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M E M O R A N D U M

TO: N. Peacock and the CuThanu Group

(Memorand um Number Two )

FIOM: N. V. Goldman

SUBJECT : Linear Inhomogeneous Theory of C02
-Enhanced Langmuir

Turbulence

I. The scattering cross section for the plasma line is given roughly by:

2

C = -j- Ne6Q5I (1)

where ,

r 2 
= 

(m~~ 2) 
= 7.9 x io 26 2 

, (2)

k 2 4w. 2 sin20 
— l

2 D k 2( J. 
2 s)  (3)

= 6$ cos(0 — 6 0 )  — 6$ cos(0 + 6 0 )  , ( 4 )

< I I S E (k 2>
IE lim , (5)

4nO V

(
~=7  ii: 

< l 6 E ( k ,w ) I
2>~~~
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In this expression, N is the total number of scattering electrons, which

is equal to

N n~~~r 2 f ~~6r , ( 6)e 0 0  c

where n z l0~
9cm 3 is the density of electrons in the neighborhood

• where ~ = w , 2.. is the axial size of the ruby spot ( smaller than the
CO2 pe

CO spot) , r is the radius at which n ( r  ) n , $ is the maximum azimu-
2 0 0 0 C

thai angle for which the CO2 beam reaches the frequency matched radius :

/~j~
’ (i.~. + 1.7 i~

’ ~_l)~’2 ,
and âr is the radial thickness over which I is close to its maximum.

r 2$c

FIGURE 1 
r __II .( (~TInteraction Volume

II. For sisçlicity in treating plasma wave convection effects, we shall

replace the volume in Fig. 1 by a slab, as illustrated in Figure 2:

- , • . - •~~~~~~ - -- -- --- .-•-- . - • .. ~~~~~~~~~~~~~~~~~~ ~~~~~~~ . - . ~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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FIGURE 2 1~ 1 —c02
Slab Geometry /7

7/ tSy Er 2$

x or ~~ /
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X

-

~~~~~~~~~ t 

_ _

Note that ,  in this geometry the Langmuir waves probed by the ruby laser

(dr iven by ) are propagating in the y-direction . Inhomogeneity is
2

allowed only in the x-direction.

[II. The spectrsss, I , of Langim’.ir waves excited by the electron-ion

decay instability is the solution to a WKB kinetic equation:

+ + ~~ L 
- 2 (Yg 

- 
Y

c 

- y NL ( { 1 } ) )  I = 2S. (8)

Here, we have assumed a convective instability, for which the growth

rate is Yg• 1~ 
is the linear collisional—damping rate. S is an appro-

priate spontaneous emission term , and ~~ is a possible nonlinear satura-

tion term which would be a f~n~ctional of I .  In memo 1, we estimated

Ox and I by ignoring x and t-dependence in (8) , and using a nonlinearly

saturated I .  In this memo, we will ignore the nonlinear term ~NL and

find Ox and I by finding a steady state inhosiogeneously saturated I .

This is in the spirit of Perkins and Flick, but has physical effects

- -~~~~~~~~~~ ______________________



4

ignored by them. Our treatment is WKB . If x = x(t) and k = k (t )

define the WKB orbits of the Lan~nuir waves , then a long these orbits ,

I (k  (t ) , x (t ) ; k , w ) obeysx y L

I - 2(Yg 
- Y0

) I = 2S(k
~
(t). x(t)). (9)

In steady state ,

3kd ...
dt 3t 3t 3t 3t

The WXB orbits are the solution to Hamilton’s equations

3k 3~ 3w
x _ L 3x L

— — 
‘ 

= (11)

W = (w~~~(x) + 3v 2[k 2 
+ k 2])

~~
2 

. (12)

We assume a linear density profile :

3w w
= .1 . (ignore dependence on x on right—side) (13)

The solutions to (11) and (12) are then

k
~~

= _ -
~~

- , (14)

3~~~ 2
3 e  x

L 
a x 0 — 

2 
, (15 )

D
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where x is the reflection point of the Langmuir wave . In addition

to ( 14) and ( 15) we have the constants of the motion, k and w~ . Thus,

x is the solution to0

2 
= 

2 (x ) + 3v 2k 
2
) (16)L p o e y

We must follow a Langmui r wave from a point x < x to x where it has its

k in the y-direction , and can be probed by the ruby. The weakness of

our theory is that WKB tends to break down at the reflection point.

Nevertheless, we have shown (see Appendix) that this same WKB method

can predict the Perkins—Flick threshold to within a factor of two , under

the relevant conditions (T
e 

>> T .)  for their non-WKB theory. Figure 3 4

shows the trajectory of a Langmuir wave which can be probed by the ruby:

t=O—— — —. .- ... /
~~~~I 6 2wLangmul.r wave k = —i sinO /2

FIGURE 3 trajectory t1 y c s

t .
1. 

~
_•

~ 
I__ Ox

— 

~~ Vn
xo

We wish to study orbits for which the spectrum, I , is a maximum at x = x ,

and is one-half of its maximum at x = x - Ox. This will determine Ox.

(This is a different criterion from memo 1.)

~~~~~~~~~~—~~~~~~~~~~~~~~~~~ •~~~~~~~~~ • ——.-—-- --
~~~~~~~

---- ----— .



~

6 ‘ 1
IV. The kinetic equation , (9) may be integrated to give

t I
0 — 2 f F  (t)dt

= e 2
~~

[ l  
+ j  dt’ e ~~

1 S(t
* ) J  

, (17)

A a f dt rg (t ) d t  (18)

I~’g (t )  Yg (t) — 

~c 
(19)

Here, we are letting t = 0 be the time at which reflection occurs

(x = x , k = 0 ) ,  and t. < 0 be scm~e initial t ime (see Fig. 3). We
0 X 1

have assumed I = 1 at t = t .,  corresponding to an equilibrium spectrum.

The dominant contribution to the spontaneous emission comes from the

“beating ” of low-frequency ion Cerenkov emission with the CO
2 
electric

f ield , allowing it to be up—shifted into a source for Langinuir waves. It

can be shown (DuBois and Goldman, Phys. Rev. 164, 207 ( 1967)) that:

w
S = y + y . ( 2 0 )

C 9

The first term is Brentsstrahlung-emission of Langmuir waves, and the

second is “beat—emission,” which is proportional to the CO
2 

pump intensity

through Yg• 
If we write Yg 

= rg + 
~~c

’ the dominant contribution

from the right—side of (17) is from the integral over

which may be performed exactly:

I(t a 0) = 
W W L 

eTh 
, (e~~ >> 1) (21)

-- ~~~ - - -— -•- ~~~~~~~~ - - - •  5_~~~ - - - • ~~~•— _ _~~~~_ — --~~~~~~~~~~~~~ • • -- - - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Now it remains to do the integral A given in equation (18). For this

we requi re an expression for the growth rate y . When y << Ui , theg g a

growth rate is given by

“ 2( k E ) w  2 2
Yg = I: ((k /k

D ~ ~~~~~ WL~~
J
O)] 

- 

(22)

where c is the low frequency dielectric function , and E is the local

value of CO electric field. When T >> T .,  ion—acoustic waves are2 e i.

lang-lived, and a resonant approximation for £ may be used . Then (22)

and (18) may be combined to give the Perkins—Flick “threshold” (see

appendix) . However, when T T .,  as in this experiment , one cannot use

a resonant approximation. In fact , the instability should really be

thought of as the decay of a pump photon into a Langmuir wave plus

discrete ions . Rather than use the exact £ (see , for example , DuBois

and Goldman , Phys. Rev. Lett. 14, 544 ( 1965)) , an adequate approxima-

tion at equal temperatures is

2 2 2
~ -w -(w -w ) /2k C

2 2 -1 O L  O L  S
I: [(k 

~~D 
kc 

e , (23)

c5 
= 1.7 v~ = 1.7 e~

’m
i
)”2 V , (24)

This “ resonant function” has a maximum value of e 1’12 
= 0.61 when

w — w ( k )= k c  , (25)
0 L s 

-~ - -~~~ -- - - ~~~~~ •-- - ~~~~~~~~~ —~~~~~~ --— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • - - -- ~~~~~~~ -~~~~~~~-~~~~-•~ —~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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which therefore constitutes the I requency-~natching condition. Both

the maximum value and (25) are very close to the exact values.

We shall include another effect ifliSsing from the Perkins—Flick analysis:

the swelling of the CO
2 electric field due to geometric optics . If

1VAc is the incident vacuum intensity of the CO
2 
beam ,

_ C
VAC

~~~ 
—

~~~~
— , (26)

then the mean i~~tensity (averaged over the Airy oscillations) as a

function of distance is given by

I
~~,~

(x) = n (x) 
~ 

(27)

‘1min E (c/w L)1”3 . (28)

In (27), the factor 4 is due to constructive interference between the

incident and reflected CO
2 
fields (this should really be considered more

careful ly in the true cylindrical geometry) .  r~ is the index of refrac-

tion ,

f l ( x )  = (1 - w 2 (x) /w 2 )~~~
2 

, (29)

T
~min is the minimum index of refraction compatible with geometric optics.

The maximum possible swelling occurs at the point where r l (x )  = 

~min~
The factor 1/2 in equation (27 ) represents an average over the Airy

oscillations.

~

-

~

.- — — — — -  — — 
. —j — --. ~~~~~~~~~~~~~~~~~~~~~~~~ 

.. -— --‘-— —~~~~~~~— —.—1~~-
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The size of E in equation (22) is therefore g iven by,

E _ 1
VAC 1 30)321T 2c fl(x)

We take x = 0 as the reflection poin t for the CO
2
. Since x is

sufficiently close to zero we may use a common scale length L , and

write

w 2(xVw 2 
1 + x/L • (31)

so that.

f l ( x ) = (-~~L)
1’2 

. (32 )

In thi s convention x is negative at all points before the reflection

point. If we now insert (31) and (32) into (15), we obtain,

22 
= / L  3 + 2 (1. — w~/w) (33)

D

where k2 = k
2 

+ k 2
. Combining (22), (23), (30), and (33) , the growth

rate 1g 
along the trajectory characterized by k

y 
and is

k 2 1 W 1
(k ~~~~~~~~ 

VAC p~~Yg ~ 2 2cn O 1/2k [(3k 2/kD
2 ) + 2 ( l—w L/w ) ]

2 2 2(w
~~wL) 

_ ( w
o

_
~ L

) /2k c
X 

kc e (34)
S
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The factor k 2/k 2 represents the angular factor, the factor ~

geometric swelling, and the last factor is the appropriate frequency-

mismatch (or resonant) function at equal temperatures. If we intro-

• duce the frequency-matched wavenumber, km~ 
as the solution to equa-

tion (25), then the last two factors in (34) may be written as

1 k 
~
k
m
2
/2k2

— e  , (35)
[3k

2
/k
D
2) + (2~ik /k )]

”2 k

E c k
D
/w 1.7 (m /m.)~~

’2 
. (36)

We must choose k (the location of the frequency-matched point along a

trajectory) so as to maximize the integrated growth rate . Since k > k ,

and the exponential must be prevented from getting large , we choose

k = k . This allows us to expand
m y

-k 212k 2

e 1 — ky
2/2k 2 (37 )

We are also guaranteed that 3k2/kD
2 >> 2).1k /JcD~ 

provided that

ky/lcD 
)> 2ji/3 io 2 

, (38)

which is well satisfied for the experiment, since a values are well

below 100. Thus , we can approximate the expression in (35) as

_ _ _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~
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I.

k k  /__p_ l l i  — —
~~~

— ) , (39)
~~~~~ 2k2 1

and the growth rate 1g in (34) becomes ,

Yg
(k
x
) Iw (k 4

/k
4)(l — (k ~

2/2k 2 ) )  (40)

where

I

4cn O , (41)
0

is the dimensionless pump intensity at the point of maximum Langmuir

growth (the Langntuir reflection point), and

- 

21
VAC 

21
VACI — — 2 21/2 (42)

is the (swollen) pump intensity in physical units at the same point.

To recapitulate the meaning of the factors in (40) , k~
2
/k
2 

is the

angular factor (k y)2, k/k is a pump—diminishing factor (due to geo-

metric optics) as the Langmuir ray passes through points of lower

density, and (k
r
/k) (1 - k~

2
/2k2) represents the effects of imperfect

frequency matching , which become important away from the point k = k .

The integral for the integrated growth rate A in equation (18) may now

be performed . It is best to use IC k / k  = -w t/2k L as a variable,

in place of t (see equation ( 14)) .  Then ,

-~~ I
________
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A = f  dt [Yg
(k
x
(t)) — Yc~

= 
Y 
1
0 1 (1+1(2)2 

- 

2 ( 1 +1(
2

) ]  

— 2LkyICi ~~

= 2Lk I + - 

8(1+X2
) 2]

0

Yc—2Lk K. — (43)
p

Here , = kxi/ky should be chosen as the point where Yg (kxi
) =

It is easy to show that the dominant terms in this limit (K >> 1) give

A = 2Lk I -& ~~~-l ~~
LkI  . (44 )

y o l 6

V. We can estimate the spatial width ~x by taking the integration in

equation (43) to some point 
~~~~ 

greater than zero, rather than to

zero. Define,

K

A(K
mi~

) 2Lky f 
dx (Y g 1~1(o - Tc 

(45)

Then , we wish

2A(K
mi

) 
1 2A(0)e =~je (46)

___ __ —~~~~~- -— 
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in order that K define the point at which I is one-half maxiuLun .mi.n

Thus ,

A(K .) = A(0) — . ( 4 7 )

It can be shown by expansion about K = 0 thatm m

A(K ) A(0) (1 — 16K /511) , (48)mm mm

so

K .  
Ln2 

(49)mm 2Lk I
y 0

By invoking equation ( 15), we see that

k
2

dx = 3L = 
3( 2.ri2)2L __ l 

2 ( 50)
(k
D
LI)

VI. Now we can cout ine everything to get a final expression for CT as

a function of I ,  a, L, and other parameters such as 0, r , and 
~~‘ 

which ,

like L and a depend on the exact time prior to peak compression. The

data can be fit qui te well on the low 1
0 side of your curve (first four

points) by this theory , with L about 0.25 ~~~~~. The point where

I = 2 x 1010 W/cm2 requires the addition of the nonlinear term in the

kinetic equation . (We are working on this now.)

Our result is therefore,

_ _  _ _ _ _  •~~~~~~~•~~~ 
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—2j = -4 n~~r 2~~6x&~~( ~ eTh ) , (51)

where ~i is defined by equation (36). Inserting from (44) and (50),

with /~
‘/c* from (7),

= n Lr &~ 
[3 &52)2 L 1 . F~ ~~~~~~~~~~~~~~

r
2 a2 ~ 0 a (k DL1O

) 2 J  i~ j

(52)

This may be rewritten as

( 511/8) Lk I
m. 1~’2 n r L o c l e y o

= 0 .73 (— ~ \ -~~- ~~ ~~ , 
( 53)

2 ~~is 1 2 2 — 2
a k LID

This is a very strong function of temperature since cx
2 

= k
D
2
/ky

2 ~

and I / O  o
_31’2 . Thus,

5 CLO 3”2
r O  e

L
re

As peak compression is approached , L0 312 decreases , and c/re
2 probably

decreases, although the non—exponential factors are increasing .

Now we put in parameters which are independent of time prior to

peak compression:

(m~/m )
”2 a 60.6 (deuterium)

a 9.2 x io
18 (at the frequency—matched point)
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2. 0.25 (spot size)

= dIS~(cos 5.6
° — cos 10.4°) — 6.53 x l0~~~ (with mask)

( 511/8)Lk Iy o
= 6.64 x l0~~ 

r0e 
2 — ( 5 5 )

r a2k I.I 2
e D o

Parameters associated with L a 0.25 cm are

L 0.25cm , r0 = 0.055 cm

= 0.87 key = 1.39 x l0~~ ergs = 1.39 x io~~6 
j

k ~~l.26 x 10 4 
(0 = 8°)y 5

kD = l .4xlO

= 11.1D y

= = X 8.35 x 10 14 
~56)

wi th 1
VAC 

in units of W/cm2. Thus ,

0 8.67  x io30 5.17 x 1O 10IVA
2 2 e . (57)

r ‘VAC

4

- • -  - . - . ~. ~.-— - ——— •... - 
~~~~~~~~~~~~~

- - - __-~-—-_~~~- - --__- - - --~ —-—S -~~~ — —_ _—--- -. — --_ ---—---_ - -  — _ - — -_---- --——_-~~~ —-~---— --- - - ‘----- --- . ----- .— =~~ -—-----



—
~

- - ~~ —-~~—~- - -~~-

16

I CT/r 2 (calculated) mV
VAC e

0.5 x 1010 (3. 5 x loll) (13.3) = 4.6 x io12 9 4

1.1 x 1010 (7 .2  x 1010) (311) = 2.2 x iol3 46

1.25 x io
]0 

(5.5 x 1010) (6.4 x 102) = 3.56 x 1013 73

2.1 x io1° ( 1.97 x 1010) (5.2 x l0~) 1015 2000

1.4 x 1010 (4.4 x 1010) (1.4 x l0~) = 6 x io13 126

The detector mV readings in the above chart have been calculated by

assuming a linear photon counter , and 3 x io~~° j  of scattered energy

f or a 110 mV signal strength and a 5J incident ruby beam.

Thus, the measured

0 
— 

lid2 E
scattered 

— 
(7.lxlO

2) 
(3xl0

10)

re
2 

— 

4re
2 E

1 0  

— 

(2.81x10
13)2 5

= 5.37 ~ 1çj 13 (58)

for d = 0.3 cm. Therefore ,

= v 5.37
l~o

10
13 

= V x 4.88 x 1011 (59)

measured

where V is the signal strength in MV. The theoretical curve is shown in

Figure 4.

- ----- -— -~~~~ -- - - -— -- _ -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~NTENSITY OF CO
2 

L1~SER BEAM

FOCUSED IN VACUUM

25

2 0 -
x l O  Wcm

15 -

I I - - - - — - —

I 4 -f ~~4 i Theoretical
curve for

.1. L = 0.25 ~~~~~ ,

I 0 0.87 keV,
10 and~~~ = O ;

at the Lan gtnum r/  ray reflection
point.

‘

I

/
05 —V

0 20 40 60 8b 100 1 l~Ô~Signal strength for 5 J ruby laser input ‘(m V)

I
FIGURE 4 

3 x 10~~~~~~ 3 scattered

energy

________

_— —— —- - - —— —_
-- _—  — p - _ -~~~~~~~~~~~~—  - — - - —— --~~~~~ -— ~~—



-~~ -~~~~~~~~~~~~

18

APPENDIX: Connection of Our Treatment to Perkins-Flick

I. First, we show that the Perkins-Flick “threshold” can be obtained

approximately by our WKB method under a set of assumptions appropriate

to their case, but not to the experiment:

Assumptions:

A. Ignore pump swelling and beat spontaneous emission.

B. Assume a well-defined ion--acoustic node (requires T >> T.).

That is, Y << Wa a

C. Assume the damping of the ion—acoustic node is independent of

k and given by the constant, (usually this is not the case).

In addi tion , we assume a geometry similar to Fig. 3, but with a time-

reversed orbit. Once sore, at the reflection point k 
~~~~~~~ 

k .i Vn.

The growth rate is given once—more by (22 ) .  However, since we now have

a well-defined ion-acoustic mode (ass~mption B), the frequency mismatch

function is given by:

1 1Im = Im 2 
L Wo~~ a~~1a

)

W Y /2
= 

a a  
2 (Al)

(t~w) +

where Ta is assumed constant (assumption C)~ and

a - WL
(k) - c5k . (A2)

_ _ _ _ _ _ _ _ _  
~- _—--- - -~~~~~~ 
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He re Cs is the sound speed:

C = (0 + 3 0 ) 112/M 112 
. 

(A3)
s e

Thus , the integrated growth rate is (see equation (22 ) above )

A =f dt lY g (k x
(t ) ) -

2 2 2
L W  y c k(k / k )

— ~ -

~~~~ 

f  dt 2 
~a

2 
- Yctf ~ (A4)

where tf is a fina l time, and k
2/k2 

= (~ 4 ) 2 Also, k = (k 2 (t)

+ ky
2 ) 112

• Wi th K = kx/ky as a variable , and k = (c~) /2L)t, (A4)

becomes

f
Lk c k 

K (l+K 2 ) l/’2

A = A
2 _i

(_ ~~~ Y~
) 

,
~
[ l+(~Li3) 2/Y~~ 

- Y t
f 

(AS )

E 2

A
2 

411nO ‘ 
(A6 )

K~~~~~~ j~~ 
. 

(A l)

In order to do the integral , we note that , ~ I

= 
~o~~L

_0
s~~ x~~~Y) = 

(c5~~~\ x [Wo
_W

L 
- (1+K

2
) 
1/21

‘ 1a 1 L%ky J
(A 8)

— - 
— —— ——

~~
——_-— - - -  - — - — _ - - —  ——
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Intrinsic to the approximation (assumption B) is that

I
(A9)

c k

We also designate the frequency-matched wavenui~~er by the condition

(W
~~

WL
) c k ,  so that , if Km km/ky~ 

then equation (A8) may be

rewritten as:

= 
~~ [i~ 

— (1 + K2 ) 1/2) (AlO )

so the integral in (A5) is of the form

Kf (1 +
Il = / 1 + r 2[K — (1 + K2 ) ”2] 2 • (All)

In this limit of large r 2 , the integrand peaks for Km 1 and K << 1

so we may approximate the integral is

11 = 
— 2 K 4 1 — 2 K 4

0 l + r  T o 1 + r

f 
l+u2 = 

4sinhI/4 (A 12)

The main contribution to (A5) is therefore

A — A 2 ..X~ 
~~~~ 4siniv/4 

(A13)

b— _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _-~~~~~~~ -- - - - _ -. --~~~~~~~~~~ —~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(Al 4)

If we define “ threshold” as the value where A = 5, as do Perkins

and Flick , then the threshold condition we find from (A14) is

E 2 5 . lA (y / c k )~’0 a s y  
—

4fln0 — 
—

y

By comparison , Perk ins and Flick find as their threshold (equation

39, p. 2017, Phys. Fluids 14 (1971):

E 2 1.6(1 + 3T~f l )
= k L A~~~

_
~) 

. (A16 )

P.F. y a

Since T . >> P , and V . = 2~ (relation between particle and wave
1. e 1.

dissipation) , our threshold (A15) is higher than theirs by a factor

of 2.25 , but all dimensional factors are correctly predicted. The

discrepancy is due to the use of WKB and , in particular, arises be-

cause the mismatch function (denominator in (All) ) is so highly peaked

close to the reflection point (K = 0) when r >> 1. For the T T~
case we treated in the main-body of this memo, the mismatch function

is much broader , and WKB should be an even better approximation~ In

our trea~~ent we have the additional physics of (i) pump swelling

along the Langmuir ray—path , (ii) pump-dependent (beat) spontaneous

emission of Langmuir waves, and (iii) ion discreteness .

It is interesting to note that if we take = c9k
7 

in (Al5) ,

and = 
~~

‘a’ Ti = T~ 
in (A16) , then (A15) pr edicts a threshold

— —
~~~~

—
~~~~~~~

- 
~~~~~—-- --—-~~~ -— —_-

~~~~~- - - ~~~~~~~ --~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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lower than the Perkins-Flick threshold by a factor of 0.56. We also

nete that if we take into account effects U) and (iii) above , but

not beat emission ( i i) ,  then (44 ) gives a “threshold”

2
____ 128 A 8.1A

>—  — a—  (Al5)
4TInO 511 Lk Lk ‘y y

which is within 10% of the Perkins-Flick result (A16) at equal

temperatures, and with V . 2W
a~ 

If spontaneous emission is taken

into account, then A in (A15) should be replaced by A - ½Ln (~~ /W~~
WL

)

= - ½Ln (W /c5k~ )~ so the threshold (Al5) becomes

E2 8.l [A — ½tn (j~5~~~ C i) ]

LOC > e
A l i O_  

, 
(A16)

Lky

where e~~ [W / (WO
_W

L
)Je

~~ 
= I (A measures the effective amplitude

e-folding as though amplifying from equilibrium). Thus , if A = 5,

the term in brackets above becomes 5 — ~Lnl03 
= 1.5, and it is fair

to say that beat spontaneous emission lowers the “threshold” by more

than a factor of three . Of course, in terme of r this effect is much

stronger , and without beat emission we would have calculated a spec-

trum and cross section three orders of magnitude smal 3.er 

_~ __~_& _ _ __  -


