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ABSTRACT

A method is described for calculating transport coefficients
within a plasma driven by a high-frequéncy alternating electric field.
The method involves a collision term expressed in the Klimontovich form,
and does not require the field to be weak. Representative calculations
are made for a nonrelativistic, nondegenerate, two-component, magnetic-
field-free plasma by using a large-wave-number functional form to
simplify some sums over wave number; expressions are derived for thermal
conductivity, electron resistive heating ('inverse Bremsstrahlung')
rate, and interspecies heat exchange rate as functions of electric field

strength. Numerical values are given for the three functions.
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CHAPTER I
INTRODUCTION

1. Introduction

This dissertation presents three exampies of the use of a
collision term derived through the Klimontovich formaligm for the
calculation of transport coefficients of a plasma drivem by a high-
frequency electric field which is not necessarily weak. The resistive
heating, which has been calculated before,1 is derived here using the
formalism of Goldman (1970), as is the electron-ion thermal emnergy
exchange rate. The collision term as given by Klimontovich and Puchkin
(1974) is used as the basis of an expression for the thermal conduc-
tivity. The presentation is simplified, in most places, by supposing
the ions to be singly charged. In these examples, the effect of an
ambient magnetic field is not comsidered.

Chapter I introduces some topics which will be used in the
computations. Chapter II outlines the derivation of the collision
term used in the computations. The computation of an inverse
Bremsstrahlung rate and a heat-exchange rate from the frequency-domain
representation of Goldman is done in Chapter III. The electron

thermal conductivity is computed with the use of the Chapman-Enskog

Iyore complete references for these topics are given in the
specialized chapters.




method in Chapter IV. The results of the computations of Chapters III
and IV are Eqs. (III.41), (III.64), and (IV.71). Their values are
shown in Figures 3, 4, and 5 and in Tables I and II; the most
important result is probably the expression for the thermal
conductivity.

Gaussian c.g.s. units are used. Use of the symbol y! does not
imply y an integer, and —%T is defined by continuity if y. doesn't
exist. Many symbols in the text have meanings which are conventional
or inferrable from the context, and are not defined when introduced.

Most of the symbols used are defined in Chapter VI.

2. Transport Processes in a Plasma

A thermodynamically isolated plasma not in equilibrium will tend
to move toward equilibrium. If the departure of the system from an
equilibrium configuration is small enough, and the equilibrium
configuration is not a special point for the perturbing or restoring
agents, then the rate of restoration will be proportional to the
perturbation. If an infinitesimal pertu;bation is maintained by
interaction of the plasma with outside forces, the plasma will reach
a stationary state in which the perturbation is balanced against the
plasma response. The constant of proportionality between the
departure from equilibrium and either the perturbing force or the
rate of restoration is called a "transport coefficient."

The behavior of systems which deviate infinitesimally from
equilibrium is discussed in the books by Prigogine (1967),

deGroot (1951), and Cox (1955).
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Examples of departure from equilibrium are nonthermal distrie
bution functions, temperature differences between species, macroscopic
electric fields, gradients of temperature or concentration. The
b restoration rate is controlled by interparticle interactions, called

"collisions" by extension from the classical billiarcd-ball molecules.

Examples of transport coefficients are electrical conductivity,

interspecies equilibration rate, thermal conductivity, rate of
relaxation of a single species toward thermal, and diffusivity.
As an example of these ideas, suppose that two populations

of greatly differing mass--say ions and electrons--have different

temperatures. The coupling between species is weak enough that each

population remains essentially thermal, and the temperatures will

tend toward equality according to 1
a/ 9, P BL- B, Q)
di .

The electron-ion equilibration time 7.1 is a transport coefficient

for the process. This is am example of a "transport" process which

isn't a flux in configuration space,

’ Another example of a system with transport is a plasma with
imposed temperature gradient and electric field. A stationary state

j is described by

Jd =6 +xV8 (2a)

S =-pE - Kb (20) |
|
1

giving the electrical current J and the heat flux S (Spitzer and

Hirm 1953). The transport processes here are the actual fluxes of




heat and charge, and the transport coefficients are 6, o, /B, and

x.

In a system with a finite departure from equilibrium, the ratio
of rate of restoration to strength of perturbation is likely to be
positive, though perhaps not constant. If a periodic electric field
is applied to a plasma with species of different temﬁeratures, the
species will still exchange thermal enmergy, though the process is
no longer one of equilibration. If the field is strong, it can modify
the response to an applied (constant) electric field or temperature
gradient; the thermal and electrical conductivity are still comstant
with respect to the perturbations, but are functions of the driving
field. If the plasma response considered is that of the plasma to
the driving field icge}f--the rate of heating by inverse Bremsstrahlung--

then the response is nonlinear when the driving field becomes strong.

3. The Effect of a Driving Field
When a plasma is so strongly drivem by an electromagnetic field ‘

that the resultant electron velocity much exceeds the thermal speed,
the most important effect may be the generation of plasma instabilities

(DuBois and Goldman 1965; Silin 1965) and electrostatic turbulence

(Kadomtsev 1964; Tsytovich 1972). But the turbulence needs time to

grow, there may be effects which are independent of turbulence, and

it is possible for the driven speed to be near the thermal speed with-

out turbulence (Brownell, Dreicer, Ellis, and Ingraham 1974 and 1975).
An alternating electric field will change the average relative j

speed of the two species and thereby influence transport processes. ﬂ

The effect will become important as the driven speed of the electron

approaches its thermal speed. A good discussion of strong-field effects
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is given by Kidder (1974).

The intensity of the electromagnetic wave which drives the
electrons at their thermal speed depends on the electron temperature
and the wave frequency. It is shown in Figure l. For that figure,
it is supposed that the wave is propagating at the vacuum speed of
light; physically, it could be important that the field strength
increases in a wave approaching a reflection point. The intensity at
which the nominal driven speed reaches the speed of light, so that the

treatment given here needs modification, is shown in Figure 2.

4, Integration with respect to Wave Number
The expressions derived in Chapters III and IV involve velocity
moments of the collision term (II.29) in the next chapter, and those
moments involve integrals over k-space (and'sums over the integers n)
of expressions weighted by exp {'%(13592} For large values of k,
-3

the integrands are proportional to k™ We can expand each integrand

in a geries

T=k M1 +1 +...] (3)

and take the leading term. In this process, the cutoff has disappeared
that was imposed by the exponential at small values of k, so we re-

impose it:

MQI’

!
-l 1
f(m,l’ A '“‘k 2#1-£on = awt f/wI ik

The expression on the end contains the Coulomb logarithm

Aw A /z,.-m. (5)

DI"

. which involves the limits on k. The lower limit kpj, will be an

i
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average of %;5 over the non-negative integers n. Because it enters
e
as the argument of a logarithm, and the logarithm has a value which is
typically at least 5 or 10 (Spitzer 1962, p. 128), the logarithm can

be estimated by ignoring small multipliers in kpi,, and we can use

~ | Yo
klnn i k° wp * (6)
The upper limit kmnx is the inverse of the distance of closest

approach b,, and is required by some terms ignored in the derivation

of the collision term in Chapter II. (A brief discussion is given in

Appendix F.)

Another form for (4) is

- _mvwb
f("’) 0 it ei; 2(2773/; fJ/lb ce e @)

Vo is the conventional electron-ion collision frequency for momentum

transfer (Perel and Eliashberg 1961; DuBois, Gilinsky, and Kivelson

1963; Kidder 1971):

2% “Jz_ﬂ__ n; e‘e:_‘/L'VA (8)
® 3 m” 9:/1

What happens to A in a strong alternating field? The minimum
impact parameter decreases as v'z, and the effective quantum-mechanical
size of the electron only as v'l, so that at some energy the effective
distance of closest approach is determined by the electron size instead
of bg. A parallel argument is given by Marshak (1941). Moreover, the
effective speed is some average of the thermal speed and the driven

speed; 80 ky,, can be calculated by




8
L 2 max(h, } ) V.. & max(1p, &)
kmax ) TdeB’? ePFP (%) ma,
k e
= - (9)
At mVerr 6 AN

The crossover to quantum-mechanical limitation happens when Zenc/veff,
in which o is the fine-structure constant, decreases past 1l; and
that happens when the electron energy increases past about 40 ev.

The effect of the strong field on ki, can be ignored within
our crude approximation, because although the effective shielding
distance may be increased by decorrelation of the two species, each
species is still shielding itself.

In a plasma with turbulence, there is often important behavior
in the spectrum of (e.g., electron density) fluctuations corresponding
to propagating Langmuir waves (see, e.g., DuBois and Goldman 1972),
and that spectrum is strongly damped unless k £0.3kp. Thus weak

‘D
turbulence contributes collisional effects described by j’dk, and

nd ()
non-coleective collisions con:ribu:e‘}Pdk, where an upper limit may
kl

have to be imposed. A variation of this idea is discussed by Kihara

and Aono (1963).

5. The Quantities [ n(3)
This section defines and gives some properties of a family of

functions that enter the analysis, and which have been given the

label [.
Definition:
a0 " g 2 2
[es) = 40}3 Z_:_Q('7n )'e™J (3/57[) r = 012..010)




Expression for l";:
A derivation of an expression for r'r is given here. (Another

derivation is given in Appendix A.) The starting point is the

definition of [q:
= l. "7'71 : C
NED) »',310 i ey (3/:,7 ). 1)

An easily derived identity (Watson 1944, p. 32) is

'n'/t.
J:(Sv/z’a:) = .,,/2 (ZSFSMO) cos 2n8 (12)

For (fixed) nonzero 5, the contribution from the J, term will

come only from arguments
9‘7'4' £ O/, (13)

When ’7 is small enough, the contributing part is a smooth function
of n, and the sum is tractable:

)
IE"AZ-—)fﬁ— (14)
n

hmfdz -X f’;_m cas(”z Jd -LSRFDmu 1s)
7"0

in which an integral representation for I is used.

t
fdze cos(zezy ) = " & 0/” (16)

r-(s) _j' fim tf.la v -0/7 -dzf_amtx an

¥ 90

Po is real, so zfdo —)f:o.

[] ® ®
f:(.f) =f£4'z7'if.‘; ﬂ’v'exf[-(ﬁTi +iyT$ pine) - 24%in'%] (18)




10
= e-$ f{; c:'usc« 19)
= A (3%) (20)
in which a modified Bessel function appears:
Ax) = e "L (x) 21)

An expression for the other ["'s can be obtained by including a
factor IB in the argument of the exponential in (11). The value of

the expression becomes /\o(ﬁ32)t so that

NORNCRESHIT I i
= (-8%) /\om(\fa) (23)

From Abramowitz and Stegun (1964, p. 377), we have

AG%) = M(py -28%) (26)

and also that

h(ng

(8%) = (-2) _nl_(—-_)TM(’” sy h+i, =28%) (25)

(h)

to give the result

[e) = ‘g,'(‘;), (23%)"M(net,n+, -28%)  @o

The symbol M is the confluent hypergeometric function (Jahuke and Emde

1945, p. 275).




A related quantity:

11

The expression preceding the equality =ign in (33) below enters

the analysis. It can be signified by the change of variables
‘7 » (k = )
3=/LE

in which a nondimensionalized field strength is introduced:

% . ek

E = - ]
2% 2mw, v -

The argument of the Bessel functions is

k-de = ‘(/L'g's' =2Eve-b7£- =

Q
<n
3|r
L J

The susceptibility term is

2 nw.

P X, (rw) = l;‘ L—v—é_e
- k‘ » ﬂﬁ_-c
Now the expression of interest:
ar-
S fmr) dmYlnw) I, (hedk)
r kl Y ”'- 3
S(n®) gE e L "(3/;--)
Operating on that expression with k-2 &Eg.kz gives the result

Plim 4 5 () G vt Ik
€k

na-o

= (22) 7 [0,

27)

(28)

(29)

(30)

31)

32)

(33)

(34)




Some properties of l r:

I",(.S) can be expressed in terms of modified Bessel functions

by a symmetric finite sum (Appendix B):

[es) = __tl_ﬁ(as') Z (-)"A (‘”(TH)’W’ (35)

h=-m

A recursion relation is derived in Appendix C:

re

23'1:(3) - (ere)) 3L -rl + [, (36)
Appendix C also gives a differential recursion formula:
/
3[(3): ‘?"’: -2l (37)

Small argument:

(ar-l) 2r | are) 2re3 4 7
,;(3) = 3 [ J"” +2—I' rel rot -'”J (38)

For large argument, Jahnke and Emde (1945) give

M (%2 -23%) ~ (1_%—757(23‘) [u«“"' +...J39)

so that

-0l -
[~ EHE o0 2 L] o
2 L]




CHAPTER II

THE COLLISION TERM

The evolution in time of a particle distribution function obeys

the Boltzmann equation

of of 2.2f . (2E
Tttty af = ( )“”, o8

of

The right-hand side, the 'collision term," is that part of 37

which is generated by interparticle interactions. In this chapter,

expressions are developed following the treatment of Goldman (1970)

for two velocity moments of the collision term

I (w ¥) = ( VYY) )

in which the Fourier-transform variables k and @ appear. An
expression given by Klimontovich and Punchkin (1974) for the time-

dependent form is noted for later use.

1. Development in the Time Domain
A specified set of identical point particles can be described
by the exact ("Klimontovich") distribution function
MIC 4 -t = - -
£oEge) = 3 §[R-2.0) s[¢-V o] @)
i)
where (f (t),nv (t)) is the position of the i° B of the N particles

in a (six-dimensional) single-particle phase space. It has the




exact equation of motion

(;2{ +¥'fz)fm(‘z yt) + —-.[ma (wnI ] = O(h) %)

- =)

This equation is useful if the right-hand side is set to zero.
_ch(g,g,t) is the acceleration that the field at (x,v,t) would
give a particle there; the self-field of the particle is to be
neglected. A parallel development using the wave equation and a
semiclassical treatment of the field seems feasible (Rand 1964; Brown
and Kibble 1964; Pert 1972; Seely and Harris 1973; Seely 1974), but
is more cumbersome in describing classical particles.

The system can be considered to be a member of a Gibbs micro-
canonical ensemble, and averages taken over the ensemble. We will
use the notation suggested by

Mic

fezye) = <F (zyt)), (5a)

[ (5b)

§F(zy¢

Taking the ensemble average of each term of (4) with t'=0 leads to

(;T ry-2)F +)! af = -—-(mrgzrt)s?(zrt» (6)

o

and a problem in kineric theory is the evaluation of the right-hand
side. The Boltzmann collision integral and that of Landau are based
on the picture of a binary collision, and a statistical argument leads
to the Fokker-Planck form for (6) (Chapman and Cowling 1939, p. 46 ff;

Chandrasekhar 1943; Wu 1966, p. 32; Present 1958; Landau 1936; Krall

and Trivelpiece 1973; Delcroix 1960, p. 116).




The difference of (4) and (6) is
(% +v L)sfeave) + 3 asf = -3[Fsa +sFa-<sFa>] )

We specialize now to a gas of particles coupled only by electromagnetic
forces; then _g_. commutes with 3—[ . We ignore terms quadratic in the
fluctuations. Allowing more than one kind of particle in the system

and introducing a species subscript &« gives the equations

(53;, o 1.3_3; *ngf) s&l(zvt) - fg.{(ll't) = -388, :5 s (&)
(&é +V':z +g“-3?_7)£(51,5) = I (zve) =-¢52; 3‘“‘) 9)

The treatment in this chapter follows that of Goldman (1970).

A Green's function for the operator in (8) is

Ote-t)G (xzirr'ee) = BG4z L rve) s[r-x'e;xve)] (10)

in which 3:\: and xs are the coordinates a particle would have at

time t if it began at (x'v't') and moved with acceleration _C_?_. (x,¥,t):
X' xre) = ¥ +fdr a (x(r)vir) r) (11)

LGy r) = g e L) fdr/llr g (zp)utr) ) a2

4
G, has the property
G (zrywet’) = §z-2)§(v-v7), (13)

The formal solution of (8) which takes a specified value at t =t

is
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sPave) = f;’z'a/’v':g(z'V'to)@(e‘;'vv*’zz )
% o

3 % 4 i ’ ?
+ sz'dv[dt @(1.{)2(;'\7’5’)@&2’7? )

This is not an explicit solution because the source term S >
depends on ‘& through fg.(. The dependence is expressed by

Poisson's equation

VeSE(xe) =47 SP(x2)

42 §F (%1

xX=&;
N 3
—#T«Z&( f,,(y 3&(_2.'}_'1‘), (15)

If we define a homogeneous plasma as one for which the ensemble
averages f (-_zp[)and Qu(gf)are independent of X, and suppose our
system to be such a plasma, then G depends on X and glonly

through the difference _1:-1', and we can take space Fourier

transforms:

sgk(w) = fJ’zc“'l"z Sp(g_\{ ¢} (16)
) -lK* ‘_')
G“L(W'\’H’} Efal(_:g-z'}c bz @@z'zz’#t’) (17)

The quantity S-Ek( &) has an important property: §£(Z,¢) is the

field of a set of point particles moving at nonrelativistic
speeds, so that interaction is effectively instantaneous.:

= ~ikex 3.2
§E, () = fu’zc ‘ 3’7%;73

..4'/(. . 3 =2 -l
=) %€ "‘/./z %—c“é = (18)




and that is parallel to _/g, so that
)
SE, (t) = kSE, (4, (29)

This defines the signed quantity & E;(t).

We use the abbreviations

a.it= ;?'rc_l«(") o
%érg’u') = % [g’(t-tj +‘[;7‘Ad7’t'] (21)
Some Fourier transforms are listed:
G, (yrtt) = r(x-xiué')e'm"f L (22)
i = SCy-Y-4dr)e” ¥ .dd,t:tj (23)

s, = [dy KIRCEPIRITES (21)

G, (re'#) = S(7-27) (25)
P S‘P(yz) §P (w +j'J’v/J: ‘Bt t)G{zz li)f(yz)(zé)
[ S.,L(!f) = -§a,®- 5Py --zsm)L M(av)
, S‘I—:‘L(i) - ”—k"i rf;(é) (/< £0) (28)

It can be seen from (18) that SE, vanishes at & ).

In terms of k-dependent variables, the collision term from (9) is

Lvi) = -f;-{g/?«gk(e) sF (v, (29)
TR

e T AT i
Busdonn . ¥t i te k anl | a R
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2. Symbolic Solution for Correlation Functions
In this section, expressions for < Sfl(t) §E k( f9> and
for <$£:l<_(0 S‘s‘;_&ﬁ; t)> are written down.
Following are some definitions for some symbols used.

The nonlinear susceptibility h(t,t'):

| 3 ~ R,
: & (2L o) @ (e b Ll
_;i,"?);im) = -;’-:f-!w'v Ot-t) Gy (Wt k 37" (30)

The charge density fluctuation for one species:
3
S = [éva sf, 000 (31)

The part of the charge density fluctuation which has evolved from

the initial value:

o - 3 o -
0 = folv S Sg&(v Z) (32)

Total susceptibllity and charge density:
22( z 2;£+):,£, $f£ = S):. a0 (33)

The dielectric function:
€, (47 = S(¢-¥) + X, (¢t) (34)
The inverse dielectric function:
Jurelarsqae) = sct-t) (35)
The last equation defines E’:'(Q‘f') s the questions of existence

and uniqueness are deferred.

Development of the expressi.ons for the defined quantities:
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Using (26) in (31) gives
e k ) :
AL S‘f () - ‘-‘;— t..u L (t8) $££ (¢) (36)
; A - “’M (Vo * 0;:,(!"')
kY, () Bt-t) vy G Ik 2 (37

| iy = G-t fJ V k- __-_____P (V-8tt) iy (P4 (35

If t, is chosen to be recent enough that collisions haven't had time
to change the distribution function very much--i.e., if the right-hand

side of (6) is set to zero--then £ is explicitly known from its

| initial value:

£v1) = £(V-44t,L) (39

If the initial distribution was Maxwellian, this condition may be

|
I
«
|
! applicable even if collisions have had time to be effective, because
! the fastest effect of collisions is intraspecies thermalizatiom.

|

i

I Then using ﬁ(Y Ati’ ) = F(Y-AH f) in (38) gives

. af;(xz.) -,w,,,,(vmtt,,g )

by () = 3 @(u)f./ i

i{ The expression for E, from (28), is
: r L g e . ’
» | SEW® = W - e [4: 2 (et) SE ()] @)

which is the same as

f.lt'e‘(tt') SE&(t') = ﬁ!—t‘&.ﬂ), (42)

,
|
k‘-——m— el o s o it
ST P :
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|
so that an explicit expression for §E is
TACK f./i €'(¢t) 77 E (8. @3)
We assume that f, (vt,) is known. Then we can use the expression
derived in Appendix D following Wu (1967):
i
-h . -“ E
& (70) sg. [T > s;ﬁ (7% £ ve,) (@4)

This quantity is independent of k. In Appendix E, we prove the

identity . |

fJ’ "G (vyd) G (rz"tt) G (vx'éd), (45)

-k
For the field correlation function, we develop (§f¥f):
<sf () sP° o))
j'./ L <E )5 DG Loyt IG (wH)
fd s f(7Fat4,L)6 (7722 )g‘( f:,

o

"k it Guturs). &

Then

SE sl et = [frg foratt,t) 6, rse)
(vee)

%7)

| 9
| =g R (-4 et,p ) et




|
[
i

'l
]
;:
|
il
|
|
]
t
|
I8

H
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. . p iUk (VARG B L
$spyep ) = O(fo‘/jv-{(,,t.)e ek (VS 4E)

This expression into (40) gives

<$E£(e)se:£(w>
- [ e (B [Ty ST
= Jordme g (e IGE) B I fepe et b

The term {§ECP) can be expressed in terms of this. Making the

substitutions suggested by

SF = €S §F = 5P+ GSE, SESF = e'cp%P” + GEFSE

gives
e ) 4T %, %
(SEMSE rt)) = g ) S SERTT 00)
o) nite { b rE) §
+f'f"'.£"* @) G?i(p_r ¢ k- 7;,___«&;(1):5&(;)) (50)
°
o b N i, (v, )
. f.u €'t ) T g, P lraty, &) e

® ~n R (r-4t8d) 4td’d ¢
¢ » :

s
> (51)

3. Specialization of the Driving Field
For the examples given in Chapters III and IV, we specialize to

a system in a linearly polarized electric field with no magnetic field:

”ﬂ(él

< (Xt) = g E shal, (52)

It is turned on after time t, in such a way that for t>0,

t
- = - ° L4
Atl = '/t'./rg.((r,rl Ko € % (53)
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and
t . ‘ .
j;al{ A“tf. = ..J‘ :mw't. (54)
In this, &, = :-; e 5' .

The forms taken by (20) and (21) are
At = A, -4t = -4, (cosot -coumt)  (55)
t t :
frraoy = LA 42t
= -d, (sinw,t-smut) s -t)y, cosumt’  (56)
’ ’ ¢ A & ) 4
g (tE) = ke [(r4, g2 () fongt -singt](57)

The susceptibility (40) is

ik )f‘ (t) = "‘ 9(1 t)f Al 2 s Jf(vé L'E'(bt'):{r”’f'";:'ﬂ(se)
4. Fourier-Transformed Expressions
This section gives a sketch of the derivation of two moments
of the collision term for later use. If the system is stationary
except for the periodicity imposed by jZSg,t) periodic with period
@, then any function with two time arguments f(t,t') determined
by the system can be expressed in the form g(t-t',t'), where g is

periodic in the second argument. A double Fourier expansion can be

made :

P(t o) - Z” Jw -[U(‘ t) _‘lut
L) = 2z € Fley bug-w) (59)

Il"a -®




r—

Coper = fueat e 0o
w(t) = {_ Lr(lq)c'd“"i

Y(ha) = fJf yeoeitu?t
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(60)

(61)

(62)

The space and time Fourier transforms are normalized in the usual

way by setting the (infinite) intervals of integration to unity
when they appear as factors; e.g., a complete statement of (62)

could have the form
2

2 .
Y(hy) = T"fdi peee’

-I
2

2T
where the values of T are integer multiples of Al the system
o

Auw,?

has period T, and lim is implied,
Toe
Because our system may be in fact not stationary but have
a time variation--e.g., heating caused by the collision term--
which is slow compared with the relaxation times of the system,
the frequency-dependent coefficients in Eqs. (59) through (62)

may have a residual time dependence.

Important properties are

[ Jagaeif, e ¢)] Ca-nuy, miy) = {. £ (% &g ) f ol mg-w ) (63)

[ Jrefarrpai]ow,) = I fon,-Aa)iftda).

. i it i " o
p— . a
PSRRI,

(64)

Sttt S S 0 i i S il




A Fourier transform of (35) with the use of (63) is

) [tw-n -) =§ = € (w-nu, Lis (o -
[:(t )](u , Mes o) ‘Dn ,,Z ‘(wmn;' .-..v)ei e, M- o) (65)

In terms of an M defined by

MMH(AJO) = €‘£(w-mw.) ne-w) = S;'n ’{(""’Wo/"%-b) (66)

we see that
-/
G;l(fod’?ﬂ;'mv'.q) z M"m(l‘,“’), (67)

which provides most of the argument for existence anc uniqueness.
An expression forthe nonlinear susceptibility in frequency space

follows from using the identity

eiz:mo & Z \;(z)e""’ (68)

ni:-e

in (58):

l‘y (b""‘, mo-o) /‘JY _M " D p( Zm :n;’(/‘ 4)".(‘4)(69)

A linear susceptibility can be defined by

<, zem.) R
@ = f.f sasTeegeT (70)
and in terms of it,
o~ bl
225 w-nty mu-w) = ’Z I;A(Mfw.) fm,, I,,'. (1)
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| The same symbol Yk is used for the linear and nonlinear

susceptibilities; they are distinguished by the number of arguments.

expressions, which will be used in Chapter III:

$sp, 0 SE, () (da,)
( ‘
= 2ki L ‘-’ﬁ{ b b X ) (48"

|
|
|
l
|
a Making appropriate substitutions leads to the following
|
mr _r w Ak

xS (kd) T (ko) +

+Y (w-[.t*r]w,,'"“;'b)*z Z_M,:(“,'!‘)
«k np psl

(e
xN;;(qA)*{(é'sﬁ)‘;(é‘d,)—?i:M} (72)

| T (t)-§E (8)) (X))

| L, ) (e (

E = i) %’-;%{ Q"f)"x’l‘ os: (v [red)e)
mr

. ¥ - -l *
' x };‘ (6"["’(7”.: ""‘5"") ’;Z’ Nrn (éa w) Nu./.(to @)
;; eJ, Ched) 3 k)

| . 8 =2y (w) [(w -[lﬂ']@; VXY (o-[i+H]w m:u.w)'
| e ‘£ : o? [ 4

x S M (k)M

m,
iy 4

(k) (kd,) ] (kd,)
+ra) My (ha)* T (hd )] (hd) O

The symbol o' labels the species different from af.
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S. Collision Term in the Time Domain
Klimontovich and Puchkin (1974), using a similar approach
and the same specialization to Eq. (52), derive for Eq. (29) an

expression which they give as

-— D klsZ ( )S‘(nu k-U)a Fe (7L

I = zc-e Nt
e Jeta, )[* 3P

In this, a delta function has been used for the ion distribution

function. The variable _f_’ is the deviation of particle momentum
from partiéle drift momentum, and the remaining time dependence

has been averaged over a per‘od of the driving field.




CHAPTER III
HEATING OF ELECTRONS AND IONS BY A HIGH-FREQUENCY FIELD

Fluctuat nec mergitur.
Albert lhssiahl

In this chapter, the physical system chosen for illustration
is the simplified one of a homogeneous two-component plasma
driven by an alternating electric field with no magnetic field.
It is shown that the energy absorbed from the field bty one species
can be expressed as the sum of two terms, one representing
resistive heating and the other representing an exchange with the

other species. The terms are evaluated.

1. Introduction

A hydrodynamic equation
The hydrodynamic equations are the velocity moments of the kinetic

equation (II.l). The following exact expression is easily derived,

as shown by Chapman and Cowling (1939, page 49, Eq. 3.13,2):

I{¢(TF)} ‘a?t_"?; +u‘.-,°;i-n;'+ ngvik + v-n Py

_fr. ) g6 _ i, 38
{[Qi it 4o oy Dzl-q‘w. i

This equation has been simplified by taking ¢ to be a function of U

lhessuh 1962, front plate for Volume II.




L R e o™

e 4

only. The overbar labels the average with respect to the

distribution function.

1 (@)} = [Prdm1aTe @

I(X,7,t) is the quantity which customarily appears on the right-hand
side of the kinetic equation, the 'collision term," as in (II.l) and
(II.2) of the preceding chapter;

Deviation of velocity from drift velc:ity:

U =v-uzd ‘ 3

Drift velocity:
u(zt) = n“‘f-”vzf fezws) (%)

This definition of u(x,t) makes it the actual drift speed, which can
differ from the u = fg dt used elsewhere in this thesis because
of the collision term and possibly an initial value. The difference
will be important in a more general computation of transport rates;
in this thesis, the difference is ignored.

If there are no space gradients, and if ¢ is taken as the

particle energy {mV‘, then (1) reduces to

3
I{%mvﬂ} = % T hé. (5)

The separation of terms
In the absence of the driving field, if the system were to begin

with nonthermal distribution functions, the electrons would bec.ome
thermal in a time described by an effective electron-electron

relaxation time, then the protons would relax in a time greater by
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the root mass ratio, and finally the temperature difference between
the two species would relax in a time greater by another root mass
ratio (Spitzer 1962, p. 136; Delcroix 1960, p. 113). The interspecies

equilibration rate is given by (I.l) with the relaxation time

(III.49):
dbe . BB (1.1)
ot e

If a weak driving field is imposed, the species move in opposition,
and collisions convert some of the energy of oscillation into thermal
enetgy.v Because each kind of particle receives the same impulse in a
two-particle encounter, the increment of randomized energy between the
two species differs by the mass ratio, so that the ion population heats
more slowly than the electron population by the mass ratio. In a weak

field with JL =£%, the thermal energy of each species grows at the rate

3 = 2z
En«e‘ = ziﬂ“.‘(E; ' (6)

where % Q;, the dissipative part of the conductivity, is givem by
2
ne
Re = —, Y (7)
= 2 %02
o« m‘U.
where K is the electron-ion collision frequency (I.8), and X is e or i.
The concepts of interspecies energy exchange and resistive

heating can still be given meaning in a system with a temperature

difference and a strong driving field. The rate at which a species

gains energy can be derived from the hydrodynamic equation 1).
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If the Klimontovich collision term (II.6) is used in (2) for the

left-hand side of (5), then (5) is

- TR 3 _dEmyt

e f./v(:g:?) e )
= [dv <gsE-(x-2)5P) ®

3, 28 :

1, a_; - (;-g. :1d> -4.(:{;‘,:) (10)

by appropriate definition of ﬂf and Sf, and with spec%es subscripts
included for the last line.

We will find that the second term on the right-hand side is
quadratic in field strength for weak fields, so that it can plausibly
be defined as the resistive heating. In the absence of a field, the
first term is given by (I.l), so it can be defined as a heat exchange
term These definitions aren't unique; e.g., any quantity
(O‘ - O“c)Ezf(t) could be added to one term and subttactgd from the

other without destroying the properties which motivate those labels.

Average over a period of the driving field
Each of the bracketed quantities in (10) has an expansion of the

form (II.61). Taking the time averages gives

<$§-g“> = <s§-:1;>£=o (11)

and the heating rate

_pi‘;E..t _-L_(‘.<:£‘"f:> =go“cnwi[

=ﬂ¢,w - SESP )2 (12)

This defines the dissipative part of the conductivity 6; =Ré.
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Matrix notation for the frequency dependence

The expressions (II.72) and (II.73) for the resistive and

equilibration terms are given a cleaner appearance with more compact

notation. With arguments k and @ understood, we can write ]

Kow = X, (wemit, i) (13)
Bo-L+K o +K (14)
N =M (15)
| R,.= (wne)S 163
gi g =9 = el {I (k)] &
i L i c./{,l;(l_;.s/‘.)} (18)

The underlining will sometimes be omitted from the mat¥ix and vector

1
|
|' symbols. We define a shift operator by
|
1

S =§¢ (19)

mn n’s »n

so that it has the property

|i
} (SZ)"M = Z (20)

me,n

Clearly true is
| J'8"J - ¢ @1)

in which‘g* is the Hermitian conjugate of J.

Remembering that the linear susceptibility depends only on the

magnitude of k, we get from (II.71)

(22)

'iwnahn'

mn

KE = %1/6‘(@+1a;)
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Effect of small mass ratio

The argument of the ion Bessel function is kedy = k/l-a/e /,.—-'.
"
We will take

L = S (23)

m "!.0

which is equivalent to ignoring terms of order k<d,. Thus we have

assumed the inequality
| 5> ‘ybﬂ/.j..i /(/u, 35 / (26)

in which the dimensionless field strength (I.%)appears. So even
though our result is intended to apply for kDu k and E>1, we
suppose the mass ratio to be strong encugh to enforce (24) That
condition imposes an upper limit to to the value of k allowed when

the sum is done over E:

“e ko /I’T
& == L gt (25
k “ E Vm, :

We notice also that the cuantity am ’Xl (k,«) has an exponential

factor with argument

) ) Tk (26)
k U “’/- /< E
The condition for that to be large when @ is near &, is
t
] << ko my (27)

Zw; k® me’

But (27) is already implied by (24), because we allow E>l,
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A consequence of (23) and (II.71) is
;
K'an = S;'m.lfé (“’4"’"‘”0) (no sum). (28)

2, Resistive Heating

Earlier work
The rate at which a plasma absorbs energy from a weak high-

frequency electric field was calculated by Dawson and Oberman
(1962; Oberman, Ron, and Dawson 1562; Dawson and Oberman 1963).
Rand (196L4) derived a single-particle absorptivity but didn't
average over the electron distribution function. Silin (1965b)
calculated the nonlinear absorptivity and reached an expression
equivalent to (III.41). Kaw and Salat (1968) extended the linear
result to stronger fields by taking more terms in the expansion of
Bessel functions with argwents proportional to field strength.
Kidder (1971) reaches a simple exvression for the absorption of a
circularly polarized wave. A quantum-mechanical derivation by
Seely and Harris (1973) used an erroneous approximation and quasi-
physical arguments for the evaluation of an integral, and reached
a conductivity which lacked the Coulomb logarithm (McKinnis and
Goldman 1975), Klimontovich and Puchkin (1974) give a result
similar to that of Silin.




.

1 Simplified expression

Equation (II.72) in the compact notation is, because only the

real part contributes,

( @, '
#e «'Eﬂ:)s o /‘Jw % (ko) a""";‘—wfé‘ J_'(
Z’Cﬁu) b At
-JE___JL____
,}' ” b 5N, sxv%} 29)
w [ 6 bm?,
ot [ { A LW R WS
0@0@-7 %J, N’lf’f‘ﬂf } (30)
8 OnY,
A A CSESRY, . = gf‘,’;" a»e%vJ”[NS'SK Ivo

5 Z +
- BB g WsH L] o0

Expression for unrestricted k

This expression can be developed further, but we will use only
the large-k form. Silin (1965b) and Klimontovich and Puchkov (1974)
give expressions which are similar to the one which would follow
from (31).

Large-wave-number form

The susceptibilities are products of k%/k2 with bounded
quantities, so that both M and N become unity at large wave numbers.

The fractions in (31) multiply terms which are of comparable

T S IO
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size, so the ion term dominates. The contributing term is
+ =
L Skc L L0 (32)
o ,‘;5{1 Z, (wrdw,) (33)

&t

a'n[l;(w{tg) ‘); (ami’a;f]

(34)

A-1

The term in brackets is an ocdd function of A s Say A/f . The sum is

ZI 14 = -fo A,

'll AL A=y
by changing the sign of /t, and also

z Z f—;ﬂ A (35)

from the symmetry of the Bessel function,

A~/
LN 2
,z:Z ked /D -

From (12), the absorptivity is

A
¢ = -E—U ij Lwae&Y Z_{z@,,}’c(bda")

The @ argument in Y doesn't contribute much to the integral, so

c ) Z—IM‘Z ;151&);(145). (38)

251 (mw
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1
4 The sum on A , by (I.34), becomes
|
| kv, & k‘
(39)
] | w’ kt 7 r(g)

The prescription(I.7) gives

- !
' woe‘E X "‘v'cae ’,J. f
bo “Umw,ve)t  ng'z 20em 4“"”"‘—’2 4 La F (s) (0)
(]

»; s £’ f-/:: ['($), 1)

mw‘

Inverse Bremsstrahlung rate in a weak field:

A check on the compuatation is the value of GﬁD in weak fields:

i res)y = $'[1-28%+-] (42)
6 () = "—; Y. (43)

Asymptotic form in a strong field:
f If E is large, we can use the asymptotic form (I1.40):

| re) ~ -L—S"{'*sz*---} ()
0’(0)
b f JE — 5)
° o ¢ 0’(')
g ~ = 35‘f./$ Svew
" .
| e TR
i r~ ":" .Zvl_— J’VE (46)
| The electron heating rate becomes
" ! T 3” -/
| i%ﬁ”/‘f—;”%f'/z"g @7)




Numerical values
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Fig. 3 and Table 1 show values of the dissipative part of the
X}
conductivity in units of B%V. It should be noticed that Vg,
maet ©

itself depends on E through the Coulomb logarithm.

In the measurement by Brownell et al. (1974 and 1975), a value is

seen of 6;(.39) = 0.42, differing from the Salat and Kaw value 0.78.

This computation gives 6;(.39) = 0.87, which differs even more from

the experimental value.
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Earlier work
For s system without a driving field,Landau (1936) gives for
the relaxation rate in (I.1l), page 3, the value

b m (48)

T -2% .

el

M
Spitzer (1540), discussing the passage of a star through a globular

cluster, gives

<Y

-l m m D. t X
= _— )+ — L 49)

AR Oe) ¢

without constraints on mass or temperature ratio.
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Simplified expression

In compact notation, (II.73) is
= gL dw |8 InY Ge) s
(St“.‘: SE-_I_‘),!to- Elf;;'{_a_::_,_g__ ‘LINA:./ZNJ:(
¢ STl [N PN + TN, ]}
@ (s o x o o

(50)

d 9'1;»7, + '
= -/'WL{J_E_AIM(J«,N lg,-[Z/V\I‘,
8loX p TN K2+ MRN] ov

The contributing part of the bracketed expression is the antiher-

mitian part, which is half of
KR M -RK ML =-(+K )R +R(1+K ) =0K K 2 52)

and the simplified form ~f the general expression is

S5 SE), = f do { O;;JO—Y,. " ‘Z’ mei N - %LQ%M‘-& (53)

The symmetric form makes obvious the oroperty which makes this the

"equipartition" term:
<€3;.$£>" +<‘}:.f£>k c 0 (54)
0 =0

The energy gained by the ions is lost by the electrons.
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Large-wave-number form

The susceptibilities Y‘(w) are (kglkz) times quantities
which are bounded above, so that M and N are unit matricesat large

k.

. m Y- ¢ eIm 4 i
<$Je-f_€> =wa{a,-(f zImLﬂ&L‘%‘&MﬁIgﬁ (55) |

.’.f’ dso T

Reduction of terms:

e
[RK,L =RK),, =4 K = wk = o Z] Rlerny) 6o

00 ° o0

Im ) b
8. Im S In X ‘T'anK,., 3 92’ Y!{hz(a-na{,).]': Im‘?:.(w-n“i)

.5 8, InY, (wiwy) {’ InZlw) 7

w *naw,

The rate of heat transfer from ions to electrons is

(e, = 4 {" Ln2ile) 1, o5 3, X (wene)

4

m & (wtha,)  (58)
wthw,

6 T

= hZ NJ; Im };(w)

w-rnal

- [g In Y,) 2, dndy ) {me} g}

(59)
Y (winay)
Because is an even function of its argument, :
In Y- w) e
d —"'z-)-'— is almost a delta function as a multiplier of it, we
can put
R ALY
i(umw,) i I'(“_h%) e 2 gnwo v)
“’h - . ~
“Io w nw. aw J yg(n“/.)

dne, hw,

(nw,)

~ 2_:__[_’"“,/(/‘”] (60)

s bt St il i s a2 ot s e i i g ——
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where the top cuantity in brackets corresoonds to the too sign.

<$J:,Sp f I’"Y(W)ZI Im?&( Wo){ (9 6} hJ/5 (kl)

1 Im7 60 nw,
<<J:-s_s>k ~ =< ZJ = ’)a-g—za(—ﬁwh_}
[

[

Applying the k limit (I.34) and then the k sum (I.7) gives

(555D = ';,Z S2at ff—r'f}{(q.-ae)[m -Za;.l,”(g)}

"

me E 1‘3— V' 2V,
m £ kve Ve k‘Tnez z(ﬁff/“(a )[2

= -',’,’.—'e_an); f//.[(a -8 )[(3) - 24 F(s‘ﬂ

Relaxation rate in vanishing fields
When E = 0, ,:9&5)81 and ’:(/‘F)‘OI so that

(61)

(62)

(63)

}

($I-8E) = -'m!"‘: 3ny, (e-8,), (65)

which agrees with (45).

Asmgtotie form in a strong field:

The asymptotic form follows from (I.4O):
(] ¢

- ol s e

P~ 2cem) 'S [~ (em) ' ;

<s.4:-r§>~- € ny 6 (27) BE-C&»E
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Numerical values
For tabulation, (64) can be written as 1
fs:
m |
(54-SEY = n2, (8 -4 -8 Tce) 67)

where V,(E) and T(E) are defined by equivalence of the expression to
(64). The equilibration rate for several values of the electron-ion
temperature ratio is shown in Fig. 4 and Table 3; as for all these
functions, it must be remembered that there is an addit:}onal dependence

on field strength through the Coulomb logarithm.

2.00
1.60
1.20
w v
k— -bo
<
[- 4 !
5 .30t PI S T
th ! '
| |
S o= /\l”f— R A e
v 2 1 I [ |
5 = qah- - / . e bie o Hi 4 St
T / | ! i
o= - B A Tl .-'.._.,_..l ml ol Sosle s
& : st// | ! HeY Lt
- N ‘ . i
i -1.20t+- e imianits | st ,._-__L_...., et } 4
o 2 Al o o
wid g j \
W -y 0Lt [——
-2.00

0.6 5 1.0 1.5 20 25 50 35 4.0 455.0

m
Fig. 4. Electron heat loss rate in units of 3nm¥ (8 ),
for several values of 8./6, .
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CHAPIER IV
THERMAL CONDUCTIVITY

Ego in mille formas transmutavi, sed operam meam

improbum Problema perpetuo lusit.
James Bernoulu

1. Introduction
The usual approach to calculating quantities dependent on small
deviations of the distribution function from equilibrium is that of
Chapman and Enskog (Chapman and Cowling 1939; Grad 1960). It involves

defining a smallness parameter
po = v AnF(27e), )

expansion of the distribution functions in powers of /df,

s g,

and writing the kinetic equation in the form

)

R L 4

«

L= (3 +rv +g.—)F /""F “(2,5). @)

The method is presented by Chapman and Cowling as an expansion to all
-
orders tn/{.. 'nu/a. term requires ;I‘(f .f/”) to vanish and thus

determines f“ to be locally Maxwellian. The zero-order term is the

lQuotod by Watson (1944), p. 1.




one which describes irreversible processes in a near-equilibrium
plasma (deGroot 1951), and in practice is usually the highest one

calculated. The collision term is bilinear in f and fp » 80

CE 0w = 2L, [oe0) we)] > L LG Lal+Il g, f,1
which is a linear integral equation in § and subject to attack by
classical methods. The ¥ 's are expressed as infinite sums of
orthogonal polynomials, and an appropriate integration gives a matrix

equation which can be inverted to a solution for the coefficients of

the polynomials.

The thermal conductivity to be derived in this chapter can be

defined as the K in
S = -K(r)- Vs, )

Such an expression can be expected a priori to apply if /w is small,

as we assume here. oS 1is the heat flux

Ses= f.l’v- tmr'y R (Z7¢), (5)

§
i It is half the quantity called the "thermal flux" in the book by
Klimontovich (1967). A dimensionless form of S is convenient:
L= 4 (6)
Ne &V

!
|
|
|
}
i If the "Krook model" value (Boyd and Sanderson 1969) of the conductivity
!
|
{

is used as a unit,

. 5 nb
K.- 2 my.’ 7)




47
then
S =-(%) Kve 8
and
= —(£).5 % (9)
£ (K. £ F-ve.

1f the only anisotropies of the plasma are the driving field E

and the temperature gradient, }'( will have the form
E L E. K.
K"J (S‘.‘. £ ) e Ku s

where K, and K, play the roles suggested by their labels because it

[/}
follows directly that

4 = -E-K-V0 =-K(Ev0) = -K(¥6),

and

4= 4 -E.Jl/ = -K-78 +)§sf-7e = ke .

Because the interaction cross-section for a two-particle collision
decreases with the speed, and adding the diffusion velocity to the

driving velocity is more effective when the two are parallel, we

expect

Kuz'ﬂ'

In this chapter, a version of the Chapman-Enskog method is used.

The thermal conductivity is computed for a field strength which is

ko
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constrained only by nonrelativistic dynamics and motionless ions. We

T —

show that the thermal conductivity implied by the collision term of

Klimontovich has the behavior as a function of field strength which is

sketched in Figure 5.

2. Earlier Work

Landshoff (1949, 1951) calculated the thermal conductivity of an
equilibrium plasma, and the other coefficients in Eq.(I.2), with a
fifth-order Chapman-Enskog expansion. Spitzer et al. (Spitzer and
Harm 1953; Cohen, Spitzer, and Routly 1950) solved numerically a
second-order differential equation for a Fokker-Planck collision term
for an exact result. After electronic computers became more useful,
other workers (Hochstim 1969 and references therein) did large-order
matrix inversions with inclusion of dependence on magnetic field.

The accepted expression for thermal conductivity, including

allowance for the thermoelectric effect, is given by Spitzer (1962):

snb
& my,

|
1 K =128 = 28 K, (11)

The conductivity of a plasma driven to superthermal speeds seems

not to have been calculated. Because the interactions of particles of

! one species among themselves aren't affected by the field--in an

| oscillating frame of reference, they don't see the field--and because
the interaction cross-section decreases with increasing relative speed,
the thermal flux of a plasma driven strongly enough will be limited by

electron-electron collisions. The result of Everett (1963) for strong
fields is

A 8
i K, "z < 1.7¢0, (12)
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K4

| Heat flux limited only by electron-electron collisions.

] e . e e e L e s 1526
( Heat flux limited by collisions with
"~ both electrons and ions.

-~

m¥

0+
W 4
#db

Vo = ek
2% 2ma),

)

Fig. 5. Sketch describing expected behavior of thermal conductivities
perpendicular and parallel to the driving field. The unit for the
conductivities K, and K” is-:-%%e. The asymptotes are the values from
a 3 x 3 matrix inversion known from Landshoff (1949).

IRPS——
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The result by Kelleher and Everett (1967) that purports to be the same
seems to be in fact

K
D = )21,
" 2 (13)

The value r%g‘ is the one which would result from use of the Grad
approximation for the electron-electron collisions--or, equivalently,
a two-dimensional matrix inversion in the Chapman-Enskog method.

A recent measurement (White, Kilkenny, and Dangor\rﬁ74) involved
a laser beam with field strength which edged into the strong-field

regime. The result was

5 :
= + 14
128 K, 0.4 o2, 14)

This result is in the wrong direction to be explained by the

reductidn of collision frequency by strong fields.

3. The Boltzmann Equation and the Ansatz for f,

Consider the Boltzmann equation
(ft_ +Y? + 23 )p(zrt) = I(zxyd), 15)
We can express f(x,v,t) in the form

Faayt) = "prJ{H):x. L ({-w‘)} (16)

Yo
In this, u(t) is the drift velocity corresponding to the particle

acceleration Q(t). A nondimensional velocity is used:

y » LEL an
e

Pew) = am) ng et (18)
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| £(y) and fo(w) are normalized with respect to integration over their

i arguments.

The quantities Ly(sz) are a set of orthogonal polynomials, chosen

to be Sonine polynomials (Laguerre polynomials of order % ). They have

the property
® 31/
Jxe"z"‘ (z) =M
j: L@ =0 by (19)
The first three are
LD =1, L(0)=F-2 L)=3-24 4 L¢ e

The actual drift speed can in principle be different from u(t).

The difference is given by

5 [Powfenr = £ Bl (60 F ) 21)

»e

- & 2 R [Pt fe

Py}

L :
- 3 F:’i th (2¢) ‘g!z,(t)(m ;e-t
>

[[]
™M

©
P, 4Tt j.‘.n ets'L @

¢

]
[y

(22)

In this chapter, we are computing the electron thermal conductivity
with the constraint that there is no net current; which is to say that

we set
L =0, (23)

' By doing this, we will reach a 'thermoelectrically compensated"

' thermal conductivity without an intermediate '"uncompensated' value.

If there is no net drift speed, then the thermal flux is the same

whether it is computed in the rest system and then time-averaged, or




|
i
|
|
l
|
|

just computed in the drift system. It is

[ J
» [} Y ! LY
J‘. zflw.-)/‘,wg = 3 5 Q'/J’W)-:!‘:WL.E(Z)
® sa
'3 é— Z P. 2(2,).’(Q‘a Jtt C’tL (‘)
v-ovi 3 * 5

Thus the problem of this chapter is to compute P;.

If £(%,9,t) « £(R,V-TU(t)), then the left-hand side of the Boltzmann
equation (15) reduces to the gradient term. To first order in /u. -

only fo contributes. By noticing that
vw' = -w'v.Ing (25)
we can wri:c;
vAnE(xvd) = - T in6 +Vinn, +EWDIng
= LGw)Vimn g =L () VinB, (26)

Time averages are taken by replacing v by v w + u(t) and averaging
over the remaining time dependence. Thus 7-PF — 1@1-:-';’. to lowest

order in /0/, and the LHS of (15) is

%[l vinng -4 ving] £, . 27)

Klimontovich and Puchkin (1974) applied such a time average to

(11.29) and give as the result (II.74), recopied here in the form

= ) 3 o
I". = 5;:' ‘/J" K: B-P'f . (28)
te'nz 5 kb ol §(na, < %E-R)
X, (kw) = 2. Rt T Chdk) (29)
) < R R L ey




4. Solution for the Heat Flux

The coefficients of the L, on the left of (27) can be isolated

by operating on (15) with fd3wwil-/“_ (%Wz). The result is

Vinne 5 - ,/Mn»o) --/.Ik.l % 2r¢ ”9 ffvw I, (30)

W

(e e/u
The next tew steps show how to find the wanted coefficient P, in
terms of V6,
In (30), we use (16) with V € {52} only. The integration of
the delta function in (30) is simple in a coordinate system chosen so
that k = (0,0,k). Vector components in this, the "internal" coordinate

system, are related to those in the 'external" coordinate system,

which is fixed in space, by

F 1
x = Az (31)
Y] d

where @ has the properties
z -1(4), ﬂ,‘,%’ S,'/, (32)
and

I3 2
. ﬂ“ ‘. i ‘”la' (33)
The external coordinate system is chosen with the third axis parallel to
the driving field. To allow expressing all vector components in the

integrand of (30) with respect to the internal coordinate system, we put

Y F 1
Bow=FRw =0 A% s

The vector w, in (30) is pinned to the external CS, so

)
&L
W = ﬂ ).;t

J Im




With these changes, the first integral in (30) is

5 [ I : fw
- LA 14§ 35
[ A 7 T ZF, 35)
Definition:
1 gk i- 2 g wil, v,
[“‘,] = jJﬁJW@.’; X 3;,:# ._;51- (36)
[ 37)
/w dz
where H® is the value contributed by I " This notation shortens (30)
to
o gl :
() b = 2 W00 (38)

wvhich is to say

s (¥8y _ ik ik
ieled) = HL +H 5 e
it ik
o = H I+ ”zz’?;. (40)
The tensors 'l'l'/,,, can be represented in the form (10):
i
'ﬂw S "@w ok cu] ¢ y@‘wa k3 3 s

where two ideograms are introduced. In terms of them, By is given by

_:_:?(%gs =85+ 4,5, s
0 =45tk an)
STORCRARTA)
e Q' 74 = ge ’:.L S

Sy pee
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with solutions

(44)

45)

(-4
o

e % (

fia

a2 Ql-ql pll :

The remaining task is evaluation of the components of H.

&b
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5. Evaluation of { Iﬁf} ; Explicit Result for the Conductivity

The electron contributiom:

Values for n;y in (37) are given by Landshoff (1949):

1
(5] = 5w [ voae] o
Ay iR

Algorithm for evaluation of the integral:
From (36),

jJA uf.[,,,(” iﬁ#‘[%’-g—l'i -).;,;LJ. 47)

The quantities (47) have the form

3- [z, fz’yﬂg £4,0m. “8)

D .
feet= ool ] St
= X P
£ =n.amte (50)
2 Ayt SOw- "“"2

2 1,y " { . 3 I -222)(52)
§ . ;v:a e’ [ ',,maﬁ flm f“wfﬂ,.,: PERT )
Change of varisbles: T =¢Ww; 7n' = (R (s3)

Abbreviation: ¥ = 7n’

7= L"Z(zw)(m"}i R j./te -t f"" PR ¢ [ ‘m] -ev...i‘})

Replacing the &/ product by its azimuthal average allows use of

the recipe (I.7) for the part preceding the & product, and it becomes
i

A
The part of (53) after the £ 's is, with ¢ . J'v[ ¢]w Yeay?
w‘ar!




b2 f./tc ¢(tv) <X ‘e clre' 6’" trapy), (55)

The effect of flrc on the polynominl /3\\ 1s to convert 77 to

(g.) » and the effect of Zf C is to convert ¥’ to ’:, . Thus

= 3yf/,[ ” ﬂh@] (pw))’ (56)

where C?zm is obtained from by this procedure:
(1) Take the azimuthal average. '
(2) Make the replacement w'w« 2V w'xg22,
(3) Make the replacement ¢ = T+V.
(4) Make the replacement "~ (n!). The result is @) .
(5) Make the replacement v"'— ': to get Q(I').
The result of appiying the algorithm wﬂ.l have the form

- omel, [)w,,,Lu B s7)
E/.'”’Etm +,Er 8:13‘:0 '{ ow; W, - R L, with algorithm applied.
Because the effect of an average over the k-azimuth is
bl = 58, + E000E, " h,), o
we have from (47) and (56) with (57)

ik o y : (59)
= . > § N 59

[H]' = o [Pl » Bsg 055 ])

That is to say

. |

[}
O, = 3 wlh, 0L ] )
l. I
G = 2frls i)
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Evaluation of H in terms of F symbols:

The evaluation of (56) will be sketched here. The form for (57)

(i, 5, * £ 0P8 G5, (o)

Using the expressions for B/, and C,, gives the intermediate result
‘ 141,08 1el + L,
{ E/',,,,} = 2v(¢t-V) h

(L)) (1+£,)Cied, 44,)

gt LD, ()0 ey
ylas -2V ' (64)
l.,L, A: ()L el,) 1,(Rerl +l,)

(63)

| {5

‘A

i I+l 1L 4L,

f ~2y(¢-3v) g (64)
i (154,)° (o4, ) (194,44,)

'\ Substitution of (20), the explicit forms for L,, leads to the explicit
; t-dependence:

H

2t 22

! {E/'w}= 2v(t-v)| 7/2(49/4 | 63/8| 441/16 il
i} -1 =7 -9/2{-189/8

t 1 1/2| 25/4

; =1/2

ﬁ;i The first column of (65) is to be read E,, = 2V(C'V)(‘§' t).
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I 21512 2 11 21&12 22
25/4 | 175/16 | 1225/64 45/4 | 385/16 | 3185/64
-5 |-105/8 | -245/8 -7 -181/8 | -511/8
{/w -l 1 19/4 | 133/8 | -2v| 1 25/4 217/8
-1/2 ~7/2 -1/2 -9/2
1/4 1/4

E, | 4

2v(t-v)

Replacing t by Te¢v and then 2" by n! gives polynomials in v:

11 21 12 22
ol o 0 0

{ E )= | 3| /2| 150 93/8 (67)
-2 |-12/2 | -20/4 | -122/8

412 | 4/4 52/8
-8/8

The first column in (67) is to be read Ell = 3’1 - Zrz, and its

precursor was the polynomial 3v - 2v2.
11 21 12 22

13/4 | 69/16 | 69/16 |  433/64
-74/4 | =592/16 | -516/16 | -3986/64
{ F ,} = | 92/4 {1032/16 | 832/16 | 8920/64

M -24/4 | -512/16 | -400/16 | -6320/64 (68)
80/16 | 48/16 | 1744/64
-160/64

Special values of v can be used to check the algebra: Using v =0
in (65) and (66) gives the top lines of (67) and (68). The top line
of (68) is the same set of numbers as Landshoff's for zero field;

notice that a constant value of F will pass unchanged through

(60) and (61).

|
|

|
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Setting v =1 1n (65) and (66) leads to
1 =1/4 9/t  33/16
f£,.}= : {5"} = (69)
9/2 15/8 77/16 631/64

correctly predicting the column sums in (67) and (68). Similarly, 3

putting v = -1 in (65) and (66) leads to

5 39/ 203/4  1865/16| (40,

E = - &
{/”} 33/2 275/8 {/0}’ 2285/16 21563/64

agreeing with the corresponding recductions of (67) and (68),
Result for the conductivity:
The expressions for K, and K” follow from comparing (9) and (24)

with (44) and (45):

K, _ S 6&1

Ke i GDn@n -Q@u

and the corresponding expression for K”. The quantities Q, Q are

(71)

given by (59), (60), and (61) with (46), (67), and (68).

Thermal conductivity in zero field:
At E =0, the only contribution is from I;'(o) =/, and (71)

becomes

3, 6? HU' usauaof"
! Kl = K” = K [( Vel - ( )/( :
= Ko /[wcc4 -2687] = K,z /1977 (72) ?

= L2 K,
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Use of the thirteen-moment representation of Grad for the
distribution function is equivalent to retaining only the first
term in the denominator of (72), and is thus unsatisfactory

for computing the thermal conductivity.

ot i e il

|
A
!
i




CHAPTER V
CONCLUSION

Ich glaube, die Wellen verschlingen
Am 2nde Schiffer und Kahn;

Und das hat mit ihrem Singen

Die Lorelei getan.

Heinrich Heinel
Three transport coefficients have been calculated as functions of
field strength for a plasma driven by an electric field with a
frequency much greater than the electron-ion collision frequency, and
with a strength which does not drive the electrons relativistic but is
not constrained to drive them at less than the thermal speed. The
technique used, which involves application of the Klimontovich formalism
to evaluate the collision term and then, at an appropriate place,
expanding an integrand in inverse powers of the wave number, is applicable
to the calculation of other transport properties of the driven plasma.
There are several ways in which the calculation could be generalized.
Inclusion of an ambient magnetic field is conceptually simple and might
be analytically tractable. Other tramsport coefficients, the (DC)
electrical conductivity in particular, could be calculated. Allowing
a more general polarization for the electric field is probably simple

and direct; in particular, the response to the electric field is simpler

1From "Lorelei."
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for a circular polarization than for linear polarization because the
driven speed of an electron is constant. Including relativistic effects,
by perturbation or otherwise, would extend the permitted field strength.
The use of a quantum-mechanical kinetic equation is an intriguing
concept; it is known to be feasible for calculating inverse Brems-
strahlung. A quantum-mechanical formulation might allow the application
to more general statistics. The calculation of the second terms, of
order unity, in the several expansions which begin with In A; and, in
particular, including powers of k"2 past the first in the expansions
beginning k‘l(k'2-+...); would give a quantitative estimate of the
limits of validity of the results. .

The polishing and re-organizing of the problem for simplest
presentation and greatest usefulness of the results is much less
complete than the author would like. All of the topics mentioned
above as possible extensions might have been followed to at least the
first calculational difficulty, with an expectation of including most
of them. To give a general expression for integrals of the collision
term and express the particular results as special cases would have
been more pleasing. In the results for the thermal conductivity,
there appear several linear combinations of the quantities Pr(E);
most of these combinations have the property that the asymptotic
behavior is E~3 even though the individual Ms go to OI'.E'1+ﬁ,E‘3 S
because the leading terms cancel. This behavior suggests the existence
of an organizing principle not recognized in the calculation. The
expression for the inverse Bremsstrahlung rate can be reduced to a

reasonably simple form before use of the large-k limit; it was omitted
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because the result isn't new. A better overview of the Klimontovich
formulation and a comparison with, e.g., the BBGKY hierarchy, could
have been included. 1Is there a paradox lurking in the frequency-ratio

factor in the Coulomb logarithm, and how is the transition made to

e b

the vanishing-field value? Does the frequency ratio explain the

discordant result of White, Kilkenny, and Dangor?
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CHAPTER VI

LIST OF SYMBOLS

When a page number is given, it locates the definition in the

test, or shows where the symbol is used. Most of the various integer

indices and dummy variables are not mentioned.

Non-alphabetical

(>
k, %

>l

Ensemble average, p. l4.

These two labels for a vector are used interchangeably.
(1) Average with respect to distribution function.

(2) Average of A over a period of the driving field.

A label for the part of ;tL attributable to noncollective
interparticle interaction, p. 13.

Hermitian conjugate of the matrix g

Components of the matrix d_f/ Vo)s P. 54.




66

Roman

Mic

@&

I®

»

Eo

(zyt) "Microscopic" acceleration. The exact acceleration

of a particle with coordinates (x, v, t) in a particular
member of the ensemble. Used p. l4.

Ensemble average of _ch, p. 1l4.

A particle acceleration corresponding to imposed force.
Used p. l4.

Classical distance of closest approach, p. 7.

Speed of light.

Excursion distance, d, -”{%.-Eg', p. 22.

(1) Nondimensionalized field strength, p. 1l.

(2) An unspecified field-strength variable.

Amplitude of the sinusoidal electric field, p. 21.

E/”}kl‘:), f‘w 9‘5) Functions which appear in the integrands of

expressions leading to thermal conductivity, pp. 57 and 59.

Proton charge.

Mic
f (I,lf,t) "Microscopic" distribution function. The exact distribution

function for a particular set of point particles, as

distinguished from the ensemble average. P. 13.

f(xvt) Distribution function.

[(tg {(tt') Arbitrary or unspecified functionm.

G(x,x',v,v',t,t') Part of a Green's function, p. 15.

Gk(_!,g',t,t') Part of a Green's function, p. 16.
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Iq(xt) or I(vt) Collision term in the kinetic equation for species &

1 {$co)}

In(x)
Jn(x)
3
J, Je
Ji’ L
K
Ky
Kpr %y
K

k
& %

k; The '"Debye wave number' .3 k = (>“'V7 « )

D s - T - ; 1
kmax’ Knin Empirical limits on k, p. 5. ]

Weight function in the collision integral, p. 52. %

LEY

or for unspecified species, pp. 13 and 17.

(1) The energy flux of an electromagnetic wave.

(2) Collision term.

Momentum integral of ¢(g) weighted by the collision term,
p. 28 -

Bessel function, used p. 10.

Bessel function.

Electrical current, p. 3.

Column vector with elements J (k.d.), p. 31.

Colum vector with elements J (k.d;), p. 31.

(1) Thermal conductivity, p. 3.

(2) Thermoelectrically compensated thermal conductivity,

Pe 49 ff.

Thermal conductivity, reference value, p. 46.
Components of thermal conductivity perpendicular and
parallel to the field, p. 47.

Susceptibility, p. 34.

Fourier transform variable, p. 19.
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!
| L Liouville operator, p. 16.
I ﬂikx) Sonine polynomials, p. 51.
l _}_f Dielectric matrix, p. 29 and 34.
M(a, b, -2.32) Confluent hypergeometric function, p. 10.
M Same as m;. ;
m Mass of a particle of unspecified species, or of sy electron.
i m, Mass of a particle of species & .
g Inverse of dielectric matrix, p. 31l.
n, 0, Number density for unspecified species or electrons or
species & .
' 4 The "order" symbol. y =& x means that ;\_x’t; I%‘i
: is finite.
' 2 Momentum corresponding to the deviation velocity U.
; P Pressure of one species, P = nf,
' B, 1’,_j Stress tensor. P” - f.{"r m(_v-._lf)‘-(r'.g)‘. £
je f%: Traceless stress tensor,
I 'gv Coefficients in an expansion in Sonine polynomials, p. 51l.
'E é Rotation operator, p. 53.
| S) S, Thermal flux, p. 3.
j J,l‘,l‘_ Dimensionless thermal flux, p. 46; components, p. 47.
; ﬁn(ggt) Source term, pp. 15 and 17.
11 é Shift operator, p. 34.
ig S Same as g.
5: to An initial time. It precedes greatly any other times

defined by the stationary system, but is recent enough

that collisions have not changed the distribution

function.

s . do s L : > "
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g

x0(x,¥,t)

51(3)
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Velocity relative to drift, p.28 .
Amplitude of driven velocity, p. 22.

Drift velocity, p. 28.

P. 7‘

velocity.

Thermal speed, v = /E: .
[

Electron driven speed, Vg = mo:, "

Dimensionless velocity, p. 50.

Orbit coordinate, p. 15.

Space coordinate of the ith particle, p.13 .
Charge number for gpecies & . Zi- Z, Ze= 1.

Ion charge number.
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Greek
H l & Fine ‘trucgure constant, used p. 7.
! < F (1) Species subscript, e or i.
(2) A thermoelectric coefficient, p. 3.
' o’ The species different from o,
':(3) A function which appears in the analysis in Chapters
III and IV, pp. 8 and 10.
A‘tc' Velocity acquired between times t' and t, p. 23.
: § Operator on a field quantity which defines a fluctuation,
= .
P- -
N ! SQ(;’y,c) Defined on p. 1);if each letter f is replaced by < 0
E §E An electric field related to ¥ by §@ (xvt)-:ls_E_(xvt),
X §f°  r.a7. :
: l sr. f.r'rﬁtf . B 35,
i Y4 P. 18.
p ; € P. 18.
! €, Watson's notation; € = 2 - sn,O’ used only in Appendix A.
‘27 Convenience variables, p. ll.

’; &) The Heaviside step function, zero for negative arguments

9,3“ Temperature in energy units.

i
|
! and unity for positive arguments.
|
|

!' A Argument of Coulomb logarithm, p. 5.

' /\,. Bessel fungtign, p. 10.

;3 A. The Debye shielding distance. See kD.

!; Ve de Broglie wavelength of a thermal electron, p. 8.
|

ST > 4 R =
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/(. (1) Dimensionless parameter proportional to the gradient,

p. 45.

(2) A spherical coordinate, cosine of the colatitude. '

(3) In Chapter IV, an integer subscript. |
Y, Electron-ion collision frequency, p. 7. Often in the

literature called Vgq.
Ve Effective collision frequency for heat exchange, p. 43. ,

5 (1) A thermoelectric coefficient, p. 3.
(2) AC electrical conductivity, p. 29.

6p Dissipative (real) part of & , p. 30.

Electron-ion equilibration time, p. 3.

ei
I(€) A parameter in the heat-exchange rate, p. 43.

$, Perturbation of distribution function, p. 46.
llqa’!i') A phase, p. 17.
¢w) Arbitrary function of U, p. 27.
Y (w)  Linear susceptibility of species &, pp.2L and 11.
X (¢¢) Susceptibility contributed by species &, p. 18. There are
two susceptibilities, distinguished by the number of time

or frequency arguments.

7, = Iyt

.&_ Frequency matrix, p. 3l.

@/ Angular frequency, a Fourier transform variable.

o, Angular frequency of the driving field. " !
4,4, Plasma frequency for electrons or species X, %:, =£m:'—”1§‘"
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APPENDICES

Appendix A: Alternative Derivation for f'r(s )

This appendix shows another derivation of (I.26) for g i

Lemma:
r-2)/

n;Z.. nz'J' (x) = —’-(_!—:—;jl—x" P & R (B ¥

Proof:
From Watson (1544, p. 36), we have Neumann's expansion:
ar iyl . L
(%) = SZ,- ,;‘5(-’-'?—")),—.}'(2') (A.2)
{
{ £ 3 500 JLont-sY

..o §so0

Bk 5 [ - LrerGront™y Jla.)
n

0~

Thus each sum anrJz is a polynomial of order r in x2, The

h
highest-order term is x er (,2;’" , which leads to (A.l).

The definition (I.10) gives

[08) = limE Cm" ): (7n)J($/“ ) aw

7'” Ne-g

Using the lemma makea thie
por (per-g)!

(') 2
()= SREA Gl (- B!

Pao '
= %_(gs‘)rm(rot) re, -23 Y (A.5)

which is the same as (I.26).
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Appendix B: r' r in terms of Bessel Functions
There is a formula in Abramowitz and Stegun (1964, p. 506)

which was incorrect in early printings:

M(ab, 2)
= e¥-0p) (BTG T (apon b,
nhso ° L
In this, ®.1)
— (n+b- )l
(U T €l " (B.2)

Weput a=q+% b=gq+d+ 1, expecting to take the limit as

d goes to zero:

Mqebspede12) = T iz).J,,).: S LD %QB(T)" e

The factors relsted to the limit are underlined. If n = O, they become

rdd =dl — 1,

and if n ¥ 0,
r("’) (za(-rn-l) (.I-,,,,.,)/ (t‘-’)/
(d-1)!  (d- -9-1)! (q+d+n)!

doad o o9y s (dgen-)) g
nJ' (z-;)_’(n % Nl (gen)!
= 2n! (I*n)‘ (.) 4 g¢1n)
MPPELIS i &
@) ()
® ”
PIRPIR ST T DR eI FTTV 2 &7 Sl
Meptopinaty = < 16 )+nf7',-,-,r ywler Ll
=Zf->/\(3)-‘—‘——— (8.1)

@-n'gem)!
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A simple check of that is available: Putting q =-% makes it

? X 71"
M(0,3,-25")= %’( ) /l () ey Y

o T GRA G SR . T n) e

or
1 - 1.
1
Also in agreement is M(%,l,-232) = /\ 3).

Combining (B.4) with the other factors of (1.26) givesl

rl

/1 L 0 Rt
}-

Appendix C: Recursion Formulas

This appendix shows how recursion formulas from Abramowitz
and Stegun (1964) translate to formulas for the r symbols. The
arguments are related by ¢ = -232.

Recursion:

L(—Lﬁz)M(qlsz) +b(6-l)l‘7(¢-[, b-42) ~aZ M@+ b+! 2) =0

Setting
as H‘ bzrel

and multiplying by (%-(L),-(-?) gives

(z-r)rr’ (3)-2(rg) [ (3 +[ 6 =0
e[+ r'L () = [ 8)-r[(8)

See Gk g
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% Differential recursion:

Mabz) = M@+ b z)

[2"M(ab z)]': -f-z'M(an,Lu) 2) +rz""M@bz)

ore )
l(..)l

20 = $3[) = -p, (4 +r[(8)

Including a factor (-) Z gives

because of £ °* '232.

Appendix D: Initial-Time Correlation Function

If the two-particle correlation function is ignored, Fq. (L2)
from Wu (1966) is :

| lary :5 (xr?)) = g‘/ n Sa¥)lrr) fzvd)

Taking the Fourier transform with respect to each of x and x' gives
«6'5 (rmg,-&(ﬂ» = N lenint ')ﬁ"ﬂ'?' O prEart)

! - ‘;', n, str-vyJ Fere)

in which F (x,v,t) is assumed independent of x, and the unit box

normalization has been used. This is (II.44).




Appendix E: A Property of the Green's Function

Claim:
Vi P iy ) l “ ¢ &y’
G, (xx'tt) = Jév G2 e,) G O E)
Proof:
The integral is
g, (x4, 2 L,) -ag.&(ziat?.,t,

Jivrscrr e T g e
Using the delta functions gives as the sum of the phases

s

k- {x"te-2,) - y"cee,) +j'4n e -J'Jng‘n.}
k{v(tt'l*[:/nn}t :

kel x'0et) ~ 94 2, [474 'rt,}

k- {y'et) f./rart}

¥, %'t

z; (v-4H, £2) + 4 £(V’Att L)

Eliminating V'' from the delta functions gives the correct argument
for the remaining delta function, completing the proof.

z,)
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Appendix F: Rationale for the Choice of K oax

A crude argument is given in two steps:

Step One: The kinetic equation for the fluctuations is
simplified by ignoring terms quadratic in the fluctuations. These
terms are important when particles are close. It is known (vide, e.g.,

Krall and Trivelpiece 1973) that close collisions contribute only a

fraction &( ‘."—},‘) to the Rutherford scattering cross-section. Ignoring

collisions which produce deflections greater than % preserves

the validity of the kinetic equation without losing important effects.
Step Two: Those parts of a configuration of particles which

involve particles closer than a distance b are described, when the

space variable is replaced by a Fourier-transform variable k, by values

of k satisfying
kz T

so the region correctly described by the linearized kinetic equation

is the one
2Y
K <« T




