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This report develops a new technique for the estimation of

finite population parameters in a multi—stage sample survey .

Specifically, estimators and confidence intervals for parameters

of the finite population are developed for two—stage sampling when

primaries are of either equal or unequal size, two—stage sampling

when the variable of interest , y, is related to another variable,

x, and p—stage sampling with an example of three—stage sampling

when units are of equal size. The stochastic procedure generating

the sample is assumed to be a two step procedure where the first

step is selection of a ~iarge sample TM from an infinite super—

population and the second step is the actual implementation of the

sample survey.
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- ABSTRACT

This report develops a new technique foi~ the estimation of

• finite population parameters in a multi—stage sample survey.

Specifically , estimators and confidence intervals for parameters

of the finite population are developed for two—stage sampling when

primaries are of either equal or unequal size, two—stage sampling

• I when the variable of interest, y, is related to another variable,

x, and p—stage sampling with an example of three—stage sampling

when units are of equal size. The stochastic procedure generating

the sample is assumed to be a two step procedure where the first

step is selection of a “large sample” from an infinite super—

population and the second step is the actual implementation of the

sample survey.
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4’.r 1. INT1~)DUCTION

1.1 Preliminaries

In many samp le surveys of finite populations , single—stage

sampling designs are either too costly or physically impractical to

use , and the need for a multi—s tage design arises . In a multi—stage

sampling design , the population is divided into large units , called

primaries, which are further subdivided into smaller uni ts known as

secondaries . The primary units are then sampled and subsamples of

the secondary units are taken from the selected primaries. If

necessary the secondary units may also be subsampled until a desired

sampling element is obtained . Sukhatme (1947J offers an example of

a survey to estimate wheat production in India. The district of

Moradabad is divided into six divisions and within each division

a sample of eight villages is selected . Two wheat growing fields

are subsampled from each village and a further subsample of plots

is chosen from each of the selected fields . Kish [19521 considers a

two—stage sampling design of a city with a sample of blocks selected

~~ 
“ in the first stage and a sample of dwelling units taken from the

selected blocks in the second stage . Kish [19651 provides an example

of a three—s tage design and gives an extensive list of similar case

studies .

Both Deming [1950] and Kish [1965] state that multi—stage

designs are often less expensive than single—stage designs due to

Citations will follow the format of Biometrics.
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the reduced cost in preparing sample frames and the reduction of

interviewers’ travel time. Whereas a sampling frame of the entire

population is needed for single—stage designs, sampling frames in

a multi—s tage design are needed only f or the elements whose larger

units have been selected at an earlier stage. The cos t of inter—

viewers ’ travel t ime is reduced since the elements an interviewer

mus t sample are closer together.

The goal of any sample survey is estimation of parametric

functions of the finite population . Under classical. frequentist

theory , any inference made concerning the population reflects the

expected behavior of repeated samples from the same finite population.

Under this assumption and thrc ugh the use of conditional expectations ,

the theory of multi—stage sampling has develop ed f rom the results

of single-stage sampling theory .

In a two—s tage design when primaries are selected with equal

probabilities and without replacement, Raj [1968 , p. 114] and

Cochran [1963, p. 304 ] give an unb iased estimator of the population

total , the variance of the estimator, and an estimator of the

variance . For the case when primaries are selected with unequal

probabilities and without replacement, Raj [1968, P . 118 ] provides

a general estimator for the population total provided unbiased

estimators of the primary total and its variance exist. Raj [1968,

p. 1191 and Cochran [1963, p. 305] give similar estimators when
~~~~-

primaries are selected with replacement under various subsampling

schemes. Other results such as extension to stratified multi—stage

sampling and estimation of ratios are found in Raj [19681 and

Cochr-in r19631

~ ~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~ 
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Unlike classical frequentist theory , the approach in this

r &~po rt  will assume that the f in i te  population is a sample ol

size M from an infinite super— population . The actual implementation

of the survey is a process of taking a multi—stage subsample from

the selected finite population. Inferences may be desired for either

the parameters of the super—population , or for the finite population,

although technically the “parameters” of the finite population are

now statistics sunmiarizing the sample of size N0 drawn from the

super—population . This report will be concerned with inferences

regarding the “parameters” of the finite population.

1.2 Literature Review

~r ,, -

Before discussing the super—population model, it seeme necessary

- to first mention the direction of recent research in survey sampling

theory. Rao [1971] has stated that until recently, survey sampling

theory has evolved through an inductive process. Reasonable estimators

and sampling designs have been suggested and their properties examined

either analytically or empirically. It has become evident that some
“ I

general theory of sampling is needed to better relate the inference

of sample surveys to statistical inference. Many recent attempts

have been made to formalize the theory of sampling from finite

populations, but much confusion and controversy are associated with

these.

Godambe [1955, 1966] has introduced the notion of estimators

which are label dependent, i.e., not invariant to permutations of

- 

the labels attached to the units. He has shown that in this more

L ~‘.
~
,
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I
general class of estimators, the customary optimal estimators used

in the classical theory lose their classical optimality properties .

However, the estimators which are superior to the label invariant

estimators depend on the characteristics of non—sampled units in the

population and are, therefore, not practically available. Many

other authors have extended and refined Godambe’s original work

and are referenced in Godambe [1969]. Ericson [l969a, 1969b ] used

the model suggested by Godanibe to consider a Bayesian approach of

inference for the finite population.

-

‘ 
Hartley and Rao [1968, 1969] and independently Royall [1968]

L 
) have established certain optimality properties for the customarily
I

used estimators in the basic designs within the class of “scale

load” estimators, i.e., estimators which are invariant to permutations

of the labels. Practically all estimators that have been used in

practice belong to this class, although Hartley and Rao [1969] have

stated that they do not exclude label dependent estimators from

consideration and give examples of instances when they will be

useful. However, they have not provided any general guidelines which

infallibly indicate under what circumstances label dependent esti—

mators should be used. They have stated that a sufficient condition

for the use of label dependent estimators arises when some or all of

the pa rameter functions in the population to be estimated are them—

selves not invarian t to label per mutations . Among the results of

this theory with in the class of “scale load” estimators are UMV—ness

of the sample mean in random sampling, the Horvitz—Thompson estimator

when sampling probability proportional to size, and the maximum

1 .~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



pr7- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~*~-•• 
— - 

• •__ *~~_~~-_~
_ -‘ ~_•__ -~~~ _~~__ •_

S

likelihood properties of an estimator similar to the regression

estimator when the population mean of a concomitant variable is

known.

Godambe and Sprott [1971] and Johnson and Smith [1969 ] contain

excellent papers expressing the different viewpoints concerning

these samoling theories. The conm~ents of Barnard [1969 ] Rao [1971],

and Godambe [1970] also indicate the diversity of opinion on these

- issues. Rao [1973] provides an extensive bibliography of other

studies on this problem.

In using a super—population model , this report is

/ concerned with a new theory for survey sampling. By assuming the

finite population to be a sample from an infinite super—population

t defined by a linear model, the general theory of linear models can

be applied to the problem of estimating the finite population

parameters.

1.3 Super—Population Models

* The use of a super—population model is not a new concept in

the statistical literature. One of the earliest to explicitly

- 
~~~. state the super—population model was Cochran [1939] when he con—

sidered estimation of the finite population mean for simple random

and stratified sampling designs. Cochran [1946] again used the

model to compare systematic and stratified samples from populations

- :  where the variance within a group of elements increases as the group

size increases . RaJ [1958] regarded the f ini te  population as a
‘

random sample from an infinite super—population to compare a

- - * 
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probability proportional to size estimator with the simple average,

i~.t1o , regression , and stratified sample estimators . Royall [1970]

used such a model to develop optimal sampling plans for estimating

a finite population total. Many other examples exist and the

interested reader is referred to Fuller [1973] and Rao [1973] for

additional references.

The notion of an underlying super—population also accompanied

the introduction of analytical surveys. Deming [1950, Ch. 7] and

Cochran [1963, p. 37] state that when comparing domain means in an

analytical survey , the null hypothesis is that the domains have been

L drawn from the same infinite population. Sedransk [1965] also

expresses the vi~~ that inferences refer to a more “general” popula—

tion than the existing finite population . Konijn [1962] made similar

assumptions and considered estimators for functions of the super—

population parameters. Fuller [1973] gives results for the estimation

of parameters of the infinite population in a two—stage sampling

design.

Of more particular interest in this report are the papers

concerned with estimation of the finite population parameters as

opposed to the estimation of the super—population parameters. Royall

and Herson [1973a, l973b ] assumed a super—population model in

estimating parameters of the finite population for single—stage

designs and examined results when the assumed model broke down.

Hartley and Sielken [1975] considered a more general case than Royall

and Herson where auxiliary variables are not fixed in the super—

population . Scott and Smith (1969] assumed a super—population model

• —-- _

- 
- 
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when using a Bayesian approach to derive estimators of linear functions

of finite population parameters in two—stage samp ling .

The preceding discussion may best be summarized by Table I

reproduced from Hartley and Sielken [1975]. In regard to multi—stage

sampling, the standard results discussed in Section 1.1 are classified

as Case 1. Analytical surveys and similar studies concerned with

estimating parameters of the infinite population are Case 3. The

papers of Hartley and Sielken [1975], Royall and Herson [l973a, l973b],

and Scott and SmI th [1969] are concerned with Case 2.

L J TABLE 1

Sampling Theories Classified by Sampling Procedure

and Targe t Parameters

Targe t Parameters Sampling Procedure

Repeated sampling from a Repeated two—step sampling

fixed finite population from an infinite population

Parameters of Classical finite popula— Super—population theory for

finite population tion sampling theory f ini te  population sampling

Case l = Case 2

Parameters of Infeas ible Inference on infinite popu—

infinite lation parameters from two—

super—population step sampling procedure

= Case 3

—

~

- -

~

-

~
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This report considers only Case 2. In particular , this

report takes a non—Bayesian approach to the problem considered

by Scott and Smith [1969 1 and serves as an extension to the work

done by Hartley and Sielken [1975].

1.4 Overview

I 
In this section the problems to be considered in this re—

- 

port are briefly sketched , and their relationship to the work of
- 

Hartley and Sielken [1975 ] is discussed.

Hartley and Sielken assume that the current f ini te  population

is a random sample from a sup er—population of the formI

T ½ 
. 

-
y = x 8 +  r[v(x)] (1.1)

where x is a vector of variables, ~ is a (pxl) vector of unknown

constants, e is a normal random variable independently distributed

H I of x, and v(x) is any known function of x. The basic parameters of

interest for the current finite population are

b = (xTv
_l
x)~~x

Tv~~~ (1.2)

Pt,

and linear combinations of b , say e ’b. Once a sample survey of the

finite population is conducted , the population quantities Y and X

can be partitioned into

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~1
_ _T ::i~-~~~. ~~~

) 
~~
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xs x
8

and X —  (1.3)

Y x—r r

where the subscripts “s” and “r” indicate inclusion in the samp le or

exclusion respectively. The quantity

b = (xTV~~x )~~x
Tv

_
~~ (1.4)

- 
—S 8 s  S S S — S

is such that for any C ,

and 

E(~
Tk _ ~~

T
~~ ) = O  (1.5)

~~~~~~~~~ ± ;stnp ;a,2{~
T[(x~v:

lxs)
_l 

— (XTV~~X)~~ I~ I
½ (1.6)

! ‘I
is a 100(l— cs)Z “confidence interval” on cTb where

I.

.. 

(n—p) = (Y — X b )  Tv~
l (Y — x l, ) . (1. 7)

I 

If X is unknown, an approximate 100(l—c*) % “confidence interval” on
T
e b i s

- 

T 
± ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (1.8)

‘4 . No assumptions on the distributions of X and X are made except tha t

- 

they are independent of the c ’s and that is of full  rank with

I -, — — —  — —  — — — — — — — 
~~~

——  — — —
~~~ - -~~~ -. - —~~e~1~~~ L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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probability one .

In Section 2 and Section 3 the super—population model for two—

s tage sampling is assumed to be

Y11 ~~ + + c
ii 

(1.9)

I where y~~ refers to the j —th observation in the i—th primary and the

and c1. are independently normally distributed wi th means 0 and

variances o~ and respectively . The finite population parameter of

interes t is the population mean Y. If the super—population mode]. (1.9)

is rewritten as
I

= + c
ii 

(1.10)

where cz~ = ~ + z~ , then conditioning upon the ar ’s and letting

= [a~ ci~ .. .1 gives

bT 
= 

~~l ~ 2 ••~~~ • (1.11)

‘~~ I
T —

T h e n cb -Y v h e n

T 
= [M

1/M M
2

/M .. .]  (1.12)

I
I where N. is the size of the i primary and M is the total number of

1

elements in the finite population. The results of Hartley and Sielken

imply an unbiased estimator and a confidence interval for ~ based on

I
-I 

~~~~~~~ 

.

~~~~~~~~~~~~~~~ 
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T [
~ ~~ , . . .1 (1.13)

only if X is of full rank, i.e., only if every primary is sampled at

least once . Since not all primaries are sampled in a multi—stage

design , the results of Hartley and Sielken do not app ly when the
- 

super—population is considered in the form (1.10) . To alleviate

~ 
this problem, the super—population model (1.9) is rewritten as

y
11 

= ~i + (1.14)

~ I where = a1 + ci. . Then , if the primaries are of equal size ,

b = Y, and the results of Hartley and Sielken will imply an unbiased

estimator of Y . Furthermore , if a 2 Ia2 is known , the results ofa c
Hartley and Sielken will also imply an exact confidence interval on

Y since then X, X , V, and V are all known. In Section 2, two—stage

sampling in which the primaries are of equal size but a~ /o~ is
A 

unknown is considered. In Section 3, two—stage sampling is considered

when primaries are not of equal size and consequently there does not —

exist acsuch that cTb Y .

..~~~~ In Section 4 , the sup er—population for two—stage sampling is

ass umed to be

I y~1 
= ~ + a + $x

i1 
+ (1.15)

whe re x
11 

is a variable related to y and ~ is a cons tant . The finite

population parameter of interest is still ~~. If the super—population

I 
_ _ _  _ _
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model (1.15) is rewritten as

y~1 
— (1 x

11
] 

B + (1.16)

where a~ — ~z + ~~ then as with (1.10) , the results of Hartley and

Sielken do not apply to multi—stage sampling since not all primaries

are sampled and consequently X is not of full rank . Fur thermore ,

even if the super—population model (1.15) is rewritten as

y
11 

[1 xj i ][~] + n~1 
(1.17)

~ I where = a
1~ 
+ c~~ , the results of Hartley and Sielken do not apply

unless all primaries are of equal size so that there exists a c such

that cTb = 
~~. In addition, to construct a confidence interval on 1,

2 2
0 / a  must be known.

Finally, in Section 5, a general methodology for a p—stage

sampling design is discussed and the results for a three—stage design

with primaries of equal size and secondaries of equal size are given.
1

t

_ _ _  — ~~~~~~~~~~~~~
~~~~

,. -,,- - . 
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-

13

2. IWO—ST&GE SAMPLING WITh EQUAL

SIZES AN]) SAMPLES

2.1 Estimation and Variance Formulas for

the Finite Popula tion Mean

The f irst  model considered is a two—stage sampling design when

all primaries have an equal number of elements and an equal number

of secondaries are sampled from each primary . The notation adopted

is that of Cochran [1963] in which

N = number of primaries in finite population ,
L /

M = number of secondaries- per primary ,

n = number of sampled primaries , and

m number of sampled secondaries per sampled primary.

The linear model describing the super—population is

= ~ + a~ + (2.1)

where

4. N(O , 02) , (2.2)

ci. “. N(0, c5
2
) , (2.3)

and all and c . are independent. This linear model may also be

expressed as

= 
~i + n

il 
(2.4)

-1~
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F t
where the n il

’s are independen t normal random variables with mean

zero and

E(n
i1 

t1k&) — ~
2 

+ 

~~~ 
i—k, i— i

— ~
2 
, i—k, J# L ~

I 
- 

= 0 , i~k .  (2.5)

~
‘1

The finite population of size MN is represented by

(2.6)

- 

where Y is the (MNX 1) vector of finite population observations , 1 is-t ~
a (MNxl) vector of ones, and H is a (MNx1) vector of random variab les .

The covariance matrix of H is the (MNxMN ) block diagonal matrix

0 ...
0 V2 ... O

2 2- a V = a  . . . . (2.7)c

. .
0 ~ ...
- N

c ~ where

V
i
= I

M
+ PJM , i = l , ..., N , (2.8)

wi th 1
M denoting the identity matrix of order M, 

~M 
denoting the

:~~

J.~LII~ - -
~~
‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(MxM) matrix with all elements equal to one, and p

For the finite population, the quantity of present interest

is the finite population mean

NM
zzy

MN (2.9)

Alternatively 2 can be written in the form of the BLUE (best linear

unbiased es timator) of ii based on a sample of size MN , namely

= (~T~f ~j  
- l
1
Tv 1

~ (2. 10)

where

... o

= 
o (2.11)

0 . ... VN

and

— 

(l+M p) ~H 
‘ 

i = 1, ..., N (2.12)

However , as discussed by Hartley and Sielken [1975], the fact that

Y can be expressed as (2.10) is important only in that it motivates
..*~, an estimator for ~ based on the sample, and not for its BLUE property.

The population quantities Y and 1 can be partitioned into

V
Y 1

I Y — and 1 = (2.13)

j
Ju l11: l-

~
-
~;: I ~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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in which Y is a (max].) vector of samp led observations , Y is a

( (MN—ma ) xl) vector of the unobserved population elements , 1. is a

(max].) vector of ones , and 1 is a ( (l’tl—ma) xl) vector of ones . The

estimator analogous to (2.10) but based on only the sample quantities

is

— (l~V~~l )
_l

lTv
_
~~K —s s --s —s s --s

nm

= 
ij 

(2.14)mu

where

r
_ j
~ V

_l 
0 ... 081

—l 0 V~
1 ... 0

V : 
s2 

(2.15)

0 ... • v
___ J.
an

and

V 1 = I~~~ J , i 1, ... , n . (2.16)

Since both Y and are unbiased es timators of j i , E(Y — 

~~~~~~~ 

— 0, and

is a natural estimator for V.

— 

Using the results of Hartley and Sielken [1975], the variance of
— 

~~ 
is given by

I 

~~~~~~~ ~~~~~~~
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V(

~ 

- 

~~ 
- (lTV~~ i ) ~~~ - 

:i

T

~~~
i
~~~

(2. 17)

2.2 Confidence Intervals on Y

Since for the sup er—population both Y andY
E are statistics , a

lOO(l—a)Z “confidence interval” on Y will be interpreted to mean

Prob (Vc (Lower bound , Upper bound]) = 1 — a . (2.18)

Under the assumption that the ratio of variances p and hence V

is known, an exact 100(1 — a)% confidence interval on V corresponding

to Hartley and Sielken is

± a t
12 ~J ~~~~~~~~~ — 

l-I
~~~~~ j (2.19)

where

nm
(ma — 1)0 2 

= EE(y — ~) 2 
— ( ~ )Em(~ — ~)2 , (2.20)S j  i

m

- 
_ _y~ = , I = 1, ..., n , (2.21)

m

and
‘4

Ey
— i i

:1 y = . (2.22)n

II1~
__

~~ -~~~~~~~~~~~~
-- 

- - 1 T T 2 
_ _ _ _
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However, since p is rarely known in practice, two confidence intervals

which do not require its knowledge are developed in this section.

One method for constructing an approximate confidence interval

on Y is based on the fact that V(~ 
— 

~~~~~~ 

in (2.17) is a linear

combination of variance components . To set a confidence interval

on Y, some well known results from variance components analysis are

stated as theorems (see, e.g., Graybill [1961]).

- 

Theorem 2.1: Let n~x~/a~ (I = 1, ..., p) be independently

distributed as x Let(n
i
)

p 2
L J y = Eg

1
0
1 

> 0 (2.23)
3 1

r i
and

p
- g — ~~~ . (2.24)

I

Then U = n’g/y is approximately distributed as a X~~t) 
where

~ 2 2-
• 

- (Zg~a1)
1 i 

. (2.25)
- - E(g4a4/n1)- -- I I J .

Theorem 2.2: Under the assumptions in (2.1) — (2.3) ,

(n-l)s~
4. 2 (2 262 2 ‘~(n—l)- - - -

C a

~ ~md

-
_ _-~~~~~~~~~~~~~~~~~~i~~~~~~E ~~~~~~~~~~~
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n(in-l)s2w 24. (2.27)
2 n (m—l)
C

where

Em (y
i
_y)2

2 
= (2.28)

b n-i

- - 
and

nm — 2
EE(y4 ,—y4)

2 -i~~~
s = ~~ -‘ — . (2.29)
w n(m—l)

Now let
L

y = V(~ 
— 

~~ 
= g

1
a~ + g

2
c~ (2.30 )

where

(2.31)

= (1 — 

~
) 
~~ 

‘ 
(2.32)

2 2 2
a = m e  +a , (2.33)
1 a €

and

= ~
2 (2.34)

2 c

Using Theorem 2.1 with x1 s~ , x2 
= s~, n1 = n—l , and n2 — n(m-1),

- ~ -~~~~I it follows that

I

4

_ 
_ _  

I

~~~~~~~~~~~~~~~ 4~~~~~~~~~~~~~~
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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g = g 1x1 + g2x2

2 2
= (1 — 

~
) —b- + (1 — 

~
) 

~~ (2.35)

is an unbiased estimator for V(V — 

~~~~~~ 

and

n’g 
~ I) (2.36)

V(Y_ Y
E

)

where

2 2 2( g o + g a )
= 

1 1 2 2 
(2.37)

• g~~4/n1
+g~ c4/n2

Sjnc~ and are usually unknown, they may be replaced by their

unbiased estimators, s~ and s
2
, when solving for n’.

Now, since

~ x~ ~ 
(2.38)

V(Y_Y
E

)

and

( Y — ~~ ) ‘~~N(O, v(~~— V  ) )  , (2.39)
.
~~~~~~“ E E
.

-
~~~~~~~~

.
~~ i t  follows that

- - 
.. Y—Y

t , (2.40)(n)

i f  i t  can be shown that 
~ 

— and n’g/V (Y — 

~~~~~~ 

are independent.

_ _  

-~~~~ -;~~ ~~~~~~~~~~~~
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To show this, notice that

n M—m N-nM
— 

~~~~~~~ 

= ~~ {(mu — NN~ Y + E E y
~4 + Z (2.41)

i j  J i i  J

n M-m
where ~ ~ y~ 1 

represents the sum of thoBe non—sampled elements whose
i j  

N—n M
primaries were selected and ~ E y

~ 4 
represents the sum of those non—

i i  ..1

sampled elements whose primaries were not selected.

Since g is a function of the sampled elements, and Cov(y~1
, 
~
‘k1~ 

0

N-n M n M-m
for iI&k, then g is independent of E Ey 1,. To show E E y

~ 
is

i j  J i i  J

23 independent of g, it mus t be shown to be independent of both 8b and

S
2
. Defining

m

— ~~rj

~r ~~ 
, r = 1, ..., n , (2.42)

n M-rn
it can be seen that Cov(~ E 

‘ 
— y) = 0. Since the y

~1 
arc

i i

n M—rn
normal random variables, ~ ~ y1. must be independent of any combina—

i i  3

tion of (y
1 

— 
~~~, ... , y — 

~
) ,  and therefore independent of s~ .

n M-rn n M-rn
Likewise, CovO E )~jj~ 3’rj 

— 

~‘r~ 
= 0 and E E y11 is independeat of

I j I

~~ Finally, it must  be shown that y is independent of both 8b ~md

V s
2
. Observe that Cov(y~~ y )  = 0 for i#u, and the are therefore

dist r ibuted as normal r ando m var iables with mean ii and variance
2

2 —

a + —s- . A well known result is that y is stochastically independenta

Ic

~2i ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ JT~ z~~&~~~~i
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of (y
1 

— y ,  .., y — 

~
) (see, e.g., Hogg and Craig [1970 , p. l63~).

tk-ncc, y is independent of any combination of — y, ..., y — ) ,

and therefore independent of s~ . Now observe that Cov(y
11 

- 

~
, 

~.) 0

and hence (y
~~ 

— y.) is independent of y1. Therefore, ~ = is

independent of (y,. — ~
) and likewise

Since 
~~~~ 

— Y~~~ ) and n’g/V(V — V~) are independent, an approximate
100(l—a)% confidence interval on V is

~~ 
± t

/ 2 1  ~~
] . (2.43)

Due to the particular form of V(Y — 

~~~E~~~~
’ 

an exact confidence
—

interval on Y not previously discussed in the literature can by

developed by considering contrasts of y
11
. Let

u~ = c1 
4- c

a
d . (2.44)

where
m

— 4 1]

y1 
= —‘--—-— (2.45)

d1 
= E~1.y~1 

, (2.46)
I

= 

: 

(2.47)

‘ -
~~~ c ~~2 (2.48)3 

~ 
i ]

and the 9~~
J

’S~ c1, c2, and c
3 
are constants. Assuming the model

-- -~~

_ _ _  
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In (2.1) — (2 .3) ,

d
1 ~ N(0, 0

2
c
3
) , (2.49)

y
1 

4. N(~i, + ~ a~ ) , (2.50)

and

2 2  1 2  2 2u
1 

~~ N(c
1~
, c

1
(a + — a )  + c

2
c
3
a )  (‘.51)

as and d
1 are Independent. The independence of and d

1 can be

shown by the following argument. Since E(d~) = 0,

L Cov(d
1
, y~) = E(d

1
y
1

)

= 

m9~ij~~
Yii
) + E

,
E 

~j j E(y
i j  ~~ 1

1))  . (2 . 5 2 )

Now

E(y~ 1
) = ~

2 
+ ~

2 
+ ~2 (2.53)

and

• E(y y ,) = 
2 

+ 
2 

(2.54)ij ij a

are both constants with respect to j and j ’ . Therefore, since

= 0, it follows that Cov(d
i
, ~

) = 0. Since d~ and y~ are normal

random variables they are therefore independent.

The problem now is to choose c
1
, c2, and c3 

in such a manner

that V ( u
~

) V(V — 

~~~~~~~ 
Equating V(ui) to V(V — 

~~~~~~~ 

and solving for

c~ and c~c3 
yields

I
‘- p.

- ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _
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= 1 (1 — ~
) (~ .55)

and

c2
c
3 ~~ (1 — ~

) . (2 .56)

Of course, if u ~‘ Eu ./n, then

- 2E(u —u)

• 
V(u~) 

“
~ ~~~~~ (2.57)

(see, e.g., Hogg and Craig [1970, p. 165]). Now with c2 = -~ (1 —

t and c~c3 
= ~~~(1 — ~), then V(u

1
) = V(V - 

~~~E~~~~
’ 

and 
n N

• (n_l)g~
— ~ —1) ~2.58)• V(Y_Y

E
)

where

~ 2
~
(u
~
—u)

= 

n—l (2.59)

and

m
E2

~
= J~iT~) 

~~~~ 

+~/~~~l 
- . (2.60)

IE~~. .
\ j J

1J

-~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Hence , if it can be shown that (V — is independent of

_ (n - l)g /V(V - 
~~~E~~~~

’ 
then

- Y—Y
——--1~~~~t . , 2 61)
r- (n-i)

As before,

n M— rn N-n MV — ‘
~E 

= th~~
mn — M N)~~~ + ~~ ~~ 

y~ 1 
+ ~~ (2.62)

1 3  
- i j

N-n M
and ~ ~ 

y . is independent of g which is a function of sample
• , 13 e
1 ~j3 elements only. Now,

I
t -

nm

— — — 
m ~

E9.
ijYij

u1 
- u = c

1
(y1 

- y) + c
2 

— (2.63)

n M-rn
and using the results stated earlier in this section, 

~ ~~~~ 
an-i y

i j  3

.. are both independent of — 

~
) and E

~ i.(yij 
— Y 1

) = Zf
1~~Y~~~. ALl

exact 100(l—ct)Z confidence interval on Y is therefore

a
± t 1 2 1  

/~~] . (2.64)

A numerical example of this procedure is given in Appendix A.

It  should be noted that this is an exact confidence interval

for 
~~

y choice of as long as = 0 and E2.~ = c3 
for all i .I i i i i

Since the length of the confidence interval is determined by the

a’

.~~
, ;

~~~~ ~“ - . - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - - - - - --- — - - - -—

— — - 
-I--— 

~~~~~~~ —~~ —~----~~ - ----- -—---_ --- -,- — —~~~~~ _-- ~~~~~~~ —‘- m~~- ~~~~ 1~~ ~~~~~~~~~ —
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value of 4 , it would seem to be Important to minimize this

quanti ty when seLecting the and the corresponding value for c 3.

However , since the distribution of g does not depe nd on any

convenient set of may be used. For example, if in is even, let

in= — l  , j = 1 , 
~~

• • 1
~~~~~~~~

= +1 , j  = + 1, ... , m , (2.65)

and, if m is odd, let

: :,‘ 
:1, .;.,

= +1 , j  = —i—- , •. .,  in , (2.66)

for  all i. The robustness of the confidence interval to model

breakdown may however depend on the 
~~~~~~~~~ 

and this problem is discussed

in Section 2.5.

2.3 Comparison of Confidence Intervals

The confidence intervals in (2.43) and (2.64) are now compared .

Of course if p Is known , (2.19) provides an exact confidence interval

.~ .* with mn—l degrees of freedom and would be superior to either one.

Disregarding any consideration of the “goodness” of the approximation

in (2.43), the criterion for comparison is the degrees of freedom

associated with the t—statistic.

The degrees of freedom in the exact t—statistic of (2.64) ui:e

n—I and in (2.43) they are n’ where n’ is defined in (2.37). Af:er

some algebraic siinplifications , 

—

~~~~~~~~~ —~_. -~f~_ 
— - - — -  —~~~ ~~~~~~~~~ 

-i-- —
~~~~~~~
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Ic

(n — l)K (2 .67)

where

(l+d ó) 2

- K =  ‘
2 (2.68 )

(l+d
2
5 )

- 

2

( 2 .69)
01

d1 ~~~~~ (l-q) , (2.70)

L
3

Np- 1
- 

d2 Np( Mq—l ) ~ (2 .71)

- 

p =
~~~, (.~!.72)

- and

q = ~~~. (2.73)

~~enever K is greater than one , the expected length of the approximate

confidence interval will be less than the expected length of thE- axact

confidence interval . Notice that K is always greater than one for

5c[O , 1]. ThIs can be seen by noting that K(O) = 1, K(l) > 1, iand

that the only possible inflection point for 6 in [0, 1] is a max~mum

:~-~~ 
i.e., the only possible 6 in [0, 1] such that K’(6) 0 also has

< 0. Table 2 gives the values of K for selected values of 6 ,

p, and q, in a population with N = 20 and M = 100.

~1h-i 

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~ -
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TABLE 2

Values of K with N = 20 and M 100

I .05 .10 .50 1.00

.2 .2 1.020 1.040 1.210 1.438

.2 .4 1.015 1.030 1.155 1.322

.2 .6 1.010 1.020 1.102 1.210

.2 .8 1.005 1.010 1.051 1.102

.4 .2 1.054 1.109 1.599 2.321

.4 .4 1.040 1.082 1.439 1.953

t .4 .6 1.027 1.054 1.284 1.603

.4 .8 1.013 1.027 1.138 1.284

.6 .2 1.123 1.254 2.516 4.526

.6 .4 1.092 1.188 2.093 3.543

.6 .6 1.061 1.124 1.688 2.546

.6 .8 1.030 1.061 1.322 1.688

1 .8 .2  1.344 1.734 6.002 11.719

.8 .4 1.254 1.535 4.678 10.154
“d l

.8 .6 1.166 1.345 3.207 6.496

1
8 .8 1.082 1.166 1.956 3.216

I,-

I 

_ 

__ _

_

_ _- ___
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Although the degrees of freedom are less for the exact con-

fidence Interval than for the approximate interval , when 6 is

small, i.e., when the between primary variation is larger than

the wi thin primary variation, K is close to one and the degrees

of freedom are nearly the same. In most survey populations, 6 is

in fact small, and use of the exact confidence interval seeme

advantageous . Eve n when 6 and K are large , the t—values associated

- 

? 
with the two intervals will, not vary greatly if n is large , and the

exact interval again seems appropriate .

2.4 EstImation of the Finite Population Total

NM
The corresponding results for the population total Y

ii i

follow immediately . Selecting the estimator

~ MN ’~~Y = — E~ y (2 .74 )E 
~~~~~~~~

implies E(Y — = 0 and

2 2

V(Y 
~~~ 

= M
2
N
2 {— ~(l —~~ ) + — ~-(1 —~~~~ } . (2 .75)

The unbiased estimator of V(Y — Y ) is

g M2N
2
(l, — 

~)s~ + ~~
1(l — ~ )~~2 (2 .76 )

The approximate 100(l—c&) % confidence interval on Y is 

- T- ~ •
~~~~~~~~
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± t
/2 ; fl~~ ~~ (2.77)

where g is as defined in (2.76). The exact l00(1—a)Z confidence

interval on Y is

~~ 
± t

1 2 1
v’~~] (2.78)

where g Is identical to (2.59) except that

2N 2
= 
M _~~~~ (2.79)

and

• 1
-
~~~~~ 2 MN

c2
c
3 

= —(M — in) . (2.80)m

2.5 Robustness to Model Breakdown

The results of Section 2.1 and Section 2.2 were developed

under the assumptions stated in (2.1) — (2.3). This section exand.nes

the robustness of and the exact confidence interval to a breakdown

in the assumed model. Notice that if primaries are drawn without

replacement and secondaries are sampled independently within each
a -

primary, 
~E 

is the classical unbiased estimator for Y. Therefore,

i~~

. since

-‘

I 
E(Y — any finite population) = 0 , ~2.81)

it follows that E(V — = 0 no matter what is assumed about the

sup er—population .

‘1
h—I

• —~~~~~~~~~~~~~~~~
-

~~~ 
__ _  _ _ _ _
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Similarly , the estimator g in (2.35) is the classical unbiased

estimator for V(Y
E
) if primaries are selected without replacement

and secondaries are randomly selected within each primary. Hence ,

E(g — V(Y — VE)) = 0 for any assumed super—population model.

The robustness of the exact confidence interval in (2.64) tu

model breakdown must rely on the robustness of the t—statistic .

However, for a specific model breakdown, it may be possible to

select the i. ‘s so that the consequences are minimized.ij
As an example, consider the situation where the c~~ ’s have a

non—normal distribution with

J E(~1,) = 0 , 1:2.82)

2 2
E(t1.) = a ,

3E(c
i j

) = 0 , (
~ .84)

and

E (e~~.) = . (2.85)
13

Although

—

u1 c1
y
1 

+ c
2
d~ (2.86)

is now non—normal, an appropriate choice of the R- ‘s can minirniz-~

the non—normality . Since the £~~~s affect u1 only through the

variable ~~~ they should be chos en so that d~ behaves as a norni~l
th

-
- -

- random variable. For the I primary, let

= 2
1~~ C1. (2.87) - 

- -------~~ — - —-- —--—- — - -.-------. ~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~ 

—  

—4 —•—-~ - ~~~
_

~~L-~~~~~~ ______________ _____ r •
~~~ 

~~~~ 
— -



r’ - - :-~~~~~- ----~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - 

—

32

and
UI

d . = E~~. . (2.88)
i

i

From (2 .8 2) and (2 .83) , it follows that

E ( c . )  = 0 (v .89)

- 
and

• V(c.) = . (2.90)
j

Notice that if is equal for all j, the c
1
’s are independent

~~~ I 
random va r iab les with equal first and second moments. The

- 
then satisfy the Llndeberg condition, and d . has a limiting

‘s distribution which is normal (see, e.g., Gnedenko [1963, p. 290]’.

Uence , if the £~ .‘s are selected such that is equal for all j,

the non—normality of u . is reduced.
:1. -

It also seems desirable to choose the i~1
’s so that the thi:d

and fourth central moments of d
1 

correspond to those of a normal

random variable. This implies setting

E(d~) = 0 (2.91)

: -
~~~ and

-
-

E(d~) = 3(E(d~))
2 
. (2.92)

UI in

;- ~ Keep ing ~9... = 0, ~~~~~~ . = c3, and using (2.82) — (2.85), it follows
-j I

that

~~~~~~~~ J~ 7, - - - - - -~~ - ‘ ~~
_
, 

-,---.-— —=- - -  -•q•- 
~

--- - —  
~~~

— -‘--- - - — —----—-----——- .. — W . L~~~ .- -
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E(d
1
) = Ei

ij
E(cjj) = 0 , ;2 93)

E(d~) = a 2c3 , (2 .94 )

and 

E(d~) = , (2 95)

E (d 4 ) = + 6 E f 2 ~2 
, - :2. 96)i ij  c~ < • ,  ij ij

Therefore, satisfying (2.91) and (2.92) implies

— 
UI

= 0 (~ .97)i i
- t 1

1
and

UI

U
~~~~

. 
—

~~
-— — 1 = 0 . i.98)

i 1~3

If I~~.J 
is equal for all j ,  (2.97) is satisfied , and for 1i

1
~~ I # 0,

(2.98) is most closely satisfied -~ith small values of L .. Hence ,i j
to reduce the non—normality of u

1 when c~~. is non—normal, select

the 9~. ’s so that is equal for all j ,  and E 9 ~ is small.
i i

As another example , assume that the are normally distributed ,

but that V(c . . = a 2 where ts not the same for all i. Under
11 1 1

such a modrl,

• V ( u .) = c~ o 2 
+ a~~(~~ + c~ c3

) (2 . 9 9 )

~~~~~
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is no longer equal for all I. However, if the values of o~ are

known or can be -s t I m a te d  • di f t  e r€- n t VII 1 u, -s of c2 c 
~ 

can be chosen

for each prima~~ so ch at  + ( ~ ) .)  w i l l  be equal for all

p rimaries .
I 

Since no clioi - e ot the t
fl

’s is best for every possible model

breakdown, the i
1

’s should be chosen to protect against the breakcow n

that is most likely to occur In a particular situation.

—

I--

F )

L~

- - *1

,:

Ic

N

L 
_ _ _ __ _ _ _ _
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3. TWO—STAGE SAMPLING WITH PRiMARIES

OF UNEQUAL SIZE

3.1 Definition of the Model

A two—stage sampling design will now be considered for the

case when primaries are not of equal size. Let

N = number of primaries in finite population,

n = number of primaries sampled,

M. = size of .
th 

primary,

m . = number of secondaries selected from the 1th primary ,
1 N

M = EM . = total elements in population, and

• n
m = ~m 1 = total elements in sample.

i

I t  is assumed that all of these variables are known. The super—

population is again represented as

-~~~ = ~ + a .~ + c .~ (3.1)

j  whe re

~ N(0, 0
2
) , (3.2)

“~ N(0 , 02 ) , (3.3)

and cz.~ and c~ are independent. As in Section 2.1, redefine (3.1)

as

-— 
_ _
~i y

1 
= ~ + (3 .4)

_____  

__________________________ 
-j

~ 

~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _  
- 
.
-

~~~~~~~~~~~~~~~~~~~~ -~~~~~-
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whe re the i-~. . ’s are independent normal random variables with mean

zero and - 
-

E( q 1. 11k9) = ~
2 

+ ~
2 , ik , j=

~

= a~~ , i=k,j~ L ,

= 0 , i#k . -‘ 1 .5)

The finite population is represented as

Y = l ~i + H  (
~~.6)

where I is the (M xl) vecto r of f in i te population observations , 1

Is a (M x l)  vector of ones , and H is a (M x l) vec tor of random

variabl :s. The covariance matr ix  for  H is now the (M xM ) block

diagonal matrix

- - 

_
v 0 ... 0~1

0 V
2 

... 0

2 2
o V = a  . . . . (3 .7 )

0 0 ... V
N

- - * where

V 1 = + 

~~~

3
M 

i = 1, ..., N , (3.8)
1 . j  j

Ic -
- -

~ : with denoting the identity matrix of order ~~ 
~N 

denoting the
I i

(M • xM .) m at r i x  wi th all elements equal to one , and p = a~Ia~.
1 1

~~~~~r
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- ~ .

Recall that in Section 2.1 , the f ini te  population mean was

expressible as the BLUE of p. However, in the present situation

where primaries are of unequal size, the BLUE of p is

= (J~TV
_ l

l)
_l

iTV
_l

Y

- N MI
I E EY i j(l+M )

- 

= 
N 

. (3.9)

Since there is no linear transformation of p that equals Y, p does

L 
I 

not now readily suggest an estimator of Y. For this reason, a

-
~~~ different method for the estimation of Y is introduced.

3.2 Estimation and Variance Formulas for the Finite Population Mean

Express the finite population in terms of the least squares

fit

= a~ + e1. , i = 1, ... , N

(3.10)

where

M~

=
~~ -~

,
ii

a (3.11)
-~~~~~~~~~ I

~

N Mi
minimizes ~ ~ (yr . - a1

)2 . The f in i te  population mean is

- 

i j  ~
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N

—Y = _
~~;__

N

~M~aI I
= —~ ----— . (3.12)

Ob viously, an estimator of V such that E(V — V)  = 0 is

N M .
= E 

~~ 
a~ ~J .l 3)

-
~ l o

L i
J whe re E(a . — a

1
) = 0.

P For the primaries selected in the sample,

~~

1

y
ii 

-

a~ = ~.L___ _ 
= y1 (3.14)

is the classical estimator of a1. For the primaries of the finite

population not represented in the sample , the only knowledge abouc

them is that the a• have been selected from a population with mean p.

A logical estima tor for a1 is therefore the BLUE of p. The BLUE )f

p computed from the sample is
- ‘V

F-

- ~
-~ - - n

01 
_ _ _

1 “ -‘ ‘ 
-

Ic ‘- j  V(y 1)
P
5 

= —— (3.15)
~~~~1 )
i V(~~)

where

‘~

I 
à11 

--—- ~~~~~~~
- -—~~~~~~~

—
~~~~~~~~~

-— 
- - 

-
-

— ___A~~ ~~~~~~~~~~~~ — — ~~~~~~~~~~~ ~~~~~ -‘-—- -. - -~ i_~
i’tI

~ ~~~~~~~~
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- V(~~) = a~ + a~/m~ . •:3.16)

- Unfortunately, ~
2 and ~ 2 are seldom known in practice and VG1

)

- cannot be comp u ted. Koch [1967] has considered three other unbia ied

estimators of p for the model assumed in (3.1) — (3.3) . These

three estimators are

= 

~
kimt~i , (3 . 1 7)

- Em~y1— IL y , (.~.l8)b in
0

r • and

~Yi
y -

~~
--— (S.19)

-
- 

C fl

where

in -in-. k = ° ~ . (:~.20)
- 

F 
I

- rn -Em
o i i

Of course when all are equal , all three estimators are the sai~~.

To compare the three es timators it is appropriate to exami n~
- their variances. It can be seen that

Cl
4-
Ic

fr 

- -

~~~~~~~~~~~~~~~~~~~~~
-

~~~~
--- _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~1
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V(y ) = (Ek~m~)~
2 

+ (~k~m~)a~

= A
1
a
2 + A2a

2 , (3.21)

~
1
2

- Em1
V(
~b
) = 

~~~~~~~~ 

2 
+ (l)~ 2

.
, 

= B1a 2 
+ B

2
a
2 

, (3.22)

H and

I VG ) = (!)~
2 
+ ~

_
~~~

J
~j a

2

= C
1
a

2 
+ 

Cf

2 
. (3.23)

Koch presents a table with n = 5 and for various values of

(1 = 1, ... , 5), shows the following inequalities hold:

C
1 

< A
1 

< B
1 (3.2~e i

:- ~ I

2 - -

for the coefficients of a , and

B2 
< A

2 < C
2 (3.25) - 

-

4- - for the coefficients of ~
2
. The solution to which of the threec

estimators has the smallest variance is therefore dependent on the

2 2
.~~~ actual  values of a and a . Since y is the intermediate estimator

(1 1 a
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in regard to the coefficients of ~
2 
and ~

2 
j

~~ will be chosen as

the estimator of p for purposes of illustration. Koch further

4 shows tha t 
~
‘a 

is optimal with respect to a particular quadratic,

l location—sensitive criterion.

Substituting (3.14) and (3.17) into (3.13) gives

- ~U 
= 

~~r 
+ (1 — 

~~~~ 
(3.26)

where
n

- 
EM .

I i i
IT = —h--— (3 . 2 7 )

0L 
~ 

and 

n
— 

. EM .y
— 1 i i

- 

~
‘r n 

(3.23)

EM
I’ i

i

Notice that y is the classical ratio estimator of V for two—stage

sampling when units are selected with equal probabilities (see, e.g.,

Cochran [1963, p. 300]).

The variance of (V — 

~~ 
is computed by writing

cN— n n M
V — = 

~~~

— 

~ ~ 
‘i. + E [ Y . — y1 (_t + M ( l  — 7T)ki]J. (3.29)

where
•1 M.

= E y1. , (3.30)

~ - ,. 
-
~I

!~~~, 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-2L. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I

m
1

= E y . , (3.31.)
i j

N—El
and E denotes sunination over the non—sampled primaries. Notice

1

that

E(Y — V.a) = 0 , (3.32

V(Y i) = M~a
2 + M~a

2 , (3.33)

V(y
1
) = i4o

2 
+ m~a~ , (3.3”)

and

Cov(Y , ,  y~ ) = m .M.a 2 
+ m

1
02 . (3.3~’)

Hence ,

N-n n
- V

~
) = 

~~~~~~ { 
E M~ + M~(l - ~)

2 Ek~m~
}

2 2a n M
Z + -j E i— + M

0(l 
— 2it + (1 — n)[M

0
(l —

M i i  1
0

+ 2~ k .( M . - m
i)])} . (3.36)

if all m = in , this reduces to

I s  - 

-
~~~

-± -~~~~
=

~~~~~~~~~
-
~~~~ -- 

- 

~~~~~~~~~~~~

—-
~~~~~~~~~~~ 

_ _ _ _ _ _ _
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N-n 
22 n E M
1

V(V - V
~

) = 

~ M~ 

+ (1 — ) 2

0

n
2 EM2

+ 

~~~ ~~

_ — ~~ + 
~~~~ 

— . (3.37)

Notice if all M. = M, (3.37) reduces to

2 2

— V~3) = —~(l — 

~
) + —~-(l — ~~) , (3.38)

-

~

which is the same result as (2.17) in Section 2.1.

A comment should be made about the preceding results and those

to follow In section 4. When primaries are of unequal size, even

though M
1
, ... , M~ are fixed and assumed known, in a strict

probabilistic sense the M
1
, ... , N corresponding to the sampled

primaries are really random variables whose realization depends

upon which primaries are sampled. Hence, the arguments used above

and those to follow in Section 4 are really conditional arguments

for given values of N1, ..., M .  However, since the unbiasedness

of the estimators of Y and the confidence levels of the corresponding

confidence intervals will not depend upon the values of M , ..., M
. 0 1 ! 1 fl

these properties will also apply in an unconditional sense.

5
’

- 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _



_ _ _  _________ ____ ---~~~~

3.3 Confidence intervals on I

- 
The p roblem of estimating a linear combination of variance

components such as V(Y — is much more diffic1ilt for the unbalanced

case, i.e., all m
1 
not equal, than for the balanced case considered

- 

in Section 2.2. Searle [197lb] cites two problems in the unbalanced

case; namely , several methods of estimation are available with no

clear decision on which is best, and all methods involve cumbersome

algebra. Searle [l971a , 197lb] gives an extensive survey of various

methods to estimate variance components . Perhaps the most popular

method is the analysis o f variance method sugges ted by He nderson

- 
J 1 9 5i] , wh ich for the model assumed in (3.1) — (3.3), yields the

-
~~ unb iased  est imators

I’ m .
— 2E E (y . .—y 4 )

, 1]

a = (3.39)r n — n
0

and

Em .

- 

- 2 
= ~ 

1 

. (3.40)
- I 

a
Em .

P t - 1

U — . i n- —
0 in

0

- ‘ 
An unbiased estimator for V(Y — would therefore be

4.. -
01

g = b a  + b a  (3.41,’u l a  2 c

I 
- whe re

~ 
.-,

~ 

- 
—

~~
-

~~ ~~~~- -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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IN— n
= —

~k~ ~ E M~ + M2(l — ~)
2 Ek~m? (3.42)

M ~~~j  
0

o

and

n M
2 

n
b = — E — + M ( l — 2ii+(l — it)[M (1— ii )Ek .m2 2 in o o i i

0

n
+ 2~k1O41 

— in . ) ] )  . (3.43)
1 

1

Howeve r , as Searle [197la , l97lb ] reports , the distr ibutions of the

variance component estimators are unknown, although they may be

expressed as linear combinations of non—central chi—squares as

discussed by Harville [19691 . The only partial exception is that

under the assumption that the random effects have normal distribution~,

2

~ 

a
t (3.44)c (tn —n) m —n

0 0

-I

Obviously since the distributions of the variance component estimators

themselves are unknown, the distribution of a linear combination

such as g is also unknown .

One method to approximate the distribution of g is to equate its
4- 1 

LI
4

firs t two moments to those of a chi—square variable. That is, let

“~ 
b x~~~ (3.45:1

1~ 

- 

-~~~~~~~~~~~~~~~~~~~~~~~“~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4~)

F - -~
- - I

E (g ) b 1a~ + b
2
o~ (3. 46)

- 

= b f  ,
- and

V(g ) = b~ V(; 2 ) + b~ V(ct 2 ) + 2b 1b 2 Cov(; 2 , a 2 )

I = 2h 2f . ( 3 . 4 7 )

.
‘ Solving fo r  h and f gives

b 
b~V (G

2)+b~V(Q
2)+2b

1
b
2 
Cov(G

2
,a
2
) 

(3.48)
2(b a + b a )

L ‘ l cx 2 c[
and

- 
- 

2(b
2
a4+b2o4+2b b 0

202) - 1
f i n  2 c  l 2 a c  

(3 49)
b~V (3

2
)+b~V(;

2)+2b
1
b
2 
Cov(a

2
,a
2
)

I For the model assume d in (3.1) — (3.3) Searle [l971a] gives formulas

for  V( a 2) ,  V(a 2 ) ,  and Cov(a 2, 02) under the normality assumptions.

However , since these terms are functions of squares and products of

and ~
2
, he further cites results derived by Ahrens which provide

unbiased estimators for them. At best the above procedure would lead

to only an approximate distribution of g
~
, and since estimators of

P’~ ‘
~

- unknown parameters are used when solving for b and f, the method

~ 
appears questionable.

- Since the distribution of g is not available for  the unbalanced
u

case, it appears the simplifying assumption that all m1 
= in must be

I 
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made to develop any useful results . This assumption is not

unrealistic, since In many surveys , the desi re for  an equal surveyor

workload requires the selection of an equal number of secondaries

for each sampled primary . By assuming equal secondary sampling ,

the results developed in Section 2.2 may now be used to construct

confidence intervals on V . Wh en -~ll m~ = in ,

- = g
1
G~ + g2

a~ (3.50)

where

N-n 2E N .
• 1 2

g = + 
(1—it) , (3.51)

1 2 muM m
0

:- n 2 N—n 2(~ M .— E M )
g = ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ + 

2 ( n) ( l— i i ) , (3.52)
2 2 H innM m  0

0

-
~~ 2 2 2a j w3 + 0  , (3 .53 ,

1 a c

and

2 2a o . (3 .54 :
2 c

Using Theorem 2. 1 of Section 2 .2 gives

g = g
1
5~ + (3 .55 )

- 4*- where

- - 2
~ -~~ Em(y .—y)

(3 56)
b n-i

and

-

I-

______ — — - -  - - - — - -- 
- 

- - .  — - - T
_
~~~~~~~ - 

~~~~ 
— - 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 4
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- nm
T — 2E E (Y

11~
Y.)

= ~~~~~~~~~~~ (3.57 )

as an unbiased estimator of V(Y — Y u ) .  Fu rthermore ,

“ x~ ~ 
(3.58)

- - 
V(Y_ Y

u )

~~~~~~ .
, 

and

—
~~~~~

-
~~ t , (3.59)(n)

where

2 2 2(g
1o1

+g2a2)n ’ = — , (3.60)

n1 n - l , ( 3.61)

ari d

= n(m - 1) . (3.62)

An approxima te lOO (I—n)Z confidence interval on Y is therefore

-~~~ ~1ve n by

± t 1 2 ,  v~~~J (3.63)

4

I di g a~; d( f m e d  in (3. 55)

~~ 
An ~- xact ( o n !  j c k - r i c - c -  i c c t ~ -rval  on Y may also be constructed .

Cons i de r t h e  random variable

~~~~~~~~~~~~~~~~~ 
- JJT~~~~TT1 —

~~~~~~~~~~~~~~~~~
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u~ = c1
y1 

+ c21
d . (3.64)

- where

m
l

d~ = 
~ 

, (3.65)

m
i

~ ~~ 
= 0 i = 1, .... n (3.66)

m

~ 
= C 31, = 1, ..., , (3.67:

and the 21. ’s, c1, c2., and c3., are constants. Using the model

stated in (3.1) — (3.3), it can be shown that

2

- U
1 

•
~ N(c1

ij, c~ o~ + (—~
--- + c~ .c31

)a
2 (3.68)

-I

~

- -

- 4.-

I

4

b _

~~~~~~~~~~~~~~~~~~ ~ _ _ _ _ _ _ _ _ _ _ _  

-
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Equatin g V(u
1
) to V ( Y  — in (3.36) and solving for c~ and c~ ,c31

yields

= ~ 
N-n

a 
+ M

2(l - ~)
2 

E k~ m~~ (3.71)

and

2 2
2 -c n M

c21 c31 
= — + —i {E — + M C i  — 2it + (1 — i i)  [M (i — n ) .

i H 1 1
- . 0

~ k~m1 
+ 2

~
k
i(M. - m .)])}. (3.72)

I

t Then

— 1) (3 .73)

wh ere  — 2
E ( u — u )

g =~~ (3 .74 )e 
n — i

= number of samp led primaries with c
~ j

c3i ~ 0,

and an exact 100(1 — a)% confidence interval on Y is

EY
u 

+ t 12~~~~1/~~I. (3.75)

-~~~ in the equal primary case, any conven ien t  set of , .  may be used asrn . ]

long as Z 9- . - = 0 and c2
. c - > 0 and satisfies (3.72).- - - 2 i  3 i —

‘I

-

~~~~~~~~~~~~~~ ~~~ i - T L ~~~~~ ~~~~~~~~~ -- ~~~~~~~
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3.4 Robustness of to &del Breakd~~n

The robustness of V~ to model breakdown is now examined. Recall

~ ~u 
+ (1 — 

~~~~ 
(3.7u)

where

= ~ M1
y
1 

, (3.77)

~a 
= Ek

i
m
iy. (3.78)

- 
i

I..
rn-rn

k . = ° ‘ , (3.79)
1 fl -

- , 2 2
- rn —Em -

- 0 i
~

- i
and

- 
- n
I EMr i i

(3.~~O;
- 0

- Let S1 deno te that  p rimar ies are selected with equal probabilities

- 

* 
and without replacement. Let S denote that primaries are drawn

2

with probability proportional to size and with replacement. In

both S
1 
and S2 it is assumed that the secondaries are sampled at

~~ 
random. Then for a given finite population,

‘1
E(Y u I S 1

) = V + 
(l-~ )n 

~k1
m .V1 

( 3.81)

r and

= 

~~ 

~M~Y 1 + 
j

~T~~~ 
~k1

m
1
M
1
V
1 . (3.82)

,F

& 
- ~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Tit us , f o r a given finite population Y~ is a biased estimator of V
under either S

1 
or S

2 even though

E ( y j S
1

) = V (3.83)

and , if all in . ar e equal ,

E(y I S 2
) = V . (3.84)

• For the special case when only one primary is selected, i.e., n = 1,

= , (3.85)

~- J
J

r E(Y
u IS 2

) = V , (3.86)

and h e n c e  E ( Y  — = 0 for any assumed super—population . This 
*

special case occurs when a s t ra t i f ied multi—stage design is used

and only one primary is chosen from each s t rata .

- Another special case of interest is stratified sampling, i.e.,

w h -- ”  all primaries are sampled. In this case , it = 1, and if

secondaries are sampled at random from each primary

N 
-

- 
EM.y1

a - - y =  ~~ 3 8 7
,-‘

~~~~~ \ U M

N
‘f ; ~ Is the classical unbiased estimator of Y .  Hence , the unbiasedness

of in s t r a t i f i ed samp ling is robust to model breakdown . This

-~~~~~ r c - s u c t  u- -as also obtained by Hartley and Sielken [1975] who further

( lj ( , I U j h  t i i c -  r o h u s t n - - -~- of the conf id ence in terval  for  s t r a t i fi e d
I. 

- 
~~ -

~~ 
I

- 
- I

L ~~~ 
- - 

- -. -— - ----
~~~~~~~~~~~

- — - 

~~~~~~~~~~~~~~~~~~ 

—— - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
-- 
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- sampling .

The results of Section 2.5 concerning selection of the

also apply to the unequal primary case.

3.5 Comparison of ‘
~1~ 

with the BLUE

- The estimator was motivated by the leas t squares estimators

- of the finite population parameters. An alternative unbiased

- - es timator V for V can be constructed by minimizing V(Y — V) subject

to the restriction that

-
~ 

E(Y - 

~
) = 0 . (3.88)

L —I In particular , let Y = Eh .yi where the h .
’s do not depend on the

1
1 1

y
1

’s. Then

n
- E(Y — V) = ~i(l 

— Eh .) , (3.89)
4 1

• I

and the condi tion that
n

- - 
Eh 1 = 1 (3.90)

-
~~ i

-
~ is imposed to insure that Y is unbiased. Minimizing V(Y — 

~
) with

respec t to h1 subject to (3.90) yields

( (b +k)A .~
- 

-11 h. = m + ~ ~i!4 (3.91)
- 1 i i M  inI

p ~ ~~ whe re

I.

.r4
F. 

12~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~I I  ~~~~~~~~~~~~~~~~~ T~~~TT~~ 
-I 

_ _ _
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4:

b~ = ~—(M1 
— m.) , (3.92)

n n
EM A Ein (1—A .)i i  1 1 fl

k = 1 — 

M 

— 

M 
/ EA . , (3.93)

0 0 1

and

A . = ~2/(Q
2 

+ 0 2
/mi

) . (3 .94~~

n

- 
L-(ence , the estimator = Eh 4 y~ with the h 4 as defined in (3.91)

- I

- 
is  the BLUE of V. This estimator has been previ ously sugges ted by

; - ~~ t t  and Smith [1969]. However V
~ 

requires knowledge of ~
2 and

ig id these values are seldom known in practice . Scott and Smith make

the simp l i fy ing  assumption that all = m, and reconinend estimating

A b y

— 

A = r
~~~ , r > l ,

= 0 , r < 1 (3.95)

where

- 2
L~ ~ S

br = - - ~-- . (3.96)
~~,~~ 1 • Sw

Not ice  that  in the special case when M . = H and m1 m ,
- 

-

1h . = — , (3.97)
‘
1 

1 fl
4 

-~~
-

, .~~~~~ and

~ = V  . (3 .98~- ¼ ;  S E

- 

F 

-_ _

~~~~~~~~~- -~~~~~~~~~ -~
-I— - 

—
~~~~~~~~~~~~~~~~~ ZT _ _ _



I f  m . = m hut not all M~ are equal, then

• n
EM
1

- 
h~~~ 

-
~~ 

— i— — M~ , (3. °’)
0

and

= 

~S~
’r 

+ (1 - it s)
~ 

( 3.luO)

where

A~ M~
-
. 

M 
(3.101)

I - 
n

o

_ n

~
‘r 

= EM 1y~ / EM1 , (3.10 ;
1 1

I
and

- 

~~Yjj

, ) - 

= . (3.10:0

me estimator in (3.26) is therefore a special case of in

which A = 1.
I —F

Even though V 5 minimizes V(Y - V ) ,  V~ has the advantage that

under the assumed model, its dis tribu tion and the distribu tion of
F~

its estimated variance are known , and confidence Intervals can

-
thercfore be constructed on Y. On the other hand , Scott and Smith

do not derive the distribution of when A is unknown, and therefore

make no comments concerning confidence intervals . Further, A will
p

4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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i ndeed be close to one if 02 /m Is small relative to ~
2
, as would be

ti le case if there -Is a clus tering e f f e c t  w i t h i n  p r i m a r i e s . As stated

in Section 2 . 3 , this type of survey population is quite common .

~in a 1ly , if  m is large and tile M1 are of relatively equa l size , the

difference between V(Y — V
~
) and V(Y — V

~
) will be small. Hence,

: i l thoug h V
~ 

is the BLUE of V , the fact that its distributional

properties are not known when A is unknown , suggests that is of

- 
gr e a t er  practica l value .

I

— I

7

, ~~~4.

‘ ‘ 1
,

¼

: I
- —.—-——--.-—--- — -- - --— - —------—-—- 

~~. — —. — ~~~~~~~~~~~~~~~~~ —
‘-7 

— 

— ~~~~~~~~~~ .i~. fri._~~
’ 

~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ,~~~~~~



r i - - - - - ----=—- --- - —
~~~ ——~~~~~~~~

-

~
-_. 

_ _ _ _ _ _ _ _ _ _

57

4. RECRESSION ESTIMA TORS IN NO-STAGE SA}IPLING

4.1 Definition of the Model

There are many situations in survey samp ling in which the

variable of interest , y, is related to another variable , x. If such

a situation occurs , a more appropriate super—population model than

th e one assumed in Section 3.1 is

= ~ + + Sx1~ + c1. ( 4.1)

where

“~ N(0 , 0
2
) , (4 .2 )

)

2

~~ 
N( O ,  o )  , (4.3)

ci .~, x1., and c~~ are all independent, and j i  and 8 are constants.

An estimator for the finite population mean is developed under

the assumptions (4.1) — (4.3) for the general case when primaries

are of unequal size and neither p = ~~~~ nor o~ and a~ are known.

The notation used here is consistent with that of Section 3. In

addition, X is a (M x1) vector of the x1.’s in the finite population ,

and X is a (in xl) vector of the x ‘s in the sample.
—s 0 ii

4.2 Estimation and Variance Formulas for the Finite Population Mean

The finite population can be expressed as

-
~~~ ~~~~ 

a
i
+bx

ij + ejj , 1 = 1 , ..., N ,

j = 1, ..., M~ , (4.4)

~~~~~~ 
-r-

~~~e~~ ,. - 
-_

~~ - ____ 

~~~~~~ ~~~~~~~~~~~~~~~~~~ ~.�1k._ ~~ 
-F..-, It.
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where

M.

E

- b = -~--j--- -—--- -- —--— --—- (4. 5)
- 

N i  2E E(x. ~—x )
- i i  

13 i

and 
M. M .

1 1,

E y. E x ..

a = 
~~~~~~~~~

- — b i = 1, ..., N , (4 .6 )

drL - the least square coefficients for the regression of y . on x - .

I i] i j

The mean of the f i n i t e  population can be represented as
N
~M .Y .

-

EM . (a.+bX .)
= 

~ 
1 

(4.7)

- 
An estimator of Y can therefore be constructed by estimating b and a .

from the sample. Performing the regression of y
1~ 

on for  the

samp le yields
In- - n i

E E ( x ..~~x~)y.

b 
1 

~~ 

- 

(4.8)

— 2
E E ( x . .—x .)

- .~~ j l 
. . ij  i

-

- 

a— - 1 
~

* ~‘: ari d

I

= - h , I = 1, ..., n , (4.9)

- - - - - - ,~~~~~~~~~~~ ~~
—_  -

~~~~~~~~~ --- - - 
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where Ui
1
E y

= - (4.10)
mu

and
T x  -

— 4
13

x~ = -~ . (4.11)
m
l

As an estimato r of a . for the primaries not selected in the

sample, the knowledge that the conditional expectation of a~ given

any X is ~, suggests using an unbiased estimator of ii. Following

th
Section 3.2, let the estimator for a1 

when the i primary is not

selected in the sample be

= 

~a 
- 

~~a 
(4.12)

where

. n
= ~~~~~~ , (4.13)

arid 

~
C
a 

= Ek
~
m
ixi ‘ 

(4.14)

m —m .
k. = 

0 1 (4.15)
1 ~)fl

o
i
l

Substituting h and a. from (4.8), (4.9), and (4.12) for b and

a 1 In (4.7) gives

¼ -

-I-

‘1

- __
___

___ — 

- 
—~~ I

=._-w- ~~~~~~~~
—4- -- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~ & .~~~~ .~ 
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= 

~~ r + (1 - 
~~~a 

+ b [X - 

~~~r 
+ (1 X f l  (4.16)

4 where

= 

M (4.17)
0

n n
Y = EM

1
y
1

/E M
1 

(4.18)r

n n
x = ZM.x /EM , (4.19)r i l~~~j

and
N

M
1

. ii
X

~~~~
-

M 
. (4 .20)

Obvio usly , to use this est imator , X mus t be known. I t  is of interest

to note that when n = N , it = 1, and 
~R 

Simplifies to the classical

combined regression estimator for stratified sampling, namoly,

V = + b (~ — 
~~ 

) . (4.21)R r r

The d i f f e rence y — can be expressed as

fN-n n[ H.V — = 
i~
t- -t ~ i + E

~
Y
i 

— y
1 

—
~~

- + (1 — ii)M k1 
-

- h EX - (r~ + (1 - 
~~~~~~~~ ) ]  ( 4 . 22 )r a

f

where

N

-4 - .

_ _  
-- ~-— - — -~~~~~~~~--~~~~~~~- -~~~~~~- 

-
F 

- _______ - 
- - -

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ -~~~~~~~-~~~~- —.‘~~~~~~~~~ -- — -~~~-~~~~~~ ----
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~~J.

H
i

= E y (4.23)

and

— 
m
l

y
~ 

= E y1. . ( 4 . 2 4 )

Noting that

E(Y
~~~~ I X ~~ 

X )  = M1ij + , ( 4 . 2 5 )

mi
E(y

1~~X , ~~ = m~ i + ~~E x~ . (4.26)

and

- E(b~X, X ) = 8 , ( 4 . 2 7 )
-
~ 

— - - S

it follows that

-F 

E ( Y  — 

~ R 1-
~ ’ ~~~ = 0 . (4.28)

Also ,

~-1 V(Y
1IX , X )  = M~a

2 
+ M

1
o
2 , (4 .29)

V (y I X , X ) = in a + m a , (4.30)i —  —s i n 1 €

Cov(Y1, y~jX, X )  = m~M~a
2 

+ m1a~ , (4.31)

~ , :-~ 
Cov(Y

1
, b IX , X )  0 , (4.32)

¼ 
Cov(y1, b ix , X )  0 

‘ 
(4 •33 )

-: -T:: 
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and

V(b lx , x )  =

- where
in .

- 

= - x
i
)
~ 

. (4.35)

— It follows that

.‘ - 2

v(V — 

~R ~~ 
= 

M~ 

{N_n 2 
+ M

2
(1 — 

~ 

2 Ek~m~
}

L - 2 ’  2a r i M1 n
+ -

~~ 

— + M(1 - 27T + (1 - ii) [M (l -

n )
+ 2Ek (H . — in ) ] )

+ 
~~~~ 

~ [~~~~~~ ±(i~~ )~~~fl
2}  . (4 .36)

If all in
1 

= in , this reduces to

~~~

*

.
~~~~~~

~

-
- ,

~
- -

- 4, - - IL~ - . —~~~~~~~~
----

~~~~~~~~~~~ ... ~~~~~~~~~~ — —-— 
I 

~~~~~~~~~~~ ~J
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N-n
2 n E M 2
0 1

v(V - V 
~
- ) = -~~~~~ ~ + (1 - ) 2

R —  -
~~ ~~ M~0

4 
2 EN

2

+ — ~ .
~~
L t__ _

~~~~~ ÷ ( l _ 1 T 2
)

inn H M
0 0

+ ~
2 (X— (itx +(1—

’it)x)]
2 

. (4.37)

If in addition , all Mi = M,

2 2
‘_

- a a
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

( n m  2
I X — ZEx

-. I ui~~~
- 

~~~~~~ . (4 .38)
- - c 2

I S
~ - J x

4 .3  Confidence Intervals on Y
*

In constructing a confidence interval on Y, it is assumed

that all m~ = m. Through the use of Theorem 2.1 of Section 2.2 ,

-: - -

~~~~ 
. 

g = g
1
s~ ÷ ~25~ (4.39) -

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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wh i - i t -

N—it -,
2

g =
1 k i~~~I~JLL (4.40)

and

n ,
~ 
N—n

E M - E M .

= 
i 1 1 

— + 
2ir (l—it)

g2 2 M inn
M m  o

0

+ 
[~~_ (~~~~+(1_ u)~~~ ) ) 2 

, (4.41)

is an unbiased es t imator  for V( V — I I X , K ). In addition, theR — - --s

conditional distribution of (I — Y~ )/ / ~~given X and is an

approximate t—distribution wi th n’ degrees of f r eedom whe re

2 2 2

= 
2 4 

(g
1a1

+g2a2
) 

, (4 .4 2)

—

= 
2 

+ SKY , (4.43)

Fl (1

2 2
-

~~~ 

- a = a  . (4.44)
2 L

I-

- ~~~~~~

4.
I f e i i c t - , only X and the observed x~ . ‘s in the samp le are needed to1]

comp letely specify the t—distribution , and an approximate lOO (l—a)%

- ~ 
- . confidence interval on Y is

~ 

JL~~ ~~-T~~T~~~~~~~~ -
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[Y ~~ I 
~~, 2 1

/~~~) . (4 . 4~)

Note that the confidence interval (‘. .45)  depends on X and X

since both g and n’ depend on X and X .  However, since the

confidence level, lOO(l— n)%, does not depend on either X or X , the
S

above confidence interval procedure produces intervals containing

V lOO (l—ct)% of the time.

i An exact confidence interval for V cannot be constructed using

the technique of Section 2.2. If u
1 
were defined to be

L 
i

u

~ 

= c1Y~ 
+ c2d 1 (4 .46)

where

in

and 

d1 
= (4.47)

in
= 0 , (4 .48 )

j  3

then

E(u1IX , X )  = c
1~ 

+ 8(c
1
x. + c2

EI1.x1~) (4.49)

and the u
1
’s would not have the same mean. Therefore E(u~ —

- 4. given X and X would not be a central chi-square , and he nce an
~~

- 
‘1 

— —S--‘- • ‘ exact t—distribution would not be available.•r ~~

_ _ _ _  — — 

~~~~~~~~~~~ 
_ _ _ _  
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I’.
,

4.4 Two—Stage Sampling When Ele ments are Related to Prima r~~Size

- An important special case of the model in (4.1) is when x1~ 
=

i.e., an element in the population is related to the size of its

primary. A similar model has been considered by Cochran [1963] to

study the behavior of es t imators  for single—stage cluster sampling

desi~~s. The super—population is now defined as

y ,. = p + a . + 6M . + c ..  (4 .50)
13 1 1 13

where

L ct~ ‘~~ N(O, 0
2
) , (4.51)

~~~ N ( O , 0
2 ) , (4 .52 )

M 1,  n~ , and t
ij 

are all independent , and p and 8 are constants. The

• 

- finite population can be expressed as

y.. . = a + bM + e. . ( 4 . 5 3 )
13 1 13

• where

1

a = V — b — (4.54)

~~~~~ ~~~~ • and
MN i  N

fl E ~M y. .—YEM
- 1 13 i

b = —
~~~

---
~~
---

~~ . (4.55)
.4

N 3 ~~~~~

V 
LM ~~~~~~ 

M

-F

hit- finit e population mean is now

_ _ _  

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~  
-- 

F~~~~~~~



- EM
1

Y = a + b ~~ — . (4.56)
c 0

A log ical es tima tor f or V is
- 

N 2

Y
M

a + b
M 

(4.57)

where n

.~ a~ . ’ y — b - ~---——— (4 .58)

and

n _ _ n

-~ EMjm1yi_y(EMim1)

b = 
:1 

(4.59)

1• •

ar e the leas t square coefficients for the samp le regression of

y
1~ 

on M
1
. Simplifying (4 .57)  gives 

~
M
i
m
,1

= y ÷ b — 
1

~~~~~

0 j . (4.60)

Noting thatr - . . i-i

E M m .
j i l

~~ 

‘

~~~~~ E(y~M .)  = p + 8 m 
‘ (4.61)

:, -
~~~ 0

-~

E ( bj M
i

) = 8 ( 4 . 6 2 )
~ ,

‘
1

• - - 
- and N

- 

E ( Y I M 1) = p +8-~~
—— , (4 .63)

-H 

- 

_  

N
- •~~~ 

- - -____
~~~~~~~~~~~ ~~~~~~~~~~ -v_s--
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i t  fol lows that

E(Y - Y
M IM I

) = 0 . (4 . 6 4 )

In addi t ion ,

I 

v ( V _ V M I M j ) = o ~ 
M
1

m
1
(1-C) M

1
m
1C 2

- 
o

+ ~~~~~ + - - 

M . C 2 
(4 .65)

E M m
i

i i

where

N
2 

n
EM EM .mI n 
~~~~

j 
i
i i

(EM1m1) —
~~

--‘— —

= 

EM ~ 1~ 

(4.66)

- 

j i i)
Z M m

- i i  in• 1 o
I. -

~~ -‘
~~ I f all in

1 
= in, an approximate l0O(1—ci)% confidence interval on Y

is

[V ± t ,~~~
j (4.67)M n / 2 ,n

~ _t4 4~
*4

where

1



____________________ —

69

2 2
g = + g

2
s , (4.68

N—n
2E M
1 2 2

g = ~ + 
(1—it) + , (4.69)

~ M
2 in B
0

in 2EM~ 2 2

~~~~~~ 
- — m + 2A  +

1 T )
+~~~~~~_ g

1
, (4.70)

N-n
E M 2

I (1— n ) (ir)M
A =  

H 
— 

0
, (4.71)

0

2.2
I. • 

n
2 

i T M

J B = E M  — —-—--s , (4.72)

i
i in

and n’ is defined in (4.42) .

4.5 Robustness of 1
R 

to Model Breakdown

The robustness of 
~R 

to model breakdown is now discuss€.d.

Notice that 
~R can be written as

÷ b 
~~~r 

+ (1 — n)~~~) ]  (4.73)

where is defined in (3.26). As was shown in Section 3.4, f or a

given finite population Yu is a biased estimator of V. It therefore

1 
follows that 

~ R 
is also biased for V given a fixed finite population.

y .~, Furthermore, in the special case of stratified sampling where

is the classical combined regression estimator, remains biased

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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even though Y~ is now an unbiased estimator of V (see, e.g..
Cochran [1963, p. 2021).

r: -I

~~~~ ~

*

••v -~¼

.

~~~~

-

I
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5. EXTENSIONS AND CONCLUSIONS

5.1 Sampling with Mo re Than Two Stages

5.1.1 A p— stage samp l ing design

The methodology developed in tills report can be extended

in a s trai gh t f o rward manner to hi gher levels than the two—stage

des igns considered previously . For a p—stage design , the linear

model describing the super—population is assumed to be the random

p—fold nested classiiication model . It is further assumed that all

random factors are normally distributed with mean zero and constant

variance , and that all factors are independent .

If all sampling units are of equal size, the least squares

technique used in Section 2.1 can be used to construct estimators

for the finite population parameters . If sampling units are of

unequal size, as in Section 3.2 , estImators can be constructed by

using the knowledge that non—sampled units are from a distribution

defined by the super—population model .

If equal samp les per sampling unit are selected , an approximate

- • confidence interval on V can be constructed by using the following
resul t from variance components analysis (see, e.g., Craybill [1961,

p. 147]).

Theorem 5.1: Let  the random p—fold ne3ted classification model

hold for the super—population and let all random variab les in the

‘I. 
-

.

~~~~
-

~ 

~~~~~~~
- -r~~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ::~~i~~~~~~~~~~i - 

-~~4~~~~~~~~:. 
-



1 72

I.

F 
- tit >dt~ I In’ I i i d&- p eu t le n t  and normally distributed. Let the mean square

fo r  the-  ~tII f a c t o r  in the model be denoted by s~ . Let s~ have n .

dc-g r e-es of freedom and let E(s.) = . Then v = n . s . I o . ‘
~

- x
1 i 1 i i i  (n .)

1

and v
1

, . . ~~. v are mutua lly independent .

2
us i ng Theorem 2.1 of Section 2.2, it follows that g =

2 
i

is an unbiased estimator of -y = ~g.o ., and

- 

‘
~ 

X~ n t )  (5.1)

where

- 

2 2
L 

(E g.o.)

- n ’ = . (5 .2)

‘r E ( g . o1/n 1
)

By selecting the g. in such a manner that y = V(Y — V ) ,  an

- approximate lOO(1—a)% confidence interval on Y is

IV ± t ,2 1 /~~] . (5.3)

—

An exact confidence interval on Y may also be constructed by

(:ons!(i (-ring appropriate linear contrasts of the observations . An

t-~5umj)1 (- for the t h r e e — s t a g e  des i gn is given In the following

S ec t  ion .

- ~ 
5. L. ~ Three—stage samp ling with equal sizes and samp les

i
~:
;

~ 

-~~~~ For the three—stage sampling design let

~*1

~~~;~~~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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-

- • 
N = number of primaries ,

• M = n umber of secondaries/primary,

L = number of t e r t ia r ies/ secondary ,

in number of sampled primaries,

in = number of sampled secondaries/samp led primary , and

= number of sampled tertiaries/sampled secondary .

- 
- The three—fold nested classification model describing the super—

- 
.‘ population is

~ijk 
= P + (5.4)

where

E (~ . . ) = 0 (5.5)ijk

and

E (ni jk liI jtk
t) = ~

2 + + , i=i’, j=j’, k=k ’,

= o~ + o~ 

~ ~ ~
= : ‘  k#k ’ ,

1=1, 3~ 3 ,
- a

- 

= 0 , i~i’ . (5.6)

• 
-~ Using the methodology of Section 2.1,

nmt

-‘ ~~~~~~~~~i j k
y = (5. 7)r~ .~~~ fmn

and

2 2 2

V(Y — Y)  = 
~~~(1— ~~

) + ~f~~(1~~~~~~) + (l— ~~~~) . (5.8)

Alt ernatively, V (Y — V) can b~ expressed as

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 

-
~~~ ~~ ~~~~~~~~~~ ~~~ ~~~~ •
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V(Y — Y) = g
1
u~ + g

2
o~ + g.3u~ (5.9)

where

g
1
= (l~~~~E) jL , (5.10)

— g
2 
= (1 — ~

) 
~~ 

, (5.11)

= (1 — ~
) 

~~ 
, (5.12)

2 2 2 2
0

1 
= 9mo + io

8 
+ o , (5 .13)

- 2 
= + 

2 , (5.14)2 8 c
and

fr... - 2 2
0

3 
= . ( 5 . 1 5 )

—

Us i ng Theorem 5.1 , an Llnh iased est imator for V(Y — Y) is

2 2 2
- g — g

1
s
1 

+ g
2

S
2 

+ g3
s
3 

(5.16)

- 
where

umi 2
E E E ( y . —y)

~~ - 2 
= 
ijk , (5.17)

1 n—i

nfl12. 2
~~ 

EEE (y.• -y1
)

2 
= 
ijk 

(5 18)- 2 n(in—l ) ‘
-ii

nmi 2
- 

~~~~~~~~

. (5.19)
nm (c - — 1) 

—
-
~ :=

— 
~~~~~~~~~~ ~~~ - - ~~~~~~~~~~~~~~~~~~~ c~~L~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- 
-. y~ im • (5.20)

= 
k , ( 5 . 2 1 )

and nflhi

~~~~~i jk
- ijk

= . ( 5 . 2 2 )

Art  approximate conf idence  interval  on V is

[V ± t , 2 ,~~~ ] (5.23)

where

• 2 2 2 2 2 2 2
_________ 

(g
1
a
1
+g

2
a
2
+g

2
o
3
)

= 
2 4  2 4  2 4  . (5 .24 )

An exac t confidence in te rva l  can be construc ted by considering

the random variable

u .. = 
~~~ ~ c2

d . + c
3
f .. (5.25)

where

m
d . = 

~
r
~~

yi. , (5 .26)
J

- ,1__ i ~ ni
p

I , - ~~~ = 0 , ( 5 . 2 7 )

*
- 3

w 2.
= I h iIkY I j k  . (5 .28)

_ _
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= 0 , ( 5 . 2 9 )

c
4 

= ~ r~~• , (5 .30)

‘5 
= ~~ k 

, ( 5 . 3 1 )

k

and the r~~ ’s~ h ..k ’s, c1, c2
, c

3
, c4, and c

5 
are constants . Assuming

model ( 5 . 4 )  — (5.6), it follows that for all i and j

— 2 ‘ 2
y .  ‘~ N ( p ,  o I - o~ /m+ o / ~m) , (5.32)

2 2
. 7  

- 

d . -
~~ N(0 , L

4
(0

8 
+ O c R )  5. 33)

N(0 , c~ o )  , (5.34)

C o v ( y . ,  d .) = 0 , (5.35)

- 
- 

Cov(y., f
1~1

) = 0 , (5.36)

- 
- 

and

Cov(d ., f . ~) = 0 ( 5 . 3 7)
1 13

— 2 ~ 2
Lqri -tting V(u ..) t o V(Y — Y )  and solving for c

1
, c c 4, and c

3
c
5

y i e l d s
- - 

-
; 

- -

c
~ 

= -‘-(1 — 

~) , (5.38)

- _ 

c
2
(:
4 

= 
N~~~’ ~~ * (5.39)

-;

-. C
3
C~
5 

= -
~~~ (l - 

~
) . ( 5 . 4 0 )

-; IT .:
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Using the results of Section 2.2, and noting that

- 

2 5 4 1V (u . .) X n (n ~_ l )
13

- an exac t lOO(1.— a )% con f idence interval on Y is

± ta!2; (1)
V~~ ] (5.4 2)

where
urn - 2

- ~~~~~ .—u 
)

13 1.

g = ~~~~ (5 .43)e n( m—l)

and

m 
-

u~~. J1(1 - + ~/~
1(l - ~

)

- - 
3

- - 

~h .y
- . - 

‘1 2. k ij k i j k
+ 

~J j ~~~j ~~
- ( l  — 

~~~~ 

2. 

( 5 . 4 4 )

I Eh~~.- 

~~- -~ ~ k~~~
k
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I.
7 (oncLudi ng Remarks and F u t u r e  Research

I n  man y p r a ( t i c Ll samp ling s i tua t ions  the rationale for  the

sIA[ ~(-r—popu 1ation mo h- 1 is more realistic than tha t  of classical

r i - r l i t e t t t l s r  theory. If the populat ion of i n t e r e s t  changes over

- 

- 
t i m ~- , repeated samp i i-s f r o m  t h i s  popula t ion  are in f a c t  repeated

:1 
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samples from a super—population and not a fixed finite population.

Trueblood and Cyort [1957) offer an example of a two—stage samp le

- design used to confirm accounts receivable in a department store .

Over a pe riod of time , the  account ledgers chang e, and the no tion

of a super—population generating a fixed set of ledgers at a given

po in t  in time seems to be an improvement over the classical

assumptions. The results developed in this report are

appropriate when sampling from such a population .

Possib ilities for future research in the super—population

— theory of survey sampling include

(i) the study of ratio estimators in both single and multi—

r stage designs,

: (ii) an Empirical Bayes approach for estimation of the finite

popula tion parame ters ,

(iii) the further study of estimation of finite population

parameters in surveys with more than two stages and

sampling units of unequal size, and

(iv) an extension of the results of Section 4 to the multi—

variate case where X1j is a vector rather than a single

- variable .
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Royall and Herson [1973a ] have considered a special case of a

ratio estimator in single stage designs where the super—population

• model is a polynomial regression and have found it to be the BLUE of

the finite population total. Further research into the behavior of

ratio estimators in multi—stage surveys may produce similar results.

Since super—popula t ion  theory implies the parameters of the

finite population are truly random variables, it might be worthwhile

• 
- 

to consider an Empirical Bayes approach to the problem of estimating

the finite population parameters. An Empirical Bayes approach would

uti l ize information from previous surveys of the population to

estimate the current finite population parameters.

r 
• In extending the me thodology developed in this report to

more than two stages when sampling uni ts are of unequal size,

various estimators for non—sampled elements are plausible and these

alternatives should perhaps be studied.

An appropriate super—population model for extending the results

of Section 4 to the multivariate case is

T
Yjj 

= P + a
1 

+ ?!~~B +  ti j  (5.45)

where ~~~~~~~. is a vector of variables and ~ is a vector of cons tants .
3

:1 Using matrix notation and the arguments of Section 4, estimators for

the multivariate case could be developed.

In conclusion, a super—population theory to survey sampling is

quite realistic and brings survey sampling more into the mainstream

of statistical inference than does the classical theory depicted —

as Case 1 in Table 1 (p. 7). Future research will hopefully lead to

: 
~ -~~ ‘I ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
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a --len - comprehen s i ve t h e o r y  which will serve as th e framework for

- 
all sample surveys.

I -
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APPENDIX A: A N~ -lLRICAL E XAJ U’LE FOR NO—STAGE SAI~~LIN G

WITH EQUAL SIZES AND SA~4~LES

I

The fol low ing example is taken f rom Mendenhall et al. [1971,

p. 186] wi th  the modification that all primaries ar e of eq ual size.

A forester wants to estimate the total number of trees in a

certain county which are infected with a particular disease. A

two—stage sampling design is used with the county being divided

into ten primary units which are further subdivided into fifteen

secondaries of approximately equal size. A sample of four primaries

and six secondaries per sampled primary is taken. The survey results

are given in Table 3.

TABLE 3

Results of Forester ’s Survey

Area N umber of Infected Trees per Plot

1 15, 14 , 21, 13, 9 , 10
r

2 4 , 6, 10 , 9 , 8, 5

3 10, 11, 14, 10, 9, 15

4 8, 3, 4, 1, 2, 5

~

~~~ - For this problem N = 10, M = 15, n = 4, and m = 6. From (2.14)

~ _ 216
E 
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Also, (2.28) , (2.29), and (2.35) give

s~ 117.444

s = 8.983w

and

g = 3.026

The degrees of freedom given in (2.37) associated with the

approximate confidence interval are

n ’ = 3 . 1 8 6 .

Since n’ is not an integer, it is rounded down to 3, and a

• conservative 95% conf idence interval on I from (2.43)  is

(3.468, 14.532)

To compute the exact confidence interval on I the are selected

to be

= —l , 3 = 1, 2, 3 ,

3 = 4 , 5, 6 .

for all sampled primaries. Then from (2.46)

d1 
= — 18

d2 
+2 ,

d3
= —1 ,

.~~ 
i and

.~~~~ d = —7-
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A i s n , I r um (2.55), (2.56), and ( 2 .  9 )

2c = .l5 ,

I

2c 2~~3 
= .01

and

g = 2 . 4 9 3

VIj e  exact 95% confidence interval on I from (2.64) is

(3.979 , 14.02)

1- 
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