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SCATTERING THEORY FOR THE ACOUSTIC WAVE EQUATION
IN AN ARBITRARY EXTERIOR DOMAIN

ANTRODUCrlON

The following is a preliminary report on some recent theoretical investigat;'nis per-
taining to scattering theory. Further study and the physical implications of these results
will be discussed elsewhere. The scheme for direct scattering theory is outlined first, and
an important topic is indicated for the inverse problem.

If u(x) is the difference betweei. the instantaneous pressure and the equilibrium
pressure, p(x) is the equilibrium density of the medium, c(x) is the local speed of sound,

is an open connected subset of R" with bounded complement, D, denotes a/at, and
q - c2 (x)p(x)V ,/p(r)V, then the aroustic wave equation is

D2u= -Au, tER. xEi2, (1)

with the initial conditions

u((I,x) = f'x) and Du(gx) =g(x,, x G 92 (2)

and the generalized Neumann bo,:ndarv condition

rc-2(x)p- (x)Au(x)vtx) dx " - ,x) 'u(x) •.'v(x) dx. x E 2 and c,.', E L2 (,,. (3)

If the domain St considered here has a smooth boundary Uf2, say C2 , then boundary con-

dition (3) is -quivalent to the classical Neumann boundary condition

v • .'uItx) = 0. x G aS2, (4)

wit!, v denoting the outward unit normal of i)2 at :

This acoustic wave propagation problem is considered here as a perturbed system in
contrast to the fcllowing. named "the unperturbed system'

Dt,t') = - 0totx)

= - . 2 r1.x). x E 12. (5)

Note Manu-Icript , ,bi tted .June 14. 1976
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CHEN AND YANG

with the same intiW and boundary conditions (2) and (J) of the perturbed problem.

We impose here the general assumptions that apply throughout thia report:'

Assumr,*an 1. The exterior domain n has the finite tiling proper!y: there exist an open
set G in R11 compact sets K1 ... , KN in R

n, and nonzero vectors x(), ..... x(N) such that

an C O, (6)

Onn C UK l,  1 < j N, (7)
and

{x x, + tx): o < t < 1 }C , E E n0e2nK,. (8)

This pioperty of an e:.erior domain is due to Wilcox 11. Here we would not ex-
clude the case n = R".

Assumption 2. The density function p(x) is C 2 (Ul) and real valued, and for some constant
J> 1

J A> l Jp(x, j-1 , x (- . (9)

Also,

p(x)- 1 when l-i--oo (10)

and

D' -x behaves like o( 1x r-I) wher, Ix I - oo 011)

for allof, l< 10Clo +...X)+ Cn < 2.

Assumption 3. The local speed c(x) is Cl(n2) and real valued, and for Ame constant
K>'I

K '> c.'x) > K'd  x E nt. (121

Also,

c(x) -* 1 when Ix I-- o (13)

md

V In c(x) = ooixl r when Ix-- 1 o 114)

Assumption 4. The "Stummel conditiou" is satisfied by q(x) c 2 x)p 1 (xI , that is, for
some a > 0,

2



NRL REPORT 8030

supflq(y)12 Ix-yJfln 4- dy < +oo if n > 4, (15)

where the integration variable y rurs in the disk ( Ix-y I < I }n12 and the supre:num is
taken on x E Q.

The differential operator A 0 defined by (5) on 12, with assumption 1, subject to the
generalized Neumann boundary condition, is a self -djoint, noamegative operator in the
Hilbert space L 2 (S2). Its spectrum is the closed interval [0, 0-) and is absolutely (spectral)
continuous and without eigenvalues. These interesting results are proved by Wilcox [1].
With these four general assumptions we will show that the operator A defined by (1)
subject to the generalized Neumann boundary condition is also a self-adjoint, nonnegative
operator in the same Hilbert space I 2(e) and that its spectrum contains the interval
(0, -c), is contained in [0, -0), and is absolutely continuous. The only uncertainty occurs
when the origin is to be an eigenvalue. These results are discussed in the next section.

The scattering operator S is unitary if the M#ller wave operators W. are orthogonal,

W.W. = 1, (16)

ar.d are complete,

W. W = I - E(0+), (17)

where E(?., is the resolution of the identity for A. Therefore, in the third section, we will
discuss the existence of the M4ller wave operators W. and properties (16) and (17).

,'he inverse problem of the scattering theory is to construct c(x) and p(x) from the
"scattering amplitude." The study of the one-dimensional piasma inverse problem by Szu,
Yang, Ahn, and Carroll i2l and the articles by Faddeev [3) and Newton [4) on -he
three-dimensional inverme scattering prob!'-m for tie Schr&dinger equation all center on
discussion of the integra! equation

u(xk;w) = eixk +fG(x-ykw)Au(y, w) dy

for all y such that y'w > rw for each ur.it vector w in R, where A' = A - A 0 and
where G(xk;u,) is a certain class of Green functions of the reduced eq'ation from the
unperturbed system:

(A0 + k 2 )G(x,k) = 6(x). (19)

This particular problem is connected with the direct problem and is discbseyd in the
foutrth sectaon.

Other references rea;,g to the results can be obtained through those cted in this
report.

3



CHE.N AND YANG

SOLUTIONS OF THE ACOUSTIC WAVE EQUATION WITH THE NEUMANN
BOUNDARY CONDITION AND ITS SPECTRAL THEORY

A solution of the mixed initial-boundary-value problem of Eqs. (1) through (3) will
be constructed by using a famous spectral theorem. Then the absolute continuity of the
spectrum of A will be is studied. The resulting theory provides a preparation for
(onstructing the wave o-crator and scattering operator.

We recall here the initial-boundary-value problem:

D2U=- Au, t > 6,,

2c2 (x)p(x)V"1lpkx)Vu, x E 1, (20)

u(O, x) Ax) and Dtu(0. x) = g(x), x E 1; (21)

fc2(x)p-(x)AU(:)v(x) dx = fp'(.1)7u(x)'vu(x) dx, x E S and v,7 t, E L2(1). (22)

The formulatio-n of the problem will based on the following function spaces:

u E L2(92) a u(x)12 dx <oo, x E R, in the Lebesque P|easure, (23)

u E Hm(S2) ' Du E L2(f0), Ioa1 < m, (24)

u E L2 (fl;c2 p) ( c2 p)'l 2 u E L,.(R), (25)

U CE H.(.;c2p) a (c2 .,I1 2 1- tu E L2(2), I&1 < m, (26)

and

u E Xi  p112 V]u E L2 (1). (27)

These spaces are Hilbert spaces with respect to the foiowing inner products respectively:

fu) xklx) dx, x E 12, '28)

(u,v . -_ (D/ u, MaV), ile < m, (29)

--C' 2 ()p'1(x) u(x) v(x) dx, x E S2, (30)

(U.L') . V = D (. Dav), 'cl < m, (31)

fu, ] =- '. :(x),(x dx, x E i and 1 j i < 2. (32)

L 4
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It is clear from the chzachtristics (9) and (12) of p(x) and c(x) that L2 (fT) HO(2)

(which is equivalent to L2(0; c2p) = HO(S2; c2p), in the view of their no.ms).

Suppose that the boundary Mn of S2 is sufficiently smooth, say C2 . 'hen Green's
theorem implies that

t (Au, v) =-V • Vux) vx) dx

' = f 1 11 ',( ) " Vv(x) dx

;.toVX)d(X, xal)(3

where v is the unit outward normal of Mfl at x. This means that

-(Au, v) + [u, v = j [p - Vu(x)] • v(x) dS(x), xE )f. (34)

Therefore, for u E X 2, u satisfies the classical Neumann boundary condition v 7u(t,x) =
0 if and only if v satisfies the relation (22), which in the new notation is

(Au, v) = [u,v) 1 , v E X, nL 2(12;c 2p). (35)

Definition 1. A function u E X 2 is said to satisfy the generalized Neumann condition if
and only if (35) holds.

This definition does not require the assumption of the smoothness of the boundary
aM of fR. However it defines the classical Neumann condition if Ml is smooth.

Furthermore a definition is introduced for a closed subspacr- i X2:

u E K - u E X2 and satisfies (35). (36)

The ccnstruction of a solution of the initial-boundary-value problem is based on the
linear op ,rator A in H2 given by (20) v.:.! ,iomain

D(A) =. (37)

Theorem 1. A is a seif-adjoint operator on the Hilbert space L2 (12;c2p). Moreover A ; 0.

The verification of the assertions is based on the following result:

L. nma L Let X , a Hilbert space and let L: X - XC be a linear operator denrely de-
fined in XC. Assume that L C L*, the adjoint of L, L > 0. and that the range R(I + L'
of I + L is XC. Ths,'. L is self-aidint.

Proof of Lem.. 1. L s .) irdicates that the deficiency indices of the symmetric opormt ",r
L and of L art extension of L, are equal (5,p. 26 81. Condition R(I+L) = "( implies the
deficiency index is zero w.,l hence L is .elf-adjoint.

5



CHEN AND YANG

Proof of Theorem 1. Verify Lhe conditions of I mma 1 for X = L 2 (12;c 2 p) and L = A.
The space Co(fl) of infinitely-many-times continuously differentiable functions with coni-
pact support in $ is a subset of D(A) = X; hence D(A) is dense in L 2(S;c2pj. Let u and
v be any two elements of D(A). Then (35) and (32) yield

(Au, v) - [u, v] - u(x) • Vv(x) dx = (u, Au). (S8)

Consequently D(A) C D(A*) and A*u = Au for al! u E D(A); that is, A C A*.

The assertion A : 0, also one of the conditions to be checked, follows from the
result yielded by (35) and (32) that for all u E D(A)

(Au, u) = [u, u] I =f lp- /2(x)Vu(x)l 2 dx, x E 12. (39)

The only condition left to be verified, R(I+A) = L2 (fZ;c 2p), means that for each f
in L2 (f;c2 p) there exists an element u of D(A) such that

(u, v) + (Au, v) = (, ) for all v in H,(1;c2p). (40)

This, together with (35), is equivalent t0

(u, v) + [u, v] 1 = (fv u) for all v in H,(S2;c"p). (41)

Sulficiently, if the equivalent inner p.-oduct for HI(12;c2 p) that we use is

{u,v) f= (u, ) + tu, vJ, u, E -H,(S;c 2p), (42)

we need to verify the existence of u such that

{u, v} = (, v, v E H, (f9,;c 2p). (43)

However,

The Riesz representation theorem in the Hilbert spac. (H(S;c2 p), {., .)yields the
existence of an element u in H, (S;c2 p) satisfying (43) and then (41). On the other hand
(41) implies (40) for all v in c(1). Thus Au - f - u with the member on the right side
in L2(1'',Cp); hence Au is also in L2(,c Moreover, because the validity of (40) itself,
is implied wlen, c;012) is dense in Ht(f2,c:p), the combination of (40) and (41) ensures
that u satisfies the generalized Neumann condition .35). Thus R(I+A) = X is verified, and

I the proof of theorem 1 is complete.

Therefore the Kato 15,p.3 3 1) second representation theorem ensures the following
corollary.

6
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Corollary 1. A has a nonnegative square root A1 12 whose domain D1A ;Cp I /2)
has the inne.r product

{u. "I = e J 1 (x)p-112(X)Dau(x)Dov(x) dx, x E 12, la < 1. (44)

Furthermore A12 satisfies the relation

{A1 2u.Al/ 2 u}= (p'112(x)Dju'p'1l 2 Du), 1 .j n. (45)

From the results in theorem 1 and corollary 1, the argument of Wilcox 11, with
slight adjustment, gives the following theorem.

Theorem 2. For each f ta D(A) and g in D(A112) there exists a uniquely defined strict
solution u with finite energy of the initial-boundary-value problem (20), (21), and (35)
with t E R such that

u E C2 [R, L2 ( pc 2p) InC [R, HI(S2,cp/ 2 )1 n C(R,.),

and u has the energy integral in the two equivalent forms

E(u S2, t) = {Dtu(t),Dtn(t)} + 2 {Djn(t),Dju(t), j 1,... ,n,

= {Dtu(t),Dtu(t)} + {A 1 12u(t),AII2 u(t)I. (46)

and has the constancy of energy

.(u. 12, t)= ]{Df, Djf}+ {g,g}. (47)

From the spectral theorem for A and the associated operator calculus, we have the
following theorem.

Theorem 3. For real-valued functions f in L2 02) and g in D(A- 11 2 ), define

h = f + iA1' 1 2g E L2 1). (48)

Then the solution in L2 (fZ) defined by

u(t) = (cos tA 112 )f + (A- 112 sin tA 1 12 )g (49)

with bounded coefficient operators satisfies

U(t. x) = Re v(t. x), (50)

where v(t, x) is the complex-valued solution in L 2 02) defined by

v(t. 0) = e'itA't 2 h. (51)

7



CHEN AND YANG

Because the operator A is nonnegative, its spectrum o(A I is contained in Lhe interval
[0,- ). The nonexistence of the positive eigenvalue is ensured by the following theorem.

Theorem 4 (Mochizuki [6]. Assume assumptions 2 through 4. Then, u = 0 in S2 is the
only L 2 (fl) solution of the equation

I
V" p'-- Vu + Xc-21x)p-(x)u = 0, xefi. (52)

Proof. It suffices to check the conditions imposed by Mochizuki. His first three condi-
tions are presented by assumptions 2 through 4 by setting aik(x) = vrik p-(x), bj

0, and q(x) = \c-2 (x)p 1 (x). Particularly, if n < 3, the "Stummel condition"

supjlq(y)l2 dy < _, (y E ft: Ix-yI < 1, x E 12) (53)

is a consequence of the boundedness and the smoothness of c(x) and p(x) on S2. His
fourth condi!don is given by his remark 1.2 and by (9), (11), and (14). As for the unique
continuation property in his last codition, the smoothness assumption on cx) and p(x)
implies the Holder condition [7, p. 23], which gives the property (according to his remark
1.1, or also according to Ref. 8 or Ref. 9).

Subject to some adjustment, the employment of the standard principle of limiting
absorption yields the absolute continuity of the continuous spectrum of A. The detaijed
proof will appear in a follow-up article. The precise statement is the following.

Theorem 5. The resolution E(s) oi the identity for the operator A is absolutely continu-
ous on any closed interval in (0, -).

Remark I. Whether X = 0 is an eigenvalue or belong to the continuous spectrum is lot
yet clear.

DISCUSSION OF THE MOLLER WAVE OPERATORS

As indicated in the Introdi'etion. all properties of A studied in the last section hold
for A 0 . Moreover the spectrum of A 0 is 10,00) and is absolutely continuous. These are
results of Wilcox (1). These results and those of the last section ensure the existence of
the unitary groups e - iLof and e - iLt, .-- < t < 0, associated with the self-adjoint operators

L 0-  and L = A)/2.

The strong limits

W, = S-lim etle " lot. t - ±00 (54)

are called the Mller wave operators. This yields

lim Ile'iLth-eLk0th. h = 0. t -4 ± 00. (55)

and

8
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h = IV+ h+. (56)

The following map is the scattering operator:

S:f.'f+ =Sf. (57)

It is required to be unitary on L2 (El), which is an ea., consequence of the orthogonality

(16) and the completeness (17) of the Moller wave opera.ors.

The existence of the strong limit (54) is proved by employing the vanishing, when

t -+ t -, of the local energy of the solution to the unperturbed system and employing
the decaying in rate -1 - 8 of Itl for the first second-order derivative of the solution to
the unperturbed system.

The coincidence of the Moler wave operi Lor W± with the stationary wave operators
U, and the properties of the orthogonality and the completeness for U, guarantee the cor-
responding properties for W,. The proof of the coincidence and of these two propekties for
L is based on the expansion principle of the generalized eigenfunctions of A, which has
been employed by a dozen different authors, including Ikebe [101, Mochizuki [11,12], and
Wilcox [1]. The details will be given in the follow-up article. A portion of the article
involve, thc principle of limiting absorption, which is studied in the next section.

PRINCIPLE OF LIMITING ABSORPTION AND THE INVERSE PROBLEM

There is no doubt about the role played by the principle of limiting absorption in
the eigenfunction expansion, which is a keystone for scattering theory. However, in the
three-dimensional inverse scattering theory for the Schr~dinger equation, both Faddeev
[31 and Newton [41 studied the "Volterra" integral equation, where t.e principle of
limiting abso, ption again played an essential role. We will apply the principle of limiting
absorption to the acoustic wave equation. This should bring some light to the study of
the inverse problem of the scattering theory for the acoustic wave in three dimensions,
which will extend Ref. 2.

In the investigation cl recovering the perturbed operator A' = A - A 0 , the reduced
wave equation of acoustics without an obstacle,

Au(x, k) + k 2 u(x, k) = 0, x,k ER 3 , (58)

is expected to have a set of solutions u(x, k; w) such that the function u(x, k; w)e-ih X

has an analytic continuation into an upper halfplane in the variable s -k - - at a fixed x
and k1 = k - (k') -y; and u(x, k, w)e'1i x - 1 decreases with large IsI. From an alternative
form of (58), namely,

Aou + k 2 u = Alu

S k2 [1 _ c2 (x)p 2 (x)Iu _ Vp(x) . V U, k,x E R', (59)

p(x)

9
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we should study the integral equation

u(x,k;w) = eik ' x +J'G(x - y, k;w)AIu(y, k;w) dy (60)

with x, k in R 3 and with a unit vector w, where the Green function G(x, k; w) is a
limiting value of the following function with Im s = 0:

G(x, U; s) = (2?r) 3fei(m+sw)'X[(m + sw) 2 
-p

2 - s2 11 dm, (61)

with m E R 3 , w = q/Iql, s= k'w + ilqI, and p 2 = k - (k'w)2 . As indicated by Faddeev,
the irregularities in the expression under the integral sign are proven by the equations

m 2 =p 2 and m-w = 0 (62)

and do not depend on s with Im 0. This implies, through a singular Fourier integral,
that the function defined by (61) is an analytical function of s in the upper half plane
and that

IG(x, p; s) exp JIm s(x-w)J i < const t(1 + IxI) "1 . (63)

The existence of an analytical continuation of the Green function G(x, k; w) in the upper
balfplane in the variable s = k'w, which satisfies (63), is just the characteristic property
that defines this function uniquely.

On the other hand, A1 in (59) is still a differential operator. We remark that

7P(y)G(x - vy k; w))u(y, k; w)"

= G(x - y; k; w) Vu(t, k; w)y - u(y, k; w) L p(x) Vp( )1

pG) I P Y p(y)

= V - G(x - y, k; w)u(y, k; w)Y2 .] + -_.G(x -y, k; w,

2 p(x) iVP(X)12l G(x - v; k, w)u(y, h; w). (64)

Formally this relation and the divergence theorem of Gauss give another tepresentation

of (60):

u(x, k; t,) = ell X + G(x - y, k; w!.u(y, k; w) dy

+f';(xpv. k: ) ') u(y, k; iv) dr.. (65)

10
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where the multiplication operator A 2 is defined by
+ V2 p(y) IVP(Y)1 2 ]

A2 u = d2 [1 - c 2 (y)p 2 (y)] + 2 p u(y, k; w). j66)

F Here the following condition is assumed:

fVPly_ y) = 0, IyI = r -* o (67)

limfG(w - y, k; w)u(y, k; w)y - d(y)

with the surface integral over the sphere with radius r. However some u(y, k; w) is re-
quired to be bounded. and since G(w - y, k; w) has the asymptotic estimate (63), condi-
tion (11) in assumption 2 ensures (67). The representation (65) is not justified yet,
because the asymptotic estimate for Vy G(y, k; w) at large lyI is not clear.

£

This brings in the issue concerning the asymptotic estimate of both G(y, k; w) and
VyG(y, k; w) given by (61) with the principle of limiting absorption employed.

In the rest of this section, we will follow the idea used in Ref. 13. First we recall a
well-known formula 111, 131:

Seirp[r - (a + ib) dr= i(sign b)H(p sign b)e i b'p  (68)

where H(t) is the Heaviside function. From (61) we have for a multiple index a

D*G(x, p; s) = (21r)-3eswxj r2 (J + J.) dr, (69)

and

J+ +J =s.2 [,(fr + sw)Ia[u 2 + (sin-'w)2l112erm'x({r + (si'w)

+ ['2+ (si" w12 2 + {r + (s- w) - [p2

+(S- w)211 /Y-l ) dS(i) "(70)

Without loss of generality we can assume in'x = xi 1f. By the Morse transformation 1141
we choose a local coordinate (uNJ 2 ) 'at (- 1,0,0) st _h that n ± (1 - -1 2 Then
the estimate for large lxl is

11
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J+ J= const - '[ + (s.w)2112IeirxI [i(3r + sw)]({r + (s-w)

+ [P2 + (S3.W) 2 1I 12 }-I + {r + (sxw) - p 2 + (6r.w) 2J] 1 12 )-1 }

+ eirlxl[i(- r + sw)J]({r - (sx -w) + (p 2 + (s7.w)2 1112 }1-

+ {r - (s-w) - [M2 + (si.w) 2j 1 /2}-l)j + q(rx), (71)

where q(x) is estimated for large IxI as

Iq(x)i + IVq(x)l < const lxI "2 . (72)

Because the denominators in (70) would not vanish when ffi'w*0 (by (62)), there is no
singularity in (71) when F-w*O. After substitution of (71) and (72) into (69) and then
integration by parts, we have the estimation

D'aG(x, ji; s) < const IxI"2, if yC"wtO. (73)

Assume now that i'w = 0. Then (71) becomes

J.+ + J. = const 27r(rlxl/p) " I { eirX(i'rsw) + e-irlxI[i(sW - r)]a}[(r + m) -1

+ (r - mr- J + q(rx), (if ." = w ). (74)

Let O(r) be a C" function with compact support such thut O(r) has values between 0 and
1 and is equal to 1 at r = -;A. Therefore (69) and (74) imply that

DOG(x, p; s) = (27r)-3 r2 (J. + J-)[1 - O(r)I dr (= )

+ (21)- 2 (jxj/U)- I constf (eirlxlO+(r; , s, W, I)

+ eirlxl¢Jr; 3E, s, w, ")X[r + p-I + [r - )]' 1 ) dr(= 12)

+ O(Ixl' 2 ), if.w = 0. (76)

where 0 = rO(r)[i(sw±r)j*. There is no ,ingularity in the integral for 11. I.tegration by
parts yields 11 = O(ix' 2 ). Employment of 68) for 12 gives

12 (21rtxlp) const [+(Ixt; 1, s, w, a)

+ ixi.( -xIx;, s, w, a)] * [sin (p/ix)H(Ixl)I, (76)

12
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where f * g means the convolution of f and g and where the function ±(JxI, i, s, w, a)
is the Fourier transform of 0±(';, s, w, a) in r. Since 0. is compactly supported in r,

'± is a smooth rapidly decaying function in 1xJ. Therefore

DOG(x, p; s) = O[(Ixiy) " ], for large IxI with 'w 0), (77)

for any order a of derivatives.

Then for either 3i-w = 0 or F'w t 0, we have

ID"G(x, p; s) exp {Im s(x'w)}I < const (I + lpx) " , 0 J l'A < , (78)

which is (63) when a = 0.

This estimate ensures the two integrals on the right side of (65) are well-delined
under the general assumptions for c(x) and p(x). Equation (65) will be further studied in
the follow-up article.
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