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SUMMARY

Approximate maximum likelihood estimates are obtained for
the ordinates of a step function spectral density in the Gaussian

The estimates are simply integral averages of the periodogram
Whittle's

case.
over the trequency bands in which the density is constant.

form of the approximate likelihood is used. Results are given

tor scalar and vector processes.

Some key words: Stationary Gaussian process; Step function

spectral density; Periodogram average; Approximate

maximum likelihood estimates.
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1. Introduction

Estimates of the spectral density of a stationary process
are typically constructed by smoothing the periodgram. The motiva-
tion tor this procedure is well-known. For a large sample size
and under suitable conditions the expectation ot the periodogram is
approximately equal to the spectral density. However, the variance
does not tend to zero as the sample size increases. Averaging of
the periodogram reduces the variance and is a method which can be
used to produce a consistent estimate. At the csame time the averaging
may increase the bias.

Spectral estimates constructed by pericdogram averaging are
essentially estimates obtained by the method of moments. They are
formed by replacing population covariances by their sample analogues
and then smoothing for the purpose of stabilizing the variance. In
this paper we shall assume a Gaussian model and show that periodogram
averages are approximate maximum likelihood estimates of certain
spectral parameters. The spectral density is assumed to be a positive
step function with a finite number of distinct ordinates. These
ordinates are the spectral parameters to be estimated.

To derive the results we shall use the approximate Gaussian
likelihood proposed by Whittle (1953 a,b, 1954) for the analysis
of finite parameter linear time series models. The use of a step
function spectral density in Whittle's approximate likelihood leads
to a simplirication which permits easy exact solution of the

approximate maximum likelihood derivative equations. The resulting
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2.
estimates are in fact estimates of the average amount of power in
each of a set of bands determined by a tinite partition of the
frequency axis.

The approximate likelihood to be used is discussed in
§2 and results tor scalar time series are derived in §5. The

vector case is treated in #§4.
2. An Approximate Likelihood for a Gaussian Time Series

Let {xt, t=0, +1,...} be a stationary Gaussian process
with mean O and spectral density f(A)(-m<A<m). We assume
throughout that f(\) 1is positive. The problem to be considered
is estimation of f(A) or of parameters associated with f(A) when
an observation of X = (xi,...,xT)' is available. The exact

density of x 1is

1

(277)'*T|§| -t exp(-8x'2""x), (1)

where % 1is the covariance matrix of X.

Let {et, t=O,;t1,...] be a sequence of independent variables,
each with mean 0 and variance 02. Then the process {xt1 defined
by

)
Xp = JEO 6Jet_J (t=0, +1,...), (2)

where 6O==1 and Z§=o 6? < o, 1s termed a linear process. The

spectral density associated with (2) is
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© . 2
r(a) = = | 3 st (- <A <),
2r J=0
It is common to assume that each 63 in (2) is a function of a

vector of parameters about which inference is desired. This is

the case, for example, when {xt] is an ARMA (p,q)} process,

g e B, € (t=0s +1,::..),
o t-J k=0 k- t-k -

For the case of Gaussian models of the form (2) Whittle
(195%a,1954) replaced (1) by

4 Tl
(2#02)-’T exp { - B | IA) o
by “-m  £(X)
(3)
: o
= (2n)"T exp |- L | log f(A) + ML ’
Uy ° o7 £(1)
where
. 2
1(2) = 2= | 2 x| (argrgr)
2T  t=1 g

is the periodogram.

Two considerations are involved in the approximation (3).

One is the replacement of 2—1 by the matrix §* defined by

o
El' i 1 J! ei)‘(s-t)f—l(k)dk 3
(2w): -

s, t
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4,

which leads directly to the exponent in the first line of (3).

It can be Shown that in fact 5 - £7- 1is positive semidefinite

for every stationary process of the form (2) with a positive spectral

density. Moreover, the rank of g* - 2-1 is min{2 max(p,q),T} for

an ARMA (p,q) process and is T if {xt} of the form (2) is not

an ARMA (p,q) process with p and g both finite. (See Shaman, 1976.)
The other feature of the approximation (3) is the replacement

of lglé by (oé)ﬁT. Note that the second line of (3) tollows

from the first by

o exp e, fn log{art(A)}ar| ,
er ~T
where 02 is the variance ot the one-step-ahead prediction error
and is the same as the variance of €4 in (2). (See, e.g., Grenander
and Rosenblatt, 1957, p. 69.)

The replacement of |§|i by (02)*T may be motivated as
follows. It is well-known (Grenander and Rosenblatt, 1957, pp. 103-5)
that the eigenvalues of the Toeplitz matrix I are approximately
given by equally-spaced spectral ordinates. Then, denoting the

eigenvalues by AJ (j=1,...,T), we can write

T
log || = = log A
J=1 J
: org
& 5 log<2rr(<Ld) ’
J=1 £ >

and the latter sum is approximately

e
- D logl{emr(n)}dr
er - \
———— R —— TR




e
This heuristic argument tor the approximation of IZI!
is not dependent upon the representation of [xt} in (2), but
holds for any process for which ETW log f(x)dk > -w., Moreover,
the same argument indicates that the eigenvalues of 2-1 are ap-
proximately given by equally-spaced values of f'l(X). The matrix g*

i

may be taken as an approximation to 2~ for processes {xt} more

- *
general than (2). 1In fact, 2 4 = 3 if both are (two-sided)
infinite-dimensional matrices. That is,
e}

z o(s-r)o*(r-t) = 6(s-t) (B, t=0,41,.4.)4 (4)

=<0

where 0(+) 1is the Kronecker delta and o(-) and o*(-) are the
elements of the Toeplitz matrices Z and Z*’ respectively. The
result (4) follows because the left side of (4) is the convolution
of two covariance seqguences, and the Fourier transform of this
convolution is 27 times the product of the corresponding spectral
densities.

For the above reasons we shall use the approximation to (1)
given by the second line of (3) when {xt] is any stationary process
with a positive spectral density. The vector case analogue of this

approximation will be used in §4.

5. Periodogram Averages as Approximate Maximum Likelihood Estimates.

In this section we assume the spectral density is a step

function and derive approximate maximum likelihood estimates for




the ordinates of the density. Let

q
tia) w2 £ 0y 0cken), (5)
where
LX) = L Ay A By
CJ( ) ( Jj-1 5 < J)
= 0 (otherwise),
£f(-2) = r(A), and 0 =R*, <A < ... < Aq =7. Set f(r) = fq'
Since
- q
prhp i e ek ¢, (1)
=1 1
J J
and I()X) 1is symmetric, the approximate density (3) becomes
-T , P S
(er) ~ exp |- — = logiﬁ | cj(k)dk + = | I(X)cj(k)dk (6)
2r  3=1 0 . 4 0

Let L denote the corresponding approximate log likelihood. Then

e | c.(X) I(A)e. ()
Z_i_‘ = - .l. ‘L - ‘5‘] A (J=1, :Q):
3 2 0 fJ Ij

and approximate maximum likelihood estimates are given by

M 10)e,()m 7
T, - er? J - 2 h,, e
$0 cj(x)ax Ny=Ayg J
(7)
(le)"'JQ)’
— - mywm = ————
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Now we consider asymptotic properties of the estimates (7).

Care is required in the analysis because f(A) 1is not continuous.
First we note that 5%3 converges to fj as T > o. To see

this write

A
[
831 T(A)dA - (XJ _xj_1)17
Asy
X A
ro oIl roJ
= FT(X-v)f(v)dvdx - £(A)dA (8)
o R Ao g
A,
Tl r J
= FT(V) ‘ tr(v+r)-r(h)} ax av,
e s
, j-1
where
sing%TV
F‘T(V) - —nl
27T sin ﬁv

is the Fejér kernel. The convergence follows as in Theorem 1.5.1
of Dym and McKean (1972). Although f(A) 1is not continuous, the
inner integral in the last line of (8) is a continuous function
of Vv. From this fact and properties of the Fejér kernel, we
obtain the stronger result that Ta(?j-fj) converges to 0O for
0 < & < b

Next consicder

-~ 3 2_ ~ * : 2
Tf(fj-tj) -TVarfJ+T(8fJ £,)°

The second term on the right-hand side tends to 0 as T+, and




T

) > £ d
T(Ay-Ay 4) Varfy =T J Cov{T(X),T(v)}drdv
ok gt
X, A m 2
~p rd rd I Fp(d + A0 = V) £(1)du (9)
JA JA -
Jed = Oy
ol 2
<) Pp(h+A,u+v)f(u)au aidv,
-1
where
Sin#AT sin®vT
FT(X,V) = L

onT sin 8t sin gV

(see Anderson, 1971, Theorem 8.2.8). The second summand in the

last form of (9) is

A A=A
rJ J oo

r 5
gy o oh

A X x,x—re)FT(y,y-rO)f(x-k)f(y-k)dxdydedk.
- -7 -T
J-1 J-1

o
A detailed evaluation of the limit of this expression is lengthy and
tedious. One follows the same steps as in, e.g., Theorem 9.3.1

or Problem 16 of Chapter 9 in Anderson (1971), except for an adjust-
ment to account for the fact that f(A) 1is not assumed to be con-
tinuous here. This adjustment consists of observing that

4
I f(x=-A)f(y=-A)dr
XJ-i
is uniformly continuous in x and y. The limit of the first

summand in the last form of (9) is 0. It follows that
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9.
P
2 - A 2

1im T(kj-k]._j) var rj = 2r | £e())dr,

T o ; Xj-i
or

Y 27/1‘?
1im T Var £, = eiiee (3o, envs@)s
R 4 X aud
b i

Moreover,

1im T Cov (fj,fk) =0 (J#k).

T > o

We make several comments. First, the main purpose of the
calculations in this section has been to demonstrate that periodogram
averages emerge as approximate maximum likelihood estimates of the
ordinates of a step function spectral density in the Gaussian case.
If the density is in fact a step function, it is unlikely, though,
that the statistician desiring to estimate the ordinates will know
the correct partition (kj,j=o,1,...,q). For frequencies VvV and

u with V>4 the average

has expected value which converges to the same expression with

f(A) in place of I(A), and T times the variance converges to
v

2. Poe.

(v-r)®

However, spectral densities encountered in practice are best
viewed as being continuous. Thus, the model (5) really should be

regarded as an approximation to a continuous density. One may

L A SO s




10.
interpret this approximation as having arisen from smearing of
the original continuous density. The model (5) will be difficult
to employ in practice unless a reasonable partition for [(O0,w]
is formulated & priori.

A final comment is that the asymptotic information matrix

corresponding to the approximate likelihood (6) is diagonal with

elements
2 e dh) 2I(M)e (r)
o)
- 1im @& L =-1im6-—1—_[ e J dr
T>o T afa T2 2r 0O f? fé

J J J

L 1

= __sl_;L_ (J=1,...,9)

2rf

Lk

Thus the estimates %j are asymptotically efficient in this sense.

4. The Vector Case

The results above extend to the vector case. Let [zt] be
an m-dimensional Gaussian process with mean O and spectral

density (M) (-w<A<w). The matrix £(\X) is Hermitian and is

assumed to be positive definite for each A.

Denote a time series by X = (51,...,5T) and let
X = vec(X) be the mTX1 vector obtained by arranging the columns
or X, from lett to right, under one another in a single column.

If % denotes the mT XmT covariance matrix of X, Wwe write

T

-4

x27x= =
s, t=1

'+ 5(s,t)

g Ly




14.

5L}

The mXm submatrices g( are approximated by

2 i Sy &
: .)l el)\(k) t)-I: 1()‘)d)\ (Syt:ly"':T);

5
(gof 2

and this leads to approximation of 5'2-15 by

2" e gz,

2m -

where

(-m<Agm)

is the periodogram. The covariance determinant [Z| 1s ap-

proximately the determinant of
- ; 2 4
27 diag I(jf), £<7§"""£(2W)

Thus an approximate Gaussian likelihood for X 1is

(27)"™T exp --l-fw log|le(M) ] + tr £ (zM)S an| (10)

¥ =K
in analogy to (3). (See Whittle, 1953b, Theorem 6.) Since f(-)\)
= £ (A) and I(-\) = l'(l), we may rewrite (10) as

’

(2r) ™™ exp-—lf; 2 log| (M) | + tr(£7 1 (M) IV + £ 1)L (1)) p A

Uir

(11)




Now let
OJ(X) (o < A < g g (12)

where cj(k) is defined below (5) and the Hermitian matrices gj

3

are positive det'inite. Denote -

) = (Ryp) = g; e R T

L = ik g ik 4

r
Jko
where the bar designates complex conjugate and the asterisk conjugate
transpose. The notation (A)J.k designates the element in row j,

column k of the matrix A.

Substituting (12) into (11), we obtain

q 114
oy ~MT i A N R & LAY
texl i Ur  3=1 o8 |4l Io 3™
¢ ~1 T
eI (gt 100 + 257 0)) eg(na

If L again denotes the approximate log likelihood and Ejk is

an mXm matrix with a 14 in row J, column k and O's elsewhere,

then
3L /s -1 =

S b R
Jkk

T i -1 -1 L=l 1=l v
‘= fo trlg B 5t 10 + £57 B g () e ()

i -1 f
T e c— e J x d)\

e R TR T 0 A A i S e v ——————— >




13.
i & .PTT -1 ~1 2 -1 P
+— £ 1030, » 10 AT e (A)dr
br 0 [ gy A J " Kk 9
(kel,...,m, J=1,...,q)
The other derivatives are
R T
) MR (251)‘ f c;(X)dr
afR T g ekt
Jk4
2 et oozt ¢ et 2oty | e e
PR J J ke 9 '
3 - "
—L - Ihl D e
I m kL O
3t
k4
et pget - L e 115 et A (2)dA
" "O J J ~-j ap ~J ke J

(Rl , B, Bely...,m, F=1,...,q).

Since 231 L(X)gsi is Hermitian, the above derivative expressions
may be simplified. When the resulting forms are set equal to O,

the equations become
a1 (" I a-1
Ly fo ¢g(R)dX = IO Ly LMz cy(R)d

(J=1,...,9),




and the solution

Pl -td
it
<
i
—
>
S—
o
>

The asymptotic properties noted for the scalar case generalize to

the vector case.
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