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SCATTERING THEORY FOR THE ACOUCTIC WAVE EQUATION
IN AN ARBITRARY EXTERIOR DOMAIN

INTRODUCTION

The follcwiny is a preliminary report on some recent theoretical investigatins per-
taining to scattering theory. Further study and the physical implications of these results
will be discussed elsewhere. The scheme for direct scattering theory is outlined first, and
an important tepc is indicated for the inverse problem.

If u(x) is the difference between the instantaneous pressure and the equilibrium
pressure, p(x) 1s the equilibrium density of the medium, c(x) is the local speed cf sound,
€2 is an open connected subset of R" with bounded complement, D, denotes 3/d¢, and
A= cz(x)p(x)g7 *1/p(x)%, then the a~oustic wave equation is

bt o e b AN T

T T T

D% = - Au, (€R, x€Q, (1)
with the initial conditions
u(Orx) = fix) and D,u(Dx) = gix;, x€8 (2)

and the generalized Neumann bo::ndarv condition

{c""'(x)p'l(x)Au(x)v(x) dx = [ i) oux) c Te(xydx, x € and v, e € L2452 (3)

if the domain §2 considered here has a smooth boundary 382, say C2, then boundary con-
dition (3} is ~quivalent to the classical Neumann boundary condition

veoJutx)=0, xCa8l, (4)

withs ¥ denoting the outward unit normal of dS2 at »

This acoustic wave propagation problem is considered here as a perturbed system in
contrast to the fcllowing. named “the unperturbed system’:

Divt.x) = Age(tx)

TR

=~ 2tx)., xEQ, (5)

- Note Manuseript subanitted June 14, 1976

- e — g o B A e e A sszzziT




|
1
l
|
|

CHEN AND YANG

3
:
3

with the same initiad and boundary conditions (2) and (3) of the perturbed problem.

T e

We impose here the general assumptions that apply througheut this report:’

Assumr.acn 1. The exterior domain £ has the finite tiling properrs: there exist an open
set C in R”, compact sets K, ..., Ky in R", and nonzero vectors »(1), ..., x(V) such that

i Co, {(6)
ONQ C UK;, 1<j<N, (7)

and '
x=xp+tz): 0<t<1}CQ, 24 €QNK; (8)

This property o! an exierior domain is due to Wilcox [1]. Here we would not ex-
clude the case 2 = R".

Assumpticn 2. The density function a(x) is C2(2) and real valued, and for some constant
J>1

J>px,»J, x& Q. (9)
Also,

p(x) = 1 when lyy—»> oo ao

and

n ;(IT)- behaves like o{IxI*) wher Ix!— oo (11)

foralla, 1 < ial=a; +...+0a, <2

Assumption 3. The local speed c(x) is C1(R) and real valued, and for .ome constant

X>1
F K2cx)2KE', x€Q. (12)
r’r Also,

c(x} -* 1 when ix1-- 00 (13)
- ind
E % In c(x) = o(IxI'!. when lxi- oo, (14)
E Assumption 4. The “Stummel condition™ is satisfied by g(x) = c'?(x)p"(x), that is, for
some a > 0,
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.Wpflq(;y)l2 le-y I""*48 gy <+ o0 if n > 4, (15)

where the integration variable y runs in the disk {ix-y! < 1}NQ and the suprexmum is
taken on x € (2.

The differential operator A, defined by (5) on §2, with assumption 1, subject to the
generalized Neumann boundary condition, is a self adjoint, noanegative operator in the
Hilbert space L,(§2). Its spectrum is the closed interval {0, ) and is absolutely (spectral)
continuous and without eigenvalues. These interesting results are proved by Wilcox [1}.
With these four general assumptions we will show that the operator A defined by (1)
subject to the generalized Neumann boundary condition is also a self-adjoint, nonnegative
operator in the same Hilbert space  ,(§2) and that its spectrum contains the interval
(0, 0), is contained in {0, «°), and is absolutely continuous. The only uncertainty occurs
when the origin is to be an eigenvalue. These results are discussed in the next section.

The scattering operator S is unitary if the M¢ller wave operators W, are orthogonal,
W, W, =1, (16)

ard are complete,
W, W, =1 -E0%), (17)

where E(7.} is the resolution of the identity for A. Therefore, in the third section, we will
discuss the existence of the Mdller wave operators W, and properties (16) and (17).

"'he inverse problem of the scattering theory is to construct c(x) and p(x) from the
“scattering amplitude.”” The study of the one-dimensional piasma inverse problem by Szu,
Yang, Ahn, and Carroll {21 and the articles by Faddeev [3) and Newton [4] on .he
three-dimensional iniverse scattering problsm for t1e Schrodinger equation ali center on
discussion of the integra! equation

u(x faw) = € +[Glx-yka)A u(y paw) dy (15)
for all y such that y*w > x-w for each urit vector w in R, where 4’ = A - Ag and
where G(x k;u) is a cartain class of Green functions of the reduced egnation from the
unperturbed system:

(A + R2)G(x k) = 8(x). (19)

This particular problem is connected with the direct problem and 1s discussed in the
fourth section.

Other references re.ati g to the results can be obtained through those c:ted in this
report.
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SOLUTIONS OF THE ACOUSTIC WAVE EQUATION WITH THE NEUMANN
BOUNDARY CONDITION AND ITS SPECTRAL THEORY

A solufion of the mixed initial-boundary-value problem of Eqs. (1) through (3) will
3 be constructed by using a famous spectral theorem. Then the absolute continuity of the
y spectrum of A will be is studied. The resulting theory provides a preparation lor
constructing the wave o,-orator and scattering operator.

We recall here the initial-boundary-value problem:

il s AR L e

thu T - t’\u, ‘ > (.‘,

RN

= c2(x)p(x)V *1/pix)Vu, x €K, (20)
u(0, x) = fix) and Dul0,x)=g(x), x€EQ; (21}

fc‘z(x)p"(x)Au(:f.)u(x) dx = .l.p‘l(;':)';iu(x)'Vv(x) dx, x €  and 1, 7v € L3(Q). (22

The formulation of the problem will based on the following function spaces:

u€Ly(2) 0_1‘- lu(x)i? dx < oo, x €, in the Lebesque measure, 23)
u € Ly(Sic2p) = (¢2p)}2u € Ly(9), (25)
u € Hy (c?p) @ (25721 % € Ly(), el < m, (26)
and |
u€X; »pluiye L}Q). (27)
These spaces are Hilbert spaces with respect to the foilowing inner products respectively:
f‘ (G.r) = f u(xhix) dx, x € L, i28)
4 Q
] (ur . = 2 (D%, D%), ial< m, (29)
@) =fc'2(x)p"(.r) u(x) v(x) dx, x €82, (30)
W), = Y, &Pu, D), 16l < m, (31)
3 .
1 ST ;
{ fuul, Ld,,p(x) Aoy vx;dx, x€ERNand 1<€;<i<2 (32)
4
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It is clear from the characteristics (9) and (12) of p(x) and c{x) that Ly(2) = Ho(ﬂ)
(which is equivalen® to Ly(8?; c2p) = Hy(82; ¢2p), in the view of their noms).

Suppose that the boundary 352 of 2 is sufficiently smooth, say CZ. ihen Green’s
theorem implies that

N e .
(Au,v) = -J [V p(x)vu(x)] t(x) dx

1 <7 - »*
-fp(x)] «x) * Tv(x) dx

=f[v . ;(f ipu(x)] v(x) dS(x), x € 23R, (33)

where v is the unit outward normal of 952 at x. This means that

w0+ [uoly = [ty - Tu] - x) dSCa), X €20 (34)

Therefore, for u € X,, u satisfies the classical Neumann boundary condition v * 7u(t,x) =
0 if and only if v satisfies the relation (22), which in the new notation is

(Au,0) = [u,v]y, v € X;NL,(Ric%p). (35)

Definition 1. A function u € X, is said to satisfy the generalized Neumann condition if
and only if {35) holds.

This definition does not require the assumption of the smoothness of the boundary
952 of 2. However it defines the classical Neumann condition if 952 is smooth.

Furthermore a definition is introduced for a closed subspacr: in X,:
u € H = u € X, and satisfies (35). (36)

The coustruction of a solution of the initial-boundary-value problem is based on the
linear opator A in H, given by (20) v:.!: domain

D(A) = K. (37)
Theorem 1. A is a self-adjoint operator on the Hilber: space Lz(ﬂ;czp). Moreover A Z (.
The verification of the assertions is based on the following result:

znma 1. Let H b a Hilbert space and let L: H X be a linear operator denzely de-
fined in . Assume that L C L*, the adjoint of L, L > 0. and that the range R(I + L}
of I + L is H. Ther: L is self-vrisint,

Proof of Lemr-. 1. L # 1 rdicates that the deficiencv indices of the symmetric operat o
L and of L*, an extension of L, 2re equal [5,p.268]. Condition R(/+L) = W implies the
deficiency index is zero ¢ hence L is self-adjoint.

5
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Proof of Theorem 1. Verify (he conditions of :ommza 1 for X = Lz(ﬂ.c p)and L = A,
The space CO(Q) of infinitely-many-times continuously differentiable functlons with com-

pact support in §2 is a subset of D(A) = X; hence D(A) is dense in Lz(ﬂ,c »y. Let u and
v be any two elements of D(A). Then (35) and (32) yield

Au, v) = [u,v], =f;(~1x—)- Ju(x) » Yu(x) dx = {u, Av). (28)

Consequently D(A) C D(A*) and A*u = Au for al! u € D(A); that is, A C A*.

The assertion A 2 0, also one of the conditions to be checked, follows from the
result yielded by (35) and (32) that for all u € D(4)

Au, w = [u,u]y = f1p~V2(x)Pu(x)? dx, x € Q. (39)

The only condition left to be verified, R(/+A) = Lz(ﬂ,c p), means that for each f
in Lz(ﬂ.c p) there exists an element u of D(A) such that

w, v) + Au, v) = , v) for all v in H,(Ric?p). (40)
This, together with (35), is equivalent t»
@, v + [u,v], = ¢ v for all v in H,(ic*p). (41)

Suificiently, if the equivalent. inner p-oduct for Hl(ﬂ;czp) that we use is

{u,v}= @ o+ 0]y, uv€H (Ricdp), (42)

we need to verify the existence of u such that

(u,v}= ¢ v), v€EH(Rcp). (43)
However,
14, 01 < P2, 112 < const (£, (P2 (v, v}'/2.

The Riesz representation theorem in the Hilbert spac. (Hl(ﬂ,c o), {.,.)) yields the
existence of an element u in H,(Q.c p) satisfying (43) and then (41). On the other hand
(41) lmphes (40) for all v in co(SZ) Thus Au = f - u with the member on the right side

in Lyo(82,¢ 25); hence Au is also in Ly(82,c 'f) Moreover, because the validity of (40) itself,
is implied when, cg(§2) is dense in H(§2,c°p), the combination of (40) and (41) ensures
that u satisfies the generalized Neumann condition - 35). Thus R({+4) = X is verified, and
the proof of theorem 1 is complete,

Therefore the Kato [5,p.331] second representation theorem ensures the following

corollary.
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Corollary 1. A has a nonnegative square root AY2 whose domain D(A”z) = Hl(ﬂ;cp‘m)
has the inner product

{u, v} = Z:fc"(x)p'”z(x)D“u(x)D"v(x) dx, x€KQ,lal <1. (44)

Furthermore A2 satisfies the relation
{AY2y AV24Y= 3 (p"V2(x)Dju,p" BDu), 1<j<n. (45)

From the results in theorem 1 and corollary 1, the argument of Wilcox [1], with
slight adjustment, gives the following theorem.

Theorem 2. For each f 11 D(A) and g in D(A'/2) there exists a uniquely defined strict

solution u with finite energy of the initial-boundary-value problem (20), (21), and (35)
with t € R such that

u € C2[R, Ly(,c2p)) NC! (R, H (R,ep'/2)) NCIR, 7)),
and u has the rnergy integral in the two equivalent forms
E(x,R,0) = {Dyu(t),Dyn(t)} + 20 (Djn(t), Dpu(t)Y,  j=1,...,n,
= {Du(t),Du(t)} + {AV2u(t), AM2u(t)). (46)
and has the constancy of energy
Ew.Q.0) = I {D/f.Djf}+ (8.8 (47)

From the spectral theorem for A and the associated operator calculus, we have the
following theorem.

Theorem 3. For real-valued functions f in L4(S2) and g in D(A'“z). define
h=f+iA"V2 € L,(Q). (48)
Then the solution in L,(S) defined by
u(t) = (cos tAM2)f + (A"V2 sin tA12)g (49)
with bounded coefficient operators satisfies
U(t, x) = Re v(t, x), (50)

where v(t, x) is the complex-valued solution in L,(S1) defined by

u(t,0) = eitA™ 2y (51)
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Because the operator A is nonnegative, its spectrum o(A) is contained in the interval
{0,= ). The nonexistence of the positive eigenvalue is ensured by the following theorem.

Theorem 4 (Mochizuki {6]. Assume assumptions 2 through 4. Then, u = 0 in Q is the
only Ly (2) solution of the equation
1

¢ — -2 -1 = 4
v ) Ju + Ac™“ix)p "l (x)u = 0, x€ERN. (52)

Proof. 1t suffices to check the conditions imposed by Mochizuki. His first three condi-
tions are presented by assumptions 2 through 4 by setting ajp(x) = Vik P x), bi =
0, and q(x) = Ac'z(x)p‘l(x). Particularly, if n < 3, the “Stummel condition”

sup [lgn)i? dy <, (¥ € R: -y < 1,x € Q) (53)

is a consequence of the boundedness and the smoocthnress of ¢(x) and p(x) on £2. His
fourth condicion is given by his remark 1.2 and by (9), (11), and (14). As for the unique
continuation property in his last coudition, the smoothness assumption on ¢.x) and p(x)
implies the Holder condition {7, p. 23], which gives the property (according to his remark
1.1, or also according to Ref. 8 or Ref. 9).

Subject to some adjustment, the employment of the standard principle of limiting
absorption yields the absolute continuity of the continuous spectrum of A. The detaited
proof will appear in a follow-up article. The precise statement is the following.

Theorem 5. The resolution E(s) of the identity for the operator A is absolutelv continu-
ous on any closed interval in (0, o),

Remark 1. Whether A = 0 is an eigenvalue or belong to the continuous spectrum is aot
yet clear.
DISCUSSION OF THE MQLLER WAVE OPERATORS

As indicated in the Introduction, all properties of A studied in the last section hold
for Ay. Moreover the spectrum of A, is [0,9°) and is absolutely continuous. These are
results of Wilcox [1]. These results and those of the last section ensure the existence of
the unitary groups e ‘Lo and e~ iLt, ~00 < t < oo, associated with the self-adjoint operators
Lo = AY?and L = AV/2,

The strong limits

We = S-limetlte™hol | ¢ = 100 (54)

are called the Mdgiller wave operators. This yields

limlie?lth-e*Loth, =0, (- too (55)

Rie i R =Rty et IR AR N St~ * Conhr g oo ootk o gt L0k oot of —— paa ey
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f h=W, h,. (56)
The following map is the scattering operator:
S:f.~>f, = Sf.. (57)

g brh

F

It is required to be unitary on L4(§2), which 1s an ea., consequence of the orthogonality
(16) and the completeness (17) of the M¢ller wave opera.ors.

The existence of the strong limit (54) is proved by employing the vanishing, when
t = t oo of the local energy of the solution to the unperturbed system and employing
the decaying in rate -1 - § of l¢| for the first second-order derivative of the solution to
the unperturbed system.

The coincidence of the Mgller wave oper: cor W, with the stationary wave operators
U, and the properties of the orthogonality and the completeness for U, guarantee the cor-
responding properties for W, . The proof of the coincidence and of these two propetties for
U, is based un the expansion principle of the gencralized eigenfunctions of A, which has
been employed by a dozen different authors, including Ikebe [10], Mochizuki [11,12], and
Wilcox [1]. The details will be given in the follow-up article. A portion of the article
involve: thc principle of limiting absorption, which is studied in the next section.

PRINCIPLE OF LIMITING AESORPTION AND THE INVERSE PROBLEM

There is no doubt about the role played by the principle of limiting absorption in
the eigenfunction expansion, which is a keystone for scattering theory. However, in the
three-dimensional inverse scattering theory for the Schridinger equation, both Faddeev
[3] and Newton {4] studied the “Volterra” integral equation, where the principle of
limiting abso.ption again played an essential role. We will apply the principle of limiting
absorption to the acoustic wave equation. This should bring some light to the study of
the inverse problem of the scattering theory for the acoustic wave in three dimensions,
which will extend Ref. 2.

In the investigation c” recovering the perturbed operator A’ = A - A, the reduced
wave equation of acoustics without an obstacle,

Au(x, k) + R2u(x, k) = 0, x,k € R3, (58)

is expected to have a set of solutions u(x, k; w) such that the function u(x, k.'w)e"k"‘

has an analytic continuation into an quer halfplane in the variable s = kL v at a fixed x
and k! = B - (k*y)y; and u(x, k: w)e % ¥ - 1 decreases with large |sl. From an alternative
form of (58), namely,

Aou + kzu = Alu

Vo),

u, k,x€R3, 59
p(x) (59)

= k2[1 - c2(xp%(0)u -
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we should study the integral equation
u(x, kiw) = e*°% + [Gix - y, ki w)A u(y, kiw) dy (60)

with x, k in R® and with a unit vector w, where the Green function G(x, k; w) is a
limiting value of the following function with Im s = Q:

Glx, i s) = (2n)3 Moo < [(m + sw)? - P - 62]"T dm, (61)

with m € R3, w = q/lql, s = k*w + ilgl, and u? = k - (k*w)?. As indicated by Faddeev,
the irregularities in the expression under the integral sign are proven by the equatiuns

m?=pu2andm-w=0 (62)
and do not depend on s with Im = ¢ 0. This implies, through a singular Fourier integral,

that the function defined by (61) 1s an analytical function of s in the upper half plane
and that

IG(x, p; s) exp {Im s(x°w)]i < const t(1 + lxf)-L. (63)
The existence of an analytical continuation of the Green function G(x, k; w) in the upper
haifplane in the variable s = k-w, which satisfies (63), is just the characteristic property
that defines this function uniquely.

On the other hand, 4; in (59) is still a differential operator. We remark that

Voly)

G(x -y, k; w)Wuly, k; w)s ——
( ywuly ) p(y)

2 2
=Glx ~y; k; w){Vu(t. k; w)zf:—(z—) - u(y, k; w) [————-V pLx) va‘x—n ”

x) p(x) ~ Ta(x)
) vely) v o(y)
i \/y'[G(x - Yo ks whly, k: w)m]J' { Ve Glx -, ki w)'—-——p(y)
v20(x)  19p(x)I2 _ o
-[ om - e |G vk ey ki w). (64)

Formally this relation and the divergence theorem of Gauss give another representation
of (60):

u(x, k;wy = e* "% + }.G(x -y, ki w)Aqu(y, ki w) dy

VR(y)

+f'.'_,,y(:‘(xp_v, kiw)e u(y, k: w) dy, (65)

10
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where the multiplication operator A, is defined by

2 2
Aqu = d2(1 - 2(y)p? +[v pLY) IVp(y)lJ ki w). 66
U (1-c“(y)p®(y)} 20) 20 u(y, k; w) {66)
Here the following condition is assumed:
. . Lo~ Vey) - -
im [Gw - 5, & wity, ki w)y - L2 ds(y) = 0, 1y1 =7 >, (67

with the surface integral over the sphere with radius r. However scme u(y, k; w) is re-
quired to be bounded, and since G(w - y, k; w) has the asymptotic estimate (63), condi-
tion (11) in assumption 2 ensures (67). The representation (65) is not justified yet,
because the asymptotic estimate for V yG(y, k; w) at large |y| is not clear.

This brings in the issue concerning the asymptotic cstimate of both G(y, k; w) and
Y yG(y, k; w) given by (61) with the principle of limiting absorption employed.

In the rest of this section, we will follow the idea used in Ref. 13. First we recall a
well-known formula [11, 13]:

f P [r - (a + ib)]"! dr = in(sign b)H(p sign b)e(a*bIP (68)

-

where H(t) is the Peaviside function. From (61) we have for a multiple index «

DYG(x, u; 8) = (21r)'3e““'"_’ r2(J, +J.) dr, (69)

and

J, +J_= [ ((Ar + sw)]4{u® + (srﬁ-w)zl'l’ze"'?‘"«r + (sf-w)
Js
-1
ol + o w2} 4 {r s oiew) - (2

+(sm.w)21”?‘}")dsm. 0

Without loss of generality we can assume fm°x = x,M,. By the Morse transformation [14]

we choose a local coordinate (13;.,n5)at (£ 1,0,0) st ~4 that ﬁtl =% (1~ r;f - ng). Then
the estimate for large x| is

11
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J, +J_ = const 72'157 (12 + (% w)?) V2 [ x (iR r + sw) ] ({r + (8% -w)

+ (12 + (@ w1V ¢ (s (s ew) - [0+ (% w)P) V)T
+ e[ 21 + sw)]0((r - (% ow) + (W + (& w)?)1/2)]
*+ {r - (8% -w) - (W2 + (& -w)?112) )] + qirx), (70
where ¢(x) is estimated for large |x| as
lg(x)i + IVg(x)| < const |x]™2. (72)
Because the denominators in (70) would not vanish when m w0 (by (62)), there is no
singularity in (71) when X -w#0. After substitution of (71) and (72) into (69) and then
integration by parts, we have the estimation
D°G(x, u; s) < const [x|"2, if ¥ wt0. (73)
Assume now that ¥<w = 0. Then (71) becomes

J, +J_ = const 2n(rixlu)~! { & (iFrsw)® + e irlxlitsw - #r)] 2} [(r + m)™?

+(r- m)'I] +q(rx), (ifX-w=2"n). (74)

Let ¢(r) be a C" function with compact support such that ¢(r) has values between 0 and
1 and is equal to 1 at r = ¢ u. Therefore (69) and (74) imply that

DEG(x, u; 8) = (27r)'3[ r2(J, +J)[1 - ¢(n] dr (= 1)

+(21) 2(xlp) ! const| (el (ri %, 5, w, @)

+eirlxlo %, s, w, o [r + u)t 4 [r - p) T dr(= 1)

+0(xI"?), if%-w=0. (75)

where ¢, = ro(r)[i(sw+%r)]®. There is no :ingularity in the integral for / 1+ Integration by
parts yields [, = O( ixi"2). Employment of .68) for 1 gives

I, = 2mixi)™? const [V, (xii %, 5, w, &)

+y(—-ixl:X,s, w, )] * [sin (uxHH(Ix)], (76)

12
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where f * g means the convolution of f and g and where the function y.(ix|; X, s, w, @)
is the Fourier transform of ¢.(~%, s, w, &) in r. Since ¢, is compactly supported in r,
V. is a smooth rapidly decaying function in |x|. Therefore

L D$Gix, pis) = Ol{Ixlu)"'],  for large |x] with % “w = 0), (77)
for any order « of derivatives.

1 Then for either X <w = 0 or X*w t 0, we have
IDSG(x, p: s) exp {Im s(x-w)}l < const (1 + jux])™!, 0 < |u] <eo, (78)

which is (63) when a = 0,

4 This estimate ensures the two integrals on the right side of (65) are well-defined
under the general assumptions for c¢(x) and p(x). Equation (65) will be further studied in
the follow-up article,
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