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MEMORANDUM
TO: N. Peacock and the Culham Group
(Memorandum Number Two)
FROM: M. V. Goldman

SUBJECT: Linear Inhomogeneous Theory of Coz-Enhanced Langmuir

Turbulence

I. The scattering cross section for the plasma line is given roughly by:
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In this expression, Ne is the total number of scattering electrons, which

is equal to

Ne = nolt°2¢c6t . (6)

where n, % 10]'9cm_3 is the density of electrons in the neighborhood
where wco = wpe, £ is the axial size of the ruby spot (smaller than the
2

Co2 spot), T, is the radius at which n(ro) =n_ ¢c is the maximum azimu-

thal angle for which the CO_ beam reaches the frequency matched radius:

2

% m -1\/2
¢ :/2‘(——2+ 1.7 a ) 3 (7)
s 20 i

and 8r is the radial thickness over which I is close to its maximum.
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Interaction Volume

II. For simplicity in treating plasma wave convection effects, we shall

replace the volume in Fig. 1 by a slab, as illustrated in Figure 2:
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FIGURE 2 Iﬁg I Eco
Slab Geometry
6y:r°£®c y

8x = Or -—ﬁ
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Note that, in this geometry the Langmuir waves probed by the ruby laser

(driven by E:: ) are propagating in the y-direction. Inhomogeneity is

2

allowed only in the x-direction.

III. The spectrum, I, of Langmyir waves excited by the electron-ion
decay instability is the solution to a WKB kinetic equation:

w w
of , L3 o 5 W s :
at i3 akx ax ) ax akx ~ 2 ‘Yg ¢ POl {Ihy) r = 2s. (8)

Here, we have assumed a convective instability, for which the growth
rate is Yg' Yc is the linear collisional-damping rate. S is an appro-
priate spontaneous emission term, and YNL is a possible nonlinear satura-
tion term which would be a functional of I. In memo 1, we estimated

6x and I by ignoring x and t-dependence in (8), and using a nonlinearly
saturated I. In this memo, we will ignore the nonlinear term YNL and
find 6x and I by finding a steady state inhomogeneously saturated I.

This is in the spirit of Perkins and Flick, but has physical effects
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ignored by them. Our treatment is WKB. If x = x(t) and kx = kx(t)
define the WKB orbits of the Langmuir waves, then along these orbits,

I(kx(t). x(t); ky' (nL) obeys
d
at I~ 2(Yg Yc) I-= ZS(kx(t), x(t)). (9)

In steady state,

dk

4o TE A 0w
dt oc ot ot 3k i

The WKB orbits are the solution to Hamilton's equations

3
Sl __awL x _ s ! (11)
ot ox ' 9t akx
S 2r, 2 21,172
w, = (@ S+ 3v, [x,” + k, i} i (12)
We assume a linear density profile:
w
—if- = —2§ = (ignore dependence on x on right-side) (13)
The solutions to (11) and (12) are then
w t
gy - ]
kx 2L ’ (14) ?
3
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where xo is the reflection point of the Langmuir wave. In addition

to (14) and (15) we have the constants of the motion, ky and wL. Thus,

xo is the solution to

2 2. 2
wL = (wp (xo) + 3ve ky ) (16)

We must follow a Langmuir wave from a point x < xo to xo where it has its

k in the y-direction, and can be probed by the ruby. The weakness of

our theory is that WKB tends to break down at the reflection point.
Nevertheless, we have shown (see Appendix) that this same WKB method
can predict the Perkins-Flick threshold to within a factor of two, under
the relevant conditions (Te >> Ti) for their non-WKB theory. Figure 3

shows the trajectory of a Langmuir wave which can be probed by the ruby:
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We wish to study orbits for which the spectrum, I, is a maximum at x = xo,
and is one-half of its maximum at x = xo - 6x. This will determine Ox.

(This is a different criterion from memo 1.)
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Iv. The kinetic equation, (9) may be integrated to give
t.
0 -2 fT (t)at
- A t. 9
I(t =0) =e 1+ dt' e i s(t") | . (17)
t.
i
0
A= / dt I‘g(t)dt § (18)
t.
i
I.(t) = (t) - . 19
g( ) Yg ) Yc (19)

Here, we are letting t = O be the time at which reflection occurs

(x = X s kx = 0), and ti < 0 be some initial time (see Fig. 3). We

have assumed [ = 1 at t = ti' corresponding to an equilibrium spectrum.
The dominant contribution to the spontaneous emission comes from the
"beating" of low-frequency ion Cerenkov emission with the CO2 electric
field, allowing it to be up-shifted into a source for Langmuir waves. It

can be shown (DuBois and Goldman, Phys. Rev. 164, 207 (1967)) that:

w
s=yc+—LY 4 (20)

Wy g

The first term is Bremsstrahlung-emission of Langmuir waves, and the
second is "beat-emission," which is proportional to the CO2 pump intensity
through Yq' If we write Yg = Fg + Yc' the dominant contribution

from the right-side of (17) is from the integral over Fgwp/(wo—mL),

which may be performed exactly:

w
- . i L 2A
I(t=0) o R : (@ >>1) . (21)
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Now it remains to do the integral A given in equation (18). For this

we require an expression for the growth rate Yg' When Yg << W . the

growth rate is given by

o 2
(k*E ) W

22 =1
" TImp. [(k /Ky ) € (K, mL-woﬂ . (22)

where € is the low frequency dielectric function, and Eo is the local
value of Co2 electric field. When Te >> Ti' ion-acoustic waves are
long-lived, and a resonant approximation for € may be used. Then (22)
and (18) may be combined to give the Perkins-Flick "threshold" (see
appendix). However, when Te < Ti' as in this experiment, one cannot use
a resonant approximation. In fact, the instability should really be
thought of as the decay of a pump photon into a Langmuir wave plus
discrete ions. Rather than use the exact € (see, for example, DuBois
and Goldman, Phys. Rev. Lett. 14, 544 (1965)), an adequate approxima-

tion at equal temperatures is

2 2. 2
w-~w =(w-w) /2k c
2 2 =X __© L o L S
Im [(k“/k %) e] * ke, e ’ (23)
o B 1/2
oy = 1.7 Xl 1.7 (me/mi) Vgi (24)
* -1/2
This "resonant function" has a maximum value of e = 0.61 when

w, - mL(k) = kcs ’ (25)




which therefore constitutes the frequency-imatching condition. Both

the maximum value and (25) are very close to the exact values.

We shall include another effect missing from the Perkins-Flick analysis:

the swelling of the CO_ electric field due to geometric optics. If

2

IVAC is the incident vacuum intensity of the 002 beam,

VAC 8y’ (26)

then the mean ratensity (averaged over the Airy oscillations) as a

function of distance is given by

41
_ “vac
Toc'™ = FHeo ¢« V& 2045 s
H 1/3
nmin = (C/NOL) . (28)

In (27), the factor 4 is due to constructive interference between the

incident and reflected CO2 fields (this should really be considered more

carefully in the true cylindrical geometry). n is the index of refrac-

tion,

2)1/2

2
nix) = (1 - wp (x)/wo ' (29)

nmin is the minimum index of refraction compatible w}th geometric optics.

The maximum possible swelling occurs at the point where n(x) = nmin'
The factor 1/2 in equation (27) represents an average over the Airy

oscillations.
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The size of Eo" in equation (22) is therefore given by,

T T
et —

2
E:o 2 IVAC 1 (30)
32m 2c n(x) °

We take x = 0 as the reflection point for the C02. Since xo is

sufficiently close to zero we may use a common scale length L, and

write

2 3.
wp (x)/wo =R R (31)
so that.
| nix) = (w2 . (32)

In this convention x is negative at all points before the reflection

point. If we now insert (31) and (32) into (15), we obtain,

2 k2
n =-x/L=3-—2+2(1-u\/u,\), (33)
L o
k
D
2 2 2 i
where k= = kx + ky . Combining (22), (23), (30), and (33), the growth
rate Yg along the trajectory characterized by ky and wy is
2
r @
y (k) = X VRCR =
2 2cn 0 /2

2 2 §
[aK*a®) + 201w /0 )]

2 2. 2
(wo-wL) —(wo-wL) /2k g

ol e . (34
S
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The factor kyz/k2 represents the angular factor, the factor [ ]-1/2.

geometric swelling, and the last factor is the appropriate frequency-
mismatch (or resonant) function at equal temperatures. If we intro-
duce the frequency-matched wavenumber, km' as the solution to equa-

tion (25), then the last two factors in (34) may be written as

1 kot it
B " (35)
]1/2 k 4

2, 2
(") + (2uk k)

, ¢ 1/2
U = cskDﬂwo = 1.7 (me/mi) o (36)

We must choose km (the location of the frequency-matched point along a
trajectory) so as to maximize the integrated growth rate. Since kj:ky.
and the exponential must be prevented from getting large, we choose

km = ky. This allows us to expand

-kmz/Zkz 2 2
e = 1- ky /2k ' (37)
We are also guaranteed that 3k2/kD2 >> 2uky/kD, provided that

> = =
ky/kD >> 2u/3 10 ' (38)

which is well satisfied for the experiment, since O values are well

below 100. Thus, we can approximate the expression in (35) as




33
kK k 2
——% 1 - —1’3 , (39)
3k 2k

and the growth rate Yg in (34) becomes,
= 4, 4 2122
(k) =1 k 1-(k ;
Yg * omp( v /k ) ( ( y /2k 7)) (40)

where

v (41)

is the dimensionless pump intensity at the point of maximum Langmuir

growth (the Langmuir reflection point), and

]
|

|
o Tyac s yac (42) |
o nix) 251/ 20

g 2
(3ky /kD )

is the (swollen) pump intensity in physical units at the same point.
To recapitulate the meaning of the factors in (40), kyz/k2 is the
angular factor (E}Q)z. ky/k is a pump-diminishing factor (due to geo-
metric optics) as the Langmuir ray passes through points of lower
density, and (ky/k)(l - ky2/2k2) represents the effects of imperfect
frequency matching, which become important away from the point k = ky.
The integral for the integrated growth rate A in equation (18) may now
be performed. It is best to use K = kx/ky = -wptlzkyL as a variable,

in place of t (see equation (14)). Then,




o

0

/ ae [y ue o0 - v, ]

t.
1

>
"

Ky Y
= 2Lk I de——l—~ 1--—-—1———-]_2“](__2
Yy o K (1+K2)2 2(]“’1(2) yiw

yol1e 16 e anantyl

K.
1
2Lk1[ican1x+i“ o ]

Yo

—ZI.kyKi Pr (43)
P

Here, Ki = kxi/ky should be chosen as the point where Yg(kxi) = Yc/z.
It is easy to show that the dominant terms in this limit (K >> 1) give
5 1

I — & G0
2kaIo 16 tan (@)

>
]

= 57
YIo 16 (44)
V. We can estimate the spatial width éx by taking the integration in

equation (43) to some point K

ek greater than zero, rather than to

zero. Define,

-

A ) = 2k /dx[Yg(K) -1, ]/»p ; (45)
K
min

Then, we wish

2A (K )
mi 2A
i i A (46)

e -2
2
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in order that Kmin define the point at which I is one-half maximum.

Thus,

A 2n2
A(Kmin) = A(0) 2 o (47)

It can be shown by expansion about Kmin = 0 that

A(Kmin) = A(0) (1 - 16Kmin/5ﬂ) ’ (48)
SO
K, = . e (49)
2Lk I
y o

By invoking equation (15), we see that

2
kx 2
8x = 3 —3in _ 3(2n2) ‘L 1 ; (50)
k2 4 (kLI )2
D D o

VI. Now we can combine everything to get a final expression for O as

a function of Io' a, L, and other parameters such as 0O, ro, and ¢c' which,

like L and a depend on the axact time prior to peak compression. The
data can be fit quite well on the low Io side of your curve (first four
fi points) by this thedry, with L about 0.25 cm. The point where

| Io =2 x 1010 W/cm2 requires the addition of the nonlinear term in the

A kinetic equation. (We are working on this now.)

Our result is therefore,




e
= - o

14
S 3 a 2A
;—5 02 n°2r°2¢c6x698( . e ) ¥ - (51)
e

where U is defined by equation (36). Inserting from (44) and (50),

with ¢C z /3/a from (7),

2 (sm/8)Lk_I |
0ot Mg fam® [ ) ,
= m ;

(kLI ) |

X
e

R

(52)
This may be rewritten as

(sm/8)Lk_I {
o m, i noroldﬂse : S }
— = 0.73]{ — e . (53) |
2 m 2 2. =2 |
r e Q k. LI |
e D o }
ey - . 2 2 2 -1 ?
This is a very strong function of temperature since a = kD /ky « 0 =, !
|

and I «1/0«0 Y2 rhus,
o o |

5 cpo 3
& rop e ,
- L . (54) |
- 1
~3/2

As peak compression is approached, Lo decreases, and o/re2 probably

decreases, although the non-exponential factors are increasing.

Now we put in parameters which are independent of time prior to

peak compression: |

(l“i/ll\e)l/2 = 60.6 (deuterium) %

n, = 9.2 x 1018 (at the frequency-matched point)




15

£ = 0.25 (spot size)
o o =3 ;
GQS = dy(cos 5.6 = cos 10.4) = 6.53 x 10 (with mask)
. e(51!/8)ka1°
< = 6.64 x 1077 2 5 : (55)
r azk LI
e D o
Parameters associated with L = 0.25 cm are
L = 0.25 cm, 0.055 cm
i, -9 - -16
Ge = 0.87 keV = 1.39 x 10 ~ ergs = 1.39 x 10 J
k =1.26 x 107 (8 = 8%
y s
kD = 1.4 x 105
a=k/k =11.1
Dy
21 Q
i = B, />N Ioac 835 x 10 £ (56)
4cn°0/?
& & ’ 2
with IVAC in units of W/em~. Thus,
-10
O _ 8.67 x 1090 17 x10 "1,
g et .1 . (57)
2
r I

e VAC
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IVAC O/re2 (calculated) mv
0.5 x 1010 (3.5 x 10t 3.9 = 4.6 x 16* 9.4
1.1 x 102° (7.2 x 109 (311) = 2.2 x 10?3 46
1.25 x 10° (5.5 x 101%) (6.4 x 10%) = 3.56 x 1023 73
2.1 x 101° (1.97 x 1019 (5.2 x 10%) = 10° 2000
1.4 % 3G (4.4 x 109 (1.4 x 10%) = 6 x 1013 126

The detector mV readings in the above chart have been calculated by
assuming a linear photon counter, and 3 x 10.-10 J of scattered energy
for a 110 mV signal strength and a 5J incident ruby beam.

Thus, the measured

o _ na® Escattered _ (7.1x10°9 (3x10719)
£ & ° Fine (2.61x10 )% :
e e
- 5.3 x 10, (58)
for d = 0.3 cm. Therefore,
i
13
o 5.37 x 10 11
= v X V x 4.88 x 10°0 (59) i

e measured

where V is the signal strength in MV. The theoretical curve is shown in

Figure 4.
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APPENDIX: Connection of Our Treatment to Perkins-Flick

I. First, we show that the Perkins-Flick "threshold" can be obtained
approximately by our WKB method under a set of assumptions appropriate

to their case, but not to the experiment:

Assumptions:
A. Ignore pump swelling and beat spontaneous emission.
B. Assume a well-defined ion-acoustic mode (requires Te >> Ti).
i << 5
That is, Ya wa
C. Assume the damping of the ion-acoustic mode is independent of

k and given by the constant, Yc (usually this is not the case).

In addition, we assume a geometry similar to Fig. 3, but with a time-
reversed orbit. Once more, at the reflection point k Il §°, k L Zn.

The growth rate is given once-more by (22). However, since we now have
a well-defined ion-acoustic mode (assumption B), the frequency mismatch

function is given by:

Im 21 = Im 2 &
l_g_3 ¢ S (mL-m°+ma+iYa)
X a
D
waYa/ é
2 2 (A1)
(Aw) ™ + v

where Y is assumed constant (assumption C), and

Aw = o wL(k) - csk . (A2)
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Here g is the sound speed:

", 1/2,. 1/2
g (ee+:£i) /Mi 3 (A3)

Thus, the integrated growth rate is (see equation (22) above)

te
A -_-f at [Yg(kx(c)) =% 3
0
t
2 f 2. 2
E w Y c k(k /)
Bw)© + Y 5
a
: . 2.9 e 2
where tf is a final time, and ky /K = (ﬁ'eo) . Also, k = (kx (t)
i hVE wme e k/k, as a variable, and k = (3/20)¢, (A4)
becomes
Kf 2.-1/2
2 Lk c k (14K )
A=AO—§Y-%1 aK L (AS)
a 1+ (Aw) /Y
2
E
2 & L=0
Ao ~ 4@ ' (a6)
w_ t
£f__p_£
K 2L k ‘ (A7)
b4
In order to do the integral, we note that,
3 2, 21/2
W _ w ~w ~c_(k “+k °) 3 (cskx) » [wo-wL 3 (1+1<2)1/2]
Ya s Ya csky

(A8)

R .
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Intrinsic to the approximation (assumption B) is that

T30 e (A9)

We also designate the frequency-matched wavenumber by the condition

mn

(moan) = Cskm' so that, if Km km/ky' then equation (A8) may be

rewritten as:

1/2]

]
|-

2
[xm - (1 + K i (A10)

o |E

so the integral in (AS5) is of the form

7‘ (1 + 1("")'1/2
g, . dK > (All)
1 1 1/2]2

2 + r'z[xm - 1+ K%

In this limit of large r-z, the integrand peaks for Km % 1 and K << 1

so we may approximate the integral is

K ®
| £ 1 1
! Il = dK ———-—2 K4 ~ dK s K4
0 l1+r -z- 0 l+r -1i
L+ ]
1 'n
= /2r fdu 5= V2r o (A12)
0 1+u

The main contribution to (A5) is therefore

o y 4sinm/4

Lk ,
ls-l\"'-—;ﬁ%-"z'L (A13) E
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A=z

W B
ETI AO 5 ¥ (Al4)
r

If we define "threshold" as the value where A = 5, as do Perkins

and Flick, then the threshold condition we find from (Al4) is
2 L
E 5.1 A(Ya/cskx)

>
41nd -~ Lk 4
WKB Y

A=5. (Al5)

By comparison, Perkins and Flick find as their threshold (equation

39, p. 2017, Phys. Fluids 14 (1971):

E 4 1.6(1 + 3T./T ) v Y

o i’ e i

T = = A(—w > v (Al6)
P.F. y -

Since Ti >> Te' and vi = 2Ya (relation between particle and wave
dissipation), our threshold (Al15) is higher than theirs by a factor

of 2.25, but all dimensional factors are correctly predicted. The
discrepancy is due to the use of WKB and, in particular, arises be-
cause the mismatch function (denominator in (All)) is so highly peaked
close to the reflection point (K = 0) when r >> 1. For the Te =t
case we treated in the main-body of this memo, the mismatch function
is much broader, and WKB should be an even better approximation: In
our treatment we have the additional physics of (i) pump swelling
along the Langmuir ray-path, (ii) pump-dependent (beat) spontaneous
emission of Langmuir waves, and (iii) ion discreteness.

It is interesting to note that if we take Ya = csky in (a15),

and v1 = Zya, 'ri = Te in (A16), then (Al5) predicts a threshold
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lower than the Perkins-Flick threshold by a factor of 0.56. We also
nete that if we take into account effects (i) and (iii) above, but

not beat emission (ii), then (44) gives a "threshold"

E
4

5 128 8.1A

A __S8.1A
5T Lk k.
y Yy

2
LOC
o al5)
which is within 10% of the Perkins-Flick result (Al6) at equal
temperatures, and with vi = 2ma. If spontaneous emission is taken
into account, then A in (Al5) should be replaced by A - Hln(mo/wo—mL)

= A - &fn (mo/csky), so the threshold (Al5) becomes

- 1 ,“‘i
1=.:2 8.1[A - Mn T5Va u)]
LOC > e (A16)
48 — y
I‘ky

where e2K==Ew°/(wo-wL)]ezA = I (A measures the effective amplitude
e-folding as though amplifying from equilibrium). Thus, if a=5,
the term in brackets above becomes 5 - 51n103 = 1.5, and it is fair
to say that beat spontaneous emission lowers the "threshold" by more

than a factor of three. Of course, in terms of I this effect is much

stronger, and without beat emission we would have calculated a spec~

trum and cross section

i _smaller!:




