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I. INTRODUCTION

This report is the second annual interim report on contract F44620-74-C-0057

to study the application of ultrasonic acoustic wave scattering to the detection,

identification and characterization of defects in solids. The contract was

initiated on 1 February 1974 has entailed approximately one man-year of

effort equally divided between the theoretical analysis of the scattering

process and an experimental program to verify its validity and measurability.

II. SUMMARY OF PROGRESS

1. Scattering of Acoustic Waves by Spherical Obstacles and Voids

The specific goal of the present program is the characterization of the

scattering of acoustic waves by ellipsoidal obstacles. However, in order

to verify the experimental techniques and to develop the necessary theoreti-

cal basis, the initial task chosen was the review of the existing calculations

of scattering by spheres and the verification of the experimental technique

using spherical cavities and spherical inclusions embedded in a solid matrix.'

The results of this work have been partially reported in a paper sub-

mitted to the "Journal of the Acoustical Society of America." The abstract

of this paper is presented here:

a. "Scattering of Longitudinal Waves Incident on a Spherical Cavity in a

Solid," B. R. Tittmann and E. Richard Cohen

Experimental data are compared with theoretical calculations for the

scattering of ultrasonic pulses from a single spherical cavity embedded

in a metallic solid. Except at high frequencies, the data are in

reasonable agreement with theory, bearing out the notable features pre-

dicted for the angular dependence and the mode conversion between
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longitudinal and transverse waves. At high frequencies the disagree-

ment can be accounted for by the lack of monochromicity in the ultra-

sonic pulse. The experiments were typically carried out in the

regime where the wavelength is approximately equal to the size of the

spherical cavity (0.8 mm) on samples of diffusion-bonded Ti-6% Al-4%V.
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2. Scattering by a Spherical Inclusion

During this past year the experimental portion of the program has con-

centrated on the measurement of the scattering characteristics of the

tungsten carbide inclusion. Sample preparation was carried out in a manner

similar to that associated with the preparation of the 800Nim spherical

cavity except that a commercially obtained tungsten carbide ball with a

nominal diameter of 1/32" (794um) was inserted into the cavity at the center

of the sample prior to diffusion bonding. As before, the sample was given

a polygonal geometry with 14 flat faces each just under 0.5" wide.

The experiments for incident longitudinal waves were carried out as

before with a matched pair of Panametrics broadband transducers. The three

pairs of transducers were designated as 2.25 MHz, 5 MHz and 10 MHz, but

because of the broadband character, with a Q of approximately 5, waveform

synthesis was required. 2 The 2.25 MHz transducers showed a response charac-

teristic with a full width at half maximum of 0.8 MHz. The peak response

of the 5 MHz transducers was at 4.5 MHz with a full width at half maximum

of 1.9 MHz and for the 10 MHz transducers the peak response was at 7.4 MHz

with a full width at half maximum of 2.6 MHz (Fig. 1). On the other hand,

the shear wave transducers used for generating and receiving transversely

polarized waves were high Q devices with well-defined monochromatic response

curves which were within 1 to 1.5% of 2.5 MHz, 5.0 MIHz and 10.0 lIz,

respectively.

The results for incident longitudinal waves are shown in Figs. 2, 3, and

4. The angular distribution for L-.L scattering was calculated for 2.25 MHz.

The synthesized curve using the measured response of Fig. 1 was essentially

identical to this curve. The curve marked L-T was calculated for a frequency

of 2.5 MHz since this is the frequency to which the receiver responds. In

3
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Fig. 3 the mode-converted angular distribution is similarly calculated for

a frequency of 5.0 MHz, while the direct scattered curve (LL) is calculated

from the spectral synthesis (solid curve). Also shown are monochromatic

4 and 5 MHz curves. These indicate the sensitivity of the angular distri-

bution to frequency or to size of the scatterer as well as the averaging

effect of frequency synthesis. In Fig. 4 the 10 MHz monochromatic curve

shows a great deal of structure, in particular, the surprisingly sharp dip

at 920 in the mode-converted scattered shear wave. The directly-scattered

10 MHz curve (L4L) is indicated although it has little bearing to the

experimental data since there is little 10 MHz content in the pulse. The

7.4 MHz monochromatic curve (corresponding to the peak frequency of the

broadband pulse) is much closer to the synthesized curve which shows, as is

to be expected, rather broad features with no sharp detail.

The experimental data was fitted to these curves by choosing an arbitrary

normalization in order to give the best fit. The lack of agreement between

the synthesized calculation and the data for L4L scattering in Fig. 4 may

be the result of scatter from a secondary metallurgical phase which would

become more important at higher frequencies. One possible source of error

in the mode-converted cases (L-T) is the unfortunate mismatch between the

transmitter frequency which peaks at 7.4 MHz and has a distribution with a

mean frequency of 7.26 MHz with a standard deviation of 1.16 MHz; there is

thus very little power at 10 MHz for the receiver to respond to.

Experiments with incident shear waves were carried out with shear-cut

quartz plates which were bonded to the faces of the sample with low-melting-

point wax and which coula be polarized either parallel or perpendicular to

the scattering plane. The results are presented in Figs. 5, 6 and 7. The

angular distribution for the mode-converted scattered compressional wave

4
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Fig. 3 the mode-converted angular distribution is similarly calculated for

a frequency of 5.0 MHz, while the direct scattered curve (L-L) is calculated

from the spectral synthesis (solid curve). Also shown are monochromatic

4 and 5 MHz curves. These indicate the sensitivity of the angular distri-

bution to frequency or to size of the scatterer as well as the averaging

effect of frequency synthesis. In Fig. 4 the 10 MHz monochromatic curve

shows a great deal of structure, in particular, the surprisingly sharp dip

at 920 in the mode-converted scattered shear wave. The directly-scattered

10 MHz curve (L-L) is indicated although it has little bearing to the

experimental data since there is little 10 MHz content in the pulse. The

7.4 MHz monochromatic curve (corresponding to the peak frequency of the

broadband pulse) is much closer to the synthesized curve which shows, as is

to be expected, rather broad features with no sharp detail.

The experimental data was fitted to these curves by choosing an arbitrary

normalization in order to give the best fit. The lack of agreement between

the synthesized calculation and the data for L4L scattering in Fig. 4 may

be the result of scatter from a secondary metallurgical phase which would

become more important at higher frequencies. One possible source of error

in the mode-converted cases (L-T) is the unfortunate mismatch between the

transmitter frequency which peaks at 7.4 MHz and has a distribution with a

mean frequency of 7.26 MHz with a standard deviation of 1.16 MHz; there is

thus very little power at 10 MHz for the receiver to respond to.

Experiments with incident shear waves were carried out with shear-cut

quartz plates which were bonded to the faces of the sample with low-melting-

point wax and which could be polarized either parallel or perpendicular to

the scattering plane. The results are presented in Figs. 5, 6 and 7. The

angular distribution for the mode-converted scattered compressional wave

4
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(T-L) is the same as the mode-converted scattered shear wave from incident

compressional waves (L-T). This "reciprocity" in the scattering is

discussed more fully in Section 11.3 below.

The curves marked TT)11 and T-T1 in Figs. 5, 6 and 7 represent the

amplitudes of the scattered shear wave when the plane of polarization of

the incident shear wave is parallel and perpendicular to the scattering

plane. The measurements were made in these two orientations. In general,

when the scattering plane Is oriented at an angle 0 to the plane of

incident polarization, the scattered shear wave is elliptically polarized;

the amplitude of the shear wave in the scattering plane is

a(R,6,0) i ATT (e)coso (2.1)

and the amplitude of the shear wave perpendicular to that plane is

AI (R,0,0) AT_.T. (B)sino (2.2)

The measurements at 5 MHz however showed the cross-polarized wave at per-

pendicular scattering to have an appreciable amplitude. This is not under-

stood at this time; It may be the result of scattering by the metallurgical

second phase in the titanium alloy. This background scattering may also be

the cause of the lack of qualitative agreement between theory and experiment

observed In the shear wave scattering at 5 MHz, and requires further

investigation.

- --.--- - - -5 ~,
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3. Reciprocity

In the course of the measurements of mode-conversion in scattering

from spherical cavities and inclusions, it was recognized that the angular

distribution for the mode-converted component is the same for the shear

wave scattered from an incident compressional wave and for the compressional

wave scattered from an incident shear wave. Thus, in Figs. 5, 6 and 7, the

curves labeled T-L differ only by a constant factor from those in 2, 3 and

4 labeled L-T.

This result had not been anticipated but is contained in the analytic

expressions for the scattering amplitudes. The amplitudes of the scattering

by a spherical scatterer are given by expressions of the following form:

For incident compressional wave, normalized to unit amplitude for the

displacement in the incident wave3 :

ie-kr ' (2n+)AnPn(COSO) (3.1)
Ur " i r  n' pl(cose)(32

ue = L E (2n+l)Bn  coB (3.2)

For incident shear waves, similarly normalized:

Ur ie'ikr 2n+l EnP(cose) (3.3)

ie'iKrcos " 2n l n P1(cose) dPl (cose)1
U cr 0llnln+l) n sine + n de (3.4)

ie-iKr 2l 1 dP (cose)i _r n de n s )] (3.5)

u Kr S' .... ..nTn_7 K

6
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By direct evaluation of the equatio which define the constants

in these expansions3 we can show that

En = n(n+l)(k/ic) 3Bn (3.6)

This result can be obtained without explicitly evaluating the complete

expressions for En and Bn. It had previously been shown to hold for the

Rayleigh limit, ka << 1, but is now established for arbitrary values of ka.

Thus we have

ur (shear)/u 6 (compr.) = u(T-L)/u(L-T) = k2/ K2  (3.7)

and the differential scattering cross sections aT-L(8) and aL+T(O) are also

in the same ratio

a T(e)/GLT(e) = k2/ 2 = (3.8)T-L L-T +2p

This result in fact appears to be a special case of a much more general

reciprocity theorem valid for a scatterer of arbitrary shape in an

elastic medium, which follows from general arguments of symmetry and

invariance. If we consider an arbitrary shape (Fig. 8) with an incident

plane wave of polarization p and propagation vector K1 , the scattered wave

amplitude with polarization q and propagation vector Ks can be written as

2 fpqKK ) and reciprocity is contained in the invariance of f to the

interchange of p - q and simultaneously KI -, i.e.,

fpq(=,) 9 fqp(- .,-' (3.9)

7
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For the sphere the additional symmetry is such that fpq(Ki,_) depends only
on the angle of scattering; i.e., on K *K and not on the orientation of

-1 -
the vectors individually.

The reciprocity theorem in its most general form may easily be

established for an arbitrary elastic medium.' We consider a region of space

9 with density p and elastic coefficients Cmnps (both functions in general

of position). The elastic displacements at point r produced by a unit

delta-function fc ce of frequency w applied in the j-direction at point rl

is a solution of the equation

( (r)u3 (j ) + P(r)w2 urr)+
Cmnps ,p(r;l,n +  r ml + j rL) = 0 (3.10)

Similarly we write

(Cmnps(r)u q p( r ; r )),n + P(r)W2 uq(r;. 2 ) + 6qm6(r-r2) = 0 (3.11)

Now multiply the first equation by uq(r;r2), the second by -uJ(r;rl), add
m --

and integrate over the region 6. Because of the symmetry of the elastic

coefficients, C mnps(r) = Cpsmn(_r) = Cimps (r), one obtains

] (Cmnps (r)luq(r;r-2 )u p ;l)" uJrr-u p(rr)),d

-uJ(rr )C q (r;r)dS
m -'-1 mnps s, pj nq(!I-nCmnp(.uj ; r I

-u(rl;r2) 1  (3.12)

We utilize the ordinary tensor notation in which summation is assumed on
repeated indices and a comma indicates differentiation with respect to the
following coordinate indices.

8
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If the region R extends to infinity the displacements fall to zero at

least as fast as /r and the surface integral vanishes. If the region R

is finite we assume homogeneous boundary conditions such that either the

displacements or the normal derivatives of the stresses vanish on the

boundary surface and again the surface integral will vanish. We therefore

obtain the reciprocity rule:

uj(rl;L 2 ) = uq(k2;rl) (3.13)

which states that the j-displacement at LI due to a unit q-force at L2 is

equal to the q-displacement at n 2 resulting from a j-force at Ll" Thus a

receiver at E2 responding to waves with polarization q from a transmitter

at rL exciting displacements of polarization p will record the same signal

when the transmitter and receiver are interchanged.

Add".
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4. Integral Formulation of Scattering

As an alternative to the normal mode expansion which is so useful in

spherical coordinates and whose extension to spheroidal coordinates involves

serious computational problems, an integral formulation has also been

explored, based on the utilization of Green's function for an elastic medium.

We consider an infinite medium of density p(r) and elastic constants

C' (r) such that for r - the medium is homogeneous, isotropic and uni-mnps -

form with density p and elastic constants Cmnps = X mn 6ps + 6(mp6ns + 6ms6np).

The elastic displacements with frequency w in the medium are given by

C (r)u (r) + w'(r2 u (r) = 0 (41)

We introduce the Green's function Gm - l for the uniform medium which

satisfies

JG (r;r 1) p+2G (rr + 6. 6 0 (4.2)

Cmnps s,pn + ) m --1

The inhomogeneity of the medium is then defined by

AC (r) = C' (r) -C (4.3)
mnps - mnps - mps

Ap(r) = p'(r) - p (4.4)

In a manipulation similar to that in the previous section we obtain

10
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I j(r. C (r)u5 (r)) u Mr)C, pGi (n;t1)

+ Ap(-)GJ(r ;l)urn)Idv

m( I
~uji) -L, (4.5)

0

Then, fornreg one obtains

LICnS (r~lJsrrrI (r)G ~(rL1) u (r)J (6

mnps r , (r;r I )Um,n (r-l

We wish to definea situation with an incident unperturbed wave traveling

through the uniform isotropic medium characterized by the constant proper-

ties p and Cm . The inhomogeneity (the scattering center) characterizedmnps-

by Ap and ACmnps are limited to be contained in a volume V2, the volume of

the scatterer. The Green's function for the uniform medium, given by Eq.
-l

(4.2) may be shown to vanish as Ir-rlJ as rI --.. On the infinite surface

S, far from the scattering center, the displacement u m(r) is just the inci-

dent wave um(ii. Then

l 'GJr;rL~ (L)r u) (r)G,(r-r)dS (4.7)

u °)(rl) a Cmnps )U (-) - ( sp'- n

and hence

'Ad
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u.(r = J(o) + Ap(r)w2GJ(r;rl )um(r)

X
2

-AC (r) G ,p(rr)m (r)dr (4.8)
-p S~rr Ou n -n Il%

In an infinite uniform medium GJ(r;r l) can be a function only of the

difference r-rI (and if the medium is also isotropic, only of the scalar

distance R = 1r-r. f). Thus, we can rewrite Eq. (3.13) as

GJ(r;r1 ) = Gj'(rl;r) G. (R) = G m(R) (4.9)

where R = Ir-rI. Equation (4.8) can then be written

uH(r) uo)(r)+J W2Ap(r_)G. (r_-ruU(r_)
V2

+ ACmnps (r Gjm,n (- Up,s dr' (4.10)

It may shown from Eq. (4.2), for the isotropic medium s

1 [/2 a2  e-i1R a2  e-kRl
Gjm(R) 1 2 6jm +x )Xm )R a -ax Rj (4.11)

with p2 2 U k2(X+2u).

From the solution of Eq. (4.8) one may determine the scattered

amplitudes by writing

uj(r) - )(r) + u (r) (4.12)

12
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and the asymptotic expression for G.j (R) for kR >> 1. The scattered wave

amplitude, written for kR >> 1, (i.e., the far-field limit) can be expressed

as

m R Ijm j m I

(i,) _

of the transverse wave. These amplitudes are functions of the scattering

direction C2, (R = qR), as well as the direction and polarization of the

incident wave urn (r).

U 41, J %u()Ap(r)e iQrd

TXM2k f [uj 'j() AX(L) + 2&pf2jsluj p r ekl r (4.14)

and

u it) P n) u ( dr

AU~I()Euj (n) + up (n)]elI idt (4.15)

,,; 13-
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5. The Born Approximation and the Rayleigh Approximation

One can write equation (4.10) and its derivative in a form which gives

a set of coupled integral equations for the displacements and the elastic

strains, c = + uj). Then we have

u (r) u ) ( r ) + w2 fAp(r)Gjm(r.-r)um(r)dr

+ fAC G (-r) c (rdr' (5.1)+ mrnnps j;mn rr ps

where G l  R)isthsyerid
..j~n(~ thesynnetrzedGreen's function derivative,

G(I) (R)--[mn() ,R)

(JR;mn 2[Gjmn() + Gjn,m

Equation (5.1) is equivalent to (4.10) because of the symmetry of Cmnps.

From this equation one can now write an equation for Ejp by differentiation

but we must include the contribution of the delta-function in G1l )  . ToJ;mn ,s

simplify the notation we now introduce the six-dimensional vector representa-

tion for the strains. (The components of the six-dimensional vectors will be

designated with Greek subscripts.) We also introduce, for convenience, the

dilatation

D(r) * Umm(t) -el(r) + C2(Jr + €3(L) (5.2)

and write

14
I
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u () O(r) + W2(Ap(rGjm(r-rlUm(r~dr '

uj jr)j-jun-.. ..

+ fAX (rLI G 0 ) (r-rf) D (rdr'

+ 2 f )(r-G )(r-rr ) dr' (5.3a)

Differentiating this equation and symmetrizing the resultant expression

gives us

E (r) 0 (t)(r + W2!p(r'G(2) (r-rjum (r)dr'
L a am-

+fi(r_)G(3) (r-r) D (r dr'

as B)r- ~rd_ (5.3b)

where

jJm,m 
(.a

G °)(R) - Gjm)m(R) (5.4b)

G(2)[G (R) + G(R)l GRl. (R) (5.4c)can jp;m 2Ljm,p pm~j m;.jp

G(3) (R) - ) + G(o)(R)] (5.4d)

G(4R -(4) (R) -1GO) (R) + G) (R)P.as(R -ijp;$ TJPPl

If we use the incident wave field u(o) in equations (4.14) and (4.15)
(

we obtain the Born approximation as it has been developed by Krumhansl,

et al.'

15
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For incident longitudinal wave u(o) =  e- i K- r where K is the incident
2j k

wave vector, KjKj = k . Then the scattering angle, e is given by

SiKj - kcose and we have

U (L) k +22ucos2e _(ko_.-K) r dr (5.5a)

4w) 2 cos X + 211se~ei~~-~

and

U t) ! 2 =- 2 k _cose-fe - -dr (5.5b)

For an incident transverse wave, ujO) a - -r with K1
J j

and K u = 0, and u Q sinecoso. Then
i j i i

U(Z) .k 2 sineco _ kP - P coselfe i (kS-K .r dr ." (5.6a)
- sinecos¢ [ 2 1 u5-6-)

U M z + 4R cose)uj + - u sinecosje i( K !! dr (5.6b)

The components parallel and perpendicular to the scattering plane may

be found by projection of the vector U( t ) , and one obtains

u(S) (t-t) - '4R cos,$ cose + A cos2 i( -- -r dr (5.7a)

u(S)(ttL) " S 4a cosej e -- dr (5.7b)

This formulation of the Born approximation is adequate only for the case

where IAo << p, Ial << A and IAUI << U, otherwise the delta function

16
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contributions from G(3 ) and G(4 ) in equation (53b) cannot be ignored.CL aa

rn order to identify these delta functions we need look at the Green's

function in the limit <R << I and we write

G. (R) k - f(2 + k2 )jm + ((2 - k2 ) "x m + (5.8)
jM R M

where the omitted terms are finite as R goes to zero. To the same order of

approximation we can now evaluate the second order derivatives, but to

distinguish the delta function we introduce convergence parameter a 'nd let

R2 be given by R2 x + x2 + x3 + a2 = r2 + a2 . After some straightforward

algebraic manipulation one finds

G (R) a2 2 2[a 2 22 jmIps +Gjm,ps(R 8npJR7L " m s +...

(5.9)

where Ajmp is the completely symmetric tensor A.mps a .6 lmps + aipms +

6 js6pm and in which we have also omitted terms which are spherically ani-

sotropic around the point R a 0 and for which the integration over angles

vanishes. Except for the point r - o it is obvious that equation (5.9)

vanishes as a goes to zero. The delta function is then extracted by

writing

Gjm'ps) 6(R .[A (K2 " k2 )J1  " 2 26jm6psJ2 +*"" (5.10)

where

17
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J lim a4  r r2dr= 0 u 2du / 2
a-o 0 o (1 + u2 7 2  15

r 2  2
J lim a2  2)5du =1

ao f R_ (1+ u )
0

We then obtain

G6(R ( 
2  k2)Ajmps " 526m 6 ]psi " (5.11)

jm,ps lpT jmm PS

(5.11)

and

G = - 6(R) + (5.11a)

jp,pm jm 6()

G. --. 121 2

jmpp jppm 3 6jmS( R) + " (5.l1b)

These expressions satisfy the delta-function component ^f equation

(4.2). We note that the omitted terms in equation (5.11) may and indeed do

contain singularities of order R l but these lead to finite contributions

to the integrals in (5.3b). The singificant feature of the delta-function

contributions in equation (5.3b) is that they are independent of the

geometry of the scatterer. Equation (5.3b) may then be written in the form

a (r)C- °(r) - A W(r) 2 _ G(2)I r-r.)u(rdr'

+ &X ~r') _(3) D (Elum -

- )D(r)e dr'

+ 2Gaulr')G6 (Ir'l)c8 (r)dr' (5.12)

18
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where A (r) is the contribution of the delta functions and G(3) (R) and

G(4)(R) are the regular (i.e., delta-function-free) parts of the Green's

function. We now let S denote the "shielding" matrix which is the inverse

of 6 + A (r) and write

co(r) = Say (r) °)(r)+ W2f p(rG(2)( r-r' )U_(r)dr'

+ 2fi U(r') (Ir-r )E (r)dr (5.12a)

Our "corrected" Born approximation involves dropping the contributions of

the integrals in this equation and using as our first approximation the

"shielded" strain field

£ (r) = S y(r)c (o) ) _51b
a- (de(0 (r) (5.12b)

in equations (4.14a-b) to calculate the scattered amplitudes.

There is in fact no need to evaluate the matrix S(r); it has already

been evaluated in the exact solution of the spherical scatterer. In

lowest order the shielding matrix can be extracted from the Rayleigh limit

in the spherical problem. Since S(r) is geometry-independent, the Rayleigh

limit can then be converted into the Born approximation when one expresses

the scattering amplitudes in the form

u(s) k2a3

-- ~ T f(R,Q,K)
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3It is clear that a /3 for the sphere is simply V/47r and hence should be

replaced by the appropriate Fourier transform integral; e.g.,
a3/3 l - -e (k '- )'rdr in equation (5.5a).

We have omitted some terms in evaluating the delta-function contributions

in equations (5.3a,b) arising from the spatial derivatives of the elastic

constants, which, even for a scattering volume of constant properties, will

not vanish because of the step jump in properties at the surface. This

will introduce a surface integral into the shielding matrix A a in equation

(5.12). Such a term is to be expected because the shielding must depend

on both the shape and the orientation of the scattering object. Such

effects are well known in both the static elasticity problem and in the

analogous scattering of electromagnetic radiation. For a spherical scatterer

these terms can be exactly included by using the Rayleigh limit of the

exact calculation to evaluate the shielding factor. For non-spherical

scatterers, however, equation (5.12a) is incomplete and is appropriate only

for shapes which differ only slightJy from spherical. It is expected that

the complete identification of all of the delta-functions in equations

(5.3a) and (5.3b) will yield a significantly improved formulation that will

allow the Born approximation to provide an appropriate first approximation

to scattering by such extremely non-spherical defects as cracks or discs.

rising the Rayleigh limit for the exact solution to the problem of the

spherical scatterer allows us to define a surprisingly simple correction

to the Born approximation.
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We define the coefficients

= ,- ; A2 - 2 22
X + 2w + AX + 1 AP + 7 (3 + 2k /K )AP

We then obtain, for the scattered wave amplitudes with incident

compressional waves

s)k 2e-ikR{- [o 222 ( ls o  Ifik~ _~

u(S e( ) cosO - A - -k- A 2eo l - i) -ke -K) dr
4irR P 0 2K (o

(5.13a)

u~s)9 Cet - A oesie e (5.13b)

We note that in this approximation the scattered transverse wave is

polarized in the scattering plane. For a scatterer with axial syimetry

around the axis of the incident wave vector this would follow from simple

synmetry arguments. The implication here is that for an arbitrary shape

the out-of-plane polarization amplitude is geometry-dependent and hence of

order ic2 V2 /3e (where E is a measure of the asymmetry) smaller than the

in-plane amplitude.

For the scattered wave amplitudes with incident shear waves we obtain

u(S)(t) 4R s-necoso k A cose -- - dr (5.14a)

(s( -ikR 2k2e~e~~~

= K eR cos4 t cose - A2 (2cos
2e - l)1 e -- dr

(5.14b)

U '4wR sin¢ - A2cosjje -- dr (5.14c)
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The comparison of the first order Born approximation (equations (5.5a

(5.6a), and (5.7a,b)) and the corrected Born approximation (equations

(5.13a,b) and (5.14a,b,c)) with the exact calculations for the scattering

from a WC inclusion in Ti alloy is shown in Figs. 9-12. It is clear

that in this case in which we have Ap/o = 2.1, AX/X = 0.8 and Ai/p = 4.4

the "shielding" effect should be quite important. As expected for a

situation with Ka not small, (Ka = 1.87) the Born approximation is not too

good, particularly in the forward scattering direction. The corrected

Born approximation is significantly better.
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Figure Captions

Fig. 1 Frequency analysis of the transmitted pulses using nominal 2.25 MHz,

5.0 MHz and 10 MHz broadband transducers.

Fig. 2 Scattering distributions for incident compressional waves; 2.25 MHz.

Fig. 3 Scattering distributions for incident compressional waves; 5.0 MHz.

Fig. 4 Scattering distributions for incident compressional waves; 10 MHz.

Fig. 5 Scattering distributions for incident shear waves; 2.5 MHz.

Fig. 6 Scattering distributions for incident shear waves; 5.0 MHz.

Fig. 7 Scattering distributions for incident shear waves; 10.0 MHz.

Fig. 8 Reciprocity in scattering of acoustic waves.

Fig. 9 Comparison of Born approximations: Direct scattering, Incident com-

pressional wave. ka = 0.89, WC sphere in Ti64. -, exact solution;

. ,lowest order Born approximation; ---, shielded Born approxima-

tion.

Fig. 10 Comparison of Born approximations: Mode conversion, longitudinal to

transverse or vice versa, ka = 0.89; Ka = 1.87; WC sphere in T164.

-, exact solution; -"-, lowest order Born approximation;

--- , shielded Born approximation.

Fig. 11 Comparison of Born approximations: Parallel scattered shear wave,

Ka a 1.87; WC sphere in T164. -, exact solution; . , lowest order

Born approximation; ---, shielded Born approximation.

Fig. 12 Comparison of Born approximations: Perpendicularly scattered shear

wave, Ka - 1.87; WC sphere in T164. -, exact solution;., lowest

order Born approximation; ---, shielded Born approximation.
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