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ABSTRACT

A method is described for calculating transport coefficients

within a plasma driven by a high-frequency alternating electric field .

• The method involves a collision term expressed in the Klimontovich form,

and does not require the field to be weak. Representative calculations

are made for a nonrelativistic, nondegenerate, two-component, magnetic-

-: field-free plasma by using a large-wave-number functional form to

simplify some sums over wave number; expressions are derived for thermal

conductivity, electron resistive heating (“inverse B~emsstrahlung”)

rate , and interspecies heat exchange rate as functions of electric field

strength. Numerical values are given for the three functions.
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CHAPTER I

INTRODUCTION

1. Introduction

This dissertation presents three exampies of the use of a

collision term derived through the Klimontovich formalism for the

calculation of transport coefficients of a plasma driven by a high-

frequency electric field which is not necessarily weak. The resistive

heating, which has been calculated before,1 is derived here using the

formalism of Goldman (1970), as is the electron-ion thermal energy

exchange rate • The collision term as given by Klimontovich and Puchkin

(1974) is used as the basis of an expression for the thermal conduc-

tivity. The presentation is simplified , in most places, by supposing

the ions to be singly charged . In these examples, the effect of an

ambient magnetic field is not considered.

Chapter I introduces some topics which will be used in the

computations. Chapter II outlines the derivation of the collision

te rm used in the computations . The computation of an inverse

Bremsstrahlung rate and a heat-exchange rate from the frequency-domain

representation of Goldman is done in Chapter III. The electron

the rma l conductivity is computed with the use of the Chapman-Enskog

1More complete references for these topics are given in the
specialized chapters.

_ _ _ _ _  -V~~~~~.-
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• method in Chapter IV. The results of the computations of Chapters III

and IV are Eqs. (111.41), (111.64), and (IV.7l). Their values are

shown in Figures 3, 4, and 5 and in Tables I and II; the most

important result is probably the expression for the thermal

conductivity.

• Gaussian c.g.s. units are used. Use of the symbol y~ does not

imply y an integer, and -.4 is defined by continuity if y~ 
doesn ’t

exist. Many symbols in the text have meanings which are conventional

or inferrable from the context, and are not defined when introduced.

Most of the symbols used are defined in Chapter VI .

2. Transpor t Processes in a Plasma

A thermodynamically isolated plasma not in equilibrium will tend

to move toward equilibrium. If the departure of the system from an

I equilibrium configuration is small enough, and the equilibrium

configuration is not a special point for the perturbing or restoring

agents , then the rate of restoration will be proportional to the

perturbation. If an infinitesimal perturbation is maintained by

interaction of the plasma with outside forces, the plasma will reach

a stationary state in which the perturbation is balanced against the

plasma response. The constant of proportionality between the

departure from equilibrium and either the perturbiug force or the

rate of restoration is called a “transport coefficient.”

The behavior of systems which deviate infinitesimally from

equilibrium is discussed in the books by Prigogine (1967),

deGroot (1951), and Cox (1955).

~~ V V~~~~ • _ _  
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Examples of departure from equilibrium are nonthermal di,tri .

bution functions, temperature differences between specie., macroscopic

V electric fields , gradients of temperature or concentration. The

restoration rate is controlled by interparticle interactions, called

“collision.” by extension from the classical billiard-ball molecules.

Examples of transport coefficients are electrical conductivity,

• int.rspecies equilibration rate, thermal conductivity, rate of

relaxation of a single species toward thermal, and diffusivity.

As an .xample of thess ideas, suppose that two populations

of greatly differing mass—say ions and electrons—-haTs different

temperatures. The coupling between species is weak enough that each

population remains essentially thermal, and the temperatures will

tend toward equality accordi ng to

_ _ _  — (1)—

The electron-ion equilibration time is a transport coefficient

for th. process. This is am example of a “transport” process which

isn ’t a flux in configuration apace.

Another example of a system with tran sport is a plasma with

imposed temperature gradient and electric field. A stationary stats

is described b~

(2*)

~$ =-f t .~~
— K V 9  (2b )

giving the electrical curr ent J and the heat flux S (Spitser and

Harm 19S3). The transport processes here are the actual fluxes of

I

. 

~

• 

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _  _______  _ _ _-~~~~~~~~~~ -- -.- - .. • 
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heat and charge , and the transport coefficients are f, cc, Q , and

K.

in a system with a finite de parture from equilibrium, the ratio

of rate of restoration to strength of perturbation is like ly to be

positive , though perhaps not constant . If a periodic electric field

is applied to a plasma with species of different temperatures , the

species Will still exchange thermal energy, though the process is

no longer one of equilibration . If the field is strong , it can modify

the response to an applied (constant) electric fie ld or temperature

gradient ; the thermal and electrical conductivity are still constant

with respect to the perturbations, but are functions of the driving

field. If the plasma response considered is that of the plasma to

the driving field itself--the rate of heating by inverse Bremsstrahlung- --

then the response is nonlinear when the driving field becomes strong .

3. The Effect of a Driving Field

When a plasma is so strongly driven by an electromagne t ic field

that the resultant electron velocity much exceeds the thermal speed,

the most important effect may be the generation of plasma instabilities

(DuBois and Goldman 1965 ; S u m  1965) and electrostatic turbulence

(Kadouitsev 1964; Tsytovich 1972). But the turbulence needs time to

grow, there may be effects which are independent of turbulence , and

it is possible for the driven speed to be near the thermal speed with-

out turbulence (Brownell , Dretcer , Ellis , and Ingraham 1974 and 1975).

An alternating electric field will cha nge the average relative

speed of the two species and thereby influence transport processes.

The effect will become important as the driven speed of the electron

approache s its the rm al speed . A good discussion of strong-field effects

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ •- - - - •  
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is given by Kidder (1974).

The intensity of the electromagnetic wave which drive s the

electrons at their thermal speed depends on the electron temperature

and the wave frequency. It is sh wn in Figure 1. For that f igure ,

it is supposed that the wave is propagating at the vacuum speed of

light; physically, it could be important that the field strength

increases in a wave approaching a reflection point. The intensity at

which the nominal driven speed reaches the speed of light, so that the

treatment given here needs modification) is shown in Figure 2.

4. Integration with respect to Wave Number

The expressions derived in Chapters III and IV involve velocity

moments of the collision term (11.29) in the next chapter, and those

moments involve integrals over k-space (and -sums over the integers n)

of expressions weighted by exp (_ ½(~~.~t)2J . For large values of k ,

t~e integra nds are prop ortional to k 3. We can expand each integrand

in a series

I_ ~~~CI. Il . •• 3 (3)

and take the leading term . In this process, the cutoff has disappeared

that was imposed by the exponential at small values of k, so we re-

impose it:

—* = (4)

The expression on the end contains the Coulomb logarithe

‘ ‘

which involve s the limits on k. The lower limit knin will be an
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Fig. 1. Intensity at which the speed of an electron driven by a
plane-polarized electronagnetic wave reaches thermal speed.
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Fig. 2. Relativistic intensity thresholds: Energy flux at which the
nominal driven speed of an electron reaches the specified
fraction of the speed of light .
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average of over the non-negative integers n.  Because it enters

as the arg imant of a logarithm, and the logarithm has a value which is

typically at least 5 or 10 (Spitzer 1962, p. 128), the logarithm can

be estimated by ignoring small multipliers in kmi~, 
and we can use

(6)
CJp

The upper limit 
~Siu x 

is the inverse of the distance of closest

approach b0, and is required by some terms ignored in the derivation

of the collision term in Chapter II. (A brief discussion is given in

Appendix F.)

Another for m for (4) is

11
1 

= ~~~ . •• 
(7)

J~o is the conventiona l electron- ion collision frequency for momentum

transfer (Perel and Eliashberg 1961; DuBois , Giliusky, and Kivelson

1963; Kidder 1971):

— 

u%(•_— n e ’e’~’~~A (8)
— 3

What happens to A in a stron g alternating field? The minimum

impact parameter decreases as v 2, and the effective quantum-mechanical

size of the electron only as v4, so that at some energy the effec t ive

distance of closest approac h is determined by the electron size instead

of b0. A parallel arg ument is given by Marshak (1941). Moreover , the

• effective speed is some average of the thermal speed and the driven

speed ; so ~~~~ can be calculated by

_ _ _ _ _ _ _ _ _  _ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~ max (~,0, 
~~ ~~pp ~~ Th0x (j~~,

= = (9)

• 1 
The crossover to quantum-mechanical limitation happens when 2 o ~c/V e f f ,

in which ~ is the fine- struc t ure constant , decreases past 1; and V

that happens when the electron energy increases past about 40 ev.

The effect of the strong fi eld on ~an be ignored within

our crude approximation , because although the effective shielding

distance may be increased by decorrelation of the two species , each

species is still shielding itself.

V In a plasma with turbulence, there is often important behavior

in the spectrum of (e .g., electron density) fluctuations corresponding

H to propagating Lan~~uir waves (see , e.g., DuBois and Goldman 1972),

and that spectrum is strongly damped unless k.~0.3kD. 
Thus weak

turbulence contributes collisional effects described by J dk , and
pm

non-coleective collisions contribute J dk, where an upper limit may
have to be imposed . A variation of this idea is discussed by Kihara

and Aono (1963).

5. The Quantities rrc~
)

This section define s and gives some properties of a family of

functions that enter the analysis, and which have been given the

labe l r r .

Definition:

V r ~~ = Ii~ E ( ~~~~
r
e.7n J.a(P~ / r)  ~ .o~p •• (l O)
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Expression for rr: V

A derivation of an expression for rr is given here . (Another

derivation is given in Appendix A.) The starting point is the

definition of r0:
= 

, Ee
7l72~

2
(~,~~). (11)

An easily derived identity (Watson 1944, p. 32) is

= ~ (2~J~ sus~
.) c~ 2178 (12 )

For (f ixed) nonzero ~~ , the contribution from the term will

come only from arguments

(13)

Whe n ‘7 is small enough, the contributing part is a smooth function

of n , and the sum is tractable :

2’ E ~~ —) J~ - (14)

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V

in which an integral representation for is used.

/dxe~~~~cos (z8x7~ ) = ?r~ e ’ ~~~~~~~~~~ (16)

= f?
~~

• 
~~~~~~~~~~ 

s;p,~ (17)

is real , so 2J
’dQ —)j

’da.
a —.

= JA lam 7~ / d i  ~~ exp (-(97~ .wrt :in.~f- Zi t$s17
b

03 (18)

~~~~~ ~~~

• 

•~i:::~~~ •~~ ~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~ ________________
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= e 3tf ~J e dl5
~~ (19)

= f l ( ~
2) (20)

in which a modified Bessel function appears :

A~(r) e ’~ I,,(r) (21)

An expression for the other r’s can be obtained by including a
factor ft in the argument of the exponential in (11). The value of

the expression become s / \ O(fl3
2 ), SO that

= ~~~~~~~~~~~~ (22)

= ( , .$~ ) ‘
~A

mn)
(.$2) (23)

From Abramowitz and Stegun (1964 , p. 377), we have

A0 (~ 
2

,

~ = ~j 
~~ ~ 2~~ ) (24)

and also that

fl~~(3t) (-if’ ,~7 ~~~
-j - f~ 

(li 
~~~~~~ 

h ~~
. 1, ~L~

t) (25)

to give the result

f (s) = 
(n-f) ! (~j t/ ~fvJ ( ,,+ .L n + I J ~~~~~~~t) (26)

The symbol M is the confluent hypergeometric f unction (Jahnke and Emde

1965, p. 275).
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A related quantity :

The expression preceding the equality sign in (33) below enters

the analysis . It can be signified by the change of variables

— 
I ~47 — r (~ .~~

) (27)

(28)

in which a nondimensionalized field strength is introduced:

= 
eE. (29)

The argument of the Bessel functions is

= ~~~~~~~~~~~~ = (30)

The susceptibility term is
2 nø. Z

~
P,,v

~~
(nc4) ~~~~~~~ 

(31)

— ~~ *~“hJ~~ e (32)

Now the expression of interest:

~r.g
(

*~~~
E-) J~(A”~

)

= ~~(7172)’ .f 0  ~ 717t Z [_

Operating on that expression with k ’2 
~im k

2 gives the result

k 2 Im h tZ (_ -)
Z
~~~ r,) j (rns~) 1T

2
(4& d )

~ (~ !.) 2 ?r ”~ç(~) . (34)
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Some properties of

r~(J) can be expressed in terms of modified Bessel functions

by a synsnetric finite sum (Appendix B):

r ( i )  — r! (- j-)! ( t ) ~~~~~~(_ )~,4 (~ 2) !!~~!

A recursion relation is derived in Appendix C:

= (~~~~~~~~~~~~ )~~~~~~~~~~
[‘ -.

~~~~-i’ + 1’’ (36)

Appendix C also gives a differential recursion forimila:

~~~‘J) = 2r ~ —~~i;÷, (37)

Small argument :

H — ~2~~~l)!!j
2P’~~ - 

~~‘ 3~ + - -
~~~~

‘ 

~:: ~~~ (38 )

For large argument , Jahuke and Ewde (1945) give

fri (cc ~ -2~~) (p-i). (~~~t)~~~[, ÷ ~

so that

~__ L~1
L~ ~

‘(, + 
—

~~~~~~~~~~ 
+- ...J (40)

- - - ~~~~~~~~~~~~ — - - -V- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~
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CHAFFER II

THE COLLISION TERN

The evolution in time of a particle distribution function obeys

the Boltzmann equation

~~~~~~~
.
. . ÷ .~~ç = (1)

The right-hand side, the “collision term,” is that part of

which is generated by iaterparticle interactions . In this chapter,

expressions are developed following the treatment of Goldman (1970)

for two velocity moments of the collision term

I~~(~~v) ~~~~~~~~~(k ~c~,,v) (2)

in which the Fourier-transform variables k and G/ appear . An

expression given by Kl imontovich and Punchkin (1974) for the time-

dependent form is noted for later use .

1. Development in the Time Domain

A specified set of identical point particles can be described

by the exact (“Kl imontovich” ) distribution function

ç

HiC
(~~~t~~)  - i: ~~~~~~~~~~~~ (3) -•

S., V

where (
~j
(t),m

~i
(t)) is the position of tñe ith of the N particles

in a (six-dimensional) sing le-particle phase space. It has the

_ _ _  -~~~~ -— - - -- - - -‘ - -~~~~~~-~~~~~~~ V -~~~~~
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H exact equation of motion
• 

+ x • ~~
) P ?

~?i,1c t )  * J -.J~ ~~4x t) ~
t41
~J =

This equation is useful if the right-hand side is set to zero.

~~Mic ç~,v ,t) is the acceleration that the field at (_x ,v ,t) would

give a particle there; the self-field of the particle is to be

neglected . A parallel develo~ nent using the wave equation and a

semiclassical treatment of the field seems feasible (Rand 1964 ; Brown

and Kibble 1964; Pert 1972; Seely and Harris 1973; Seely 1974), but

is more cumbersome in describing classical particles .

The system can be considered to be a member of a Gibbs micro-

canonical ensemble, and averages taken over the ensemble . We will

use the notation suggested by

(
~~]~~) = < P ( ~~içt ) > , (5a)

H
= — f .  (5b)

Taking the ensemble average of each term of (4) with =0 leads to

(fr . v L ) f  ~~ ;-•2iP = ~~~~~~~~~~~~~~~~ (6)

and a problem in kine’ic theory is the evaluation of the right-hand

side. The Boltzmann collision integral and that of Landau are based

on the picture of a binary collision and a statistical argument leads

to the Fokker-Planck form for (6) (Chapman and Cowling 1939, p. 46 ff;

Chandrasekhar 1943; Wu 1966, p. 32; Present 1958; Landau 1936; Krall

and Trivelpiece 1973; Deicroix 1960, p. 116).

_ _ _  - •
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The diffe rence of (4) and (6) is

(
~~ ~~~~~~~~~~~~~~~

We specialize now to a gas of particles coupled only by electromagnetic

forces; then (2. co nutes with • We ignore terms quadratic in the

fluctuations. Allowing more than one kind of particle in the system

and introducing a species subscript .C gives the equations

(k ~~~~~~ ‘ Qb(•
~i) ~P~(~rt) S~~yt) _ $ .

~~~~~~
, (8)

+ v.h- +2 ~~
) 

~
(
~!-~

) = I~(zP)  ~~~~ WI >. (9)

The treatment in this chapter follows that of Goldman (1970).

A Green ’s f unction for the operator in (8) is

9(t-t’) Gt ’irvv ’~t’) 9(t-t fl[z -;~ ej f r -~ °(~; ~ Vt’)J (10)

in which ~~~ 
and are the coordinates a particle would have at

t ime t if it began at (~ ‘~~‘t ’) and moved with acceleration &r (~,X,t):

= ~~~~~~~~~~~~~~ r) (1].)

~~~~~~~~ “— ~~~~~~~~~~~~~~ ~~~~~~cc’7 ~ ) (12)
e

G~ has the property

a ((x-~
)
~ t’y-r ’.). (13)

The forma l solution of (8) which takes a specified value at t —

is

- L . .



-~~~~ - 

T
=

÷ 
~~~~~

‘

~~
-

~~~
‘) ‘(~‘ ‘)GC~L~’i’~’ 

~~
‘) 

~~

This is not an explicit solution because the source term

depends on through ~~~~~~~~~ The dependence is expressed by

Poisson’s equation

~
7.f

~
(z

~
) ~~r $ ’f (.~t) 4(~7 / ,~ 1~~(~~)

r Z g f~4 IP (z ’vt) . (15)

If we define a homogeneous plasma as one for which the ensemble

H averages P&~é.1and.~~~~t)are independent 
of .~~~~, and suppose our

system to be such a plasma, then t dependa on ~ and ~ only

through the difference •~~~~
-

~~~~~~

‘

, and we can take space Fourier

transforms:

! (16)

fd~ ..z’) &~~~ 
(z~~ v’c~ë’) (17)

The quantity SfJ~W has an important property: ~~ tL) is the

field of a set of point particles moving at nonrelativistic

speeds, so that interaction is effectively instantaneoue

V 

= fh& ’-~ ~~~ ~~~
= ~ e j ~.iz ~~~~~~~ 

(18)

~~~~~~~~~~~~~ L — - ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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and that is parallel to so that

£.EA (t) = ks E ,~ ) . (19)

This defines the signed quantity ~&j (O .
We use the abbreviations

u f r .~GC (T~ (20)

= A . f~’t-t ’) + j dr4 Ti ~’J (21)

Some Fourier transforms are listed:

= t (y- 4t~)c~~~~~~~~~ (22)

= S(! _ _A~t) e ’4
~~~

t
~
) 

(23 )

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
(2~i)

(25)

0

= c (.i’~
)

—ca~ (O. -~ -~t) E(~~~~~~~~~~ (27 )

(
~
) 

~~~ 
(
~
) (/c � ô) (28 )

It can be seen from (18) that SEA vanishes at h :D.

In terms of k—dependent variables, the collision term from (9) is

• 
T o  ~~~~~~~~~~~~~~~~~ 

(29 )

L_ _ _ _ _ _ _  —- - VV V _ _ _ _ _

— —— - - V — — —  V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~~ ——V •—-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~



- - — - - ~~~~~~~ “~~~~~~ ‘ - —  —~~~~~~~~~~~~~~~
__._V .. .nvflrflfl ~~~~~

18

2. Symbolic Solution for Correlation F’unctions

In this section, expressions for (&E~(~) cik(LL) )  ~~
for ~ P ,~(’~ t)) are ~.ritten dovn.

Following are some definitions for some symbols used.

The nonlinear susceptibility ~~~(t ,t ’) :

= ~~~~~~~~~~ J
’iviVe~ -e) (,~~~(%W’tt ’) A.  V

The charge density fluctuation for one species :

5 p (~
) E 

~ ~~~~~ ~~ ~) (31)

The part of the charge density fluctuation which has evolved from

the initial value :

(t) fd ~ 
(
~ ~

) (32)

Total susceptibility and charge density:

~ ~p # c p~
The dielectri c function: 

V

V 

.t. ~~ ‘tt ’) (3k )

The inverse dielectric function:

J ii 4 1 at ~ a (3 5)

The last equation defines E
,

’
(tt ’); the questions of existence

and uniqueness are deferred. 
-

Development of the express .ons for the defin ed quantities:

ILV L  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . _ _ _  _ _ _  _ _
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Using (26) in (31) gives

— — /d~’~~ (t~) sc (E )  36

i l r
~
Y
~h

(tt ’) .
~~
., &(i-e) JIvJ ’Y’G~

(
~ ’~i) ii . ~~~~~~~~~~~~~ (37)

= ! ~~~
• 

tt~ 2 j u?~(~’-.d t~~t ’) 
(38)

V If t0 is chosen to be recent enough that collisions haven’t had time

to change the distribution function very much--i.e., if the right-hand

side of (6) is set to zero--then is explicitly known from its

H initial value :

= ‘ (?“ -~~ t~,~.) 
(39)

If the initial distribution was Maxwellian, this condition may be

applicable even if collisions have had time to be effective , because

the fastest effect of collisions is intraspecies therinalization.

H Then using P~(~r 
_ 4u;t’) ~

‘(v-4fl ~,t0) in (38) gives

iL~1 (U’) = _
~
f
~~~t-t’.1j Yv~ . ?~~~~~e_i16A fr*4 t ’to~~

t (4o)

The expression for E, from (28), is

= ,~~~ j ;t’1(t ~
-) cE~

(
~) J 4l

which is the sama a’

Jdt’c(tt )SE
~
(r) = 

~~ 
(42)

~

—. ~~~~ _____________
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so that an explicit expression for E is

(V — fJ~’ç ’(tt ) 
~f ~~(I’). (43)

We asstme tha c f~ (Vt 0) is known. Then we can use the expression

derived in App endix D following Wu (1967):

<cc
~

(i
~
) cc fr (

~
r&)> = (44)

This quantity is independent of k. In Appendix E , we prove the

identity

JI~zr
0 G~ (3fi~

”L1~,) G (~i~” I 
‘t )  = (i~z’~ t ’) . 

(45)

For the field correlation function , we develop

= 

~~~ 
(iç “t )  

~~ ~
t~) > G ç 44, ~ ~~~

= ~~~~~~~~~~~ ~~~~~~~~~ ç~(P~’.t4~)

= ~~~~~~ G~(ic r 4t) . (46)

H Then

<“ 1~~(t,) ~~~~~~~~~~~~~~~~~~~~~~ 
= f_Act.1 ~~--4~ 

tt~, t0 G~~ç~4 1)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
tLfi~&(

’
~~
t,E)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _  _ _

- -— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
VV ~~ - V~~~~~~~~ VV ~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~ --~~~-~ - - 

_~ il
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This expression into (40) gives

= fJ I~’ç’(w) E~
(’~ ~

“) ~~~~~~~~~~~~~~~~~~~~~~~~

The te rm <ff’P) can be expressed in terms of this . Making the

V 
substitutions suggested by

- 5 P + G 5 F , :u~ = e ’cf °cP° + G CtIF

• gives

~~~~~~~~ 
f~~~(rt)> = Jd~’ç’a~’) ~ ~~~~~~ ~ç:~

fr
~
)

+f/i.’jg
~
’ gw&t’) G (rv’ W ) .  ~~~~~ (U~~) CE (t~

))  (50)

= fdi ’ ’ (~t ’) 
~~ r_ ~~~~~~ ~.

)

÷ ~~ -V.)
1 

c. ~~~~~iLP~~~ 
(C~.4U ’4

(51)

3. Specialization of the Driving Field

For the examples given in Chapters III and IV , we specialize to

V a system in a linearly polarized electric field with no magnetic field:

m~a~(~ t) — 

~~~~~~~~~~ 
(52)

It is turned on after time t 0 in such a way tha t for t)0,

t
~ = ~~~~~~~~~~~~ (53) 
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and

If = (54)

In this , ~~~ 
Z’I~~° , =

The forms taken by (20) and (21) are

ti f t’ 4~~t — 4 i ’t = —I0 (cosc~,t 
_ e.;c.Ø’) (55)

-: 
= 4 dr (4_ r~. — 4 t ~~ )

= d~ ~~~~~“~~) ~ 
(
~
.
~)g cos~~0~ (5 6)

= A.E( ~~~~~~~~~~~~~~~~ _si
~~t’) J (57)

The suscepcjbility (40) is

~~~ 
= &(‘f- t ’)j ~I~b’ ~~~~~~~~~~~~~~~~~~~~~~~~

4. Fourier-T r ans forme d Expressions

This section gives a sketch of the derivation of two moments

of the collision term for later use . If the system is stationary

except for the periodicity imposed by r(~~
t)  periodic with period

&~,, 
then any function with two time arguments f(t ,t ’) dete rmined

by the system can be expressed in the form g(t-t’,t’), where g is

periodic in the second argument. A double Fourier expansion can be

made: J

= f .I t1
~~~~

#(t. t)
&

i( aØ p (59)

& - 
~~~~~~~~~~ -- -~~~ — ~~~~~~~~~~~ -—~ V
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f d td~’e c ~~~~~~t ’) (60)

= Z (61)

= J~ 
qa) e’2

~’~ 
(62 )

The space and time Fourier transforms are normalized in the usual

way by setting the (infinite) intervals of integration to unity

1 when they appear as factors ; e.g., a complete statement of (62)

E . could have the form

4’(2&~) = T ’J d~
H -ra a?r

where the values of T are integer multiples of —-- , the system
•

• has period T , and lim is implied .
T-,.

• H Because our system may be in fact not stationary but have

H a time variation——e.g., heating caused by the collision term——

• 
I which is slow compared with the relaxation times of the system,

the frequency-dependent coefficients in Eqs. (59) through (62 )

H may have a residual. time dependence .

Important properties are

C f1~’(~ ’~(~ ~) J ’a.i~*~ m~~)

H fJ~’((1~~~~’)3~7ci~) £ f j o~a~,-2a~~f ’A a~) . (64

ii
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A Fourier transform of (35) with the use of (63) is

~~~~~~~~~~~~~~ ~~~~~~~~ f f~~~ .I~~~E ( 2 a i.~- *.’) (65) Vi

In terms of an N defined by

M (
~~

) = (w-m&~,n%-’.’) ~~~~~~~~~~~~~~~~~~~~~~~ (66)

we see that

(67 )

which provides most of the argument for existence and uniqueness.

An expression forthe nonlinear susceptibility in frequency space

follows from using the identity

eir
~

7s 
= ~ Qr) e ”9 (68)

V na-.

in (58) :

I1~ h C..na
~
, “‘~-.) = f /v  !~~. 

~~~
. 

~~~~~~~~~~~ £ ~~ ~~~~~~~~~~~~~~~~

A linear susceptibility can be defined by

~~~(
_
e,) I f l Y  ~~~ 

l
~?~~~

1•) 
CI, - ’ ‘~~E 

(70)

and in terms of it,

= Z 
~~~~~~~~~~~~~~ 

(71) V
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The sama symbol 
~ k ~ used for the linear and nonlinear

susceptibilities; they are di stinguished by the nimiber of argueents.

Making appropriate substitutions leads to the following

expressions , which will be used in Chapter III:

<j
~A~~ 

5?k (t)) 
~‘~
‘&

= ~“ ,~~~ 
!~.1 ~ ~rz~

’4 ’) 
~~~~~~~~~

H x J ( ’kQJ~,(& t~
)

+ I (cv - Lt+rjw., m’, -ar) ‘E Z /‘1, 4~ &)

(72 )

<~7’ (V .~r (t)) 
(2w~

)

= ~iZ J’~’.
-
~ 

~~~
.ai”.r.r’& (~~~ 

~~~~~~~

~ 
(~ ~fuQ~ , m~4~-.v) 

~~~ “~~ & ~~ /T ’(’k I

+

(73)

The symbol ~~~‘ labels the species different from ~~~
‘.



__ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~- - V - -_ - ~~~~-~~~~V --~~~~~~ 
_ -~~~~~~~~

_ V V
~~ ~~~~~~~~~~~~~~~~~~~~~~~~ -~~

26

5. Collision Term in the Time Domain

Kliinontovich and Puchkin (1971.~), using a similar approach

and the same specialization to Eq. (52), derive for Eq. (29 ) an

expression which they give as

~ =~~~~-f ’~ ~~~~~~~~~~ 
(7L)

In this, a delta function has been used for the ion distribution V

functi3n . The variable P is the deviation of particle momentum

from particle drift momentum, and the remaining time dependence

has been averaged over a period of the driving field.

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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CHAPTE R III

HEATING OF ELECTRONS AND IONS BY A HIGH-FREQUENGY FIELD

Fluctuat nec mergitur.

Albert Messiah1

In this chapter, the physical system chosen for illustration

is the simplified one of a homogeneous two-component plasma

driven by an alternating e lectric field with no magnetic field .

It is shown tha t the energy absorbed from the field by one species

can be expressed as the sum of two terms, one representing

resistive heating and the other representing an exchange with the

other species. The terms ar e evaluated . 
V

1. Introduction

A hydrodynamic equation

The hydrodyaamic equations are the velocity moments of the kinetic

equation (11.1). The following exact expression is easily derived ,

as shown by Chapman and Cowling (1939, page 49, Eq. 3.13,2):

If # ( 1 Y) ]  *fr ,t

.4 -

~~~~~~~ 

...~~~~~~~~ i — (1)

This equation has been simplified by taking 
~ 

to be a function of 2

1?lessiah 1962, front plate for Volume II.

~~~~~~~~~~~~~~~~~~~ ~~~~~
V
~~~~~~~~~~~

JV
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~~~~~~~~ V V~~~ 

V
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H only. The overbar labels the average with respect to the

distribution fisiction .

zf ~~a’j ~ JI
1v~~(~r) I (’~~ t)  (2)

I(~~j~,t) is the quantity which customarily appears on the right-hand

side of the kinetic equation, the “collision term,” as in (11.1) and

(11.2) of tue preceding chapter.

H Deviation of velocity from drift velc’~ity: 
V

= 2 ! —~~(a1~
) (3)

Drift velocity:

e ri ’JJ’?rz f ’~’~~ i) (4)

This definition of u(x,t) makes it the actual drift speed, which can

differ from the u t J ’O. dt used elsewhere in this thesis because

H of the collision term and possibly an initial value. The difference

will be important in a more general computation of transport rates;

in this thesis, the difference is ignored.

If there are no space gradients , and if $ is taken as the

H particle energy ~mV t, then (1) reduces to

3
1f fm 77’j ~~ ~~‘19. (5)

The separation of terms

In the absence of the dri ving field , if the system were to begin

with nonthermal distribution functions, the electrons would become

thermal in a time described by an effective electron-electron

relaxation t ime , then the protons would relax in a time greater by

-~ -~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the root mass ratio, and finally the temperature difference between

the two species would relax in a time greater by another root mess

ratio (Spitzer 1962 , p. 136; Delcr oix 1960, p. 113). The interspecies

equilibration rate is given by (1.1) with the re laxation time

(111.49):

= (1.1)

V 

If a weak driving field is imposed , the species move in opposition,

and collisions convert some of the energy of oscillation into thermal

energy . Because each kind of particle receives the same impulse in a

two-particle encounter, the increment of randomized energy between the

two species differs by the mass ratio, so tha t the ion population heats

more slowly than the electron population by the mass ratio. In a weak

V field with D~ t9j , the thermal energy of each species grows at the rate

fn  (6)

where ~~ ~~~, the dissipative part of the conductivity, is given by

t

~‘c ~~~~~~~~~~ 
(7)

where is the electron-ion collision frequency (1.8), and ~ is e or i.

The concepts of interspecies energy exchange and resistive

heating can still be given meaning in a system with a temperature

difference and a strong driving field. The rate at which a species

gains energy can be derived from the hydrodynatnic equation (1).

- •~~~~~~~~~~~~~~~~~~~~ V V ~~

V ~~~~~~~~~~~~~ _ V •~~~~V~~~~ •~ _ V~~~~~~~ V •~~~~~~~~ V~ ~~~~ ~~~~~~~~~~~~ — - ~~~~~~~~~~~~~~~~~~~~~~~~~ - V V V VV S _~
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If the Klimontovich collision term (11.6) is used in (2) for the

left-hand side of (5) ,  the n (5) is

.L. .2_ ,,~ ~ ~~~~~~ “v (8)

V 

1 ~ / d’v- ( t .(1
~~~

) sP) (9)

~~P1I~ ~~ <U•$j ) _ i r . < ’;fq’> (10)

by appropriate defin ition of 
~f 

and if’, and with species subscripts

included f or the last line .

We will find that the second term on the right-hand side is

quadratic in field strength for weak fields , so that it can plausibly

be defined as the resistive heating . In the absenc e of a field , the

first term is given by (1.1), so it can be defined as a heat exchange

term These definitions aren’t unique; e.g., any quantity

- GKF)E
2f(t) could be added to one term and subtracted from the

other without destroying the properties which motivate those labels .

Average over a period of the driving field

Each of the bracketed quantities in (10) has an expansion of the

form (11.61). Taking the time averages gives

=

and the heating rate

-&. <~~ ‘~~> = ~~ ie’-’~*,;~ ~
(12)

This define s the dissipative part of the conductivity ç &C.

- - -~~~ - .— - -—-— ~~~~~~~~~~ ~~~~~~~~~ -- V~~~~ ~~~~~~~~~~~~~~~~~~~ - - -- -~~~~~~



V V V~~ — V V Vf l V.. V ~~~~~~~

H 31

Matrix notation for the frequency dependence

The expressions (11.72) and (11.73) for the resistive and

equilibration terms are given a cleaner appearance with more compact

notation. With arguments k and v understood, we can write 
V

(13)

— L ~~~~ 
.i. K’ : (14)

N = (15)

= (oi.nw•)C
(16)

~~~~ 

,~~ .e 
= Col (~~ (k.d~)J (17)

= c./ [~T( h.4 )J (18)

The underlining will sometimes be omitted from the matrix and vector

symbols. We define a shift operator by

~
ie 

(19)

so that it has the property

= Z
,,, ,, . 

(20)

Clearly true is

a (21)

in which is the Hermitian conjugate of ~~

Remembering that the linear susceptibility depends only on the

magnitude of j~, we get from (11.71)

- Z 
~~~~~~~~~~~~~~~~~~~ 

(22)

-~ — —~ V&~~~~~~ ~~~ _V___—- ~~~~~~~~~



Effect of small mass ratio

The argument of the ion Bessel function is ~~~~ -

We will take

L (23)Dpi

which is equivalent to ignoring terms of order k.d1. Thu~ we have

assumed the inequality

‘> >  
(24)

in which the dimensionless field strength (I.~~)appears. So even

though our result is intended to apply for kD
(( k and B)l, we

eunpose the mass ratio to be strong enou~ i to enforce (24)~ That

condition imposes an upper limit to to the value of k allowed when

the sum is done over k:

(25)

We notice also that the cuantity ~L )~ (k,& ’) has an exponential

factor with argument
V 

I a
,. W - (

~ 
‘~a ~ (26)

_ _ _  - 
~ ‘,‘ A V € 1 fl )~

The condition for that to be large when 0 is near 4)~ is
.11~1

“‘ ~° !!!L (27 )

~‘j ~ m~p

But (27) is already implied by (24), because we allow E)l.

i_ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A consequence of (23) and (11.71) is

K~ ~~~~~~~~~~~~~~~~~~ 
(no sian). (28)

2. Resistive Heati ng

Earlier work

The rate at which a plasma absorbs ener~~ from a weak high—

frequency electri c field was calculated by Dawson and Oberman

(1962~ Oberman, Ron , and Daweon 1962 ; Dawson and ~~erman 1963).

Rand (1961i) derived a single—particle absorptivity bait didn’t

average over the electron distribution function. Silin (l96~b)

calculated the nonlinear abaorptivity and reached an expression

equivalent to (111.41). ICaw and Salat (1968 ) extended the linear

result to stro nger fields by taking more terms in the expansion of

Bessel functions with arg uzenta prop ortional to field strength.

Kidder (1971) reaches a simple expression for the absorpti on of a

circularly polarized wave. A quantum-mechanical derivation by

Seely and Harris (1973) used an erroneous approximation and quasi—

physical arguments for the evaluation of an integral, and reached

a conductivity which lacked the Coulomb logarithm (McKinnis and

Goldman 1975). Klimontovtch and Puchkin (19Th ) give a result V

similar to that of Su m .
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Simplified expression

Equation (11.72) in the compact notation is, because Only the

real part contributes,

= -L f’ J41 f D.~9,..Z4~
v)

C’,

~ Z~~~~~~~
4
~~~~~~~N~~~S~YJ J  (29)

/a W /_ -kf~f~4~”~ ~ E i~s”~r tJ ”~?,i’~~ NJI( •( K

4 
•
N~~~~S

1
N~~~~) (30)

J Jc~ e0~~’e 
~~~ltEntS~#s/c e1~Vt7— ke &2’i

~~~~ ~
rvL’

~
tS/(

~ NLJ (31)

Expression for unrestricted k

This expression can be developed further, but we will use only

V the large-k form . S u m  (1965b) and Klimontovich and Puchkov (1974)

give expressions which are similar to the one which ~‘ould follow

from (31).

Large-wave-number form

The susceptibilities are products of k~/k
2 with bounded

quantities, so that both M and N become unity at large wave numbers.

The fractions in (31) multiply terms which are of comparable

_ _ _ _ _ _ _ _ _ _ _  rn - ~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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H size, so the ion term dos~inates . The contributing term is

L~Ske L (32)

- (33)

fie <
~~~~~e~~,LZ,

hJ~ 
O~Z 

~~~~~~~~ ~%~ J*~7
(34)

The term in brackets is an odd function of 2 , say A,~ . The sum is

A~~~12 It

by changing the sign of A , and also

=

from the symmetry of the Bessel function.

~~

A 
(36)

From (l2), the abso rptivity is

c 
~~~ 

1cf,5i_ iw ~~~~ ~~~~~ V

(37)

The &i argument in doesn’t contribute much to the integral, so

c~ ~~~ 
2 2 ~~~~~’(,t~k~) (38)

Vi

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V -_
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The sum on 2 , by (I.3L~), becomes

~~ ‘
~r~~ /

,
’W. 

(39 )

The prescription~I.7~ gives

ç ~~~~~~~~~~~~~~~~~~~~~~ 

J

’
~~i~

1JTl e~i’~~~~ ~~r~r’6) (40)

V Y 3 E ’ I.t T’(~) 
(41)

V yj , w.
z o  J I V

0

Inverse Brernsstrahlung rate in a weak field:

A check on the compuatation is the value of GD in weak fields:

1Y4) = ~ f : - U ~’+ - . 3 (42)

= 

~~~~ 
(43)

Asymptotic form in a strong field:

If E is large , we can use the asymptotic form (1.40):

) 2;r$~-~’
-’ I’ ~ _j~Z f...) (44)

r (J )
OPfl

, 
E 

~~ —~ J J E  (45)
&Cs,)

j 7) W
•

~ 
• 

~~~~~~~~~~~ 

r (46) V

The electron heating rate becomes

(47)

-_~~~~~~~~~~~~ V~~~~~ V__V~~~~~~~_~~~~~~~~~ VV V_~~~~~~~~~
V
~~

V V~~~~~~~ _~V
_

~~~~~~~~~~
V V

~~ VV ~_~~ _ _ _ _ _ _ _ _ _
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N .inerical values

Fig . 3 and Ta ble 1 show va lues of the dissipative part of the

conductivity in units of 
~~~ 

)~. It should be noticed that V1,

itself depends on E through the Coulomb logarithm.

In the measurement by Brownell cc al (1974 and 1975), a value is

V seen of C(.39) = 0.42 , differing from the Salat and Kay value 0.78.

This computation gives ~~(.39) = 0.87, which differs even more from

the experimental value. 
-

_ _ _ _ _  _ 
1:

- --- - -- - - 
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Earlier work

For a system without a driving field,Landau (1936) gives for

the relaxation rate in (1.1), page 3, the value

2~~~~- . 
(48)

Spitser (19110), discussing the passage ‘of a star through a globular

cluster, gives 
V

- 3,

I 

z. 
(49)

without constraints on mass or temperature ratio. -

j I

I ’

~IVVVVV 

I — ——
— -- 

— --~~~~~~~~~ - - -~~~ -~~—
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Simplified expression

In compact not3t on , (11.73) is

~~4 .  
~c4>2 *0 

= Z4 
[

~~~~~~~st%4 

~:w~ c
~~ 
~~~~~~~~~~ [ ~w~~i2iv1T #J~VJ2jj l

~~~ SC (Yj

(50)

_ _ _ _  
51)

The contributing part of the bracketed exprossion is the antiher-

mitian part, which is ha]! of

k J ?~ !2i1-.JZJ(.~- M t 2  =- (,+~~~) J  * 2(1+~ .)~J2K 7k JL 52

and the simplified form ~f the general expression is

<~~ ~E~ 0 =f [ -~~~~~’~ ~~~~~~~~~ 
(53) 

V

The symnetric form makes obvious the oroperty which makes thi s the

“equipartition” term:

<SJ •c
~:> +<‘ç•s~1 0 (54)

The energy gained by the ions is lost by the electrons.

I:

- - - - V  -~~ ~~~~~~~~~ V
VV •~~~~~~~~~~~~~~~~~~~__  —‘- _ _
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Large-wave-number form

The susceptibilities )
~ 
(h,) are (k~jk2 ) times quantities

which are bounded above , so that N and 11 are unit matrices at large

~~~~~~~~~~~~~~~ 
9~~~ s~~ (

~~
)

Reduction of terms:

LJ2 1(’e L m ((ZKe) :.E00 /ç 4~~/i4~ ) (56)

Oe TM ~ r~ J ~ J ?~ K,~1 ~; ~~~~~ 
?~ (~ -h~~)

_ _ _ _ _ _ _ _  (57 )

The rate of heat transfer from ions to electrons is

<~~~~~~~~~~~~~~~~~~~~~~~~ O V  

f ~7~ ~~~~~~~~~~~~~~~~~~~~~~~

- x~ f r~u~ 
81 ~~~~~~~~~ (58)

H rm z~~ 
T

~~~e

_ _ _ _ _ _ _ _ _ _ _ _Because 4, 
is an even function of its argument ,

and is almost a delta function as a multiplier of it, we

can put

+ Z(~-h)~~ f ~ 4( (il)
~ 1

~~ ~~~~~~~~~~~~~ I ~ 
°

c/has hw,

z z~~~~~
’
~ (60)

_ _ _ _ _ _  

I 
_ _ _  _ _ _  

IL..... .- 
~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~ - ‘ _ _ _  - ~~~~~~~~~~~~~~ •
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where the top ouantity in brackets corresoonos to the too sign.

~~~~~~~~~~~~~ ZJ ? —~ Ii~n TY.(w) Lr~ 
r (h%)

[ 
~i~~~~~ct.j (61)

<~3 •  ~i> ~ 
~~~~ - - 

~~ (~~~~~~~~Jj (62 )

Applying the k limit (1.34) and then the k s~mz (1.7) gives

V 

C~~ -j~ -. f .~~~~
- ?r ~J f ~ 

.
~~~

) ~~~
) - 

~~. (63)

~ ~~e m v e
tf ~~~ )r~~cJ

(64)

Relaxation rate in ‘vanishing field*

When E 0, j ’~ oE) ~ 1 and 
~

‘ 

~ ‘() 0~ so that

= -~~~~~~ ~~~~~~~~~ (65)

which agrees with (1&~).

4~,ympto%ic form in a strong field:

The asymntotic form follows from (1Ji0):
I

,~~~~~‘, ~
(
~“r) ’i ’

< ‘ •
~~~~>~~~~ 

n~,~~(2 T) ~~9 E ~hvE

1 
- _ _ _ _ _ _ _  ___  _ _ _ _
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V Numerical values

• For tabulation, (64) can be written as

= 3n~~- V~ ~~~~~ 
-~. T(f ) J  (67 )

where 14(E) and T’E are defined by equivalence of the expression to

(64). The equilibration rate for severa l values of the electron-ion

temperature ratio is shown in Fig . 4 and Table 3; as for all these

functions , it must be remembered tha t there is an addit ional de pendence

• I on field strength through the Coulomb logar ithm.

2 .00 V V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~ V I

_ _ _ _ _ _ _ _

I

.._

~~~~~~

• •.

~~~

:;: :~~ I -v-i-
0.0 .5 1 . 0  1 . 5  2 . 0  2.5 3 . 0  3 .5  4 • (; 4 .5  5 .U

Fig. 4. Electron heat loss rate in units of 3n i 3~t(&~#Pc),
for several values of 9~/~~ . V
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CHAPTER IV

THERML CONDUCTIVITY

Ego in mill. formas tra na mutavi sed operam meam
improbum Pr oblems perpetuo lusit .

James Bernoulli

1. Introduction

The usua l approach to calculating quantities dependent on small

deviations of the distribution function from equilibrium is that of

Chapman and Enskog (Chapman and Cowling 1939 ; Grad 1960) . It involves

defining a smallness patameter

(1)

expansion of the distr ibution functions in powers

P ~ 
.f
~ (I ~~~~~~~ t J~,~q

W 4 ),

and writing the kinetic equation in the form

~ (-fr + v ~ ÷~4.) F = ~~~~~~ (2)

The method is presented by Chapman and Cowling as an expansion to all

orders in~~~~. Th./i’term requires ZI1~(f
~.

f
,,,
) to vanish and thus

determines to b. locally Maxwsllian. Th. zero-order term is the

‘Quoted by Watson (1944), p. 1.

_- •- ~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~ LA
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one which describes irreversible processes in a near-equilibrium

plasma (deGroot 1951), and in practice is usually the highest one

calculated . The collision term is bilinear in and ~

‘C C (‘ ~
) = E r~ ~~~ P,o.~J —+i: ~~~~~~~~ ~~,c3)

which is a linear integral equation La if and subject to attack by

classical methods. The q’1 s are expressed as infinite s*.ma of

orthogonal polynomials, and an appropriate integration gives a matrix

equation which can be inverted to a solution for the coefficients of

• the polynomials.

The thermal conductivity to be derived in this chapter can be

defined as the K in

1 — (4)

Such an expression can be expected a priori to apply if is small,

as we asatma here. ,
~ 

is the heat flux

V 
~
- f /v . tmv’x ~ (~;~t~

). (5)

It is half the quantity called the “therma l flux ” in the book by

Klimontovich (1967). £ dimensionless form of S is convenient:

4 T  
~ 

(6)

If the 55Kr ook model” value (Boyd and Sanderson 1969) of the conductivity

is used as a unit ,

K
~

L V V
~~~~~~~~~~~~~~~~~~~~~~ V±VV

VV 

V V ,
~~~~~~~~~~~~ V V V ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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then

V 

= _ (.~-.) . icve (8)

and

A = — (*) f ~~~~~~ - p~e. (9)

If the only anisotroptes of the p lasma are the driving fie ld !

and the temperature gradient , K will have the form

= (S1. 
EIZ

) x K11, (10)

where K4 and K11 play the roles suggested by their labels because it

follows directly that

It = _
~~.K. ve = -K (j .P~~~) =

= 1/

and

= i-I.~ 
_

~~~~~~
•v 9+ K

,

ISv 8
xft8?L.

Because the interaction cross-section for a two-particle collision

decreases with the speed, and addin g the diffusion velocity to the

driving velocity is more effective when the two are parallel , we

•xp.ct

KlI ~~e K :L .

In this chapter , a version of the Ch.pman-Enskog method is used .

Th. thermal conductivity is computed for a field strength which Is

V 
_ _  _ _ _  _ _  _ _

V V~~ V~~_ 
~V_ ~VV •  V 

V V V -~ VVVVV _ _~~~~~ _V V~~~~~~ ~V - — V - V ~~~ 
V~~~~~~~ V~~~~~~ VV ~ V _ V _ V .  -~~ ~~~~~ 

- • V
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constrained only by nonrelativistic dynamics and motionless ions . We

show that the thermal conductivity implied by the collision term of

Elimoatovich baa the behavior as a function of field strength which is

sketched in Figure 5.

2. Earlier Work

Lmndahoff (1949, 1951) calculated the thermal conductivity of an

equilibrium plasma, and the other coefficients in Eq . (1.2), with a

fifth-order Chapman-Enskog expansion . Spitzer et al. (Spitzer and

Birm 1953; Cohen, Spitzer , and Routly 1950) solved numerically a

second-order differential equation for a Fokker-Planck collision term

for an exact result . After electronic computers became more useful ,

other workers (Hochstim 1969 and references therein) did large-order

£ 
matrix inversions with inclusion of dependence on magnetic field .

The accepted expression for thermal conductivity, including

allowance for the thermoelectric effect , is given by Spitzer (1962):

K ~~~~~~~~ = L~81(0 (11)

The conductivity of a plasma driven to supertherma l speeds seems

not to have been calculated . Because the interactions of particles of

one species among themselves aren ’t affected by the field--in an

oscillating frame of reference, they don ’t see the field--and because

V 
the interaction cross-section decreases with increasing relative speed ,

the thermal flux of a p lasma driven strongly enough will be limited by

electron-electron collisions . The result of Everett (1963) for strong

fields i. V -;

= !.7~O. (12)

V ~~~ •_ ~ •~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -• V V .
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j
~~~~~l I

Heat flux limited only by electron-electron collisions.

Heat flux limited by collisions with
both electrons and ions .

I’ Ia 3

~~~~~~ = & C J V

I
Fig. 5. Sketch describing expected behavior of thermal conductivities

perpendicular and parallel to the driving field . The unit for the

conductivities K~ and K is~~!.!t. The asymptotes are the value s from
- rn ,

a 3 x 3 matrix inversion known from Landshoff (1949).

V ~~ - - •  !V V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

—-V — — — ~V 
— -V.- 

~~~~~~~~ 
— —

V ~_V.~~~~-VV 
~~~~~~~ ~~~s~~~~-~~~LS-~ V~~~~~ -VS.A~ V~ S~~V VVV VV V V~~~~VVV~~ -
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The result by Kelleher and Everett (1967) that purports to be the same V

seems to be in fact

(13)

The value .i~~. is the one which would result from use of the Grad
UI

approximation for the e lectron-electron collisions--or, equivalently,

a two-dimens iona l matrix inversion in the Chapman-Enskog method .

A recent measurement (White , Kilkenny, and Dangor i~74) involved

a laser beam with field strength which edged into the strong-field

regime . The result was V V

= 0.4 ± o.Z. (14)

This result is in the wrong direction to be exp lained by the

reductkrn of collision frequency by strong fields .

3. The Boltzmann Equation and the Ansatz for ~e

Consider the Boltzmann equa tion

(f r  ~~x•~~ 
.Is~~.~?-) P cz~ct) = I~3X ~

). (15)

We can express f(x,v,t ) in the form

P~~e) = ‘
~

(
~ ) [ I.E.w.~~

LM (tw9J. (16)
v~.

In this , ~(t) is the drift velocity corresponding to the particle

acceleration g(t). A nondimensional vslocity is used:

(17)
S
I.;

= (vr)
SM

ne eSI& lPvt (18)

II V V
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f ( ~ ) and f 0(~ ) are normalized with respect to integration ove r their

arguments.

The quantities L~ (~y
2 ) are a set of orthogonal polynomials, chosen

to be Sonine polynomials (Laguerre polynomial s of order ~ ). They have

the property

j ’Jxe~r ” L (z) L (r) ~~~ (19)

The first three are

Le ft) = I, L,(t) ~f-~ L/ t) =
~~~~ 

—
~~~ ~-~— e~ 

(20)

The actual drift speed can in principle be different from ~(t).

The difference is given by

* f J’w 
~~~~ = j - f i r ’  L F . w~ w. L~, (~ w~) P ~~ 

(21)
V &_,. 4

= * ~ ‘
~ JJ

3 WtL ( 1 ).~)c( )

= 
~ 

P . /Jt (Rt ~
) 4 

~fh~/ t.) (z rYie t

= 
~ ~~ ~~ Ut a.)

= (22 )

In this chapter , we are computing the electron thermal conductivity

with the constraint that there is no net current; which is to say tha t

we set
= 0. (23)

By doing this , we will reach a “thermoelectrically compensated”

thermal conductivity without an intermediate “ unc oinpensated” value .

If there is no net drift speed, then the thermal f lux is the same

whether it is computed in the rest system and then time-averaged , or I

~~ -—- -V -V ~- V V V V ~~ V V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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ju st computed in the drift system . It is

= ~ = 
~~~~ 

//)I~9 ~~ . v~ w~ 4. f (r)

E Pp,. ~~~~ ?“J’dt ~ ~~~
tL ( ~)

(24)

Thus the problem of this chapter is to compute P1.

If f (~t,’~,t) . f(~,~—tt(t)), then the left-hand side of the Boltzmann

equation (15) reduces to the gradient term . To first order in

only f0 contributes. By noticing that

= (25)

we can write

~ -~ - 7h.8 *v~hi.h~ “t W t P-tnD

= L~(tw’) v2~.n,r ..j (fr ) ~~~ (26)

Time averages are taken by replacing ~ by v~~ + ~ (t) end averaging

over the remaining t ime dependence. Thus ~~~~ —4 ~~~~~~~~~ to lowest

order in and the UIS of (15) is

~~~~~~~~~~~~~~~ ~~~~~~ 
(27)

Klimontovich and Puchkin (1974) applied such a time average to

(11.29) and give as the result (11.74), recopied here in the form

Ye,. /~ f/k ~~~~ ~~t (28)

~~~
- 
(u’) = f  (‘nw, -~cZ ’) (29)

m1j ~~l~~•

- - ~ V V .~~~~~~ V. V~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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4. Solution fo r the Heat Flux

The coefficients of the L~ on the left of (27) can be isolated

by operating on (15) with Jd
3ww~L,~.(½w

2). The result is 
V

- 2ç ~~~, 
P~~~ = ~ f1iis~ ~ 

(30)

The next tew steps show how to find the wanted coefficient in

terms of PD.

In (30), we use (16) with V E  (~zJ only. The integration of

the delta function in (30) is simp te in a coordinate system chosen so

that k .— (0,0,k). Vector components in this, the “internal” coordinate

system, are related to those in the “external” coordinate system,

which is fixed in apace , by

F 1r. ~~~~ (31)
‘j i -

where ~~ has the properties

— ~~(4) 
~~~~. 

a (32)

and

• ~‘.4 .’ 4 ,,’; • 
(33)

•~~ 4 S

The externa l coordi nate system is chosen with the third axis parallel to —

the driving field. To allow expressing all, vector components in the

incegrand of (30) with respect to the internal coordinate system, we put

= /~~ c~~~ 
(34)

The vector w
3 

in (30) is pinned to the external CS, so
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With thes. changes, th. first integral in (30) is

f/h J~1~ 
~~~~~~~~~~~~~ ~~ 

p _ _ _ _  
(35)

Definition:

[
~
]‘= /hJ ’~~~ ’ ~~~~~ (36) 

V

E%’J + 
(37)

where H is the value contributed by ~~~ 
This notation shortens (30)

to 

~~~~ ~., ~~~~~~~~ 
(38)

which is to say

~ H’~P ÷1/,~ 1~ 
(39) -

0 - 
(40)

The tensors can be represented in the form (10):

Na = Q ) ~
( 

~3j  
+ 

(41)

where two ideograms are introduced . In terms of them, !l is given by

= (42a)

0 ~~47 F 3 ti f1~P,3 (42b )

1 * ~~~ 
= 

~~2 ‘~ ~ ~~ 
(4~~~

0 
~~~~ 

t
~~~1L 

(43b)

-V-Va -
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with solut ions

P ft~1
23 a y

• I~~
/~ ~

)
~~~ g)g, (44)

p = !rL/1f) ~~~~~tt  (45)S.L 
~~~~~~~~~ V

The remaining task is evaluation of the components of ‘V3’.

V V V -— V 
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5. Evaluation of ; Explicit Result for the Conductivity

I The electron contribution:
Values for in (37) are given by Landshoff (1949):

e r i  3/c
1%J ~~L”~~’~cJ 

(46)

•414)~# *~,i
Algorithm for evaluation of the integraL

From (36),

1 = f/h 
~~~~~~~~ Z”E~ J~ 

_
~~L~1

(47)

The quantities (47) have the form

= 

~~ 4~4~7) ~ ‘ç, J! 48

Wd•~~~1~~~L4~ — ww i,3 
- (49)

2,,, 12

(50)

= 
z en ~ ~~J~~_L_ ~~~~~~~~~~~~~ (51)
mM’ ~~~ Jf ~a~a~~)/ 2

3 2e~flZ (z.~’ $ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Change of variab les: ~ ~~~ 7~1’ = k (ji ~f (53)

Abbreviation : V z 7n
2

= ~~~ t~
, &1*1~ pte-tj~~ 

~~~~~~ ‘i ’f ~j mL
3’av ~~~~~~~~~~~~~

Replaci ng the ~~ product by its azimuthal average allows use of

the recipe (1.7) for th. part preceding the ~~ products and it becomes

The part of (53) after the ~Z ’ s is, with~~ meanin g ~~~~~~

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ V 
—

-V--V--V — ~V —
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ VV ~VV —- ~~~~~~ -V — VV.-V~ V -V -~
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£J ~~j / k~~~~ (i~v) ~ Z tc ’~?e1’~,-#~’P.) . (55)

The affect of on the polynomial is to convert ~.I to
(g.) , and the effect of ~ is to convert to • Thus

= 3~ fJ1~~~~~~~~~J Q ( 1fr.t)) (56)

where is obtained from ~ by this procedure :

(1) Take the azimutha l average . -

(2) Make the replacement 
~f 

ai~ W’a ~~~

(3) Make the replacement t • ‘r#V.

(4) Make the repl.ace nt ~rt s (ii!) . The result is

(5) Make the replacement V’—) 
~ 

to get Q(r).
The result of applying the algorithm will have the form

~;~Y&m + 
~ ~~~~~~~~~~~~~~ — ~~~~ L1/j}with algorithm applied .

Because the effect of an aver age over the ~-aziauth is

~ 
(58)

we have from (47) and (56) with (57)

= s~f~i..[~~ç + ti(~.’X~~-~~ç,3j (59)

That is to say -

(60) V

= (61)

- -V-V _ V - V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~ ~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ VV~~1l
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Evaluation of H in terms of I’ symbols:

The evaluation of (56) will be sketched here . The form for (S7)
V is

- gw ~~)(L~~~3 -ç~~~
)

= ~~~~~~~~~ C L  ~ t ( W’~b~ )B ç~’S~,,, 62)

— I  = ,~~i.., = ~~~ 6?,

Using the expressions for and Cv gives the intermediate result

I ~~~~~ /# h i4~ 7
V 

— 2v(
~

_ v)
L (l~~L,f 

(63)

— ~ 
L,L~f (,,L,)( L sLz ) 1 (64)

V 

— 

~~ ~J L (u4)(L, .L,) 21(L~ lL~ ~t,) J

~.L i # L  ‘4.
_ 2 v(t_ Iv) [ (, 4. L (i.~,)( i~ 3~)J 

(64 )

Substitution of (20), the explicit forms for Lv, leads to the explicit

H t-dependence~

H 11 21 12 22

(E  } 2v(t-v) 7/2 49/4 63/8 441/16 (65)
— l —7 —9/2 — 189/8

1 1/2 25/4
-1/2

The first column of (65) is to be read E11 
2v(t-v)(~~- t ) .
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11 21 & 12 22 
V _

~~~~~ 21 & 12 22

25/4 175/16 1225/64 45/4 385/16 3185/64
1’ ‘1 -5 — 105/8 —245/8 -7 -181/8 -511/8
F ~ — 1 19/4 133/8 -2v 1 25/4 217/8

-1/2 —7/2 -l/2 -9/2

_____ 
________ — 

1/4 
_____ __________ 

1/4

f r i
- v(t- v 662v(t-v)

Replacing t by 7~ v and then r~ by n~ gives polynomials in v:
11 21 12 22 

V

0 0 0 0LV J me 3 17/2 15/4 93/8 (67 )
-2 -12/2 -20/4 -122/8

4/2 4/4 52/8
______ _______ —8/8

The first coltmm in (67) is to be read E11 ~~ 31~ - 2J ’~, and its

precursor was the polynomial 3v - 2v2 .

11 21 12 22

V 13/4 69/16 69/16 433/64

~ 
-p .74/4 —592/16 -516/16 -3986/64

~ 
92/4 1032/16 832/16 8920/64

—24 /4 —512/16 —400/ 16 -6320/64 (68)
80/16 48/16 1744/64 ~~~ 

V

______ ________ ________ 

-160/64

Special values of v can be used to check the algebra : Using v ~0

in (65) and (66) gives the top lines of (67) and (68). The top line

of (68 ) ii the same set of numbers as Landshoff a for zero fie ld ;

notice that a constant value of F will pass uncha nged throug h

(60) and (61).

-V -V V_ -V - - -V -~~~ ~~~~~~~
__ 

-



Setting v 1 in (65) and (66) leads to

~~ [‘
~~~~~ 

:~:] ~~~ 
=
~:~~6 631/64) 

(69)

correctly predicting the column sums in (67) and (68). Similarly,

putting v -l in (65) and (66) leads to

V 

= 
-f~:,~ 275/8

] ~~~ 
= L:5116 2::3i~J (70)

agreeing with the corresponding reductions of (67 ) and (68).

Result for the conductivity:

The expressions for KA and K11 follow from comparing (9) and (24)

with (44) and (45):

K 
_ _ _ _

‘ V 

V
and the corresponding expression for Kg. The quantities ~ 7, ~~~~ are

given by (59), (60), and (61) with (46), (67), and (68).

Thermal conductivity in zero field:

At E ~ 0, the only contribution is from r (b) = I, and (71)

becomes

XL Ic’ = K i. [(Li r) (6?
~~~~~~)~1( 3+180

~
r

~ J

— LC8 7J • ic~,f / i.fl7 (72) 
V

e I.tC K•

___ -V
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Use of the thirteen-moment representation of Grad for the
V I distribution function is equivalent to retaining only the first

term in the denominator of (72), and is thus unsatisfactory

for computing the thermal conductivity.

_ _  

_

~~~~~~~~~

-

-~~~~~~~~~~~~~~~~~~~~~~ —-~~~
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CHAPTER V

CONCLUSION

Ich glaube, die Wellen verschlingen
Am Eride Schiffer und Kahn ;
Und das hat mit ihrem Singen
Die Lorelei getan . 1Heinrich Heine

Three transport coefficients have been calculated as functions of

fie ld strength for a plasma driven by an electric field with a

frequency much greater than the electron-ion collision frequency, and
V 

with a strength which does not drive the electrons relativistic but is

not constrained to drive them at less than the thermal speed. The

technique used , which involves application of the Klimontovich formalism

to evaluate the collision term and then, at an appropriate place ,

expanding an integrand in inverse powers of the wave number, is app licable

to the calculation of other transport properties of the driven plasma .

There are several ways in which the calculation could be generalized.

Inclusion of an ambient magnetic field is conceptually simple and might

be analytically tractable . Other transport coefficients , the (DC )

electrical conductivity in particular , could be calculated. Allowing

a more general polarization for the electric field is probably simple

and direct; in par ticular, the response to the electric field is simpler

~
‘From “Lore lei .“
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for a circular polarization than for linear polarization because the

V driven speed of an electron is constant. Including relativistic effects,

by perturbation or otherwise , would extend the permitted field strength.

V 
The use of a quantum-mechanical kinetic equation is an intriguing

concept ; it is known to be feasible for calculating inverse Brems-

strahlung. A quantum-mechanical formulation might allow the application

to more general statistics. The ~alculation of the second terms, of

order unity, itt the several expansions which begin with ln /t ; and , in

particular , including powers of k 2 past the first in the expansions

beginning k ’(k 2 +...); would give a quantitative estimate of the

limits of validity of the results.

The polishing and re-organizing of the problem for simplest

presentation and greatest usefulness of the results is much less

complete than the author would like. All of the topics mentioned

above as possible extensions might have been followed to at least the

first calculatioual difficulty, with an expectation of including most

of them. To give a general expression for integrals of the collision 
V

term and express the particular results as special cases would have

been more pleasing. In the results for the thermal conductivity,

there appear several linear combinations of the quantities rr (E);

most of these combinations have the property tha t the asymptotic V

behavior is E 3 even though the individual r’s go to c~çE~~ +ftp E 3 +.. .,

because the leading terms cancel. This behavior suggests the existence V

of an organizing principle not recognized in the calculation. The

expression for the inverse Bremsstrahlung rate can be reduced to a

reasonably simple form before use of the large-k limit; it was omitte f

_ _ _ _ _ _ _ _  V V____________________________________________ - 
V VV)
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because the result isn ’t new. A better overview of the Klimontovich

formulation and a comparison with, e.g., the BBGKY hierarchy, could

have been included . Is there a paradox lurking in the frequency -ratio

factor in the Coulomb logarithm, and how is the transition made to

the vanishing-field value? Does the frequency ratio explain the

discordant result of ~ tLte , Kilkenny, and Dangor?

V 
~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~ V_~~~~ V V~~~~~~~~ ~~~~~~~~~~~~~~ V _______



_ _ _ _ _  - - -V -V~~~_ VV ~~~~~~~~~~~__- - _V • - V V V~~~~~~~~_
_

~~~~~~~~~~~~ _ _ _ _ _

CHAPTER VI

LIST OF SYMBOLS

When a page number is given, it locates the definition in the

test, or shows where the symbol is used. Most of the various integer

indices and durmny variables are not mentioned .

Non-alphabetical V

< ) Ensemble average, p. 14.

~~, it These two labels for a vector are used interchangeably.

(1) Average with respect to distribution function .

(2) Average of A over a period of the driving field.

(.V~~~~~~ ) A labe l for the part of .~L. attributable to noncollective?t c.# at
interparticle interaction , p. 13.

Hermitian conjugate of the matrix ~i.

Components of the matrix (~~/ 
l1~,), p. 54.

V V ~~~~~~~~~~~~~~~
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Roman
H

.

V 

~~ (~~L) “Microscopic ” accele ration. The exact acceleration
V of a particle with coordinates (~, v, t )  in a particular

member of the ensemb le . Used p. 14.

Ensemble average of ~~Mic, p. 14.

a.1 A particle acceleration corresponding to imposed force .

Used p. 14.

b0 Classical distance of closest approach, p. 7.

c Speed of light.
t E .

d~ Exc ursion distance , d~ ~~~~~~~~~~~~~~~ 
p. 22.

£ (1) Nondimensionalized field strength, p. 11.

(2) An unspecified field-strength variable .

Amplitude of the sinusoidal electric field, p. 21.

Eft,~kE)~ ~~), $ME) Functions which appear in the integrands of

expressions leading to thermal conductivity, pp. 57 and 59.

e Proton charge .

~ (~yi) “Microscopic” distribution function . The exact distribution

function for a particular set of point particles , as

distinguished from the ensemble average . P. 13.

f(~~t) Distribution function.

f (~) ((tf’) Arbitrary or unspecified function.

G(x,x’,v,v’,t,t’) Part of a Green’s function, p. 15.

Part of a Green ’s function , p. 16. 

-V VVV ~~~~VVV_ VVVVV - VV~V VVS -VVVV~VV V ~ VV -V V-- V V - V V _  
V_ V~V~ V V .~VV ~ --V V _ _V V  ~~~~~ZV_~~~
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or I(~t) Collision term in the kinetic equation for species .(

or for unspecified species, pp. 13 and 17.

I (1) The energy flux of an electromagnetic wave.

(2) Collision term.

i f ~(~)J Momentum integral of ~~~Q~
) weighted by the collision term,

/ p. 28.

I~~(X) Bessel function , used p. 10.

Bessel function.

3 Electrical current, p. 3• 
V

‘~‘ 
3e Column vector with elements Jn(k•~e

), p. 31.

L Column vector with elements ~~~~~~~~ p. 31.

K (1) Thermal conductivity, p. 3.

(2) Thermoelectrically compensated thermal conductivity,

p. 49 ff.

Thermal conductivity, reference value, p. 46.

K,~, K11 Component s of thermal conductivity perpendicular and

parallel to the field, p. 47.

K Susceptibility, p. 34.

Fourier transform variable , p. 19.

kD The “Debye wave number ” f .  ~~ ~~ .

&

kma , 1Snin Empirical limits on Ic, p. 5. V

Weight function in the collision integral, p. 52. 

~~~~~ -VV -V V V V V V  V V - V ~~ V -~~~~~~~~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L Liouville operator , p 16
(1)
L~(x) Sonine polynomials, p. 51.

I N Dielectric matrix , p. 29 and 34.

M(a , b ~2i 2 ) Confluent hypergeoinetric function, p. 10.

V 

M Same as m~.

m Ma ss of a particle of i~nspecified specie s , or of an elect ron .

V a Mass of a particle of species ~

- Inverse of dielectric matrix, p. 31.

-- n, fl Number density for unspecified species or electrons or

V 

species~~~.

V The “order” symbol . 
~‘ 

ui~~’ x means that lub If !
- z-•o

is finite.
V 

Momentum corresponding to the deviation velocity Ii.

P Pressure of one species, P ~ nO.

1 
P, ~~ Stress tensor. ~~ .

V 

~.; Traceless stress tensor .

Coefficients in an expansion in Sonine polynomials , p. 51.

Rotation operator , p. 53.

1, ~~ Thermal flux , p. 3.

Dimensionless thermal flux , p. 46; components , p. 47.

Sk (x~t) Source term, pp. 15 and 17.

S Shift operator , p. 34.

S Same as S.

An initial time. It precedes greatly any other t imes

defined by the stationary system , but is recent enough

tha t collisions have not changed the distribution

h function. V

It —
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U Velocity relative to drif t , p. 28

V 
g,~ Amplitude of driven velocity, p. 22.

u(~,t) Dr i f t  velocity, p. 28.

Veff  P. 7.

Vel ocity .

Ve, v Thermal speed, v a

VD, VE Electron driven speed , y
E ~

w Dimensionless velocity, p. 50.

x°Lx,v,t) Orbit coordinate, p. 1~.

.~i (t) Space coordinate of the i~~ particle, p.13

Z Charge number for 5pecies ~ . l~~- Z Ze = 1~

Z Ion charge number.

S. V

_ _
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Greek

cc Fine ~~ruc~ure constant, used p. 7.

OC,fl (1) Species subscript, e or i.

(2) A thermoelectric coefficient, p. 3.

The species different from V’L

1 U)  A function which appears in the anal ysis in Chapte rs

III and IV, pp. 8 and 10.

4~tt ’ Velocity acquire d between times t ’ and t , p. 23.

Operator on a field quantity which defines a fluctuation,

Defi ned on p. 1J4
j

~~~ 
each letter f is replaced by 

~~~ , .

An electric field related to 3~ by ~2~(xvt)?~~~E(xvt).

V P. 17.

p. 30.

p.18.

€ p. 18.

6n Watson’s notation; = 2 - 

~~~~~~ 
used only in Appendix A.

Convenience variables , p. 11.

6~
(t) The Heaviside step function, zero for negative arguments

and unity for positive arguments.

~~
9c( Temperature in energy units.

A Argument of Coulomb logarithm, p. 5.

A ,, Bessel funçti.pn , p. 10.

The Debye shielding distance . See kD.

de Brogu e wavelength of a thermal electron, p. 8.
(4 

-
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(1) Dimensionless parameter proportional to the gradient,

p. 45.

(2) A spherical coordinate, cosine of the colatitude.

(3) In Chapter IV, an integer subscript.

Electron-ion collision frequency, p. 7. Often in the

literature called 
~eL~

14 Effective collision frequency for heat exchange, p. 43.

(1) A thermoelectric coefficient, p. 3.

(2) AC electrical conductivity, p. 29.

V Dissipative (real) pert of f  , p. 30.

‘rei Elec tron-ion equilibration time , p. 3.

A parameter Lu the heat-exchange rate, p. 43.

Zf~ Perturbation of distribution function, p. 46.

A phase , p. 17.

#‘P) Arbitrary function of U , p. 27.

~‘ (w) Linear susceptibility of species ~~
‘
, pp.2b and 11.

Susceptibility contributed by species .c, p. 18. There are

H two susceptil~ilities, distinguished by the number of time

or frequency arguments.

=

J2 Frequency matrix, p. 31.
V 

~/ Angular frequency, a Fourier transform variable .

CJ~ Angular frequency of the driving field.
IT/I lPlasma frequenc y for electrons or species 4 , 4~, ‘i-aL
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APPENDICES

Appendix A: Alternative Derivation for rr( 
~~~ )

This appendix shows another derivation of (1.26) for rr .

= 4. (,%v.z (A.1)

Proof :

From Watson (19I4~, p. 36), we have Newnan&s expansion:

(.~xf= fl e (
~~~

)! 
~Vr) (L.2)

• ( . f  rJ ) (Z) Tf~Oi’— 3 ’)

V 

Thus each sum is a polynomial of order r in x2. The

highest—ord er ~~rm is x21m
2?~4

’
, , which leads to (A.1).

The definition (1.10) gives

i • E 7 n ’) ~ 
~~~~~~~~~~~~~~~~~~~~~ (A.I~)

Using the lemaia makes this

ç ~ , .f~ 
( ) P P.r 

_ _ _ _ _ _ _ _

= r.~ -Z.~ ) (A.~ )

which is the same as (1.26).

1L V~~~~VVV -~~~~~~--
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Appendix B: f’~ 
in terms of Bessel Junctions

There is a formula in Abramowits and Stegun (196L~, p. 506 )

which was incorrect in early printings:

= e~ r(~- ti.f) ( ~
) &Z T(t 1) (~

- q-k th ) 

(z~ -ao-i),~ (j 3 
~~~~~~

“so

In this 
(B .1)

(n4-I)! V(1) = (~~~)f • (B.2)

We put a — q + ~~, b . q + d + l , expeCtiflg tO take the limit as

d goes to zero :

(B.))

The factors related to the limit are underlined. If n 0, they become

and if n~~~0,
(ZI + 17~i)f (d-?#~-s) ! (:“) !
(21-1)! (d- ?- ’) ! (~.Jtn)!

V 

V Ed (n -a) ’ (d-~) (d-~ 44)...(d-~e’?- ?) I!~~~~

V cI (ad)! (7.17)1

= Rn! 
(f~;i~j  

(~
“ Jc’;-’)...(pa..)

:: 2n! (—r~ 
_ILLL.___.

M(~~~~~~~~ ,pd~~~~~-z.~~~)= e~~2(i~&i’) .t Z.

= 
~~~(-) “A W )-~-~-~—--——--—- (B.li)

n (g ~—s i) f ( g .tt) !

V V V V V V V - 

~ 
V ., _ _ _ _ _ _ _  
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A simple check of that is available: Putting q -—~~ makes it

C M(0,~~,
-2

~~
’)” 

,)~ -a, (h t)! (-‘ .)!

= ~ (,) “fl (j 2) ~ ~ E /~ (.~‘) 
(B .5)

or
1 - 1.

Also in agreement is N(~ ,l,~ 2~~2 ) -

Coi~~ining (B.14) with the othir factors of (1.26) gives

= 
(er-s) !! 

,
~~~~~~~~ 

Z~~~~~~h~
’

( f l ( P~ hhi1

Appendix C: Recursion Formulas

- 
V 

This appendix shows how recursion forniilas from Abramowitz

and Stegun (l961~) translate to formulas for the r symbols . The

arguments are related by s - _2 .3~
2.

Recursion :

Setting
~~a ~

and multiplying by 
(.~L)!6M)! 

(7fgives

V (
~-~) ro) ..~(re t) J’,,f~

) . f ,,G) = a

t (zr-. )~’ 7 0)  ~ — r 1’ (~
) 

_  

1 1
- 

-V4 L:V~~~~~
V V  VV - VV ~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~ 
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Differential recursion:

=

T ”f f ~~ ) J’= -~.-fI’1(a.a,L*~~) *~-f ’Ii(a~~ )

( L) I
Including a factor 

~~~~~~~ 

(-) ,~~~ gives

~~L1’ =~~~~/‘~t) = ~~~~~~~ tr ~~(i)

because of ~

Appendix D: Initial—Time Correlation Function

If the two—particle correlation function is ignored, Eq. (L&2)

Iron Wu (1966) is

Taking the Fourier transform with respect to each of x and x ’ gives

= P~~~

in which F (~,v,t) is assumed independent of ~~~, and the unit box

V normalization has been used. This is (11.44).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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V Appendix B: A Property of the Green’s Function

Claim:

(
~!‘~

i’) = Jd’V’ G A(i’r~
i.) G frYt’t•)

Proof :

The integral is

Jiv ~(ir.Jr”-4ti.) ~~~~ ~~ tt )e -‘~~& ~~~~~~ t,’t.) I

Using th. delta functions gives as the sum of the phases V

4 (A (r
~~

A,r11.,~~
a) + c h (}

~
4tt.J~~.

)

= [f(t .)
”
( t t

~.) # ~~ra~~t~ ~j~dr4r~) 
V

= k.i’~ ’(t-t ’) ~ f d 7t rt J0

~ 
& . t x 1 t .t

~~ 
1-?4,~u• 

..Jdi-4 -r~- }

~ Ic. { y ’(t-t’) tj ’dr4,,r~ J

~

V Eliminating ~“ from the delta functions gives the correct argument

for the remaining delta function , completing the proof.

~ V J  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Appendix F: Rationale for the Choice of

A crude argueent is given in two steps:

Step ~~e: The kinetic equation for the fluctuations is

simplified by ignoring terms quadratic in the fluctuations. These

terms are important when particles are close. It is known (vide , e.g.,

Krall and Trivelpiece 1973) that close collisions contribute only a

fractionO (,j~j) to the Rutherford scattering cross-section. Ignoring

collisions which produce deflections greater than ~~ preserves

the validity of the kinetic equation without losing important effects.

Step Two: Those parts of a configuration of particles which

involve partic les closer than a distance b are described , when the

V space variable is replaced by a Fourier-transfor m varia ble ~~, by values

V 

- 

~~~ satisfy ing

V h~~

so the region correctly descri bed by the linearized kinetic equation

is the one

—-V


