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SECTION I
INTRODUCTION

One of the more popular approaches being employed in rocket nozzle

structures is known as rosette construction. In this construction, layers of

woven fabric composite materials are wrapped to follow spiral trajectories

in the cross-section of an exit cone while the warp or fill direction generates

a helix about the longitudinal axis of the structure. The purpose of rosette

construction is to impart a high stiffness in the radial (thickness) direction

as a means of improving load-carrying capacity as well as erosion resistance

as compared to tangential wrapping of the layers.

The concept of rosette construction was initially devised for use in con-

nection with ablative plastic liners, where structural performance was of

minor interest. Consequently, no disciplined efforts were undertaken to

relate the structural response to the established effective moduli of the basic

sheet material. The concept is now being applied in the construction of rocket

nozzle exit cones, where the structural response characteristics are critically

important.

In this work, we shall develop the treatment defining the exact relations

that exist among the various geometric parameters in a rosette cylinder.

We shall also formulate the exact differential equations (in the sense of

classical anisotropic elasticity theory) which define the mechanical response

of such bodies under typical loading conditions imposed during an experimental

characterization program. The governing equations will be solved numerically

and examples presented which highlight the errors involved in the use of crude

analytical techniques. It will be shown that, in general, 21 elastic coefficients

are necessary to define the response of a rosette cylinder. Furthermore,

the 21 coefficients are functions of position in the medium. While these

elastic coefficients are not mutually independent since they are related to the

stiffness matrix of the basic sheet material, they must all be included in the

theory to define rigorous solutions of boundary value problems. Indeed,



even the proper interpretation of "simple" experiments, such as axial load-

ing, torsion, and internal pressure depends upon such solutions. As such

experiments are fundamental with respect to the structural design procedure,

they define the scope of the present work. Included in the treatment will be

the influence of uniform "expansional" strains [1] which allow us to consider

the stress fields induced by uniform temperature changes, fabrication curing

conditions, and absorption of swelling agents. We might also suggest that this

work is basic to the problem of optimization of the material and geometric

parameters in structural elements, such as rosette cylinders or conical

shells.

SECTION II

GEOMETRIC RELATIONS

The rosette pattern can be generated by starting with the basic sheet

material in which the axes of elastic symmetry are denoted by x i (i = 1, 2, 3)_

as shown in Figure l(a). The sheet is then distorted to follow a certain

cylindrical spiral trajectory, defined by C and C' , while the deformed axis

x assumes the helical path shown in Figure l(b). The next sheet, initially

oriented as in Figure l(a), is then laid adjacent to the first and the process

is continued until the entire area A between radii r 1 and r is completely

filled. As the specific equation of curve C is not known apriori, we must

define the pertinent relations existing among the arc length, ply thickness,

and inner and outer radii to establish this unique relation, consistent with

the continuity requirement (complete filling of cross-sectional area A with

no gaps). Finally, in order to develop the appropriate constitutive relations,

the path of the original x 1 axis within the rosette cylinder must be defined.

We begin by treating the trajectory of curve C. Consider two arbitrary

spirals C and C' which intersect a circle of radius r at points A and D as

shown in Figure 2. For conceptual purposes, we may let the two spirals

represent the edges of a single layer of the basic sheet material, which we

assume is completely flexible. Thus, the perpendicular distance between
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the two spirals, t, must be a constant. Let the local angles between the

tangents to the spirals at A and B and the intersecting circles centered at

O be denoted by a and a' , respectively. We shall henceforth refer to a as

the arc angle. Our convention is that the angle a is measured in the clock-

wise direction from the local positive 9 direction to the spiral tangent. By

applying the law of sines to the triangle OAB, we get

r sin a = r' sin a' (1)

Since there is not a unique trajectory of curve C satisfying the continuity

requirement, we select the class of curves commonly employed in rosette

construction, namely, the one in which all curves intersect a circle of given

radius at the same arc angle. Therefore, at radial distance r, , the arc

angle on C is equal to a'. Hence, the parametric form of the equation

of curve C is given by (1), or

r sin a = r sin a = const. (2)
0 0

where a represents the arc angle corresponding to the point (ro, 0o) in

polar coordinates.

To continue our study of the spiral configuration, we consider the

differential geometric relation (see Figure 3)

dr = -r tan a dQ (3)

Eliminating the dependence on r in favor of a through (2) and (3), and inte-

grating yields

0 - 0 =a + cot a -a- cot a (4)

And finally, using (2) again, we can express the equation of C in terms of

polar coordinates as
_ roSina_, (r22 2 1/2

0-0 =a +cota -sin 1 0 0 - 0Os / 2

\ r/ r sina (5)
0 0

1 This equation, as well as several others presented in this section have
been derived by Mamrol [2] using a different approach.

3
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where the ambiguous sign is negative if O<a < r/2 and positive if ff/2< < yr.

0 0

In order to fabricate the rosette, we need to compute the arc length of

the spiral. From Figure 3, we observe that infinitesimal arc length ds is

given by
-dr

ds - (6)
sin a

Substituting for dr from (2) into (6) and integrating, we get

r ( s in a ° 0
oZic 2~ (7)

s 2sinao - sia7

or
r 2

o r
Zsina (1 -- 2 (8)

o r
0

both of which represent the arc length from (r o , o ) to an arbitrary point

(r,Q).

In order to define the relation between two arbitrary spirals, we again

return to Figure 2, noting that

t sin a' = r sin (a-a') (9)

by use of the law of sines. Solving (9) for a' gives

t
cot a' = cot a + r (10)r sinci

By applying (4) to points D and B and taking the difference, we find that

= a' + cot a' - a - cot a (11)

Thus the central angle subtended by arc AD is given by

t t( - - (12)-
rsina r sina

0 0
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where the last step follows from (2). Noting that r sin a is a constant, we
0 0

see that the central angle subtended by the radii through two points which lie

on two given spirals, the points being at the same radial distance from 0, is

constant. Therefore, given the trajectory of one spiral within the rosette

pattern, any other spiral is generated by a rigid body rotation about the longi-

tudinal axis through point 0. The magnitude of the angle of rotation is given

by (12), where t is the perpendicular distance separating the spirals. Hence,

the number of layers N within the cylinder is

2 nr sin a
N 0 (13)

t1

where t is the thickness of a single layer. Satisfaction of Eqs. (13) and (4)

or (5) implies satisfaction of the continuity requirement. Finally, given the

equation of one spiral, i.e., (4), the equation of any arbitrary spiral can be

expressed as

9 - 9 ) = a + Cot t a - - ot a (14)

where P depends on dimension t through Eq. (12).

In order to relate the helical angle co to the respective angle in the

basic sheet, D , we refer to Figure 4, where the basic sheet is illustrated in

4(a) and the top view of the sheet in the rosette cylinder is shown in 4(b).

First, we observe the relation

z = cot 0 (15)

where c can be evaluated from (8). Thus, we get

(rZ- r 2 )cotr =- (16
z = 2r sin a (16)

0 0

Now, helical angle ca is defined by

dz
cos 0 - dR (17)

dR

5



where dR is the infinitesimal arc length along the deformed line QP in the

rosette cylinder, so that

2 2 2 2 2
dR = dz + dr i r do (18)

Taking differentials of (4) and (16), using (2), and substituting the results into

(18) gives

dR rdr (19)
r sin a sin~h

0 0

Use of (17) and (19), in conjunction with the evaluation of dz from (16) yields

cos W = cos 40 (20)

Hence, in the transformation of the basic sheet into the rosette pattern, angles

with respect to the longitudinal direction are preserved. This implies that

the angle between line segments in the basic sheet intersecting at an arbitrary

point F is carried into the identical angle between the corresponding tangents

at F' through the present transformation, where F' is the transformed posi-

tion of F.

SECTION III
STRESS ANALYSIS

In this section, we shall study the elastic response of a rosette cylinder

under the application of an axis ymmetric loading system, such as that usually

imposed in experimental characterization, in addition to uniform expansional

strains [I j . The latter permit the treatment of thermal stresses induced by

uniform temperature changes, curing stresses [3,4], and swelling stresses

caused by absorption of fluid. We assume that the stress field is independent

of the axial coordinate z. Thus, the localized disturbances near the ends of

the specimen under imposed displacement boundary conditions are excluded in

the present work. As mentioned earlier, the rosette cylinder is constructed

of numerous layers of a composite material. In what follows, each layer is

treated as a homogeneous, anisotropic material characterized by its effective

moduli [5]. Thus the mechanical properties which govern the response are

6



the effective stiffness coefficients and expansional strains of the basic sheet

material. In practical application,, the basic sheet material is orthotropic

(9 elastic moduli and 3 expansional strains), so we shall consider this mater-

ial class in the present work, although treatment of materials possessing

arbitrary anisotropy can be incorporated without difficulty.

It is important to recall that the rosette structure involves a system of

layers, the trajectories of which are mutually related via rigid body rotations.

Furthermore, the helical angles defined by the various spiral layers are all

identical. These facts imply that the material structure is axisymmetric, i.e.,

while the moduli are functions of radial position, they are independent of 9.

As the loading is also axisymmetric, the most convenient coordinate system

to employ in connection with the stress analysis is that of cylindrical coordin-

ates r, 9, z, rather than coordinates defined by the spiral trajectories.

The stress components in the present class of boundary value problems

are functions of radial position only. It follows that the strain distribution

will only be a function of r. By use of the strain-displacement relations of

linear elasticity, i.e.,

1
e= u, r e -(u v, 0 ) , e =w,r r r zz (zz

(2 1)
1 1-V = v +-u vy=U, + W, , y= V, +-W,

Yr r +r v) Yrz z r Yz= z r 9

where u,v, and w represent the r, 0, and z components of displacement,

respectively, and commas denote differentiation, it can be shown that the

general form of the displacement field is given by

u = U(r)

v = Arz + V(r) (22)

w = ez + W(r)

zWe assume that the displacement field is continuous, i.e., there are no
slits in the cylinder.

7



where e and A are constants. By substituting (22) into (21), the strain

field can be expressed as

erC U, , e 0 = U/r , z = e (23)

Y V. -V/r , = W, , y = Ar
r0 r rz r z0

The stress equations of equilibrium for axisymmetric problems take the

form
1a- +-(a- -O) = 0

r,r r r 9

r + - r 0 (24)
rz, r r rz

2
r +- r 0
rG, 0 r r0

Rewriting the first of (24) and integrating the last two directly yields

(ra- ) = -rr,r -- 9

r r = const. B (25)
rz

2
r rro = const. D

The governing field equations are thus defined by (23),(24), and the constitutive

equations, i.e.,

0ij = C ijkl(eki- ek) (26)

where e ki are the components of the mathematical strain tensor, in contrast

to those of (23) in which the shear strain components are engineering strains,

and e ki are the components of the mathematical expansional strain tensor.

In order to develop the proper form of the rosette stiffness coefficients,

we refer to the orthogonal coordinate systems shown in Figure 5. Coordinates

x.(i=1, 2, 3) are oriented along the axes of elastic symmetry of the basic sheet

8



material, x. are tangent and normal to an arbitrary spiral path, and x. are1 1

the cylindrical coordinate axes 0, r, z, where each coordinate system is right-

handed. Letting x i and y. represent two arbitrary orthogonal coordinate
1 1

systems and C ijk and B ijk the respective stiffness coefficients in the two

systems, the transformation equations are given by

ijkl = piaqjarkas, pqrs (27)

where a.. is the cosine of the angle between x i and y. The stiffness coeffi-

cients in the x! system, C! may thus be computed by applying (27) for the

transformation from x. to X., followed by that from . to x!. The results of
1 1 1 1

these transformations are given in the appendix. It will suffice at this point

to state that, in general, all elements of C' ijk are non-zero, but they may

all be computed in terms of the (nine) stiffness coefficients of the basic sheet

material, C Finally, to save writing, we shall subsequently employ the
ijkl

standard contracted notation [6] to represent the stiffness coefficients in

terms of double indices, e.g., C... Thus, the 9 independent components C.

transform into 13 non-zero components C.., which in turn are carried into

21 components C'.. The constitutive relations now assume the form
T , ', , , c

-0 Cll 12 13 C14 15 16 U/r- e

C C' Cy C C1
2r C2 C23 C24 25 26 U -e

,r r

= ' ' C'e
z C33 C34 35 C36 z (28)

r SYMM. C4 4 W5  6  W - e

' C' Ar- e
r20 C55 C56

ro C Vr- V/r-erI

r66 ,r r

9



where

C!. = C!.(r) (29)
ii I

The expansional strain components, denoted by the symbol e, are also func-

tions of r (except for e , which is a constant) and are related to the sheet

expansional strains e.(i= 1, 2, 3) through the standard transformation of
1

(engineering) strain equations (see appendix). For the case of thermal

expansion, the latter strains are given by

e. a. T (30)
1 1

where a. are the coefficients of linear thermal expansion and T is the differ-
1 U

ence between ambient temperature and that in the stress-free state. For

fluid absorption, e. are defined by
1

e. p.m (31)1 1

where p, are the free swelling strain components per unit volume of fluid in

the medium, while m is the total volume of fluid absorbed.

Upon evaluating the stiffness coefficients C'.. and substituting (28) into

(25), we obtain 3 ordinary differential equations in terms of dependent varia-

bles U,V, and W. Introducing the expression
r sin a

0 0 0 (32)
[3 - r

these governing field equations become
G r U +G U +G U/r+G r V + G (V -V/r)+ G r W

,rr 2 ,r 1 ,rr 6 ,r 5 ,rr (33)

+G W G8+G e + G Ar
4 lr 8 o 9

- -- 221/2

C' U, r+C'4 U/r+ C4 6 (Vr /)C 4 Wr = r +B/r '3 e+ (C 5 5 -C 4 4 ) Apr(l-P

C /r+ V/r)+ C' (G8+ Goe) P(l-P ) 1 / 2 _ Ar+D/r 2

26 U , r+ C16U C66V,r 4 6 ,r (+56

in the region r IE<r- r. The various coefficients in (33) are, in general, func-

tions of r and are given in the appendix.

10



The boundary conditions required to complete the definition of the

present boundary value problem are given by

- (ro) = V(a) = V
ro 0

(34)

ar (r = 1 W(b) = W°

where a- , a 1 , Vo, and W are prescribed constants, and a and b are arbi-

trary values of r within the medium. The constants V and W are simply

required to define the rigid body displacement components. Finally, the

constants e, A, B, and D must be prescribed. Note that B and D completely

define shear stresses rrz and rO according to (25) and that the latter

normally vanish under typical experimental loading conditions.

The remaining quantities of interest are the axial force P and torque
0

T , which can be expressed as
0r

P= 27 r o rdr

rl

(35)
r
o

T = 2 r J r dr

rI

The method of solution adopted here requires the prescription of e and A,

rather than applied loads P and T . However, solutions for specified
-O 0

values of P and T can be developed through a simple influence function0 0

approach.

SECTION IV

SOLUTION OF THE BOUNDARY VALUE PROBLEM

The complexity of the coefficients involved in field equations (33), in

particular, the appearance of the irrational functions, precludes efficient

application of the standard series methods of solution for ordinary differential

I1



equations. Consequently, we have adopted the finite-difference approach,

incorporating the use of higher order difference representations. Forward

differences have been utilized throughout the solution with a maximum of

4 nodal point functions being employed in the difference approximation. Since

the first of (33) involves second derivatives of the displacement functions

and we wish to satisfy the field equations at all points in the region, including

the boundaries, we have expanded the region by adding two nodal points out-

side the right hand boundary r = r0 .

Consider the series of equi-spaced nodal points x = O,h, 2h, 3h, or

x. = ih (i=0, 1,2, 3) where x = r+d and d is a constant. Letting y represent1 O

an arbitrary function of x (or r) and letting yi = Y(xi), we approximate the

first and second derivatives of y, in the event that all 4 nodal points lie in the

(expanded) region, by

11 3 16~ % Yo 2 yl Y2 '_33 '

r<_r -h (36)
2 0

h y 2y - 5y + 4y 2 - y 3

where primes denote derivatives. Equations (36) are easily derived by

expanding y1, YZY Y 3 in Taylor series about yo, truncating each series after

the cubic term in h, and then solving for y' and yo. At r r three point
0 00

difference approximations are employed

I 3 1

h yo 3 0 1- o ZY - y2

r =r (37)

h2 y y 2Y +y 2

and finally, at r = r + h, we put
0

h yo yl - y , r = ro +h (38)

12



Thus, letting N represent the total number of nodal points employed to sub-

divide the expanded region, we write the finite-difference approximation of

the first of (33) at N-2 nodal points and that of the second and third of (33)

at N-1 points. Applying the finite-difference representations of the traction

boundary conditions in (34) after substituting the expression for av given by
r

(28) and the two conditions for V and W from (34), we arrive at 3N equations

to be solved for the 3N unknowns, i.e., U, V, and W at the N nodal points.

Utilizing a computer routine for sparsely populated matrices, the solution of

a given problem is executed in a matter of seconds on a CDC6600.

Upon solving for the nodal displacement functions, the stress and

strain fields are defined through the use of eqs. (28) and (23), respectively,

where derivatives are evaluated via the appropriate relation among (36)-(38).

Since the solution technique is an approximate one, the degree of approxima-

tion may be assessed by writing a system of "check" equations, consisting of

(25), the compatibility relation,

er = eo + r eO, r (39)

and the identity
rr dr = r 0a - r (40)

r
1

which represents the integral of the first of (25).

SECTION V
SAMPLE PROBLEM

In this section we shall consider the stress field witl'.n a rosette

cylinder in which the basic sheet material is a high modulus unidirectional

graphite/epoxy composite. Letting xI represent the direction parallel to

the fibers, we assume the following basic sheet moduli (psi),

CI1 = 20.Z x 10 6  C 1 = C = 4.72x 105

C 23= 3.84 x 10 , C22 = C = 1.50 x 106 (41)

13



C44 = 5.60 x 10 , C55 = C66 = 7.0 x 105 (41 cont.)

The cylinder is under an internal pressure a, = -1000 psi, while a B =0

D = 0, i.e., the outer surface is traction-free and the shear traction on the

inner surface vanishes. We also let e = A = 0, which imply that axial force

P and torque T , in general, are different from zero. The inner and outer0 0

radii are 3" and 4", respectively, and the expansional strains e. are assumed

to vanish.

Three specific material configurations will be treated. In the first

(rosette), we put n = ff/12 and 0 = 17/3. Two other configurations which

may be employed to crudely approximate the rosette structure have also been

considered. These are represented by the parameters ci = 0, 0 = I/3

(helical-wound cylinder) and a = 0, 0 = 17/2 (hoop-wound cylinder). In the

latter two configurations, exact solutions for the present class of boundary

value problems are available (see [7] ). Such solutions were also treated by

use of the present approach to serve in checking the computer code. In the

results presented here, 403 node points were utilized in each solution, which

is sufficient to achieve a precision of approximately 4 significant fioures for

the computed stress components.

Distributions of the four non-vanishing stress components, To Uz' r z0

and a* , throughout the domain are given in Figures 6-9 for the foregoingr

3 configurations. Clearly, the helical-wound and hoop-wound cylinder models

represent very poor approximations to the actual response, although smaller

errors than those indicated here may be expected in systems of less extreme

anisotropy than the present case. From these curves, we also observe that

the rosette structure effects a considerable smoothing of the stress field, at

least under the conditions treated here, i.e., stress concentrations in 0

z and rzG are close to unity. While the cylindrical (r, 0, z) components of

the stress tensor are not particularly informative with regard to failure

prediction in orthotropic bodies, the stress components in the elastic symme-

try coordinates x. (see Figure 5) can be easily determined through the
L

14



standard stress transformation equations. Consequently, coupled with an

appropriate failure criterion for the basic sheet material, the present solu-

tion provides a means of optimizing the material and geometric parameters

in rosette cylindrical bodies under axisymmetric loading.

SECTION VI
CONCLUS IONS

We have derived the pertinent relations which describe the geometry of

the spiral paths traversed by the layers within a rosette cylindrical body. It

has been demonstrated that prescription of inner and outer radii, r 1 and ro,

respectively, arc angle a at one point, and layer thickness t completely

defines the appropriate geometric pattern. The spiral trajectories of the

various layer interfaces are interrelated through simple rigid body rotations,

while helical angle 0 is constant. These facts imply axisymmetry of the

distribution of heterogeneous effective stiffness coefficients C!..13

Taking advantage of the axisymmetric material structure, we have

formulated the governing equations of elasticity for the rosette cylinder under

boundary conditions and expansional strains which are independent of 0.

Although the stiffness coefficient matrix C.'. is fully populated (21 constants)

in general, these coefficients only depend upon the (orthotropic) moduli of

the basic sheet material and the angles a and 9 . The finite-difference method

has led to the development of an efficient computer program for the general

solution of the axisymmetric class of boundary value problems. An example

solution has demonstrated the tremendous smoothing influence of the rosette

construction on the elastic stress field, which will be an important feature of

this concept in structural applications.
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A PPENDIX

The x. components of the stiffness matrix (see Figure 5) are defined

by substituting

a11 a2 3 sn N a13 a -i cos 0 M, a 32 -1 (A-I1)

a12 a22 a31 a33

into (27). Upon switching to standard contracted notation, we get

-4 4 2 2
C 11=C 11N+C zM + (C 1 2 +2C 6 6 )M N

-2 2
C 12=C 13N+C 23M

2 2 4 4
C 1 3 = (C 1 1 +C 2 2 - 4C 6 6 )M N +Clz (M + N

2 2 2
C15 =[C 1 1 N-C 2 2 M + (C 12+2C66)M-N N

C 2= C 33(A-2)

-2 2
C23 C13 M+C23N

C 2 5 =(C 1 3 - C 2 3 )MN

4 4 2C 3 3 = 1M+ 2 2 N +2Z(C 12 +2C 2 2M

C 3 5 =[C 1 1 M - C 2 2 N 2+ (C 1 2 + 2C 6 60 (N 2- M )] MN

-2 2
C 4 4 =C 55M+C 44N

C -6(C 5- C4 4 )MN

16



C l 22)M N - 2C 1 M G6 6N(2 + C ( 2 N 2 2 (A-Z cont.)

2 2
c66 C55 C44 M

Ci4 xC =0 (i = 1,2,3,5)
i4 i6

Similarly, the transformation from x. to x', upon substituting
I i

2 1/2
a 2 2  cos a - , a = -a s a 3 3  1

22 21 12 3
(A- 3)

a 1 3 -a 2 3 =a 3 1 =a 3 2 - 0(-

into (27) yields

22 - -- 2 2CI (1 + C 2 2 p 4 + 2(C 1 2 +fZ 6 )p(-

C'12 (CII 2 2 - 4G 6 6 )3 2(1-P 2) + c 1 2 (2P4- P + 1)

= C 1 3( 2)+ C 23p

C4 -- [(ZG4- GI)(I-p2 ) - - 25z

14 =L(Z46- 15 G2 5P I

C = [iC (1-P)+( +2 )P 1( I-p / 2

15 15 25 46

C', 6 [ 11 (P2_-1)+ E22 P2 + (C-1 + 2c-66 )(1-2p 2) ]p(1_p2)1/2( -4

- 2 2 2 2 2 1/ A4
C'~ ~ c [C ( -1) p +(cG+ 2C )( p (-P

16 1122 12 66

22= C11p
4 4 + C 2 2 (1-p 32 ) 2 + 2(C2+ 2C6) 2 (1-p 2 )

2 3 -- 132+ C2 3 (1-p32

C2 4 = [-C 1 5p P+ (C 2 5 + 2C 4 6 )(P -1)] P

C 25 -[(C 1 5 " 2C 4 6 )p 
2 +  C 2 (1 PZ) ](l -p2)1/2
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, I- 2 + C 220-P 2h+(C1+ 2C66 (?-)] 3(-21/2

33 33

C 34 c 35P3

2 1/2
c 5 = c 35(I-

C36 = (C23" C13 P')

- 2 - 2

C: 4  = C 4 4 (-3 ) + 55P

- 21/2 
(A-4 cont.)

C'4 5 (C 44- C5 )P3(l--

G, 6 =[C 1 5 - C 2 5 )P + C 4 6 (1-2p)] (1-P

- 2- 2
C;5 = C 4 4 P3+ C 5 5 (1-P

C4 -(C25- C15)(1-P3)+ C46(1-
2p ) ] p1 2

C 66 C 11 + 22- 2c 12)1P2(1-_ ) c66( 1 -  2 2

where we have assumed that L t/ Y2. Note that C.. in the above
13

expressions are all constants.

Substituting (A-1) and (A-3) into the standard strain transformation

equations leads to

2 22 2 2
e = (e 3 - eIN - e 2 M )p2 + ei N +e M

2 2 2
e r(e N +e 2 M _ e 3 )[ + e 3

2 2
e -e M +e N (A-5)
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e rz 2(e 2 - C1 )MN

e = 2(el- e 2 )MN(l- 2 ) I / 2  (A-5 cont.)

10 2

e r --2(e 3- e1 N -e 2M )P(1-P2) 1/

where we recall that e 9 -- - are the engineering expansional strain components.

Finally, the remaining functions appearing in field equations (33) are

given by

S 13- C23

4 2-
G - 3F 2F 2  -C 1 1

G2 22- C G1

4 2-
G F -FP

3 1 2F 2 p 22 (A-6)

G = (F 3 P + C15- 2C'46)P

G 5 = -( F 3
2 + 025+ 2C 4 6 )p

G 6 = -3Flp 4 +(FI+ 3F2 ) p 2 + Cl- C22 ] P(1-p 2 ) 2

G 7  (-FIp
2 +F 2 )Pl3-P

2 ) 1 /2

- - 2 2-- 2 2
G 8  (C 2- C 1 1 )(eIN2 + e 2 M )+(C 2 2 -C 1 2 )e 3 + (C 2 3 -C13)(eIM +e 2 N

+2(C2 5 -C 1 5)(e 1 - e 2 )MN

2-2 -1/2

G 9 -(-2F 3 P2 + C 1 5 -2C 2 5 )(1-p 2 )

19



(A- 6 cont.)

11 -JC (e N2  M ~2 + 2 ) -eMNt

1 -f 1 1 N -L)M+C 2 5 e 3 +C (5eI e 2 +Z6 5 (eI e2)M P

where

F I C 11+C 22-2C 1-4C 6

F 2 C 22-C1 - 2C 66(A- 7)

F3 C15 -C25 - C46

This completes the definition of all functions appearing in the governing

field equations (33).
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