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SU?Aff4ARY

Approximate maximum likelihood estimates are obtained for

the ordinates of a step function spectral density in the Gaussian

case. The estimates are simply integral averages 01’ t~ie periodogram

over the frequency bands in which the density Is con~ tant. Whittle ’ s

form of the approximate likelihood is used. Results are given

for scalar and vector processes.

Some key words: Stationary Gaussian process; Step function

spectral density; Periodogram average ; Approximate

maximum likelihood estimates.
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1. I n t r odu c t i o n

E st i m a t e s  of the ~p € c t r a l  -ier ~s ty of a s t a t i ona ry  proc ess

ar: t y p i c ’t i ly  c n s t r u c t e d  by smcothing the p e r i o d gr a m .  The - motiva-

tion for this p r o c e d u r e  is well-known . For a lavg sample size

- u i  unit: r suitable ccniition s the expectation ot the periodogram is

ap~-roximat -ely equal to the spectral density . !1ow~ ver , the variance

~ic~~s not t en d  to zero as the sample size increa:es . Averaging ot~

the periodogram reduces the variance and is a m~- -thod which can be

used to ~-roduce a consistent ~timate . At ts~ ::me time tne  averaging

may incr~-ase the bias .

Spectral estimates constructed by periodogram averaging are

• essentially estimates obtained by the method of moments. They are

formed by replacing population covariances by t r i c ir  sample analogues

and then smoothing for the purpo se of stabilizing the variance. In

this paper we shall assume a Gaussian model and show that periodogram

averages ar e approx imate max imum likel ihood e st imates of certain

spectral parameters. The spectral density is assumed to be a positive

step function with a finite number of distinct ordinates. These

ordinates are the spectral parameters to be estimated.

To derive the results we shall use the approximate Gaussian

likel ihoo d propose d by W~iittle ( 1953 a,b, i954) for the analysis
of’ finite parameter linear time series models. The use of a step

function spectral density in Whittle ’ s approximate likelihood leads

to a simplif ication which permits easy exact solution of the

approximate maximum likelihood derivative equations. The resulting 

-
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estimates are in fart e;t i m a t  ~ f t h’ ‘tverat~ 
amount  c f  power in

e ach of a set cI’ bands d~ t - r r n i st-d ~~ a f t n i t f -  j : t r t i t i o n  of the

f r e q u e n c y  a x is .

The a p p r u x i r n : i t e  l ik~-l ihoc d t H u sed  i s  i l s c U : -~~ I in

*2 and r s ~~1ts for  scalar  t m :  ser ~ ~re i~ r i v~:i in §~~~~~
. The

v e c t o r  cas~ is t r e~ t~~i in f 4 ~

2. An Appro x imate L i k e l i h o o d  for  a G a u s s i a n  Time S~- r ies

Let C x~, t=O , ± 1, . .  . 1 be a : t a t i o n a r y  Gauss ian  process

with mean 0 and spectral density f (X ) (-rr<X~~ 7r). We assume

throughout that 1(X) is positive. The problem to be considered

is ~stLmation of f(X) or of parameters associated with 1(X) when

an observation of x = (x1,. . . ,X~~) is available. The exact

density of x is

(2 ~~~~~
)

1T

1
~~~~~~~~~~~ è exp(-~-x ’z~~x), ( 1)

where ~ is the covariance matrix of x.

Let ~~~~~ t=O , ±1 ,...) be a sequence of independent variables,

each with mean 0 and variance ~
2. Then the proce s~ [x

~
l defined

by

X t 
= z ( t = C , + 1 , . . . ) ,  ( 2)

where ~~ = 1 and E~~0 
ó~ < ~~, Is termed a linear process. The

spectral density associated with (2) is

.5 .~ .—
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2
v ( x )  = 2 .  ~ (-i r < X  <ir).

sr r j = O

It is cc-mrnon to assume that  each in ( 2 )  is a funct ion  of a

vector of’ parameters about whish i n f e r e n c e  is Ic sired. This is

the case , for example- , when [xt) is an ARMA ( r ,~j  process,

p q
~ ~~~~~~~~~ = 

~ ~k~ t-k 
(t=o,+1 ,...),

j=0 ~ k=O

where a0 = 1.

For the ca e of Gaussian models of the form (2) Whittle

(195.5a,19524) replaced (1) by

(2~0
2
)

tT exp L ~ i(~~
L~~ -iT 1(X) J

(3)

= (2iT )
_ T 

exp F- ~~~ 
log r (X) ~ I(x4 dX1

L ~~ 
- i T t  1(X)) J

where

1(X ) = — Z x~
e 1 ( - 1 T < X < l r

2irT t= 1 —

1-; the per iodogram.

Two consideration s are involved in the approximation (3) .

One is the replacement of by the matrix ~iet’ined by

= I ~ 2 
AlT 

e~~~~~
t)f

_1
(X)dA\

~ (2ir) -ir
I s,t=1,. . .,T
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which leads directly to t h - exponent in the first lira of (3).

* -1
:t can h~ shown that in fact - is ~o s lt iv e  semidefinite

for  every stationary proc -~ss ci
’ the fo rm (2) wIth a positIve spectral

* -1
density . Moreover , the rank of’ Z - is r~in~2 max (p,q),T) for

an ARMA (p,q) process and is T it’ [x~) of tne form (~ ) is not

an ARMA (r- ,q) proc ’rs with p and q both finite. (See Shaman, 1976.)

The other feature of the approximation (3)  is the replacement

of by (s~ )*T. Note that the second line of (3) follows

from the first by

r .
~

= exp~ ~~~ log[2irf (X )JaX~L 2 ~~~
-
~ J

wher~ ~2 is the variance of’ the one-step-ahead prediction error

and is the same as the variance of’ in (2). (See, e.g., Grenande r

and Rosenblatt, 1957, p. 69.)

The replacement of by (02)*T may be motivated a :

follows. It is well-known (Grenande r and Rosenblatt, 1957, pp. 103-5)

that the elgenvalue s of the Toeplitz matrix Z are app roximately

given by equally-spaced spectral ordinates. Then, denoting the

elgenvalue s by X~ (j=i ,. . .,T), we can write

T
log ~~ = ~ log X

— 
J=1

T I
E log~~27rt’(~ !t.~.)~

L T J

and the latter sum is approximately

_~L.. log( 2irf (Xfldx
2ir -7r

________________ ____________________________ 
_____________________

____ 
- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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5.

This heurist ic argument for the approximation of

~~~~; not dependent upon the representation of [x~) in (2), but

holds for any process for which log f(X )dX > -~~~~. Noreover,

the same argument indicates that the eigenvalues of are ap-

p r o x i m a t e l y  given by equally-spaced values of f 1(X). The matrix

may be taken as an approximation to for processes Ix
~
) more

general than (2). In fact, = if both are (two-sided)

infinit e- -dimensional matrices. That Is,

r=~~ 

a (s_r)c *(r_t) = 6(s-t) (s ,t=O ,±1,...), (4)

where 
~~
(•) is the Kronecker delta and a(.) and ~~*(.) are the

*elements 01’ the Toeplitz mat r ices  ~ and ~ , respectively. The

result (4) follows because the left side of (4 )  is the convolution

of two covariance sequences, and the Fourier transfo rm of this

convolut ion is 2rr t ime s the product of the corresponding spectral

densities.

For the above reasons we shall use the approximation to (1)

given by the second line of (3) when C x .~} is any sta tionary proc ess

with a positive spectral density. The vector case analogue of this

approximation will be used in *4.

3. Periodogram Averages as Approximate Maximum Likelihood Estimates.

In this section we assume the spectral density is a step

function and derive approximate maximum likelihood estimates for
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the o r d i n at e s  st ’ the dens i t y . Let

= ~ f~ c~~( X )  (O~~~X < ir ) ,  (5)
j = 1

w e  r~

c~~( X )  = 1 (X .1  < A < A .)

= 0 (othe r w i s e ) ,

f (_X ) = f ( X ) ,  and 0 = X~ < A 1 < ... < X q = 7T~ set f ( i r )  = fq~

Since

= ~~~~~~ c . ( X )
j=i i~ ~

and 1(X) is symmetric , the approximate density (3) bec omes

(2iT)
_T 

exp - log t’1 c~ (X) dX + I(X)c 1 (X )dk . (6)

L 277 j = 1 I ~~~O ~ f .  0
I. 3

Let L denote the corresponding approximate log likelihood. Then

= - 
T piT ~~ c~~( X )  

- 
I(X)c~ (X)~~ 

dX (J=1 ,...,q),
f~ 2ir 0 1 1 i i,~ J

and approximate maximum likelihood estimates are given by

fir A
o I (A )c 4 (X)dX r i

A I(x)dX
J “ 1

~~ 
c~ (X)dX X

,~ 
_ X

~ _1 
—

(7)

(j=i,...,q).

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
- —. .

~
. . .

~~~~~~~ ~~~~~~~~~~~~~ ~

- - - - - - . -
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Now we cons ider  a sy m p t o t i c  properties of th~ es t imates  (7) .

Care i s  r equ i red  tn the analysis b ecause  r ( A )  is  not con t inuous .

Fir. t we note that 8f~ c e n v  rges to f~ a; T - -
~ ~~~. To see

th i s  wr~ t

r 1( X ) d X - ( X ~ - X~~ 1)r~ 

r
X
j

= F , ( A _ v ) f ( v ) d v d X  — j 1 ( X ) d X  (8)
—77 

r
j — 1

A

= F’~ (V) - i t ’ (v + A )  - r(X)} dA dv ,
-iT A .j—1

where

2~
F (v) = 

sin ~TV
T 2irT sin 2

*V

1.: the Fej~ r kernel. The convergence follows as in Theorem 1.5.1

of Dym and McKean (1972). Although r (X) is not continuous, the

inner integral in the last line of (8) is a continuous funct ion

of V . From this fact  an d properties of the Fej~ r kernel, we

obtain the stronge r result that Ta(f~ - f~) converges to 0 for

0 K a < 1.

Next consider

T~ (?~ - t’~)
2 

= TVar f~ + T(SI’~ -

The secon d term on the right-hand side tends to 0 as T + o o , and

_ _ _  _ _ _ _ _
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A . A

T(X~ - A . 1) 2 Var I ’~ = T :
X~~

1 
SX~ 1 

C O V ( I ( X ) , I ( V ) } d X dV

=T S 3 ~~ F ~s FT
(U +A ,

~~
_V )f (

~~
)d
~~ 

2

A .1 ~A .1 L ~ -iT

2

i- iT FT( A ,~~+v)f (P)d~~ 
]

dAdv~

where

- 
sinlA T sin~VT

2 iT Tsin IX sin~~v

(see Anderson, 1971, Theorem 8.2.8). The second summand in the

last form of (9) is

T $  

X~~~X 

~~-~~~~-iT 
F~ (x,x÷e)F~ (y,y+o )f (x_x )f (y_x ) dxdydedx.

3-1 j-i

A detailed evaluation of the limit of this expression is lengthy and

tedious. One follows the same steps as in, e.g., Theorem 9.3.1

or Problem 16 of Chapter 9 in Anderson (1971), except for an adjust-

ment to account for the fact that f(X) is not assumed to be con-

tinuous here. This adjustment consists of observing that

)f(y-X)dX

is uniformly continuous in x arid y. The limit of the first

suminand in the last form of (9 )  is 0. It follows that

- -~---~~~ 
~~~~

--r__- 
—-—-~~~~~~..~~~ “

~~~ 
“-~~~~~~~~~~~~~~~~

- ~~~~ 
- __________________ 

r~~
- - 

- -— —— —- - — -
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lim T ( X  . - A 1)
2 Va r f . = 2n 

r
X
j 

f2(~ )dX
~ . 1— X i i

or

ltm  r Var 1’. = (j=1,. . . ,q).
T -~~ -A_

~ i 
i-i

Ivlor. ov€ r ,

Urn T Ccv 
~~j ’~

’k ) = o ( j~’k ) .

We make several comments. First, the main purpose of the

calculations in this sertion has been to demonstrate that periodogram

ave rage s eme rge as app rox imate max imum l ikelihood es t imates  of the

ordinates of a step function spectral density in the Gaussian case.

If the density is in fact a step function, it is unlikely, though,

that the statistician desiring to estimate the ordinates will know

the corr ect partition (X~~ i=o~1~ . . .,q). For frequencies V and

U with  V > ~A the average

. 5 i ( X ) d X

has expecte d value whi ch converge s to the same exp res sion with

f (A ) in place of 1(X), and T times the variance converges to

2ir 5” f2(X)dX .
(v_ i . t ) ~.t

However , spectral dens ities encountere d in p ract ice are best

viewed as being continuous. Thus, the model ( 5) really should be

regarded as an approximation to a continuous density . One may

—
I _ _ _

~~~. p .--
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in t e r p re t t h i s  approximat ion as having a r isen  f rom smear ing of

the  original continuous density . The model (5) will be difficult

to employ in practice unless a reasonable partition for {G ,s]

is fo rmula t ed  a p r io r i .

A final comment is that  the asympto t i c  i nf o r m a t i o n  m a t r i x

corresponding to the  approximate  l ikel ihood ( 0 )  is diagonal with

elements

- lim 4 1 ~~L =—l im 4~~~~ 5
ir J c~~ X ) 

- 

2I (A)c
1
(A )~

T-*~~ T T* oo 2ir O ’~ ~,2 Jj 3 ‘3

A — A .
- - = 

j j 1 
(j=1 ,. . .  ,q).

2w

Thus the estimates are asymptotically efficient in this sense.

4. The Vec tor Case

The results above extend to the vector case. Let 
~~~ 

be

an rn-dimensional Gaussian process with mean Q and spectral

dens ity ~ (X) (_ir < X < ir). The matr ix  ~ (X) is Hermitian and is

assumed to be positive definite for each A .

Denote a time series by 
~~ ~~~~~~~~~ .,.~~~~) 

and let

x = vec (~~) be the m T  X 1 vecto r obtained by arranging the columns

or’ ~~, from left to right, under one another in a single column.

It’ ~ denotes the mT X mT covariance ma tr ix 01’ 
~~, we wr ite

T
= z ~~‘

s, t=1

L _  
_ _ _ _ _ _

_____ - —-- — ..—~~ ~
— —. 

-•~;~~r~ ~- -  -7~~~~~
------ -— ------ -~~~ -- - ----

.5.. - — -
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The m xm  submatrices ~~~~~~ are app roximatc~1 by

_ _ _ _  

~iT 
e~~~~~

_ t )
~~

_ 1
( X ) d X  ( s , t — 1, . . . , T ) ,

(~~.)
2 -iT

and t h i s  leads to approximat ion  of by

t r

where

i (X) = 
1 IX (s-t) 

~~~~ 
(-iT<A <w )

2rrT s,t=1

is the periodograrn. The covariance determinant ~
j is ap-

prox imate ly the determinant of

2w diag ~~~~~~~~~ ~~~~±!L),.. .,.~(2w)
T

Thus an approximate Gaussian likelihood for ,~~ is

(2iT)~
mT 

~~~~~~~~~~~ ~log~~ (X)~ + t r  f 1
(X)I(X)} dA] , (10)

in analo~~r to (3). (See Whittle , 1953b, Theorem 6 . )  Since X (_X )

= ~
‘(X) and ~ (_A ) = I ’ ( X ) ,  we may rewrite (10) as

(2lT)~
mT ex~
[
~~~~ 5~~~2 log~~ (X)~ + tr(r

1(X)~~(X) +~~~~
1
(X)f(X))} dx] . (11)

- 
_ _ _ _ _ _ _  

-—--

~~~~

-____
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Now let

~~A ) 
~~ 

1-~~(X ) (0 < A 
~ ~) ,  (12)

w~.e re c~ (X) is defined r e I O W  (5) and the H e rmi t i an  ma t r i ces

are positive definite. Denote

•
~i ~

‘ik*~ 
= 

~
‘
j.ik~ 

= -ç = (~~R 
+ ~

whore the bar -designates complex conjugate and the asterisk conjugate

tran spo;~~. The no ta t ion  
~~~
)jk designates the element in row j ,

column k of’ the matrix ~~.

Substituting (12) into (ii), we obtain

- T  T q f  CiT
( 2ir ) m exp - — 1 ~ 2 log LI j c . ( X ) d X

L 4iT j = 1~~ ~ Q J

+ $ tr(~~~ ~(X) + ~~~~~~~ X)) cj(X)dX}
]

It’ L again denotes the approximate log likelihood and 
~jk 

~~S

an m X m  matrix with a 1 in row j ,  column Ic and 0’s elsewhere ,

then

C1T
L 

= - -~~~— tr(~~ ~kk~ ~ 
c~ IX ) dX

j kk

+ _

~~~

_ J’~ tr[~~~~ kk~? fl A ) + 
~~ 

1
~kk~~ 

-1~ ’ (A )) C
j 

( A ) dx

T -1
= - 

~ ~ i kk ‘
~~ 

c~ (X) dX

— - - -~~~~~~~~~~~~ -- —- -~~~~~~ - - —-.- - _
~~~~~~~~~~~~~~~~~

_ — 
- — — - - -  — —  .- 

—

I -~~~~~~~
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+ 
T r~ 

[r
1 

~ ( X ) f 1 
+ ~~~ ~(X)~~ h

Jl] 
kk 

c~ (A ) dA

(k= 1 , .  . ., m , j r l , . .  . , q ) .

The othe r derivat  ives  are

= - 
T (f

_i
) J

r c.(A )dX
R iT ‘3 ct o

f’jkL

C1T 1 1 1+ ~~~ i ~~~ ~ ( X ) ~~~~ + [~~~T X ) j ~ ) ‘
2~ °L~ 

‘3 ‘~ J k t  ‘3

_ _ _ _  
T 1 1  ~~La 

= — (( ) ~ c~~( A ) d X
ir ‘3 kt 0a 

~
I~,1r r i i

- 
_ L.. I 1.~

1 
~(X)t~~- - [~~~ I ( X ) r~~ 1’ I c~ (X)dX2w ° L~ J k L

(k~&i , k, t=1,.. .,m, j=1,.. .,q).

Since (i .~(X )~~
1 is Hermitian, the above derivative expressions

may be simplified. When the resulting forms are set equal to 0,

the equations become

j ;ifT c~ (A ) dA = 5
(j=i ,. . .

- --- -——-- -- -;~~~~
-

~~~~

_ 

- - - - -  
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SL I t O - solution ~

J” j ( X ) C . ( - ~ )
0 1i

~j 
= _ _ _ _ _ _ _ _ _ _  = _ _ _ _ _ _ _ _

- A .
‘3

~~~~~~~~~ ,~ ).

TO - a :y’ruj -t t is n ~ -n rt i s  !s ted fc- r the  scala i  case ~ u n c r a i  ise

the ~5~~;C ~ase.
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