (~~ 
.-~ .) • iXAJ I W &j , ~~~ (~ -~ .) ‘.

(46) 
~~~~~~~~~ r4z 

~~~~~~~~~~~~~~~~~~~~~~~

— (i— ~~~~
)
~~ r_ 2 {

~~
_ w o ÷ ( ~~~)~~*1 .c o,

where (see (A.8) and (A.9)):

(47) ~~~~~~~~~~~~~~~~~ -

This equation is valid as long as (using ( 4 3 )  and ( 4 4 ) ) ,

and na = n b = l :

(48 a ) 
~~~~~~~~~~ ~~~O 

~~
. 

~~~~

anu:

( 48b) 1lI~ € C ~’) < ~~~~~~ 6k .
2
.

Notice that as long as Oe~ O;, then ~~ = O (m e/rn j ) ½k ) ,  ~~
that (4 8a)  is easily satisfied; (48b) , however, is a re-

strictive condition on ImL((JL). It is always the case,

furthermore , that:

) &JA(k. i~.)~~L& k4 k.) I  “ &),

This means there is no regime corresponding to case A for

the 2Wpe instability , and it is always a valid approximation

to write for (46), when~~— ½ :

(49a) ) 4 ] [ w - k~ +w1~(j )  
~~~ 

- z ( r / z)
2 

~ 0-

.5 - ~~~~~~~~~-- -~~~ ---~~~~~~ .5 - ~~~~~~~~~ -- — — ‘ -~~~.---,~~~~~~~~~~~~~~~~~~~ ——‘—
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That is , for  the decay instability with a standing-wave puma

and Ic0 in the range prescribed by (48a) and (48b), the

coupling is half  what it would be for a travelling-wave

pump with the same local amplitude. The effective power

is down by a factor of two. The formal solutions to this

type of equation (49a )  have been studied in detail else-

~;here ,4 b  and the growth rate is gotten s t r a igh t fo rward l y

by solving (49a):

~~~~~~~~~~~~

where :

Li ~ (44(k ) 4- W~J.~~~
) —

This aives, with ~~ 0:

2r /B~~~ , 
<< 

~ A 

~~

( 49b )  “
~~ 

r2 ,, 
~~ ~ 

‘
~
‘> ‘(L

I 
r’/~.~ , r1~

(
~L, ~~~

L ) >
~~~~ A .

We note here only the consequences of a standing-wave puiip.

These changes all result from the factor of two in (49a).

This halving of the effective power means that, given a

local field ampli tude, the threshold is doubled if this

field is a standing-wave rather than a travelling wave. In

the case of a travelling-wave with local amplitude C0, the

threshold for the decay instability .s:

(50a) (rC,L)1

:~~~~~~~~~~
-

~~
--

~~~~~
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and the maximum growth rate is:

(r>’4~ ~~~ ,

(SOb) 
~ , r’ ~ ,

I~ 
r~4~ , r ~~~~~ 

~~ L ~~~ -

But if the pump field is a standing—wave with total, local

amplitude , r0, then the threshold is given by:

(51) (r~/~
)t Z ~~

and the maximum growth rate is given by (49b).

Let us look at one situation where this factor of

two may be important. In several ionospheric modification

experiments, it has been claimed that the observed enhanced

level of Langinuir waves is due to a non-equilibrium spectrum

created by the decay instability .3~
]
~~~15 Physically, the

scenario is as follows: the relatively intense electro—

magnetic wave from the ground (a wave of ordinary polariz-

ation) travels upwards from the antenna through the iono-

sphere. The inhomogeneity of the ionosphere has three

effects: it results in an Airy swelling factor in the ampli-

tude of the modifier wave, in an absorption which becomes

a function of altitude, and in a reflection of the modif ier

wave when the critical density is reached (when (4~~(he ight)

~ 
tao) Since this absorption is usually small, the modifier

wave has sufficient power to exceed the decay instability

threshold at the reflection point and at altitudes somewhat

lower. If this threshold is exceeded, part of the energy

~~~~~.
- _____________________—.5---- .5- -— -.5- “- --- - - -——---.- - -— —j— .—- -_, - —-,-—‘_- ‘U ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~ - —.--—~~ —--
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f ro~n the modifier wave is transferred to Langmuir turbulence

by the EID instability. The instability is driven by the

sum of the incident and reflected waves, a standing-wave.

The saturation of this instabili ty then provides a stead y

state level of Langmuir turbulence that is measured from

the earth usinq a second wave (which is scattered by this

enhanced turbulence in the “modified ” ionosphere).

Attempts to understand the experimental data on

this scatterinq revolve around estimating the rat io of

modifier intensity to the LID instability threshold , then

calculating the enhancement of the Langmuir spectrum that

would be created by such a pump, and f i na l ly, calculating

the scattering that such an enhanced spectrum would pro-

duce. Our results will b~ relevant, since the modifier

wave , is , in fact, a standing—wave whenever it is of

su f f i c i en t  intensity and satisfies the frequency matching

condition for the instability .3 In a detailed study of the

problem, DuBois , et al. show that even with considerable

absorption of the incident wave, a standing-wave field

is set up considerable distances from the reflection point.

Using the parameters of this paper,3 which correspond to

a height about 560 meters below the reflection point, we

have: K0 = 4x10 5 (in units of the Debye wavenumber , which

is here 22 Om~~’), the fastest growing mode ’s wavenumber ,

K = 0.05, and ~~~ 0.85. In addition , DuBois, et al,,

calculate a local., average power flux of 800 W/m2 at this

.5 —.5.5 .5
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height, for an antenna inensity flux of 50 W/m2. This is

about five times the threshold of the LID instability , so

that:

L €~~~~~2~~~~w 2sIO~~

(in units of the plasma frequency). Thus, inequality (48b)

is satisfied. Notice, however , that even for a slightly

higher power , (48b)  would not be satisfied, and we would

have to solve a more complicated coupling of waves.

Thus equation (49) describes the decay instability

in this case. The correct way to account for the reflected

wave in the ionosphere is not to add amplitudes, but rather

to add fluxes or powers of the two components of the standing

wave (that is, consistent with our homogeneous approximation,

we must “decompose TM the actual. Airy function amplitude

modulation of the modifier wave and look at it as made up

of two waves, with different relations betweeen i~, and K0
for each). Thus, the estimates of the effective power in

the papers referred to above are too high by a factor of

two. Even given the large uncertainty in all the calcul-

ations of the ionospheric problem, a increase by a factor

of two in the threshold is critical. Perkins, et al., for

example , estimate the field at a value only twice the

threshold,14 and DuBois and Goldman use a figure of five

times threshold. 3 In the graphs which DuBois and Goldman 1-5

show of total. (saturated) Langmuir energy as a function of

- ~~~~~~~~~~~~~ rr- — ~~~~~~~~~ ~~~~~~ —- .5-— - -
-— -‘—.5---.-—- —-- s!___
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pump power, a change by a factor of two in the effective

pump power, from 5.0 to 2.5, results in a decrease in the

peak Langmuir wave energy by a factor of 100, and in the

integrated Langmuir energy by a factor of 20. Since all

the calculations of the s ’~attering that should be observed

are several orders of magnitude too large , this changed

threshold helps in accounting for the discrepancy . Cer-

tainly ,  this is not a conclusive dex~onstration of the

effect of a stancJinq—wave pump , but our interpretation of

the ionospheric modification experiments does open up a

means of testing the effect of a standing wave pump. This

factor of two may be observable in the comparison of low

power modification experiments (with flux densities of less

than 50 W/m2), which have the simplest coupling of three

daughter waves described above , and higher power experiments ,

in which (48b) is no longer satisfied and more modes arc

coupled. The theory of the case when k0 is smaller , or the

power greater , so that (48b) is no longer satisfied, is

treated next.

As in the case of the 2a,~5 instability, we have also

looked at the problem of the travelling-wave limit of the

decay instability. Rather than an analytic treatment, we

have numerically solved the equivalent of equation (34) for

the decay instability. Specifically, we tested each mode ,
at the k for perfect matching , to determine whether it was
“close enough” to wi(k) to be coupled. Thus, the results 
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of our calculations were based on Table III, where the

number of modes of the form W~(k ± nk0), 6o - 6)a0~ 
± nk0)

that are within ~ w of C41(k) are listed. Thus, coupling

three Langmuir modes means that there are 26 acoustic modes

that are close enough to be coupled. We actually evaluated

a 29 x 29 matrix equation in this case, rather than taking

advantage of the inequalities (43 ) and (44 ) which would

have allowed us to neglect 22 of these acoustic modes.

This test of the assumptions in (43) and (44) showed, in

fact, that these are good assumptions. Figure six

shows the results of this numerical work, where we have

graphed the growth rate of the instability as a function

k0. Here the growth rate for k0 = .006 has the value from

by equation (49). As more modes are coupled together, the

growth rate increases, it approaches the value that would

obtain for the solution to:

(C4 ~~~~ &~(~) ~~~~~~~~~~~~~~~ Cu0 ~~~~~~~~~~~~~~~~ i~~~~) 
— r’ =

exactly the result for a travelling wave-pump with the

same local amplitude as the sum of the amplitudes of the

two components of the standing-wave pump. Figure seven

presents the same results as a function of the number of

modes coupled together. This shows the dependence on the

smaller of 
~a 

and 
~b 

that we noted above; it is a result

of our matrix equation which allows no coupling between

waves which have wavenumber shifts which differ by more than

— - -.5--——- --.5 -—-.5- —--.5-—---- - - .5-- --~~~ -- —.5-—..-— -—.5-——---~~ ~ ~_ _ ~i~~~~~~~~~ ~~~~~~~~
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TABLE III
- 

- 

MODES COUPLED IN THE DECAY
INSTABILITY AS k0-ø-0.

2
~a’

k Number of Number of
0 AcoustiC Modes Langmuir Modes max

.0062 1 1 .76xl0 4

.0031 2 1 l.20x10 4

.00041 8 1 l.34x10 4

.00020 14 1 l .33xl0 4

.00016 18 1 1.34x10 4

.00014 22 3 l.79x10 4

.00012 26 3 l.81x10 4

NOTE: 
~a 

and 
~b 

and the number of modes are
calculated according to equation (19). The limit as
was taken keeping ~~~ constant. In this Case,1~~ i~

-
~

and ~~~ ~ .6.
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2~lO~ ~~‘1’&~

— — . 5--—-
’ • I

Figure six. The growth rate of the electron-ion
decay instability, pumped by a standing-wave electro-
magnetic wave, as a function of the pump vavenumber.
For this figure, W0 4.x10 7, (me/mi) — 5.x10 3. The
growth rate increases as the number of modes coupled to-
gether increases.
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2..s cs ’

-

iC rnIm~~E ACD,SflC ~ W~~C5

I

P4vnI~~~R I

Figure seven. The growth rate of the electron-ion
decay instabili ty, pumped by a standinq-wave electromaqnctic
pump, as a function of the number of waves that are coupled
together; the parameters here are the same as in Fiqure
six.
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2k0. In Figure eight, we have fitted the following equation

to the growth rates :

(52) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
and graphed ft against the number of modes. The analytic

description of this limit , derived for the 2
~’~pe instabil i ty,

is also applicable here. Note, for example, that in the

case that m = 7, here corresponding to three Langmuir waves

coupled with four acoustic waves , equation (35) predicts

that~~= 3, as our numerical work confirms.

Finally , we note that when k.k0 0, our analysis

(see equation (44)) predicts that the standing-wave effects

will be negligi ble whenever, in addition:

( p 3 )  6k.z 
<( E (w)

Physically, this is a consequence of the fact that, given

k>> K0, the variation of wL (k±~~ ) with k0 comes almos t

entirely from the k.k0 term:

W~(k~~ )~~ (It 4.k z ~~~~~ 
~

If k.k0 = 0, all the Langmuir waves at 
~LQ±fl~~ ) will  be

very close together, and f)-s 4 as these modes are coupled.

_ _  - - - . 5 -- —— .5 -- --~~~ -- - - - .5- - - - -.5- - - - - - -~~ -~~
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Figure eight. “Effective pump power,” ~ , as a functionof the number of modes coupled together. ~3 is defined
in equation (52). (3 = 4 corresponds to the amplitude of
the field contributing as in the case of a travelling-wave.

~~~~~~~~ -- —
~~~~~~~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



.5 .5 - —-----——--—- ,-.- _
~
---w-_.5—-_--——- .—_~~ 

62

NOTES TO CHAPTER TWO

F. DuBois , U. V. Goldman , Phys. Rev. Le t t . ,  14 ,
544 ( 1965) .

p~ silin , Soviet Physics——JETP , 21 , 1127 (1965).

3D. F. DuBois, M. V. Goldman , D. McKinnis, Phys.
Fl uids, 16 , 2257 (1973) .

4M. V. Goldman , “Nonlinear Waves and Fluctuations
in Plasmas , ” Universi ty of Colorado , Departmcnt of Astro-
geophysics ~CU1010 ( 1 9 7 4) .

5D. F. DuBois, M. V. Goldman , P~ys. Rev., 164,
207 (1967).

6M. V. Goldman , Annals of Physics (~~~ - Y. ) ,  38,
95 ( 1966) .  L. A. Jackson , Phy s. Rev. ,  153, 235 ( 1967) .

7K. Nishikawa, J. Phys. Soc. Japan, 24 , 916 ( 1968) .

8j  F. Drake, P. K. Kaw, Y. C. Lee, G. Schmidt ,
C. S. Lin, M. N. Rosenbluth , Phys. Fluids, 17, 778 (1974).

9B. D. Fried, T. Ikemura, K. Nishikawa, G. Schimdt ,
UCLA preprint, PPG-246 (1975).

10A . Y. Wong, R. 3. Taylor, Phys. Rev. Lett., 27,
644 (1971). —

P. DuBois, M. V. Goldman, Phys. Rev. Lett.,
28, 218 (1972). — ____

12F. W. Perkins, P. K. Kaw, 3. Geophys. Res., 76,
282 (1971). —

A. Fejer, 3. Geophys. Res., 76, 284 (1971).

W. Perkins, C. Oberman, E. 3. Valeo, J. Ceo-
phys. Res. 79, 1478 (1974).

15D. F. DuBois, N. V. Goldman, Phys. Fl., 15,919
(1972). — —

hIA 
_ _ _ _ _ _ _ _  _ _ _ _  _ _ _ _ _ _ _ _—.5.5.5.5 “- - .5-. —- ~~- “ ~~~~~~ - - - -- ~~~~~ __~~—— ~~~~~~~~~~~~~~~~~ 

-— ~~S~~~~~~~ # _ _



CHAPTER III

LANGMUIR PUMPED PARAMETRIC INSTABILITIES IN

THREE DIHENS IONS

In this chapter we will study the four-wave pro-

cesses which have longitudinally polarized Langmuir-like 
.5

waves as both pump and daughter waves. These instabili-

ties are well-known in one-dimension (for references sec

Table I , page 6, and II, page 8), when the daughter

waves have wavevectors parallel to ~~~. These well known

one dimensional instabilities for the Langmuir-to—Lariqmuir

case are the oscil1~ ting two stream instability COTS ) ,

which couples the high—frequency daughter waves with a

zero frequency response of the plasma , and the modified

EID instability, which couples the hiah frequency daughter

waves with a resonant ion acoustic mode. In our analysis

of these instabilities, we have derived a single dispersion

relation wich includes all these instabilities, and which

includes regimes where these instabilities exist for wave-

numbers other than those parallel to K0. We have, in ad-

dition, discovered another instability , the stimulated

modulational instability (SM) which only appears in three

dimensjon5. Our treatment for these instabilities in- .5

cludes the effects of an arbitrary wavevector pump and 

J1
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an exact ion equation (rather than the usual fuild treat-

ment).

As the kinetic theory derivation of the last

chapter implied , we can express the susceptibil ity of the

plasma in a power series in the fields , so that , at least

formally , we have :

(1) ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ r~~~(E - ~~3 .E) + ...

Physically, based on an analoqy with quantum mechanics,

the higher order terms correspond to the plasma coupling

with more than one pump field photon. In the last chapter ,

by restricting our work to phenomena involving only 
~2’ 

we

were able to deal with only two daughter fields , a

plasmon and photon , two plasmons , or two photons. h owever

important new effects occur with the couplings involved

in 
~~~~ 

the so-called four-wave interactions. To treat the

these interactions, we must include effects due to both

and arbitrary 
~~~~ 

since, in the case of a Langmuir or

Langmuir-like wave (for both pump and daughter wave)

one has a tispersion relation which allows daughter waves

with wavenumbers comparable to the pump wavenumber. This

follows since the dispersion of a Langmuir wave is pro-

portional to ye
2 rather than c2, as in the case of an

electromagnetic wave. The larger pump wavenumbers make

three dimensional effects important. After a theoretical

study of the linear stability of a Lanqmuir pump to

L - - - -~~~~--~~~~~~~~~~ - ~~~~ --- ---—.5 -—.5- — - - -— ~~~~~~~ - —-~~~~~~~~~~~~~--~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



~ 

~~~~~~~~~~~~~~

r r
U,.,

parametric growth , we will make specific applications of

our results to the Langmuir spectra associated with electron

beams in several parameter regimes : the solar corona , the
ionosphere , and low density laboratory plasmas. Our

general conclusion from these applications is that para-

metric processes do not greatly affect the dynamics of

the beam plasm interaction (as has been theorized), but ,

even so , that  these instabilities can account for a number

of other phenomena associated with these beam plasma systems .

DERIVATION OF THE DISPERSION RELATION1

Using the formalism developed thus far , it is

straightforward to write down the determinental conc .tion

describing the parametric processes induced by a pump made

up of Langmuir waves, that is, a pump that is high fre-

quency and longitudinally polarized, with frequency ‘~~ 
and

wavenumber ~~ (c~ is a low frequency for all of this chapter):

~~~~(içtQ) ~~~~~~1~~~w)E, X(4 k~~Wt.

(1) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~4,”,-~~) 
‘

~~~~~~~~~~~~~~~~~~~
‘
~~~~

“
~

‘

~~ ~z = 0,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,X (~k,,&i tql.t-’M; ~~~~~~~~~~ i.&,..w,) ~~~~ I

where, the entries in the first row and first column are

the susceptibilities derived in the Appendix from the

second order current, and the entries in the (2,3) and

_________________________________
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(3,2) positions are the susceptibilities derived from the

thrid-order current. These higher—order susceptibilities

also enter into the definitions of the diagonal elements ,

“renormalizing” the dielectric functions:

(2) — 
E L k ) 4 X - (~~,~ j ç.&,;~ Q , kQ; k,k.) E 2

Notice that the upper 2 x 2 matrix gives the usual decay

instability , in which case, as is well—known, the higher-

order susceptibilities are not necessary. However, when

both the Stokes and anti-Stokes modes are coupled in the

problem, they are each coupled (in first order) to the

low frequency field at E(k w) and (in second order) to

each other. Since we are dealing with Langmuir oscil-

lations , these matrix elements must be evaluated for ar-

bitrary k0; we cannot use the previously published results
..‘ ,%

which assumed either K >> k0 or k-k0 — 1.

The rather tiresome derivation of the susceptibil-

ities is deferred to the Appendix. Even without the ex-

plicit form of these elements, we can use the following

relations to write the determinate of (1) in a strikingly

simple form (see (A.8)r , (A.lO), and (A.ll) from Appendix):

(3) ~4*W0, ~~ 
L4f.;~~.,-~J•; ~~ ‘~ ~~ 11x (~*~.,w rc~ ~~ tc~ ~çw)J

and:

~~( C ,Wt~~ U~*~J,p
;tk.tw.; *Q,, )14~ ~,X(k h’twç t,~.,* ~~~~ w)

(4) 
~~~~~~~~~~~~~~~~~~

. 5 —-  ~~~~~~~~~—  ---~~~~~~~~ - - —. 5  
.5— - -~~~~.5 ---~~~~~~~~~~~ 

- --,.~~~ -~~- - .- -~~~~~~~~ - - .5
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With these relations, all terms third-order or higher

in E0 cancel and we get, after rearrangement:

( 
k’.f(k,~4 

~ ÷ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ k~~~~~~(~~~~’~~) ~~~ )

(5)

~ 
X~~-b,,w-~.; ~4. i”.. ~~ .. ~~-‘s. 

~~~~~~~~~~~~~~ 
L.~ —

This equation shows very clearly the coupling of the three

resonances of the plasma, two with high frequency and one

with low frequency , in a form characteristic of mode-

coupling in non-linear optics, for example. Using the

explicit expressions for the susceptibilities (equations

A.8, A.lO, and A.l1, rrcxn the Appendix), we have:

...L1 kZ~~~k ) ~~~ 
~~~~~~ I___________  

+ 

,t~
z 1 —(6) r+I(~~E(k,~J ) ( I + ~ ~~~~~~~~~ k,~~-~4) 

-

where :

I o”A E0’(~.) E. (k)
(~~~) J( 2 n)~(4fl ne (~~c t ~~;) J  

/

,
L4~~~t~~~~~ ~~~~~~~~~~~~~~~~~~

Several aspects of equation (6) should be noted:

1). The two high frequency waves, the daughter

(Langmuir-like ) waves at k ± ~~~,, are coupled together

through a low frequency response of the plasma. As Tsyto-

vich noted in his book, these couplings dominate all other

Langmuir wave interactions.2

2). This low frequency response of the plasma is

not given by the plasmd dielectric function , except in the

lim~.t that E- (k, ~‘) goes to zero. Let us call:

-.5 .5— — .5---- —.5-— —.5-- —-~~ - -.5 -~ —-—~~-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.-l._____ ~~~~~~~~~~~~~~~~~
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-r f ~~~~~(8) - icr L~~
1€~~ ,~~:T

At frequencies for which k2~~(K, w) is not smell comapred to

one (k is in units of k~~ ), the plasma ’s low frequency

response is complicated . This “compensation” has been noted

before ,3’4 and arises from the terms that the third-order

current contributes. Figure one shows “diagrams” of the 
.5

contributions to the wave—wave interactions from the second-

order current (in Figure one a)) and the dominant contri-

bution from the third order current (in Figure one b)).

The terms that contribute from the third order current

are essentially second order effects coupled together by

.5 a low frequency response of the plasma; the “four-wave”

diagram can be viewed as two of the three-wave diagrams

joined by a (virtual) low frequency response.

3). Equation (6) also comes out of a more careful

analysis of the linear stability of an arbitrary Langmuir

spectrum, if that spectrum , centered about L~,(k0), has a

spread, ~k0, in k—space about k0, such that a condition on

the narrowness of the spectrum is satisfied:

(9) ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~<aft. 
~. 

£ ( 1~ o ,~ i*~~,) j 
—

This condition insures that the resonance is a broader

function in k-space than the spectrum, so that the detailed 
.5

shape of the spectrum can be ignored.

~~~~~~ - ~1 ___  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—— ----——- ~~~~~~~ ---~~~

-
~~~~~~~~~~~~~ 

-~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .5 —- -  - - . 5 -
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~k.-k , 4)•- k)~~~~

a).

~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~O A )  ‘~~~ L (‘~•~~
)

b).

Fiqure one. Three-wave (a) and four-wave (b)
interactions. The pump wave has wavevector and
frequency 6,~,; the low—frequency electrostatic disturbance
has wavevector k and frequency ~~; and , the Langmuir
daughter waves have wavevectors k0 ± k and frequencies

~c ± w. In the four—Wave case bath o! these high .5

frequency waves are excited and in the three-wave case ,
only one of them,the Stokes wave, at - k, 

~~~~~ 

-

~~~~~~~~The wave at 6J
~ + ~ is called the anti~~tokes wave. 

.5

~~-—
.
~~~~~~~~—
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The question of the linear stability of a Lar.gmuir

pump has been treated , in various approximations (althou~ih

never before in three dimensions), by many authors;~~’
4 8

.5 our results generalize these previous treatments in three

respects: we have 
~~ 

arbitrary ; we have treated the

problem in three dimensions , with cylindrical symmetry

about ~~~; and, we have used an exact, kinetic , expression

for

(10) ~ - ~ r + (k~~ )Z(kV~i) 
+ i 2. (

~~~~~~)

where Z is the Fried—Conti plasma dispersior. function .9

We can connect our results with previous theoretical treat-

ments which used the following “fluid” form for D(~ , W) :

.5 

(11)

where is a phenomenologocal damping of an ion-acoustic
.5 

mode or quasi-mode at 3 = WA_ 1VA/2. Our exact equation for

D(~ , U) reduces to (11) when: -
.5

and we then can use the asymptotic forms for the Z-function :
.5 

-2~ ~~~~‘ X I .  .5

Substitution of these forms for’ Z into (10) and the defini-

tion of D(k, W) gives the real part of (11); the imag inary

part can also be gotten similarly. However, the fluid

-.5—— — - —  .5 --——-— ---—--~ --——-~ -,~~~~.--—~~ -- . 5 . -- —  ~~ -
~~~~~~~~~~~~~~~~~~

-
~~~~~~~~~ -
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treatment goes on to use (11) for all values of Lu. A speci-

fic problem arises with the zero frequency limit of (11).

For w= 0, (11) gives the value -1. This is also the value

of the static limit of the exact expression for D(k, t
~~~) .

In fact, (11) and the exact form for D(k, w) agree only

when U= 0 and W= O(WA). As we shall see, this is not a

severe limitation on the fluid expression , since it is

only in these two regimes that interesting solutions exist

for our dispersion relation, (6), and quantitatively satis-

factory results can be obtained with a suitable choice of

WA and V A .

In the calculations presented here , we have made a

resonance approximation for the high-frequency dielectric

function:

.5 (12) €(~ tI~fi,&J*U,) ±2. [wt c i~iQ~~~~’L ( J ~ *k .)4 ie~L 1 j

IL being phenomenological. damping (either collisional or

.5 Landau) and an exac t expression for the low frequency

£(~~, u) in terms of the Fried-Conti Z—function given in

equation (9). Finally, in the frequently valid approxi-

mation that :

Jw I~ .)x0 ÷s A2
~

P2
~~

(which is usually guaranteed because ~~ ‘/4j , (6) becomes:

(13) DO~,w) {(W-.x, .)
Z sa) + .~~~~~ (,~~

÷
t5 

~~~~~~~

.5 -— — - -  _ ---~~ -.5 .5—
~

-

~~
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where:
=

2$

27.0 
~~ S+ = 6 kiz~

in dimensionless units of wavelength in units of kDe~
l and

frequency in units of the plasma frequency . ,LL,,. is the

.5 cosine of the angle between the pump wavevector , ~~~, and the

wavevector of the duaghter waves, k±~~~. The three deltas

are d i f feren t  frequency mismatches : S .,. being the mismatch

between the up- (or down-) shif ted wave and the pump ; and

.5 
S being the average of these mismatches.

Before proceeding to applications of equation (6),

we need some way of systematizing the large number of

regimes in k0, W0, ~~, and ~ in which qualitatively differ-

.5 ent solutions to (6) exist. We will restrict our results

in tnis section on analytic results to the case that ~~~~~~~

This is almost always satisfied. We have organized our

study of the analytic solutions to (6) as follows: we first

divide the solutions with positive imaginary parts into

three groups on the basis of the physical processes

which account for the unstable solutions. Each of these

physical processes has a group of parameters which deter-

mine its qualitative features.

1). oscillating two—stream instabilities (OTS).

There are a class of growing solutions to (6) character-

ized by their non—oscillatory nature, Re t.i<Im~ J . By

4

.5 .5 --.5————— ~~~~~~~~~~~~~~~~~~~~~ :~~~~— - .5 ~~~~~~~~~~
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analogy with the well-known OTS instability ,4.10 we call

these OTS-like instabilities, even though we will include

a much larger class of behavior under this name, This is

a four-wave interaction, schematically shown in Figure one.

2). Electron—ion decay instabilities (EID) . These

solutions occur when &,~~ CJ A~~ and only one of the high

frequency dielectric functions is near resonance. This is

a three-wave coupling , and is shown in Figure one .”12

3). Stimulated modulational instabilities (SM). Also

known as a “modified electron—ion decay instability ,” this

is a four-wave interaction, in which both high frequency
waves participate. Several special cases of the St-I insta-

bility have been studied for an electromagnetic pump.6’13

OSCILLATING TWO STREAM INSTABILITIES

The character of this class of instabilities is
.5 sufficiently determined by W0 and k0. For the OTS insta-

.5 bility, both k and Im &‘ depend on W0, and we have been
.5 able to solve (6) analytically in the following regimes:

A. Iwl ~ , }t -(’-~.k~ , or W~~~€h 64 - ’./T , W~ ~i~-i Ok .~’;

B. I”! “ ‘~~ k ’)k., O, W0 ((&4 ’c/r , W~ >~ i Ok .
1
;

c. Iwl “(‘i ~ ~k &k.3 or W0>)64~/r, W. 
(~~QkL ;

~ )L.41) ‘> W , k,,k0, Or L~-4 >‘, , W0 > ~c ~: ,
where:

~~~~~~

- 
----- -~~~~--—~~~-~~~-.- --~~—- ~~~~~~~~~~~~~~~~~— -
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In the intermediate regions , where k is on the order of k0 .5

and on the order of “~j~ • numerical solutions are found

which connect the analytic solutions.

.5 A). ~~~~~~~~~~~~~~~~~~~~ k << k . . Under these conditions:

~
.
.

£ L~ &‘) ~ £ (~ , o)
4

DLk, o)— — 1 ,

so that (6) becomes:

(14) ~~~~~~~~~~~~~~~~ ~~~~~~2 S 2 ~~~) 
= (  .5

If we call U x + iy, then an OTS solution exists when

k.k0 <‘. k/k0, and

7~.=? Xo ,

(15) 
= - + w0 (~~ s~’

The threshold , maximum growth rate and wavenulLber for

maximum growth are easily gotten; solving for y 0 in

equation (15) gives the threshold value for W0

W~~~

’ = 16~ $/ ( .~~~$4 / ~ 1S4)

To get the maximum growth rate by differentiation of (15),

we need to deal with the angular dependence in /4*’ We can

write the angular factor in (15) as:

~~~~ _ _ _ _ _ _ _ _  — 0 $  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

— zs ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where : .5

~ co$ _ ’ (~ •~
.) . 

.5

.5 ,-- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~—- . 5 — - —  ~~~~~ 
.5

- - - .5—---  .5 
~ - -.5 -~~~~ -.- - —--~~~~~~- ~~~~~~

-- - .5—- ~~
-.5
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.5 In the limit that k2(<. k0
2:

~~~ 
— k’ssv,’J~/frj

and d i f fe ren tiation of (15) with respect to ~ gives a con-

dition for maximum growth independent of k: )~~~9 O -

Now, differentiating (15) with respect to k gives the k for

which maximum rirowth occurs: 
.5

.5

(lGa) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ J w.) ’ ,

and

(l6b) 
~
4

~
& LAJ I ~~~~~~~~ ~~~~~ (i ~~~~

In fact, di f f e rentiation of the general angular dependence

of 1M shows tha t the growth ra te, in all regimes , has

extrema at ~~= 00 and 900. This is a general result as long

as the growth rate has its only explicit angular dependence 
.5

through /4 . Our approximation requiring that:

(A? ~ I~e ( A ’  << ~~

demands that we choose the maximum at 900. The original

assumption that:

<< Ct~,
.

gives the strictest upper bound on W0 and the lowest bound
on k0; for this case:

L 5 I ’I~
t << IXYI

j
- - .5 - - -

- - . 5 . 5  -- .5 .5. —~~~~~~- -~~~~~~ .- -  —.5 .5- — —.~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~ .- —.5.- — . 5— - , .-  
~~~----..~~~~~~~~~~~ - ,~~~~~~~
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or:

<< 64(xfr ,

so that:
.5 

~O !~ <~~ W01~
Figure two a shows numerical solutions of (6) in this

regime. The OTS instability is the small, roughly cir-

cular feature perpendicular to the axis at the point

B). f & J J ( < c~3~ k >> ~~~~~ 
In this case, equation (14)

.5 

also describes our results; however, when k>> k0, then we

must have ~ 1. (this is the other maximum of /4 notcd

above). Thus, while x and y are again given by (15) , the

maximum growth occurs on axis. For this regime to be ap-

plicable:

for the OTS generally. This, combined with the other

conditions gives:

W~ ~~( 

~~~~~ , to k.& <<~~~~/

Figure three shows a case not strictly in this para-

meter regime, but which has the same qualitative features.

The k for maximum growth is given by (16a), and we have

the figure eight structure of the previous regime now on

axis rather than perpendicular to the axis. More inter—

esting is the transition from the k ~> k0 case, where

growth occurs for — 1, to the k~~ k0 case, where it

occurs f~r ~~~~ 
— 

.5 .5 ~~~~~~~~~~~~~~~~~ .5 — - -  ~~—— —-~~~~ .5——.5 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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90

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

,- 0
2

_  

~~~~~~~~z ø

yj
i 

~~cj~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure two a). Solutions to the dispersion re-
lation , equation (6), showing contours of constant growth
rate, Im ~~, as a function of the wavevector, ~,—k , of oneof the excited daughter Langmuir waves. Here, W~ = 4x10

6.
The pump wavevector is shown with an arrow, with magnitude,

= 0.05. Other parameters are:~ -— 7.3xl0 4, Oe/ei 1,
and 1L = i0~~. The nu~bers on the contours give the growthrate in units of 2xl0 LUpe. The feature on the left is
the EID instability (here in the resonant backscatterinq
regime). The butterfly-like pattern centered about the
point 

~o~k ~o. 
is the SM instability, and the small

structure perpendicular to this same point is the OTS in- .5
stability (here in the regime described under case A in
the text). These parameters are appropriate to a pump .5

generated by an electron stream associated with a Type III
solar radio burst at 1 R0 (about 7x105 km from the sun). 
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Figure 2b. Contours of constant growth rate, Im ~ J ,

as a function of the wavevector of one of the excited
Langmuir waves (see Figure one). Here W~ l.4xl0 6 and .5

= 0.026. The other parameters are the same as in
Figure two a). Although it is now obscured by the other
contours , about the point ~~ — k — is a structure
qualitatively similar to t~i~t in the previous figure,
which is the OTS instability. These parameters are ap-
propriate to a pump generated by an electron stream of the
kind associated with a Type III solar burst at 30 F® .

90’

Figure 2c. Contours of constant growth rate, 1mW ,
as a function of the wavevector of one of the excited
Langmuir waves (see Figure one). Here W = 5x10 6, and
k — 0.013. The other parameters are th~ same as inFigure two a). The EID instability is here a resonant,
forward scattering instability , marked by contour “3”
on axis. These parameters are appropriate to a pw~pgenerated by an electron stream of the kind associated
with a Type III solar radio burst at 215 R0.

-

~
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I

Figure three. Solutions to the dispersion relation ,
equation (6), showing contours of constant growth rate,Im i

~~~, as a function of the wavevector of one of the daughterLangmuir waves, ~,—k. These solutions all occur in a
regime intermediate I,etween cases B and D for the OTS in-stability,  where 10k02 ~ W~ and — O(64~). Here W0 = 0.04and k0 = 0.0067. The othc - parameters are given in Table V.These parameters are those of a pump generated by an auroralstreamer. In this regime, the EID has disappeared and the
the OTS instability is on axis. The numbers on the contours
give the growth rate in units of 2.5x10 4 Upe.
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This occurs when 10k0
2 is on the order of W0. A set of

parameters in this transitional regime generated the solu-

tions shown in Figure four. In this regime , the condition

that y x  is only marginally satisfied on axis. Qualita-

tively. the transition occurs as the growth rates on axis

and perpendicular become nearly equal and growth is almost

isotropic in k. As Figure four shows, in this transitional

regime , nowhere is the growth its maximum value of W0/8

for the OTS instability , even though the (now-decreased)

maximum does occur at the S given by (16a). Equation (16a)

describes an ellipse about the point 6-k =

These features of the k = 0(k0) regime (with

I 1~1(&~~~
)
~ ) can be understood using the approximate expression

for ~ at maximum growth rate (from (16a) to first order in

W0)

s~~
- -~~~(~~

+ Z~~~~
tJt.~~ J

8 4,3. /

As soon as = 0(4k). the sin2F term degrades the growth

rate at ~ = 90
0. The increase in the growth rate for small

.5 
sin2~ , shown in (16), then competes with the decrease in

growth rate that com~~ rrom the violation of the condition

y > x = 3kk0(1_sin 2,,)
½ , that occurs when sin2~ is small.

This regime is the transition among all four regimes con-

sidered here.

C). ~~~~~~~~ This limit occurs when 64~/r<’W0
and ~ 10k0

2. In this case, we have:
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k.

Figure four. Contours of constant growth rate, Im Ci) ,

as a function of the wavevector, 
~~ 

- k, of one of the
daughter Langmuir waves (see Figure one). Here W0 ~6.5x1O

4.
6.5x10 4 and k0, shown by an arrow, has magnitude, 0.028.
Other parameters are: ~ ~ 7.3x10

4, e5/ej = ~~~~~~~~~~ i~~
9.

The numbers on the contours give the growth rate in units
of 3x10 5. The contour labelled N3fl is the maximum
growth rate for the EID instabiUty, which here is in
the resonant forwardacattering regime. The four smaller
lobes at acos (

~~
) ~ 15° are the SM instability. The

OTS instability here is intermediate between regimes A ~ind
C of the text, and its maximum growth rate is shown by the
“1.7” contour. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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D Ut, ‘4 (c ~ ~ VA ~ )/w~
1

so that (13) becomes:

(17) 
~~ ,

i 
(~~., t s ’) — ~~~~ W.j~ o.

where we have assumed that Imy >>~~~. The solution to

(17), we have found ni~ e~â1aa11y, is only applicable for

very large powers, W0) 1. However, it does give good

qualitative descriptions for W0~~10 2. The solution for

C) is:

~~~~ 
— Ti + ~z

Again, we differentiate with respect to % and k, and get,

for this limit , that ,$ 900 for maximum growth

independent of k a~ long as k < k0. The value of k is

determined by a cubic equation for S (or k2) which comes

from the differentiation of (17a) at ~~ = 90~ :

(17b) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where S.= —3k02/2. The asymptotic growth rate, for

is (from (17a)):

(llc)

Figure five gives a solution to equation (6) in this re-

gime. For these parameters, we predict, from (17b) and

(17c), that k = 0.044 and I m C ~u = 6x10 3. The numerical

results give k = 0.038 ar~d, for the growth rate, Imw= 2xlO~~.

_ _ _ _ _ _ _ _ _ _ _ _  - -—~~~~~~~--~~~-——
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Figure five. Contours of constant growth rate, Im L~ ,
as a function of the wavevector, ~~~ - k, of one of the
daughter Langmuir waves (see Figure one). Here W0 0.15
and k ~ 0.05. The other parameters are; ol.~~ 7.3x10 4,

~ Io-9 and 95/f ~j  — 3.. The numbers on the contours ciive
the growth rates in units of ~~~~ In this regime the
OTS and SM instabilities have coalesced and the EID in-
stability is still centered near the condition given by
perfect frequency matching.

I
,

.- —— —~-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~
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(See Table IV for these results.) The conditions that must

obtain on k0 and for self-consistency are:

w, >~ 64ts’r , W 0 <~ J 0 k~

D). JI Lj 1 , k, ’~~o. This is the large amplitude

pump region for the OTS instability , when we require

W0 �> 64~ , W0 )10k0
2. For a large W0, relative to k02,

as is shown in Figure three , equation (17) gives the

asymptotic growth rate, but now we have growth concentrated

on axis, ‘~•k0 1. The solution to (17), however, has no

maxima, but only a asymptotic limit, for large ~ , of:

I
1~~ A C ~) 

~~

Notice that for large S . that is k > )  kc,~ that the

daughter waves set up a standing Langmuir wave field. For

the parameters of Figure three , for example , we have corn-

puted the relative amplitudes and phases of the Stokes

and anti-Stokes waves for the OTS instability, and they

are equal. Since the frequency of each wave is almost

equal: (‘Jo 4 ~~ ~~ 
- “ , and since they have nearly

equal and opposite wavenumbers, they combine to form a

standing—wave. This has important effects, one of which

we will examine in an application of the fields generated

by auroral streams.

The lower bound on W0 for this regime is given by

the condition that k ‘k0 and tWI
)
~
(1A which give:
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w0 ~> I O f t :

W6 >> ~,4c*./r .
The transition between k~~k0 and k~~k0 when )‘~‘I>> (4~ , is

shown in Figure six. The features evident in Figure

two are again the qualitative determinants for this case ,

similar to Figure four for smaller C.)

ELECTRON-ION DECAY INSThBILITIES

In contrast to the OTS instabilities , the decay

instabilities depend critically on the resonance of the

low frequency mode, that is: Re ~~~~~ C./A . Our general

schema for classifying the decay instabilities uses this

resonance condition; after Fried, et al. we distinguish

three regions of k-space, depending on their resonance

properties:

1). resonant, backscattering , when

2). resonant, forward scattering, when

3). nr nresonant, forward scattering , k0 -~f~Th .

Each of these regions must be examined for the case of

the low frequency resonance being a quasi-mode (ee~~ej)

and for the case of a well—defined mode 
~
9e >> ei). We will

examine these six regimes separately.

Physically, the EID instabilities are

the decay of a plasma wave into a plasma wave at lower V

frequency and an acoustic mode (or quasi-mode). However,

to treat these instabilities analytically is not entirely

straightforward . The problem is one of approximating

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~ V4S ..a - ~~~~~~~~~~~~~~~~~~~~~~~~ —
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Figure six. Solutions to the dispersion relation,
equation (6), showing contours of constant arowth rate , 1mw ,
as a function of the wavevector of one of the dauqhLer
Langtuuir waves (see Figure one). Here W ~ 1x10’ and

shown as an arrow , has magnitude O.O~2. Other para-
meters are: % ~ 7.3x10

4, )‘~= lO~~ , and 9e/~j ~ 
1. The

numbers on the contours give the growth rate in units of
2.5x10”4. In this large W~ regime , the OTS and SM in-
stabilities have merged ana the OTS instability itself
is almost isotropic in Ic. The maxima labelled “3” are
the EID instability . The OTS instability is in a reqime
intermediate among the four cases described in the text.
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D(k, (~) for a range of ion temperatures. ~Then ~

particle e f fec ts predominate and the EID instability woul d

be more properly called “induced scattering off ions,”2 .ii ,l5

since the low frequency resonance is not we].]. defined.

When ee ~~~ however , the acoustic mode is well-defined.

We have derived an approximation which treats the Ge z O,

and O~~-regimes reasonably well, using a recursive approach

due to DuBois and Goldman.11 We begin by noting that the

EID instabilities obtain when only one high-frequency

dielectric function is near resonance:

>> £ (~~- ,~~ -~~)

so that ~e could write equation (6) as:

CwI (~~~~~~~~~ ~~~~~~~~

~I4 2 =

The growth rate (or damping) of this new, non-linear mode

is:
— W~,t4

2 S., I ±
~~~~~~~~ ~~L — 

~~
•

The maximum growth rate depends on the maximum of:

,~~‘fl0I~ [k’~~~k,~~) ? ’ . =

We wil l  treat the eez Oi case , in which there is no t a i~~ii

defined mode at the acoustic frequency by choosing (i~~~ ’ an~

in the f lu ~.d form :

4 —

L V •~~~~~~ - ~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~ V V ~~~~~~~~~~ V~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~ V -



V -

(18a) ~~~~~~~~~~~~~~~~~~~

in such a way that the Irn k2 E(k , 1.’) ) -l for the fluid case

agrees with. the exact result. Now :
/-I

,~ fl4. Lk’ E (~ ,~~} ~ =

‘Ihe fluid mode l attempts to approximate the bell—shaped k-

depenuence of D(k , w) near the acoustic frequency with a

-~~ -t O ~~id Lorentzian . The exact result is:

in[kLe( w J~~~~ ,~
We ~-il l attcmot to use the fluid model by normalizina the

fluid Lorentzian so that the maximum value of (18a) agrees

with the exact result , and so that this ~axin~um occurs at

the same value of k; this requires:

~~~
‘ = 0.90 w;

‘
~~ 

( 18b ) I

&i4’ / . 70 (m o/ rfri~)~k .

These are the values (in units of ~~~ and k~~ ) which we

will use if $0~~
9i. The results quoted in the first

chapter can be used when With this approximation

scheme for D(k , w) ,  let us look at these six regimes for

the electron-ion decay instabilities.

A). Resonant backscattering , ~~~~~~~~~~~~ For th is

temperature range, the acoustic mode is well-defined ,

Re (MA )) ~
!A~ 

\/A/2, and we can use a reson ance approx ima tion

for D(k, Cu) :

- - ~~~~~~~~ -- -- -—~~~~~~~~~~~~~~ V V~~
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(20) D(~ -~) ~ 
(cii z

~ tU,~ 4 
~~~ (cc - C kA ~

and we have :

so that equation (E) becomes:

V 

(21) ~~~~~~~~~~~~~~~~~~~~~~ t~~~~~ -±~ -- ~~~

This equation has been studied in detail by DuBois and

Goldman ,5 and we note here only the simplest of their

results . The max imum growth rate occurs when :

~~~~~~~ 
X0~~S S

which is merely the frequency matching condition :

c
~~ 

(k .)  = 
~~ ~k) t w~ (A~- &.

For a Langmuir pump , this can be written :

(22) = 2A0 CO5 
,~~ 

- 
-)

The requirement for resonant backscattering is then a

condition on k0, since here ~~~~~~~~~~~ 

= +1:

Note, however, that in addition to the well-knowi~. solution

with cos = 1, that (22) actually defines a locus in

V phase space; it will turn out that only the cos~~ 1

solution is truly a decay instability, and so we def er

discussion of the other parts of the locus to the section

~~~~~~~~~~~ V -~~~~~~~~~ 
—

~~~~~~~~~~
-- 

~~~~~~~ V ~~~~~~~~ 
- — -

~~
- - -
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on the SM instabilities. The growth rate on this locus

is:

— — (~ 
.

~~
.) 

~~~ 
~ 

--

(22a )  ~~~~~~ 
- 

2. - ‘
~~~

The threshold is, then, approximately :

Wa

and the maximum growth rate is:

/

/LIJA_W. 4~~V~-
(23) ~~T6 / ,WD~~~’A , ~~~~~~

The qualititive features of the resonant, backscattering

EID instabiltty are evident from Figure two a), although

this is for a different temperature ratio. The structure

on the left of the graph, showing growing backscattered

waves, is the EID instability. Since the maximum growth

is on axis , ~~ ~~~ 
and the detailed angular depend-

ence of ,M only serves to determine the spread of the

backecattered ‘.~egion of growth .

B ) .  Resonant backscattering , Te Z Tj. In this

case , the resonant approximation for D(!c, , 4) is not ac-

curate; to get approximate analytic results, we use a

normalized Lorentzian form for D(k , ~u) given by (18a)

V ~V ~~~~~~~~ -

- ~~——— —~~~~~~~~~~~~~ — - - --~~~~ - -- — - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ V~~~~~~~~~~~ V _ ~~~~~ - —— VV — -~~~~ -~~~ S - - ____________
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and (18b). Our numerical work was done , however , with th 1~
V

exact expression for D(k , w). Approximately, then :

(24) ~~~~~~~~~~~ 
~~)(w-~ ‘~~~

‘L) — -
~~~~~

‘
~~~
‘

~

We have been able to solve this equation in the frequently

applicable limit that ~~ is negligible (i.e., much smaller

than either Im ~i or VA ). To treat (24), we look at two

regimes, Im ~~~~‘ , and Im tA • In the latter,

high power regime, (24) reduces to equation (21) of the

V 
previous case. In the low power limit, a perturbation

analysis, in the small parameter y/~~ gives the follow-

ing results (ag ain we restrict ourselves to the case that

,4.,~~— / M ~— ~~~, which is easily satisfied a posteriori).

= To f irst order in y/~~ , the imaginary part of equation

(24) gives:

I 
_ _ _ _ _ _

(25) (A) 8~. L — 
~~~~ ri~ ii 

,

ans substitution of this into the real part of (24) gives:

(26) ~-p1~ w~~
We can maximize Ixn C4 with respect to k, and we derive a

condition analogous to (22), a wavenumber matching condi-

tion:

(27)  A 2k~,, cos ~ 
— .9/F

From this , the imaginary part of can be calculated and

maximized , wh en 1:

L4L V ~~~ — -- —~~~~~~~~~~~~
‘ .r ~~ ~~~~~ 

-‘ ~~~~~~~~~~~~~
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(28)

Figure two a) shows these resu~ts. The growth rate and k

for maximum growth are predicted very well by (27) and

(28) (within 5%). The condition on k0 for resonant back-

scatter is easily gotten from (27):

C). Resonant, forward scattering , 9e >‘
~ e1. In

the backscattering case considered above , the frequency

matching condition resulted in the condition on the wave-

numbers that :

~~~~~~~~~~~~

and Ic0 - k < 0. However, we can still have resonant scat-

tering in the regime where Ic0 — k >0, or, in terms of

(29 > k0 >~J~3c
When this is the case, the daughter Langmuir wave is scat-

tered in the forward direction; however, the instability is

still described by (21) and the growth rates given by (23).

Notice that the growth rates may differ , since k is smaller

in this regime and the growth rates depend on k. Figure

four presents numerical solutions to the full dispersion

relation , equation (6) in the equal temperature regime.

The numerical results for the regime here, O~~~6j, are

qualitative ly very similar.

M
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D). Resonant, forward scatterina, 0e~~ 
0j
~ 

As

for Te )> Ti, the analysis from the resonant backscattering

for equal temperatures can be applied to the forward

scattering case with equal temperatures. The condition

that k0 must satisfy is:

(29a) O.9j~~ ) i~ > 0.q5 j~~ 
-

At this point, we must examine a fea ture of equation

(7) which we have thus far ignored. We begin by noting

an important property of the symmetries in (6); if we make

the transformation :

—

the equation remains unchanged. That is for a given growth

rate at (Re(~0-c ), ~~—k), the growth rate at (Re(w0+w),k0+k)

will be the same. In Figure four this symmetry is eviden t,

and the EID growth is present for wavenurnbers larger and

smaller than Ic0. Thus, strictly speaking , in Figure

two a), for example, we should have drawn a forward lobe

corresponding to the backscattered instability , gotten

by inversion of the backscattering lobe through the poin t

To understand why this other decay instability only

exists under certain conditions (whose exact nature is

closely tied up with the SM instability), even though the

symmetry in (6) seems to demand it always , we must go 

_ _  
V 

~~ V~~~~V V V~~~~~~~
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back to equation (1), and ask the question : What arc- the

amplitudes of the excited fields? To answer this, we use

a result frow norma l mode theory , noting that the

solution of (6), our dispersion rela tion , is essentially

a solution for the eigenvalues of the matrix in (1). It.

is well-known that this normal mode analysis can prc~ ict

the relative amplitudes of the excited waves, as weli as

the normal mode frequencies. These amplitudes will be

given by the norm of the eigenvectors associated with the

zero eigenvalue. That is, given a matrix equation:

6, ~~J3

~~23 ~~~ =0

~~;

then we know for non-trivial E1:

IL — az3as~ — E,2~n.

For the matrix in (1), we have:

E ~~~~ w-t~i.) V 
A4~ ~~~~~ 

w+)
~~~ ~~ €(k÷k0, ~~i-)

~~~

~~+~~~~i1,s~~) M.~~
(
~ -~.,Cu-~k)

As either a look at the frequency matching condit .on or

the numerical results in Table IV show, only the branch of

the LID instability involving the Stokes wave is near

resonance , and for that case:

(30 a)  IE(~~o,c~.~-~io)i >> IF (~ fI~.,wst4i0J .

- -  - - - -i ~~~~~~~~~~~ ~VVV__
~_V~ ~V - — V~_~ ~~~~~-— - ~~~~~~~~~~~~~~ — - --‘- --—---- Va~ —---- ---- —- -. V
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IIhen (30a) is satisfied , only the LID instability growth

rates occurinci on the left-hand side of our graphs will

correspond to a wave with a large parametrically excited

amplitude . In the opposite case , when:

IRQ. e(~~-~~~~~-c~) - ~~ E(k .o~~~
i.-

~~~.)JK ,~.ThE(CQ-C4.~,),

then both the Stokes and anti—Stokes modes may simul-

taneously be resonant. We can then write (using (11))

(30b) IS. IS_ I £ ~‘wt~~~.

If (30b) is satisfied , then our three—wave treatment

breaks down . A treatment of the case when (30b) is sati-

fied is taken up in the next section , on the SM instabi-

lity.

E). Nonresonant, forward scattering . As Ic0 do-

creases fur ther, and k-, ( , it becomes impossible

to satisfy the resonance condition for the Langmuir wave ,

but, the growth rate of the EID instability does not drop

of f sharply once k0 decreases beyond ½~ 2,c/3 . To treat the

nonresonant case analytically is d i f f i c u lt, since the

equation we must then solve is intrinsically quartic.

However, the growth rates (approximately), and a quali-

tative feeling for the depence of the instability on Ic0,

can be obtained in the limit that the dampings of the waves

are much less than the growth ra tes , while 11~~~ << 1-. ~~

this somewh3t artificial limit , (6) can be written:

—- -_~~~~ n~~ ~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~ - — ~~~~~~ - ~~~~~~~~~~~~~~~~~~ - ‘~~~ ~~~~~~~~ - -— V S  V 
-
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(31) (c~f— w ~9( ~ —x .) ’ _ WO&J4tSAA4t
Q

Now , if Re W~ x0, then :

(,
~~~~(~))

Z 

~~~~~~~~~~~~
As k0 decreases , Im ~ decreases. Figure seven shows sol-

V utjons to eauation (6) in the nonresonant forward scatter-

ing case, although here , k~~k0. It should be noted that

a recent paper by Fried , et al. treats the decay insta-

bilities driven by a Langmuir pump in one dimension.7 They

present very detailed results on the dependence of the

growth rate on k0.

STIMULATED MODULATIONAL INSTAI3ILITIES

Under the name stimulated modulational instabili-

ties , we include those interactions which require the

Stokes and anti—Stokes hiqh frequency waves and a resonant

low frequency response be treated. In this case, three

dimensional effects are critical; in fact, the instability

cannot exist in one dimension. (Notice that the OTS in-

stabili ty, while it involved both high frequency waves,

had a non-resonant low frequency response. The OTS is

proper ly called a modulational instabili ty ,  but not a

stimulated modulational instability.) Inclusion of a

third resonant wave complicates an analytic treatment , and

we have been able to treat this case only in the very low

V V ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T ______2

~~~~~~~~~

L

~~~~~~~~~~~~~~~~~~~~

V V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Figure seven. Solutions of the dispersion relation ,
equation (6), showing contours of constant growth rate , Im w,
as a function of the wavevector , ~~ - k, of one of the
daughter Langmuir waves (see Figure one). Here W0 = 4xl0

6
and k has magnitude 0.005. Other parameters are the same
as fo~ Figure six. The numbers on the contours give the
growth rate in units of 2x10 7. In this regime, the EID
instability is no longer resonant, and hence has the much
degraded maxima at the two, small contours labelled “1.’
The other maxima is the OTS inatability , here almost iso-
tropic in Ic.
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and very high power limits .

Even so, the general result of the inclusion of both

the Stokes and anti-Stokes waves is a lowering of the

— growth rate . This an effect  well-known in nonlinear

optics and was noted in the case of a plasma instability

by DuBois and Goldman.3 They showed that , in fac t, for

an electromagnetic pump, the threshold for the four-wave

instability is higher by a factor t~ /~~4. We have used

perturbation methods to study the ef fect of the coupling

of both high f requency waves and have been able to show,

directly that in the limit and the limit 
~~~

> ‘ó’~ 
that

the coupling of the anti-Stokes wave reduces the growth

rate of the instability . This seemingly general result is

essential in understanding the SM instabilities.

We have gotten analytic results for these four-wave ,

resonant instabilities in two regimes. In the low power

regime, when we have:

>> ~~ >>

Figures two a), on page 77, and four, on page 8l~ give

numerical results. In the high power limit, when ~~~~~~~~~~~~~~~~~~~~

the SM instability reduces to the high power limit of the

OTS instability (case C and D);analytiC results deduced

for that case also describe the SM instability in the hiah

power limit. Essentially , as Figure f ive (page U 3 )  shows,

the SM and OTS instabilities merge for large powers.

~~~~LVV ~~ 

- - - - “~~~~~~‘~~~~~~‘‘~~~~~~~~~~~~~~ — —~~—-—~~~ r• 
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A striking feature of the numerical results for the

lower power reg ime , as shown in Figures two a) and four, is

the wing-like structures at - k ~~~~~~~. These lobes are

the SM instability. We begin with equation (13) written

as , using the ordering 
~
‘L w < .

(32 )  (~~
z z , v *) ( ~,J_ s ) (w t S4) +~~4Sw4zp/ 4 0

(it  turns out that even of f axis the approximation that

J t4.! =J 4 ~~ is adequate to second order in for the smal l

here). The solution to (32), to first order in y, is

given by equations (25) and (26) and their anti—Stokes

counterparts:

(33) R~w 
— _ _ _ _ _ _ _

r~. ~ W w
1 I ~~~ 1

(34 ) ‘~“ / 8 L[~
2-”~?~ ~

ç1ag~” J ‘

and these have their maximum growth at:

(35) 
_ t .-. l~)2 + f 

~
j

where we have defined :
- V.4

‘1 ~~ra
•

Notice that when we take the upper sign in ( 3 4 ) ,  we

recover the three-wave EID results. The reason for this

is clear if we notice that, to first order in y:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
= 2~~[r1 ~- ~~~~~~

_ _ _ _  -- ~~ V
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which is pu tt ing one high frequency wave off  reson ance and

fixed at (k0±k , w± &’~0) = 25 . That is to say , four-

.~ave e f f ects are also second order in y (or W0).

We were able before, retaining only three-wave

ef fec ts , to predict the maximum growth rate along the locus

given by (35), and this is also the iraximuin growth rate

for the Sf1 instability. However, the three-wave treat-

ment always predicts maximum growth for Ic 0. Our numeri-

cal work shows that the maximum growth ra te occurs for

small , but non-zero , k. This is because , as k goes to

zero, we have , from (30b):

Is+ .
so that both high frequency waves can be near resonance

(and so we cannot ignore the anti-Stokes wave). As the

interactions becomes truly four-wave, the threshold qoes

up, the growth rate goes down; and, we get the maximum

growth rate off—axis. There are two competing effects

here:

1). /4 has its maximum when k ~ 0: that is, when

and ~ ,±k are parallel. Thus, as k goes to zero, the

effect is to increase /4 and increase the growth rate;

2) But, when Ic gets smaller, the resonances

of the Stokes and anti- ‘tokes waves get closer. This

means that as k — 0 , the anti—Stokes modes is more and

more strongly coupled, which has the effect of lowering
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the qrowth rate .

It is the competition of these two effects which determines V

the k for which maximum growth occurs.

To calcula tc this k requires a second order per tur-

bation analysis of (32). We have done this , beginning V

by writina (32) in the form :

(37) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ P(.S&4
1jt/4 C.

using the definition :

We have four small parameters:

E , ‘.j , Wo , k2 W./~,t
since the last is necessary to treat the dependence of

J44 2 on Ic:

(38) , 
cos -’ (~ .~ ) .

The result of this perturbation analysis is that the maxi-

mum growth rate, on the locus given by (35) occurs at the

k for which :

2$’~~~ ç
(39)

This rest’lt is independent of W0 for low powers. It pre-

dicts the Ic values for Figures two a) and four within 5%.

In general, the locus given by (35) defines an

angle at which the SM instability will occur for very small

k, like those prescribed by (39), namely :

(40) 
~os )~ = ~~~~~~~~~~~~~ J

__________________ ~~~~~~~ ~~.-
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This is also a condition on k
0
:

(o.46~~i~J~ ,
k0 > 

1o.~
oti

~
i
~ 
, 

V

It was these conditions that assured (see (29) or (29a))

in the case of the LID instability , that the instabiiity

was a resonant one. For less than this critical

the SM instability , now on axis , becomes part of thc

forward scattering nonresonant EID instability . Thus , for  
V

k0<O.45~2~ ? the SM and EID become identical instabilities ,

while for ~~~~ 64~/T, the SM and OTS merge.

Figures eight through ten summarize the above

resul ts, by labelling the dominate instability for a

Langmuir spectrum as a function of k0, W , and the ambient

plasma temperature ratio. These diagrams give qualitative

results, based on the instability with the largest growth

rate. Two results are striking :

1). For small enough k0, only the OTS instability

is strong;

2). For large ee/ej, the EID instability domina tes

all other parametric processes. These results are only

applicable to the case when we can ignore the damping of

the high frequency modes. For large 
~L’ different results

are possible in a few regimes.

APPLICATIONS TO BEAM-GENERATED SPECTRA

We now turn to several applications of the

J

-  
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Figure eight. Qualitative features of Langmuir
pump decay , as a fun ction of W0, the normalized pump
power , and k~ , the pump wavenumber. Here 0e/Oj = 1 andwe have a hyarogen plasma. There is assumed to be
negligible damping of the high frequency waves.
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Figure nine. Qualitative features of Langinuir pump
decay, as a function of Ic0 and Qe1ei Here l0~~ andwe have a hydrogen plasma, which we assume to have neglig-
ible damping of the high frequency waves.
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Figure ten . Qualitative features of Langmuir - 
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decay , as a function of W0 and ee/ej  — T. Here Ic0 isapproximately 0.05 and we have a hydrogen plasma with
neg ligible high frequency damping .
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dispersion relation , equation (6), which describes the

linear stability of a Langmuir pump . tie will examine three

physical situations in which an enhanced spectrum of

longitudinally polarized waves is created by an electron

beam:

1). Type III solar radio bursts. These are radio

signals associated with electron streams ejected from the

sun which generate electromagnetic radiation through an

intermediate step involving an enhanced Langmuir spectrum .

2). Auroral arcs. The ionosrthcric electron

streams associated with these arcs create a non-equilibrium

Langmuir spectrum which probably acts as a pump for

parametric processes.

3). Laboratory electron beams. In

experiments using a non—relativistic electron beam

travelling through an almost homogeneous plasma with no

magnetic field , parametric effects due to beam genera ted

Langmuir spectra are sometimes evident.

One of the commonest sources of enhanced Langmuir

radiation is an electon beam travelling through a plasma.

Through quasilinear growth and stabilization ,16 this

beam generates asspectrum with characteristics:1 7 1 9

(41) (4J
~It ~~ /~J~ ~ ~ ~~ ~~~ /‘j~~,

(42) W• ~ 
.

~~~~~~~~ ~~~~~~

where Vb is the beam velocity , ~
vb the spread in the beam ,

V ~~~~~~~~ V V ~~~V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
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Ak0 is the spread in the spectrum, and nb/ne is the

ratio of beam density to ambient plasma density . Equation

(41) is a statement of the fact that the beam generates

waves through a “resonant” wave—particle interaction ,

which requires the phase velocity of the waves to be the

same as the velocity of the particles. Equation (42)

is an upper bound on the energy that the beam can trans-

fer to the wave spectrum .

Strictly speaking , the dispersion rel ation of

these beam generated waves is not Langmuir-like ; accord-

ing to O’Neil and ?4almberg , the dispersion relation of

these “beam modes TM is given by a product of the plasma

dispersion relation and a factor due to the beam:2°

E(~,~ ) (&-fr v~÷ i~4~v~)~ —

They have studied this equation in detail, and their re-

sults for weak beams may be summarized by noting that when

the following inequality is satisfied:

f n  
\••I/3 ~~~~ < 5~

then we can conclude that the dispersion relation of the

waves is essentially that of Langinuir waves, with:

~~ 
(I 4~ 3k.L)/’2 4. Q(P1~/~~)

This condition is satisfied for all of our applications

except the last. Since it is also the case that:

.1 2
2

L - - - - V _
~~~~~~~~~— ~~~~~~~~~~~~~~ V V V . 

~~~~~~~~~~~~~~~~~~~
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we have ignored beam corrections to the Lanqmuir dispersion

relation of the pump in this limit.

We are making a further approximation in applying

a single-mode pump theory , when we apply our dispersion

relation , equation (6), to the case of a finite bandwidth

pump . Mathematically, we are making an assumption about
V the narrowness of the Langmuir spectrum in k-space ; we

are requiring essentially , that the spectrum be narrower

in k than the high frequency dielectric function (see

equation (9) for an exact version of this). The effect

of a broad pump in three dimensions is discussed in

reference 8. Here, we only note the most important result ,

namely that the condition on the spectrum can be wri tten :

IW~~~
k2 — 3~~.J >>

where it is important to realize that it is the spread of

the spectrum in the direction of the fastest growing mode

that appears in this equation. Note also that the left

side of this inequality depends on the growth rate of the

instability.

In the further approximation that the beam-wave in-

teraction is unimportant, we can study the properties of

the spectrum itself. This will be appropriate in a number

of circumstances. If for example , the beam passes through

the system quickly, but the Langmuir spectrum remains

at a high level for times long compared to the beam duration ,

or , if the beam-wave interaction has characteristic times

L - V~~ V V V~~~~~~~~~~~~~~~~~~~~~~~ V V . ~~~~~ ~~~~~~~~~~~~~ 
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much longer than the growth rates predicted by equation (c),

then the predominant processes in the beam evolution will

be parametric. In any case, given an assumed , enhanced

spectrum , equation (6) gives growth rates and wavenumber
V shifts for the linear relaxation of the spectrum.

While our dispersion relation , equa tion (6), will

describe the simplest , linear relaxation of the beam-en-

hanced spectrum , our formalism does not directly give any

insight into the actual evolution of the beam-plasma system .

Our methodology in the following applications is to ise

the properties of the daughter waves predicted by equation

(6) to make qualitative statements about the importance

of linear, parametric effects on the beam-plasma evolution .

We can examine , for example , whether spectral evolution

might be able to compete with quasilinear relaxation of the

beam , if it turns out that the parametric growth ~ate is

comparable to the quasilinear growth rate. Our theory of

the linear relaxation of the spectrum offers important

qualitative insights into features of these beam-plasma

interactions, but it cannot make quantitative predictions

of the detailed evolution of the beam or spectrum. Thus,

our descriptions of these three applications only touches

F on the highly nonlinear processes that actually determine

the physics; but, we apply (6) in an effort to find regimes

where parametric effects most likely play a role in the

total (nonlinear) interaction .

_ _ _ __

V
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V

We take three cases of current interest and coripare

the results of numerical and analytic solutions of (6) with

experimental data from the beam-generated spectra associated

with Type III  solar radio burs ts, with auroral arcs , and

with nonrela tivistic electron beams (wi th no magnetic

field). Table V summarizes the physical parameters of

each of these beam generated spectra.

Type III Solar Radio Burs ts8’~ 4”5’
2
~~

25

It is believed that the radio discharges of solar

origin , at 200 mU to lOmH , with durations of One to ten

seconds and having a distinctive harmonic structure--Type

Ill solar radio bursts--are due to high energy electron

bursts ejected from the sun. These streams of electrons

are then thought to interact quasilinearly with the sur-

rounding plasma (either the solar corona, solar wind , or

interplanetary plasma) to generate an enhanced Lanqmuir

spectrum , which, in turn, is responsible for

the observed radio signals. The role of the parametric

instabilities in the evolution of this beam-spectrum

-~ system has been considered by several authors, the EID

instability by Zheleznyakov and Zaitsev~
5 and the OTS in-

stability by Papadopoulos, et al.22 and by Smith, et al.26

The basic attack on the problem, from a suggestion by

Kaplan and Tsytovich,14 is to study the relaxation of

the Langmuir spectrum and determine whether this relaxation

V —- 
- 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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occurs in such a way as to affect the quasilinear decay of

the beam. Two considerations are relevant:

1). Do the parametric processes involved in the

relaxation of the Langmuir spectrum take the energy of

the spectrum out of resonance with the beam (and so destroy

the quasilinear beam—spectrum interaction); that is , are

F either of the following inequalities satisfied :

(43)  V~+AV ~ < ~~~~ •9~. ?
2). Does this transfer energy occur rapidly enough

to compete with the quasilinear processes?

The second of these questions has been answered partially

by references 8 and 15, where it is shown that neither the

OTS or EID instability occur fast enough to actually

prevent quasilinear decay of the beam.

With our dispersion relation, (6), we have studied the

behavior of the enhanced Langmuir spectrum and have found

some parameter regimes in which the parametric processes can

play an important role in the beam dynamics, even though V

they may not be able to actually prevent decay of the beam.

We begin with a numerical solution to the beam-spectrum

interaction in the case of solar bursts, recently done by

Mag~]g~~n.2l This numerical work solves the quasilinear

equations in two dimensions, but assumes a one-dimensional

spectrum and neglects the nonlinear relaxation of the

L -
~~~~~



V . V~~~~~~~~~~~~~~V~~~~ VV ~~~~~~~~~~~~~~~~~~~~ r.,. . -~~~~. V V V-

116

spectrum. From Magelssen ’s data we have taken the para-

meters necessary for a study of the spectrum , namely , k0

and W0, as a function of the distance f rom the sun that the

electron pulse has travelled (after it has left the

surface of the sun). Table V includes the parameters for

three distances from the sun , and Figure two (pages 57 .and

SO) show~contour plots of the parametric growth rates 
V

predicted by equation (6) .  We have used Magelson’s data

rather than the approximations from a homogeneous theory

of the beam generated waves given by (41) and (42 )  for

and W0.

Magelssen ’s results show that k0 is about 0.05

(in units of the Debye wavenumber) near the sun , and

decreases to 0.016 at the earth ’s orbit (about 215R0,

where lR0 is one solar radius, a distance of about 7x105 Ian).

His calculations of the Langmuir wave spectrum intensity ,

which include effects due to wave reabsorption and “pile-

up”2 g ive typical values of W0 of io 6 to l0~~ (the

wave intensity normalized to the thermal energy of the

plasma) .
The OTS instability , in this regime , always has its

maximum growth for a k perpendicular to and for values

of k much less than k0. Indeed, it would require stream

densities higher by several orders of magnitude to result
in the OTS instability having any growth on axis for even
the smallest k0 given by Magelssen. This contradicts the

hI’- _ _  
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results of both references 22 and 26, both of which use

the OTS instability to provide for energy transfers

which satisfy (43)and so could account for beam stabiliz-

ation . We believe that the OTS instability will have a

minimal effect  on the beam—spectrum system , because of the

impossibility of satisfying (43 )  for the powers of the

spectrum appropriate to Type III solar bursts.

However , as Zheleznyakov and Zaitsev noted , the

EID instability can transfer energy to Langinuir waves with

velocities sufficiently different fran the velocity of the

beam to satisf y (43) only when it is not a backscattering

instability . For the values Magelssen qives, we find that ,

the EID instability from 1 R0 to 80 R~ is a backscattering

instability . From 80 R0 to 450 R0, somewhat beyond the

earth , the EID instability is a forward scattering instabil-

lity . And beyond 450 R0, k is so small that the condition

obtained from combining (43) and (28a) is violated and the

EI D instability becomes a nonresonant forward scattering

process. Note that for the low values of W0 for these

spectra , that there is no possibility of satisfying the V

four-wave coupling condition , equation (20). Thus, if we

accept Zaitsev and Zhelesnyakov ’s argument that multiple

scattering , from the backscattering EID, prevents its

being able to transfer energy to nonresonant waves (that

is, waves not in “resonance ” with the beam), we conclude

that only between 80 and 450 R0 can the EID instability

-—~~~~~~~~~~ ~~~~~~~ ——~~~~~~
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shift energy out of resonance with the beam. We also note

that the SM instability occurs for all these sets of para-

meters for distances less than about 450 R® , bu t at such

small k—shifts as to violate (43).

Our conclusions here are dependent on two striking

fea tures of Mageissen ’s results:

1). The small values of W0. Many authors have

con jectured much larger values of W0. If this were the

case, the OTS instability, for example , could have

growth on axis, if: ) L0k0~. In addition , at higher

powers , the OTS instability will result in an angular

spreading of the spectrum , even if k0 is not small enough

to satisfy the above inequality (this effect is well

shown in Figure five, page 83). However , to get into V

either of these regimes, even for the smallest of the

k0 appropriate to the solar problem , k0 = 0.013 (in units

of kDe), requires a power several orders of magnitude great-

er than Magelssen finds. If W0 were on the order of

0.1, it is even possible to use the dipole approximation

for this problem, as Papadopoulos has done.22

2). The large values of k0. Most recently, Smith ,

et al.26 have presented a calculation using a value of k0

of 0.013. In this regime, the SM instability has merged

with the now four—wave EID instability. While it seems V

that Smith, et al. have called this nonresonant forward

scattering an OTS instability , their numerical results

-V - —
— ~~~~~~~~~ --- ~~~-——-- -— -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~p 

— - - —————--— — ~~~~~~ - - — ~~~~~~~~~~~~~~~~~~~~~~~~~ - V- —



- ----V -

115

show the interaction to important in the evolutior. r~f

the beam and spectrum. They show numerically that this

growth rate shifts energy out of resonance with the beam

quickly enough to stabilize the electron beam. Magelssen ’s

data , however , shows that the value of that they use,

as appropriate to the spectra that should exist near

the earth , does not in actuality occur except for distances

on the order of twice the earth ’s orbit (near 450

We have used Magelssen ’s data, in spite of these

other considerations, because his resul ts so closely

mirror the best observations at this point; the essential

effects that he includes are the inhomogeneity of the

ambient plasma, and the finite size of the beam. The corn-

bination of a sharp beam front and an inhoinogeneous plasma

can . tabilize the beam without the inclusion of mode-

coupling effects. Even with his very low values of

the observed shape of the spectra are nicely accounted for.

What is necessary now to improve his numerical work , is V

the inclusion of these mode—coupling effects. Our results

above give some guide to the regimes where these effects

will be most important.

While our qualitative considerations seem to show

that the parametric instabilities cannot stabilize the

electron stream associated with Type III bursts (at least

between the earth and the sun), it has been theorized that

they be important in understanding the production of

ii
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ • VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- V - V ~ V VV ~ V V V V _  ~___~V~Vfl ~• VV ~ ~~~~~~~~~~~~~~~~~~~~~ V
~

_ V
~y_~

V ___ — — V_ ~V~ V V V~~ - - V- 5fl_~~.~ ~ V) ~~VV ~~~~~~~~~~~~~~ ~~ -

120

electromagnetic radiation. The critical consideration

in the conversion of Langmuir radiation to electromagne tic

radiation , at the second harmonic , for  example (the char-

acteristic feature of Type III radiation is the presence

of both the fundamental and second harmonic), is the

angular relations between the Langmuir wavenuinbers which

can allow Coalescence of two Langmuir waves to form a

transverse , electromagnetic wave at twice the p lasma fre-

quency. (The electromagnetic ratiation at the plasma

frequency is usually attributed to scatterin q by ion fluc-

tuations.23 We will not consider that process here.)

Conservation of energy and momentum in this wave—wave

process require tha t the wavenumbers of the Langmuir  waves

be approximately equal and opposite. Our results for the

OTS and SM instabilities in this regime show that this is

impossible to obtain for the daughter waves (contrary to

the findings of Papadopoulon , et al.22). In addition , our

results show that the EID instability is only a back-

scattering process in which k0-k -k0 for distances with-

in 16 R0. Beyond this point, k0 0.03, and we have, f rom

equation (27):

k.-k ~ -k. to.9i~ cJj ~-o.OI

making k0-k and k0 unsuitable for this process of generat-

ing radiation at 2
~4~,e• Our analysis shows that the observed

radiation at the second harmonic must be due to processes

other than parametric ones.

_ _ _ _ _  
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Auroral Arcs 28’29

Papadopoulos and Coffey have suggested the OTS in-

stability as a mechanism involved in the production of

another astrogeophysical phenomenon, the auroral arcs, ~n

a situation similar to the Type III solar bursts, experi-

mental data show distinctive electron distributions pro-

pagating along magnetic field lines in the ionosphere , 
V

which are associated with auroral discharges. There are

two pieces of data that naive , homogeneous , quasilinear

theory does not predict: the relative stability of these

beams and the anomalous resistivity that they encounter

along the magnetic field lines.

Our analysis of the linear stability of a spectrum

of Langmuir waves enhanced by a stream typical of those V

associated with auroral discharges shows that, indeed ,

the OTS instability will have a profound effect on the

resonance relations of the electron beam and the Langmuir

spectrum. Figure three (page 77) shows the regions

of highest instability for parameters associated with an

auroral discharge and, given the fact that, k ~ k0, we

have a geometry with the fastest growing mode parallel to

The large value of k allows us to satisfy ( 4 3 ) ,  even

though the beam , and hence spectrum , are relatively broad ;

it appears that the OTS instability , in one dimension, for

these parameters, can transfer energy from regions of the

Langmuir spectrum in resonance with the beam to regions not 
V

L. • V 
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in resonance , and th~s possibly stabilize the beam.

However, this is only a necessary condition for

stabilization. As Kaplan and Tsytovich were the first to

point out, these nonlinear processes also must proceed

quickly enouqh to change the spectrum before the beam has

relaxed . Zheleznyakov and Zaitsev give the following

condition on the ratio of the rates of quasilinear relax-

ation and wave transfer:15

(44) i~0t~~ ~< ~, ~ 
=

Using the results for the wave transfer rate from equation

V (l7b ) and the usual guasilinear relaxation rat., we get

the condition :

V (45) >>

V There is a discrepancy between (45) and the results of

Papadopoulos and Cof fey , which appears to come from the ir

expression for the maximum growth rate, taken from Nishi-

kawa, which is incorrect in this regime. Although data on

the auroral plasma is approximate , we know that 4vb/vb is

on the order of 1/3 and that ~ 0.02 cm
3, so tha t,

(45) gives: ne 2xl 05 cm’3. This is 100 times greater

than the result of Papadopoulos and Coffey , and an exam i-

nation of ionospheric electron densities shows that this

condition is never satisfied in the ionosphere. The

highest electron densities observed 30 are about l0~ , which

occur at about 300km , much higher than the observed height

— ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ V~ V~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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of auroral discharges. Thus, we conclude that are no

parametric processes suff ic ientl y fast  to stabilize the

beams associated with auroral discharges. However, the

V other important features of these discharges , the high

anomalous resistivity and power law tails on the electron

distributions , k r  example, may require the details of the

linear stabiltiy of a Langmuir spectrum to be fully under-

V stood (and Papadopoulos and Coffey have examined a number

of these questions), but in a situation where the OTS in-

V stability does not stabilize the beam . In recent paper , 29

Matthews , Pongratz , and Papadopoulos correct their form u la

for the growth rate and derive a formula similar to (45)

for 
~b
I
~e• 

They also report new data which shows that

~ 2xl05.

We have developed a formalism sufficient to treat

another aspect of the problem. The dynamics of the Lang-

muir spectrum, af ter an initial OTS instability transfers
energy to large wavenumbers, k0 ± k x ±0.05, will be

determined by the instabilities of these daughter waves.

The interesting feature of this situation is that the large

wavenumber daughter waves form a standing wave field. It
is straightforward to write down the 5 x 5 deterxninental
condition that describes the coupling of the low-frequency
response at (k , i. ’ ) and the high frequency waves at

(k 0 ± k , ~J.t W )  and (k0 ± k , (A,.c w ) .  The k0 is now the
fastest growing mode in Figure three , and the W0 will

-~~~~~~ -- 
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be determined by the saturation of the OTS instability in

the auroral streamer. On this value of W0, we can only

speculate; the studies of the nonlinear saturation of the

OTS instability, even in an homogeneous plasma (which the

auroral plasma is not) are vague.30’31 We have looked at

a range of values of fran 1.6x10 6 to 4xlO ’2 (fig~ red

on the local amplitude of the field , that is, the sum of

the amplitudes of both components of the standing wave).

At low powers , our numerical results are straight-

forward in that we get directly the travelling-wave

results for a pump of one-quarter the power. For th~

appropriate to the daughter waves of the auroral streamer ,

k = 0.05, the numerical work we have done for a travel-V 
0

ling-wave pump of the same k0 ( see Figure two a ) ,  paae 77)

gives the same results that would obtain for a standing-

wave pump with = l.6x10 5. That is, as we saw was
V 

possible in Chapter II, only one component of the standing-

wave pump is driving the instability. This means, most im-

portantly , that the auroral streamer parameters generate

a set of daughter waves which must be treated in three

dimensions, even though the parent instability occurs all

in one dimension. The relaxation of the spectrum of the

auroral stream occurs in three dimensions.

At higher powers , W0 > lxlO
3, we have been unable

to solve the dispersion relation. The exact reason for

this is unclear , but there is evidence that our expaz:sion 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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in breaks down . The ma jo r  d i f f i c ul t y  is tha t  the can-

celatj on of third and fourth order terms in C~ , which

occured in deriving our travelling-wave dispersion re lat ion .

equation ( 6 ) ,  does not occur for  the standing-wave case.

V This results in terms remaining in the clisparsion relation

V which , as 
~~ 

qets larger, begin to dominate some second

order terms. The conclusion we drew above about the irn —

portanec of three dimensional effects does not seem to

be affected by this difficulty in our formalism , but , fo r

W0 greater than 1x10 3, a more careful  study of the para-

metric processes driven by a star-ding-wave pump must be

done.

Laboratory Electron Beams33’34

Quon , et al. have done a series of laboratory ex-

periments involving nonrelativistic electron beams in

which parametric processes in the beam-produced wave

sp’~ctrum are evident. Their overall results show that the

V specific parametric interaction depends sensitively on the

velocity of the electron beam , or equivalently , on the

V characteristic wavenurnber of the enhanced spectrum of plasma

waves that the beam drives up. The linear stages of the

decay of the Langmuir spectrum that this beam produces

-
V 

should be described by the results we have derived.

We f irst  note that the parameters of Quon~s plasma

arc very different  from the astrophysical plasmas; the mass

- 
~~~



- ——  -
~~~~~~~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ V 
VV 

V_~—~ V__ ~
_  - - - rr -_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

12€

r a t io  is much smal ler  fo r  the laboratory s i t u a tio n  ~iri c

the electron temperature is much greater than the ion

temperature . The general results we have derived for this
V regime show that the LID backscatterinq in s t ab i l i t y  w i l l

dominate , when parametr ic  e f f e c t s  arc evident .

In the experiments done by Quon , et al. two ~ -~~~~~
r-.

velocities are examined. In the case of the slower Lean

our analysis can be used directly ; for the fas ter beam ,

hwwever , some modifications are required. In the case of

the f i rst beam , the growing solutions to equation (6) are

shown in Figure eleven a). The large wavenumbers in this

regime required our using Landau damping for the high

frequency waves. As Quon suggests, the dominate process

is the well-known decay instability , and the parametric

part of the results he presents are described by the

well-known theory. We note that it is only under conditions

of small ~ and T)’I that the usual results (of a back-

scattered wave at —~~~~ and ion f luc tuations at = 2k0)

obtain. The maximum growth rate that we predict f ran our

analytic results (equation (23 ) )  is 1.6xlO 3, which cor-

responds to the lowest value of W0 that Q~on, et al. look

at, with a beam density of 5% of background. We have in-

troduced no phenomenological constants: the damping is

purely Landau damping; the fields have been calculated from

(41). In addition to the decay region , our numerical

results predict another region of growth. This corresponds 

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Figure eleven a). Solutions to the dispersion
relation , equation (6), showing contours of constant
growth rate , Im ~~, as a function of the wavenwnber of
one of the daughter Langmuir waves, k0—k. Uere , W0 = 0 . O C ;

= 0.25. Other parameters are; 01 = 9xI0~~~, Oe#’Oi = 15 ,
and the high frequency damping is the sinu of Landau damp-
ing and a collisional contribution equal to 3xl0~’6. There
parameters are appropriate to the pump generated by a
typical laboratory electron beam passing through an argon
plasma .

V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

I

o
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

o

b). The same plasma as above , but with a
beam which is now faster by a factor of 2 .~~. The pump this
beam qenerates is here a beam mode with k0 a 0.1.
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V to a resonance of the Stokes wave at k and a low

frequency response which cannot be treated by a f lu id  ap-

proximation . Since it is no longer true that (& <(kV e, we

have had to make the approximation :

(47) D(~1w) ~ -

In addition , we have used the ordering :

Under these conditions, the solution to (6 ) has a maximum

— growth rate :

3W. S’S
LA) 8~~(~,ek)($..

t_kI)

The SM instability has disappeared because of the heavy

damping of the anti-Stokes mode. 
V

To understand why Quon, et al. do not observe this

OTS-like structure, we must study the narrow beam approx-

imation, equation (9), on which our application of (6) to

a beam-produced spectrum is based. Indeed, it appears that

this region of growth only exists in the narrow beam case ,

Wh ile the decay reg ion easily satisfies the narrow beam

condition , f or the OTS instability, we have :

or 
~~~“~~~~._ ‘ “

O.O~~. V

Since this is not the case for our parameters, the broad

beam has washed out the OTS instability , so degrading the

- 
_ _ _  _ _
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growth rate that Quon , et al. do not observe it.

Two changes occur in this electron beam expcriment.

when the beam velocity is increased , as in the second

experiment by Quon et al.:

1) . k0 becomes smaller. This is clear from the

fact that the fastest growing mode of the beam instabil-

ity has waventunber:

-~ ~~~~~~~~~~

2). There are electrostatic accelerations which

cause the beam spread to decrease. This not only provides

a relatively cold beam, but also generates a high frequency

longitudinal wave with non-Langmuir dispersion , a beam

mode as described above. For Wona’s parameters, based on

O’Neil and Malmberg’s results for a narrow beam, we get:

k. —o- s-
We have been able to treat the linear stability of this

wave with equation ( 6 ) ,  by merely using the above relation

for W0(k0) instead of the usual Langntuir dispersion. No

other change in (6) is required , since its derivation V

depends only on the pump wave being high frequency and

V having longitudinal polarization. The numerical solution

of (6) for these parameters is shown in Figure eleven b).

This figure shows two parametric processes, a decay-like

region to the left, and an OTS—like region near - k a

The decay region is not, as Quon , et a].., state , any more 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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d i f f i c u l t  to excite than in the case of the slower beam .

In fact , since the matching condition can be satisfied for 
V

somewhat smaller values of k0 - k, the Landau dampinq is

smaller and the growth rates for this case slightly larger

than for the previous experiment. Notice that perrect

matching occurs when:

= (.4.’ (k) - 
V

This demands that k = 0.26 or k0 - k = -0.16. The growth

rate is well accounted for by equation (2 3 ) .  Again , (47 )

must be used to account for the OTS-like region of g owth,

although here we have the ordering :

w “ ‘
~(k0~~k),- x. ~c.

so that the solution to (6) can be approximated:

since here, S~~S.
4
~

_ 
~ 0.022. Interestingly , Quon , et al.

report neither of these kinds of plasma behavior . Since

these are the results of a linear relaxation of the learn-

induced spectrum, we have concluded that the effects that

V 
Quon,et al. do observe are due to non-parametric processes.

The strongest parametric interactions possible are those

that (6) predicts. That they are not observed points

towards other effects, most probably trapping effects,

being the processes that Quon, et a].. observe in their

second experiment.

V — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V
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CONCLUS IONS

We have developed a theory which allows us to treat

the problem of linear relaxation of an enhanced Lanqmuir

spectrum without approximation in and taking into con-

sideration multidimensional effects. Three new results of

note come out of our analysi8:

1). In a number of regimes, it is possible to have

the Langmuir pump decay into daughter waves with wavenumbers

larger than the pump wavenuznber. Particularly, at equal

temperatures, the SM instability , has daughter waves at

+ k ~ k0. Thus, these waves have a phase velocity

slightly greater than the phase velocity of the beam. These

waves may be able to accelerate electrons, and, for a

beam-induced pump, draw out a tail on the beam.

2 ) .  In every regime , there is significant three-

dimensional structure , whi ch will lead to a spreading of

the spectrum in angle. The full problem of the three-

dimensional, nonlinear relaxation of the spectrum has not

been investigated, but our linear results show that

this is essential. Especially, when the OTS instability

is off-axis, large growth rates can occur at angles exceed-

ing 200 to ~~~~~~~. The angular spread of the spectrum, es-

pecially in the study of relativistic beams, is a critical

parameter , and the wave effects that we have studied here

_ _ _ _ _  V 
V
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~ 
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a f f ec t  it greatly .

3) .  For a range of parameters with 9e’6i “ 1 and

in a critical range , the dominate proces3 of decay is

forward scattering . This result, coming uniquely f rom a

study of the k0 dependence of the spectral decay , has im-

mediate bearing on especially the theories relating to

Langmuir_tO_eleCtromagnetic mode conversion. A whole new

set of kinematic relations is possible with these daughter

waves; the k0 = 0 result of daughter waves with equal anci

opposite wavenumbers to the pump is true only for values

of k0 large compared to the root of the mass ratio.

To be sure , our results are only qualitative guides

to the understanding of the real problem of Lanqmuir tur-

bulence. What the linear theory we have presented here,

of fers is a physical understanding of the f irst  stages of

the process of relaxation of a narrow , Langmuir spectrum in

a homogeneous, field—free plasma . The most important next

step in this study is to extend our results to the case

with a magnetic field, expecially since applications of

our results to spectra enhanced by electron beams frequent-

ly occur in magnetized plasmas. And, of course, the full ,

nonlinear problem of the spectral decay, must be solved.

Our results are only a beginr.ing to that study.
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DERIVATION OF THE SUSCEPTIBILITIE S

The method used here to derive the susceptibilities

is due to unpublished work by Martin V. Goldman. We Legin

with a fluid equation for v as a function of E; all other

fields and densi ties have been eliminated:

1(k) 1(K). 
~~O) ~ Jd4 (4k- ~-) •rO)~’~(~,).Eik2~)

V + vOc) .j ~ 1T(K) .y fr4 + J~!~ r(~) 
.

(A.1)

t~~ fdK .2~ k T ( ~
) Y(X,) 1?(K~)Wz

+~~~ k.T(~)J
’
dK12, vO~).v(K,) ~~~

• ‘
~i(K,J

where :

,

dkd~4d ’A~d~~ ?(k-k,-~k~)S(’w~~
,,- wL);

d K,13 ~~~~~~~~~~~~~ S’(~-A ’,-A~ -4) S(~-~~-c~-c~Q,

The strategy is now to calculate the various terms in the

expansion of the velocity in terms of the field , use tha t

in the integral for the current, and then group terms by

powers of E to find the various susceptibilities:

(A.2) =

_______________________ ___ 

ii 
~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  VV~V V

- V ~~V•~~
_

~V V 
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V~(K) ~~~
-

~
--

~~~~~~~~~~ Jd K1~ 
~ 

~~i Jr(K~) .coc~)] {T(1~) .E( kZ)]
(A.3)

- 
~~~~~~ 

.[ ‘r~~ sT(*~)]’E.(K~
Now:

-= -efdK~ [fl
&
(Ka)V (13

(14) + 
(u)

~~~,~ v~U ) ]

= ~ ~~ ~
ib )Eo~ f2 tC’<~

) . 
~~~~~

V A.4

V • ~ ~~ 1..~ 
. i(.~

.) . E CK~J .
Comparing this with the definition :

(A. 5) . wfdK1~ ,~~~ 
(KI<~, g~) • çO~)~~~~) ~,

we get:

~~~~~~~~~~~~~~~~ 
f  ~~~~ ~~~~~ e, ~~~~~~~ nl~

e~
t

V t~~ Ta.) ~~~~ m ~W1 w,. T’O’z)
(A.6) e 

— e
A

- m’~., .Th~ e. e1• tO~ e~ ~w, p~# k~ .1~i~)e1 ~~,. i(~
,) 

~ 7
et

and since two of these frequencies will always be high, we

t’~ave for any instability:

~ (V. ~ 
4~~e

3n.

(A.7) ~~~~ ~~~~~~~~~~ 

4-, I ~~ tktk’/c..t

W t

Where the ~~j  are the polarization vectors of the fields

E (k i) .  For the case when one of the fields is a low

-  —— - -VV~~~~~~~ -V-V ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - ‘  -~~~~~~~~
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frequency field , only one term contributes:

(A 8 ~~ — e5n04f1i ç k s..’ ‘
~ 

5’ ko .(~t k.)) 
~~~~ ~~~~~~ 

- 
2~~’w~~(~~tw) (IIt~14$ S U ~~• 

.

The third-order velocity is gotten similarly and

consists of seven integrals, which must be then substi-

tuted in the expression for the third-order current. The

integrals which are dominant for the case of two high

frequency waves are :

~(~) ) e’p.~ I IdK ~~~~ (k- k~).T(K-~ ){k-k,) EO~) .Eia~
j  

V

1’ t.J
~(w- W ,)

.
~
. T(K,’).E04) (k-k,).11K-K,). (k-k,) ECK~~E&3.)

M~w~~1)
.
~
. T( K)~ ~~~ (k-k,) .flK..g.) C.k-~.) EOCL)

(A 9)

+ 
1(J~)~E(J(,) (k-k .r~-K.> k-k~ E(V~) E O)~

V 

+ 
g).~(g~) (k-k~)1ZK-I~L)~(k-~ ) E~K~)’~(k1)Wi (14J -A)1)

. IlX)~E (K)~ (k-k~)’TtK-gQ (k-k)~ E(~ ).f2j)~4’. (W-a~)
Comparing this expression with the definition of the third-

order susceptibilities , and using a travelling wave pump,

we find:

,X (1cei., i~.,~ (.,I(-g.)(A . l0)  4iri e’r A t  ~~— C t~~.
.’.- V

p.1.

and:

X (gtg., g11, 1:1., J # I ~)(A.11) 4~ e.~r” ~~~~~~—

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We also note here some symmetry properties of

these susceptibilities, which can be derived from either

the integral definitions of the susceøtibilities , or from
the explicit form s we found for thezn~

(A.l2) 
~Xhk~ ~~~~~~~ 

Xj,,,1, ~~~ I4,k~)

k~, ~~~~~~~~~ (K’ K,, 14 I<z)

(A.13)

~~~~~~~~~~~~~~~~~~ .

And , using the these relations:

(A. 14 a) (_ g, -K,, - k~) ,;c:. (Ic K1, i~) ,X,,.L (I ~,-g4 Ic ,

(A. l4b) 7~,,, (— 1<, g,, 14) ,4~.q (- 16 ,14 K) ~~~ (—1< ,, K, 1(i).

- Vi

V ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ V V V ~_~~~~~ ~~~~~ V ~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


