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Abstract

Recent papers have brought out the intimate connection that
exists between the problems of detection and estimation in many
communication problems. In many cases, it becomes necessary to simul-
taneously detect and extract the signal so that the two operations
must be jointly optimized in order to improve receiver performance.
However, the receiver structures so obtained are considerably more
complicated than conventional receivers and it is not clear that this
added complexity results in a significant improvement in receiver
performance. This report investigates a specific suboptimal scheine
for estimating a signal in the presence of uncertainty regarding'
its reception, namely, the prohabilistic estimation scheme. The
scheme uses a probabilistic judgement to determine the presence of
the signal in the observations. In order to obtain explicit
estimation algorithms and to facilitate performance evaluation,

a specific problem of signal estimation under uncertainty, namely
the tracking of a target in a multi-target multi-sensor environment
is considered. Explicit algorithms for this problem are developed
and the performance of the receiver is evaluated under conditions

involving fading media or quantized observations.
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1. INTRODUCTION

Problems of signal estimation and detection which are central to
communication systems have received considerable attention in recent
years. While for the most part the solutions to these problems have been
obtained assuming that they are essentially independent operations [1],
recent papers have brought out the intimate connection that exists between
the two [2-9]. In many cases, it becomes necessary to simultaneously
detect and extract the signal so that the two operations must be coupled
in order to improve receiver performance. Such examples occur in all
circumstances where properties of the signal source or transmission medium,
signal presence or absence, or signal identification are jointly desired
and may arise in such diverse fields as underwater communications, seismic
detection, pattern recognition or radar ranging and tracking. For example,
in communication over fading dispersive channels, the exact value of chan-
nel attenuation is not known. In a multitarget, multisensor environment,
it becomes necessary to simultaneously identify and track the target. In
a pattern classification problem, the particular pattern giving rise to
the received signal is unknown.

The basic problem may be formulated as follows. The data z received
during each observation interval I consists of (a) a signal y corrupted by
observation noise v (Hypothesis Hl) or (b) noise v alone (Hypothesis Ho).
We assume that z and y are vectors consisting of sampled values. The sig-
nal y is assumed to be a realization of a stochastic process. We are re-
quired to recursively estimate either the signal y or some parameters O

associated with it.
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We thus write

He sz = for k e I

The receiver is required to make two functionally related decisions at
the end of each observation interval, the first on the presence or ab-
sence of the signal (a detection decision) and the second on the va. .e
of the signal (or parameter) vector (an estimation decision).

Let us define R, as the risk associated with detecting the signal
presence and RE as the risk associated with estimating the signal. If
the two operations of detection and estimation can be carried out in
parallel or simultaneously, but independently and the two components RD
and RE can be minimized separately, then the two problems are said to be
uncoupled [4,5]. The detection procedure is carried out in the usual
fashion but the estimator performance has to be optimized in the face of
uncertaiﬂty as to the signal presence. In many situations such a sep-
aration of costs is not possible and the two operations are said to be
coupled.

We can write the observation equation for the joint detection-
estimation problem as

z, = B Y A vy for k e I

where B 1is a binary random variable taking on the values 0 or 1. The
problem is then referred to as a single-shot problem, and the same hy-
pothesis is true over the entire observation interval. B is called
the indicator variable.

Let Z denote the seduence [zl,zz...zk]. Assuming a quadratic

'3

cost for the estimation problem, let the estimate of the signal Y be

O R 5 S e

(1.1)

(1.2)




denoted as ;k and let ;i denote the estimate assuming hypothesis Hi to

be true. It is clear that ?g = E{yk} = uy
k

By expanding in mixtures, we can then write the estimate as

%=1 v etz (1.3)
i=0,1
1f PO and Pl are the prior probabilities associated with HO and
Hl, define
P, p(z H)

%" By Pz HY gy
and

A (1.5)

[ =—
k1+l\k

Then an alternative form of Eq. (1.3) is [8]

1
= + [1~T (1.6
Y= tl k]uyk )
This differs from the form obtained by Middleton and Esposito [4] in the

presence of the second term.

It can be further shown [11] that
r, = E{8lz,} (1.7)

It can be seen from Eq. (1.4) that obtaining the optimal estimate requires
computation of the likelihood function Ak' The structure of the optimal
estimator consists of an estimator for each hypothesis, the outputs of
which are combined in a suitably weighted fashion to give the optimal
estimate.

If the active hypothesis changes from observation to observation,
we have the multi-shot problem. In this case, Bk can be modeled as an

independent random sequence taking on the values 0 and 1. At stagc k,

the possible values of Bl’ 82 . Bk come from a set of Zk binary seq .ences




of length k. Let these sequences be denoted by 0? o il e i
Then we can write

~ zk k k

7 = j§1 E{yklzk,dj} p{GjIZk} (1.8)
The estimator at the kth stage consists of a bank of 2k filters (one for
each possible sequence), whose outputs are then combined appropriately.
It is clear from Eq. (1.8) that this leads to an exploding memory requir-
ment.

It is well-known [12] that the exploding memory problem can be re-
placed by one that requires storing complete density functions. The rele-
vant densities may be recursively computed if there exists a fixed dimen-
sional sufficient statistic.

Various suboptimal schemes have been proposed to eliminate the
exploding memory requirements of Eq. (1.8). The linear estimator [13]
does provide one such scheme in which a single filter is used to provide
the best linear estimator. Other schemes essentially choose one or a
finite number of the Zk possible sequences Og in some manner. This reduces
the summation in Eq. (1.7) to a summation over a fixed number of terms
and hence leads to a fixed number of estimators in the implementation.

In this report, we will investigate a specific suboptimal scheme
for estimating a signal in the presence of uncertainty regarding its
reception, namely, the probabilistic estimation scheme [14,15]. Explicit
algorithms for estimation using the scheme are developed and the per-
formance of the estimator under several conditions is evaluated. In

order to obtain explicit algorithms, a specific problem of signal estima-

tion under uncertainty, namely the tracking of a target in a multi-target




multi~sensor environment is considered. While the algorithms presented
in this report have been developed explicitly for this problem, they
can easily be extended to other situations involving similar models.

The report is organized as follows. In Chapter II, the specific
problem considered in the report is formulated and the observation
models presented. The structure of the probabilistic estimator for
this problem is developed in Chapter III and its performance compared
with that of two other suboptimal estimators presented earlier in the
literature.

As indicated earlier, in all problems where there is uncertainty
regarding the signal presence in tlic cLservations, the two operations of
signal detection and estimation must be carried out simultaneously. Thus
the cost associated with these two problems must be optimized jointly.
However the receiver structures so obtained are usually complicated.
Hence it is desirable to compare their performance with suboptimal re-
ceivers to determine whether a significant improvement results from the
increased complexity of the receiver. Chapter IV presents such a compari-
son between a receiver obtained using the coupled risk formulation and
the scheme. Chapter V presents an evaluation of the probabilistic scheme
in fading media while Chapter VI develops algorithms for estimation with

quantized observations.
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2. SIGNAL AND OBSERVATION MODELS

2.1 Introduction

The problem of tracking a target such as a space vehicle in multi-

target and multi-sensor environments has received considerable attention

recently [1-3]. When observations from several sensors are supplied to

the receiver, it must decide which, if any, of the sensor meaurements cor-

responds to the target being tracked and suitably process these measure-

ments to update the estimate of the target state. In real time surveil-

lance systems, tracking filter performance heavily depends on two functions.

The first function is referred to as sensor return-to-track correlation

[3-5]. 1In the presence of multiple targets a sensor return could originate

from one of three possible sources (hypotheses). The return could be
from the object being tracked, could originate from one of the other
objects not being tracked, or could be noise alone. Sensor return-to-
track éorrelation is a decision process serving to decide whether a
sensor return originated from the object being tracked. The second
function, tracking filtering, has been developed in [5]. The sensor
return which originates from the object being tracked is used in

track updating; otherwise, there is no updating and the one-stage pre-
diction is used. The dynamic equation of motion of the target being
tracked is assumed to be modelled by a set of Gauss-Markov difference
equations

+ ka

Xobl = % k

8 C X

e T %*

(2.1)
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where X, is the n x 1 state vector, and Y is a p x 1 output vector. The
m-vector w, 1is white zero mean guassian with i } =
e g al covariance E{wkweJ Qkéke’q)k

is an n x n state transition matrix and Fk is an n x m excitation matrix.

If a particular sensor is not locked onto the target being
tracked, the corresponding sensor return at any stage can originate
from one of three sources (hypotheses), namely, (i) noise alone
(e.g., cut-off communication link), (ii) false alarm (e.g. thermal
or process noisz2, or clutter from a vehicle not being tracked), and
(111i) the vehicle being tracked. The receiver performs under
uncertainty of reception in a ternary case which considers all the
possibilities. A suitable model for the observations under each
hypothesis can then be formulated as follows [1]:
Under Hl, the observation z, is given by

: itz =u (2.2)
Tk et .
where the p x 1 vector v is a zero mean, white Gaussian sequence
2

with covariance E{ukum} dekm' Under hypothesis H ', the current
observation is not uced in track updating and the one-stage prediction
is used instead. The effect of the extraneous returns can be modeled
as a vhite, zero mean sequence Vv, , with covariance E{vkvm} = Qkam.
It is therefore reasonable to model the observation 2, under hypothesis

Hz as

2, 2 * '
B otz o= R(k|k-1) + Ve (2.3)
where % (k|k-1) is the one-stage prediction of X,

The expression for the covariance kernel, Qk, is given in [5])

and for p = 2 simplifies to
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% S b1 T B
k Ll
—_— -N2
1l + 3 nTF/l P

h v . o _ 2 T
where k[k-1 E{(xk xklk-l)(xk xklk—l) }, np is the expected

number of incorrect returns, in the one sigma region

= ' T :1/2
O minl(ckvklk-lck + Rk)ii] and p is the correlation between two
measurements. .
The noise sequences Wes Vyo and v, are mutually independent

and are uncorrelated with respect to the initial state

x, which is multivariate normally distributed of dimension n with
mean M and covariance Vo, Nn [uo, \o].
Under H3, the observation corresponds to the vehicle being

tracked and hence we have
3

Hk : B = Ckxk + U

It is well known that the optimal Bayes estimator for this
problem involves an evergrowing memory and is hence not feasible.
This is because the estimate of Xy at each stage depends on the
seqﬁence of past true hypotheses. This sequence, however, is un-
known and hence the estimate must be averaged over all possible
past sequences. This corresponds to the unsupervised learning
problem in pattern classification. It is clear that as the number
of stages increases, the total number of sequences over which the

estimates must be averaged increases very rapidly. We, therefore,

need to resort to suboptimal schemes which use a fixed memory.

10
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_2.2 Error Baounds

As indicated above, the case in which the hypothesis at each stage
associated with any sensor return is not known, corresponds to
unsupervised learning. If the hypotheses are known, we have supervised
learning. In general, if the classifications of the sensors are not
known a priori, unsupervised learning must be resorted to. In many
cases partial information about the classifications can be gained by
making use of all the past observations as well as all the past classi~

fications; e.g., by probabilistic judgements to determine the classifi-~

P
k.

cations; this is referred to as partially supervised learning, =
Intuitively, the variance associated with partially supervised
learning is bounded belo& by that of supervised learning (learning with
a teacher), and bounded above by that of unsupervised learning (optimal
Bayesian learning). These bounds for the optimal stochastic control
problem with tinite state space héve been investigated in [6 ], and

tighter bounds given in [7 ]. Similar bounds for the optimal filtering

problem can be established by augmenting the message model of Eq. (1)

such that
1 1 1 :
el = %t T (2.6)
X2, = £(x2,0d) 2 ¢ (0,1} ¥k (2.7)
k+1 e S ’ .
where Eq. (2.6) can be identified with Eq. (2.1) by setting xt = X, and

wi = wk, Eq. (2.7) 1is the model for switching hypotheses, wé is white
zero mean gaussian sequence uncorrelated with wi as well as the initial

state, and xi and xi are independent.

11
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The corresponding observation model is

3 ) 0D
z, h(xk,xk) + € (2.8)
which can be identified with Eqs. (2.2) - (2.4) by setting
1 2
X, = 0 5 X = 0 s and ek = Vi 1.e.,h[xi,xi] =0
1
if Hk is active : (2.9)

i 2 ~
x=0 , x =1 , andekavk .

A P 2
i.e. h[xk’xk] xkckxklk—l + vk if Hk is active (2.10)

and | ' '

1 2.
xk xk » xk-l andeBVk .
1l

2 3
kaxk + vk if Hk is active (2.11)

1 2

i.e. h[xk,xk] = x

Let Vs( ) VU( ) and VP( ) denote the error variances corresponding
% Yr'% k%

to the supervised estimator (optimal Bayesian estimator with known
classification of sensor returns), the unsupervised estimator
(optimal Bayesian estimator with unclassified sensor returns) and par-
tially supervised estimator. Then, following an argument similar to

[10], we can show that

Vlu0) < Vi (000) <V (0M0) ¥k (23.12)

That is, the error variance associated with the partially supervised
estimator i1s bounded below by that of the optimal Bayesian estimator with
known classifications and above by the estimator with unknown classifications.

The proof of Eq. (2.12) is by induction and is as follows.

At the final stage N, the optimal estimate iN and the correspond-
ing optimal return VN(w(N)) are evaluated, respectively, as

iN = conditional mean of f(xNIZN) il - 0 3 AR

12




and
VN[w(N)) = conditional variance of f(xNIZN) (2.14)
h =
where w(N) f(foZN)
Hence, at the final stage N

min E C(X N) = E min E
A xN’xN’ Z A |Z
NN N

C(QN’thN)

= E VN(w(N)) (2.15)

Zy

where E denotes the mathematical expectation with respect to the
distribution of ZN’ and E denotes the mathematical expectation with
respect to the conditional distribution of Xy given ZN.

Assume that the following equality holds at stage k+l

N
min E Z C(X,,x,,1i) = E v On(k+l))
. : 1y K+l (2.16)
R, 0 Ry 1=k 2

Then, at stage k, application of the principle of optimality yields

N
min EJ] C(&,x,1) = min{E C& ,x ,k) +E V (w(k+1)]}
rgaliee Sk 15y s k**k k+1
ety W | fet

= min{E E C(X ,%x.,k) +E E - V (m(k+1))}
% Kk’ ¥k k+1
e S AL N % Zear] A
= E min{E C(X ,x, ,k) + E v (w(k+1))}
5 K’k k+l
4 * Izk zk+l'z'k
=E V, (0(k)
2

where
v, (k) = min{E C(X, ,x, ,k) + E v (w(k+1))} (2.17)

k k' "k k+1
& g Zer1 | %
13




Equations (2.15)-(2.17) hold equally for all the three types of supervision
and corresponding expressions are obtained by adding superscripts on the

optimal returns.

It can easily be shown that for the cost function under
consideration the following inequalities hold
C(ﬁN.xN.N),z mi; C(iN,xN,N) > min C(ﬁN.xN.N) (2.18)
Since operations such as minimization and conditional expectation do

not change the inequalities,

min E C(RXy,x,N) > min E  min C(R»%oN) > min E min C(R % ,N)
R lzy 2 |z, ﬁ; 2, Iz % N XN
(2.19)

which can be reduced to

Tin E C(X,x,,N) >min E  min C(X_,x _,N) >E mir C(X_,x ,N)
N XN N (2.20)

Utilizing the preceding inequalities and making use of the independence

of x; and xg, Eq. (2.15) yields

Vi (0(0) = min F, C (R %, N)

N N
>min E min C(Rg,x,N)
ol |zy g2
N N
= min E C(ﬁ;,x;,X§'§§,N)
il
= vg(ev) (2.21)

Assume that the inequality holds at stage k+l, i.e.

VP (W) > vy () Vk (2.22)

14
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At stage k, from Eq. (2.17)

TR SR Vp p 0@etD))
12y Zia1 1 2k

min{E c(x
2

vi(w(k)) min{E c(x

R

Vi+1(w(k+l))

v

k’xk)
|2y Zy41 12

vy (w(i)) (2.23)

To establish the lower bound, it is noted that Equation (2.15) yields

Vp(w(N)) = min E C(ﬁN,xN,N)

N
Ry 17y
= min E C(i:-J"x;’N) + min E C(if”)%)N)
’"ﬁlq |z xfi 1Zg
< min E c(ﬁi,x;,n) + min E c(ﬁé,xﬁ,n) (2.24)
A]. 1L AZ
% 17 2

A s | w2
where C(xN,xN,N) = C(xN,xN,N) + C(xN,xN,N) because of the quadratic nature
. A 1 2
of the cost function C(xN,xN,N) and the independence of Xy and Xye
Following the same reasoning as in Eq. (2.23) one can show

v (w) < vy (w) vk (2.25)

In subsequent chapters,we will consider a specific partially supervised
estimator, namely the probablistic estimator and derive explicit algorithms

for its implementation under various conditions.




(1]

[2]

(3]

(4]

[5]

(6]

[7]

REFERENCES
R. A. Singer, R. G. Sea, and K. B. Housewright,''Derivation and
Evaluation of Improved Tracking Filters for Use in Dense Multi-Target
environments', IEEE Trans. Information Theory, Vol. IT-20, pp. 423-
432, July 1974.
P. Smith and G. Buechler, "A Branching Algorithm for Discriminating
and Tracking Multiple Objects', IEEE Trans. Automatic Control, Vol.
AC-20, pp 101-104, Feb. 1975.
Y. Bar-Shalom and A. G. Jaffer, '"Adaptive Nonlinear Filtering
for Tracking with Measurements of Uncertain Origin',IEEE Conf.
on Decision and Control, New Orleans, pp. 243-247, Dec. 1972.
R. A. Singer and R. G. Sea, "New Results in Optimizing Surveillance
System Tracking and Data Correlation Performance in Dense Multitarget
Enviroments', IEEE Trans. Automatic Control. Vol. AC-18, pp. 571-
582, Dec. 1973.
R. G. Sea, "An Efficient Suboptimal Decision Procedure for Assoc-
iating Sensor Data with Stored Tracked in Real-Time Surveillance
Systmes', Proc. IEEE conf. Decision and Control, Miami Beach, pp.
33-37, Dec. 1971.
K. J. Astrom, "Optimal Control of Markov Processes with Incomplete
State Information', J. Math. Analysis and Appl., Vol. 10, pp. 174-
205, 1965.
C. C. White, "Application of Two Inequality Results for Concave
Functions to a Stochastic Optimization Problem'", to be published

in J. Math. Analysis and Appl.




3. THE PROBABILISTIC ESTIMATOR

3.1 Introduction

As discussed in Chapter I, the optimal Bayesian estimator for
tracking a target in a multi-target, multi-sensor environment is not
feasible because of its exploding computational requirements. In
this chapter, we will present a suboptimal scheme, namely the probabilistic
estimator which uses a probabilistic judgement at each stage of the
observations to determine the true hypothesis. The scheme is evaluated
by comparing its performance with two other suboptimal schemes which
have been presented in the literature.

As explained in Chapter II, the dynamic equation of motion of the
target being tracked is assumed to be modelled by the set of Gauss-

Markov difference equations

1 ™ Ot Ty

where X, is the n x 1 state yector, and Yk is a p x 1 output vector.

The m-vector W is white zero mean guassian with covariance E{wkwe}=Qk6ke,¢k
is an nxn state transition matrix and Fk is an nxm excitation matrix.

The observations at any stage can originate from one of three
sources (hypotheses), namely, (i) noise alone (e.g., cut-off communication
link), (ii) false alarm (e.g. thermal or process noise, or clutter from
a vehicle not being tracked), and (iii) the vehicle being tracked. The
observationi are thus given by [1,2]

He @z, = u (3.2)

where the p x 1 vector u is a zero mean, white Gaussian sequence with

covariance E{ukum} = dekm'

17




H tz =c x(k|k-1) + vy (3.3)

where x(k|k-1) is the one-stage prediction of x, and v, is a white,

k k
zero mean sequence with =
q covariance E(vkvm} Qkakm
H3 -~ = +
kB TGR N (3.4)

The noise sequences W Vis and vk are mutually independent and
are uncorrelated with respect to the initial state X which is multivariate
normally distributed of dimension n with mean Ho and covariance VO,

N, [uo, Vol-

It is well known that the optimal Bayes estimator for this
problem involves an evergrowing memory and is hence not feasible.
This is because the estimate of x, at each stage depends on the
sequence of past true hypotheses. This sequence, however, is un-
known and hence the estimate must be averaged over all possible
past sequences. This corresponds to the unsupervised learning
problems in pattern classification. It is clear that as the number
of stages increases, the totél number of sequences over which the
estimates must be averaged increases very rapidly. We, therefore,
need to resort to suboptimal schemes which use a fixed memory.
There are basically two approaches which can be taken to solve this
problem. We can use a fixed number, say K, of past observations in
arriving at our estimate. Alternately, we can use all past obser-
vations in our estimation scheme but choose only one (or more generally,

a fixed number N) of possible past sequences over which to average.




A few such schemes have been discussed in the literature. A statistical
test is used in [3,4] to eliminate the likely extraneous returns.

The number of sensor returns can be further reduced by combining
identical observations from the most recent N stages [l]. This

is essentially an estimator based on an infinite sequence of hypo-
theses and a finite sequence of observations. An alternative has

been studied in [5], which is essentially an estimator based on an
infinite sequence of observations and a finite sequence of hypotheses.

Either of them requires a tremendous amount of computation. We now

present the structure of a probabilistically supervised estimator which
uses a probabilistically supervised learning sequence to determine the hypothesis

corresponding to each sensor return and thus eliminate extraneous returns.
The estimator is compared with two other suboptimal estimators in terms
of performance and computational requirements. Simulation results are
presented to show the applicability of the probabilistically supervised

estimator.

3.2 Probabilistically Supervised Estimator

In generating a probabilistically supervised learning sequence,
one has to design a probabilistic judgement at each stage of observations;
on the sensor rcturns [6]. This judgement is carried out in parallel
on each sensor return, in such a way that each return is assigned a
classification label which then serves as its true hypothesis. We can
think of the scheme as consisting of a set of parallel processing units
(PPU) ,one corresponding to each of the sensors, and a central processing

unit (CPU) which combines the processed returns from the PPU's to update

the estimate of the target track. On receiving the observations, each
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PPU performs a random labelling test to generate a label £ corresponding

k
to each of the three hypotheses. The label is then accepted as the true

hypothesis at that stage. Depending on the label, the observation from
the ith sensor 1s modeled according to Eqs. (3.2)-(3.4)by the corresponding
PPU. The algorithm for combining the observation models supplied to obtain
the track estimate is discussed later. ¢

We can now consider the generation of the random labels.

Suppose there are M sensors and that at stage k, there are n returns,

th

nk_i M. Let 2i denote the label generated by the 7 PPU at stage k

and let L(k) be the vector

-2
TSR e

M

Let Lk denote the set of all past labels L(j), j =1 ... k.

Similarly let zi denote the ith sensor return at stage k and

let
T
T
T nk ]T

1l 2
2(k) = [zk 2 e 7y

Let Zﬁ denote the set of all past observations Z(j), j=1...k.

Since there are three hypotheses, the label lt is a ternary random

variable. When a new measurement 2z is received, the PPU updates

i
Kl
the probabilities associated with the three outcomes on the basis of

z: +1° the past measurement sequence Zz and the past labelling se-~
quence L:. We can then write for these probablities
g o ek M M
£ = B2 B0 W
1 s o N6 SERERN TH S e
3 £z e B B0 b0 ' G Hien 120 1) (3.5)

S i o
£y 20 1
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where

M

i M

oM 2 ot M
k+1

K L =j£1 f(‘k+1| kel Tt P

ford =1, 2. . . n,; j =12, 2.3

£(z,,.]2 L )f(z 2

k+1|

If we assume that the hypotheses are independent from stage to stage,

we can write

i
K+l k+1

M

|2, 15 = saf, =a) (3.7)

£(2 e

For Markov-dependent hypotheses, we have

lZ5,L = Feg, |2=H (3.8)

£(% el k+1

k+1 Hk+1
It 1 emains to determine f(zi Ili —uJ ZM LM). From the observation
ULy YN L O e 0 LRI

model, Eqs. (3.1)-(3.3), we can write

i i 3 = for j=1 S (3.9a)
oM EAi D k’L ) = N I0,Ry ] ]

=) (3.9b)
= N [Ck+lxk+1[k(Lk) Qk+l(Lk)] for j

+
) Np[ K+l k+1[k(L )5Ci1V k+1|k(L )Ck+1 Rt}
for j=3 (3.9¢)

Define

1 M
Yiee1 & B E{21<+1, e i) (3.10)

which is a white sequence.

Let YM (Lk+1) be a collection of the white sequences

associated with all the sensor returns.
It then follows that the equations for the sequential estimation of the

state x, are given by

M £ -
B |1l = R () (3.11)
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M M T, M -1
K1 T Views Tier? (C:u) (R4p)

e " M M oM M
Kt T ™ B 1 B Hop Ciern? Viers B
and
e i S M
Vieer ) = K ) G Wi [ (10
where :

M 1 2
Bha = diag[Rkﬂ" cee s Ry )

(3.12)

(3:113)

(3.14)

(3.15)

(3.16)

Eqs. (3.5)-(3.16) constitute a complete set of algorithms for updating

the estimate.

3.3 Evaluation of Probabilistic Estimator

We will now briefly describe two suboptimal estimator which
have been discussed in the literature for purposes for comparison
with the probabilistic estimator. In the first scheme, the infinite
sequence of hypotheses is approximated by a sequence of fixed size.

This scheme is referred to as suboptimal estimator of finite memory.

The other scheme is to eliminate the likely extraneous returns by constructing

a gate test. This is referred to as a suboptimal estimator with gating.

3.3.1 Suboptimal Estimator of Finite Memory
The conditional density of one-stage predictor f(x

depends on al
p n all the past sequences a4

amount of core memory for its implcmentation. The sequence akn(ak,"°,a
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and requires an evergrowing
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could be approximated by a subsequence bk taking the most recent N

elements, bk=(ak,"

earliest element a is not used in evaluating the conditional

k-N+1

approximated gaussian with mean X ,(b:) and variance V

k+ k+1|k

8
b = (Ot o)

.’uk-N+1)' As the memory size is restricted to N, the

M
density of one~stage predictor. In other words, f(xk+1lak+l’zk) is an

(bi), where

As a consequence of the approximation, the following equations

hold

M = A s s
A UL Mo et 1P Vi 1 00

1
if o =By

A, S S
(e |1 P »Views 1 i
2
if o "Ny
= N X (g )oYy (Bpyy))

3
AL T T

= N
n

§k+1|k(b:) B ¢k§k(bi)

s (- T
(b)) = ¢V, (b + T, QT

Vit |k
I R .(b ) (b |Z)
s AL TP b L N
O -N+1
M
I fw(bk|Zk)
N1
I V.(b )£ (b |7
kV k) Twhk'Tk
O -N+1
M
pX £w(bklzk)

Oe-N+1

8
£,y =

s
vk(bk) =

(3.17a)

(3.17b)

(3.17¢)

(3.18)

= £3.19)

(3.20)

(3.21)
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A = £ 8 M_MA 8
K41 Crei) 7Kg 1 ®r) + Kooy By gy Crt1 %1 [k Py ]

(3.22)
M o ’
Kt Creen) = Viera Cpeag) Cpgp) " Ryy) (3.23)
i 14 - M s (3.24)
Yierd ) = 1= Ky @) G Wi 1 )
R .. =L eeel & (b )ef (b, |2 )
XK+l %41 P’ " Ee Pri 12 (3.25)
N1 Fp-n+2
V,,, =L el B 2 )
k+l Vi1 Pry k1! “ktl (3.26)
Nt %k-N+2
The weighting coefficients arc updated by
M M
i £y Prg 50 £y, 12) i
w Pkl a1 (|1 <&d)
k+1 !k
where
5 M
f("k+1 k+1® ZM) = Ngp[0.R )
1
ifo . =K (3.28)
- s s
B Lot A Ik(bk) ey (o))
2
if o, = nk+1 (3.29)
N ®3),c; ORGP RS S
K+l k+l|k K+ i+ |k k+1 k+1
BB (3.30)
where £ denotes the number of sensor returns at stage k+l, and
L could vary from stage to stage.
M M M
£ 12 = z £ (g Prpr 12500 * £, O 120 (3.31)
“k+1 O-N+2
M M M
£y 12) = £ (o D202 £, 12 (32}
~N+1 '
|
i
i "
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s M, _ -
f"(ak+l|bk,zk) P(ak+l) for independent hypotheses

= P(uk+1!ak) for markov-dependent
hypotheses

It is noted that the suboptimal estimator of memory size N
is identical to the optimal estimator under a single return and the

suboptimal estimator deviates from the optimal estimator for k > N.

The sufficient statistics at the transition stage k = N are ﬁN(bN) and
VN(bN). which are not valid for evaluating the density of the one-stage
predictor. Because of the restriction to most recent N stages, the
stage k-N+1 éannot be used in evaluating the density of the one-stage
predictor. This can be overcome by sfimply averaging ik(bk) and vk(bk)

with respeét to the weighting coefficients at stage k-N+1

% (b)) =2 % (b)) fw<bklzﬁ>
Ne-N+1
and
8 M
V() =2 v, (b)) fw(bklzk)
-N+1

3.3.2 Suboptimal Estimator with Gating
In this scheme, only those sensor returns which pass a certain
gate test [3,5] are considered for updating a particular track. Note
that the innovations [7] corresponding to the correct return at stage k
is approximately normally distributed with zero mean and variance
ckvklk_lc: + R.. It is well known that

2

(CkV

o
iz = &y | 2
k|k~1"k

(
-1
+ Rk)
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~ T

has a p degrees of freedom chi-square distribution. The gate test is

to select the threshold in such a-way-that-the sensor return §i¥for which
i, v R LTINTIERENEY {

the quantity in Eq. (3.34) falls in the right tail is rejected in order to'

eliminate the extraneous returns. Hence the number of validated returns
could be limited and utilized in track updating.
It {s assumed that there is a nonzero probability of incorrect correlation.

Let the set of validated returns at stage k+l be
L
M { 1 X }

1 5 S 5 LS 5 (3.35)
and the accumulated validated returns up to stage k+l be

M M LN ] M

Zey = ooz : : i 30)

pefine at each stage, the events
Ag+1 = {proper return is detected but it is not correctly :
correlated} U {proper return is not detected}
and
E . {z:l is correctly correlated at stage k+l}
Ak+l k+1 )

where 1 = 1,2,¢++,%; and k = 1,2,¢** . Assume that Ai+ are mutually

1
1 A
exclusive and equally likely events, and that {zk+1,...,zk+1) are jointly

independent and identically distributed. The probability of event A2+1

is, for simplicity, assumed constant and known a priori.

The minimum variance estimate is

s M
k1 I Xy € O 121040 gy

Q
$ M1 1M
2 120 I SRR LR L WAL MO LY
Q
% 1 £ M
- 120 Repr M) £, Mg 1234p) i
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The variance associated with the above estimate is obtained as follows

oo PO, -~— W-“;—.*‘- '"'”"“-
v < L T M
Kt ! et Fiern) Frar Rean) 12049504
1Y)
L Ml
120 Viers (et £, (A 120,0)
L T :
@ al 2 gt oy 5 A
120 Bons D) B k+1) M Zerr) ~ Fenn¥ien
(3.38)
It is to be noted that the variance is the sum of weighted variance
plus a positive semidefinite matrix to incorporate the effect of the
\ extraneous measurements [3].
The conditional a posteriori demsity is calculated as
M T T
L .
i £ | L f(21<+1"‘1\+1’Ak+1’zk) f("1<+1Mk+1’zk)
: X1 Ak+1’ k+1 f(z (A i ZM) (3.39)
k+1! Tkl Tk : :
The above expression can be simplified by making use of the assumption
i
n Ak+1' as
i i i M
PLVSOT | e ol £ X Ak+1’Z )f(xk+1l Mer1 2B
et a1 2 2t f(z Al 2
k+1'Tk+1’ "k (3.40)

In evaluating Eq. (3.40),the following should be noted:
1. The conditional density of one-stage predictor is independent
" i ¥,
of Ak+1’ and is equal to Nn[xk+l|k’vk+1|k]'
1 i M e e .
2. f(zk+1|xk+l,Ak+1,Zk) N [°k+1xk+1’“k+1] for 1 = 1,2,°+°,2;
and either N [0 Rk+1] or N [Ck+l Kt | K k+1] for 1=0.

It is clear from the above that the conditional a posteriori density can

. therefore be written as:




-

1 M x 1 1
£ 1M 21 = MRy () sV (M)
for 41 = 1,2,°°°,% (3.41)
= B e e Y i

for i=0 : (3.42)

together with the following equatiohs for updating the sufficient

statistics,
8 () =32 B Y A )
ket Pit? = X et K Pern? P Gt ¥ |k (3.43)
1 T T =3
Kt Per) = Viern [kCh €1 Vier1 181 * Ry ! (3.44)
1 1
Vier M) = 1T = Ky (i) G Vi e (3.45)

; 1 - 1i

As expected the gain Kk+1(Ak+1) is independent of Ak+1 and is
the same for each validated return.

The weighting coefficients are calculated as follows:

K 4 K
i g £ gy a1 %)
k+1'“k+1 M M
£z4112) ' :

1 44 M
_ Hep A %)

1 M
£(z4112))

Since £ (A
v

£ .4 =
= (A 1214020 0171, 2, 00008 (3.46)

It follows from the preceding that

f(l\i li ZM

e ] R M
when 12141080 = £, 12440020

k+1'“k+1’

0 .M
1 - P, 12,4,)

L

(3.47)

0 M
vhere P(Ak+llzk+l) is known a priori [3].

Equations (3.37), (3.38), and (3.41)-(3.47) constitute the necessary

| -set of equations for recursively updating the sufficient statistics.
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3.4 Simulations
In order to evaluate the performance of the probabilistically
supervised estimator and to compare it with the other estimators, the

same tracking example given in [1] was simulated. The parameters of the

aircraft being tracked are given as follows

P =

x - position at stage k
x - speed at stage k

“ y - position at stage k

- d at stage k
_y spee g | x1)
h change in x-speed between stage k and stage k+1

wk L_'change: in y-speed between stage k and stage k+1 (2x1)
@ T 0 0
0o 1 0 0

d =

K 0 O 1 T
0 O 0 1 | (axa)
0 O
1 0 qll(k) 0 -]

I, = and Q =

k 0 0 k ”

4 1z, ¢
- (2x2)
[0 1 Jux2) (
where T is the sampling interval
1 0 0 0 Y0 0
= Rk -
! % 0 (k)
BRI Taa™ | oeny
| ‘ 29




For simplicity, the following values are used
T=2
p=0

g = 0.01
Xq» multivariate normally distributed with dimension four,

N4[0,0.01].
Qk = diag(0,0]
and
Ri = diag [0.00828, 0.00828]
Simulation results are presented in the form of tables for the mean square
error associated with the x-position. Similar results were
also obtained for the other states.
The simulations consist of a comparison between the three estimators
presented in this chapter, namely Suboptimal Estimator with Finite Memory
(SFE), Suboptimal Estimator with Grating (SGE) and the Probabilistically

Supervised Estimator (PSE). One hundred simulations under a single return

were averaged to obtain the mean square errors. The probability of the
hypotheses were P(Hz) =1, P(Hi) = p(ni)-o. The results are shown in Table 3.1
which  ulso shows the mean square error for the optimal Bayesian Estimator
(OBE). For the simulations, an infinite gate size, unity detection probability
0 M
of sensor and P(Ak+1lzk+1

two stages to SFE. The simulations were carried to only five stages be-

) = 0 were assigned to SGE and a memory length of

cause of the computational requirements associated with OBE. The performance

of all the estimators is equally acceptable under these conditions.
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Table 3.2 shows the results for the case P(Hi) = P(Hi) = 0.1 and P(Hi)=0.8.
The decrease in MSE for the PSE is not as fast as with the OBE and SFE.
However, as shown in Table 3.3 the PSE has decided advantages in terms of com-
putation requirements.

The second part of the simulations consist of a comparison between PSE
and SFE. A one-hundred-step process under five ground sensors was simulated
on the same model. Ten simulations were averaged to obtain the mean square
errors and varinaces. In Tables 3.4,3.5 and 3.6,it is shown‘that the performance
of PSE is better than that of SFE in all the possible cases. This fact
bec¢omes more pronounced in the most uncertain environments in which P(Hi)-O.Z,
P(H2)=P (K))® 0.4.

For the case of dependent hypotheses transition probabilities

P(“i+llﬂi) werc chosen as :

353 2 3
i=1] 0.8 0.1 0.1
2| 0.1 0.8 0.1
3| 0.1 0.1 0.8

The process was started initially with equally likely probabilities

of hypotheses. The results shown in Table 3.7 indicate that the performance

of PSE is quite acceptable in this case.
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TABLE 3.1

MSE of PSE, OBE, SFE, and SGE; P(Hz) =1

Stfge PSE OBE SFE SGE
1 .02539 .03300 .03300 .02675
2 .01790 .02109 .02109 .02331
3 .03262 .03301 .03301 .03466
4 .03333 .03202 .03202 .03768
5 .03079 .03107 .03107 .03195
TABLE 3.2
MSE of PSE, OBE, SFE, and SGE; P(Hi)=P(H§)=O.1
and  P(H))=0.8
; :
Stage PSE OBE SFE SGE
1 .34901 .20144 .20144 .17598
2 .13036 .12237 .12237 .22925
3 .18304 .11934 .14284 .26749
4 .21962 .08673 .11383 .28088
5 14741 .07520 .09133 .47075
TABLE 3.3
’ _Percentage of Time and Core Locations
1 Core 2
A Locations
PSE 6 48
OBE 100 100
SFE 16 65
SGE 6 59
1. Percentage of the computer time required by the
optimal filter. _
2. Percentage of the core locations required by the

optimal filter.
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TABLE 3.4

MSE of PSE and SFE; p(Hi)

STAGE PSE SFE
10 .00153 .01967
20 .00101 00589
36 .00022 .00294
40 .00025 .00196
50 .00019 .00136
60 .00017 .00101
70 .00016 .00077
80 .00019 .00058
90 .00014 .00042
100 '.00010 .00033

~TABLE 3.5

MSE of PSE and SFE; p(Hi) = p(Hi) = 0.1 amd p(Hi) = 0.8

STAGE PSE SFE
10 .02071 .01439
20 .00283 .02314
30 .00159 .01425
40 .00065 .02270
50 .00037 .03167
60 .00025 .05524
70 .00021 .07709
80 .00022 .07149
90 .00019 .09386

100 .00012 .10536
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TABLE 3.6

MSE of PSE and SFE; p(Hi) = 0.2 and p(Hi) = p(Hz) = 0.4

STAGE PSE | SFE
-
10 .69687 .10443
20 1.13143 .09342
30 .45878 .08765
40 .37909 .19294
50 .32131 .26892
60 .22679 .48263
70 .19707 .59716
80 .16257 .75582
90 .11455 .87802
100 .10383 .98750
TABLE 3.7

MSE of PSE and SFE; Markov-dependent hypotheses

STAGE PSE SFE
10 .13949 1.44858
20 .09721 1.37159
30 .10936 1.06421
40 .15072 .76816
50 .23789 . 74486
60 +25945 .89461
70 .28760 1.14302
80 .30237 1.09317
90 .34798 1.30457

100 «39394 1.27090
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4, COUPLED RISK FORMULATION

4.1 Introduction

It has been pointed out earlier, that in all problems involving
uncertainty of signal reception, the operations of detection and estimation
are intimately coupled. The optimal processing of sensor returns requires
the mutual coupling of the costs associated with both operations. Signal
estimation is strongly influenced by the detector's outcome. A Bayes'
optimum theory of joint detection and estimation of signals in noise
has been studied in {1-4] by using a generalized cost function which
reflects the mutual coupling between the joint operations.

An estimator based on minimizing such a coupled risk may perform
better than the estimator in which the two operations are treated indepen-
dently. This improvement in performance, if any, will however be at the
cost of added complexity in the receiver. 1In this chapter a simultaneous
detection and estimation scheme is developed for situations where the
signal evolves as a stochastic process and uncertainty characterizing the
presence of the process in the observation varies in the fashion discussed
in Chapter 2. Since the optimal processor again requires an ever-growing
memory, a finite memory suboptimal scheme which minimizes the coupled risk
is developed. The performance of this suboptimal processor is compared
with that of the probabilistic estimator introduced in the previous chapter.

4.2 Coupled Risk Formulation

There are two different kinds of risks associated with joint detection
and estimation: wuncoupled risk and coupled risk. In the uncoupled risk
case the minimization of compound risk is equivalent to the minimization
of the individual risks associated with the detection and estimation pro-
blems respectively. The minimization of the decision risk leads to the
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familiar likelihood ratio test [1].  The minimization of estimation risk,
however, yields the problem in which the estimator's performance is to be
optimized under uncertainty [5,6]. In coupled risk case the joint oper-
ations of detection and estimation should be coupled and the costs associated
with these two operations chosen to reflect the interaction between them.
Hence, the total risk of joint detection and estimation can not be expressed
as the sum of two independent components. A simultaneous minimization of
the total risk with respect to the decision and the estimation rules is
necessary. Joint detection and éstimation of coupled risk has been studied
in [13,15]) under a single return. This section is devoted to the formula-
tion of the problem of optimizing a coupled risk function under multi-sensor returns.
To reflect the coupling between detection and estimation, let
Ci‘(ﬁk’xk) be defined as the cost of choosing the hypothesis ni and making an

estimate %X, when, in fact, the hypothesis ni is true and Xy is the true value

k
of the signal. In other words, Cij(ﬁk,xk), tnz cost at stage k, can be ex-

pressed as

£ = . % 112 (4.1)
Cij(xk’xk) Lo*Fyy 1 -% |

where L, . and Fij are chosen appropriatelyr to indicate the interaction be-

i]

tween the joint operations of detection and estimation.

The corresponding coupled risk is given by

3 3 v :
& M M 4.2)
K= 1 J [ C, i (R ,x )E(x, 13,27 )dx, dz
j=1 i=1 ‘a.'Q 17k 7k k> k¥kT Tk k _ ‘

Here A is the observation space and Ai is the region in which the decision nt
is true so that A = 121 Ai, ? 1s the signal space, and Zg refers to all the past

sensor returns accumulated up to stage k.

The optimal decision is then to decide in favor of hypothesis nz_ when

the following inequality
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i=1

3 o
Z Ig Cji(xk,xk)f(xk,ﬂ

i M
ilk)dxk <

k

is satisfied for all 2#j; j,2=1,2,3.

as the optimal estimator under multi-sensor, uncertain environments.

corresponding optimal detector is given by Eq.

3 r hv . i b{ Y
i=1 ‘Q

I

The estimator that minimizes the coupled risk of Eq. (4.2) is defined

The

(4.3). Again it is not feasible

to implement the optimal estimator and the optimal detector, because of the

need for evergrowing memories.

be resorted to.

4.3 Suboptimal Estimator and Detector

Therefore the suboptimal alternative must

In this section, a suboptimal estimator with finite memory require-

ments for the cost function of Eq.

if the decision is that either nl

the estimate.

1
Mg

(3=3).

k

2
or M

(4.1) is developed.

k

1t is understood that

is true, there is no updating in

Hence, there is no cost jncurred for estimation when either

2
or n, is decided. In Eq. (4.1) x, appears only when, in fact, ni is true

The cost associated with the joint operations is described by the

following equations,

and

Cr2®poxy)
Cp30a0x)

Cnx %)

Ak’
Ca2 (0%
RS
€3y (%)
CJZ(;k’xk)

033(xk.xk)
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T
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L,z

T
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The estimate Qk is obtained by minimizing Eq. (4.2) with respect to

ﬁk. This is equivalent to minimizing

: J I . 2 M
! Cq (Rpsx VE(x 1,2, )dx, d (4.4)
3=1 ‘A 357 k7k k k
with respect to ﬁk. Since the cost Cij(gk’xk) is of quadratic form, the

minimization of Eq. (4) yields the weighted conditional mean estimate

; " - 152 i . e T
i B IQ X, f(xklak He o2, )dx, £ (o Hk|2k)

X =

% 3
i M
} R s ta, =i (2 (4.5)
i=1 31 k
2 F33 k(a )f (a, |z )
“k~1
Z Bt F3if$(akIZ§) (4.6)
i=1 %1 1
where
23 & 3
xk(ak) = Xk(ak=Hk,ak_1...,al). 4.7)
£10a, Iz (oyeil,a o,oense |2, (4.8)
and

a = (a » O ..,al).

k-1""

The corresponding suboptimal estimator of finite memory which uses all the
observations from the most recent N stages is given as follows
a3 3 M
g....g Fyqy % (b )E- (b, [2))
§" u Link k=Nl
3

4, (M
doobod Dyttt

= e %ewn

= »

- (4,9)

~3 3
h =
where xk(bk) (ak L 1""'ak-N+1)’

i M i
£,0,.12) = £, (0 =H | 2

k1" *Ppepar 1 %) 0
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and b, = ﬂak.a

k k=1 v* g’

It is to be noted that the set of necessary equations for updating
the estimate, the variance, and the weighting coefficients is identical
to those derived in Chapnter 3.

The decision rule is.postulated in Eq. (4.3), and the observation
space A 1is partitioned into three disjoint regions.

Region A1 in which ni is true is true is bounded by the following

inequalities.

3
Z f li(xk’x )f(x k,Z )dxk

s 121 o€ 2 Y 2 Y, R = 243 (4.10)

In order to evaluate these inequalities one has to substitute the cost de-
fined in the beginning of this section into Eq. ( 4.10) and recognize the de-

finition of the covariance matrix

IQ " kf(x ]a Hk,ak 1,...,dk_NH,ZI:)dxk

=V () + ) R lb)T (4.11)
Thus

IQ f(x Iak H k l,...,ak N+1° k)dx

- TrVi(bk) + i;(bk)T'ﬁi(bk) (4.12)

i

k’ak-l""ak-N+l)’ and Trvi(bk) denotes the trace of

i
h = =
where Vk(bk) Vk(ak H
th
e matrix Vk(bk)'
Define
A
e o TN | {( 11 Lay) ' f, £ |4 )+ (L,," 22)f (b, |z )

\ el el
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3 N
+ (Ly,L )I (b |z 5 (513-F23)(Trvk(bk) + 2 (b)) xk(bk))
ve3, M :
fw(bk|é')}, | (4.13)
58 1. {( byq” 31)f by |23 + (L12'L32)f5(bklz:)
Ok-1%Kk-N+1

3 3 T.3

* 33)f (b, lz ).+ @&, F33)(Trvk(bk) + % (b)) xk(bk)).
3 M 1 M 2 M 3 M

fw(bklzk) - (F13fw(bklzk) + F32fw(bk]2k) ¥ F33fw(bk|2k)).

T Lk 2%, T2 o M
(xk) '(xk) + E33'(xk(bk) X, + (xk) xk(bk))'fw(bklzk)},

»e (4.14)

c8p- A - (4.15)

It is noted, from che definition of cost incurred for joint detection
and estimation, that the estimate ﬁk in Cij(ik,xk) should be essentially
replaced by i: of Eq. (4.9).

Upon substituting Eqs. (4.13) and (4.14) into Eq. (4.3), one can -
mine the boundary of region Al. It can easily be shown that the region Al
is bounded by A<O and B<0. It similarly follows from Eq. (4.3) that the region

A2 is bounded by A>0 and (<0, and the region A3 is bounded by B>0 and C>O .

It is noted that the decision boundaries determined by Eqs. (4.13) -

(4.15) are equivalent to the boundaries determinea by settiug up the modified

generalized likelihood ratios [15].

The procedure to generate the optimal decision is summarized in

the following:
Step 1. Evaluate A and B, respectively using Eqs. (4.13) ana (4.14)
Step 2. Validate one of the following three statements:
(1) A<0 and B<0, decide ni

(11) A>B and A>0, decide ni
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(11i) B>A and B>0, decide ni
Step 3. Calculate the optimal estimate

(1) Either ni or ni is true, estimate is not updated;

kK k-1
-—A*
Mk Kk

This scheme will now be compared to the PSE scheme introduced in

(i1) is true, estimate is updated; X
Chapter 3 , The coupled risk formulation is not particularly meaningful to
the PSE, since the estimate is updated no matter what hypothesis is true.
Thus, rather than comparing the two schemes in terms of the coupled cost,
it would appear more appropriate to compare the two in terms of the per-
centage of wrong detection and the variance of the estimator.

4,4 Simulation Results

The message model and the observation model chosen for joint detec-

tion and estimation are the same as those of Chapter 3. The values of

matrices L and F in Eq. (4.1) which are assigned to the cost of making decision

and the cost of making estimation respectively, are

0 1 1 0 0 1
L B 0 1 F= |0 0 1
3 1 O 2 -3 %

for the suboptimal estimator and detector of finite memory. The values of
matrices L and F also indicate the interaction of coupling of the joint
operations, which is weighted equally in this case.

A one-hundred-step process was simulated and ten runs were averaged
to obtain the results such as variance and percentage of wrong detection
under .-five ground sensors. It is assumed that the a priori probabilities
in the case of independent hypothéses and the transition matrix in the

case of markov-dependent hypotheses are known to the receiver.
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TABLE 4.1

Variances of PSE and SFE; P(Hz) = 1.

STAGE PSE SFE

10 .00056 .00056
20  ,00030 .00030
30 .00021 .00021
40  .00016 .00016
50 .00013 .00013
60 .00011 .00011

70 .00009 .00009
80 .00008 .00008

& 90  .00007 .00007
’ 100 .00007 .00007
TABLE 4.2a

Variances of PSE and SFEi P(Hi)=P(H§)=.1 and P(Hi)=.3

STAGE PSE SFE

10 .00083 .00085

20 .00041 .00043

30 .00027 .00029

40  .00021 .00021

% 50 .oo016 .00017

60 .00013 .00014

70  .00012 .00012

80 .00010 .00011

. 90  .00009 .00009

‘ 100 .00008 .00008
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TABLE 4.2b

% Wrong Detection of PSE and SFE; P(Hi)=P(Hi)=.l and P(Hi)=.8

STAGE PSE SFE
10 22 20
20 26 20
30 14 .18
40 24 16
50 22 14
60 10 16
70 42 14
80 10 24
90 16 14

100 R 32

TABLE 4.3a

Variances of PSE and SFE; P(Hi)=.2 and P(Hi)=P(Hi)=.4

-STAGE PSE SFE
10 .00239 =19106
20 .00109 .03719
30 .00065 .00131
40 .00049 .00071
50 .00035 .00054
60 .00029 .00043
70 .00026 .00036
80 .00023 .00030
90 .00021 .00026

100 .00019 .00022
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% Wrong Detection of PSE and SFE; P(Hi)=.2 and P(Hi)=P(Hi)=.4

Variances of PSE and SFE; Markov-dependent Hypotheses

STAGE

10
20
30
40
50
60
70
80
90

100

STAGE

10
20
30
40
50
60
70
80
90

100

TABLE 4.3b

PSE

46
50
46
48
38
34
36
32
40
40

TABLE 4.4a

PSE

.00385
.00090
.00102
.00058
.00055
.00041
.00030
.00025
.00023
.00021
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SFE

60
64
56
50
58
56
56
64
50
54

SFE

3.48371
5.25671
5.17088
4.11383
3.63712
2.86978
2.31418
1.46436
1.02339

. 70642
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TABLE 4.4b

%Z Wrong Detection of PSE and SFE, Markov-dependent Hypotheses

STAGE PSE SFE
10 48 64
20 36 74
30 36 74
40 26 66
50 30 62
60 © 38 58
70 32 62
80 38 56
90 42 64

100 48 66
TABLE 4.5

Overall Z Wrong Detection of PSE and SFE

CASE PSE . SFE
P(Hz) -1 0. 0.
peil) = P = .1,p@0) = .8 18.16 21.36
k k edy k . - . .
1 2 3
P(H,) = .2,P(H) = P(H) = .4 42.30 57.90
Markov-dependent 35.18 63.48
46




The variances shown in the figures of this chapter are the variances
associated with the first component of the state vector.

For the case of P(Hi)=l, both schemes perform equally well and have
zero percentage of wrong detection. The averaged variances at particular
stages are shown in Tables 4.1, 4.2a, and 4.3a for the case of independent
hypotheses. As expected the variance of PSE is lower than that of SFE.

The improvement of performance of PSE over that of SFE becomes pronounced
in the markov-dependent hypotheses case shown in Table 4.4a. The averaged
percentage of wrong detection at particular stages are shown in Tables
4.2b, and 4.3h for the case of independeant hypotheses and Tahle 4.4h

for markov~dependent hypotheses. The overall averages of percentage of
wrong detection are shown in Table 4.5. It is expected that.the percentage
of wrong detection for PSE is lower than that of SFE, and it is approximate-
ly fifty percent lower than SFE for the case in which the hypotheses switch
in markov manner.

The structure of SFE developed in this chapter is very comélicated
in the sense that it takes a larger amount of computational requirements
such as execution time and core locations as compared to those taken by
the PSE. The simulation results clearly show the superiority of the PSE

as compared to the SFE designed using the coupled risk formulation.
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5. TRACKING OVER FADING CHANNELS

A problem encountered in many applications is that of
distortion of the transmitted signal by the communication channel.
The distortion introduced by the channel can be characterized by
multiplicative disturbances which are responsible for such phenomena
as fading, dispersion and multipath [1]. As can be expected, the
presence of such phenomena complicates the problem of target
tracking in a multisensor environment. Ixolicit algorithms for
the probabilistic estimator for this problem have been derived and
its performance evaluated by simulations which confirm the advantages
probabilistic estimator. Details of the algorithms and the simulation
results are given in [2] which has been included as Appendix B of

this report.
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6. ESTIMATION USING QUANTIZED MEASUREMENTS

6.1 Introduction

In many practical situations, the observations are presented
to the receiver in quantized form. In general,measurements will be
quantized if they originate from digital sensors, in digital trans-
mission systems or when processed by digital computers. In this chapter
we will derive algorithms for the problem of tracking a target in a
multi-target, multi-sensor environment, when the observations are in
quantized form, using the probabilistic estimator approach.

It is well known [1] that the problem of estimation with quéntized
measurements can be considered to be equivalent to the estimation of
signals in the presence of additive white noise.

For a measurement equation of the form

z = h(x, v) (6.1)
the conditional mean (minimum mean square estimate) of any function f(x)
given quantized measurements zeA where A 1s some region (e.g. a hypercube)
can be written as

E{f(x) [zeA} = E{E[£(x) |z] [zeA} (6.2)
Thus the required conditional expection is obtained in two steps: (1)

find E(f(x)]z): this is the usual goal of estimation with unquantized

measurements; (2) find the expectation of E(f(x)\z) conditioned on ze€A.

For the case when )
x = N(x, M)
v = N(O, R)
(6.3)
z=Hx + v E(va) =0
50
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wvhere N(:,¢) denotes a normal distribution whose mean and covariance
are the first and second arguments, respectively, x is an n-component
vector, z and v are m-component vectors, and ‘H is an m x n matrix,

the following expressions for the conditional mean and covariance

\

are obtained [1]

E(x|zeA) = x + K [E(z|zeA) - Hx]

T
cov (xlch) =P + K cov(zlzeA) K

where K is the minimum variance gain matrix, and P is the covariance
of x that would be obtained had the measurements not been quantized.
These results show that quantization increases the e€rror variance of
the estimate as though it was noise added after the measurements.
Suppose a number of measurements are made at different times ti’
{=1,2 ... . Since the measurements at different times are correlated,
the conditional density of z given the sequence of past measurements
will change as more measurements are taken. Thus, even though the equa-
tions may be solved recursively, E(zlzeA) must be recomputed after each
measurement; this necessitates a complete solution of the equation after
each measurement is taken. We can, however, obtain an approximate re-
cursive estimate by assuming that the conditional distribution of the
state just prior to the ith measurement is Gaussian with mean and vari-
ance given by Eq. (6.4). For example, let us consider the linear messaée

and observation models

(6.4)



————

X " Bt I W

T ™

R ™ ¥ + Uk (6.5)

where X, is the n x 1 state vector, and Yie is a p x 1 output vector.

The m-vector w, is white zero mean gaussian with covariance

E{mkme}' kake'

Let us assume that the observations are quantized so that the estimate

of the state X, must be based on the information that
b, <z, <b w i, 9 ik 6.6
_J_ j j j ’ ( )

It can then be shown [ 2, 3 ] that the approximate algorithms for esti-

mating X, for the case when Rk is diagonal are given by

e P R R ‘ el
X k-1 " Pk Fe-1 ki
where &k represents a vector whose ith component is
4., = J[ukli el = Bpdy tHeely
f(lv, 1.)dlv ] fu ), = [b 11 ]
e e = By ey (6.9)
where f(+) denotes the density function of the ith_component of Vi’ Dk
18 a diagonal matrix whose elements are
W R B CRRCH BN RI(CHR)
[Enk? :]11 (d )y 1y - (u 0y A
[R“]“J[ | Fvdaty
q
ok X%k | k-1
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The filter gain and error variance equations are given by

T o el

K, = V,Cp [CV.C} + D] (6.11)
* ® Mx|k-1
T T

Ve ™ 4 1T Ky Gn Wi+ Nl < (6.12)

We now derive the probabilistic estimator for the problem of

target tracking described earlier. Thus, the observation model for any
sensor, corresponding to the three hypotheses namely (i) noise alone
(e.g., cut-off communication link), (ii) false alarm (e.g. thermal or
process noise, or clutter from a vehicle not being tracked), and (iii)

the vehicle being tracked, is given as follows:

1 . -
Hk Pz = uy (6.13a)
2 A
Hk % A x(k]k—l) + Vi (6.13b)
H3 $
kBT O X + uy (6.13c)

6.2 Probabilistically Supervised Estimation with Quantized Measurements

We use the structure of the probabilistic estimator de-
rived in Chapter 3, 1in which a set of parallel processing units

(PPU's) 1is used to process the sensor returns. On receiving

the quantized observations, each PPU performs a random labelling test

to generate a label ¢ corresponding to each of the three hypotheses.

k
The label is th2n accepted as the true hypothesis at that stage. Depend-
ing on the label, the observation from the iCh sensor is modeled accord-
ing to Eq. (6.13) by the corresponding PPU. The algorithm for com-
bining the observation models supplied to obtain the track estimate is

discussed later.
We can now consider the generation of the random labels.

Suppose there are M sensors and that at stage k, there are n, returns,

k
“k.f M. Let 2i denote the label generated by the ith PPU at stage k
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and let Lk be the vector

n
k,T
Lk = [l k sl 2k ] (6.14)
Let Lz denote the set of all past labels Lj s 1 =1 ... k.
Similarly let zi denote the ith sensor return at stage k and
let
T
T .T n
Y 2 k T . (6.15)
VA & [zk I ]
Since the observations are quantized, we can write
i -1
6.16
l_’ ™ bk ( )
Let Bk denote the hypercube in nk~dimensional space corresponding to the
set of observations at stage k. Then
(6.17)
Zk € Bk
Let Zﬁ denote the set of all past observations Zj » j=1, ... k and
let B: correspond to the quantized observations. Since there are three

hypotheses, the label li is a ternary random variable. When a new meas-

urement z:+1 i1s received, the PPU updates the probabilities associated
with the three outcomes on the basis of z:+1, the past measurement se-

quence B: and the past labelling sequence Lt. We can then write for

these probabilities

L MM
uk+1lbk+1 - L zﬁ € By L)

A M M M MM
2 Prob (b, <% < k+1|2k+1 1028y )f(2k+1 Hk+l|z:enk’Lk)
1
Prob(Bi < ey < P |% € B 190 (6.18)
where
A gt M, MM
Prob(byyy < By < B © B 1)
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lepmb(bkﬂ LR DR E (= CEAC
1 M M M
£, = w2 e By, L) (6.19)

fori=1, 2 ... nk; Jmal s 2 3.
If we assume that the hypotheses are independent from stage to stage,

we can write

k+l H-k.'.llz € Bks Lk) 1 = Hljd'l) (6.20)

j M _M
It only remains to determine f(zk+l|2k+1 Hk+1’ Z: > Bk’ Lk)' Let
xk+llk(Lk) denote the conditional expectation of Xl conditioned on the
sequences of past observations and labels. It then follows from the

measurement models of Eq. (6.13) that

' M M
f(zHl'zk"'l Hi"’l’ Zﬁ € Bk. Lk) = Np[o’ RHll for j = ] (6.206)

M
. =2 .20

+
v " Rp[ k+lxk+1|k(Lk) ’C1<+1"1<+1|k(L LLIRY
Afor j=3 . (6.20c)

5 .o M

It only remains to evaluate bl k(Lk). Unfortunately, as discussed
earlier, the computation of this estimate is not easy even though the
signal and message models are linear, because of the quantized nature

of the observations. We can, however, use the approximate algorithms

~ M -

of Sec. 2 to obtain the estimate X4l k(Lk)' We will restrict ourselves
to the case where Rk is diagonal. The extension to the case of nondiag-

onal Rk is straight forward. Let Ct+1 denote the matrix

C:ﬂ . ((CLI)T:(CI;-H ;....(c" (6.21)
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and q: and u: denote the vectors

qlic ~ Ei = Ci’ﬁﬁglul a2t
w = b - clt;kll&l (6.22b)
Let di denote the vector whose jCh component is given by
i i
[dil : f([qk]i) A f([uk]j) S
k'J [ui]
k'j
PRI RRLARY
Q 3

where []J denotes the jth component of a vector and f(¢) is the (normal)

Let D1 denote the diagonal

density function of the jth component of Vi N

matrix whose elements are given by

(914 £ Clay 1) = la], £C03E1)

1.-1 P
[(Dk) ]33 [dk]j[cl,‘]J [1] (6.24)
(R,] i v 104w 1
33 ij L j
[qk]j
Let
M 1.T,, .2.T, o an
dk = [(dk) :(dk) eus (dk ) ] (6.25)
and
M1 =
Bk"t'“W’
2
D
M
o, = | ~I- 5!7 (6.26)
fom
= | " -




Mer1 )k T %
b VS Ry T [ WL L)
where the filter gain equation is

-1
T, M T, M
K1 = Vk+1|k(C:+1) [ck+1vk+1|k(c:+1) * D]

The error variance equation is
T
Vi i T %% T N

M
Vet = [ - R G Vi |

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

Equations (6.18)-(6.31) constitute a complete set of approximate algorithms

for estimating the state of a target in multisensor environments when

the observations are in quantized form.

6.3 Simulation

In order to determine the performance of the probabilistically
supervised estimator with quantized measurements, the same tracking ex-

ampl? considered in earlier chapters was simulated. The system parameters

are given as follows

;1 - x position at stage Kk

Xy X speed at stage k
&

& Xy = y position at stage k

X, =y speed at stage k

x - speed change between stage k and k + i]

ly - speed change between stage k and k +




1 T 0 O]
0 1 0 O
¢ =
E o ¢ 1 =%
0 0 0 1
0 0
1 0 4, 0
I’ = Q =
k » Y
0 0 0 qzz(“)
0 1
where T is the sampling period.
i 0 0 0 r® 0
C - 5 =
k lo:- 8 1 @ 5 e r,, (0

In the simulation, the following values are used

T = 2 sec.

p=20

B * 0.01

X,» multivariate normally distributed with dimension four,
N4 (0, 0.01)

Qk = diag [0,0]

Rk = diag [0.00828, 0.00828]

Quantizer interval A =

= 0.03125

58

——— e — p—




2 = 5, number of sensors

Prob(H}) = Prob(}) = 0.1

Prob(ﬂi) = 0.8
A 40 stage process was simulated, and 80 runs were averaged to obtain
the mea1 square error. The mean square error in the x and y positions
for the first 10 stages are shown in Fig. 1. Table 1 shows a comparison
of the mean square error obtained using the probabilistic estimator as
given in [8] with the results obtained with quantized measurements.

As can be expected, the error is somewhat larger with quantized

measurements.
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STAGE
10
20
30
40

TABLE 1

MSE Comparison of PSE(Q), PSE

r(u:) - P(Hi) . p(ni) - 0.8

PSE(Q)
.02223
.01122
.00179

PSE(8]
.02071
.00283
.00159

.00065
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7. CONCLUSIONS

This research has considered the problem of joint detection and
estimation of signals. A specific problem of tracking a target in a
multi-target multi-sensor environment was investigated. This problem
is somewhat typical of the type of problems encountered in this area.
In order to overcome the exploding computational requirements of the
problem, a suboptimal scheme which uses a probabilistic judgement to
eliminate extraneous returns was derived. Explicit algorithms for
tracking the target have been derived. The scheme was compared with
two other suboptimal schemes in terms of performance and computational
requirements., The tracking algorithms were extended to include cases
in which the observations are received over fading media or in quantized
form. Simulation results indicate that the performance of the scheme

is acceptable under these conditions.
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APPENDIX B_

Target Tracking over Fading Channels

F S. CHANG AND M. D. SRINATH

Abstract—The problem of tracking a target in 2 multitarget environ-
ment when the observations are received over a fading channel is
considered. The optimal Bayes solution to the tracking problem in such
cases involves growing memory and hence is not feasible. A particularly
effective suboptimal scheme uses a probabilistic judgment at each stage
of the observations to overcome this problem. This concise paper
presents an evaluation of the scheme in terms of mean-square error
performance when the observations are received over fading channels.

I. INTRODUCTION

Recently there has been an increasing interest in the syn-
thesis of communication systems for space applhications. The
communication channel modifies the transmitted signal so that
the desired message may arrive at the receiver terminal dis-
torted, attenuated, and delayed. The message i1s usually ob-
served in the presence of additive noise. The distortion intro-
duced by the channel can be characterized by multiplicative
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disturbances which are responsible for such phenomena as
fading, dispersion, multipath, phase distortion, and time delay.

In recent years considerable effort has been directed toward
the apphcation of stochastic estimation theory to the problem
of demodulation of modulated signals observed in noise [1]-
[4] Snyder [S] has presented a state-variable model for a
wide variety of analog communication systems and channels
for a class of Markov processes. He has also presented an
analog model for the Rayleigh fading channel in terms of two
quadrature multiphcative noise processes which depend upon
the frequency of the transmitted signal. Stochastic message
and channel disturbance processes were formulated as com-
ponents of the message model for mathematical convenience.
The effect of the modulation process, multiplicative noise, and
additive noise was considered in the observation model. The
message model was augmented to include the model generating
the multiplicative disturbances. A summary of results in this
area pertaining to angle modulation is given in {6].

This concise paper presents a scheme for tracking a target
in multitarget multisensor environments when the observations
presented to the receiver are received over such channels. The
dynamic equation of motion of the target being tracked is
assumed to be modeled by a set of Gauss-Markov difference
equations

Xne1 = Buxy + Tran
Yr ==hlx,,,k] (I)

where x) is the n X | state vector and y; is a p X | output
(message) vector. The m-vector w,, is white zero-mean Gaus-
sian with covariance E{wrwe} = Jybne. i is an n X i state
transition matrix, and [, is an n X m excitation matrix.

If a particular sensor is not locked onto the target being
tracked, the corresponding sensor return at any stage can
originate from one of three sources (hypotheses), namely, 1)
noise alone (e.g., cutoff communication link), 2) false alarm
(e.g., thermal or process noise, or clutter from a vehicle not
being tracked), and 3) the vehicle being tracked. The receiver
performs under uncertainty of reception in a ternary case
which considers all the possibilities. A suitable model for the
observations under each hypothesis can then be formulated as
follows [7].

Under /1, the observation z, is giveh by

”kl 2 T Uy ‘2)

where the p X | vector uy is a zero-mean white Gaussian se-
quence with covariance E{ugtip } = Rp8 ) m. Under hypothesis
H?, the current observation is not used in track updating and
the one-stage prediction is used instead. The effect of the
extraneous returns can be modeled as a white zero-mean Gaus-
sian sequence v, with covariance E{VpVm} = SUpbpm. It is
therefore reasonable to model the observation z), under hypo-
thesis /2 as

,,',z i 2n =hll"(k|k—'l),kl +U~ (3)
where x(k | k — 1) is the one-stage prediction of xy.

The expression for the covariance kernel § is given in (9],
and for p = 2 simplifies to

CaVain—-1CaT + R
n.= k—=1%% L (4)

”
142 nrp - TR

where Vi p—y = E{(xy ~ Rypp—yXxn = Zn—1)T) npp is
the expected number of incorrect returns in one sigma region
0k = min {(ChVih~1Ce ™ + Ry)y}1/2, and p is the correla-
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tion between two mcasurements, and where
) dh "
Co =\ — ) xx = Xppe—1- ()
bx,,

The noise sequences wy,, uy. and v, are mutually indepen-
dent and are uncorrelated with respect to the initial state xgp,
which 1s multivariate normally distributed of dimension n with
mean go and covanance Vo, N,(pg. Vo l.

Under /43, the observation corresponds to the vehicle being
tracked, and hence we have

,{h3 2y =th|,,kl + Up. (6)

It is well known that the optimal Bayes estimator for this
problem involves an ever-growing memory and is hence not
feasible. This is because the estimate of x, at each stage
depends on the sequence of past true hypotheses. This se-
quence, however, is unknown, and hence the estimate must be
averaged over all possible past sequences. In the pattern recog-
nition context, this is usually referred to as unsupervised
learning. (The situation where the sequence of past hypotheses
1s known corresponds to supervised learning.)

Let Zx™ denote the set of observations up to stage k, and
let )’ correspond to a particular sequence of past hypotheses
at stage k. We can then write for the estimate

* Xy = E{xy | Z\M}

Ny

Y Elxe 1ZeM. a4 /}Ploy | 2,™) 1
=1 -

where Ny (=3"%) represents the total number of possible se-
quences at stage k. It is clear that as the number of stages
increases, the total number of sequences over which the esti-
mates must be averaged increases very rapidly We therefore
need to resort to suboptimal schemes which use a fixed
memory. There are basically two approaches which can be
taken to solve this problem. We can use a fixed number, say X,
of past observations in arriving at our estimate. Alternately,
we can use all past observations in our estimation scheme, but
choose only one (or more generally, a fixed number M) of
possible past sequences over which to average. A few such
schemes have been discussed in [7]~[9]).

In this concise paper. we use a probabiiistic scheme to
decide at each stage which one of the sequences ay! = ay™ ¥
corresponds to the true sequence. The effectiveness of this
probabilistically supervised estimator (PSE) is investigated in
terms of mean-square error and variance when the observations
are rcceived over fading channels.

I1. PROBABILISTICALLY SUPERVISED ESTIMATOR

In generating a probabilistically supervised learning se-
quence, one has to design a probabilistic judgment at each
stage of observations on the sensor returns (8], [9]. This judg-
ment is carried out in parallel on each sensor return in such a
way that each return is assigned a classification label which
then serves as its true hypothesis. We can think of the scheme
as consisting of a set of parallel processing units (PPU), ohe
corresponding to each of the sensors, and a central processing
unit (CPU) which combines the processed returns from !he
PPU’s to update the estimate of the target track. On receiving
the observations, each PPU performs a random labeling test to
generate a label /, corresponding to each of the three hyPO'
theses [8]. The label is then accepted as the true hypothesis at
that stage. Depending on the label, the observation from the
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«th sensor 1s modeled according to (2)-(4) by : the corre-
sponding PPU. The CPU algorithm for combining the ob-
servation models supplied by the PPU’s to obtain the track
esamate 1s discussed 1n a later section.

We can now consider the generation of the random labels.
Suppose there are M sensors, and that at stage k there are ny,
returns. ny, & M. Let /' denote the label generated by the ith
PPU at stage k, and let [(k) be the vector

L(k) = “.1“3 ,.N.IT.

Let 2. ™ denote the set of all past labels L()),j =1 - k.
Similarly, let 2! denote the ith sensor return at stage k,

and let
T
2(k) = lelTthr Zk"* ]T.

Let Z,* denote the set of ail past observations Z(j),j = 1 k.
Since there are three hypotheses, the label /' is a ternary ran-
dom vanable. When a new measurement z, 4 ' is received, the
PPU updates the probabilities associated with the three out-
comes on the basis of z, ,,', the past measurement sequence
Z.M, and the past labeling sequence L,™. We can then write
for these probabilities

Anir' ir! =Hos i LZkM LM fly' = ot 1 Z,M L, M)
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Ill. AUGMENTED MODELS

Typically, the signal nonlinearly modulates a sinusoidal
carrier that arrives at the receiver distorted by disturbance
processes encountered in the transmission media. These
disturbance processes usually include both additive noise and
multiplicative noise. They interact with the channel inputs in
a randomly time-varying fashion. In particular, the multi-
plicative Gaussian channel noise sequences by, and ¢, are
assumed to be generated by linear time-invariant models de-
scribed by two one-dimensional first-order discrete stochastic
equations:

brs1 = ®bby + [1 =80 1mb + Wb (14)
and
Chv1 = Pucr 11 — B mp + W, (15)

where w;,® and w,? are statistically independent scalar zero-
mean white Gaussian sequences with variances q,° and qr€,
respectively, and m,® and m,° represent the time-invariant
means for the multiplicative sequences b, and cy, respectively.
Furthermore,

fheri =Hasr! l2n s\ Z\M L M) =

where

[Gair! 1 Z,M.LM)
= tﬂtn Ve = Hes 2™ L M)
i=1

flnas' V235 14M),
for i=12ny,j=123. ; 9)

If we assume that the hypotheses are independent from stage
to stage, we can write

Mheid' =Hy it 1 ZM LMY = 41 = Hi ). (10)
It only remains to determine f(zj 41! | ln+1' = Hyp41!, 2 M,
Ly™). Unfortunately, the determination of this density func-
tion is extremely difficult because of the nonlinear nature of
the observation models. We can seek to approximate this

density function by a Gaussian density which has the same
first two moments. We then obtain

Ranay' Vheay' = Hy ) LZWM LMY = NplOR, 44 '),

for j=1 (11)

- N,[h'(i., 1e(La®)k + D% +11(LM)),
for j=2 (12)

= Nplh'Gig s yin(Lyg™)k + 1),
C.‘O I‘VHOIM«L.M)(C.¢“)T + R."'l'
for j=3 (13)
where N,(m,02) denotes the p-variate Gaussian density func-
tion with mean m and variance 02, and Ry, §2i, and C), are as

discussed earlier. The superscript 1 denotes that the quantities
correspond to the ith sensor.

(8)
Rzn it 1 ZM L")

my® =0, for Rayleigh channel

mb =1, for Rician channel
and 7 is the specular component [9].

In order to complete the augmented message model, one
should adjoin the message equation of (1) and (14) and (15)
in any order. For instance, one may write

Xp+1 = OnXp + D@y + Yy (16)
where
-Xk Wiy r 0
Se=[bx [, Ox=|wd |, Fn=|md
[ cx W€ my*
Fak: 0 F“E ]
=l Ia* 0 § Tl 1 ol
[ ol [ [ 0!
L0 B 01
and
0 0 0
Ve =] 00 (1 —y®) 0 : an
00 0 (1 =)

For the augmented state model, the observation model
generated by the ith PPU is given by (see (2), (3), and (6)]

z,,‘=u,,. if ’k"—"'H“l (‘8)
2! = hEyp—r k] + o, i D=2 19)

and
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' = h(Tpk] + uy, if = H,3 (20

where ¥y, 1 represents the one-stage prediction of Xy -

IV. ESTIMATOR ALGORITHMS

We note from (16) and (18)-(20) that the message and ob-
servation equations are nonlinear. We again resort to a wide-
sense or Gaussian-fit approximation to the relevant a posteriori
density functions Axe | LM, Z,M)and A3, 44 | Le™. ZM).
Let us make the following definitions:

Rpar™ 2 [Bpyqk + 1] A"k (Tpyy k + 1137 (21)

ahh ‘M ahk lﬁ' o
= - 2 _’ Yn¢1=7k¢uk(l.,,’“) (22)
0%k 4+ 1 [k OXp +1
and
Ryia™ & diag [Ry+1? “*Rpsq"k]. (23)

Using a first-order Taylor series approximation about the one-
stage prediction, the following equations for updating the first
two moments of the density functions can easily be obtained.
These equations are similar to the extended Kalman filter
algorithms (11].

s 1 (L™) = ST (L™ + Yutn 24)
Vs 1n(La™) = on V(L )0 T + T 0y T T (25)
Ohy M \T
Kee1lp 1) = Vesain@pM){ 77—
OXp +1 1k
Ohy 4 M
‘I 5 ] Vesantls™)
OXp+10k
oh M\T -1
"_.Tk—tl— +Rysg™ (26)
X p + 11k

Xuea1(Lases™) =Fyoqnlla™)
+ K sy U )l 2™ —hy ™) 27)

and

Ves1nsrt™) = | 1= Kpsr(Les ™

Oh M
) | Viana™) 28)
X+ 11k
where
Pasa™ = hy o M Eny g n(La™)k + 1), (29)

Equations (24)-(29), when used in conjunction with the
labeling algorithm of (8)-(13), constitute a complete set of
algorithms for target tracking. The algorithms are summarized
in Table I.

V. SIMULATION RESULTS

We consider the problem of multiple-sensor tracking of an
aircraft in the presence of fading. The message model is as in
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TABLE |
ALGORITHMS FOR TARGFET TRACKING
Augmented Messape Mode | Mgy ® 'h;h enl # ‘&,.
Yy 7 N k] (16)
; gy (N £
bservation Model oy (14 SWen (18)
R Kl « v g et (19)
K ®h-1' K A
{ 5
L hl-\. k| + u if : . u: (20)
1«1, 2 LY M
Label1ing Algorithe: D R
{ T | = I A a N
' 1“&01 wer ® W 2y Ly -« vy = My l"li‘i
P e - (8)
“kel Tkt K
where
b}
i A T ¢ i 1 ) . N S M N
”‘l'l Zk‘ Ll) ):1 “‘Iul kel - “ktl' /'k‘ Lk‘”'uol "k&l l‘. L.)
(9
T e M S
LCARRCH SRR I O - (10)
1 .1 [} Mo
flag gy 2y = Wy 30 1)
{-'(o. LY ify=1 (11
- | . : M A1 M -
f N Inlx o (L) k1), 3 ) ty=2 a»

H 5 M (R SR IS TR ¢ 1
{ ";‘""ulm“‘h" k+l), CrotVion kM Cier? * Reay)
it 3 =3 a3

Estimation Algorithms:

2 . L
Bt k0 AN ¢ AN (20
LR RS
Yoot R = Mg 'u"n?u .
W) u
n
N M {' ) f”\o[ ' g
K1 tier) = Vo 1T f - i Voot a6
i "hlikJ L el k)
e It qi-x
Ln
S|, (26)
[)'kolli} |
: ] 2 " Ry R
ERRTU I WL R LWL R o8 hDJ (24
[ 1
{3
M { " [Meer 1!, N
Veorhan? * 1 Rt i Y “e
| Ve
|58 -

[7] in which the parameters of the aircraft being tracked are
given as follows:

" x : position at stage k
xy = x : speed at stage k-
y : position at stag* k
Ly : speed at stage k (4% 1)
*, £ change in x-speed between stage k and stage k + 1
e _chaogc in y-speed between stage k and stage k+1 fax 1)
O 0 00
o 1 00 o 0
' A I 00
L0 0 0 I Juxe 0 1 Juxa)

it
» ;- L3
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Fig. 1. MSE over fading channels.
and

q31(k) 0
O =
0 q22(k) |(2x 2)

where T is the sampling interval.

The additional state space associated with the fading
channel processes is represented by two first-order Butter-
worth spectra given by

ZK,,ob’
Sp(w) = S (w) = ———— (30)
w? +K,2

where K, is the half power frequency or one-sided bandwidth
and 0,2 is the spectral power. The two corresponding one-
dimensional discrete equations are

bh#l = C—K’Tbh + “ —C.-xb‘rlll.b + w.b (3')
and
Chsy = KoTep + [1 —e KT |up + w,©. 32)

The excitation covariances are

q.D = 002“ - ,—2'(.01')
and

q.e = 062“ - '—QKDT)_
We assume that the message amplitude modulates a sinusoidal
carrier whose frequency is large compared to the significant
frequency of the message, so that the signal component of the
modulated message has a bandpass spectrum that is essentially

disjoint from that of the message. In this case, we can write
h{xy .k} in the observation model of (1) as

h"?h.kl - 'h]hz lT

where

hy =/ 2x,(k)xg(k) cos (kWy) + /2x(k)xg(k) sin (ki¥;),

hy =/ 2x3(k)xg(k) cos (kWp) + v/ 2x3(k)xg(k) sin (kWy),

W, and W, are the carrier frequencies of x-measurement and
y-measurement, respectively, xg(k) = by, and xg(k) = c). The
results for nonfading channels can be obtained by setting
xg = 1 and xg = 0 in these equations,

The following set of parameters were used in simulations:

T = 0.002
K, =30
P(H') =P(H,?)=0.1 and P(H,3)=08
R, =0.1656
y=$5 and 10
W, =3141 and W,=6282
S5(0) = —10 dB.

A 100-stage process was simulated, and ten runs were
averaged to obtain the mean-square errors as well as the vari-
ances associated with the first component of the augmented
state vector under five ground sensors. The results are shown
in Figs. 1 and 2. As may be expected, the curves associated
with fading channels are bounded from below by those for the
nonfading channel. It may also be expected that the transition
from the Rayleigh model to the known signal model may be
obtained by varying the value of the specular component v in
the Rician model, with ¥ = O corresponding to the Rayleigh
channel and y = ° to the completely known signal case. The
corresponding normalized mean-square errors are defined as

Elxy — & )x = 5,071,

Elxyxy Ty,

(where for any matrix A, [A4];; denotes the ijth entry) and are
plotted in Fig. 3.
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V1. CONCLUSIONS

This concise paper has presented a set of algorithms for
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APPENDIX A

STATISTICS OF EXTRANEOUS RETURNS

The output equation for extraneous sensor returns (hypothesis HZ)

was modeled as

v (A.1)

e ™ C Sifr-1 Yk

where vk is assumed to be Gaussian, white with zero mean and covariance Qk.
The assumption of whiteness of the miscorrelations has been discussed in

[1] where it has been shown by Monte Carlo simulations that this is a good
representation for predicting performance in dense environments.

In order to derive an expression for Qk’ we can follow the derivation
in [2] and assume all returns fall within a region (gate) G in the ob-
servation space and let the size of the gate tend to infinity. In order
for (A.1) to represent an incorrect return, the corresponding return must
be the closest to Ck lek-l given that the closest point is an incorrect
return. Let

T
Y = Cp Vklk-l Ce + R (A.2)

where V and Rk have been defined in Chapter 2 and let

k|k-1
1/2
= )

% min [(wk‘ifj (A.3)
and let M be some integer.
We then define a region ﬁ as
~ a5 ~ ~ 2
G = {zklzk -2 - C xklk—l"lzk” ‘pk—l < Mo, } (A.4)

Similarly let D be the region such that

> gl o 2 2
D= {yklyk = Ck )Lklk_l + Vk; Ilka wk"l f_ || Vkl | wk—l} (A.5)
It then follows that there should be no other returns with residuals in

the region [ n D, so that the density function for Vi given that vk is

an extraneous return is




f(vklvk is residual of an incorrectly correlated return)

= f(vk no other return in G 01 D)

Plno other return in G 0 Bivklf(v )
5 k (A.6)

P[no other return in G 0 DJ

If we assume that all incorrect returns are uniformly distributed for
Vi € C and that G N1 D can be replaced by G with little error (see [2]),
we can write

P [no other return in G n 5|vk]

= P [no correlation is made | proper return is detected] Py

+ P [no correlation is made | proper return is not detected] (1-PD)

2 . et 4115 1y 1145
= [1 - . exp{ y -1}dy ]
(2")n/2|wkl1/2 ¢ 2 k wk k
R j ~
s exp {- F——75 |_dy,} (A.7)
4 Nkll/z 3 k

where PD denotes the probability of detection. We note that the denomi-
nator of Eq. (A.6) is just a normalizing constant. The preceding equation
for p = 2 reduces to [2]

f(vk| no other return in G n D)

= const. exp{- 1/2”\)1"”2&.2 -1} (A.8)
" k
where Qk = ﬁjﬁf g
1+3° 0, V1 - pZ

Here p is the correlation between two measurments, and nTF is

the expected number of incorrect returns in a one-ok region.
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