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On Impulse Response Data and the Uniqueness of the Inverse Problem

et R ST G R S TR R T W

Victor Barcilon

Department of the Geophysical Sciences,v//
University of Chicago,
5734 South Ellis Avenue, Chicago, Illinois 60637, U.S.A.

\\
Abstract..&The problem of reconstructing the density and elastic
properties of a slab of infinite horizontal extent and finite
thickness set in motion by a double couple excitation is considered.
It is shown that the information contained in the amplitude and
frequency response associated with a single horizontal wave.number

is sufficient to insure the uniqueness of the solution of this

inverse problem.
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1. Introduction

The present paper is concerned with the uniqueness of the solution
of the inverse problem for the internal structure of the earth.

The aim is to find what data are required in order to find both the
Lamé parameters and the density uniquely. These data should be such as to
enable us to perform the inversion under the following two conditions:

(i) the solution should be obtained ab initio and should not be a
perturbation of an existing earth model;

(ii) an ad hoc assumption 2 la Adams-Williamson should not be used,
but rather its validity should be checked.

I have been able to make some progress in answering the question of
the necessary data for problems simpler than that for the earth (Barcilon
1976a, 1976b). I believe that the main result will remain valid even for
the more complicated geophysical problem. Namely, if the source is known,
then the amplitude and frequency response associated with a single horizontal
wave number is sufficient to insure the uniqueness of the inverse problem.

I shall endeavor to present an overview of these results omitting

most of the ﬁnderlying calculations which either have appeared or will appear

elsewhere.
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2. Slab with Double-couple Excitation

Let us consider a perfectly elastic slab of infinite horizontal

extent and of thickness a (see Fig.). We shall assume that the density p

Insert Figure.

Caption: Schematic diagram of the slab.

and the Lamé parameters A and u are solely functions of the depth, i.e. of

X We shall also assume that the surface x=0 is stress-free, i.e.

_pm-s =¢£§1 =_;_)}-§2=0 at£=0.

where p.. stands for a component of the stress tensor. The slab is set in
motion at time t=0 by means of a double-couple applied to the upper sur-
face x=a, For the sake of presentation, we consider the simplest case

possible and write

Py = ¥
Byg, * - TG SE KO [ wtxn
Exéz = - T &g 6(€,) H(t)

In the above formula, § stands for the Dirac delta function and H for the

 Heaviside step-function; a prime denotes differentiation with respect to

an appropriate variable.
It should already be clear that the model we are considering is
closely related to the ultimate geophysical problem. The slab can be

looked upon as the mantle of a flat earth without liquid core and gravita-

tional force. To pursue the analogy with the geophysical situation, we

(2.1)

(2.2)
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shall refer to the vertical and horizontal displacements u(a,§,t) and

¥ (a,&,t), (a=1,2), at the upper surface as the seismograms. The in-
5_ , verse problem can be stated thus: given these seismograms, can we
- determine A(x), u(x) and p(x) uniquely?
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1 5.
J 3. Compressive and Torsional Modes
Just as for the earth, the response to an arbitrary excitation
] can be synthesized by means of a superpos.tion of two kinds of normal
, modes of oscillations which we shall refer to as the compressive and
.torsional modes. In fact, in the spirit of Alterman et al (1959), let
i us write the displacements thus: _soupt
b | ® Ld ; ¢ : “QLL\"
| -iwt &
T 2(_:5_:_) L. 6 e dﬂ Yl(i_‘,g!_:l(_) H(E’E) d_]S:
v, 0,8t » | o2 4y I ty omsk) 2 ¢ 2. raesk) 25y ax, (3.1)
! " riut iy s B
i ‘_’z(fni:_t_) - J e d(_d_ IJ Ls(ioea-) 3-2 = ilff._lg.}s) a-sl }d&.
In the above representations
H(E,k) = exp(-i E°k) (3.2)
is the function appropriate for the synthesis of the horizontal plan-
form. Thus .l_t.-(l_(l.ltz) is a horizontal wave number and it is convenient
to define
2 2 2
-!,. -.1(1 + _k_z o (3.3)

w stands the frequency whereas the variables Xy Y3 and E2) respectively
are associated with the vertical structure of the displacements occuring
in the compressive and torsional modes.

In addition to the displacement fields, we introduce the stress

fields as follows:




and

Henceforth, primes will denote differentiation with respect to X.
With these classical variables, the direct problem which con-
sists in finding the slab's response to a double couple excitation can

be formulated in terms of two boundary values for the b i and z- fields,

namely
/
P4 T .
’ 2
Y| | we
’
)_rs -1
Ya 0
L A e
with
and

’
22" N 2,

2 —
1 2 0
Az A+2y
0 0 e
1
0 0 I
= ~wloray Sk ? 0
A+2u % B B'_fzﬂ
Ys * Xy * 0 at x=0,

Y, =Y + AL sin26 = 0 at x=a;

(3.4)

3.5)

(3.6a)

(3.6b)




| , 1
i Z 0 5 Z
i = £ (3.7a)

| % w0 5

| ﬁ
E | with
E ! | 2,0 at x=0
EY (3.7b)

{ i .
’d | zZ, - <47 cos 20=0 at x=a.
) -2 T e - - ek

LA
%u In the above formulas, (%,8) are polar coordinates in the horizontal
: wave number space. |
H
’ | We shall be interested in the above equations in connection
with the inverse problem for which we shall take the data to be

* ! Y@ wsk), ys(a,05k) and z, (2,0;k), i.e. the temporal and spatial
i Fourier transforms of the seismograms. This statement will be made

even more precise in sequel. {
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4. Properties of the Seismograms

Let ﬂj(l) and

(3.6a) such that

ﬂj(Z) (i=1,2,3,4) be two fundamental solutions of

=Y
—J ll 3
(G=1,2,3,4) for x=0,
) e 0y &
Tk
where Gij is the Kronecker delta. Clearly, n( ) .(2) are functions
of x, w and 2. The solution of the boundary value problem (3.6) can be
written in terms of these two solutions as follows:
1) (1) (2)
; -11 Qg w, z)n (§ w, £)+n (a,w l)n (_,m L)
¥ (x,w,z ) = —*—ST sin26 2
8" _24(_3.':(:_’:2')
(j=1,2,3,4)
where
1 2
21(. )(5:2:1) D,IE )(}':ﬂsl)
W (xou2) =
- - 1
I‘_‘s(. )(’_(_;2)2') ﬂ§(2) (J&,(ﬂ,ﬂ)
As a result, the spatial and temporal Fourier transforms of the seismo-
grams have the following forms:
N (Q:ﬂ;z)
yl(a w;2,8) = -L— sin2¢ wlz 0 1)
81\' w =24"="=’
n (3sw L)
Zs(a,m,z,e) = - J— smze 23(3 o I

Looked upon as functions of w, !12(?-’9-;!')’ Ezs(g,‘w_;z) and ﬂu(‘g,g;z)

are completely determined by their zeros.

Furthermore, these zeros are

(4.1)

4.2)

4.3)

(4.4a)

(4.4b)



natural frequencies of compressive modes of the slab in three vibrating

configurations. These three configurations correspond respectively to

the following boundary conditions at x=a;
1) ¥y, =x°=0

e e bl
and
Qi Tl "

in all three cases, the boundary conditions at x=0 are y, = ¥, = 0.
Thus, keeping % fixed it is possible (at least in principle) to ex-
tract two ''compressive' spectra over and above the compressive
spectrum corresponding to stress free conditions at x=0, a.

Similarly, let us denote by Sq(z,g;l) a solution of (3.7a)

such that

Ea(o,_u;;z) = sla (a=1,2).

Then, the solution of the boundary value problem (3.7) can be written
thus

Ea Q:ﬂ; L)

. -LT PR e
_Z.u(is‘ﬂ’z’g) e 3 20_52_9. 22(35“_);!')

L
In particular, that part of the spatial and temporal Fourier transforms
of the seismogram associated with the torsional modes has the form

g, (@,u352)
& 52 (‘a_,ﬂ; L)

z,.(a,w;2,0) = -jEL-cosze
81w

(4.5a)

(4.50b)

(4.5¢)

(4.6)

“4.7)

(4.8)

e
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Y é Once again, the zeros of 9 (a,w;2) and g, (a,w;2) are the natural fre-
3
4 quencies of the torsional modes of the slab in two vibrating configura-
1 tions corresponding to the following boundary conditions at x=a
i g asa. (4.92)
E || (ii) 2,0 . (4.9b)
- The zeros of Ez4@’ﬂ52’) and szi:'ﬂ;l) are associated with the
frequency response of the slab whereas those of 1112 (a,w;%), }!23 (1,9_;1)
and % (a,w;%) are associated with the amplitude response.
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S. Solution of the Inverse Problem

we can proceed along several routes. For instance, we could
work with the so-called influence functions for a group of five eigen-
value problems (Barcilon 1976a). A second approach, particularly
simple for discrete versions of these inverse problems, relies on con-
tinued fractions. This method has been pioneered by Krein (1952) and
generalized by Barcilon (1976b). We shall refer the reader to these
papers for a more discursive treatment of specific problems. Here,
we shall confine ourselves to the derivation of the formulas essential
for carrying out this procedure.

The first step consists in deriving differential equations for
the six distinct Wronskians yij(f’ﬂ;z)' These equations are

2

Mg = 2 My f_fz_g L3

LT '31314 . }%2&3!23’

M4 =" g\_fzg A Y R T _A_+122 You * f«% sy
Mys = Mpp - 90 Mg ¢ ;f"iu - 2% gy,

’
Mg = ~ My * T 43 -

Actually, from (5.1a) and (5.1f) together with (4.1) we deduce

that W,, and yl are linearly related, viz.

=34 2

2
Wi (us) + & }134(5.9;2) = 0.

R O T G, BA T T G T R

11.

(5.1a)

(5.1b)

(5.1c)

(5.1d)

(5.1e)

(5.1f)

(5.2)



known polynomials of degree N in 9_2.

The Wronskians satisfy also the following identify

=0’

Nig Nyg * Wyg Mgy + Wy Wos

or in view of (5.2)
W) ¢ Fiis @, () - £, N0 = 0.

By eliminating lV34 also from (5.1) and incorporating the equations (3.7a)

for L, we obtain the following grand system of first order equations:

W 2 -ae? o e
0 0 2 E‘Z—H 0 0 4] ‘_V_lz
1 1
0 0 i by 0 0 0 ¥,
e s Aty o2 1
A+2£ = B 2 A+2.ug' . 0 2\_-0-22_ 0 0 ‘i14
2 5 0 0 L 0 ol |w
we ™ =23
2 2 A+pu 2
0 0 -0’ -u g+4HF22£2 0 0 0| |,
0 0 0 0 0 0 L
iy =1
0 0 0 0 0 -sz.ﬂ.l}z 0| |%
s -t o

If the slab is discretized in N layers, then w) and Ey (a,w) are

By (2o
Indeed, E12(§;9)9 _23(3,:9): %4(1}9):

51(9-"‘3) and 5_2 (g,g) are extracted from the seismograms, whereas ﬂls(g,g)

and E14 (a,w) are deduced from (5.3). Furthermore the W's and z s are also

known at x=0, viz

(5.3)

(5.4)
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] Hp(000) = Wy, (0,0) = Wi (0,) = Wy, (0,u) = 5,(0,0) = 0,
i (5.5)
? W,300,0) = 5,(0,0) = 1.
f With these informations, we can find A, u and p by repeating the steps
indicated in Barcilon (1967b).
{
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