
AFOSR TR 7 6 10 0

OCT 19 ~7

A S U 9SSIDI1A RY OF LO0C K HE ED AIRItC RA FT COR POR A TION

Approved for pubrtc rereas*,
distributiopl pnlinited.

R* 1



AIR FORCE OFFIC's OF SCIENTIFIC RESEARCH (0
VWCZt: OF TRANSMITTAL TO DDC

T 'technical r(.; rt hn:; .,i reviewed ana Is
~<'or~for putb).. c r INNe LAW A 190-12 (714.

A. U. BLOZ
Iechxiical Inform'ition officer



SIl4SC D508187

mly

IT

Final Report

CORKSCREW EFFECT STUDY

M. W. mum

R. S. Benson

August 1976

Submitted to

AIR FORCE OFFICE Of' SCINIFIC REARCH (AFSC)

Under

Contract F62o-75-C-0062

DISTRIBUTION STATEEIVNT A OCT 19 1976

Appioved for public rvlo0s;S
Distibution Unlimited

ELIM-OP21CO LABORAW
LOCKHEEO PALO ALTO RESEARCH LABORATORY

OCINSIS /MOSSItlI I SPACS COMPANY. iNC
0 SUNISIAS 0 a 16&u I IP AlC I0 f.A P@ av.I

It~~~~ S , pt0 0AIICaA0 %11



UNCLASSIFIE
SECURITY CLAL ICATION OF THIS PAGE ("ont Dais Enitead)

*. ~ ~ ~ ~~ RA PEIONSNTRUCITNIAMOANSDDES

12.~~ ~ ~ ~ GOTACSINN.3 EC SIITSCATAON NMBRADN

SCHEDUL

Aproe fo p2li r*es
distrbut75 un V Jnetede

I. ORU TO TTMN o h btatetrdI

noS.n-coplnrse

Lockee ofPirthoghlthesbearc (dueatoy cobiato own,P laeF lafr
~~1 motion251 anoser antreloiyeataean eie iedeedne ohi

IC MNITRINGAGECY NME ADDESSIf dffeent rom ConeofiOfice 5 CL S CUITY9PII CL AS (of hi ret aer

Unclasifie



UNCLASSIFIED
SECURITY CLASSIFICATION OF T1IS PAGE(Whle Doe Entered)

.- Wave optics calculations are made for the propagation of a beam subject
to wind plus non-coplanar slew (for the steady-state situation). A
scaling law is found for predicting the focal-plane peak irradiance from
suitable coplanar calculations.

AD

... ' " i~i:-"' ., : " I¢RT .i.A~P¢TO OFTlS PG S~tt m



TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION 1

2.0 SOLUTION FOR ONE SPATIAL DIMENSION 5

2.1 Basic Equations 9

2.2 Linearized Equations 10

2.3 Inhomogeneous Wave Equation for the Density 12

2.4 Integral Transformations of the Wave Equation 15

2.5 Solution for the Density Perturbation 17

2.6 The Constant Velocity Beam 20

2.7 The Isobaric Approximation 25

2.8 Comparison of Constant Velocity and
Accelerated Beams 27

2.9 References 34

3.0 TWO-DIMENSIONAL THERMAL BLOONMG FOR ARBITRARY
TRANSVERSE WIND 35

3.1 Mathematical Solution 36

3.2 Comparison with the One-Dimensional Solution 39

3.3 Density Variations within an Accelerated Beam 4

3.4 References 45

4.0 IRRADIANCE PROFILES FOR NON-COPLANAR SLEW AND WIND 47
4.1 Scenario Definition 48
4.2 Scaling Considerations 49

! iii
7

..



I
i. 0 INTMDDUC TION

Key parameters in the assessment of effectiveness of high energy laser

systems arc the peak intensity and spot size in the focal plane. These two

features are strongly influenced by interactions between the laser beam and

the atmosphere in the propagation path. The primary interaction of concern

here is heating of the atmosphere due to absorption and the hydrodynamics of

the heating induced density changes in the air. Specification of parameters

such as peak intensity then becomes a problem of specifying in detail the

nature of this self-induced atmospheric lens through which the beam must pass.

In addition to molecular absorption, which sets the scale on how much

energy is available to cause distortions in the medium, the other critical

factor is the rate at which air flows across the beam. The amount of heating

experienced by a parcel of air, and hence its distorting power as a lens, is

determined by the amount of time It resides within the laser beam. The extent

to which the laser beam itself is distorted is then a strong function of the

details of the flow field. Important limiting assumptions have been made in

theoretical analyses of this effect which is commonly called thermal blooming.

These generally include:

* Steady state conditions prevail

e Flow rates are constant (space* and time)

* Time dependence only for zero flow

Actual high energy laser engagements will generally violate one or more of

these assumptions. The hydrodynamical formulations which describe the laser -

To account for slew, the flow velocity is normally allowed to increase
linearly with distance along the beam.
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atmo: pt-r interactions must, for these engagements, be cast in a form such

that the assumptions listed above are not required. The study reported here

dealt with these limitations and consists of two distinct segments, namely

* Analytical studies of hydrodynamics

* Wave optics propagation calculations

The hydrodynamical formulation chosen must be general enough to permit des-

cription of cases which include

* Non coplanar slew and wind

* Stagnation zones

* Accelerated beams

* Variable winds along the beam

all of which are likely to be encountered in typical engagements. Given

hydrodynamical solutions applicable to air flow conditions as above, the

effects on laser beam properties (e.g. focal plane irradiance) must be

determined by performing wave optics propagation calculations for a beam

transmitted through density profiles as determined self consistently for the

local laser beam-air interaction.

In Section 2.0, we show the detailed solution to the hydrodynamical

equations for one spatial dimension. In this formulation, the wind velocity

may vary in magnitude with time and density perturbations in the medium may

be tracked from beam turn on to the steady state - if, in fact, the steady

state is ever attained in times of interest. The primary advantage of this

derivation is its physically intuitive foundation. The various factors which
42
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drive the blooming process separate into components which have clear physical

interpretations. In the multi-dimensional theory, given in Section 3.0, this

ability to clearly identify specific physical interactions is frequently lost

in the details of the mathematics. The formulation, however, permits flow

velocities across the beam to be completely arbitrary in magnitude, direction,

and time dependence. Computations of density contours and focal plane

irradiance profiles, for this more detailed multi-dimensional theory, are

shown in Section 4.0.
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2.0 SOlJTION FOR ONE SPATIAL DIMENSION

For predicting thermal blooming of a laser beam propagating in the

atmosphere, it is usually assumed that the unperturbed airflow through the

beam is independent of time. This assumption is not valid for a slewed laser

beam in the presence of wind, as well as in the obvious cases of variable

wind velocity or slew rate.

Considerable theoretical work has been done on the problem of time-

dependent changes in the density of a medium through which a constant-velocity

laser beam is propagating. Recently, Ellinwood and Mirels ( 3 ) calculated

two-dimensional density profiles within a slewed laser beam for both subsonic

and supersonic wind transverse to the beam, using linearized hydrodynamic

equations. Hayes ( 6 ) has addressed the non-linear effects to be expected

when the slew rate is near the sound speed, using one-dimensional equations.

Fleck et al 4) have developed an elaborate "four-dimensional" computer

code for calculating thermal blooming, based essentially on steady-state equa-

tions for the density, but capable of treating supersonic as well as subsonic

wind speeds. All these treatments assume both the wind speed and direction

to be constant at a given position along the beam.

We here present the general time-dependent solution to the linearized

one-dimensional hydrodynamic equations for a beam with an arbitrary, time-

dependent intensity profile and which moves with variable velocity. For

large-diameter beams and relatively short irradiation times, the effects ofI
-5-
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conductivity and convection are expected to be small and have been neglected

(cf. Rcf. 5). Particular solutions for accelerated, Gaussian CW beams

are compared with our analytic solution for a Gaussian beam moving at constant

vel city. Greatest differences between the solutions occur for beams which are

moving at mach numbers near zero or unity. Density changes within an accelerated

beam can be either larger or smaller than for an unaccelerated beam moving at

the same speed.

For the purpose of obtaining the density perturbation we assume the

unperturbed medium to be at rest while the laser beam moves through it.

Of course, this is fully equivalent to the case of wind blowing past a stationary

beam, and is a good approximation for a slewed beam as long as nearly sonic

slewing velocities do not occur near the beam's point of origin.

For convenience, Table I lists the symbols used in this paper, although

the variables are also defined when they are first used in the text.

-6-
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TABLE I. DEFINITION OF SYMBOIS

Hydrodynamic Variables

p mass density; p0 is ambient, unperturbed density

r density perturbation divided by p0

R(k,t) Fourier transform of r(x,t)

19(k,s) Laplace transform of R(k,t)

p fluid pressure

£specific internal energy

y ratio of specific heats

c speed of sound

v fluid velocity

Independent Variables

t time

x spatial coordinate measured from beam center at t=O

s parameter appearing in Laplace transform

k spatial wavenumber appearing in Fourier transform

Properties of the Beam

xo(t) position of beam center

a beam radius

spatial coordinate measured from beam center

V instantaneous velocity of beam with respect to fluid

M Mach number of beam, V/c

P total beam power



TABLE I. (Continued)

I(x,t) beam irradiance

0 normalized irradiance

F(k,t) Fourier Iransform of

T(k,rn) Laplace transform of F

Heati g Rate

atmospheric attenuation coefficient

Q rate of energy deposition per unit volume of fluid

q normalized (dimensionless) rate of energy deposition

Time Scales

tH hydrodynamic time, a/c

At time forreaching steady-state perturbation
eq

T beam acceleration time-scale

- 'I -
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2.) B~sic Equations

The fundamental equations describing the interaction of the laser beam

with the atmosphere are (cf. Ref. 7)

k +pv • v -0
dt

d+ 1 0 (2)

dt p

[ v +e] +v . (p) =, (3)

which represent conservation of mass, momentum and energy, respectively. The

fluid density, velocity, and pressure are denoted by p, v, and p; Q(it) is

the heating rate, and is given by

where c1 is the atmospheric absorption coefficient and I is the laser irradiance.

The specific internal energy of the gas, e, is given by

1 (5)
(Y-. 1 ) P

where y is the ratio of specific heats. Using the above equations, equation (3)

is easily put into the form

dt P dP (Y ") a (6)
d(6)

I. : : m mP!: ....



22 Linoarized Nauations

The time derivatives appearing in these equations are Lagrangian

derivatives, i.e., in operator form

d 8 -d t- + . (7)

For small-amplitude perturbations of an initially uniform fluid at

rest, to first order the v • v terms may be reglected and d/dt

(Ref. 3). Considering now only fluid flow in one spatial dimension

denoted by the coordinate x, the linearized forms of equations (I), (2) and

(6) become

+ ao 0 (8)Fit po ax

LoV' + =k 0 (9)
PO t b

2c t = (10)

bt -:-l t

where second and higher order terms have been omitted; denoting the unperturbed

pressure and density by p and p respectively, the speed of' sound in the un-

disturbed gas is given by

= (Y Po/Po ) 11  (11)

In equations (8) - (10), and throughout the following developnent, dependent

variables without subscripts denote small perturbations; for example, the total

density is given by p + p, where I'l << Po.

- 10 -
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4

When the beam moves at constant velocity with respect to the unperturbed

air, it is convenient to introduce a new spatial variable,

t x - x 0(t), (12)

where x (t) is the position of beam center at time t. For definiteness, we

take the origin of spatial coordinates to be the beam center at t=O (when the

beam is turned on) and assume the beam moves toward positive x. Then, with

x = Vt, the derivatives with respect to t in equations (8) - (10) are trans-

formed as follows*:

Fj--4 a a (13)

The (§,t) coordinates are particularly convenient for describing the pertur-

bation within the beam.

If V is not constant, the transformation (12) is not useful for two

reasons. First, the resulting partial differential equations contain terms

in which derivatives are multiplied by the non-constant coefficient, V(t).

Second, because (,t) is an accelerated reference frame, the quantity dV/dt

would appear on the left-hand side of the momentum equation; since it does not

possess a (spatial) Fourier transform, it would be necessary to take the

gradient of the momentum equation in order to apply this transform. Our

procedure is to solve for the density perturbation in (x,t) coordinates, then

to use equation (12) to evaluate the solution in the region of interest (i.e.,

for relatively small values of C).

Note that the wind blows with velocity -V with respect to the beam.

S
-11
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2.5 Inhomogeneous Wave Equation for the Density

From equations (8) - (10), it is easy to derive a single equation

for the density:

2 2 a (14)

Integrating with respect to time, we obtain:

- -2 = ( ) L * I(x,t') dt' (15)-2 x x 2  0

using the conditions

a 2 P at t = 0, - < x <- (16)

at 77at

(Ref. 10). Equation (15) clearly reveals that the density perturbation

is a superposition of waves, with the laser heating acting as driving force.

Physically, energy absorbed from the beam produces local expansion which

generates waves traveling outward at the speed of sound. At time t after

the beam is turned on, p(x,t0 ) is non-zero over the interval -Ct 0 x < cto-

However, the solution is not a superposition of simple (adiabatic) sound

waves because of the input of energy to the gas within the beam.

Our solution to this equation presumes that I(x,t) is a known function; this

is a necessary first step in calculating the actual intensity of a laser

beam propagating through perturbed air.

-12-
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t Before solving equation (15), it is convenient to introduce dimension-

less variables -- physical quantities are measured in units which are parti-

cularly relevant to the problem, and continual repetition of c2 , (y-l), a,

etc. is avoided. Introducing the units defined in Table II, equation (15)

becomes

(2 ) r= 2 t (7t-- - r - . (x,t') dt', (17)at 2 3 x2  0

where, for example, r(x,t) denotes the actual density perturbation divided

by the ambient, unperturbed density, po.

if.
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TABLE II. DIMENSIONLESS UNITS

QUANTITY UNIT OF MEASURE VALUE AT 10 KM ALTITUDE

r, Density Perturbation PO Ambient Po - 4 x 10 - g cm 3

M, Velocity c, Sound Speed c - 300 m sec-1

x, § Distance a, Beam Radius Assume a = 0.5 m

t, Time tH = a/c tH - 2 x 10- 3 sec

0, Beam Irradiance 10 = P/na2  I0 1.27 P

q, Energy Deposition (y-q I 2otH x 8q ---- = q - 2 x 10 - 8 a P

P oc

= Energy absorbed for a in km 1I

in time tH

Ambient enthalpy

-?r ;. .



.4 Intcfral Tran3ormations of the-Wave Eauation

To carry out the solution of equation (17), we apply Fourier and Laplace

transforms; to define notation, the Fourier transform of a function g(x,t) is

given by

G(k,t) - ekx g(x,t)dx, (18)

and the Laplace transform of G(k,t) is denoted by

I(k,s) f- r e-at G(k,t)dt. (19)
0

Applying these transforms to equation (17) results in

[2s + kj2 (k,s) = -qk2 V(k,s)/s. (20)

This equation is valid if the functions r and 0 (whose transforms are ' and

respectively) satisfy certain continuity and boundedness conditions (cf.

Ref. 2). To obtain a solution we assume that the boundary conditions

[,q. (16)] and the nature of the physical problem prevent the appearance

of subt le mathematical pathology.

Formally, the solution for p(x,t) is given by the inverse transform of

ROL ,s) = -jf(ks) k2  (21)

s(s 2 + k2) '

where F is presumed known. For a beam with constant intensity profile and

which moves such that its center at time t is located at xo(t),

O(x,t) = 0(X-Xo). (22)

A WM__



Using the translation property of the Fourier transform we have

-ik o(t)
F(k,t) = e .k ' e 0(x) dx, (23)

where W(x) gives the spatial distribution of intensity as a function of

distance from beam center. A Gaussian beam, for example, is described by

O(x) = exp(-x 2 ) (24)

(recall that distances are measured in units of the beam radius, a). To

obtain P(k,s) from equation (23), it is necessary to take the Laplace trans-

form of exp[-ikx(t)].

16-



2. Solution for the Density Perturbation

To seek a more fruitful approach, we go back to equation (21), expand-

ing the denominator in partial fractions:

_A(k, s) = (k,s) (25)
2- k s-i k 1 + 1 2 (25)

The convolution theorem for the Laplace transform enables us to write the

Fourier transform of r(x,t) as a convolution:

t
R(k,t) = q j F(k,t') G(k,t-t') dt', (26)

0

where G(k,t) is the inverse Laplace transform of

2(k,s) a+ s k (27)

explicitly,

G(k,t) = I (eikt + e'kt)i (28)

and
i t [ ik(t-t' ) -ik(t-t')

R(k,t) = . q .r F(k,t') [e + e -2] dt'. (29)
2

0

Because of the translation property of Fourier transforms, for any given values

of t and t', F(k,t') e ik(t-t') is the Fourier transform of O[x + (t-t'), t'].

Therefore, taking the inverse Fourier transform of equation (29), we obtain

t

r~x~t i q O[x + (t-t' ), t' I + O[x (t-t, ), t' I dt'

0
t

q O.r t dt ,,

3 which is the formal solution for the density perturbation.

- 17 -
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The meaning of equation (30) becomes clearer if we consider a beam

described by equation (22); then

O[x ± (t-t'), t' ] = O[x ± (t-t') - xo(t)]. (31)

The expression x + (t-t') represents the position at time t' < t of a sonic

impulse which will pass the point x at time t; the minus sign corresponds

to an impulse moving in the positive x direction (a "forward-facing charac-

teristic") and the plus sign, to a wave moving toward negative x ("backward

facing characteristic"). The argument of 0 in equation (51) is therefore the

distance (at time t') between the beam center and the characteristics passing

through the point (x,t), and the first two terms on the right-hand side of

equation (30) represent the effect at (x,t) due to energy which was absorbed

at points on the characteristics during the interval 0 to t. Figure 1 is

a space-time diagram which illustrates the geometry involved. The dashed

curves on either side of x (t') represent the spatial extent if the beam,
0

within which power absorption is greatest. As shown, the point (x,t) has

been within the beam for several hydrodynamic times (since t' - 6.5) and

the resultant absorbed energy contributes an expansion of the air, given oy

the last term of equation (30). In addition, air with 4 4 x C 6 has been

within the beam at times such that effects of the perturbation can propaate

to (x,t). Adding energy to a small volume of air produces local expAnsion;

the "snowplow" effect on neighboring volume elements produces a positive lennity

perturbation outside the originally heated volume. The net perturbation, a

given by equation (30) is therefore a superposition of these two effects.

- 1-
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2.6 The Constant Velocity Beean

As a special case, we can evaluate equation (30) for a beam moving at

constant velocity (or, equivalently, a stationary beam and a constant trans-

verse wind). Put

xo(t) = Mt, (32)

where M is the mach number for the unperturbed flow. Using equation (31),

i.e., assuming the intensity of the beam is constant, the integrals for

r(x,t) are of the form

t

10 [x ± t - (M ± l)t']dt'. (33)
0

Defining a variable y = x + t - (M ± l)t', (33) can be written as

x-Mt
1(7

14 I 'r 1 (y)dy.-4
x+ t

For a Gaussian beam (cf. eq. [24]), the integral is

/Tr erf(xtt) - erf(x-Mt) (35)

(for properties of the error function, erf(z), see, e.g., Ref. 1). We

are primarily interested in the density profile within the beam itself,

so introducing the displacement from beam center (C is defined in Eq. (12)),

the solution becomes

_l ) i erf[t +(M+l)t)]+ erfR +(M-l)tr(,2 M + 1 + M - 1

erfrf + Mt_ (f) -" M "M(M+I) (M-). ("6

-20-
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For ;;uiersonic lOW M ' 1, ad (-tuation (Yj) 1,.I tl , ;tady-stat,

/T I -(rIr(,= ,, MO +1I -i) "( ')

The :6 r .in ['ront (,f the tam (iarr. -) is unperturbed ,..caus- ,rssure waves

:reat(.d by the bea:, propagat( mor(e ,slowly thati tflc beam, itself.

Equation (30) also xpru3sscL; toe: solution f'or te, z;eia :.:i case M = 1;

proceewd.1ngr as before, one easily obtains the time-depe.nd(ril: ,;,lution

T ( I t ca'(- :;: .( -- . :r "" )

r(E t) T( r2 r(--)-:r(

+ rf (4j)

In tois case there is no steady-state. For t-- 1 tIhe first term of' cqua-

tion (4)) dominates near beam center; it doscribes a Gussia d, nsity profile

with tmximum at beam center. The magnitude of ti,(e perturbation grrows linearly

in time. The pres,,nt :solution remains valid as long as Ir(t,t)I K< 1, which

in turn implies t , i/l1q. Since expected values of (I re riuch smaller thans

unity (see Tablc II), e(quation (40) describes the sonic case for significant

periods of time.

At low wind speeds, the approach to a steady-state within the becwi is

proportional to the wind transit time, which varies as M-1 (cf. Ref. 11).

At higher speeds, for M - 1, sufficient time is required for the forward-

movingW wave to proceed out of the beam. 'This wave moves realtive to the

e
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beam at mach number l-M, so the approach to steady-state Is longer as M

increases. Quantitatively, the profile given by equation (5") is within

1 percent of the steady-state for -2 s -. 2 when t Atq, with

t Aeq'

Ateq - max [4 m- 1 , 4(l-m) -  • (41)

As can be seen from Figure 5, the steady-state density change across

the beam (from t = -2 to t = +2) becomes large as M approachi, 0 r,r 1,

although the time required to reach the steady-state (at eq) nlso increases.

Time-dependent density profiles given by equation (58) are in complete agree-

ment with Munn's
(9) results for the constant velocity beam.

- 24 -
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2.7 The Ioobaric Approxirm Lion

For sufficiitily small M, thf. density perturbajio is produr,.d primarily

by expanisi,,n ti, nearly 'unltl'Ut. pressure and the rol,, (W .utrroin , waves ir amall.

The ripproxirnte ion tori i:s ohitained from equation ( i-0) willh I 
,Ii Pr( Iu',r,

-

pert urbation ;-t, ident.ically o zero, and is ,iven by 11,: Ibi rd ttnrm or the

right-hand side of ,:quaji er, (0). 'The isobaric eu.ii, i , t G ausri'tr bte'vn

is

/TT (I erf'(t) - erf(t + Mt) (,)

The corresponding steady-state density change across the beam is shown in Figur,:

3 by the dashed curve. The exact solution, equation (I.), contains terms whicn

are smaller than those; in equation (42) by a factor of appro. irrately M.

2
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2.3 Comparison of Constant Velocity and Acceleratcd Beams

it the general case, when the beam moves with arbitrary velocity, the

integrals appearing in equation (50) must be numerically evaluated. Note that

the beam intensity may also vary arbitrarily, so pulsed beam.; can be treated

as well as CW.

Figure 4 shows the density perturbation for a Gaussian beam moving

at M - 0.1; when t = 40, the profile has essentially achieved a steady-state

for -2 F's 2, where the beam is most intense. Figure 5 shows the profile

for a beam which initially moves at M = 0.1 and is accelerated at the rate

dM/dt = lu"3 (in dimensionless units); for conditions at 10 km altitude

2(cf. Table II) this corresponds to an acceleration of 150 m/sec . At early

times the perturbation does not greatly differ from the constant-velocity

case, but by t = 100 the departure is obvious. Between t - 100 and t - 700

the perturbation closely approaches the steady-state profile corresponding

to the instantaneous velocity. The later development is shown in Figure 6.

As M exceeds 0.8, there develops a density maximum near = 1 and, especially

for t > 0, the profile, departs more and more from the corresponding steady-state

in the sense of having smaller perturbation. As a measure of the perturbation

at each instant, we use the differenceiin density from maximum to minimum with-

in -2 ! t - 2. The solid curve in Figure 7 represents the magnitude of the

steady-state perturbation for constant-velocity beams as a fune'tion of mach

number (from Figure 3). The points connected by a dashed curve represent the

profiles shown in Figures 5 and 6; across the top of Figure 7 is the time scale

for the accelerated beam. When the beam is turned on at t = 0, M = 0.1 and

the density perturbation is zero. At this speed, a steady-state would be

-7
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reached when 1 4), but by t hra tine lhe beam' mach number has increased to

0.14. The new STCeed iIit "i :A Ihrt ,r! t.,iui librat icn time and a smaller steady-state

perturbation; u'(,ether wilh h. 'L'. .. uilibra iri time, this produces a

slightly 1,r .r er ' i ,L w,. - i rie r Ihe irin aritaneous

si eady -s tat t,. A 1  ,u . . ' :,, .. ;ii.z :'rI. 1ime decreases

and the -e"' . I ;;. ..'... r di:- ;oi ,ad -state. Later,

when M 'L ,,. , 'a,. .. tI It. i .:-.. :d "t rTnI ude (f the pertur-

bat ion lagri belAnrd 'i:

The per1 urbat it 1. r t. t, i!,' ,. 1i :,wr' in Figure 8. Initially,

M = 0.1; with dM/dt -t- i , 'he cAn, ir. i, i nr al t = 100 and moves back

toward its initial position a' later '*ines. When t 6 100, the amplitude of

the perturbation is less than i he steady-state value, but after t = 100, the

perturbation considerably exceeds the steady-state value. At t = 150, with

M = -0.05, the steady-state density change across the beam would be approxi-

mately Ar - 34q, while the actual Lr is nearly three times as large.

Defining a time-scale for acceleration by

T= IM/AI , (0 5)

where A = dM/dt (in dimensionless units), it is possible to estimate those

velocities and accelerations for which the density profile will dJffer signi-

ficantly from the constant-velocity solution. When T is smaller than AT

the beam velocity changes more quickly than the density approaches steady-state.

Using equation (41), this condition becomes

IAI > mi (M2/4, (l-M)2/q, (44)

from which we see that small accelerations have the greatest effect for M 0

or M 1.
- 2 * -
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3.0 TWO-DIMENSIONAL THERMAL BLOOI4ING FOR ARPJITRARY TRANOVER;3E WDTiD

It has proven convenient to part from traditional formulations of

the laser heating hydrodynamics which assume a simple relationjhip b, tw(:en

Eulerian (beam centered) and Lagrangian (parcel ofi air cuntered) 'coordirlate

systems. The treatment given here does not assume th,. trawiovwrs, flow to b,

constant in magnitude or direction.
(1 ,2)

In Eulerian coordinates, at a fixed dist-ance z along the beamr the wind

flowing in the x,y plane (perpendicular to the ---axis) is assumed to be a

known function of time:

A A
W(z,t) = w X (z,t) + y w (7,L) (0)

and in general w is composed of components due to natural wind, motion of

the laser platform, and non-zero slowing of the beam. The Lag4rangian for m'-

lation consists of ,gpressing the equations of hydrodynamics in the coordinate

frame which is at rest in the unperturbed air. In this frame the beam moves

with average velocity

. (2)
Vb(zt) - (t)(

In the discussion below, note that all equations are written in

physical variables; dimensionless variables are not introduced.

t



. Mathei a cal J- J ution

III la,,rangduii coordinates, i ri whch fh, urilwrttu b d Il rlu i.,, "0,

rt,:at, ;ira]l a mp]itud, \rari tions in pres:;ur,, cin:Ly and -:1 1(.i[ ( ,' Jt, d

by p, P and r, respeetively) sati.sfy the linir .d equtir,.;:

P + ()

S- , -- -- (y - i) I (7, t)Ot P, ot (

'Pie ambient pressure and density are p and po, y is the ratio of' specific

heats and un is the atmospheric absorption coefficient. The beam irradiance

I includes time dependence which is due to motion of the beam relative to

the unperturbed mediumr.

Inte grating equation (5) with respect to time gives

p(, ) _ () t
f (-) , t.)dt(.

On tIhe right-hand side, the first term represent: an acoustic" (adiabatic)

disturbance, while the :;econd term i; an isobaric expansion which dominates

when the beam moves slowly. The pressure variation p can itself be expre.ssed

a3 an integral of the irradiance multiplied by an appropriat(e Green!; lunctioH

whereupon substitution into equation (( ) gives tie solution for p ii iicur.,;

()f known functions.

- 36 -



Into equation (4) we introduce the vector potential W(r, t), which

is related to the velocity by

v = - V* (7)

It is then eajily shown that

Y C

where c = (ypo/P )1/2 is the sound speed. As follows from equations (5),

(4) and (7), # satisfies an inhomogeneous wave equation with source term

2
( - 1) o/PI/ c , and it can be written in terms of a Green's function

G(r ,t ; ,t) which gives the contribution at (r,t) due to energy deposited

at (ro,t). The time derivative of * is then

Ch2 fd. (-r -,) t (9)
P 0 c o 0 0 0 ( t

Morse and Feshbach (3 ) give the appropriate Green's function for the two-

dimensional problem: i.e., for spatial variations in the (x, y) plane normal

to the beam and neglecting slow variations along the beam (parallel to the

z axis). The spatial integral in equation (9) then reduces to a surface

integral which can be expressed in polar coordinates (R, e) c-ntered at the

point (x, y):

R (X -x)
2 + (y _ yo)2

e arc tan [(y - yo)/(x - x)] (10)

The result can be put into the form

= - 1 at J d9 F(e, t ; x, y, t) , (11)
Spoc o ,

- 57 -



where(1k)

F(e, t ; x, y, t) I(R , e, t)
R0a.( l(R, 8, i. ) - 0{Rt8,

(t - t ) ma R dR maxC, mlx t°)
0 o l~(t -t) u/I

(12)

and R = Ct -to ) . By choosing the coordinates (x, y) to lie within the

beam at time t, the solution is evaluated only at points of interest for

calculating thermal blooming.

- 8



3.2 Comparison with the One-Dimensional Solution

The Green's function formalism for expressing laser induced density

changes makes it somewhat difficult to develop an intuitive understanding of

the underlying physics. In order to deomonstrate use of the formalism, and to

establish contact with a known and relatively easily solved case, we consider

the one-dimensional, constant velocity case discussed in Section 2. For this

case equations (6) and (9) become, with Q C a,

p(x, t) = -- d' lq(x,.t-) -.t dx' Q(x' ) (13)

c 0 c

and the Green's function, given by Morse and Feshbach, is

G_ = SU t - c(1

the step function U(z) is related to the Dirac delta function: U'(z) = 6(z).

Differentiating G with respect to t gives

G -c{t[t '')

5- 2 c C 4 JI

(15)

the integral over x 'is easily performed, and

p(x, t) t S dt' Qx t') - 1 ~ t',t'

C Co t 2 (16)

+ Q(x - c[t - t'], t')!

If the beam intensity is independent of time (in its own rest frame) then

Q is a function only of the distance from beam center, i.e.

Q(x + cLt - t'], t') Q(x ± c[t - t'] - xbtt) (17)

9
- 39 -
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wli r,- A b(t,) i : Ai,: 1,(.;i Lion ol' b:n,, ., t r at .i rr', t,. l'or th, zpw:ia1 'z

o1' (wt.l; t, l. r:JI. .,r wInd w( - :./ may p t

vt -(.I ;)

Note thtt t, i wind iwves at '-p(,,.d w - v Wit,, LO(j, 'i. L ti ,( .. a-id t

intelral.; :L p,*Lrill , in Uquation (16) :r. of the, form

t
r dt' 4(x ± c[t - t'] - vt') (1,))

C,

which can be r implificd by the substitution

y = x + Ct - t'] x t ct - (v ± c)t' (20)

Then (19) )ecomes

q(Y) dy 
(21)v -+ c I X et

To express this result in coordinates which mov with the Learn, ma:e the

transformation

= x - vt (22)

F is the distarnce f'rom b( am center. Equation (21) then becomes

- V t+(v:rc)t Q(y) dy (23)

Written out e.xplicitly in terms of the wind speed w, equation (16) now

becomes

P(-,t) Q(y)dy - (y)dy- q(y)dy
c ,Wt c-(+w)t - -(0-',)t

(24)
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when IwI <<< c the 2nd and 3rd terms are negligible with respect to the 1st

term and we have

which is the familiar form of the solution for the isobaric approximtion. (5)

4



3.5 Density Variations within an Accelerated Beam

Using the equations developed in Section 3.1 we have calculated the

thermal blooming density perturbation for an infinite Gaussian irradiance

profile. To illustrate the effects of propagation in the presence of stagna-

tion zones, as in Section 2.8, we chose the time-dependence of the beam

motion to be

v = v - at (26)

with initial velocity v = 0.1 c and constant acceleration

a = 10-3 c2 /W .- 10 2 W-1 m/sec2 , where w is the beam radius (in meters). The

flow velocity relative to the beam is w = - v; at a time At after beam turn-

on, the flow velocity is momentarily zero, where

At = 0.3 w sec . (27)

Figure 1 shows density contours for t S 1.5 At. During this interval

the density never reaches a steady state, nor can the profiles be approximated

by suitably chosen steady state curves.

42)
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Figure 1. Density Contours in an Accelerated Bea=. At ,-ach
time t are shown curves 9f constant lAP/pol meaourea
in units of (y-l)oA/oC-'. The spatial coordLinatez
(Cq) are co-mnving with the beam; distances are
measured in bea radii, w. The flow velocity has the
same magnitude at t - 0.5 At and t - 1.5 At, but the
density profiles are significantly different both in
shape and magnitude.
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1.0 IRRADIANCE PROFILS FOR NON-COPLANAR SLEW AND WIND

To predU et the irradLiance w!thin a laser beam propagating through trie

atmoshdr,! r,,quires a wLV( otis cor)iA(r code which include3 an evaluation of

the lase'r-1nduced hydrodnamics which wa2 discussed in earlier sections.

Dr. C. B. l ol:c,, tLhe Air Force Weapoiins. I;Uboratory in Albuque(rque kindly made

-LvaiLaL]., to u., his wave optic;, code, which we modified to carry out the com-

putation; discusscd below.

As a first step toward implementing the mathematical zolution derived

in Section 3, we replaced the hydrodynamics section of Dr. Hogge's code with

coding which calculates two-dimensional density perturbation for arbitrary

manitude and direction of the transverse flow velocity, assuming steady-state

conditions obtain. Further generalization of the coding to deal with the fully

time-dependent problem is now relatively straightforward. But before making

the second step, we made some test calculations which in themselves yielded

useful results.

A number of runs were made with the modified propagation code for cases

in which the natural wind (perhaps due to laser platform motion) is not coplanar

with the non-zero slew velocity. From the results we have found that a simple

scaling is possible to predict the peak intensity in the focal plane (under

certain conditions) from coplanar data.

(
- 4,(, -
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4.1 Scenario Definition

Propagation runs were performed for the following ,;ct of coriditions:

" Co-altitude device and tarfet

* Platform induced flow in the horizontal plane

* Slew plane oriented at arbitrary angles (00 to 100) with

respect to the horizontal.

A number of different

* Power levels

* Beam sizes

* Kinetic cooling conditions

* Slew rates

were considered. In particular slew rates were adjusted so that the 180

orientation included a case which would have had a stagnation zone, although

no calculation was performed for this case.

At 0° slew and wind velocities are additive and at 1800 they subtract; at
intermediate angles the vector sum has a non-zero component perpendicular
to the horizontal. (This component is a linear function of distance along
the beam.)

-48



4.2 Scaling Considerations

A particular subset of the code runs were found amnenable to .;caling

for determining peak intensity levels. The conditions appropriate fer ti;.

are

* Moderate to little kinetic cooling

* Steady state

e Slew angle less than 900.

Define in the usual way

IREL  = I(PEAK, BLOMED)/I(PEAK, VACUUM, ATTENUATFD) (1)

where I is the intensity. Also define an effective transverse flow velocity

as

1-(z J'kZjz/ (2)
0

where

(Z) = +z(3)(I)

and R is range to target.

Here v is the natural wind and/or platform motion induced flow and

0 is the slew rate. The vector notation formally signifies that v and Q

are not necessarily coplanar.

All calculations shown are for a beam focused on a target 5 km from

the transmitter and an absorption coefficient of 0.1 km ; the platform

49



v',ic(i ty i s v =(7.0 m/s (15'0 n q;). As ,example.; of ti w, , :tJiina

results, Figures -" .;how th(, focal-)lal, irrdLr-e cnritciur.; for 0 0 0, 1(P

and "O'. ro.-pectively. The maximum irradauic , occurs :t t:e p int v;.rked by

t~iu 'ru.;.;; the contuur. are for the 9001,f, 50'o anid 14f irradiarnce, normlizcd

to the maximum. The slew rate is 0. 0268 rad/sec, and the directiori of t h

resultant slew velocity component is shown in each figure. This angular

velocity was chosen to give a slew velocity equal in magnitude to v at the

jalif-way point along the beam. Figures 4 and 5 show the malgnitude of the flow

velocity and its orientation with respect to v as functions of distance along

the beam. Figure 4, for 9 = 90 , is qualitatively representative of 9 '05

in the sense that the transverse flow velocity is a monotonically increasing

function of distance from the transmitter. In contrast, Figrure 5 shows how

the flow velocity for 8 > 900 (1200 in this case) has a mininmu between the

transmitter and target. The effective velocity (Vf f) is d-fin(,d by iuaticrn

(2), and is the average along the beam of the magnitude of tle( flow ve,!ocity.

'The centroid o' the focal spot is displaced from the optic %xis of

the transmitter (the aim point in the focal plane). This is shown in Figure 6.

Increasing 9 moves the beam farther from the aim point and away from the

horizontal axis.

Figure 7 shows Irel as a function of Veff; each point represents a

calculation using a modification of Dr. Hogge's wave optics code. The infinite

Gaussian has a spot size of 0.25 m; the slew angular velocity is

= 2.682 x 10-2 rad/sec. From left to right, the po~nts represent

- 50 -
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9 - 150, 3e , 450, 6df and 90e . The truncated Gaussian has a spot size of

0.1768 m; calculations were done for l and for a2 = 0.5 0l" The coplanar

cases are indicated in the figure. The triangular symbols represent non

coplanar cases with Q - 0), while those for 0 - Q2 are shown as square symbols.

The open symbols denote cases with e > 90° , while filled symbols are for

0 900. As long as 0 is not greater than 9J, there is a striking linear

relation between Irel and Veff* This linear dependence resembles the usual

scaling laws for coplanar wind and slew; what is demonstrated here is a linear

scaling of I re when the wind and slew are not in the same plane, and the

validity of the scaling up to 0 - 900.

With the quantities defined at the beginning of the section, non

coplanar peak intensities may be obtained as follows:

a) For a given v , calculate Ire I in the standard way for two
coplanar cases, (v, 02) with 0 1 a2 0 .

b) Using these two values of IreI and the two corresponding values

of Veff, derive the straight line I re = A Vef f + B.

c) For a non coplanar case, calculate V for v(z) = v + Oz

using Equation (2), then find Irel from the equation derived

in Part (b) above.

There is a caveat attached to this which must be strictly observed, namely

a) Magnitude of "(z) must be monotone increasing (i.e., 8 must be

no greater than 9( ).

More complicated scalings exist for other cases in the presence of strong

kinetic coo.ing or non monotone incroasin velocity magnitude:. S:aling for

-58-
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these cases requires more parameters. We also note that no conclusions should

be drawn regarding beam shape and size as compared to the coplanar case since

non symmetrical distortions do occur and the relationship between peak and

average intensity changes.
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