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1.0 INTRODUCTION

Key paramcters in the assessment of effectiveness of high energy laser
systems arc the peak intensity and spot size in the focal plane. These two
features arc strongly influenced by interactions between the laser beam and
the atmospherc in the propagation path. The primary interaction of concern
here is heating of the atmosphere due to absorption and the hydrodynamics of
the heating induced density changes in the air. Specification of parameters
such as peak intensity then becomes a problem of specifying in detail the

nature of this self-induced atmospheric lens through which the beam must pass.

In addition to molecular absorption, which sets the scale on how much
cnergy is available to cause distortions in the medium, the other critical
factor is the rate at which air flows across the beam. The amount of heating
experienced by a parcel of air, and hence its distorting power as a lens, is
determined by the amount of time it resides within the laser beam. The extent
to which the laser beam itself is distorted is then a strong function of the
details of the flow field. Important limiting assumptions have been made in
theoretical analyses of this effect which is commonly called thermal blooming.

These generally include:

e Steady state conditions prevail
*
e Flow rates are constant (space and time)

¢ Time dependence only for zero flow

Actual high energy laser cngagements will generally violate one or more of

thesc assumptions. The hydrodynamical formulations which describe the laser -

*
To account for slew, the flow velocity is normally allowed to increase
linearly with distance along the beam,

-1 -




atmosphere interactions must, for thesc engagemenis, be cast in a form such
that the assumptions listed above arc not required. The study reported here

dealt with these limitations and consists of two distinct segments, namely

e Analytical studies of hydrodynamics

® Wave optics propagation calculations

The hydrodynamical formulation chosen must be general enough to permit des-

cription of cases which include

® Non coplanar slew and wind
e Stagnation zones

® Accelerated beams

Variable winds along the beam

all of which are likely to be encountered in typical engagements. Given
hydrodynamical solutions applicable to air flow conditions as above, the
effects on laser beam properties (e.g. focal planc irradiance) must be
determined by performing wave optics propagation calculations for a beam
transmitted through density profiles as determined self consistently for the

local lascr beam-air interaction.

In Section 2.0, we show the detailed solution to the hydrodynamical
equations for one spatial dimension. In this formulation, the wind velocity
may vary in magnitude with time and density perturbations in the medium may
be tracked from beam turn on to the steady state - if, in fact, the steady
atate is ever attained in times of interest. The primary advantage of this

derivation is its physically intuitive foundation. The various factors which

-2 -




drive the blooming process separate into components which have clear physical
interpretations. In the multi-dimensional theory, given in Section 3.0, this
ability to clearly identify specific physical interactions is frequently lost
in the details of the mathematics. The formulation, however, permits flow
velocitics across the beam to be completely arbitrary in megnitude, direction,
and time dcpendence. Computations of density contours and focal plane
irradiance profiles, for this more detailed multi-dimensional theory, are

shown in Section 4.0.




2,0 SOLUTION FOR ONE SPATIAL DIMENSION

For predicting thermal blooming of a laser beam propagating in the
atmosphere, 11 is usually assumed that the unperturbed airflow through the
beam 1s independent of time. This assumption is not valid for a slewed laser
beam in the presence of wind, as well as in the obvious cases of variable

wind velocity or slew rate.

Considerable theoretical work has been done on the problem of time-
dependent changes in the density of a medium through which a comstant-velocity
laser beam 1is propagating. Recently, Ellinwood and Mirels(B) calculated
two-dimensional density profiles within a slewed laser beam for both subsonic
and supersonic wind transverse to the beam, using linearized hydrodynamic
equations, Hayes(6) has addressed the non-linear effects to be expected
when the slew rate is near the sound speed, using one-dimensional equations.
Fleck et algh) have developed an elaborate "four-dimensional" computer
code for calculating thermal blooming, based essentially on steady-state equa-
tions for the density, but capable of treating supersonic as well as subsonic
wind speeds. All these treatments assume both the wind speed and direction

to be constant at a given position along the beam.

We here present the general time-dependeat solution to the linearized
one-dimensional hydrodynamic equations for a beam with an arbitrary, time-
dependent intensity profile and which moves with variable velocity. For

large~-diameter beams and relatively short irradiation times, the effects of
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conductivity and convection are expected to be small and have been neglected

(ef. Ref. H). Particular solutions for accelerated, Gaussian CW beams

are compared with our analytic solution for a Gaussian beam moving at constant
velocity. Greatest differences between the solutions occur for beams which are
moving at mach numbers near zero or unity. Density changes within an accelerated
beam can be either larger or smaller than for an unaccelerated beam moving at

the same speed.

For the purpose of obtalning the density perturbation we assume the
unperturbed medium to be at rest while the laser beam moves tihrough it.
Of course, this is fully equivalent to the case of wind blowing past a stationary
beam, and is a good approximation for a slewed beam as long as nearly sonic

slewing velocities do not occur near the beam's point of origin.

For convenience, Table I lists the symbols used in this paper, although

the variables are also defined when they are first used in the text.

. r——— - —
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TABLE I. DEFINITION OF SYMBOLS

Hydrodynamic Variables

p
r
R(k,t)

’ﬁ(k,s)

mass density; Po is ambient, unperturbed density
density perturbation divided by Po

Fourier transform of r(x,t)

Laplace transform of R(k,t)

fluid pressure

specific internal energy

ratio of specific heats

speed of sound

fluid velocity

Independent Variables

t

]

time
spatial coordirate measured from beam center at t=0
parameter appearing in Laplace transform

spatial wavenumber appearing in Fourier transform

Properties of the Beam

x (t)

g
v

=

position of beam center

beam radius

spatial coordinate measured from beam center
instantaneous velocity of beam with respect to fluid
Mach number of beam, V/c

total beam power

T s e L mm po— ———
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TABLE I. (Continued)

I(x,t) beam irradiance

7 normalized irradiance
Fk,t) Fourier transform of @
F(k,s) Laplace transform of F

Heatiqﬁ Rate

led atmospheric attenuation coefficient
Q rate of energy deposition per unit volume of fluid
q normalized (dimensionless) rate of energy deposition

Time Scales

tH hydrodynamic time, e./c
Ateq time forreaching steady-state perturbation
T beam acceleration time-scale
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2.1 Basic Equations
The fundamental equations describing the interaction of the laser beam

with the atmosphere are (cf. Ref. 7)

%%+pv-?=0 (1)
a1

a_t.+ -p—vP =0 (2)
p%[%v2+e]+V°(pV‘)=Q, (3)

which represent conservation of mass, momentum and energy, respectively. The
fluid density, velocity, and pressure are denoted by p, V, and p; Q(x,t) 1is

the heating rate, and is given by

Q = aI(¥,t), ()

where @ is the atmospheric absorption coefficient and I is the laser irradiance.
The specilic internal energy of the gas, ¢, is given by

" 2
€T o )

where v is the ratio of specific heats. Using the above equations, equation (3)

is easily put into the form

d PR -
af'vpdt (v -1)ax (6)
-9-
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The time derivatives appearing in these equations are Lagrangian

derivatives, i.e., in operator form

- 9. (7

For small-amplitude perturbations of an initially uniform fluid at
rest, to first order the V - v ‘terms may be reglected and d/dt > 3/3t
(Ref. 8). Considering now only fluid flow in one spatial dimension

denoted by the coordinate x, the linearized forms of equations (1), (2) and

(6) become
ep 3V _
3t TPoax = ° (8)
3 -]
PSSR0 (9)
2p _c°_ %
St -1 ¢ - (10)

where second and higher order terms have been omitted; denoting the unperturbed
pressure and density by P, and Po respectively, the speed of sound in the un-
disturbed gas is given by

1/2 ]

c=(yop/le,) (11)

In equations (8) - (10), and throughout the following development, dependent
variables without subgcripts denote small perturbations; for example, the total

density is given by p_ + p, vhere le] < Pyt

- 10 =
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When the beam moves at constant velocity with respect to the unperturbed

alr, it is convenient to introduce a new spatial variable,
€= x - x(t), (12)

where xo(t) is the position of bean center at time t. For definiteness, we
take the origin of spatial coordinates to be the heam center at t=0 (when the
beam is turned on) and assume the beam moves toward positive x. Then, with
x, = Vt, the derivatives with respect to t in equations (8) - (10) are trans-

formed as follows¥*:

3 d 3
BT—’ t-VS-g'. (13)
The (€,t) coordinates are particularly convenient for describing the pertur-

bation within the beam.

If V is not constant, the transformation (12) is not useful for two
reasons., First, the resulting partial differential equations contain terms

in which derivatives are multiplied by the non-constant coefficient, V(t).

Second, because (£,t) is an accelerated reference frame, the quantity dV/dt
would appear on the left-hand side of the momentum equation; since it does not
possess a (spatial) Fourier transform, it would be necessary to take the
gradient of the momentum equation in order to apply this transform. Our
procedure is to solve for the density perturbation in (x,t) coordinates, then
to use equation (12) to evaluate the solution in the region of interest (i.e.,

for relatively small values of ),

* Note that the wind blows with velocity -V with respect to the beam.
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Inhomogeneous Wave Equation for the Density

&3
.
N

From equations (8) - (10), it is easy to derive a single equation

for the density:

2 2 2
O L& ) 2 (y1) &5 (). (1)
(2 - Z) 8- 53

Integrating with respect to time, we obtlain:

2 t

2 2
(.3_5- @ .3_3)‘, = (y-1) -5—2 [ ax(x,t') at, (15)
At dx dx o
using the conditions
3 2
p- 8-28 _0att=0, -e<x<e (16)
ot

(Ref. 10). Equation (15) clearly reveals that the density perturbation

is a superposition of waves, with the laser heating acting as driving force.*
Physically, energy absorbed from the beam produces local expansion which
generates waves traveling outward at the speed of sound. At time to after
the beam is turned on, p(x,to) is non-zero over the interval -ctO £ X< cto.

However, the solution is not a superposition of simple (adiabatic) sound

waves because of the input of energy to the gas within the beam.

. Our solution to this equation presumes that I(x,t) is a known function; this

is a necessary first step in calculating the actual intensity of a laser

beam propegating through perturbed air.

-12 -
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Before solving equation (15), it is convenient to introduce dimension-
less varisbles -- physical quantities are measured in units which are parti-
cularly relevant to the problem, and continual repetition of c2, (y-1), a,

etc, is avoided. Introducing the units defined in Table II, equation (15)

becomes
2 2 2 t
3 9 o) -
s -S5)r=a= [ #xt)a (17)
(bt2 ax ) bx2 o ’ ’

where, for example, r(x,t) denotes the actual density perturbation divided

by the ambient, unperturbed density, Por




TABLE II. DIMENSIONLESS UNITS

QUANTITY UNIT OF MEASURE VALUE AT 10 KM ALTITUDE
. -4 -3
r, Density Perturbation Po? Ambient Po ™ 4 x 10 gecm
M, Velocity ¢, 8Sound Speed ¢~ 300 m sect
x, € Distance a, Beam Radius Assume a = 0.5 m
t, Time t, = a/c ~2x1073 sec
’ H 't
) ¢, Beam Irradiance I, = P/ﬁa2 I,=l27P
(v-1)az
q, Energy Deposition q= otH q~2x 10-8 oP
Poc
= Energy absorbed for o in km™t
in time tH

+ Ambient enthalpy P in kv

- 14 -




o.h Intcpral Transformations of the Wave tion

To carry out the solution of equation (17), we apply Fourier and Laplace

transforms; to define notation, the Fourier transform of a function g{x,t) is

given by
[- -]

r e-ikx

-00

G(k)t) = g(th)d-x: (18)

and the Laplace transform of G(k,t) is denoted by

G(x,s) = fc e % G(k,t)at. (19)
[o]

Applying these transforms to equation (17) results in
2, ~
[s2 + k21 R(k,s) = -qk® F(k,s)/s. (20)

This equation is valid if the functions r and § (whose transforms are K and ¥,
respectively) satisfy certain continuity and boundedness conditions (ecf.

Ref. 2). To obtain a solution we assume that the boundary conditions
[2q. (16)] and the naturc of the physical problem prevent the appearance

of sub®le mathematical pathology.

Formally, the solution for p(x,t) is given by the inverse transform of

2
R(k,s) = “dEus) K (21)

s(s® + x°) ’

where F 1g presumed known. For a beam with constant intensity profiie and

wvhich moves such that its center at time t is located at xo(t),

#(x,t) = P(x-x ). (22)




Using the translation property of the Fourler transform we have

-ikx (t) =
F(k,t) = e e .r o~ 1kx #(x) dx, (23)

where @#(x) gives the spatial distribution of intensity as a function of

distance from beam center. A Gaussian beam, for example, is described by
2
#(x) = exp(-x") (2u)

(recall that distances are measured in units of the beam radius, a). To
obtain F(k,s) from equation (23), it is necessary to take the Laplace trans-

form of exp[-ikxo(t)].

- 16 =
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2.0 Solution for thc Density Perturbation

To seek a more fruitful approach, we go back to equation (21), expand-

ing the denominator in partial fractions:

qF(k,s) 1 1 2
R(k,s) = 2 51k & otik s (- (25)

The convolution theorem for the laplace transform enables us to write the

Fourier transform of r(x,t) as a convolution:
t
R(k,t) = q [ F(k,t') G(k,t-t') at', (26)
o

where G(k,t) is the inverse Laplace transform of

1 1 2

B(k,s) = -]2= Tt SE s U (27)
explicitly,

G(k,t) = -21- (el¥t & 71Kty _ (28)
and

R(k,t) = % a F F(k,tr) [elX(t-t) , oik(t=t') gy gy (29)

o

Because of the translation property of Fourler transforms, for any given values
-t
of t and t', F(k,t') e 1k(t-t') is the Fourier transform of @[x + (t-t'), t'l.

Therefore, taking the inverse Fourier transform of equation (29), we obtain

1 t
P(x,0) = Faf {Blxs (1o0), €]+ Blx - (161, v} an -
o}
t
q'r g(x,t') dt', (30)
o)

which 15 the formal solution for the density perturbation,

-17-




The meaning of equation (30) becames clearer if we consider a beam

described by equation (22); then
Plx £ (t-t*), t'] = Blx &+ (t-t') = xo(t')]. (31)

The expression x + (t-t') represents the position at time t' < t of a sonic
impulse which will pass the point x at time t; the minus sign corresponds

to an impulse moving in the positive x direction (a "forward-facing charac-
teristic”) and the plus sign, to a wave moving toward negative x (“backward
facing characteristic"). The argument of @ in equation (31) is therefore the
distance (at time ') between ihe beam center and the characteristics passing
through the point (x,t), and the first two terms on the right-hand side of
equation (20) represent the effect at (x,t) due to energy which was absorbed
at points on the characteristics during the interval O to t. Figure 1 is

a space-time diagram which i1llustrates the geometry involved. The dashed
curves on either side of xo(t') represent the spatial extent uf the beam,
within which power absorption is greatest. As shown, the point (x,t) has
been within the beam for several hydrodynamic times (since t' = 6.5) and

the resultant absorbed energy contributes an expansion of the air, given oy
the last term of equation (30). In addition, air with 4 € x < 6 has been
within the beam at times such that effects of the perturbation can propagate
to (x,t). Adding energy to a small volume of air produces local expansion;
the "snowplow" effect on neighboring volume elements produces a positive density
perturbation outside the originally heated volume. The net perturbation, as

given by equation (30) is therefore a superposition of these two effects.

- 18 -
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2.6 The Constant Velocity Beam

As a special case, we can evaluate equation (30) for a beam moving at
constant velocity (or, equivalently, a stationary beam and a constant trans-

verse wind). Put
xo(t) = Mt, (32)

where M is the mach number for the unperturbed flow. Using equaticon (51),
i.e., asgsuming the intensity of the beam is constant, the integrals for

r(x,t) are of the form

t
J#lxet - (Ms 1)t ]at. (23)

o
Defining a variable y = x ¢ t - (M £ 1)t', (33) can be written as

x-Mt
-1 [ ey (34)

xtt

For a Gaussian beam (cf. eq. [24]), the integral is

% erﬂiehtb)&i erf(x-Mt) (35)

(for properties of the error function, erf(z), see, e.g., Ref. 1). We
are primarily interested in the density profile within the beam itself,
8o introducing the displacement from beam center (& is defined in Eq. (12)),

the solution becomes

r(€,t) = —‘/%3 3 1 erf[E +(M+1)t] +% erf[€ +(M-1)t]

2 M+1 M-1

- erf§§M+ Mtl - ;r}td‘isl; . i (56)

e e p—— e s e - -
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This function is sketched in Figure 2 4t g time for which the profile wiihin

the bewn i near its steady-state shupe, The point £ (gt e conter) moves

to the right at speed M, leaving behind a low-dencity ropion which prows

larger with time (it exiends to x - L), At time 1 the perturbed rotion 1o
confined to ‘xl = b, v opoen tu zero overe o distancae Lo L (.0, *he Leam
radius). Although within tho beam v veachos o cteady-ciate grter o Uindt e

‘)

time interval, the true stoady-state density ic reached oo 0 oy por (47« 1

1lim 2
/TT eerf '; - 1-M-1 e\

It is worth })Oilll.iﬂg out, that 1o ()bt:),i“ thies iy Ctenrdy =t el -
sity for the one-dimencional problem, the conditions o' inficiiy ann. e
assumed Lo be unperturbed. From cquation (27) the sieady-5iate conditions at

spatial infinity are

r(- =, «) :/5?1—}@— .

The:« non-zero values are due to the fact that in one-dimencional low without

(57)

dissipation, the amplitude of a wave docs not decrease with distance from the
sowrce; for flow in two or three dimensions we would expect to have wero per-

turbation at infinity.
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For supersonic low M7 o 1, and cquation (%) has Lhe steady-state
limit

r, @) = 00 Lodil (52)

The sir in ront of the beam (Carre %) i unperturbed bLocause pressure waves

created by the beam propuwsate more slowly than the beam 1tsell.

squation (%0) also expresses the solution for the spoclal case M = 1;
proceeding as before, one casily obtains the time-dependent sclution
g Ve em(= £9)

l l ‘ ) o= [
r(g,L) = 2 |/ S crl (L) - urx(,khn

+ % rsrf(g): : (40)

In tnis case there is no steady-state. For t - 1 the first term of cqua-

tion (40) dominates ncar beam center; it deseribes a Guussian density proflile
with maximun at beam center. The magnitude of the perturbation ¢grows lincarly
in time, The present solution remaing va;id as lowyt as Ir(E,L)l << 1, which
in turn implies Lt & 1/10q. Since cxpected values of ¢ are much smaller than
unily (sce Table II), cquation (40) describes the sonic case for significant

periods of time,

At low wind spceds, the approach to a steady-state within the beanm is
proportional to the wind transit time, which varies as Mnl (ct's Ref. 11).
At higher speeds, for M ~ 1, sufficient time is required for the forward-

moving wavce Lo procced out of the beam, This wave moves realtive to the




-

beam at mach number 1-M, so the approach to steady-statc 15 longer as M
increases. Quantitatively, the profile given by equation (»7) is within

1 percent of the steady-state for -2 < € <2whent 2 ALCq, with

Bty = mex (b YRR TR V) Ry S (11)

As can be seen from Figure 3, the steady-statc density change across
the beam (from € = -2 to § = +2) becomes large as M approachcs O or 1,
although the time required to reach the steady-statc (Ateq) also increasces.
Time-dependent density profiles given by equation (38) arc in complete agree-

C
ment with Munn's()) results for the congtant velocity beam.

- 24 -
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200 The Isobaric Approximation

For sufficicuntly small M, the density perturbation is produced primarily
by expansion at nearly consiant pressure and the role of outeoing waves ic amall,
The approximite colution is obtained from equation (10) with the pressure
perturbation set identically to zero, and is given by the third term on the
right-hand side of' equation (30). The isobaric soluticn tor a Gaussian beam

is

[ - /1; q err(f) - Srfﬁ + Mt) . (42)

The corresponding steady-state density change across the beam is shown in Figure
3 by the dashed curve. The exact solution, equation (J0), cortains terms whicn

are smaller than those in equation (42) by a factor of approximately M,
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2.3 Comparison of Constant Velociiy and Acceleratcd Beams

In the general case, when the beam moves with arbitrary velocity, the
integrals appearing in equation ( 30) must be numerically evaluated. Note that
the beam intensity may also vary arbitrarily, so pulsed beams can be treated

as well as CW,

Figure 4 shows the density perturbation for a Gaussian beam moving
at M = 0.1; when t = 40, the profile has essentially achieved a cteady-state
for -2 < £ < 2, where the beam 1s most intense. Figure 5 shows the profile
for a beam which initially moves at M = 0.1 and is accelerated at the rate
dM/dt = 1073 (in dimensionless units); for conditions at 10 km altitude
(ef. Tuable II) this corresponds to an acceleration of 150 m/sece. AL early
times the perturbation does not greatly differ from the constant-velocity
case, but by t = 100 the departure is obvious. Between t == 100 and 1 > TOO
the perturbation closely approaches the steady-state profile corresponding
to the instantaneous velocity. The later development is shown in Figure 6.
As M exceeds 0.8, there develops a density maximum near € = 1 and, especially
for € > 0, the profile departs more and more from the corresponding steady-state
in the sense of having smaller perturbation. As a measure of the perturbation
at each instant, we use the differenceiin density from maximum to minimum with-
in -2 < € < 2. The solid curve in Figure 7 represents the magnitude of the
steady-state perturbation for constant-velocity beams as a function of mach
number (from Figure 3). The points connected by a dashed curve represent the
profiles shown in Figures 5 and 6; across the top of Figure T is the time scale
for the accelerated beam. When the beam is turned on at t = 0, M = 0.1 and

the density perturbation 1s zero. At this speed, a steady-state would be

e = e o p——— -
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Figure 5, Time~dependent density profiles for an accelerated beam;
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reached when t = 40O, but by that time ‘he bLeam's mach number has increased to

0.14. The new speed implie: -« shorter cquilibration time and a smaller steady-state
perturbation; *opether with the ticite cquilibration time, this produces a
slightly larper pertuarbaci o0 St woald te "ne ace 0 the instantaneous
steady-state, As *he Yesg roves tator, e i lireation time decreases
and the percucteg i Iy ety e ws, . et nding otendy-state,  later,
when M 2 v ) the equltitens s o coeeoand e magnitude of the pertur-
bation lags behidnd rhe oo -

The perturbation for o deceleryeg e e chown in Figure 8, Initially,
M= 0.1; with dM/dt - -Lh-b, the bewm is et atlonary at t = 100 and moves back

toward its initial position at later times., When t < 100, the amplitude of
the perturbation is less than the steady-state value, but after t = 100, the
perturbation considerably exceeds the steady-state value., At t = 150, with
M = -0.09, the steady-state density change across the beam would be approxi-

mately Ar > 34qg, while the actual Ar is nearly three times as large.

Defining a time-scale for acceleration by

T = lM/Al ’ (42)

where A = dM/dt (in dimensionless units), it 1s possible to estimate those
velocities and accelerations for which the density profile will differ signi-
Ticantly from the constant-velocity solution. When v is smaller than ATeq,

the beam velocity changes more quickly than the density approaches steady-state.

Using equation (41), this condition becomes

|a] > min (s, (1-0)2/8), (44)

from which we see that small accelerations have the greatest effect for M= 0

or M=>1,
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Figure 8.
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Time-dependent densities within a beam initially moving
at M = 0,1, for d/dt = - 0.00L.

s
- 5% -




10.

11,

References

Abramowity, M, and I,A, Stegun, eds., Handbook of Mathematic:l Functiong,

.50 Depl, ot Commerce, NBS 59, June 1904, Chapter 7,

Churchill, R.V.; Operational Mathematics (McCraw-Hill, New Y.rk, third ed.

1972).

Ellinwood, J.W. and H. Mirels; Appl. Opt. 14, 2238 (1979).

Fleck, Jr., J.A., J.R. Morris and M.J. Feit; "Time-Dependent Propugation of
High PFnergy Lascr Beams Through the Atmosphere," Lawrence Livermore
Laboratory, UCRL-51826, June 2, 1975.

Hayes, J.N., Appl. Opt. 11, 455 (1972).

Hayes, J.N., Appl. Opt. 13, 2072 (1974).

Llandau, L.D. and E.M, Lifshitz; Fluid Mechanics (Addison-Wesley, Rerding, Mass.,

1959) .

von Mices, R.; Mathematical Theory of Compresrcible Fluid Flow (Academic Presc,

New York, 19958), p. 34.

Murn, M.W.; “Dependence of Thermal Blooming Induced Density Changes in Gas
on Time and Transverse Flow Velocity," Lockheed Palo Alt:: Re-earch
Laboratory, IMSC DLO3870, July 1974.

Ulrich, P.B, and J. Wallace; J. Opt. Soc. Am. 63, 8 (1973).

Wallace, J. and M. Camac; J. Opl. Soc. Am. 60, 1587 (1970).




3.0 TWO-DIMENSIONAL THERMAL BLOOMING FOR ARBITRARY TRANCVERSE WIND

It has proven convenient to part from traditional formulations of
the laser heating hydrodynamics which assume a simplce relationship boetween
Eulerian (beam centered) and Lagrangian (parcel of air ccentered) coordinate
systems. The treatment (siven here does not assume the transverse Ulow bto be

constant in magnitude or direction.(l’z)

In BEulerian coordinates, at a fixed distance z along the beam the wind
flowing in the x,y plane (perpendicular ‘o the =-axis) is acsumed to be a

known function of time:

- A A
w(z,t) = x L (z,t8) +y "y (2,t) (1)

-

and in general w is composed of components due to natural wind, notion of

the laser platform, and non-zero slewing of the beam. The Lagrangian formm-
lation consists of oxpressing the eyuations of hydrodynamics in the coordinate
frame which is at rest in the unperturbed air. 1In this framc the beam moves

with average velocity

vplz,t) = - W () ®

In the discussion below, note that all equations are written in

physical variables; dimensionless variables are not introduced.



Sl Mathematical solution

In Lwsrangian coordinates, in which the unperturbed modium 0t
rest, small amplitude variations in pressurc, denaily and vereeity (denctoed

by p, P and v, respeatively) satisty the lincurised equation.s:

% .y = (2)
1 + po v v 0
v
p(, ut + Vp - 0 (h’)
p
g9p L - C T
ot Y ot (v 1) a1 (r, t) )

O

The ambicnt pressurc and density are Py and P Y is the ratio of specilic
heats and a is the atmospheric absorption coefficient. The beam irradiance
I includes time dependence which is due to motion of the beam relative to

the unperturbed mediwm,

Integrating equation (5) with respect to time gives

) dt. . (x)

© O

D_(X", L) _ lL(rJ t) ly - J) (04 t ~
o = - f I (r, t
o . P, o

On ihe rignt-hand side, the first term represents an acoustic (adiabatic)
disturbance, while the scecond term ic an isobaric expansion which dominates
when the beam moves slowly. The pressure variation p can itself be cxpressed
a3 an integral of the irradiance multiplied by an appropriate Greenb tfunction
whercupon substitution into equation () pgives the solution for p in terms

of known functions.
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Into cquation (4) we introduce the vector potential v(?, t), which
is related to the velocity by

v = -Vy (7)
It is then easily shown that

2. _ 1 o
yo, = 2 o ()

(o} C

| where ¢ = (ypo/po)l/2 is the sound speed. As follows from equations (3),
(%) and (7), ¥ satisfies an inhomogeneous wave equation with source term

(v - 1) oﬁ/pocg, and it can be written in terms of a Green's function
G(;o,to ; T,t) which gives the contribution at (r,t) due to energy deposited

at (?o,to). The time derivative of § is then

o _ fy-va -
5 T e [P G, R (9)
(o]
(3)

Morse and Feshbach give the appropriate Green's function for the two-
dimensional problem: i.e., for spatial variations in the (x, y) plane normal
to the beam and neglecting slow variations along the beam (parallel to the

z axis). The spatial integral in equation (9) then reduces to a surface
integral which can be expressed in polar coordinates (R, ) centered at the

point (x, y):

= - 2 2
R = (x-x)" +(y-vy)
- (10)
@ = arc tan [(y - yo)/(x - xo)]
The result can be put into the form
‘ " on
%{- = o = [ dtnf a® £(e, t ;x, y, t) (11)
p cC o 0
O
- 37 -
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v

!
where(})

F(e; tO s Xy Yy t) - I(Rma.x’ e, tO)

I(R. o, "r,) - I(RMX, 8, to)

3/2

max
-(b-t) R dR

and R = c(t -to). By choosing the coordinates (x, y) to lie within the
beam at time t, the solution is evaluated only at points of interest for

calculating thermal blooming.

- 38 -




-

3.2 Comparison with the One-Dimensional Soluticn

The Green's function formalism for expressing lascr induced density
changes makes it somewhat difficult to develop an intuitive understanding of
the underlying physics. In order to deomonstrate use of the formalism, and to
establish contact with a known and relatively easily solved case, we consider
the one-dimensional, constant velocity case discussed in Section 2. For this

case equations (6) and (9) become, with Q = I,

y -1 ¢ { 1 Gy
p(x, t) = -I== [ at’ 180, 1) - e oy 5 3)
c o ¢
and the Green's function, given by Morse and Feshbach, is
C . 1
6, = Sufte-e) Lk x| - (1)

the step function U(z) is related to the Dirac delta function: U‘(z) = 6(z).

Differentiating Gl with respect to t gives

oG
1 [o} 1 ] ’ 1 ¢ '
5 = 5 ?G(E[x -x'}J+ [t -t'] + 6 (Z (x - x} -[t -t ]ﬁ
(15)
the integral over x’! is ecasily performed, and
.
p(r, t) = - XL [ ae’ lale, ) - 3 alx +clt - t7], t)
< e (16)

+Qlx - elt - t7], &)
If the beam intensity is independent of time (in its own rest frame) then

Q is a function only of the distance from beam center, i.e.

alx 2 clt - t'], t7) = Qlx tclt -t']-x[t] (17)

-39 =

-' 0 PRI A | N




whore ‘b(t) iP5 the position of bewn conter at Gime L, For Lhe speeinl case

ol constunl Lrangverse wind we may pul

xb(t) = vt - (1)

Note that the wind moves at speed w = - v wilh resgpect Lo the bewm and the

intepral.: appearing: in cquation (16) arc of the form

t
j at’ Q(x 2 e[t - t‘] - vt') (1)

o

which can be simplified by the substitution

. y = x2cft-t’] = xtot-(vie)t’' - (20)
Then (19) vecomes
} ] x-vt
vl W (21)
xzct
To ecxpress this result in coordinates which move with the beam, make the
transformation
g€ = x - vt (22)
' £ is the distance trom beam center. Equation (21) then becomes
| L
: TVt o g aly) ay (23)
b +(vre)t
Written out cxplicitly in terms of the wind speed w, equation (16) now
becomes
y-1 {15
Jw 1 ¢
p(€,t) = wI ly)ay - 2 +j aly)dy - =2 Ay)ay
~wt C+w -( -y
c ) 4 E-(ctw)t E-(c-v)t
(2k)
z o -
' i R o - o - e m
i e




when |w| <<< c¢ the 2nd and 3rd terms are negligible with respect to the 1lst

term and we have

. g
o(g,t) = '(1—2—1)—0- { y) &y > (25)
c w -wt

which is the familiar form of the solution for the isobaric approximation.())
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3.3 Density Variations within an Accelerated Beam

Using the equations developed in Section 3.1 we have calculated the
thermal blooming density perturbation for an infinite Gaussian irradiance
profile. To illustrate the effects of propagation in the presence of stagna-
tion zones, as in Section 2.8, we chose the time-dependence of the beam
motion to be

Vo= v - at (26)

with initial velocity v, = 0.1 ¢ and constant acceleration

3 c2/m ~ 102

a =10 w?t m/seca, where w is the beam radius (in meters). The
flow velocity relative to the beam is w = - v; at a time At after beam turn-
on, the flow velocity is momentarily zero, where

At = 0.3 wsec . (27)

Figure 1 shows density contours for t s 1.5 At. During this interval
the density never reaches a steady state, nor can the profiles be approximated

by suitably chosen steady state curves.
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Figure 1 continucd
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Figure 1.

t = 0.5 At -‘t——

o
L
i

20
«-1 P 10 -
b
1 A1 1
-2 -l’, (o) +1 + 2

¢

Density Contours in an Accelerated Beam. At cach
time t are shown curves gf constant |4e/p,| measurca
in units of (y-1)aRw/poC”. The spatial coordinates
(e,M) are co-moving with the beam; distances are
measured in beam radii, w., The flow velocity has the
same magnitude at t = 0,5 At and t = 1.5 4t, but the
density profiles are significantly different both in
shape and magnitude.
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) TRRADIANCE PROFILES FOR NON-COPLANAR CLEW AND WIND

To predict the irradiance within o laser beam propagaling through ine
almosphere requires o wawe oplics computer code which includes an evaluation of
the lascr-induced hydrodynamics which was discussed in earlier sections.

Dr. C, B, Hogrre ol the Air Force Weapons [uboralory in Albuquerque kindly made
available Lo us his wave optics code, which we modified to carry out the com-

putations discussced below.

As a tirst step toward implementing the mathematical solution derived
in Section 5, we replaced the hydrodynamics section of Dr. Hogge's code with
coding which calculates two-dimensional density perturbation for arbitrary
magnitude and direction of the transverse flow veclocity, assuming steady-state
conditions obtain. Further generalization of the coding to deal with the fully
time-dependent problem is now relatively straightforward. But before making
the second step, we made somc tesl calculations which in themselves yielded

useful results.

A number of runs were made with the modified propagation code {or cases
in which the natural wind (perhaps due to laser platform motion) is not coplanar
with the non-zero slew velocity. From the results we have found that a simple
scaling is possible to predict the peak intensity in the focal plane (under

certain conditions) from coplanar data.
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.1 Scenario Definition

Propagation runs were pcerformed for the following et of conditions:

e Co-altitude device and ltargcet
¢ Platform induced flow in the horizontal planc
#*
® Slew plane oriented at arbitrary angles (0° to 190°) with
respect to the horizontal.

A number of different

® Power levels
® Beam sizes
® Kinetic cooling conditions

e GSlew rates

were considered. In particular slew rates were adjusted so that the 180°
orientation included a case which would have had a stagnation zone, although

no calculation was performed for this case.

At O° slew and wind velocities are additive and at 130° they subtract; at
intermediate angles the vector sum has a non-zero component perpendicular
to the horizontal. (This component is a linear function of distance along
the beam.)
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4.2 Scaling Considerations

A particular subset of the code runs were found amcnable to scaling
for determining peak intensity levels. The conditions appropriate for this
are

® Moderate to little kinetic cooling

® OSteady state

e Slew angle less than 90°.
Define in the usual way

Ipp, = L(PEAK, BLOGMED) /I(PEAK, VACUUM, ATTENUATED) (1)

where I is the intensity. Also define an effective transversc flow velocity

a8
R -t
— ) Iv(z)ldz/R (2)
(o]
where
V(z) = Vw+5z (3)

and R is range to target.

Herc v is the natural wind and/or platform motion induced flow and
0 i3 the slew rate. The vector notation formally signifies that Vi and

are not necessarily coplanar.,

All calculations shown are for a beam focused on a target 5 km {rom

the transmitter and an absorption coefficient of 0.1 km-l; the platform
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velecity is voo= 67,04 m/sce (150 mph).  As examples of the computationsl

. -y * 2 . v b . O
results, Figures 1-7 show the focal-plane irradiarce contours tor 8 = O, 10’

and 170, respectively. The moutimum irradianee occurs nt bhe pelnt warked by
the crods: the contours are for the Y0%, 504 and 104 irradiance, normulized

to the maximum. The slew rate is 0.0268 rad/sec, and the dircction of “he
rosultant slew velocity component is shown in each figure. This anpular
velocity was chosen to give a slew velocity equal in magnitude to v, at the
half-way point along the beam. Figures 4 and 5 show the magnitude cf the flow
velocity and its orientation with respect to v, as functions ot distance along
the beam. Figure 4, for ® = 90°, is qualitatively representative of 8 = J0°
in the sense that the transverse flow velocity is a monotonically increasing
function of distance from the transmitter. In contrast, Fipure 5 shows how
the flow velocity for 6 » %0° (120° in this case) has a minimum between the

transmitter and tarpet. The clfective velocity (vO f‘.) ig defined by quation
4

(2), and is the averasre along the beam of the magnitude of tloe rlew velocity.

The centroid of' the focal spot is displaced from the optic axis of
the transmitter (the aim point in the focal plane). This is shown in Figure 9.
Increasing © moves the beam farther from the aim point and away from the

horizontal axis.

Figurc 7 shows Irel a8 a function of Veff; each point reprusents a
calculation using a modification of Dr. Hogge's wave optics code. The infinite
Gaussian has a spot 8ize of 0.25 m; the slew angular velocity is

Q, = 2.682 x 1072 rad/sec. From left to right, the points represent

- 50 =
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Figure 4, Magnitude and direction (measured from horizontal) of the flow

velocity as functions of distance along the bcam, for & = 9o°.
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Figure 6. Position in the focal plane of the intensity centroid as a function
of angle between slew and wind velocities.
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8 = 15°, 30°, 45°, 60° and 90°. The truncated Gaussian has a spot size of
0.1768 m; calculations were done for Q, and for 0, = 0.5 Q,. The coplanar
cases are indicated in the figure. The triangular symbols represent non

coplanar cases with () = Ql, while those for (1 = (), are shown as square symbols.

2
The open symbols denote cases with 8 > 90°, while filled symbols are for

8 s 90°. As long as 8 is not greater than 50, there is a striking lincar
relation between Irel and Veff’ This linear dependence resembles the usual
scaling laws for coplanar wind and slew; what is demonstrated here is a linear

scaling of Irel when the wind and slew are not in the same plane, and the

validity of the scaling up to 6 = 90°,

With the quantities defined at the beginning of the section, non

coplanar peak intensities may be obtained as follows:

a) For a given v calculate Irel in the standard way for two
coplanar cases, (vhf 02) with Q # Q, £ 0.

b) Using these two values of Ire and the two corresponding values

1

of Véff, derive the straight line Ire = A veff + B,

1

c) For a non coplanar case, calculate V gp for V(z) = i» + 0z
using Equation (2), then find I, from the equation derived
in Part (b) above.

There is a caveat attached to this which must be strictly observed, namely

a) Magnitude of v(z) must be monotone increasing (i.c., 6 must be
no greater than 90°),

More complicated scalings exist for other cases in the presence of strong

kinetic cooling or non monotone increasing vclocity magnitudes. Scaling for
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these cases requires more parameters. We also note that no conclusions should
be drawn regarding beam shape and size as compared to the coplanar case since
non symmetrical distortions do occur and the relationship between peak and

average intensity changes.
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