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This report develops a new technique for the estimation of

finite population parameters in a multi-stage sample survey.

Specifically, estimators and confidence intervals for parameters

of the finite population are developed for two-stage sampling when
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primaries are of either equal or unequal size, two-stage sampling

E 3 when the variable of interest, y, is related to another variable,

X, and p-stage sampling with an example of three-stage sampling

l{ ‘ when units are of equal size. The stochastic procedure generating
the sample is assumed to be a two step procedure where the first
step is selection of a "large sample"” from an infinite super-
population and the second step is the actual implementation of the

sample survey.
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ABSTRACT

This report develops a new technique for the estimation of
finite population parameters in a multi-stage sample survey.
Specifically, estimators and confidence intervals for parameters
of the finite population are developed for two-stage sampling when
primaries are of either equal or unequal size, two-stage sampling
when the variable of interest, y, is related to another variable,
X, and p-stage sampling with an example of three-stage sampling
when units are of equal size. The stochastic procedure generating
the sample is assumed to be a two step procedure where the first
step is selection of a "large sample' from an infinite super-
population and the second step is the actual implementation of the

sample survey.
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1. INTRODUCTION
1.1 Preliminaries

In many sample surveys of finite populations, single-stage
sampling designs are either too costly or physically impractical to
use, and the need for a multi-stage design arises. In a multi-stage
sampling design, the population is divided into large units, called
primaries, which are further subdivided into smaller units known as
secondaries. The primary units are then sampled and subsamples of
the secondary units are taken from the selected primaries. If
necessary, the secondary units may also be subsampled until a desired
sampling element is obtained. Sukhatme [1947]) offers an example of
a survey to estimate wheat production in India. The district of
Moradabad is divided into six divisions and within each division
a sample of eight villages is selected. Two wheat growing fields
are subsampled from each village and a further subsample of plots
is chosen from each of the selected fields. Kish [1952] considers a
two-stage sampling design of a city with a sample of blocks selected
in the first stage and a sample of dwelling units taken from the
selected blocks in the second stage. Kish [1965] provides an example
of a three-stage design and gives an extensive list of similar case
studies.

Both Deming [1950] and Kish [1965] state that multi-stage

designs are often less expensive than single-stage designs due to

Citations will follow the format of Biometrics.
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the reduced cost in preparing sample frames and the reduction of
interviewers' travel time. Whereas a sampling frame of the entire
population is needed for single-stage designs, sampling frames in
a multi-stage design are needed only for the elements whose larger
units have been selected at an earlier stage. The cost of inter-
viewers' travel time is reduced since the elements an interviewer
must sample are closer together.

The goal of any sample survey is estimation of parametric
functions of the finite population. Under classical frequentist
theory, any inference made concerning the population reflects the
expected behavior of repeated samples from the same finite population.
Under this assumption and thrcugh the use of conditional expectations,
the theory of multi-stage sampling has developed from the results
of single-stage sampling theory.

In a two-stage design when primaries are selected with equal
probabilities and without replacement, Raj [1968, p. 114] and
Cochran [1963, p. 304] give an unbiased estimator of the population
total, the variance of the estimator, and an estimator of the
variance. For the case when primaries are selected with unequal
probabilities and without replacement, Raj [1968, p. 118] provides
a general estimator for the population total provided unbiased
estimators of the primary total and its variance exist. Raj [1968,
p. 119] and Cochran [1963, p. 305] give similar estimators when
primaries are selected with replacement under various subsampling
schemes. Other results such as extension to stratified multi-stage

sampling and estimation of ratios are found in Raj [1968] and

Cochran [1963].
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Unlike classical frequentist theory, the approach in this

report will assume that the finite population is a sample of

size Mo from an infinite super-population. The actual implementation
of the survey is a process of taking a multi-stage subsample from

the selected finite population. Inferences may be desired for either
the parameters of the super-population, or for the finite population,
although technically the "parameters" of the finite population are
now statistics summarizing the sample of size Mo drawn from the

super-population. This report will be concerned with inferences

regarding the "parameters" of the finite population.
1.2 Literature Review

Before discussing the super-population model, it seems necessary
to first mention the direction of recent research in survey sampling
theory. Rao [1971] has stated that until recently, survey sampling
theory has evolved through an inductive process. Reasonable estimators
and sampling designs have been suggested and their properties examined
either analytically or empirically. It has become evident that some
general theory of sampling is needed to better relate the inference
of sample surveys to statistical inference. Many recent attempts
have been made to formalize the theory of sampling from finite
populations, but much confusion and controversy are associated with
these.

Godambe [1955, 1966] has introduced the notion of estimators

which are label dependent, i.e., not invariant to permutations of

the labels attached to the units. He has shown that in this more
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general class of estimators, the customary optimal estimators used

in the classical theory lose their classical optimality properties.
However, the estimators which are superior to the label invariant
estimators depend on the characteristics of non-sampled units in the
population and are, therefore, not practically available. Many
other authors have extended and refined Godambe's original work

and are referenced in Godambe [1969]. Ericson [1969a, 1969b] used
the model suggested by Godambe to consider a Bayesian approach of
inference for the finite population.

Hartley and Rao [1968, 1969] and independently Royall [1968]
have established certain optimality properties for the customarily
used estimators in the basic designs within the class of '"scale
load" estimators, i.e., estimators which are invariant to permutations
of the labels. Practically all estimators that have been used in
practice belong to this class, although Hartley and Rao [1969] have
stated that they do not exclude label dependent estimators from
consideration and give examples of instances when they will be
useful. However, they have not provided any general guidelines which
infallibly indicate under what circumstances label dependent esti-
mators should be used. They have stated that a sufficient condition
for the use of label dependent estimators arises when some or all of
the parameter functions in the population to be estimated are them-
selves not invariant to label permutations. Among the results of
this theory within the class of "scale load" estimators are UMV-ness

of the sample mean in random sampling, the Horvitz-Thompson estimator

when sampling probability proportional to size, and the maximum
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likelihood properties of an estimator similar to the regression

estimator when the population mean of a concomitant variable is
known.

Godambe and Sprott [1971] and Johnson and Smith [1969] contain
excellent papers expressing the different viewpoints concerning
these sampling theories. The comments of Barnard [1969], Rao [1971],
and Godambe [1970] also indicate the diversity of opinion on these
issues. Rao [1973] provides an extensive bibliography of other
studies on this problem.

In using a super-population model, this report is
concerned with a new theory for survey sampling. By assuming the
finite population to be a sample from an infinite super-population
defined by a linear model, the general theory of linear models can
be applied to the problem of estimating the finite population

parameters.
1.3 Super-Population Models

The use of a super-population model is not a new concept in
the statistical literature. One of the earliest to explicitly
state the super-population model was Cochran [1939] when he con-
sidered estimation of the finite population mean for simple random
and stratified sampling designs. Cochran [1946] again used the
model to compare systematic and stratified samples from populations
where the variance within a group of elements increases as the group
size increases. Raj [1958] regarded the finite population as a

random sample from an infinite super-population to compare a

i
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probability proportional to size estimator with the simple average,
vatio, regression, and stratified sample estimators. Royall [1970]
used such a model to develop optimal sampling plans for estimating
a finite population total. Many other examples exist and the
interested reader is referred to Fuller [1973] and Rao [1973] for
additional references.

The notion of an underlying super—-population also accompanied
the introduction of analytical surveys. Deming [1950, Ch. 7] and
Cochran [1963, p. 37] state that when comparing domain means in an
analytical survey, the null hypothesis is that the domains have been
drawn from the same infinite population. Sedransk [1965] also
expresses the view that inferences refer to a more '"general" popula-
tion than the existing finite population. Konijn [1962] made similar
assumptions and considered estimators for functions of the super-
population parameters. Fuller [1973] gives results for the estimation
of parameters of the infinite population in a two-stage sampling
design.

Of more particular interest in this report are the papers
concerned with estimation of the finite population parameters as
opposed to the estimation of the super-population parameters. Royall
and Herson [1973a, 1973b] assumed a super-population model in
estimating parameters of the finite population for single-stage
designs and examined results when the assumed model broke down.
Hartley and Sielken [1975] considered a more general case than Royall
and Herson where auxiliary variables are not fixed in the super-

population. Scott and Smith [1969] assumed a super-population model
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when using a Bayesian approach to derive estimators of linear functions
of finite population parameters in two-stage sampling.

The preceding discussion may best be summarized by Table 1
reproduced from Hartley and Sielken [1975]. In regard to multi-stage
sampling, the standard results discussed in Section 1.1 are classified
as Case 1. Analytical surveys and similar studies concerned with
estimating parameters of the infinite population are Case 3. The
papers of Hartley and Sielken [1975], Royall and Herson [1973a, 1973b],

and Scott and Smith [1969] are concerned with Case 2.

TABLE 1

Sampling Theories Classified by Sampling Procedure

and Target Parameters

Target Parameters Sampling Procedure

Repeated sampling from a|Repeated two-step sampling

fixed finite population |from an infinite population
Parameters of Classical finite popula-|Super-population theory for
finite population |tion sampling theory finite population sampling

= Case 1 = Case 2
Parameters of Infeasible Inference on infinite popu-
infinite lation parameters from two-
super-population step sampling procedure
= Case 3
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This report considers only Case 2. In particular, this

report takes a non-Bayesian approach to the problem considered
by Scott and Smith [1969] and serves as an extension to the work

done by Hartley and Sielken [1975].
1.4 Overview

In this section the problems to be considered in this re-
port are briefly sketched, and their relationship to the work of
Hartley and Sielken [1975] is discussed.

Hartley and Sielken assume that the current finite population

is a random sample from a super-population of the form

y = xB8 + elv]® 1.1)

where x is a vector of variables, B is a (px1) vector of unknown
constants, € is a normal random variable independently distributed
of x, and v(x) is any known function of x. The basic parameters of

interest for the current finite population are
b= xvin vy (1.2)
and linear combinations of b, say g?g, Once a sample survey of the

finite population is conducted, the population quantities Y and X

can be partitioned into

b
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Y = and X = (1.3)

where the subscripts "s" and "r" indicate inclusion in the sample or

exclusion respectively. The quantity

b o= v Ix ) Ixtvly (1.4)
=S s s 8 s 8 -8
is such that for any c,
T, T,
E(c'db - ¢ p_s) 0 (1.5)

and

T £ L e SR T=1_.~1, &
cb ¢ ostn—p;a/Z{E (X, 'x) ~ - XV 7X) “le} (1.6)
is a 100(1-a)% "confidence interval" on ETE where
AR = T.~1 5
(ep) o, = Q=S5 IV E ~Xb) 1.7

If X is unknown, an approximate 100(l-a)% "confidence interval" on

b 1s

T - Trolu=ly =1 1%
+
eh % astn_p;alz{c (X VX)) el . (1.8)

No assumptions on the distributions of X and Xs are made except that

they are independent of the e's and that Xs is of full rank with

P i s e

EPIETRPVIS
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probability one.
In Section 2 and Section 3 the super-population model for two-
stage sampling 1s assumed to be

=p+a + €, (1.9)

ij 17 %ij
where y1j refers to the j-th observation in the i-th primary and the
ay and sij are independently normally distributed with means 0 and
variances oi and cz respectively. The finite population parameter of

interest is the population mean Y. If the super-population model (1.9)

is rewritten as

= a* + € (1.10)

where a; =p + @, then conditioning upon the uI's and letting
§? = [ai a? ...] gives

B w fY. ¥ cesd s (1.11)

el = /M, MM ] (1.12)

where Mi is the size of the ith primary and Mo is the total number of

elements in the finite population. The results of Hartley and Sielken

imply an unbiased estimator and a confidence interval for Y based on
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b=y, ¥, +:.} (1.13)
only if xs is of full rank, i.e., only if every primary is sampled at
least once. Since not all primaries are sampled in a multi-stage
design, the results of Hartley and Sielken do not apply when the
super-population is considered in the form (1.10). To alleviate

this problem, the super-population model (1.9) is rewritten as

where nij = ai + eij' Then, if the primaries are of equal size,
b =Y, and the results of Hartley and Sielken will imply an unbiased
estimator of Y. Furthermore, if 02/0: is known, the results of
Hartley and Sielken will also imply an exact confidence interval on
Y since then X, Xs, V, and Vs are all known. In Section 2, two-stage
sampling in which the primaries are of equal size but oi/oz is
unknown is considered. In Section 3, two-stage sampling is considered
when primaries are not of equal size and consequently there does not
exist a ¢ such that g?h = Y.

In Section 4, the super-population for two-stage sampling is

assumed to be

yij =u+a, + Bxij + ¢ (1.15)

i ij

where xij is a variable related to y and B is a constant. The finite

population parameter of interest is still Y. If the super-population
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model (1.15) is rewritten as

T —

of

yij = [1 xij][B ] + Cij (1.16)

EPEP TS S

where aI = u+ a,, then as with (1.10), the results of Hartley and 5

1’
Sielken do not apply to multi-stage sampling since not all primaries

are sampled and consequently x8 is not of full rank. Furthermore,

even if the super-population model (1.15) is rewritten as

-
-
>
Baas s e Bl S e

V4 = (1 x“l[:] + Nyy 1.17)

where nij =a + eij’ the results of Hartley and Sielken do not apply
Fo

3 g unless all primaries are of equal size so that there exists a ¢ such

that E?g = Y. 1In addition, to construct a confidence interval on A

2..2
oaloe must be known.

Finally, in Section 5, a general methodology for a p-stage

e e o E———————

sampling design is discussed and the results for a three-stage design

with primaries of equal size and secondaries of equal size are given.

P —————

S ———————————
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2. TWO-STAGE SAMPLING WITH EQUAL

SIZES AND SAMPLES

i
3

2.1 Estimation and Variance Formulas for

the Finite Population Mean

V ‘ ‘ The first model considered is a two-stage sampling design when
s all primaries have an equal number of elements and an equal number
of secondaries are sampled from each primary. The notation adopted

is that of Cochran [1963] in which

-4
]

number of primaries in finite population,

=
[l

number of secondaries per primary,
number of sampled primaries, and

number of sampled secondaries per sampled primary.

g
SN e
B B
s

TOm————"

The linear model describing the super-population is

?
yij =pu + ay + Eij (2.1) 3
where
2
ai v N(O, 00) ’ (2'2)
2 4
Eij ~ N(O0, oe) 3 (2.3)

and all a, and ei

1 are independent. This linear model may also be

3

expressed as

yij U “1j (2.4)

- w”\wn_._‘,"},',f",—;’.“" TR R TREOTR: DTN ““ e ’w“‘} Al(\,-;‘?&'
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where the nij's are independent normal random variables with mean

zero and

2 2
E(nyy mg) =05 + 0. , 1=k, =t ,
2
- oa s i=k, j*z > |
=0, i*k . (2.5)

The finite population of size MN is represented by

Y=1p +H (2.6)

where Y is the (MNx1l) vector of finite population observations, 1 is
a (MNx1) vector of ones, and H is a (MNxl) vector of random variables.

The covariance matrix of H is the (MNxMN) block diagonal matrix 3

2
O’eV e 0 . . . . (2.7)

where

V1 = IM + pJM ’ =1, voe5 N, (2.8)

with IM denoting the identity matrix of order M, JM denoting the

e S YR e R T

" | ar o
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S AT PSS T R ki e LR e



- q
! (MxM) matrix with all elements equal to one, and p = oi/oz .
Y
i For the finite population, the quantity of present interest
! is the finite population mean
NM
gt o
Y = W - (2.9)
|
Alternatively Y can be written in the form of the BLUE (best linear
¥ unbiased estimator) of u based on a sample of size MN, namely
§- vy vy (2.10)
; where
3 -~ e
o |
% V1 0 cen O
-1 _ o " T UM
- V™ = e B (2.11)
-1
50 - VN ]
it and
4 -1 p 2
;f \ =IM_(1+MD) JM' s E, cves N (2.12)
¥
dq_ However, as discussed by Hartley and Sielken [1975], the fact that

“- -

Y can be expressed as (2.10) is important only in that it motivates
an estimator for Y based on the sample, and not for its BLUE property.

The population quantities Y and 1 can be partitioned into

Y 1
s =5

Y = and 1 = (2.13)
Y 1
g ~r

e A M T ¢ R A I

15
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in which Xs is a (mnx1l) vector of sampled observations, !1: is a

REE =T 1 2T

((MN-mn) X1) vector of the unobserved population elements, l‘s is a
(mnx1) vector of ones, and l’r is a ((MN-mn)x1l) vector of ones. The
estimator analogous to (2.10) but based on only the sample quantities
5 is
| s T,~1, -1.T -
Y- VL)L
5 nm
i
- (2.16)
mn
®] 1 where
| = :
K vsl 0 vors 0
-1
- 0 v * e 0 0
i Flel 8% (2.15)
s . .
=Y,
_O ® o0 8n_J
and
!
.
| =1 - A [ =
k. Vsi Im (+m9) Jm § 1= Ay veuy T (2.16)

Since both Y and fE are unbiased estimators of u, E(Y - ?E) = 0, and

A

YE is a natural estimator for Y.

Using the results of Hartley and Sielken [1975], the variance of

- ?E) is given by




.

~

= = T -1 -1 T -1_.-1
VA - v = v - vy

2 2
o

g,
-2 - -
= a ) + £ (1 MN) . (2.17)

2.2 Confidence Intervals on Y

Since for the super-population both Y and ?E are statistics, a

100(1-a)% "confidence interval” on Y will be interpreted to mean
Prob (?e[Lower bound, Upper bound]) =1 - a . (2.18)

Under the assumption that the ratio of variances p and hence V
is known, an exact 100(1 - a)% confidence interval on Y corresponding

to Hartley and Sielken is

E + Ostalz - \/ } (2.19)

<>

where

A2 nm
(m - 1)08 = i;:(yij ) ( )Em(yi o, (2.20)

Zyij
y, =1—, - Sk e (2.21)
m

and

y = ] (2.22)

17
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However, since p is rarely known in practice, two confidence intervals
which do not require its knowledge are developed in this section.

One method for constructing an approximate confidence interval
on Y is based on the fact that VE - §E) in (2.17) is a linear
combination of variance components. To set a confidence interval
on Y, some well known results from variance components analysis are

stated as theorems (see, e.g., Graybill [1961]).

Theorem 2.1: Let nixiloi (i=1, ..., p) be independently

distributed as x%n 3 Let
i

=<
n
™
0Q
-
Q
[N
v
o

(2.23)

and

g = igixi ; (2.24)

Then U = n'g/y is approximately distributed as a x%n,) where

P
(EgiOi)z
n' =t (2.25)
(e /) :
1(31"1 s

Theorem 2.2: Under the assumptions in (2.1) - (2.3),

(n-l)si {
aop— X5 (2.26)
02+m02 (n-1)

et

and




u

P ai

where

and

Now let

LAt 2
Yy = V(Y - YE) = 8,9, + 8,9,

where

0Q
=
|
~
[
1
d;

m, 1

Q

]
B
+
Q

and

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

2 2 e 5
Using Theorem 2.1 with X) =8, X) =8, n =n 1, and n, n(m-1),

it follows that

19
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8 = 8% + 8%

| 2 2
| n, °b m, Sw -
=1 - ﬁ) == + (1 - ﬁ) Nm (2.35)

is an unbiased estimator for V(Y - ?E) and ]

1
—£ 4 XZaty (2.36)
vE-¥))
i where
! Z li.o2k 02)2
| S b B 8- 2.37)
E } Bl = 7 % : (2.
¢ 819,/n1+8,0,/n,

i

—————

Since ci and og are usually unknown, they may be replaced by their

unbiased estimators, sé and si, when solving for n'.

3 Now, since
' .
: B ) (2.38)
= V(Y-YE)
} and
kS T - ) v N, VE - 1) (2.39)
it follows that 5
?-?E :
;;ZT'“ Cen") (2.40)
g
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e
i P

. .

:

To show this, notice that |

b s 1 . n M~m N-n M
(Y-YE) ..—M—N-{(m-m)y+i )j: yij+ i lj:yij} (2.41)

n M-m ]
where I I Yy j represents the sum of those non-sampled elements whose ;
1] N-n M :
primaries were selected and I Zyij represents the sum of those non-
i3

sampled elements whose primaries were not selected.

Since g is a function of the sampled elements, and Cov(yij, )kl) =0 g

N-n M n M-m
for i#k, then g is independent of I Iy,.. To show I I y
1§ i3

independent of g, it must be shown to be independent of both sg and t
2 i3
Sy Defining 4

13 is

y =d1—, 3 R e (2.42) 4

n M-m
it can be seen that Cov(Z £ y,,, y_ - y) = 0. Since the y are
S e ij
n M-m 1
normal random variables, § I yi, must be independent of any combina-

i3

tion of (;l - ;, S ;n - ;), and therefore independent of sg.

TR Y e

n M-m i i n M-m
Likewise, Cov(i 31 yij’ yrj - yr) =0 a.ndi gl yij

s . Finally, it must be shown that ; is independent of both sg and

s . Observe that Cov(;'i, ;u) = 0 for i#u, and the ;1 are therefore

is independent of

N

€ N E

distributed as normal random variables with mean u and variance
2
o

2

Ve + T:—. A well known result is that ; is stochastically independent
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-
v v

ijhi'

.
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of (;l = ¥ eres ;n - y) (see, e.g., Hogg and Craig (1970, p. 163)).
Hence, y is independent of any combination of (;1 g el ;n -3), .
and therefore independent of ss. Now observe that Cov(yij-;1.§l) =0

= = e
and hence (y1j - yi) is independent of Yy- Therefore, y = Eyi/n is

i
3 - 2
independent of (yij yi) and likewise S,
Since (Y - ?E) and n'g/V(Y - ?E) are independent, an approximate ’
100(1-a)% confidence interval on Y is
it 2,
Y ¢ ty/2:n' g 1. (2.43)

Due to the particular form of V(? - ?E), an exact confidence
interval on Y not previously discussed in the literature can by

developed by considering contrasts of yij' Let

u = ey, + c2di (2.44)
where
m
Ly. .
s 1]
7 =-1;;— : (2.45)
m
a = gzijyij ! (2.46)
!
% .
Elij =0, (2.47)
il
c, = SRo. (2.48)
3 j ij

and the lij's, s €y and ¢4 are constants. Assuming the model




in (2.1) = (2.3),

E |
E | d, v N(O, o°c.) (2.49) I
b 1 » 0.Cq) ; |
| i
: I B I
: = 1 . !
y; v NGy, g R=8)" (2.50)
f i and '
! X
: u N N(clu, ci(oi + % oz) + c§c3oe) (2.51) |
: ; 51
as y, and di are independent. The independence of Yyq and di can be :
shown by the following argument. Since E(di) = 0, %
g
Cov(d;, y;) = E(d;y,)
Lo 2 m m
w (g By, )+ T 2 By, ¥.us)) «  (2.59)
m, i ij 5 i > Sy il -
Now
2 2 2 2
E(yij) =o,+to_+u (2.53)
and
2 Z %
E(yij yij.) o, tu (2.54)
are both constants with respect to j and j'. Therefore, since
m
Izp'ij = 0, it follows that Cov(di, yi) = 0. Since di and y; are normal

J
random variables they are therefore independent.

The problem now is to choose s Co» and Cy in such a manner

that V(u ) = V(Y - ?E). Equating V(ui) to V(Y - ?E) and solving for

i
2 2
< and c,Cq yields A




2 1 n >
¢ =3 (1 - N) {2.55)
and
2 1 m
e - (
c2c3 e (1 M) . (2.56)
{ATEH
0Of course, if u = Zui/n, then
i
n
Z(ui-a)2
- SN 2 o
V) " Xa- il

(see, e.g., Hogg and Craig [1970, p. 165]). Now with ci = %(1 - ﬁ)
2 1 m Cus 3
and c,Cq = mN(1 - M)‘ then V(ui) = V(Y YE), and

(n-1)g
‘—:—E—S'N x%n—l) (2.58)
vV(Y-Y_.)
E
where
n
x(ui—ﬁ)2
|
e g (2.59)
and
m
L, .Y
ij71j
- dher o By T Jhog By A"
u, = n(1 N) ¥y + mN(1 M) . (2.60)
2
Elij
]
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Hence, if it can be shown that (Y - ?E) is independent of
(n - l)ge/V(Y - YE), then
Y-Y
E -~
—— ~ v2.61
= (n-1) ; )
Ee
As before,
S 1 _ nM-m N-n M
o X —@-{(m - MN)y + ¢ 2 Vi + z Zyij} (2.62)
£ 3 ij
N-n M
and ¥ I Y44 is independent of 8e which is a function of sample
k53
elements only. Now,
nm
Riraans b m PREIEE
g = cl(yi -y) + <, §zijyij - - (2.63)
n M-m -
and using the results stated earlier in this section, I I;yij and y
i3]
= 5 m . m
are both independent of (yi - y) and glij(yij - yi) = §2ijyij' An

exact 100(1-a)% confidence interval on Y is therefore

~

[y (2.64)

£ * S0 e, 1 -

A numerical example of this procedure is given in Appendix A.

It should be noted that this is an exact confidence interval
m m,

j as long as gzij = 0 and §£ij =Cy for all i.

Since the length of the confidence interval is determined by the

for any choice of li
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value of /Eg. it would seem to be important to minimize this

quantity when selecting the £ and the corresponding value for c

ij 3

However, since the distribution of Be does not depend on lij’ any
convenient set of lij may be used. For example, if m is even, let
m
zij =] . el s 5 ~
s F ST Ry dany W ' (2.65)
and, if m is odd, let
" " m1
lij G RS ) SRR 2
mtl
g By
= +1 , ] =_ﬁl!;_3’ ceey M, (2-66)

for all i. The robustness of the confidence interval to model

breakdown may however depend on the Eij, and this problem is discussed

in Section 2.5.
2.3 Comparison of Confidence Intervals

The confidence intervals in (2.43) and (2.64) are now compared.
Of course if p is known, (2.19) provides an exact confidence interval
with mn-1 degrees of freedom and would be superior to either one.
Disregarding any consideration of the '"goodness" of the approximation
in (2.43), the criterion for comparison is the degrees of freedcm
associated with the t-statistic.

The degrees of freedom in the exact t-statistic of (2.64) are

n-1 and in (2.43) they are n' where n' is defined in (2.37). Afcer

some algebraic simplifications,




g

PRSP,

o
2 Tignt boam

G o i i (5

4

4
e

be

st

&

: BN WS AT,
Y ;

n' = (n~- 1)K (2.67)

where
(1+¢115)2
K = R ik (2.68)
(144, 87)
2
2
Ts
8§ = 3 (2.69)
g
1
= _L - 4
d; fi-v) (~q) (2.70)
_ _Np-1
d2 = ﬁ;?ﬁz:i; = (2.71)
= .
> s N s (}.. 72)
and
m
g s (2.73)

Whenever K is greater than one, the expected length of the approximate
confidence interval will be less than the expected length of the axact
confidence interval. Notice that K is always greater than one for
6e[0, 1]. This can be seen by noting that K(0) = 1, K(1) > 1, and
that the only possible inflection point for § in [0, 1] is a maximum
i.e., the only possible 6§ in [0, 1] such that K'(§) = 0 also has

K''(8) < 0. Table 2 gives the values of K for selected values of §,

p, and q, in a population with N = 20 and M = 100.




j TABLE 2

§ Values of K with N = 20 and M = 100

4

P q =05 10 =30 1.00

. ] 2 - 1.020 1.040 1.210 1.438

. 4 1.015 1.030 1.155 1.322

-~ 22 .6 1.010 1.020 1.102 1.210
.2 .8 1.005 1.010 1.051 1.102

4 2 1.054 1.109 1.599 2.321

i 4 4 1.040 1.082 1.439 1.953
F 4 .6 1.027 1.054 1.284 1.603
% A .8 1.013 1.027 1.138 1.284
.6 <2 1.123 1.254 2.516 4.526

. .6 4 1.092 1.188 2.093 3.543
.6 .6 1.061 1.124 1.688 2.546

.6 .8 1.030 1.061 1.322 1.688

.8 «2 1.344 1.734 6.002 11.719

.8 A 1.254 1.535 4.678 10.154

.8 .6 1.166 1.345 3.207 6.496

.8 .8 1.082 1.166 1.956 3.216
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Although the degrees of freedom are less for the exact con-
fidence interval than for the approximate interval, when § is
small, i.e., when the between primary variation is larger than
the within primary variation, K is close to one and the degrees
of freedom are nearly the same. In most survey populations, ¢ is
in fact small, and use of the exact confidence interval seems
advantageous. Even when § and K are large, the t-values associated
with the two intervals will not vary greatly if n is large, and the

exact interval again seems appropriate.

2.4 Estimation of the Finite Population Total

NM
The corresponding results for the population total Y = ZZyij
ij
follow immediately. Selecting the estimator
nm
e MN
Y 6 =— Iy (2.74)
E mn 13 ij
implies E(Y - YE) = 0 and
02 02
“ 2 & n € mn .
v - v =N (2a - B+ Ea - ). (2.75)
The unbiased estimator of V(Y - YE) is
2 2
M2N n 2, MN, m 2
g P~ (1 - N)sb + - (1- M)sw . (2.76)

The approximate 100(l-a)% confidence interval on Y is

|
%
4
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[¥g t € .00 VB ) (2.77)

where g is as defined in (2.76). The exact 100(1-a)Z% confidence

interval on Y is

~

9
sl sl (2.78)
where g, is identical to (2.59) except that
2
2 MZN N-n
¢, = T(—N—) (2.79)
and
2, _Mm., _ 9
c,Cq = m(M m) . (2.80)

2.5 Robustness to Model Breakdown

The results of Section 2.1 and Section 2.2 were developed
under the assumptions stated in (2.1) - (2.3). This section exanmines
the robustness of §E and the exact confidence interval to a breakdown
in the assumed model. Notice that if primaries are drawn without
replacement and secondaries are sampled independently within each

primary, ?E is the classical unbiased estimator for Y. Therefore,

since
E(Y - ?E I any finite population) = 0 , (2.81)

it follows that E(Y - ?E) = ) no matter what is assumed about the

super-population.
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Similarly, the estimator g in (2.35) is the classical unbiased

estimator for V(?E) if primaries are selected without replacement

il

and secondaries are randomly selected within each primary. Hence,
E(g - V(Y - §E)) = 0 for any assumed super-population model.

The robustness of the exact confidence interval in (2.64) to
model breakdown must rely on the robustness of the t-statistic.
However, for a specific model breakdown, it may be possible to
select the lij's so that the consequences are minimized.

As an example, consider the situation where the €,.'s have a

ij
non-normal distribution with
3 By ) = 0, (2.82)
r : 2 2
g E(eij) = Ue . (2.83)
b Ee3) = o (2.84)
ij Y :
i and
4
E(e,.) = w . (2.85)
1]
i
|
B Although
u, = ey, + czdi (2.86)

is now non-normal, an appropriate choice of the £,.'s can minimize

ij
the non-normality. Since the lij's affect u; only through the
variable di’ they should be chosen so that di behaves as a normel

random variable. For the ith primary, let

j = nijeij (2.87)

<A e

~
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e

[ 8 and

m
| 4 = IE. . (2.88)
i

From (2.82) and (2.83), it follows that

TR T T

E(Ej) =0 (7.89)

and

R s

= 92 42 5
i V(Ej) = Eijoe . (2.90)

's are independent

Notice that if Izijl is equal for all j, the Ej

random variables with equal first and second moments. The Ej's

then satisfy the Lindeberg condition, and di has a limiting

distribution which is normal (see, e.g., Gnedenko [1963, p. 290]’.

Hence, if the 2ij's are selected such that lzijl is equal for all j,

the non-normality of ug is reduced.

It also seems desirable to choose the lij's so that the thiuvd

and fourth central moments of di correspond to those of a normal

random variable. This implies setting

E(di) =0 (2.91)

4, 2.2
E(d)) = 3(E)° . (2.92)

m m
Keeping Xlij =0, Elij = cq and using (2.82) - (2.85), it follows
i J

that
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m
E(d,) = gzija(eij) =0, (2.93)
2. 2
E(d)) = o_c, (2.94)
5. S 5
E(di) = °§“13 A (2.95)
and
4 ioll 4% 2 3 )
E(d)) = “i”ij +6 oejgj'zijzij, {2.96)

Therefore, satisfying (2.91) and (2.92) implies

L =0 (2.97)
and

Ik o= R =@ ©2.98)
=i 4
3 3 oe

If lzij[ is equal for all j, (2.97) is satisfied, and for |zijl # 0,

(2.98) is most closely satisfied with small values of &,.,. Hence,

ij
to reduce the non-normality of uy when Eij is non-normal, select
m
the %, .'s so that |2, .| is equal for all j, and £2?  1s small.
ij ij j ij

As another example, assume that the ¢ are normally distributed,

ij
but that V(cii) = of, where oi is not the same for all i. Under
such a model,

2
1
m

Cc

2 2 2
V(ui) = ¢ Oa + ot( + c2C (2.99)

N

3
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e

is no longer equal for all {. However, if the values of of are

2
known or can be estimated, different values of C2C3 can be chosen
2
C
)

for each primary so that nf(:& + (r2c3)i) will be equal for all

primaries.

Since no choice of the &, 's is best for every possible modei

i}

breakdown, the % . 's should be chosen to protect against the breakcown

ij

that is most likely to occur in a particular situation.

34
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3. TWO-STAGE SAMPLING WITH PRIMARIES

OF UNEQUAL SIZE
3.1 Definition of the Model

A two-stage sampling design will now be considered for the

case when primaries are not of equal size. Let

N = number of primaries in finite population,
{ n = number of primaries sampled,
} Mi = size of ith primary,
} m, = ;umber of secondaries selected from the ith primary,
Mo = iMi = total elements in population, and
n
} w = imi = total elements in sample.

It is assumed that all of these variables are known. The super-

population is again represented as

yij =pu + o i eij (31}
where
a, v N(O 02) (3.2}
. A ,: i ) a ’ .
4@
wR 2
. = Eyg T~ DN (3.3)

e

LA
»

¥

g e

e & and ay and Eij are independent. As in Section 2.1, redefine (3.1)
k,\}
€. as

>

yij o nij (3.4)

ot i (G i e



where the ni

J

zero and

E(n

The finite population

where Y is the (Moxl)

is a (Moxl) vector of

e v ﬁn-u--—u-—-u-mu-u--uu--u-u-w-----n-u-u-.!
36 ' ,

k&

]
o

is represented as

Y=1u+H

's are independent normal random variables with mean

i=k, j=L ,

i=k, j#L ,

i#k . {3.5)

(5.6)

vector of finite population observations, 1

ones, and H is a (MOXI) vector of random

variables. The covariance matrix for H is now the (MOXMO) block

diagonal matrix

where

with IM denoting the identity matrix of order M

i

V1 0
0 V2
oV = 02
€ €
0 0
+ pJ 3 i-=
% Mi

ey oF
i
(3.7)
: vN~
By ey W s (3.8)

T JM denoting the
i

2, 2
(MixMi) matrix with all elements equal to one, and p = oaloc.

1
|

1
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Recall that in Section 2.1, the finite population mean was
¥ expressible as the BLUE of u. However, in the present situation

where primaries are of unequal size, the BLUE of u is

(3.9)

~ ~

Since there is no linear transformation of u that equals ?, u does
not now readily suggest an estimator of Y. For this reason, a

different method for the estimation of Y is introduced.

P

q 3.2 Estimation and Variance Formulas for the Finite Population Mean

Express the finite population in terms of the least squares

fit
’ = =
‘ le ai + eiJ 3 i l’ ey N ’
13 F=4 sess M, {1.10)
&% where
"
Ly
ij
P e (3.11)
i M
i
N Y

minimizes ¥ L (y.,- a ﬁ. The finite population mean is

13 ij i

.




|

Y

|

1 L

‘ 7 =
Obviously, an estimator of Y such

T, =
) —A = -
; where E(ai ai) 0

For the primaries selected i

population not represented in

A logical estimator for a, is the

p &
} computed from the sample is

>

where

n—
X —
1yi(V(Y1)

that ET - ¥) = 0 is

o~ 2
OZIH.:Z
® >

n the sample,

m
L

refore the BLUE of u.

)
n

g & f

i V(yy)

)
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(3.12)

{3.13)

(3.14)

is the classical estimator of aj . For the primaries of the finite
the sample, the only knowledge abou:

them is that the a, have been selected from a population with mean y.

The BLUE >f

(3.15)




V(Sr'i) = °§ + oglmi . (3.16)

Unfortunately, 02 and 02 are seldom known in practice and V(;i)

cannot be computed. Koch [1967] has considered three other unbiased

estimators of u for the model assumed in (3.1) - (3.3). These

e

three estimators are

n
=Lk, m
i i

74 » (3.17)

T e T e e e e et ety ey

0f course when all m, are equal, all three estimators are the sane.

To compare the three estimators it is appropriate to examina

their variances. It can be seen that
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PN r
0

* !
. n n
1 = 2.2, 2 2 2 :
! Viy) = Gkim)o + (Ckim o,
| i i
, g 2
f \ = Alou + Azoe s (3.21)
: n
i Zmi
- i 2 1. 2
V(yb) - 2 % * (m )ce
m o
o
= B.o> + Bo> (3.22)
} 1 a 2c * g
t and
o n
/ VG = Dok + | L5 Le?
' n 1 i
ro
\ 2 .
: \ = Clca + CZGe - (3.23)
Koch presents a table with n = 5 and for various values of m,
- (i=1, ..., 5), shows the following inequalities hold:
k y
. ! Cl = Al = Bl (3.24)
S
e %
I for the coefficients of 02, and
s :‘ a
- 5
: j B, <A, <C, (3.25)
]?":
g i

L T
d!‘hm" A*‘

for the coefficients of 02. The solution to which of the three
estimators has the smallest variance is therefore dependent on the

actual values of oi and 02. Since ;a s the intermediate estimator
L
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in regard to the coefficients of oi and Og, it will be chosen as
the estimator of u for purposes of illustration. Koch further
shows that ;a is optimal with respect to a particular quadratic,
location-sensitive criterion.

Substituting (3.14) and (3.17) into (3.13) gives

. ~n * a- n)ya (3.26)

where

(3.22)

and

y_= : (3.239)

Notice that §r is the classical ratio estimator of Y for two-stage
sampling when units are selected with equal probabilities (see, e.g.,
Cochran [1963, p. 300]).

The variance of (Y - §U) is computed by writing

Frnis L [Nen n M, :
Y X, ﬁ; 1 i Y, ¢+ i[Yi - yi(;; +M (1 - mk,)] (3.29;
where
o
Y, = I Vij 0 (3.30)

3




it el s

e
P

VI
rade
T e

)

~
-
i
A

1%
Yy = LWy (3.31)
b
N-n
and ! denotes summation over the non-sampled primaries. Notice
i
that
EY - ?U) =0, (3.32)
2 2 .
= . )
V(Yi) Mioa + Mioe - (3.33
2.2 2
= L)
V(yi) mo + mo_ (3.34)
and
= 5
Cov(Yi, yi) miMiUu + mo_ . (3.35)
Hence,
Z
A a N-n n
V(Y - ?U) = —9‘2— z Mf + Mi(l iy zkfmf
M i i
o
02 n Mi n 2
+ - % Fen + Mo(l -2r+ (1 - m [Mo(l - ‘n)!‘:kimi
M > Sl ¢ i
o
n
+ ziki(Mi - mi)]) . (3.36)

[f all m, = m, this reduces to
1




pecainoe ot 5

<o

~

2
- 05 . i Mi
V(Y*YU)=;- 2~+(1—u)
M
[6)
n
2 ZMZ
% Jnli 1 2 :
+-nTln— }T____M - m +(l-—'ﬂ) . (3.37)
ol o
Notice if all Mi = M, (3.37) reduces to
2 2
= = % n ce m
V(Y - YU) =T(l - E) +E(l - ﬁ) ’ (3.38)

which is the same result as (2.17) in Section 2.1.

A comment should be made about the preceding results and those
to follow in section 4. When primaries are of unequal size, even
though M., ..., MN are fixed and assumed known, in a strict
probabilistic sense the Ml’ reraiy Mn corresponding to the sampled
primaries are really random variables whose realization depends
upon which primaries are sampled. Hence, the arguments used above
and those to follow in Section 4 are really conditional arguments
for given values of Ml’ e s Mn. However, since the unbiasedness
of the estimators of Y and the confidence levels of the corresponding

M,

confidence intervals will not depend upon the values of Ml, cees M

these properties will also apply in an unconditional sense.

o 90 A, R e N T s, AT D]




3.3 Confidence Intervals on Y

The problem of estimating a linear combination of variance

components such as V(Y - ?U) is much more difficult for the unbalanced

case, i.e., all m, not equal, than for the balanced case considered

3
in Section 2.2. Searle [1971b] cites two problems in the unbalanced
case; namely, several methods of estimation are available with no
clear decision on which is best, and all methods involve cumbersome

B algebra. Searle [1971a, 1971b] gives an extensive survey of various
methods to estimate variance components. Perhaps the most popular

method is the analysis of variance method suggested by Henderson

[1953], which for the model assumed in (3.1) - (3.3), yields the

\ i unbiased estimators
s m,
\ S
z Z(y..-yi)
~9 i ij
S 7 S0 AR (3.39)
€ m -n
o
and
n B
- =2 2
g Im, (y,-y) =(n-1)o
i ¢~ = - (3.40)
{ * 2
Im,
- s e
2 i
u " m_
¥ 5
.*."
:.f An unbiased estimator for V(? - ?U) would therefore be
2 d .
8, blaa + b0 (3.41)

where




N-n n

by =-35 £ Mi + Mz(l - w)° zkfmf (3.42)
M ) s &
s .
and
o Mi 8,
b, =754 —+M@A-21n+ QA -m[M(@A-mIk'm
2 M2 { mi [6) [6) i 2 1§ T
o
n
+ 22iki(}‘li = mi)]) o (3.43)

J

However, as Searle [197la, 1971b] reports, the distributions of the
variance component estimators are unknown, although they may be
expressed as linear combinations of non-central chi-squares as
discussed by Harville [1969]. The only partial exception is that

under the assumption that the random effects have normal distributionsc,

o v x2 0 (3.44)

Obviously since the distributions of the variance component estimators
themselves are unknown, the distribution of a linear combination
such as 8, is also unknown.

One method to approximate the distribution of 8, is to equate its

first two moments to those of a chi-square variable. That is, let

g ~bx3. , (3.45)
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E(g) = blci + byo? (3.46)
= bf ,
and
v(g) = biV(c}i) + b%v(sz) +2bb, c°v($§, Sz)
= TE (3.47)

Solving for b and f gives

BoVCo b2V (o 3 +2b,b.. Covla-.e%) ;
1 a 2 £ 152 a’ €
b = 3 5 (3.48)
2(b1°a+b2°e)
and
2(bio“+b§o“+2blbzozo§)
f = e ¢ " (3.49)

2L 02 2.2 2
bIV(ca)+b2V(oE)+2b1b2 Cov(oa,oe)

For the model assumed in (3.1) - (3.3) Searle [1971a] gives formulas
for V(;i), V(;i), and Cov(ai, Si) under the normality assumptions.
However, since these terms are functions of squares and products of
05 and 02, he further cites results derived by Ahrens which provide
unbiased estimators for them. At best the above procedure would leac
to only an approximate distribution of 8y and since estimators of
unknown parameters are used when solving for b and f, the method
appears questionable.

Since the distribution of 8, is not available for the unbalanced

case, it appears the simplifying assumption that all m, =m must be
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made to develop any useful results. This assumption is not
unrealistic, since in many surveys, the desire for an equal surveyor
workload requires the selection of an equal number of secondaries
for each sampled primary. By assuming equal secondary sampling,

the results developed in Section 2.2 may now be used to construct

confidence intervals on Y. When all mi = m,

- A 5 9 2
V(Y - YU) = 8,9 + 8,9, (3.50)
where
N-n
i M?
g L e
o w ki g XU (3.51)
1 2 mn
M m
(o)
n N-n
(mi- 5 Mi)
ek o X A 20 d-a)
8 2 T mn ; L5k
M m o
200 2 2 \
o) = mo, + o » (3.53
and
s s 3
02 itl O (3.54)
Using Theorem 2.1 of Section 2.2 gives
2 2
g = glsb + gzsw (3-55)
where
n
- =2
zm(y;-y)
2.t (3.56)
W n-1 '
and
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| nm
Y L (y --y.)2
| g @y hye
| = ————
| S, vy €3.57)
as an unbiased estimator of V(f - ?U). Furthermore,
' .
e it - (3.58)
V(Y-Y )
U
] and
: ; Z 0
e e A (3.59)
} i (n")
. j
where
F 3 (8,045,022
A i el 5207
! n = TZ_—.Z—-A—_ s (3.60)
Bl T
W
1 23
P | oy = n - ) (3.61)
P 1 and
t
- il n, = n(m - 1) . (3.62)
; ;ﬁ, An approximate 100(1-a)Z confidence interval on Y is therefore
o
L P
5 given by
Vg [Yy * ty/9:nr 78] (3.63)
i 3
Y with g as defined in (3.55).

An exact confidence interval on Y may also be constructed.

Consider the random variable
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where
oy
di =1z zijyij -
i}
b |
)l 2 =0 i
o 3
i J
m
i 3 . .
;: R,ij - 31’

(3.64)

(3.65)

(3.66)

(3.67)

and the Eij's’ cl’CZi's and c3i,S are constants. Using the model

stated in (3.1) - (3.3), it can be shown that

2

2 2 1
uy n N(clu,c1 Oa + (mi + c

2
2i%31

2
)ce

(3.68)




Equating V(ui) to V(Y - ?U) in (3.36) and solving for c2 and c2

1 2131
¥ ylelds
N-n n ] q
2 2 2
ci=—31(c M+ M- s kf mii (3.71)
Mo i 0 i
and
-ci 1 n Mi
C2ic3i = E‘.+ _E {z ET * Mo(l -+ (- ")[Mo(1 = Wy
. e Mo 2 N
{ s 2 o
i g kimi + ZZki(Mi - mi)])}. (3.72)
[ i 3
|
g/
& ) Then
e =3
—_— At
} — (n* - 1) €3.73)
) &
n*
- \ where % (u_ = U)2
5 i
i
l oy (3.74)
{ n -1 ]
H
o n* = number of sampled primaries with cgic3i > 0,

and an exact 100(1 - a)% confidence interval on Y is

37 /g 1. (3.75)

U x l:on/Z;ﬂ*—l S

As in th% equal primary case, any convenient set of Qij may be used as
i

2
long as 7 %ii =0 and ¢, .¢

- 21%34 > 0 and satisfies (3.72).
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3.4 Robustness of ?U to Model Breakdown
The robustness of ?U to model breakdown is now examined. Recall
¥, =23 +@-my (3.70)
u NV Ya i
where
- 2 -
oi
— n —
Y. - ikimiyi " (3.78)
m -m
K, =—2-1 | (3.79)
1 n
2 2
mo--Xmi
i
and
n
%
= —— 0
™ ~al (3.80;
o
Let S1 denote that primaries are selected with equal probabilities
and without replacement. Let S2 denote that primaries are drawn
with probability proportional to size and with replacement. In
both S1 and 82 it is assumed that the secondaries are sampled at
random. Then for a given finite population,
= n = (1-m)n . S
E(Yulsl) ot s e ikimiYi (3.81)
and
N N
te la y o B (A-mn %
L(Yulsz) = = inﬁi + M >i:k1mimiﬁ(1 . (3.82)
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Thus, for a given finite population QU is a biased estimator of Y

under either S1 or 82 even though

[
=i

E(y,[5))

and, if all m, are equal,

|
<

EGyls,) =
For the special case when only one primary is selected, i.e., n =1,

Y

v>- Y1

I
<

E(iulsz) =

and hence E(Y - §U) = 0 for any assumed super-population. This
special case occurs when a stratified multi-stage design is used
and only one primary is chosen from each strata.

Another special case of interest is stratified sampling, i.e.,
when all primaries are sampled. In this case, m = 1, and if

secondaries are sampled at random from each primary

N
M

y
1

[e]

‘\\\\is the classical unbiased estimator of Y. Hence, the unbiasedness

of Y in stratified sampling is robust to model breakdown. This

U
resul?\was also obtained by Hartley and Sielken [1975] who further

discuss the robustness of the confidence interval for stratified

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

PRI N
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sampling.
The results of Section 2.5 concerning selection of the ¢, 's

ij

also apply to the unequal primary case.

3.5 Comparison of ?U with the BLUE

The estimator ?U was motivated by the least squares estimators
of the finite population parameters. An alternative unbiased
estimator Y for Y can be constructed by minimizing V(Y - Y) subject

to the restriction that

E@ -Y) =0. (3.88)
R L
In particular, let Y = Zhiy1 where the hi's do not depend on the
i
L
y1j s. Then
- A 5
E(Y - Y) = u(1 - Zhi) % (3.89)
i
and the condition that
n
th, = 1 (3.90)
i ) §

is imposed to insure that Y is unbiased. Minimizing V(Y - Y) with

respect to h, subject to (3.90) yields

i

(bi+k)Ai

hi = mo\y + g (3.91)
o i

where




oZ/(oi + ozlmi)

n

Hence, the estimator Y. = 2h1§1 with the h, as defined in (3.91)
i

S i

is the BLUE of Y. This estimator has been previously suggested by
Scott and Smith [1969]. However ?S requires knowledge of oi and cg,

and these values are seldom known in practice. Scott and Smith make

the simplifying assumption that all mi = m, and recommend estimating

A by

where

Notice that in the special case when Mi = M and mi =




b gt dng
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| § ¢ mi = m but not all M1 are equal, then
n
IM
Ew WL T (3963
SO n i i g
(6]
and
Lo LS 1 - us)y (3.100)
where
n
AiMi
L N o {3.101)
[6)
_ n _ n
" ZMiyill‘.Mi L (3.102)
i i
and
nm
gy
y = - > (3.10%)

The estimator ?U in (3.26) is therefore a special case of ?S in

which A = 1.

Even though §S minimizes V(Y - %), §U has the advantage that
under the assumed model, its distribution and the distribution of
its estimated variance are known, and confidence intervals can
thercfore be constructed on Y. On the other hand, Scott and Smith
do not derive the distribution of §S when A is unknown, and therefore

make no comments concerning confidence intervals. Further, A will L

g -

e T —— e
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/ 2 2
indeed be close to one if cE/m is small relative to oa, as would be
the case if thereis a clustering effect within primaries. As stated
in Section 2.3, this type of survey population is quite common.

Finally, if m is large and the M, are of relatively equal size, the

6
difference between V(Y - ?S) and V(Y - §U) will be small. Hence,

although ?S is the BLUE of Y, the fact that its distributional

e

properties are not known when A is unknown, suggests that ?U is of

greater practical value.




57

4. REGRESSION ESTIMATORS IN TWO-STAGE SAMPLING
| 4.1 Definition of the Model

There are many situations in survey sampling in which the
variable of interest, y, is related to another variable, x. If such
a situation occurs, a more appropriate super—population model than

the one assumed in Section 3.1 is

= + (4.
| yij u + a; + Bxij eij [4..1)
i
‘ where
2
j o ~ N(O, ca) > (4.2)
E} 2
3 Eij ~ N(O, oe) 5 (4.3)
ai, xij’ and eij are all independent, and u and B are constants.

An estimator for the finite population mean is developed under
the assumptions (4.1) - (4.3) for the general case when primaries
are of unequal size and neither p = 0:/02 nor 02 and o are known .

The notation used here is consistent with that of Section 3. In

addition, X is a (Moxl) vector of the x,.'s in the finite population,

A 2y

15? and X 1is a (m_x1) vector of the x,,'s in the sample.
5, =s (o] ij

-

4.2 Estimation and Variance Formulas for the Finite Population Mean

The finite population can be expressed as

=a, +bx,, + e I =% oo N

Yij i 13 1§ °

J=1, oos M,




where
i TR 1
i ;(xi]—xi)yij
R S S e (4.5)
M
N i i i
¥ E(xi,—xi)
By A
and ;
M, M,
L ¥a e
a, =4 - b4 - R e (4.6)

i Mi Mi
are the least square coefficients for the regression of yij on xij'
The mean of the finite population can be represented as
N ;
IM. Y, b
b
=

M
(o]
N -
IM, (a,+bX.)
il 1 L
SR O .7)

M
o

An estimator of Y can therefore be constructed by estimating b and a

i
from the sample. Performing the regression of yij on xij for the
sample yields

m
n i -
A i ?(xij-xi)yij
b = =y (4.8)
ik -
b E(xi.—xi)
5 S
and
a; = ;i - b;i ; - I (4.9) :




where m i

y, =4— (4.10;

and mi

i j
RN e (4.11)

As an estimator of a, for the primaries not selected in the

i
g | sample, the knowledge that the conditional expectation of ay given
r ‘ any X is u, suggests using an unbiased estimator of u. Following
‘i 2 Section 3.2, let the estimator for a; when the ith primary is not
k.
: l} selected in the sample be
L, \ . ~ e ~
;\ Hm g bxa (5. 12)
& where
= _ a 3
& —
f ¥y ikimiyi : (4.13)
A n
i - -
i : xa = ?kimixi s (4'14)
i
and
m ~m
K, = —=1 (4.15)
1 n
2
mo—Zmi
AL

Substituting b and a; from (4.8), (4.9), and (4.12) for b and

a, in (4.7) gives




o+ LMy + b[X - (rx, + (1 - D% )]

= ZMiyi/EM

’
1 ke

n_n
= IM x, /IM, ,
g ity

(4.20)

Obviously, to use this estimator, X must be known. It is of interest
to note that when n = N, 7 = 1, and S—(R simplifies to the classical

-

combined regression estimator for stratified sampling, namely,

T, =yr+b(X— xr)

The difference Y - ?R can be expressed as

= a 1fN--n n
Y - Y =—-—1ZY +zly, -
MO

M,
24
2 i yi m, ta TT)Moki
i 2 511 i

R

- !;[;( - (n;cr + (1 - 'n)}—ca)]
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Y, =2y
i i
j 3
and
oy
b LR
i i
§ 4
Noting that
4y
E(Y, X, X) = My + B X,
B
E(y, X, X) = mu+ B§ X5
and
EMb|X, X) =8,
it follows that
EQY - Yngg, X)=9.
Also,
22 .
V(Yi|§, X) = Mo +Mo_,
22 2
V(Y1I§J gs) mo  +mo_ ,
Cov(Y,, y,.|X, X)) = mM 02 + mo
i* 7112 g iia - b
Cov(Yi, b|X, gs) =0,
COV(Yi. bl_}_(, 1(8) =0,

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)
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and
E 3 0'5
: V(b |X, L) =~ (4.34)
s
x
where
nnﬁ
2 - .2
sx =z ).j,(xij - xi) ’ (4.35)
i
It follows that
2
g = a N-n n
E | LT R R W+ 0 - 52 Tk et
| =S 2 o o SO
i E Mo 3 i
F
| |
r j 02 n Mf n,
i + =5 I—+M@A-2r+QA-m)M{A-mZk'm
: M i mi [¢) o M : (g
(3 o

i

i i
e ————————

n
F R, mi)])j

| 2 [Faxram )1
o 5 2 (4.36)

S
X

v AT I
R A ¥
'
. Mot e
PUTPSERPENEE I SR
~

If all m1 = m, this reduces to
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-t
v g————

N-n
2 Ink M2
= = % .~ 2
V(Y - YRIé' 2) = ————Mz + (1 -m l
5 i
n :
2 M’ ?
oe n (i 1 2 i
+;m_ il — ™ + 41 = ® )
o] o
J
| (X-(rx_+(1-m%_) 12
4 { 2 v a . (4.37)
=K
{ € 2
N ; Sx
)
I
J
If in addition, all Mi = M,
AR
4 = = Oozn n 2 m
= - — -=) + — i
3 V(¥ YR|§, LY & = =g Aot )
}
" |
{
: + g2 (4.38)
€
:
¥
ot =
-‘2 4.3 Confidence Intervals on Y @
4 )
. ""g’_fi‘ In constructing a confidence interval on Y, it is assumed
ﬂ:‘:'} that all m = m. Through the use of Theorem 2.1 of Section 2.2,
= “
E j i 2 2
.: ‘:j &= glsb + gzsw (6-39)
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where
N-n
2 1
IM 2 :
1 £+ 1 (1-u)
8, = 5 + # (4.40)
M
o
and
n N-n
ZMf— E Mi
. i i N o + 2n(l-mw
&) 2 M mn
Mom o

(%= (rx +(1-m% ) 1

+ 5 = (4.41)
s
x
is an unbiased estimator for V(Y - ?RIE’ gs). In addition, the
conditional distribution of (Y ~ YR)/Jg_given X and ﬁs is an
approximate t-distribution with n' degrees of freedom where
(g oz+g o2)?
s 150 Nl
e 2 4 ’ e
glcl/(n-1)+g202/(n)(m-1)
2 2 2
Oy =0, T, 4 (4.43)
and
02 = o” . (4.44)
2 €

Hence, only X and the observed xii's in the sample are needed to
completely specify the t-distribution, and an approximate 100(1-a)%

confidence interval on Y 1is
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A

(Yp * £, 5. 078 ] (4.45)

Note that the confidence interval (4.45) depends on X and XS
since both g and n' depend on X and XS. However, since the
confidence level, 100(1-a)%, does not depend on either X or XS, the
above confidence interval procedure produces intervals containing
Y 100(1-a)% of the time.

An exact confidence interval for Y cannot be constructed using

the technique of Section 2.2. If u, were defined to be

u =6y, + CZdi (4.46)
where
m
dy = glijyij (4.47)
and
m
;zij =S (4.48)
then
P m
E(u X, X)) = cju + B(e;x, + CZ§2ijxij) (4.49)
. a2
and the ui's would not have the same mean. Therefore Z(ui - u)
i

given X and 58 would not be a central chi-square, and hence an

exact t-distribution would not be available.
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4.4 Two-Stage Sampling When Elements are Related to Primaf?\Size

S
N\
] N\
1

An important special case of the model in (4.1) is when x1j = M;x
i.e., an element in the population is related to the size of its \\\\
primary. A similar model has been considered by Cochran [1963] to \\\\
study the behavior of estimators for single-stage cluster sampling e

designs. The super-population is now defined as

= +
i yij n o+ oy BMi + eij (4.50)
where
2
‘ ai ~ N(O, ca) : (4.51)
/ 2
Eij v~ N(O, oe) . (4.52)

Mi’ ai, and eij are all independent, and u and B are constants. The

finite population can be expressed as

= + -
’ yij a + bMi eij (4.53)
;i where N 5
3 IM,
! = a2
-_,1 a=Y-b= (4.54)
-« * 1 o
and
NMi N
i %Miyij—YiMi
b = N 5 - (4.55)
e
IM,
ol L =
M, - m
: 3 g o

I'he finite population mean is now




L

N
i
¥=a+bi- (4.56)
M
[e}
A logical estimator for Y is
B2
YM= a+bT (4.57)
[o}
where n
S inimi
&=y~ b (4.58)
o
and
n e
I ey
= (4.59)
ol I 2
ZMimi—(XMimi) /mo
s § 2 3
are the least square coefficients for the sample regression of
yij on Mi' Simplifying (4.57) gives
N 2 n
IM IM. m
& b ~ |3 ) § 1 i
YM=y+b Tl kg J (4.60)
o o
Noting that
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it follows that

E(Y - YMIMi) =0 . (4.64)
In addition, ;
i
- p M -
V(§—?|M)=02{1 +g__i_-mi(1C)_MimiC2
M* 3 o 2 M m n
M i 6] [s]
o ):Mimi
{ i
m n M.C |2
2 o 1 =C) "3
+a_ 1- % + Zmi = x = (4.65)
[¢] o o} o}
EMimi
i
where
N 2 n
" ZMi EMimi
(M, m,) . .2
{ y Mo @
C = - ]2 . (4.66)
n i
2 i J
XMim1 - = —
i [6)
If all mi = m, an approximate 100(l-a)% confidence interval on Y
is
Y (4.67)

where




e —

g =85+ 8,5 » (4.68)

& Mi 2 2
A § B Sl | ) W9 v B (4.69)
1 m 2 n B
M
(o)
n
2
M
i 2 2
3 | i - A
B === [~ m+ 2+ (lm; 4 it (4.70)
(o] (o]
.
{ i (l—n)(n)M°
A= M - n . (4.71)
o
a, whd
B = IM, - - (4.72)
2 n
i
and n' is defined in (4.42).
4.5 Robustness of iR to Model Breakdown
The robustness of iR to model breakdown is now discussed.
Notice that ?R can be written as
2 & o = : = .
YU b[X ('nxr + (1 n)xa)] (4.73)

where ?U is defined in (3.26). As was shown in Section 3.4, for a

given finite population ?U is a biased estimator of Y. It therefore

follows that ?R is also biased for Y given a fixed finite population.

Furthermore, in the special case of stratified sampling where

?R is the classical combined regression estimator, ?R remains biased
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even though Y, is now an unbiased estimator of Y (see, e.g.,

U
Cochran [1963, p. 202]).
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5. EXTENSIONS AND CONCLUSIONS
5.1 Sampling with More Than Two Stages
5.1.1 A p-stage sampling design

The methodology developed in this report can be extended
in a straightforward manner to higher leveis than the two-stage
designs considered previously. For a p-stage design, the linear
model describing the super-population is assumed to be the random
p-fold nested classification model. It is further assumed that all
random factors are normally distributed with mean zero and constant
variance, and that all factors are independent.

If all sampling units are of equal size, the least squares
technique used in Section 2.1 can be used to construct estimators
for the finite population parameters. If sampling units are of
unequal size, as in Section 3.2, estimators can be constructed by
using the knowledge that non-sampled units are from a distribution
defined by the super-population model.

If equal samples per sampling unit are selected, an approximate
confidence interval on Y can be constructed by using the following
result from variance components analysis (see, e.g., Graybill [1961,

P XL N

Theorem 5.1: Let the random p-fold nested classification model

hold for the super-population and let all random variables in the




I ai™

P
.

3
Lc
G
|

|

3

model be independent and normally distributed. Let the mean square

2
for the ith factor in the model be denoted by si. Let s; have n,

ki) Aerat 2 & 2, 2 2
degrees of freedom and let E(Si) = 0. Then ¥, = nisi/oi a x(ni)
and Vl’ s vp are mutually independent.
P
Using Theorem 2.1 of Section 2.2, it follows that g = Zgisi
P i
is an unbiased estimator of y = Ig.o,, and
a
n'g ;2 5.1
Y X(nv) (5:1)
where
P
(?gio )
s = ——— €5.2)
2 4
L(g;o;/ny)

By selecting the g, in such a manner that y = V(¥ - ¥), an
&

approximate 100(l-a)% confidence interval on Y is

¥ + (5.3)

ta/2;n'/g—]

An exact confidence interval on Y may also be constructed by
considering appropriate linear contrasts of the observations. An
cxample for the three-stage design is given in the following

section.
5.1.2 Three-stage sampling with equal sizes and samples

For the three-stage sampling design let
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N = number of primaries, j
M = number of secondaries/primary,

L = number of tertiaries/secondary,

n = number of sampled primaries,

m = number of sampled secondaries/sampled primary, and

% = number of sampled tertiaries/sampled secondary.

The three-fold nested classification model describing the super-

population is

= + o
Yije ~ ¥ 7 Mgk ey
where
E(nijk) =0 (5.5) 5
and |
. 2 2 2 gt G d b
E(ﬂljk n1|j|k|) = 0“ ¥ CB o 08 ’ i=i, 3= s k=k"',
= ai‘ + 02 s i=i, j=3', kék',
Vs & ds
=5 Ua Y i=i'.~ J*J'a
=0, ifi' . (5.6)
Using the methodology of Section 2.1,
nme
LELY. .
o |
L R (5.7)
£mn
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Alternatively, V(? - Y) can be expressed as
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01 = Smea + 9,06 + o (5.13)
l - S SN
o, = 205+ 0, (5.14)
and
3
} 2 . 2
Oq=0_ . (5.15)
o g — o
: 2\ Using Theorem 5.1, an unbiased estimator for V(Y - Y) is
e 2 2 2
_ 8 = 851 * 85, t 48] (5.16)
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An approximate confidence interval on Y is

where

n' =

[Y + ¢t

(g

a/2;n'

/g ]

22 22 222
19118,9,18,95)

2 4
£1°%1

/ (n-1)+g505/ (a(m-1))+g505/ (nm(1-1))

(5.20)

(5.21)

(5.22)

£5.23)

(5.24)

An exact confidence interval can be constructed by considering

the random variable

where
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model (5.4) - (5.6), it follows that for all i and j

)—:h - =0 , 5.29)
| K ijk (
= ?rZ (5.30)
S RREATT B ;
} 3
Lo
Cg = Lhijk s (5.31)
‘ k
1 '
¢ and the rij s, hijk S, s c2, c3, c4, and c5 are constants. Assuming

g
B

- 2 2 2
o N(u, o + 08/m+ oclf‘m) B (5.32)
J
d. v N, c,(a> + a2/2) (5.33)
E* i S - i . '
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Fey ™ N(O, cco) , (5.34)
e Cov(yi, di) =0, (5.35)
F Cov(yi, fij) =0 ; (5.36)
H
', and
~
d Covi(d., £..) =0 . (5. 37)
b i i
e Equating V(u,.) to V(Y - %) and solving for c2 czc and c2c
b~ ij 1 2742 375
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Using the results of Section 2.2, and noting that

‘ nm
‘ ’ £ (u, ,-G_)Z
g7 B
" L I el S ) (5.41)

X
V(uij) n(m-1)

an exact 100(1-a)% confidence interval on Y is :

[y + talz;n(m_l)/gzl (5.42)

where 3

o A A (5.43)
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5.2 Concluding Remarks and Future Research

In many practical sampling situations the rationale for the
super-population model is more realistic than that of classical
frequentist theory. If the population of interest changes over

time, repeated samples from this population are in fact repeated




samples from a super-population and not a fixed finite population.

i3
[‘
5
r ; Trueblood and Cyert [1957] offer an example of a two-stage sample
g design used to confirm accounts receivable in a department store.
g Over a period of time, the account ledgers change, and the notion
of a super-population generating a fixed set of ledgers at a given
point in time seems to be an improvement over the classical
assumptions. The results developed in this report are
appropriate when sampling from such a population.
Possibilities for future research in the super-population
theory of survey sampling include
(1) the study of ratio estimators in both single and multi-
stage designs,
;" ﬁ (ii) an Empirical Bayes approach for estimation of the finite
V population parameters,
(iii) the further study of estimation of finite population
parameters in surveys with more than two stages and
sampling units of unequal size, and

(iv) an extension of the results of Section 4 to the multi-

]
e -
PRSI

variate case where xij is a vector rather than a single
.

variable.
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Royall and Herson [1973a] have considered a special case of a
ratio estimator in single stage designs where the super-~population
model is a polynomial regression and have found it to be the BLUE of
the finite population total. Further research into the behavior of
ratio estimators in multi-stage surveys may produce similar results.

Since super-population theory implies the parameters of the
finite population are truly random variables, it might be worthwhile
to consider an Empirical Bayes approach to the problem of estimating
the finite population parameters. An Empirical Bayes approach would
utilize information from previous surveys of the population to
estimate the current finite population parameters.

In extending the methodology developed in this report to
more than two stages when sampling units are of unequal size,
various estimators for non-sampled elements are plausible and these
alternatives should perhaps be studied.

An appropriate super-population model for extending the results

of Section 4 to the multivariate case 1is

3 T
¥eq = F + ay + gij§_+ Eij (5.45)

where Eij is a vector of variables and 8 is a vector of constants.
Using matrix notation and the arguments of Section 4, estimators for
the multivariate case could be developed.

In conclusion, a super-population theory to survey sampling is

quite realistic and brings survey sampling more into the mainstream

of statistical inference than does the classical theory depicted

as Case 1 in Table 1 (p. 7). Future research will hopefully lead to

79
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a more comprehensive theory which will serve as the framework for

all sample surveys.
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APPENDIX A: A NUMERICAL EXAMPLE FOR TWO-STAGE SAMPLING
1
| WITH EQUAL SIZES AND SAMPLES
The following example is taken from Mendenhall et al. [1971,
p. 186] with the modification that all primaries are of equal size.
A forester wants to estimate the total number of trees in a
certain county which are infected with a particular disease. A
two-stage sampling design is used with the county being divided
: i into ten primary units which are further subdivided into fifteen
E secondaries of approximately equal size. A sample of four primaries
L } and six secondaries per sampled primary is taken. The survey results
F o are given in Table 3.
rr y “
¢ :
TABLE 3

Results of Forester's Survey

Area Number of Infected Trees per Plot (yij)
i i oo T A T e SRR [ER 13
2 &y 6y 10, 9, 8; . 5
3 105 ldy k4, 105 95 15
4 S 3 4 Ly 2, 5

For this problem N = 10, M = 15, n = 4, and m = 6. From (2.14)

Y =25,

E 24




Also, (2.28), (2.29), and (2.35) give

sy = 127.444 ,
2 _
r o - 8.983 ,
i ! and
|
[ g = 3.026 .

| The degrees of freedom given in (2.37) assoclated with the

approximate confidence interval are
n' = 3.186 .

Since n' is not an integer, it is rounded down to 3, and a

B conservative 95% confidence interval on Y from (2.43) is
% (3.468, 14.532) .

To compute the exact confidence interval on Y the zij are selected

to be

Q«ij=“l, j=l;2139
==ty Jri= 45 566

for all sampled primaries. Then from (2.46)

d, = =18 ,




&3
Also, from (2.55), (2.56), and (2.59),
| cf =05
2
C2L3 = .01
and
gp = 2.493 .
The exact 95% confidence interval on Y from (2.64) is
| (3.979, 14.02) .
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