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INTRODUCTION

In practice, there often do arise situations in which the

researcher wishes to choose the best (or the t best) from a group
of k populations, where the "bestness" of a population is based on
ranking them according to the value of some characteristic of
interest. In such situations, the classical tests of homogeneity
are inadequate in the sense that they have not been designed to
answer several possible questions in which the researcher may
really be interested. Bahadur [1], Mosteller [54] and Paulson
[ 59] were among the first research workers to recognize the
inadequacy of the usual tests of homogeneity and to consider

more meaningful formulations in order to answer these questions.
These developments set the stage for the early investigations

of multiple decision problem which have now come to be known

as selection and ranking problems.

In the theory of selection and ranking procedures, there are
two basic formulations to the problem. The first one is called
the indifference zone formulation due to Bechhofer [13 ] and the
other is the subset formulation due to Gupta [29]. The goal
of the basic probiem in the formulation of Bechhofer is to choose
one of the populations as the best. The researcher is required

to specify an "indifference zone" in the parameter space and the




procedure determines the smallest sample size so that a certain
probability condition is satisfied whenever the unknown parameters

lie in the "preference zone". For example, if we are interested

in selecting the population with the largest mean in N(ei,l),

i=1,...,k, the indifference zone is the set of all 6's such that
the largest and the second largest differ by an amount < &%,
whereas the "preference zone" is the set of all 6's such that the
above difference > &*. Other contributions to this indifference
zone formulation have been made by Bechhofer and Sobel [16],

Sobel and Huyett [70 ], Barr and Rizvi [12], Desu and Sobel [22],
Bechhofer, Kiefer and Sobel [15], Santner [64] and others. The
goal of the basic problem in the subset selection formulation of
Gupta is to select a subset of the given populations which depends
on the outcome of the experiments and is not fixed in advance

such that it includes the best population with a specified minimum
probability regardless of the unknown configuration of parameters,
i.e., over the whole parameter space. Some recent results in the
area of subset selection formulation are Gnanadesikan and Gupta [28],
Gupta and Studden [43], Gupta and Panchapakesan [38],

Gupta and Santner [41], Huang [46] and Wong [72].

Many probiems in reliability can be considered in the context
of selection and ranking problems. For example, one may wish to
choose one or more of the several systems or components which has
the largest mean life or the largest median life. In general,
reliability problems also deal where the distributions are unknown

but assumed to belong to a class of distributions such as that
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having an increasing failure rate (IFR). Such distributions form
a special cases of what are now commonly known as restricted
families of probability distributions. The investigations of
Barlow and Gupta [5] form the initial efforts on ranking problems
for such families. Other contributions to selection problem for
the restricted families of probability distributions are Gupta and
Panchapakesan [39,40] and Patel [58]. This area of research still
remains largely unexplored.

The main investigation of this thesis is to propose and study
selection procedures for some problems.

Chapter I deals with some selection and ranking procedures
for restricted families of probability distributions. In
Section 1.1, definitions of various partial orderings on the
space of distributions are given. In Section 1.2, we propose and
study a selection rule for distributions which are convex-ordered
with respect to specified distribution G. Some properties of this
selection rule are discussed. The asymptotic relative efficiencies
of this rule with respect to some other selection rules are derived.
Section 1.3 deals with the selecting the best population using the
indifference zone approach. In Section 1.5, we propose and study
a selection rule for distributions which are s-ordered with
respect to G where we are interested in the scale parameter case.
The estimation of ordered parameters from the k unknown distribu-
tions is discussed in Section 1.8.

Chapter II discusses some interval estimation problems from

k populations. We are interested in finding the smallest sample

i
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size N to be chosen from each population such that the probability

that a given confidence interval I which is based on T[k] = max Ti
1<i<k
(Ti is an appropriate statistic from i-th population) contains at

least one good population, is at least P*, where P* is a specified
number, 0 < P* < 1. Also we are interested in finding the smallest
sample size N such that the probability that I contains all good
populations (or excludes all bad populations) is at least P*.
Section 2.2 deals with the above problems for the location parameter
case. The infima of coverage probabilities are obtained. For scale
parameter case, the above problems are investigated 1in Section 2.3.
In Section 2.4, we illustrate the above results by means of two
examples.

In some situations, one has to deal with a vector-valued
parameter A. associated X;. In such cases one may consider
comparing populations or 51'5 in terms of majorization and weak
majorization of these vectors. Chapter III deals with such
problems. The parameter space is partially ordered by means of
majorization or weak majorization. Selection procedures are
proposed and studied. In Section 3.2, a class of procedures
Rh for selecting the best population is defined. A sufficient
condition is obtained for the infimum of the probability of a
correct selection to be Schur-convex in A. Also another sufficient
condition for the same infimum of the probability of a correct
selection to be nondecreasing and Schur-convex in ) is obtained

in Section 3.3. Section 3.5 and 3.6 deal with selection procedures

=




- for multivariate normal distributions in terms of majorization

and weak majorization. Various cases corresponding to the
known or unknown common covariance matrix & are studied. Properties

of these selection procedures are also established.

by 3wt
_ ) . L . o aanderuday




CHAPTER 1
SELECTION PROCEDURES FOR RESTRICTED FAMILIES
OF PROBABILITY DISTRIBUTIONS

1.1 Introduction

In many problems, especially those in reliability theory, one
is interested in using a model for life length distribution which
belongs, for example, to a family of distributions having increasing
failure rate (IFR), or increasing failure rate on the average (IFRA).
Such distributions form special cases of what are now commonly known
as restricted families of probability distributions. These are
defined more precisely later in this section. The idea of using
such families stems from the fact that in many cases the experimenter
cannot specify the model (distribution) exactly but is able to say
whether it comes from a family of distributions such as IFR, IFRA.
Families of probability distributions of these types have been
studied by several authors, see, for example, Barlow, Marshall and
Proschan [7]. These authors have mainly concerned themselves with
probabilistic aspects of these distributions. To some extent, there
have been some investigations dealing with statistical inference for
some of these families; see for example, Barlow and Proschan [8], [9],

Barlow and Doksum [3].




In this chapter we are interested in studying multiple decision
procedures for k (k > 2) populations which are themselves unknown but
which are assumed to belong to a restricted family. First we give
some notations and definitions. A binary ordering relation (5) is
called a partial ordering in the space of probability distributions
if
(a) F < F for all distributions F, and

(b) F <G, G <H imply F <H.

Note that F <G and G < F do not necessarily imply F = G.
We now define some of the special order relations of interest to

us (see Barlow and Gupta [5]).

(i) F is said to be convex with respect to G (written F < G) if
c
and only if G']F(x) is convex on the support of F.

(i1) F is said to be star-shaped with respect to G (written F < G)
*

if and only if F(0) = G(0) = O and

-1
9——5151-13 increasing in

x > 0 on the support of F.

(iii) F is said to be r-ordered with respect to G (F < G) if and
r

-1
only if F(0) = G(0) = %—and §__§iél is increasing (decreasing)

for x positive (negative) on the support of F.
(iv) F is said to be s-ordered with respect to G (F < G) if and
S
only if F(0) = G(0) = % and G']F is concave-convex about the

origin, on the support of F.

If G(x) = 1-e” %, «x > 0, then F x G is equivalent to saying that
F has increasing failure rate (IFR). The class of IFR distributions

has been studied by Barlow, Marshall and Proschan [ 7].
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Again if G(x) = 1-e X

,» x>0, F : G is equivalent to saying
that F has increasing failure rate on average (IFRA). The class of
IFRA distributions has been studied by Barlow, Esary and Marshall [4].
The r-ordering has been defined and investigated by Lawrence [48].

The s-ordering and c-ordering have been studied by Van Zwet [71]

and Lawrence [48].

In the statistical literature, selection problems for restricted
families were first investigated by Barlow and Gupta [ 5]. Some
further results in this direction and a review of some important
results concerning inequalities for restricted families and problems
of inference for such families have been given by Gupta and
Panchapakesan [39]. The selection of the population with largest
a-quantile from distributions which are star-shaped with respect to
the folded normal distribution has been considered by Gupta and
Panchapakesan [40]. In a recent paper, Patel [58] has studied the
selection of IFR populations which differ only in the scale
parameters. His procedure is based on the total life statistic
until r-th failure.

In Section 1.2, we propose and study a selection rule for
distributions which are < ordered with respect to a specified
distribution G assuming there exists a best one. Some properties
of this rule are discussed. The infimum of the probability of
a correct selection is obtained and an asymptotic expression is
also given. We also study the asymptotic relative efficiencies of

this rule with respect to some selection procedures. Section 1.3




deals with the selecting the best population in the frame work of
Section 1.2 using the indif erence zone approach. In Section 1.4,
we propose a selection procedure for distributions that are <
ordered with respect to G. Section 1.5 deals with selection proce-
dure with respect to the means for distributions that are s-ordered
with respect to G where we are interested in the scale parameter
case. The distribution of Vi (see Section 1.5) is also investi-
gated. Section 1.8 deals with estimation of ordered parameters
from k unknown distributions where we are interested in the scale

parameter case.

1.2 Selection rules for distributions < ordered with respect to

a specified distribution G.

Let 5 be the class of absolutely continuous distribution
functions F on R with positive and right-{or left-) continuous
density f on the interval where 0 < F - 1, It follows that the
inverse function ol is uniquely determined on (0,1). We take
F'](O) and F'](l) to be equal to the left hand and right hand
endpoints of the support of F. For F, G € &, consider the following

transformation (see Barlow and Doksum [ 3])

-1 el
(1.2.1) He'(t) = / ] g[G 'F(u)]ldu, 0<tc<l.
F

We assume that G is always fixed. Since H;1 (the inverse of H) is

strictly increasing on [0,1], He is a distribution. We know that

st

F <G if and only if HF is convex on the interval where 0 < HF < 1.
o

kil b Lol Co bt A
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Since G is assumed known we can estimate H;] by substituting the
empirical distribution Fn of F; that is
F;](t)
-1 -1 -1
(1.2.2) Ho(t) = Ho'(t) = f g[G 'F_(u)]du
and Xr n r
(1.2.3) WO = 17 of67F (wdu = T ol DI %y )
s n 'n g nty L9 n i,n""i-1,n
F'](O) i=}

where Xi n is the i-th order statistic in a sample of size n from

F and X = 0.

0,n
If G(x) = 1-e* for x > 0, then (1.2.3) can be written as

-1y _ 1
(].2.4) Hn (H) = ﬁ [X]’n +,..+ Xr_],n + (n-r+1)Xr,n].

We say that X ...+ X

+ (n-r+1)X is the total life statis-

1,n r-1,n r,n

: . . -1,ry _ 1 total life statistic
tic until r-th failure from F. Thus, H "(5) = = {5 reth failure -

(A) Selection procedure and its properties

Let LAERERTL be k populations. The random variable Xi associa-

ted with s has distribution function Fi’

i=1,2,...,k, where Fi €3
(i = 1,...,k). Let F[k] denote the cumulative distribution function
(c.d.f.) of the "best" population. For example, if we are interested
in the quantile selection problem, the "best" population may be
defined as that F[k] (unknown) which satisfies (a) below.

We assume that

(a) Friqlx) - Frq(0 for all x, i = 1o kel




(b) there exists a distribution G such that

F[1]fG 1=],...,k,

where < denotes a partial ordering relation in the space of
probability distributions. It should be pointed ocut that the
condition (a) above may also imply that F[k] is the distribution

with the largest (smallest) parameter. For example, if

= F(X_ N - i
Fi(x) = F(Oi) for x ~ 0, oy > 0 (i=1,...,k), then F[k] is the
distributicn with the largest Gs We are given a sample of size n
from each ™ (i = 1,...,k). Our goal is to select a subset from

the k populations so as to include the population with F[k]’ Let

.=ff=(F1,...,Fk): @ aj such that Fi(x) Z_Fj(x) v i#j}. Let
r

(1.2.5) Ti = jé1 aj Xi;j,n for i = 1,...,k.
r

1.2. T= 7 . Y.

( 6) j£1 a; Yy,

where Xi" " is the j-th

b k4

is the j-th order statistic from Fi’ Yj n

order statistic from G, r is a fixed positive integer (1 < r < n),

g6 - g6

- ) for j = 1,...,r-1

o
1]
S .

%}
3
(o8
=]
1
o
o
1
—_—
—_
|1
!
—
~—

For selecting a subset containing F[k]’ we propose the selection

ot

rule R] as follows:

R

1 Select population s if and only if
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(1.2.7) Ty 2 ¢y max T,
.-k I

where ¢, = c](k,P*,n,r) is some number between 0 and 1 which is

determined as to satisfy the probability requirement

(1.2.8) inf PICS|R ! - O%

where CS stands for a correct selection, i.e., the selection of
any subset which contains the population with distribution F[k]'
Let T(i) be associated with F[i] and wi(x) be the c.d.f. of T(i)
from F[i]' We now state a few preliminary lemmas.

Lemma 1.2.1. (Lehman [49] p. 112) Let F(x) be a distribution
function on the real line. If y(x) is any nondecreasing function

of x, then E y(X) is a nonincreasing function of F, i.e., if F](x) <

Fz(x) for all x, then fw(x)dFZ(x) 5rjw(x)dF](x).

Lemma 1.2.2. Let X;,...,X be i.i.d. with distribution F(x). Let
. be a function of Xy,...,X which is nondecreasing in each of its

arguments. Then Ew(X],...,Xn) is nonincreasing function of F.

Lemma 1.2.3. (Gupta and McDonald [35]) Let X = (X]],... X

X ) be a vector valued random variable of

k i=
independent components with Xij having the distribution Fi(x)’

ot~
p
p—y
—
/
—_—
~

k],...,an

i =1,...,n:, 1 =1,...,k. Let 4 be a function of X;,,...,X s vy
J i ' 11 In,
Xk],...,an which, for any fixed i, is a nondecreasing (nonincreas-
K
ing) function of Xi]""’xin when the other components of X are held
i
fixed. Then Ey(X) is anonincreasing (nondecreasing) function of

F..
1
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The following two lemmas are from Barlow and Proschan [8 ].

n n
Lemma 1.2.4. (a) (] a;xy) - (0) - ) a; [e(X;) - ¢(0)] for all
i=1 i=]
0 Xy ... X, < band for all convex ¢ on [0,b] if and only if
n -
o - A .Z. aj - 1 for i = 1,2,...,n.
J=1
n n
(b) () a.X) - 9(0) - ) ai[e(X;) - +(0)] for all 0 < Xy ~...< X
i:] 1:] - -
and for all convex ¢ on (-»,<) if and only if Ay > 1, A, - 1,...,
Ag o 1o Ay 2 0sen00A - 0 for some k (0 < k < n)
n n
Lemma 1.2.5. (a) ¢( } aiX.) < ¥ as ¢(X;)
) EIELELEEE E B

for all star-shaped 4 on [0,b] and all O < X

(A

..< X, - b if and

only if there exists k (1 < k < n) such that

0<A <. A <1 and A =...=A =0
n n
(b) a(izl aIXi) :'iél ai¢(X1) for all 0 < X; <...< X and for all
star-shaped » on (-o,«) if and only if there exists k (1 < k < n)
such that
Ay ooz A Ay == A= 0.

Lemmg 1.2.6. Let F], F2 be two distribution functions such that

Let T.= J b. X,

s i=1,2
L JGA J 153,nN

where bj >0 for j €4, 8 « {1,2,...,n} and X, is the j-th

133N

order statistic from Fi’ i=1,2.

Then P[T] < x] o~ P[T2 < xJ.

Proof.




1 1fT_iix

0 otherwise

where Xil""’xin are n observations from Fi (i =1,2).
Since v (Xi]""’xin) is nondecreasing 1in each of its

arguments, by Lemma 1.2.2 we have

£ w](X]],...,X]n) < E ¢2(X21""’X2n)
That is P[T] > x] < P[T2 > x]
This proves the Lemma.

We now state and prove following theorem which is more general than

that of Patel [58].

Theorem 1.2.1. Let Fi’ G € 4, Fi(x) > F[k](x) vxand i=1,2,...,k,

F[k](O) = 0 and F[k] : G.

If a; 20 for § = 1,2,...,r, 6(0) <0, g §1(0) <1 and a, > ¢y,

then

(1.2.9) PLCS|R,] N 6571 (26, (x)
-

I
1

Y(0)

where GT(x) is the c.d.f. of T.

Proof. P[CS\R]] P[T(k) > T(i)’ i# k]

o k-1
- cok=10Xx
Sh e

T kx
> é wk(E;)dwk(x) (By Lemma 1.2.6)

= P[Zk > C]Zj’ J# k]

where Z],...,Zk are i.i.d. with c.d.f. wk(x).

14

e e akla




-

Lo

15
Let o{x) = s"r[k](x).
Ncte that
r
(1.2.10) Z j ,J n i=1,...,k,
?3
where X* 2j,n is the j-th order statistic in a sample of size n
from F[k]’ i=1,...,k.
] .
(1.2.11) Pz, > ¢ max 1 = Pl 7)) > Z)s 1= 1o k1]
<J<k 1 3
R | {
Since z =g G (0) <1 and 3 >0vj=1,...,r, then, by :
1
Lemma 1 2. 4 (a) and (1.2.10),
r
*
(1.2.12) q;(Z_i) S‘J‘Z] aj cp(Xi;j’n).
1 15
Since — a. > 1 and — Z a.>1fori=1,...,r, we have, by
4 ¢ 3% 9T
Lemma 1.2.4 (b) and (1.2.10),
(1.2.13) W 7,) > - E )
o < = 55 ki’
* _ . .
(1.2.14) x5 ) 5 Yisgn
where Y 2j.n is the j-th order statistic from G, i = 1,2,...,k.

Thus from (1.2.11), (1.2.12), (1.2.13) and (1.2.14),

PlZ, > ¢y max Z.]> P[ Z a.

r
1cick i % Yes3,m 2 © -Z] 33%i:5.n0

J
i=1,2,...,k-1]

-7 T 48,0
6‘1(0)

This completes the proof.




The constant ¢, = c](k,P*,n,r) satisfying (1.2.8) is determined by

1 ] 68 1(X-)d6;(x) > P* and
61 (0)

We now consider two specific distributions G(x). If G(x) = 1-e7%,
x > 0, then we have following result which generalizes the result of

Patel [58].

Corollary 1.2.1. If Fi(x) 3,F[k](x) vxand i =1,...,k, F[k](0)=0,

F[k] < G, G(x) = 1-e7%, x > 0 and n > max{r, §;%T}' then
c

(1.2.15) inf P[CS|R] = fi KT (2-)dH(x)
Q 0 1

where H(x) is the c.d.f. of a x2 random variable with 2r d.f.

Proof. If G(x) = 1-e™™ then a; = % for § = 1,2,...,r-1
R
and a. =+ (n-r+1).
Also —a >1  iff n > -l
¢ r= =Ty -

By Theorem 1.2.1 and the fact that 2nT is distributed as X2 with 2r

d.f., the result follows.
If G(x) = x for 0 < x < 1, then we have the following result which is

a special case of Theorem 2.1 of Barlow and Gupta [5].

Corollary 1.2.2. If Fi(x) 3.F[k](x) vxandi=1,...,k, F[k](0)=0,

i

F[k] : G and G(x) = x for 0 < x < 1,

then

s




1
. - k-1,x
(1.2.16) 1gf PCSIR,] éHr (E;)dHr(x)
where Hr(x) is the c.d.f. of the r-th order statistic from G.

Proof. If G(x) = x 0 < x <1 then 3y = 0 for j =1,...,r-1 and

a, = 1. By Theorem 1.2.1, the result follows.
We state and prove the following theorem about the asymptotic evalu-

ations of the probability of a correct seiection.

Theorem 1.2.2. If Fi’ G ¢ s for all i =1,..,k and
(i) Fi(x) > F[k](x) vx, i=13,...,k, and F[k] : G,

(ii) G(x) has a differentiable density g in a neighborhood of

its a-quantile n and g(n ) # 0,

ol
8]

-1

(iii}) g G ' is uniformly continuous on [0,1), G‘l(x) is convex and

there exists an n, 0 < n - 1, such that for n <y <1, g G“(y) is

-1
nonincreasing and 9—%:yLXlris nondecreasing in y, then as n - =»

o

(1.2.17)  PLCSIR,D > f wk-]{gi + 1§§1uq g(na)(9:0%1d¢(X)

where % +aqasn->w, a= T-vand $(x) is the standard normal c.d.f.

Proof. See the proof of Theorem 1.2.1, we have

(1.2.18) P{CS{Ry] > P[Z, » ¢y max Z.]
14 = k ~ 11(j<k j

where Z],...,Zk are i.i.d. with c.d.f. wk(x) and wk(x) is the c.d.f.
of T(k).

By Theorem 2.2 of Barlow and Van Zwet [11] and (iii),

17




X

(1.2.19) sup[? g[G']F[k]n(u)]du - g[G']F[k](u)]duI*O a.s.

x>0 -1 -1
F[k](o) F[k](O)
where F[k]n is the empirical distribution of F[k]'

Then we have (see Barlow and Doksum [3]), for n large,

(1.2.20) Zi ot Yisron

where Yi- (the

-1
.r.n and HF

(k] (k]
) is defined in (1.2.1). Since F[k] < G, therefore
c

is the r-th order statistic from HF

inverse of HF
(k]

H is convex. Since G'](x) is increasing and convex, therefore

Pk
6"MH.  (x) is convex. Since H. <G and G™'(0) < 0, therefore
F F <
(k] (k] c
HF[ ] < G. In a manner similar to the Theorem 2.1 of Barlow and
k *

Gupta [5], we have

(1.2.21)  PlY, . v 2 Visrand 2 PO e 2 0¥ 5 0 T 7 K

where Y?-r n is the r-th order statistic from G, i = 1,...,k. From
(1.2.18), (1.2.20), (1.2.21) and using the fact that

~ N(n ’ e )9
o 2
ng na)

*

Y.
iyr,n

the theorem follows.

Consistent with the basic probability requirement, we would like
the size of the selected subset to be small. Let S be the size
of the selected subset. One criterion of the efficiency of

the procedure R] is the expected value of the size of the subset.

If in addition to the assumptions of the Theorem 1.2.1,




o

we assume that (a) F[]](x) l-F[i](x) > F[]](E) for all x > O,

s

i=1,2,...,k, where s > 1 is given and (b) G < F[]].

¢
We have the following theorem.
Theorem 1.,2.3.
P k-1,4
(1.2.22) E(SIRy) <k [ Gy (o x)d6(x)
T <
G '(0)

where GT(x) is the c.d.f. of T.

k
Proof. E(SJR]) = 121 P[Ti 3_C]Tj, for j # i].
By Lemma 1.2.6, we have

PITy 2 cqT3pd # 11 < PITE 2 T8, 5 = 1,0 ,k-1]
T*

where Tg has c.d.f. w](x) for 3 = 1,...,k-1 and gk-has c.d.f. w](x).

So that E(SIR) < k PLTY > ¢qT4, § = 1,... k1]
=k PIZ8 > 2y 3= 1, 0ke1]

where Z],...,Zk are i.i.d. with cdf w](x).
Hence

E(SIRy) <k P[gzk 225§ = 12, 0k]
Let {x) = G']F[]](x)
since G < F[]] then - ¢(x) is convex.
c

Using the same approach as in Theorem 1.2.1

19
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5 1
and —a_ > — v
qirq a., we have

I

Z, > L.
g k =~

L
j = - el 4SS & SR B -
jo J 1,2,...,k] - P[C] Zk > 23, j=1,...,k]

.7 k-1,5_

= f-] G (c] x)dGy (x)
G '(0)

where Z?,...,ZE are i.i.d. random variables with c.d.f. GT(x).

This proves the theorem.

Before discussing properties of the selection rule R], we give some
preliminary definitions. Let & denote the set of all k-tuples

F= (F....,F ). Let Pe(i) denote

PE(i) = pE[ﬂ(i) is selected[R]

when ”(i) is associated with F[i]'

Definition 1.2.1. A rule R is strongly monotone in () if

PF(i) is §¢ in F[i] when all other components of F

\ are fixed
CERL F[j](ifj) when all other components of

E are fixed.

Definition 1.2.2. A rule R is monotone means

Pe(1) 2 PE(3)  for all £ & with Froq(x) 2 Fryp(x).
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Definition 1.2.3. A rule R is unbiased if PF(i) < PF(k) for all F €
ith Fr. - F :
wit ['I](X) o [k](x)

Definition 1.2.4. A rule R is consistent with respect to ' means

inf P[CS!R] » 1 as n - =,

¥

Theorem 1.2.4. If a; >0 fori=1,...,r, then R] is strongly

monotone in m, ...
(i)

Proof.

T ifT,.y »¢c max T,.

Let y(x) =
0 otherwise
since a; > 0, T(i) is nondecreasing in each of its arguments for
i=1,...,k.
So that y(x) is nondecreasing function of X(4)12--+»X()n When the
other components of X are held fixed and (X) is nonincreasing

function of x(j)1,...,x( (j # i) when the other components of X

iln
i . S G j f

are held fixed where X(J)T’ X(J)n are n observations from

F[j](j = 1,..,k). Since Ey(X) = PF(i), by Lemma 1.2.3, it follows

that R1 is strongly monotone in (i)

Remark 1.2.1. (1) If a rule R is stiongly monotone in "(4) for
all i = 1,...,k, then R is montone and

Inf P[CS|R] = Inf P[CS|R]

0
g
where a4 = {F = (F],...,Fk); F] =, .= Fk}'

(2) 1f R is monotone, then it is unbiased.
(3) If Fi(x) = F(x,ei), i=1,...,k and Ti is a consistent estimator of

8 then R] is consistent.

-i!

(4) 1If Fi’ G ¢ i, F.

i & G, i=1,...,k and the condition (iii) (excluding

G-](x) is convex) of Theorem 1.2.2 is satisfied, we can show that

Ry is consistent.




The selection of the population with largest F (i=1,..,k) can be

handled analogously. We assume F[i](x) :_F[]](x), i=1,...,k, and

F < G. The rule for selecting the population with F is
(1] (1]

RZ: Select population r if and only if

(1.2.23) <y T. - min T,

' 1<j-k

where ¢,(0 - CZL_]) is determined so as to satisfy the basic

requirement. In a manner similar to the proof of Theorem 1.2.1,

if Fi’ G € 5, F[i](x) < F[]](x) vxand 1 =1,...,k, F[]](O) =0

and Frqq <G and if a5 2 0 for § = 1,...,r, 671(0) <0, g 67(0) <1
c

and a. 2 Cys then

(1.2.24) PLCSIR,] 3_? ] Gy (c,x)dG(x)
o

where G

(B) Efficiency of procedure R,_under slippage configuration.

We consider slippage configuration F[i](x) = F(%), i=1,2,..,k-1,
and F[k](x) = F(x), 0 - %5 - 1. Let E(S|R) denote the expected subset
size using the rule R. Then E(S!R)-P[CSIR] is the expected number
of non-best populations included in the selected subset. For
a given ¢ - 0, let nR(E) be the asymptotic sample size for which
E(SIR)-PICS|R} = ¢. We define the asymptotic relative efficiency

AR E(R,R*,z) of R relative to R* to be the limit as ¢ - 0 of the




nal e na(€)
] ——— ] . = M
ratio n *—(U 1.e. ARE (R,R a") ]Tlm m
R &0 'R
Under the slippage configuration, for large n, we have (see

Theorem 1.2. 3)

(1.2.25) E(SIR

Ry) = PICSIR ] + (k-T)P[T(yy 2 ¢ max T )]

i#l
(1.2.26) P[T ¢ max T..y] = P[Yy - ¢y max Y.]
(1) i1 (i) 1= i#] 1
where YT""’Yk are independent and Y is the r-th order statistic

from HF for i = 1,...,k. The right-hand side of (1.2.26) is

(1]
equal to
(1.2.27) [ el - anta)it - D)
- ] ’ o
KX - a h(a )(1 - ?]:T)( % )ds ()
1 [oTe

where Cq is the constant used in defining R], a is the (unique)

«-quantile of H (x) and h{(x) is the density function of H (x).
FLk] Fli

From now on, it is assumed that k = 2. Therefore (1.2.25) reduces to

4 -2
(1.2.28) E(S{Ry)-P[CSIRy] = #(-h(a )a (1 - 2_)(4,“ . %) ).
Voo ]
S 4
Let / ¢k ](§7'+(]_C1)”wg(”4) %;(.gdg)dp(x) = p*
o (870




Now, setting the right hand side of (1.2.28) equal to € and using

P
¢y -1 §§9 » we obtain
ne
A
(1.2.29) nR](e) oo [={aa ) ](6)(]+62)%+/? Déauh(au)]z-

[a?hé(a ) (1-2)%77".
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Comparison with Barlow-Gupta Procedure

Barlow and Gupta [5] propose a procedure R3, for a quantile

selection problem.

R3: Select population s if and only if
(1.2.30) T . >»Cop max T .
r,1 3 ]:J:k rsJ

where c5 (0 < ¢ - 1) is chosen to sat*sfy P[CS|R] > P* and T. 5 is

>

the r-th order statistic from Fj where r < (n+l)a < r+1. A similar

expression for np (€) (see Barlow and Gupta [5]) is
3

-3 - 4 2.2 24-1
np (€)= [-(a2) % () (1427472 02_£(5 )120e2F2 (2 ) (1-6)%)
where f is the density of F with unique «-quantile, £y
R L8 (2 g2
8 [¢3

. 1
(1.2.31) ARE(Ry,R.3%) = lim - = .

If G(x) = 1-e™*, x . 0 and F(x) = 1-e”%, x > 0, then

2.2
(1.2.32) ARE(R|,R33%) = ill%l—lgg—iliil < 1.

1

_ ]
0.4803, ~ = 7
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j . .
Comparison with Gupta Procedure
Gupta [ 30] gave a selection procedure for gamma populations
X
, . - ] a-1 i . o
15's with densities X e x - 0, by > 0, i =1,2,...,k.
~(a)y.
i
The procedure R4 is 4
R,: Select population n, if and only if §
j (1.2.33) X. > ¢, max X.
s RS B
E where Xi is the sample mean of size n from T and Cq is the Tlargest
constant (0 <Cy < 1) chosen so that P[CS]RA] > P*,
For k = 2, «[]] = - and %[2] = 1, Barlow and Gupta [5] have prove that
ng (€
Y o= Tim L3
(]234) ARE(R3,94, ) = 1im 9 *(—gy
0 R4

. @LU%LJ)Ehziil;t:fb,.
201-)%0 £ )0

It is easy to show that

(1.2.35) ARE(R],R4;*) = ARE(R],R3;v)ARE(R3,R4;6)

log * Jﬂlvﬁ;:?}Z
l’? (]")a h(a )

4 1
If G(x) = 1-e”* for x > 0 and a =1,

then

) - (=009 109%
2(1-5)%

(1.2.36)  ARE(R,Ry30

Therefore as 5 ~ 1, we get
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. _1-n
(1.2.37) ARE(Ry.Rysotl) = =2t

It is easy to see that

PO —

) [

| —

N o<

('
'.
/ ) - 2]
(]238) ARER],RQ,Nfl)? 1, « =5
.

Comgarisqg_gj_R] and R, from uniform distribution

Suppose " and 1, are two independent uniform populations with

distribution functions Fi (i = 1,2).

0 x < 0
= L - <
F1(x> = ;‘)1' O__X 6'i
1 X > O'i

~

where & = ] 0[2] =1,

A sample size n is drawn from each of the two populations. Let T;
be the total life statistic until r-th failure from " (i = 1,2)
where r <« (n+1)o - r+l.

The procedure R5 is given by
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RS: Select population s if and only if

(1.2.39) T¥ 2 ¢ max T%
T<j<k

where cg is chosen so that P[CS|R5] > P*. Let T(ﬁ) be associated
with '}[1]
c
i t _ * - | _5‘ '
(1.2.40)  E(S|Rg) - PLCSIRg] = PLTEy) 2 c5T(py] = PIT{ 2 ¢ T3]

where Ti, Té are two independent total life statistic until r-th
failure from uniform distribution over (0,1). By Gupta and
Sobel [42],

T%—u
(1.2.41) — - N(O,1) as n - =,

no(2n-an+l) oy = na(2-a)

where wu = nE =

- 2

2 2 2 3.3
;2 - o{1-a)n"(2-a)"n"  aTn

4n’ 12n°
2 3
_ _al(l-0)(2-a a”
=An where A = 7 + 17 -
Hence Y ~ Y. = B/i where B = 2(272)
o (e} Z/K
From (1.2.40), we have
Ti-u' ¢ Tr-u' ¢ '
1 5,2 5 u
E(SIRg)- PLCS[RG] = PL—— > = (=5=)*(5= -1) )
c c
~PZy > 2 Z, + (=2 -1)B/n]

where Z], 22 are i.i.d. with N(0,1).

Hence

E(S{Rg) - P[CSIR:] = f“¢[25 x-(1- ;S)B/ﬁ Jde(x)

iy e g 7 o PR st
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Let E(S{R;) - P[CS[R.] = € > 0, we obtain

e -3
11 o T+ (¢

(1.2.42) (CS - E) /n —//5?'+ 5 5

3 CS

Note that

inf P(CS[R] = P[T} > cg T3]
9
where T., Té are defined as above.

Ti-u' T5-u'
1 > cgl 2

i

Pl

PLT} > cTy) 1+ (cg-1) &

o)

&

P{Z; > cgl, + (cg-1)8Vn]

where Z], 22 are i.i.d. with N(0,1}.

Hence

PLTy > cTy] = jw¢(%~ x -(1 - %~)B/ﬁ)d¢(x)

n 5 5
(1 - 18vm
‘s
= /4_‘,':j““1
i
+ S
s
Setting inf P[CS}RS) = P* we obtain
S0 -bew s Teaa e
c 2
5 <
s “Tpw
(]-CS)/H = D/l + cg where D = 2 é .
s
We see that Cg i 1= ve D ,
n
L =~ 1 4+ :{Z—p .
Cy 7




From (1.2.42),

\l
o
N
o

2

-1
; (1+—'2/_D-l—)/i=°—é—€l{17+[1+2
n

-1
] e (e A 2
/n(1 --é—) + /2D = B {'6—2'"’ 1}

i Thus
] -1 2 -1
2 (0 (e)/1+6 - V2 8¢ (P*).2

If we assume that G(x) = x for 0 < x < 1, then the ne (€) is
1
given by (1.2.29) with R h(aa) =1, n, =aand g(na) = 1.

Hence
np. (€
N
(].2.44) ARE(R],RS,d) = lim m
€0 R5
) _80-a) | 30-0)(2-)2
E 3(1-0)(2-a)24e°
_ 2
= 0.931, o = -
- =3
= 0.675, a = z
= 0.574, o = %.

(C) Selection procedure for distribution < ordered with respect to
c

Weibull distribution

Assumed that the specified distribution G(x) is a Weibull

distribution. In other words, G(x) is given by
for x > 0

0 for x < 0




where ) >~ 0 and attention is restricted to a« > 1 which is assumed
known.

In this case, we use the statistic T? which is defined by

r
(1.2.45) TH= ]S + (n-r)XS. . = 1,0k,
3=1

i33,n isr,n

(as before, X denote the j-th order statistic from Fio i=1,...,k).

i3J,n
Since G(x) is convex with respect to the exponential distribution if

a« > 1 and since the convex ordering is transitive, the family of
distributions which are convex with respect to Weibull (a > 1) will
have IFR distribution. Thus our interest here is in a special subclass
of IFR distributions.

The rule for selecting the population which is associated with F[k]

is as follows,

R6: Select population T if and only if
(1.2.46) T; > Cp max T*
1<3<k

where 6 (0 < ¢ < 1) is determined so as to satisfy the basic

probability requirement.

Using the fact that if F <G and F(0) = G(0) = 0
C
then F <G forao>1,
o c Q -

where F s the c.d.f. of X*, F(x) is the c.d.f. of X, G, is the
c.d.f. of Y and G(y) is the c.d.f. of Y.
Also,

-1 o : A * - 1_a~AX
GOL Fq(xi,n) ot | th order statistic from G*(x) = 1-e "7,

x > 0 where X, <...< X . are order statistics from F. Ina




manner similar to the proof of Theorem 1.2.1, one can prove the

following theorem.

Theorem 1.2.3. If Fi(x) 1_F[k](x) yxand i = 1,...,k,

4

0 = = - -"‘x 'Y > >
F[k]( ) =0, F[k] : G, G(x) = 1-e x>0, »>0and u(> 1)
is known. If n > max{r, ;'] }, then
- 6

(1.2.47) inf P[CSIR.] = | G#"(é—)dGT(x)
) 0 6

where GT(x) is the c.d.f. of a X2 random variable with 2r d.f.

(D) Selection with respect to the means for Gamma populations

Let nyy..hm be k populations with densities

v
ri(x) = E’*%T:.T xli-]e‘“x, X >0y 5 >0, a; >1, 1 =1,...,k

Let Ri(x) be the distribution function of =., i = 1,....,k. We
are given a sample of size n from each ns Let T; be total life
statistic until r-th failure from n,.

Let ary] oS Yk be the ordered values of a;'s. We are
interested in selecting the population with the largest value
k] (unknown). Since the mean of -. is ;i, selection of the
population with largest mean is equivalent to selecting the
population with largest value, k]’ The subset selection rule

based on Ti is:

R7: Select population " if and only if ﬁ

| _ e ,,.,___‘ |




(1.2.48) T;

v

c; max T,
gk Y

where <, (0 -« cy < 1) is chosen to satisfy

PLCSIR,] - P*

Since the rule R7 is scale invariant, we can assume g

Case 1: Al ay are unknown and > 1. Let 0y = {a =

R, <G(x) = 1-e7%, x .0, i=1,...,k
Ve

(ags- -

1.

In this case, by Corollary 1.2.2, we have the following result.

1
If n > max{r, %:E}, then inf P[CS|R7] = [H dH(
R
where H(x) is the c.d.f. of a XZ r.v. with 2r d.f.

Case 2: uy are unknown but assume 1 L TR PR B 1,..

known.

Let RA(x) be the c.d.f. of X with density function

&
¥ A-1 -5X )
rA(x) STy X e xo 0, 2 » 0.

)s

,k and A is

Let h(x) be the density function of a AZ r.v. with 2r d.f.

Theorem 1.2.4.

(1.2.49)  PCSIR,] = [ k=1 én Zgﬂ%3§ll e X dx,
0 7 Aty

where y =R, -1 (1-e7%y.
*
Proof. P[CS!R7] = P[T(k) > Cy mqf ) T?j)]’
T<j<k-1
where T?i) is associated with Sk i=1,...,k.
o e W il — ity

,ak): as >




- Since RA(x) S_Ri(x) < G(x) = 1-e7%, by Lemma 1.2.6, then

(1.2.50) P[CS|R,] > P[T**> ¢ max T**]
2 P 7 S

where TE*is the total life statistic until r-th failure from G(x)
and TE*(j = 1,...,k=1) is the total life statistic until r-th
failure from RA(X)'

Since Ao » 1 then R, < G.

1
RA(x).

Let ¢ (x) = G

: 1 7 _
(1.2.51)  PITER cf TH%3=1, k=11 = PLolg TH*)2 g T3%) 3515000 0k-1]

EZ (n-r+1)c7
n

» 4, =

By Lemma 1.2.4 (a) with a; =...= a = , o

r-1

d.

;7 =0 fori > r+l

and q(x)gl Y where X is a r.v. with distribution RA
Y is a r.v. with distribution G,
we have
7

] ¢y . 1
(1.2.52)  Plqlo TE*)> q(ﬁ—Tg*),Jﬂ voeek=1] 2 PL TEY)> o Y5

(&)
n
—
-
.
.

- .
=
1
—

—d

where Yj (j =1,...,k=1) is a r.v. with X2 with 2r d.f. From
(1.2.50), (1.2.51) and (1.2.52), we have

PLCSIR,) 32 Hk'](»z—'; x)dB(x)

where B(x) = P[q(% TE*)< x].

Since q(x) = -t (1-R (x)), then ¢7'(x) = R7'(1-e7).

e ——— o P T TR

B

b




(e~

—
>

~—
i

= P[Ti*< n <) = Hzn ¢

H[2n R;](l-e'x)].

L = niany) 450

-X
h(2ny)2n - FETyT where y = R;](1—e'x).
A

il

So that,

T uk-1,2n _ 7 uk-1,2n _\ 2nh(2ny) _-x
6H (C7 x)dB(x) = (f) H (C7 x) —{—%lrl\ yy e dx

This completes the proof.
Let S denote the size of the selected subset. The expected

value of S when R7 is used is given by

(1.2.53) E(S[R,) = J P[T¥>c, max T¥].

1 1<j<k

| v

t O~ %

;
Let Q'={g=(a],...,ak)2 ]ia.f_A,’i=],...,k}.

"X then

For o € ', since RA(x) 5\Ri(x) < G(x) = 1-e
k
E(SIR;) < iZ] PLTH* ¢, 22§§k Tg*]
where Ti*is the total life statistic until r-th failure from RA(x)
and Tg*(j = 2,...,k) is the total life statistic until r-th

failure from G(x).

Hence  E(S|R,) < k P[T¥*> c, max T**|
7 1 7 2<jk J

so that,

:
g __‘._,....J
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) = k JRET(Xyds(x) :

(1.2.54) sup E(SIR c

7

where R(x) (S(x)) is the c.d.f. of total life statistic until

~
e b ik i TS A

r-th failure from G(x) (RA(x)).

1.3. Selecting a best population - using indifference zone approach.

Let LAERRREL be k populations. The random variable Xi associ-
ated with s has an absolutely continuous distribution Fi‘ We assume there
. X . _
exists a F[k](x) such that F[i](x) i-F[k](E) for all x, i=1,...k-1 and

6§ (0 <6 < 1) is specified. Let

(1.3.1) Qa = (F= (F1,...,Fk): 3 ajsuch that

Filx) 2 F5(3) vi# 3} .

The correct selection is the choice of any population which is
associated with F[k]' We propose the selection rule R8: Select

population m if and only if

(1.3.2) Ti = max T, where Ti is defined as in Section 1.2.
1<j<k

We want the P[CS[R8] > P*, for all F € o , where P* (%—< P* < 1)

is specified.

Theorem 1.3.1. If Fi, 6 €3, 1 = 1,00k, Fpyq(0) = 0, Frig ) G

and 671(0) < 0. If a,

0, j=1,...,r,
gzl

9671 (0) <1landa, > s,

then




(1.3.3) PLCS|Rg] > z 61 (%)d6(x)

where GT(x) is the c.d.f. of T.

Proof. P[CS}R8]= P[T(k) > max T(
T2k

Since F[i](éx) 3‘F[k](x), i=1,...,k-1, it follows from Lemma 1.2.6 that

i)

T,
PLCS|Rg] = PLT(y 2 5= v § # K]
_iP[T(k) >4 T3‘ vi# k]

where TT,...,T3_], T(k) are i.i.d. with c.d.f. wk(x). Using

the same argument as in Theorem 1.2.1, we have our theorem.

Remark 1.3.1. inf P[CS|R] =

; G$‘1(§)dGT(x) if 671(0) = 0.

(0)

o &
w—r

For given k, 5, P* and G(x), we can possibly find the values of
the pair (n,r), (n > r) which satisfy

(1.3.4) a_ > ¢ and f-] 681 (X)dey (x) > .

G (0)
If G(x) = x for 0 < x < 1, we can always find the values of the
pair (n,r), (n > r) which satisfy

«

-}

651 (X)d6, (x) > P,

O

In this case, GT(X) is the c.d.f. of r-th order statistic based on a
sample of size n from G.

If G(x) = 1-e”% for x > 0 (see Patel [58]), we can find

the smallest integer r which satisfies
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/ G$'](§)dGT(x) > P* where GT(X) is the c.d.f. of a x2 random variable
0 5

with 2r d.f. Since % a, > 1T iffn > ;‘%}— » the minimum n

)]

. e r-1
satisfies n > max{r, y=-}.

1.4. Selection procedure for distribution < ordered with respect to G.
*

Let t(> 0) be a given number. Let Ni(t) be the number of failures
in time t among the n units on life test from m; which has a

continuous distribution Fi’ i=1,...,k. We assume that

(1.4.1) No(t) > 1,0 = 1,0k,

and there exists a F[k](x) such that Fi(x) Z_F[k](x) for a1l «x,
i=1,...,k. The correct selection is the choice of any

population which is associated with F[k]’ Let Ti be the total life
statistic until Ni(t)—th failure from population mi. Let T(i) be
associated with F[i]' We propose the rule

(1.4.2) Ry: Select m, ©T. > ¢, max T.

where c9(0 < g < 1) is chosen so that P[CS!R9] > P*.

Theorem 1.4.1. If Fi(x) Z_F[k](x) vx,1=1,...,k and F[k] < G,

then

(1.4.3) PLCS|Rg] > Z A’]“](gg)dAz(x)

where A](x)(Az(x)) is the c.d.f. of total life statistic until n-th

(first) failure from G.




Proof. From (1.4.1), we have

P[CS}R ] = P{T(k) zAC9 max T(j)]

i p[TG S

Lrey TH for 5= 1, kel]

T*

where Hl is the mean of a sample of size n from F[ 7’ i=1,...,k-1

i

T*
and ﬁﬁ-is the first order statistic from F[k]'
Let
n
(1.4.4) TEx = 5 XL, for j = 1,...,k-1.
J =1 JF

where le""’xjn are 1.i.d. from F[k]’ J = T,...,k=1.

i Fr. - F*k *
sinc [J](x) - F[k](x) then TJ 2, TJ Hence

(1.4.5)  PIT > ¢oT%, j3K]

| v

PLTE > cqTH*, j#].

Let ofx) = G“F[k](x).

T*
(1.4.6)  PITE > cqTt*, j4k] = [dn{;) s o3 TH), 34K]
Since ¢ i¢ starshaped, then
T* T*
1 K 1 k
(1.4.7) oo 7 2o e
Cg N cg 0
By Lemma 1.2.5 (a) and (1.4.4),
(1.4.8) f(l TH*) - E 1 AX )
4. A . no¢ i
Tx |

Note that {—K) Y, where Y, is the first order statistic of
n k k

st
size n from G and q(Xjf) has distribution G, j = 1,...,k-1,

2= 1,...,0.

%.hn--hnu--u-uu-u-u-i-ﬁn-u--un-uu-.--nun-u-nﬂu---unu-r~ i : s

T FIRE SR LA




Y

n

L Y. = . j = N S
et ¥, 221 WXip) § = 1oke

From (1.4.7) and (1.4.8), the right-hand side of (1.4.6) is greater than

or equal to

1 1 .
Pl—- Y > =Y., j=1,...,k-1] )
Cg k = n ' J Cq k

1
e
~—
i
>
-<

n

) k-] X
[ Ay (Z=)dA,(x).
0 1 Cq 2

The . .of is complete.

1.5. Selection with respect to the means for distributions s-ordered

with respect to a specified distribution G.

Let the random variable Xi associated with ms have an absolutely

continuous distribution Ff. Assume that Fi(x) = F(gj), i=1,...,k,
1
F <G and F and G are symmetric about 0. As before, let
S

0 - n[]] <o e[k] be ordered values of unknown 6. (i =1,...,k).
A best population is defined as the one having e[k]' We are given
a sample of size n from each of the k populations. Assume that n

is large. Let

(1.5.1) T, = -r'X; X - X

_X. - ) +X. +..
i isr',n Tisr'4+1,n 1,11,n 1;Qi+1’”
+ (n-r+1)X, . .
iir,n
, < .09 K. <0 < X, <ou.< X are
where Xi.q p 2o i52;,n = Misag+l,n == Mangn

order statistics from Fi(x), and r',r are given integers such
that 1 - r' < fis Moo X > R, i= 1,0k

Similarly, let

39
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(1.5.2) T = or'¥ o oYy mesY Y e )Y

< ¥ -0 Y Y are order statistics

where Y T T
I.n—"""= "4¢,n itl,n —"""—= '‘n,n

from G. Then, for selecting a subset containing @[k], we propose

the following selection rule:

RlO: Select population 7y if and only if
(1.5.3) T. - ¢ max T,
i 10 1<j k Jj

where ¢ (0 - g “ 1) is determined as to satisfy the probability
requirement, inf P[CS/R,q] - P*, where CS stands for a correct
selection, i.e., the selection of any subset which contains the
population with O[k] and J={(0],...,9k}: o, > 0, i=1,...,k:

Let (1) be associated with ”[i]’ i=1,...,k. Now, we give

a theorem pertaining to the computation of the minimum probability

of a correct selection.

Theorem 1.5.1. If Fi(x) = F(ij) vxand 1 = 1,...,k, F <G and

F and G are symmetric about 0.

I[f lim %-= t', lim %,: tand cyp - minit', 1-ti,
Nn-»oo N s
then,
(1.5.4) Tim inf PLCS[R ] = [ HE™(E—)aH(x)
N 4 0 10

where H(x) is the c.d.f. of T defined in 1.5.2,

Proof. p[CSJR]O] = P[T(k) ;’C]OT(J), j:],...gk‘]]

where T(j) = . X(i)r',n_

+ (n-r+1)x(.)

i)r,n
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and X, . <...< X, < 0 < X,. <...< X are
(i),1,n = ""= (1)Q(i),n (1)£(i)+1,n (i)n,n

order statistics from v(i).
It is easy to see that

(1.5.5) igf P[CS!R]O] = P[T& :_c]OTj, j=1,...,k-1]

where T% = -r Yi;r',n""’yi;z . ,n+Yi;2 . +],n+...+(n-r+1)Y].;r’n

(i) (i)
and Yi;],n 5"'3-Yi;2(i),n < 0 < Yi;z(;)+1,n <o..< Yi,n,n are order

statistics from F(x).

Let 4(x) = G']F(x).

u—

[ 1 = 1 | N -1 1= -
(1.5.6) PLTy = cqqT3] = P[¢(C]On ) > a(5 T8, 3=, k=11,

By Corollary 2.9 of Lawrence [48] with iO = 2(1), jo = z(i)+1,

and
0 1<J<r'
T e
-l r' < < 3
5. = n 2 0H)
j ,]_ a (.( ’
n “(3) 3 ° T
n-;+1 joeor
0 n-J->r
then
]‘(-r',‘ - _]
(1.5.7) o (5 T1) n ‘(Yi;r',n) n (Yw,F(i),n)
1 n-r+l C -
* ﬁ'Q(Y1y9( )“Ln)+ T el kel

Also by Corollary 2.10 of Lawrence (48] with ig = ri-1. g = n+l,




0 0. Jj r
__-‘_Ti jo=r
10
_‘,‘,_ r' J P
Q ncyy (k)
aj = 1 ’
ey ) "
n-r+l jo=or
0 j>r
-r' n-r+l
— - < -1 and 1,
ncm - nclo
then
(1.5.8) c(ﬁ]c—— T) > n;‘“' S R ——~nl oY, n)
10 10 o 10 (k)
b (Y n-r+l o )
NC1o k;L(k)+1,n NCig ksr,n
Now @(Yj;i,n) st Viiin 97 T,.oook, 1= 1,...,n, where Vy
is the i-th order statistic from G(x), j = 1,...,k.
Let
Ti = -r Vi',Y",n_ LR N Vi;?,(i),n+vi;9‘(i)+]’n+
o) VL Tk

From (1.5.6), (1.5.7) and (1.5.8), we obtain
PT, > cqoTis j#k] > PLT, > CypTys 3 = 1,...,k-1].
Since G is symmetric about O, as n becomes large,

Tj st T, J=1,...,k.

Thus

42
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|
I
t
!
|

n-r+}
n

@ k_] . ‘ '
PICS IRy (] 1.6 (2= )dH(x) i ¢ - min{r, }.

10
This proves the theorem.

Corollary 1.5.1. If F.(x) = F(3=) vxand i =1,...,k, F <G, F is

i S
G{x)

symmetric about 0 and g(x) = i % e

- Ix]

s = ® < X < o,

. ' ] . r
If lim - = ¢+ « 5, lim = =
o N 2 oo 1

then, as n is large,

t > % and C10 < min{t', 1-t},

|
|

© 1-c
(1.5.9)  inf P[CSIR; ] ~ [ of 12— +(—O) /A7 3T 1do(x)
2 107 7 S0 S0

Proof. Considering
-1 r

) + ) (n-i+1)(Y
241

Y )

i,n 'i-1,n

- where Y],n << Yz,n < 0 < Y2+1,n <ol Yn’n are order
statistics from G(x).
Since 2 T* is distributed as a x2 r.v. with 2(r-r'+1) d.f.
(see Lawrence [47]) and T* has same distribution as T when n is

large, then 2 T is distributed as x° with 2(r-r'+1) d.f.

By Theorem 1.5.1,

PLCS[Ryg) 2 PLV, > ¢4y ]Tﬁfk Vj]

where V],...,Vk are i.i.d. from X2 with 2(r-r'+ 1) d.f.
Since Vi - N(2(r-r'+1), 4(r-r'+1)), then

o0 ]‘C
PV, >~ c max V.] =] T “—glg /r-rT+T)de(x)
1.j-k 37 . “10 10

This proves the corollary.

Pbetm ) ‘




Assume X],n 5"'5»Xk,n <0< Xk+],n <oon< Xn,n are the order statistics *
from distribution G where %; G(x) = g(x) = % e'lxl, -® <X <o, 3
Define
i-1 .
PNC)
(1.5.10) v, =Sl i =0,
Hy ()

S DE IR SR
where H "(2) = j£1 96" (57) (Xj,n'xj-],n)‘

Now we want to get the limiting distribution of Vn (as n is large).
Let Tn = /ﬁ[%-vn - %J. To obtain the asymptotic distribution of Tn’

we use the following result. Let X] g Seees Xn n be the order statistics

I R
from G and S, = — Z L(H)X

G) =2 [ [ L(G(s))L(G(t))G(s)[1-G(t)]dsdt.
s<t

where L satisfies the condition (ii) of following lemma.

Lemma 1.5.1. (Moore [53])

If 02 < ~ and
! -1
(i) EX| = é[G (u)|du < =

(ii) L 1is continuous on [0,1] except for jump discontinuities
at CIETRRRLIVE and L' is continuous and of bounded variation on
[0,1] - {ags...hayls

then

@

(1.5.12) £ (/A [S, - [ xL(6(x))d6(x)]) ~ N(0,0%).

-

Let




(1.5.11) -% Z

Then using an argument similar to the one in Barlow and Doksum [3]

where L(1) = ¢ 671(I)n(d - Bypg 67 (h)-g 671N,

n 2 n
Since . X for O %
g7 l6(x) = { ,
1-x for % <x <1
then
i ] j 1
; 2(5‘) - 7 for ﬁi?
L3 = |

3 i
5 - Z(F) for

3=
v
roj—

Thus we can consider

(1.5.12) s =17 L
e n n .- n'"i,n
i=1
2x - %— for 0 <x < %
where L{x) =
% - 2x  for % <x <1

We can show that

o

[ xL(G(x))dG(x) = 0.

-0

It follows from Lemma 1.5.1,
£ (/5) ~ N(0,°(6)).

where




—_
-
[$a)

p—
w
~—
<
~N

—
o

~—

1]

2 [ [ L(G(s))L(G(t))G(s)(1-G(t))dsdt.

s<t

t
[g;__ti_s_Lsds _L_(LL (1-t)d
g6 ()

t
[/ -————)—-— sds] ——Liij——~ (1-t)d
096 '(s) T(t)

G

~N
—
[ep]
~—

i
~N

O —

i
N
Ol

2
[] Ei—l‘ sds + } Lgs) sds ] L(t)E}'t) dt
0 ¢671(s) 2967 ' (s) g 6 (t)

=

+
~N
b e

L1 .5 1
=2 8+2 1—8'-'4—.

By Theorem 2.1 of Barlow and Van Zwet [11], H;](l) -~ G(X

. -1
Since G(Xn,n) > 1, therefore Hn (1) > 1 a.s.

/nS

n
-1
1)

Now Tn = » hence by Slutsky‘s theorem,

H

we have the following result.

Theorem 1.5.2.

v
(1.5.14) < (/m (1.

1
Y )) ~N(0, z)

N —

1.6. Selecting a subset which contains all populations better than

a control.

In addition to TyseeesTy s We have a control population "o Let
T have a continuous distribution Fi’ i=0,1,...,k. We are given
a sample size n from each of the (k+1) populations T i=0,1,...,k.
Let £y be the unique ~-quantile, i = 0,1,...,k. A population m

(i = 1,2,...,k) is defined as better than the control "o ifr o L0

al

| | —
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We want to select a subset such that the probability is at least
P* (1 < P* < 1) that all populations m; (i = 1,....k) for which

i 2 640 will be included in the subset. We regard any such

al
selection a correct selection (CS). We assume that for a fixed
i, i=1,...,k, either F.(x) > Fo(x) or F.(x) < Fo(x) vx > 0.
Thus ms is better than "0 iff Fi(x) < Fo(x) ¥ x > 0. Here

i is not known and we assume FO : G. Let Ti be the r-th order
statistic from Fi where r < (n+1)a < r+1 and let Hi be the c.d.f.

of the r-th order statistic from Fi’ i=0,1,...,k. We propose the

rule Rn as follows,

R]]: Select s if and only if

(1.6.1) T. > cyTy
where ¢,y (0 < €y < 1) is determined to satisfy the basic probabil-

ity requirement. Let t be the number of “i|s better than "o and let

A be the index set for those ., t is unknown. Let Gr(x) be the

c.d.f. of the r-th order statistic of sample size r from G. Let «

be the set of (k+1)-tuples (Fn,Fqy,...,F

09 'l’ k)‘

Theorem 1.6.1. If FO < G and for a fixed i, i = 1,...,k, either
¢

Fi(x) 3.F0(x) or Fi(x) < FO(x), x > 0, then

(1.6.2) inf P[CS[R]]] = ZGt(c]]x)dGr(x) where Gr(x)=1-Gr(x).
0

Proof. P[CS[R]]] PIT; 2 ¢y Tg 1 € ]

<)

1-H. dHn (
é 12}\[ (C”X)] 0 x)

1

| -



Since Fi(x) < Fo(x) for i € A, then Hi(x) < Ho(x).

Thus

w

PLESIRY ] 2 [ v [1-Hgeqp ) Jag(x)

é [1-H0(cnx)]t dHO(x) E’Z [1-H0(c1]x)]deo(x)

P[ min Z; > ¢c;y Zn]
1<i<k i 11 0

where ZO’ Z],...,Zk are i.i.d. with c.d.f. HO(x). Since F0 : G

(see Barlow and Gupta [5]), then

. r k
P[]T}gk Z, > ¢ ZO] Zvé[Gr(c]]x)] dGr(x).

This completes the proof.

1.7. Quantile selection rule for a restricted family of distributions

We assume that each Fi(G) has a unique a-quantile Eia(na) and
F.(0) =0 =G(0), i=1,2,...,k.
Let Efl]a S g be ordered values of ¢ , i=1,...,k. A
best population is defined as the one having g[k}a. Let Ti
denote the r-th order statistic from F., where r < (n+l)a < r+l.

The rule we propose is

R12: Select ms if and only if
(1.7.1) T. > max T. - ¢

where cyo (0 < ) < 1) is determined so as to satisfy the probabil-

ity requirement P[CS[R]Z] > P*,

48




As before let 2 be the set of all k-tuples (F],..,F Also

k)'

if F has a unique a-quantile £ 0 We define F < G if and only
S*

]F(x) is concave-convex about the Ea,

if.F(O) = 0 = G(0) and G~

on the support of F.

=X

For example, if G(x) = 1-e ", then F < G is equivalent to

S*
saying that F(x) is DFR for x < £, and F(x) is IFR for x > £
on the support of F. We are interested in this "turning point"
£y Let Hr 1.(x) be the c.d.f. of the r-th order statistic from

F[i] and let Gr(x) be the c.d.f. of the r-th order statistic from
G.

Theorem 1.7.1. If F[i](x) 3vF[k](x), x>0and i=1,...,k,

F[k] ; G and F[k](yﬂ[k]a) > G(y’rna), for y > 0, then

*

o

(1.7.2) Inf PICSIR,] = f 651 (xveq,)d, (x)

[e)

where Gr(x) is the cdf of r-th order statistic from G.

Proof.

(1.7.3) PICSIR,,] = é

k-1
iE]HF,i(X+C]2)dHr,k(X)

[Hp i ety ) 16T (0 = PDX (o2 max X gecy ]

1<i<k-1

>

O~ 8§

where Xr]""’xr,k are i.i.d. r.v.'s with distribution Hr,k'
Let ¢ (x) = G']F[k](x) = G;‘Hr k(x). Since G']F[k](x) is concave-

convex about {[k]a' then '(x) is decreasing in x for 0 < x < E[k],a
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and ¢'(x) is increasing in x for x > E[k]a'
So that ¢'(x) > q'(g[k],a) ¥ x > 0. Since F[k](y+5[k]a) > G(y+na)
for y > 0, then F[k](x) i.G(X+“a‘€[k] a) for x Z-E[k]a'

-1
G 'F (X) -n
Hence Lk] % o5 7,

x-g[k]a -

Let A(x) = G']F[k](x) -6 (e £ga) = © ]F[k]( ) = n_» then

AG) - Alep)
x-&[k]a -

Let X » [;[k]'], then A' ( [k]l >

Since S A(x) = A'(x) = (k] ,
dx g[G_]F[k](X)]

)
then A'(g[k]a [;%n gk]

Hence ¢'(x) > 1 v x > 0.

¢max Xr,i) - q(Xr k)

Since ~ = = ¢'(t) for some t such that
max Xr,i Xr,k
X <t < max X_ . and (X .) =Y _ . has distribution G_,
r,k — —-]iiik r,i r,i r,i r
then
N I

From (1.7.3), we obtain

PICS[Ry,] = PL Tffk Yeoi ™ Yrk £ C2]
é - (x+c]2)dGr(x).

This completes the proof.
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1.8. Estimation of ordered parameters

We assume that F.(x) = F(%—) Vxand i=1,....k, where F,
q

and 61 are unknown and vy T 0, i =1,...,k. Let

e[]] RIS be ordered values of 6.'s. We assume that

1,...,k.

each Fi(F) has a unique a-quantile gi(g), i
Let 017 S S Rk be ordered values of £.'s. We are given a

sample of size n from each of the k populations. Let Ti be

the total life statistic until r-th failure from Fi’ i=1,...,k,
T*(T) be the total 1ife statistic until r-th failure from F(G)
and let T; be the r-th order statistic from Fi’ i=1,...,k,

where r < (n+l)a < r+l.

Let T[]3 5"'i-T[k] be order values of T.'s

and let TE]] i...i_TEk] be order values of T¥'s. Let T,y and

T?i) be associated with a[i], i=1,...,k.
(A} Estimation of 9[1] based on T[i]'

Theorem 1.8.1. If F <G, F(0) = G(0) = 0 and if

c
89 = é xdF (x) = é xdG(x) where 8, is known, then

1 .
(].8.]) P[e[i] i_K'T[i]] > g if A i_no(n-r+1), |
1

where 4 = w‘](1 - Bk'i+]) and W(x) is the c.d.f. of T from G.

PrOOf. p[O[i] < %‘T[i]] = P[T[i] > A 8[i]].
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Since P[T[i] < t] is a non-increasing function of o, (124 < k)

(see Chen and Dudewicz [20 ]), then

k-1+][

P[T[i] > A 0[1]] > P T(i) >4 e[i]]

= Pkfi+][T* ~oa].

By Theorem 4.6 of Barlow and Proschan [ 81,

k-1+1

PRl L 410 p (T 2]
]
= 1-u(a) KT o KT ki

Let Xz(Zr) denote the 100x percent point of a chi-square distribution
with 2r d.f. Again, by Theorems 3.3 and 2.4 of Barlow and Proschan

[ 9], we have the following theorems.

Theorem 1.8.2. If F is IFRA and [ xdF(x) = %0 where b 1s known,
0

then

(1.8.2) P[e[j] - ClT[i]] > iy where
2

> if 2 (2r) - 2(n-r+1)
(\‘ IIOX]_‘,{I(ZY‘) ‘

.
/ (n-fl])eo g (2r) = 2(n-red)
!
where ' = R$-1+]

Theorem 1.8.3. If F is IFR and f xdF({x) = 90 where fq is known,
0

then




N

53

2nk

(1.8.3) Plor.q > ¢, Tr.q7] > £, where ¢, = —p———
[i] 2 [i] 2 2 00X§“<2r)

and " = §
Let 4,2, (0 < £y,6, < 1) be such that &) + £,-1 = v where y is
fixed and 0 < v < 1. By Theorems 1.8.2, and 1.8.3 and the fact that
P(AB) > P(A)+P(B)-1 with A = {e[i] Z,C]T[i]} and B = {e[i] i-C2T[i]}’
we have the following theorem for two-sided confidence interval

of e[i}.

Theorem 1.8.4. If F is IFR and [ xdF(x) = 8 where 64 is known,
0
then

(].8.4) P[CZTEi] = ﬁ[i} E_C]T[jJ] >y
where c], c2 are defined as above.
(B) Estimation of E[i] based on T[i]

Theorem 1.8.5. If F <G, then
*

By if ay(n-r+1) >

(1.8.6) Pler.q < cqTr.1] > 5, where ¢
(il =710 =1 Vol ey i (o) <
67" ()
where 4, = “] and
&-]+i)
]

w'](l-a

W(x) is the c.d.f. of T from G.

P L T ST I
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- Proof. P[e[i] i.C]T[j]]

1
> P T(i) > E}_{[i]] (see Theorem 1.8.1)

A TS I

= P T e s Loe gy = PR (e ) 5 al
1
In a manner similar to the proof of Theorem 3.1 of Barlow and

Proschan [9], we can show that
1

k-1+1

P[F(C]T*) > a] > 4

Hence
P[E[i] i'C]T[i]] - ﬁ].
Looking at Theorem 2.1 of Barlow and Proschan [ 9], we can

have the following theorem.

Theorem 1.8.6. If F <G and F(0) = 0 = G(0), then
C

1}
e A~——
= n
.
iy
s
N ~N
>
1
—
.

W(x) is the c.d.f. of T from G.
Let H], 92 (0 -~ Fys Mo 7 1) be such that 8 + uz-] = , where , js
fixed and 0 - v - 1. By Theorem 1.8.5 and Theorem 1.8.6, and the fact that

if F(0) 6"1(0) = 0, then F <G =F 56w




have the following theorem for two-sided confidence interval of

il

Theorem 1.8.7. If F <G and F(0) = 0 = G"](O), then
c

(1.8.8) P[CZT[i] f-g[i] < ClT[i]] >y
{c) Estimation of g[i] based on TEi]'

Theorem 1.8.8. If F <G, then
*

]
-1 k-i+1
T#. G (1-8 )
(1.8.9) (1) P[c[i] i—gl—l] > gif by = J 71 <1
] G (a)
1
1,9
T, G (27)
(2) p[:’[i] 2 "‘gll] 2 Rf by = — iy 21
82 (a)
Proof. First, we want to prove (1).
TE.J
Plee. < 1 = P *, > Aqfrs
[?,[1] = A] ] [T[]] ke ],{1]]
> Pk'1+1[Tzi) i-A15[i]] (see Theorem 1.8.5)
- x k=141
= {]-P[T(i) A u]i[]-]]A
; k-141 k~i+1
= (V-F ANy fpseq » =)} = (1-F.(A,5)}
AR S 4] 1
where Fj(x) is the c.d.f. f the j-th order statistic from F.
-1 1

Since G7'F(x) = 6]'F;(x), it follows that F(x) - GjG']F(x). Hence

J




i
2 PTGy < ogipiy]
_ el
- Fj(AzE)

1 i

{GjG Fla,7))

Gj[AZG“F(g)]yi

| v

(65(8,67 )1 = <

This completes the proof.

(since F < G and

7!
i

{since F < G and 0 < By < 1)

(!

1
i

_ _ -1 .
FJ(A]E) = GJG F(A] )
- 6, [2,67'F ()]
= 6,046 ()]
it ‘
2
-1 k-1+1
= . R ]-u
6,06} ( )]
]
NS
so that
1
{1-FJ(A1E)}k_]+] . 4]_(]_$k-1+1
Now, we want to prove (2).
T*
e Dy e
Plepiy = 7 7 POy oy

x

3
P
8

*

2

> 1)

56




CHAPTER 11
INTERVAL ESTIMATION AND SELECTION PROCEDURES
FOR A SET OF GOOD POPULATIONS

2.1. Introduction

In practice, one is always faced with the problem of selecting
the better ones from a group of populations. Here, we consider
such kind of problems. Suppose that we are given k(k > 2) popula-
tions Ty sy with distributions F(x,ei) where 0 lies in an
interval A on the real line, i = 1,...,k. The quality of the i-th
population is characterized by the real-valued parameter 6 The
population with the largest n-value is called the best population.
A population is considered a good one if its quality does not fall
.) is a

J
suitable distance measure between v and nj and if e[k] =

too much below that of the best population. If d(ei,e

max (e],...,ek), population 7y s

good, if d(e[k],ui) < A
(2.1.1)
bad,  if d{epq.0) >

where A is a given positive constant. Let Xi = (Xil""’xin)’

i =1,...,k be mutually independent random samples, each of size n,

from population gy i = 1,...,k respoctively. Let Ti - T(}i) be

57
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an appropriate estimator of e Let gn(t,“i) and Gn(t,ﬁi) be the
density function and the distribution function of Ti’ respectively.

The results ot tnmi cnagter relate to two cases,

(S R S Gn(t-~i)' et —w<01<w, and

() 6l ) Gn(ti). t 0, - 0.

If the distribution function F(x,ni) of ms belongs to a
location parameter family, then F(x,ei) = F(x-ei). The distribution
function Gn(t‘”i) of 1' which is based on a random sample size n is
not necessary of the form G_(t-wi). but we can always find a
statistic Ti such that Ti has the distribution function of the
form Gn(t-bi). For example, let LERRRRRL be k normal populations
with unknown means Taee el and a common known variance 02. Let
T. = X, be the sample mean of " based on a sample of size n. In 4

1 1
this case, Gn(x,ﬁ.) (the c.d.f. of ii) is of the form Gn(x,u‘) =

; i
Gn(x-%i), where Gn(x) = ¢(§E x).

[f the distribution function F(x,ui) of " belongs to a scale

parameter family, then F(x,oi) = F(X), x -0, f; > 0. As before

we can find a statistic Ti such that Ti has the distribution func-

tion of the form Gn(%—). The results of this chapter deal with
7y
the cases when Gn(t’ui) is one of the two forms in (2.1.2).

In Definition (2.1.1) we take d as d, or dS’ respectively,

L
whenever 0, is a location parameter or is a scale parameter for

the density of Ti' dL and dS are defined as dL(a,b) = a-b,

dg(a,b) = g.




Estimation of e[k] based on (T],...,Tk) has been considered by
several authors. Construction of two-sided and one-sided confidence

intervals for e[k] based on

(2.1.1) T = max T,
(k] 1<i<k !

was considered by Dudewicz [24], Dudewicz and Tong [26], Saxena and
Tong [65] and others.

For problem of selecting the good populations from a given
collection was considered by Desu [21], Carroll, Gupta and Huang
[ 19] and others.

We consider confidence interval I which is based on T[k]'

In this chapter, we are interested in finding the smallest sample
size N such that the probability that I contains at least one good
population is at least P* where P* is a specified number, 0 < P* < 1.
The probability that I contains all good populations and the proba-
bility that 1 excludes all the bad population are discussed.

In Section 2.2, we investigate the above problems for location
parameter case. The infima of coverage probabilities are obtained.
Some special cases are discussed. In Section 2.3, we investigate
the above problems for scale parameter case. In Section 4, we
discuss the above problem for the means of normal populations and

for the scale parameters of the gamma populations.
2.2. Results for the location parameter case.

In this section, we assume that o is a location parameter

for Ti’ i=1,...,k. It is assumed that there is no a priori
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knowledge about the Gi|s' For arbitrary fixed d], d2 3 d]+d2 > 0, the

confidence interval is defined as

(2.2.1) = (Trepmdys Treg + dp)

where T = max T..
[k] ]iiik !

For the location parameter case, we say that population s is

(2.2.2) good if 6, > rk] 0

bad if G]- < ’J[k]‘[\,

where e[k] = ]T?ﬁk ei'

For given o = (e],...,ﬂk) and & > 0, let ug(]) denote the

probability that I] contains at least one good population, let

:.(2) denote the probability that I]

and let ue(3) denote the probability that I] excludes all the bad

contains all good populations

populations.

Let us denote the ordered o-values by G[]] 53"5-8[k] and
let i be the parameter space which is the collection of all possible
parameter vectors o = (ﬂ],...,ok). For given A > 0, let m denote
the unknown number of bad populations in the given collection of k
populations. Clearly we have 0 < m < k-1,

Let

(2.2.3) (]m = 10 O[]] R e)[m] < H[k]-/\ < 0[m+-1] AR U[k]}

Then

k-1
(2.2.4) U
m=0 m

We need the following lemma before we prove some theorems.




Lemma 2.2.1. Define f(r) = AC"-BD", r = 0,1,...,m where A > B > 0.

If either (i) 1 <C<Dor (ii) 1>C>D> 0, then

(2.2.4) min f(r) = min[f(0),f(m)].
O<r<m

Proof. Assume 1 < C < D. For r =0,1,...,m-1,

f(r+1)-f(r) = AC"(C-1)-BD" (D-1)

A ,Cir D-1
()

f(r+1) < f(r) if and only if 8 S NI P PR R

i C . A
Since pil= B

hence

f(r+2) < f(r+l).

Similarly, one can show that if f(r+1) > f(r) then f(r) > f(r-1).
Hence the lemma follows.

If 1>C>D~>0, then by a similar argument as above, the
result follows.
This completes the proof of the lemma.

Now we want to discuss the probability that I] contains at
least one good population and the infimum of this probability over

.. We need the following lemma.

Lemma 2.2.2. If the family of density functions {gn(t-o): 6 CApt
has a monotone likelihood ratio, for every n > 1, then for arbitrary

fixed dl,d2 satisfying d]+d2 > Ay

(2.2.5) inf «,(1) = min{G:(A+d])Gz'm(d])-Gm(A-dz)G

k
n
m k
n
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Proof. For 5 ¢ 2

(2.2.6) (1)

P{T[k]-d] « ”[i] < T[k]+d2, for some i, i=m+l,...,k}

1]

1-Pm[1.J ¢ I, for each i = m+1,...,k!

= ]-D < 5 b= - > ! i
] ‘{T[k]+d2 = ] P{T[k] dy > 5k (since

d]+d2 > 4)

P{T[k]-d] < O[k]} - P{T[k]+d2 2_8[m+]]}
k k
.3] Gn[a[k]+d1'8[j]] ) j§1 Gn[e[m+1]_d2'g[J]]

J:
Let f‘] = G[k]-q[i], 1 = ],...,k, then 0 = Sk - Y'k_-l T "‘m+] <
Yo« :)m <. < r‘.l
Hence
k k
(2.2.7) ug(]) = jz] Gn(5j+d]) - jzl Gn(ﬁj-5m+]-d2).

It is easy to see that a6(1) is nondecreasing in §ne10 Where

&m+2 < €m+1 < AL Let 5m+] = 5m+2, then
«, (1) = 1 G (6:4dy)6%(6 . +dy)- 1 G (6.-c . -d.,)Go(~d,)
2 Lo I AR IS R B S R
JIm+2 jFm+e

In this case, also we can see that aa(1) is nondecreasing in 5m

+2°

where 3§

<

m+3 < Spep 7 B- Let Smep = o3t Repeating the process with

each éj, j=mtl, ... k-1, thus we have

(2.2.8) Q - inf o (1) - 1G5+ )Gk’m(d])— T 6, (5 5-d,)6y )

Hy O s i=1

where H] = {(cm+],...,&k_]): 0 - Mol e Spey COAh
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For i = 1,2,...,m,
g{s,-d,)
aQ 2
Es—j—g(oi-d (ABW}
= pk-m T _ k-m m
where A G (d ]) 2] Gn(dj+d]) and B = Gn (-dz)jfl Gn(5j°d2)
‘+i Jti
. 9(8;-dy) . . .
Since A > B and 3 6i+d] is non-increasing in 61 > Ay 1= 1y0..,m,
then Q is greater than or equal to the right hand side of equation
(2.2.8) with either §; = b Or s; =, i=1,..,m
Tnus
. r k-m r k-m
(2.2.9) Q > min {Gn(A+d1)Gn (d1)-Gn(A—d2)G (-dz)}.
O<r<m

By Lemma 2.2.1, we get
(2.2.10) inf o (1) = min’6k™(d))-6""(~d,),6M(e+d) )G ™(dy) -

Q -

m m k-m

Gn(A-dZ)G (-dz)}

This completes the proof.

Theorem 2.2.1. If the family of density functions {gn(t-e): 8 €N}
has montone likelihood ratio, for every n > 1, then for arbitrary

fixed d],d2 satisfying d1+d2

(2.2.1) igf ug(l) = minIGn(d])-Gn(-dz), n
k-m

K (d))6M(a+dy ) =65 (-d,)6M(a-dy) s meT, .. ka1

Proof. Since v = , by Lemma 2.2.2, we have

(2.2.12) inf o (1) = min rmin[AKTM.gk"B  pk-mcM_gk-mpymy,
T Coon -l




where A = Gn(d1), B = Gn(—dz), €= Gn(ﬂ+ d]) and D = Gn(A-dZ).

By Lemma 2.2.1, min [AX"M-8XM] < minfa-g, AK-BX]. From
O<m- k-1

(2.2.12), we get

(2.2.13) inf o (1) = miniA-B,AK-8X AR MK T a1 2, ke

This completes the proof.

Corollary 2.2.1. Let the family of density functions {g (t-2):
1y have a montone tikelihood ratio, for every n > 1. For
arbitrary fixed dy, d, satisfying g(—dz) - g(d]) and dy+d, > -,

then

. . k
, = -G (- -
(2.2.74) inf . (1) m1n{Gn(d]) Gn‘ d2>’Gn(d]) G

Proof. By Theorem 2.2.1, we get

minA-B,AK-gK, ak-mem_gk=mpm ooy k-1

(2.2.15) inf « (1)

where A = Gn<d1)’ 8

1]
[}
—
1
Q.
~N
-
-

C = Gn(A+o]) and D = Gn(u~d
Consider

(2.2.16) F(m) = AK-Mem - gk-mpm

. pkcym k,Dym - )
= AT - BUE), mo= 0,0,k
Let
G (x+d,)
o(x) n 1
v G, (x-d,)

dy(x) . gn(X+d1)
dx
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g(x‘dz)
since d2 1_—d], §T;ja?7']s nondecreasing in x > 0 and g(-dz) > g(d]),
du(x) ey = & A
then o < 0 for x > 0. Thus (%) D < »+(0) 5

By Lemma 2.2.1 and 1 < & - D, then
(2.2.17) min f(m) = min{f(0), f(k-1);.
O<m-k-1

Hence from {2.2.15) and (2.2.17),

min{A-B, AK-8X, £(0), f(k-1)}

inf an(])

k gk k-1

mintA-8, A%-8K, Ac k-1

-BD" i,

This completes the proof of the corollary.
Now we wish to discuss the probability that I1 contains all

good populations and the infimum of this probability over

Lemma 2.2.3. If the family of density functions ‘g (t--):
© C "y: has a monotone likelihood ratio, for every n - 1, then for

arbitrary fixed d],d2 satisfying d]+d2 > Ay

J2) = ominmin (Lo ()3T vy )
- Q-r<k-m-2 0<i-m

- [Gn(A-dZ)]

(2.2.18) inf «

:)Lm
k+£-m-r-]Gr+1(_d

n 2)}‘

Proof. For & ¢ U

(2.2.19) 16(2) = P{Q[i] € [T[k]'d]‘T[k]+d2]’ i =ml, Lk

= Pﬁﬁ[m+]] N T[k]-dl’ ﬂ[k] ikT[k]+d2}
k

T R ) M LS R FR 2

d,) -

T




hd SN et 3 oL o Py Sudec ool ¥ v o

66

where J = [k] - [J]s J ],...,k and

0= "k ky T T T T

o i . i . J L.
Since -, {2) is nonincreasing in ms1° Where me2 T ey T O then

{2} -+ Q where

k-1 k-1
(2.2.20) Q=A ~ G.( .-r4dy)-B G (i.-d,),
J=m+2 nJ ! j=m+? ntj e

1)Gn(d7)Gn('A+d7) and

I
i
3 =3
o
>
)
¥
o

For i = m+2,...,k-1,

, k-1 k-1 g (+.-d,)
.‘gﬁ = B A - . . . n*'j 2
—— = g (4 -atrdy)[A G (~i-r+dy)-B 1 G {5.-d)) —p— 1.
;oo Ve 0 1 e 1372 g, (- dy T
i 3
: X p gn<ﬁ1“d2) ) C
Again, since ¢, > :-d, and a;(7;:;;a;y is nondecreasing in o
i = m+2,...,k-1, then Q is greater ihan or equal to the right hand
side of equation (2.2.20) with either s Qor ¢, = v, 0= mt2,
.y k=T,
Let Hy = L0 s dpape o) 000 ey o Sy
Hence,
. . k-m-2-
(2.2.21) inf «(2) = min  [AG(~+d)6 ™" <77 (d})-B6(-d,)
Hy = O0-r<k-m-2

= I - L N - RO
Let H2 ,_(;],...,m). A m « e ,}v.

In a manner similar as ahove, for r = 0,1,...,k-m-2, we can show

that




(2.2.22) 1nf[AG;(-A+d])Gﬁ‘m‘z'r(d})mesr(-d
H n
2
= min {Gr+
0<gem

2)Gﬁ-m-2-r(A_d2>]

] k-m=-1-r+g . -m-1-
(-0 ) {6, (d)) 1" TG (g, M0

61 (-4,

From (2.2.21) and (2.2.22), we have our iemma.
k-1
Sihce w= U w , by Lanma 2.2.3, we can have the following theorem.

m
m=0

Theorem 2.2.2. If the family of density functions {gn(t-o): 0 € A]}

has a monotone likelihood ratio, for every n > 1, then for arbitrary

fixed d],d2 satisfying d]+d2 > A,

(2.2.23)  inf « (2) = min min  min ([6,(d)) 7K
woo- 0<mik=1 0=r-k-m=-2 O<p<m
r+l ktg=m-r-1.r+l
G, (-A+d])—[Gn(A—d2)] G, (-dy) ).

Lemma 2.2.4. Suppose that (i) gn(t) = gn(—t) > 0 for all t and
(i1) the tamily of density functions {gn(t—u): 0 € A]} has a

monotone likelihood ratio, for every n > 1. For arbitrary fixed

dq.dy satisfying d] d2 =:d A,

min{Ak_m-]H-Ck_m_]D, Ak-] k-1 k-m-1_

1

(2.2.24) inf u”(2) 6-C~ "D, AB

) -

m

m+1 m+l . k-m-1

k—m—l’ C 0 }

k—m-]_

cD AT B

where A = Gn(dl)' B = Gn(-A+d]), C = Gn(A-dz) and D = Gn(-dz).

Proof. By Lemma 2.2.3, we have

(2.2.25) infa(2) = min _ min (akteomor=Tprdl kbt-m-r-Tyrel,
B Orekom=2 0-6m



where A, B, C and U are defined as above.

Consider

[ 1 -
2.26) Q= win o pKTEmByrel_ckeoemeDared,

( C [
O v k-m-? A ¢

~

Now we want to show g

G {x-d)-G (x-d} for ¢ - «x - d.

Let f(x) L N

i

) g ed)1-26, o] 60 x -

dx n
Since 0 « . - d, f(+)} - f{0) ang Gn(t) = 1—Gn(-t), we can see
B D
that D; g c

By Lemma 2.2.1 and from (2.2.726),

(2.2.27) Q= min ARt T g ckremetg pesgkemed ikl pkem-1

from {2.2.25) and (2.2.27),

(2.2.26) inf . (2) = min‘ min [AST 7" Tgoceomepy

. 0. om

.

m

. ppoHigkem=1 0 o4] k-m-14,
min (A8 -C° D ik

oM ] e [ _
(2,027 inf o (2) = min minAFT e T abTgick T,

ko= 1 apk=m= 1kl kem-T

minfas T ogpR el At mHgk-m-Ty,

C

This completes the proof.
k-
Since - 1 , by temma 2.7.4 and Lemma 2.2.1, we can

n
g

obtain the followinag result.

Corollary 2.2.2. Suppose that (i) g (t) - g (-t) ~ 0 for all t - 0O

ane (1Y the family of density functions (- ¢ ‘]‘ has a

i
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monotone likelihood ratio, for every n > 1. For arbitrary fixed

d],d2 satisfying d] = d2 =d > A,

(2.2.30) inf « (2) = mintA-c,A%-8K,as%"Tcpk~1,ak-Tg_ck-Tp)
Q -

where A, B, C and D are defined as in Lemma 2.2.4.

Now we wish to discuss the probability that I] excludes all

the bad populations and the infimum of this probability over q.

Lenma 2.2.5. Tor 0 € o,
T - m

(2.2.31)  w (3) > 1-65™(d;)6(-0+d))

Proof. For o ¢ Qm’

(2.2.32)  «(3) = Ploggy £ 1ys 1= 15

= Plopy 2 Tpg e Py 2 Tpgrd
k k
B N S AL I S M

Let (S,‘ = ()[k]‘()[_i], .i = ],2,‘,..,k.

k k
(2.2.33) u0(3)-= 1+.! Gn(ﬁj'51‘d2)".§ Gn(dj-am+d])
- Jj=1 j=1
8&0(3)
since ~557~—-1 0 for 6] > 6, by letting 6] = w, then
k
(2.2.34) a9(3) > 1 - jzz Gn(aj-5m+d]).

Since the right hand side of (2.3.34) is nonincreasing in 5j for

j=2,3,...,m1, m1l,...,k-1, and is nondecreasing in By it follows



k
that the infim f1- . :
um o jSZ Gn(dJ 6m+d1) over the set {(62""’5k-1)'
0«8y <ouus Sy € 8 < 8 <...< 8,) is achieved at Opup] Tove®
ak'] = A, 6m = A and 62 R 6m-] = oo, Thus
(2.2.35) o, (3) > 1-65"™(dy )G _(dq-a)
0 = n 17701
The proof is complete.
k-1
Since 0 = y Q.» by Lemma 2.2.5, we can easily lead to the
m=0 '

following theorem.

Theorem 2.2.3. For arbitrary fixed d],d2 satisfying d]+d2 > 0,

(2.2.36) 1y (3) = 1-6,(d))6 (-r+dy).

Remark 2.2.1. (i) The right hand side of (2.2.36) is independent
of d2. That is, for a given d] and for any fixed d2 satisfying
dy+d, > O, a9(3) is bounded b91pw by 1-Gn(d])Gn(-A+d]). If the
confidence interval is defined as I, = (T[k]-d},m) where d; is

any given number, then inf o (
Q -

3) can be obtained as follows.

(2.2.37) 1gf ag(3) = ]'Gn(dI)Gn('A+d1)'

(ii) If we assume a6(4) is the probability that I, contains

at least one good population and also I excludes all bad popula-

tions, then m0(4) > ao(]) + ae(3) - 1. From (2.2.11) and (2.2.36),

we get
k K-m m
(‘dz),Gn (d1)Gn(A*d]) =

G 'm(-dz)Gm(A—dz),m=1,...,k-]}-G(d])Gn(-A+d]).

70



Similarly, we can find the lower bound of a0(5) which is defined
as the probability that I] contains all gooa populations and
also I] excludes all bad populations.

Let S' be the number of non-best (bad) populations that enter
I]. We are interested in E(S'), the expected size (over ) of

non-best populations that enter 1.

Theorem 2.2.4.

(2.2.38) sup E(S') < (k-1)G,(d;)

Proof. For g €@,

m
(2.2.39) E(S) = ]Z [OLWJ ¢l
m k k
IR ey [J]+dl) ERESUS IR
k
i_m{JL U[k] 0[ ]+d 2] n(O[]J-O[j}‘dz)}
’ 1

J
m k-

“ m{Jh p ( [k] U[ .q+d )j=£+]Gn(D[k]-0[j]+d])Gn(d])_

Gn(-dz)Gﬁ’l[0[]]-0[k}-d2]}
< i, (dy)ek ™ ‘<A+d )6 (04370777416 -d,) -

k-1
S0 Lonyeng )
m Gn(d])Gﬁ'm'](A+d}).

| A

k-1
since 2 = y Q , then
m=0

k-m-1

n (A."d]) "\:0,]\-.-.'(']}

(2.2.40)  sup E(S") < max(m Gn(d])G
' = (k=1)G, (dy).
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In the following, we deal with special values of d],d2 and ~. f
Case (i): Arbitrary but fixed dy.d, satisfying dy+d, - 0 and
v = 0. Since & = 0, the only good population is the one associated
with a[kT' Applying the earlier results,
| . _ e : k k
i (2.2.41) inf 12(1) = inf v;\gj = mln»Gn(d])-Gn@{b),Gn(d])-Gn(—dz),,
|
3 a result obtained by Dudewicz and Tong [26]. Also, in this case
(2.2.42) 3] 160 (dy )
Case (ii): One side {lower) confidence interval. Arbitrary but
fixed dy and d. = ~ with © - 0. Qur confidence interval is now
I] = (T{k]-d],v). We can show that y
(2.2.33) inf (1) = Ghldy),
] (2.2.48) inf . (2) - Gn(o])vg‘](_ +dy) and

Case (1ii): One side {upper) confidence interval. Arbitrary

fixed d2’ d] =~ and *© - D. Now our confidence interval is

defined as Iy = (-, T[k]+d?)’ w0 can show that
(2.2.85) inf . (1) = 1-B{-d,),
(2.2.46) dinf -« (2) = i-G. '{/-d,)G(-4.. and

(2.2.47)  inf ~_(3) = 0.




2.3. Result for the <cale carameter case.
in this section, we as-ume i a scale parameter for Ti'
o= loooo ke Tt ods assured that there 95 no a priori knowledge
about tne '
{Jn(“) for L ()
CRRTINERTR Y A
\ & ) n( ) ]/ !
() for t 0,
fOY“ 1 ")q k = .ia sL

For arbitrary fixed a, o satisfyzing a Pand b - 1, if the

confidence interval ¢ defined a:

. 1
2 = Al i
(2.3.2) 12 L T T[k])
wnere T = max ..
k45
Let * be a given positive constart, = - 1. We say population e
[0 2] 5 N Lo - . [
(2.3.3) yood 1f K] - ;
bad 1f [+ ;
where - max
k1305
For aiven + - ('],...,uk) and & 1, 1ot (1) denote the probability

. (2) denote the

nrobability that [, contain. ail —ond population and let + (3) denote
7 7 -

that [, contain< at Yeast onc good popuiation, let
2 ,

the probability that i, cxcludes abl the vad populations. Using the

samie arquments as in Section 2.0, we obtain the following results.

ot e e

e et msrene J
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Theorem 2.3.1. If the family of density functions {gn(§): TG AZ}

has monotone likelihood ratio, for every n > 1, then for arbitrary

fixed a, b satisfying a -~ 1, o - 1 and ab - &, then

. . F o /1 ¥ k1
(2.3.4) inf v:(]) = min Gw‘d'-G”\g), bn(a) - Gg(g)a
Koty oy af, oy okempTyamoA -
Gﬂ \a/\J \Cl; )‘Gn (5>Gn(5>a m_]a ,k-]

Corollary 2.3.1. Let the family of density functions {gn(%dz

< . has monctone likelihood ratio, for every n » 1. For

arbitrary fised a,b satinfying a - 1, b - 1,g (%) > 9,(a) and ab > 7,

n
(2.3.5) inf . 1) - min 6, (a6 (1),65) 6K (), 6 (a)6" (an)-
G, (£16K 71 (2);
Theorem “.3.2. 'f the <amily of density functions {g (%): « ¢

has a =wonotone likelihood ratio, for every » = 1, then for arbitrary

fived a,b satisfying a T, b 1 and ab Ty

kt.-m-r-1,

\
el
[}
N
~——

inf {2, =  win min nin 1[G (a)]
- . ] - -n
- Gop bl e ben=-2 o o

i

Arel Ayqkts =m-r-1.r+]
G, ({)-[Gn(y)] ' G,

b’ ’n

2y

[GaHEaE)

Theorem 2.3.3. Ffor arbitrary fixed a - 1 and b - 1,
: -G Ma)G (D
(2.3.7) 2 (3) - 1-6 06 ()

LetS' be the number of non-best (bad)perulations that enter 12.

Also we can obtain the following result.
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Theorem 2.3.4.

{2.3.8) sup E(S') - (k—])Gn(a).

In the following, we deal with some special values of d],

d, and -.

2

Case (i): Arbitrary fixed a,b satisfyinga - 1 and b - 1 and . = 1.
Since - = 1 the only good population is the one associated with

L[k]' Applying the earlier results,

, . e 1, K Kely-
= ( = v { { - e - )
(2.3.9) inf .2(1) inf ,:\2) minG (a)-G (50,6, (a)-G ()7

I

a result obtained by Saxena and Tong {661. Also, in this case

(2.3.10) -(3) » 1-6ita.

Case (ii): One side (Tower) confidence interval. Arbitrary

but fixed a -~ 1 and b = « with » - 1. Qur confidence interval

\

is defined as I, - (a Trp]'“l- We can show that
2 [k

(2.3.01)  inf oo (1) - GRia),

1
RN

(2.3.12) inf . (2) = G {a)G (4) and

i

(2.3.13)  inf & (3) = 16 ()6, (9.

Case (iii): One side [apper) confidence interval. For arbitrary

fixed b, a = =+ and ° 1. Now our confidence interval is defined as

¥

d

I, = (0,07




We can show that

; 1

. - Tyak=1,0
(2.3.15) inf . (2) = 1-6,()67" (,) and
(2.3.16) inf o (3) = 0.
2.4. Some examples.

We shall discuss the above problem for the means of normal
populations and for the scale parameter of the gamma population.

Let 1 Tpseees Ty be k normal populations with unknown means
R TERRRE and a common known variance «2. Let Xi be the sample

mean from " based on a sample of size n. Let
(2.4, T. = X, T = R..
(2.4.1) T X, and (k] ]max

Let Gn(x,ﬁi) be the c.d.f. of %, from Tia doE 1,...,k. In this

case, Gn(x,%i) = Gn(x—ﬂj) and

(242) Gn\/x) = :(',” X )

where » is the standard norinal distribution function. The

T

confidence interval I, is of the form (T[k]'d1’ T[k]+dfi~

where d,+d In this case, applyina Theorem 2.2.1, we get

[AR T
C boppm ken
(2.6.3) inf . (1) = min AL, AS-pS, AFTCRLKEM

I S

where B 7 »
vn d - od i dy) ynlada)
A= i{—-), B s (-0, 0 e es ) and Do -




For a given P*, A > 0, d; > 0, d? > 0 and d]+d2 > A, Since

TimA =1, 1m B =0, 1im C = 1 and 1im D = 0, there exists a
N-so Norer N-ro N-ro

smallest integer N such that for every n > N, we have inf ae(l) > P*,
Q -
Let Xy be the unique solution of @(dlx)—¢(-d2x) = P*. Llet x, be

the unique solution of wk(d1x)—¢k(-d2x) = Pxo Let y be the unique
solution of

¢K-m(d]x)¢m((a+d])x)—@k'm(-d?x)ﬁm((A—dz)x)= P*, m=1,2,...,k-1..
Let

Ny = [oE], 4 = 1,2 and My = [58], = 1,00 ke,

where [x] denotes the smallest integer » x. It follows that

the smallest sample size N required to satisfy inf u0(1) > P* is
Q-

given by
(2.4.4) N = miniNi, Mj’ i=1,2, j=1l,...,k=1}.
Consider the probability that I] contains all good populations.

For given P*, A = 0, d] A and'd2 > 0, then

lfm Gn(d]) =1, ;jw Gn(~A+d]) = 1 -and li? Gn(—d

) = 0.

By Theorem 2.2.2, we can always find the smallest sample size N

which satisfies

(2.4.5) inf a (2) > P*.
a Y7

Consider the probability that 11 excludes all good populations.
For given P*, A > 0, dy, d, such that dy+d, > 0 and dy < A, then

Tim G(—A+d]) = 0.
N-»en
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B8y Theorem 2.2.3, we can always find the smallest sample size N

required to satisfy

(2.4.6) inf . (3} o*

Now let uc consider the problem 1n relation to the scale
parameters of the population.. (ot BRI TERERa be k gamma

distributions. The distribution associated with " has the

density function g{x, -, ) where

0 otherwise.

We assume that the shape parameter . is the same for all populations

and - is known. Let Ti be the sample sum from i based on n observa-

tions and let T[P} = omax Ti' Then the confidence interval is
; 1-i-k
given by
A . ,
A0\ 7 - A . g e -
(2.“?._ 12 = (a T["k], o T[K]) wnere an

Let Gn(x,ﬂi) be the c.d.f. of Ti from i = 1,....k.

. X
< I = G Do an:

In thic case, Gn(X,Ji) ‘n(-;) and

(2.4.9) Gn(x) is the c.d.f. of a gamma distribution

with scale parameter 1 and ~hape pavaneter no.  Since the condition

in Theorem 2.3.1 holds, we et

(2,400} inf (13 - wineata)-nll L 8 )y,
-  ~ ‘, S 1
O P T PR e S T O B IR S A

igiaide,




For given P*, - -1, a -1, o - 1 with ab -, since lim Gn(a)r?,
| N '

Tim G (;-) = 0 and lim Gn(a‘) = 1, there exists a smallest integer
[% !

ne- no-
N such that for every n - N, we have inf ./ (1) » P*.

Let Ny be the smallest positive integer such that Gn(a)—

~” 1y , ‘ . .
G (h) o ProoLet Ny be the smallest positive integer such that

n
/ k Y . 3 I3
G;\a\ - G“(&; CPxo Let My be the snallest positive integer such
k-m i -1 Hy
tnat 65 Ma) 6Fan) - KD ) s 12, ke,

[t follows that tre smallest sample size N required to satisfy

inf o (1) P* s given by

(2.4.17) N minN, Mo ie),20 01,200 ke 10

N

Consider the probabiiit, that [, contains all good populations.

For a given P*, =~ ~ 1, a - and b - 1, then
: ’ . s I ) . 1
Tim G (a) = 1, Vim 6.{%) = 1 and Vim (=) = Q.
n n b
n = n~- n -«

By Theorem 2.3.2, we can alway: find tne smaliest sample size N

required to satisfy inf (7] . Px,

Consider the nrobability that I, excludes all good populations.

. , . . . a
For given P*, = T, b Foand g Cowith a2 o, then lim Gr(;} = 0,
N - [
Py Thneorem 2.3.3, we can alwiys Sing the <mallest sampic size N

required to satisfy inf . (30 for,

Remark 2.3.1. (i) [If the sampic size N is preassigned and P* and

are qiven, then the confidence interval I] can always be found
frow (2.2.11), (2.2.93) and {2,260 with Un{x\ as defined in

(2.4,?) 50 that inf Lm<i) SR 1 1‘?~§_




'rF--l--n-u-uu-u--u-n-gwWH e i - - i

{

Similarly, the confidencc interval [, can always be obtained

2
i from (2.3.4), (2.3.6) and (2.3.7) with Gr(x\ as defined in

/

'

(2.4.9) so that inf - (1) - P*, i = 1,2,3.
(i1} In location parameter case, if tie nopulation with the
smallest --vaiue is called the hest nopulation.  Let . be given,

we say population & is

1 (2.4.12) good if -
bad if . SR

where - = min 4.,

i

T

Tnen the confidence interval is given oy

\ 7 - T . -
(2.4.13) . (|[U HE ‘[]]+d2’
where Tr}] = min T..

l-i-k

The calculation of the coverane probabilities . (i), i = 1,2,3,

and tnedr dinfima can be nandled simi’arly as in Sectian 2.2.

The scale parameter case cor be nandled in a similar manner,
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CHAPTER 111
SELECTION PROCEDURES IN TERMS OF

MAJORIZATION AND WEAK MAJORIZATION

3.1. Introduction

Over the last fifty years, majorization and Schur functions
have been applied to develop many useful inequalities in many
branches of mathematics. Some of the references are: Schur [671,
Ostrowski [57 ], Hardy, Lﬁfi]ewood and Polya [45], Beckenbach and
Gellman [17], Marshall and Proschan [52] and Marshall and
0lkin [50 ]. In recent times the techniques of majorization and
Schur functions have been app1iea to probability and statistics
(see, for example, Marshall, Olkin and Proschan [51], Rinott [62],
Proschan and Sethuraman [61], Nevius, Proschan and Sethuraman
[55] and Gupta aﬁd Wong [44]).

Recently, Nevius, Proschan and Sethuraman [56] introduced
a stochastic version of weak majorization. They have discussed
some properties and made some applications.

Gupta [32] defined a class of selection procedures and
considered some of its properties.l Some additional results
concerning the properties of this class of procedures were

obtained by Gupta and Panchapakesan [36], Gupta and
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Panchapkesan [37] defined a class of selection procedures which
is a natural generalization of the class considered by Gupta [32].
In that paper, they obtained a sufficient condition for the
probability of a correct selection to be nondecreasing in x when
SUEEERE A=A where A is the parameter associated with s
i=1,...,k. They also obtained the supremum of the expected
size of the selected subset and showed that if the sufficient
condition holds, it takes place when the Ai's are equal.

In this chapter, we order the parameter space by means of
majorization or weak majorization and propose some selection
procedures when the parameter i, associated with =., 1=1,...,k
is a vector. Section 3.2 déffnes a class of procedures Rh for
selecting the population associated with vector 3[k]’(see
Section 3.2 for definitions). A sgfficient condition is obtained
for the infimum of the probabi]itykof a correct selection to be
Schur-convex in . Also another sufficient condition is obtained
for the supremum of the expected size of the selected subset to
take place when gi EEERIPOR Some special cases of interest are
discussed. In Section 3.3, a sufficient condition is obtained
for the same infimum of the probability of a correct selection
to be nondecreasing and Schur-convex in A. Section 3.4 defines
a class of procedure RH for the selection of the pojulation with

vector 5[]]. Some properties of the selection procedure are

82

briefly discussed. Section 3.5 and 3.6 deal with selection procedures

for multivariate normal distributions in terms of majorization
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and weak majorization of mean vectors. Various cases corresponding
to the known or unknown common covariance matrix I are studied.

Properties of these selection procedures cre also established.

3.2 A class of selection procedures Rh(and some properties)

for vector-valued A in terms of majorization

First we give the definitions of majorization, Schur-concave

and Schur-convex functijons.

Definition 3.2.7. A vector a = (a],...,ap) is said to majorize

a vector b = (b],.f.,bp), if a, Tl A, b, 3,..3_bp, and

r r ) )

Loag > ) be, v =1,.00,p-1, while s a, = E b.; we write,
i1 Y T 5E) =1V N
2 b.

The above definition is according to Beckenbach and Bellman
[ 17] and differs slightly from that of Hardy, Littlewood and
Polya [45].

Definition 3.2.2. H is called a Schur-concave (Schur-convex)
function if H(a) < H(b) (H{a) - H(b)) whenever a > b. A Schur
function is a function which in either Schur—concgve or Schur-
convex.

From above definitions, we know that majorization is a partial
ordering in RP, the p-dimensional Luclidean space and Schur functioﬁs

are functions that are monotone with respect to this partial

ordecing. MNow we state the following theorem.



Theorem 3.2.1. (Ostrowski [57])

Assume H is defined for Z, -...- Zp and first partial
derivatives of H exist. Then H(Z) = H(Z') for all Z - 7' if
m
and only if
H H . C ,
3‘2’ e m—l N R =1 e
( 1) T 'Zj S0, for i - G, 4, 3=, ...,p. {

Let BRI be k populations. Let & be an interval on

the real line. Associated with T 1s a vector 51 = (le,...,xip),

i =1,...,k where Xii has density ;(-ij,x), = 1,0k, J=1,..0.,p.

We assume that i ¢ tand oy xip’ i=1,...,k. We say that
).

vy s better than v if roo= (G,

-l D R T PRI
> ip) m G p

[t is assumed that among the k given populations, there always
exists one population which is better than others, This is equiva-
tent to saying that there exists a 1K) such that 5[k] % ¥ for

all i = 1,...,k. This populaticn is called the best population.

If there are more than one "best" population, then we assume that
one of them is tagged as the best. Based on one observation

Xil""’x' from population = , we construct a suitable statistic

i

To= g(XqsnX )y 1= 1,k Let B (x) = P[T, < x] be the

ip )
.
distribution function of Ti from population E Based on the

values of Ti from D i = 1,...,k, we wish to define a class of

procedures for selecting a non-empty subset of the k populations
1
K

population associated with Ny is included in the selected subset.

such that the probability is at least P* (. < P* < 1) that the
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Let

(3.2.2) E=1{) = (A7 ,,\p) M 22 A N €A, i=1,...,p}
and

(3.2.3) 2= {w=(4y,-..,3 )5 &y €E, i=1,...,k and there exists

some 1 such that ). = A5 for each j}.
m

We wish to define a selection rule R such that

(3.2.4) inf P[CSIR] » P*.
Q T

Let h = he 45 ¢ ¢ [1,=), d € [0,=) be a function defined on
the real line satisfying the fo]]ow}ng yroperties: for every real
X,

(3.2.5) (i) hc,d(x)-i X
(11) h],o(x) = X
(1i1) hc’d(x) is continuous in ¢ and d

(iv) hc’d(x) + @ as d » » and/or th,d(x) + » as ¢ » », x$0.
Some functions satisfying these properties that will be of interest

are cx, x+d and cx+d. Now, we define a class of procedures

Ry, as follows.
Rh: Select population s if and only if

(3.2.6) h(T;) > max T..
1<r<k

Because of (3.2.5)-(1), the procedure Ry, will always select a
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non-empty subset. Let T(i) be th2 random variable associated

with 1[1] and let F\ be the cumulative distribution function
-[i]
(C-d.f.) of T(i), i:],...,k, we have

(3.2.7) PICSIRY = PLN(T 1y} Tigys 51, k1]

Cor o (nk))eF. (x).
Lo im0 ]

We now assume that the distributions are Schur-concave in %,

i.e., for x> ', F and F , are distinct and

(3.2.8) Fo{x) <« F . (x), for all «.

Then
T k-1

Hence

(3.2.9) inf P[CSth] =inf (s c,d,k)

where

(3.2.10)  w(0sc,dk) = [ PN R (%), 2 €E.

In the following theorem, we are interested in a sufficient
condition for the Schur-convexity of E,(T,.) where ;(x,)) is some

real-valued function, 5:(A1,...,\p) < F and T=g(X\ ,»...»X. ) is a func-
1 ‘D
tion of X, ,...,X, . Let F (x) = P[T - <l
] p -

Theorem 3.2.2. Let 'F (x), : CE: be a fanily of continuous

d’stributions on the real line such tnat F (x] is a differentiable

function in x and . and Tet :{x,:) be a bounded real-valued and

differentiable function in x and -, i = 1,...,p. Then £.(T,2)

is Schur-convex in . « £ provided that




(’32.1]) o 0, for i/ja."’

(1= = =9 () = - ) P
L J - i J

Prcof. We argue along the lines of the proof of Thecrem 2.1 of
Gupta and Panchapkesan [3:7].  We assume that FA(x), % € E has the

support 1. Let

(3.2.12) Aln) = EAT,0) = [ L(x,00dF {x).

Consider Uy, Uy CE, where u; < (uil""’“ip)’ i=1,2,

sy Ues Sell> U, o1 0= 1,2 S : = . i
Ujp 2 Ujp 2eee Uy, 1,2 and assume Uy = U, Define

(3.2.13) Ay (uy,u,) = { i(x,gz)dFy](x),
(3.2.14) Ay(uyauy) = { w(x,g])ngg(x).
and

By integrating A](g],gz) by part (see Gupta and Panchapkesan [37]),
(3.2.16; B{uy.us) = a term independent of u,

L Oauf ()= Gus)F (0 Tdx

I 22 Uy
L - “‘_ . -~ - d .,
where ' (x,u) = = . (x,u) and 1ggx) = 9 Fg(x)
For i - Jj, we have
~. " cxaug) (><.ul)1
{ y ! r
(3.2.17)y (- - =08 ((uy ) { (] SR S
|u]~i ‘A“]j R i u,, ‘UH U]T
) )
rl}](X) fg‘(xl
Cixgu s e - <e- ]rdx
‘ Rk U1




*i

We can show that, for . - .. ... T
{ ‘ ._.ﬂ'.__ A = : - -~ D,(I w,\
\3.2.]8) 5 : B(éa_) 0 e \;J|"_‘I’“ g]:g)::
where ) = (A],...,xp) and .
From (3.2.18) we get
3 -5 g .
(3.2.19) 7y B(x,x) = 2 i (g] ds Uy u,s
and
J I
(3.2.20) 5= BQxx) = 2 o Blupsuy) o
J Vi -1 =2 7-
From (3.2.19) and (3.2.20), we get
(3.2.21) (= = —29B(3.) = 2(—— - —“—3B(uy,u,)|
Te Vi %)j - 1y au]j’ =122 U EU,=A
If
3 A )
X ng(x) X v(X,Uz)
(3.2.22) >0, Vi <],
g ] 3 3 i,j=1,..p
= ——)F (%) (=—— - =—)v{x,uq)
au]i JU]j Uy U7 *u]j 1

then from (3.2.17),

3 3 . ...
(3.2.23) (3u11 - du1j)8(91’92) ~ 0 for i <, i,d%),...,p.

Hence if (3.2.22) holds, we have from (3.2.21)

(3.2.28) (=== =S)R(,4) -0 for i < §, 1.0%1,..,p.
o ]
Note that

(3.72.25) B(a,») = 2 A(x).

Applying Theorem 3.2.1 and from (3.2.24),
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- it follows that B(x,2) in Schur-convex in i if (3.2.22)
holds. Since u; = u,, then A(x) is Schur-convex in x if (3.2.11)
holds.
This completes the proof of the theorem.
In some cases, we will be dealing with the function y(x,i)

such that it satisfies

(3.2.26)

we have the following result.

Corollary 3.2.1. If u(x,}) satisfies (3.2.26), then Ey(T,3) is

Schur-convex in » if

(3.2.27) (o= - ==)F (x) - =l alxi)) < 0, 0 < 3, 1, 371,...,p.

Corollary 3.2.2. If Fé(x) is Schur-concave in A € E, w(x,3)
satisfies (3.2.26) and y(x,:) is nnndecreasing in x, then Eu(T,})

is Schur-convex in x» € E.

Froof. Since Fk(x) is Schur-concave in « CE,
0:1— --rz~)F (x) <0, for i - 3, 1, j=1,...,p.
DR

Also u(x,») is nondecreasing in v, then ii‘ﬂ(Xal) ~ 0.
Hence by Corollary 3.2.1, the result follows.
As a special case, if «(x, ) = i (x), then we have the following

result.
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Corollary 3.2.3. If F.(x) is Schur-concave in A and y(x) is

nondecreasing in x, then Ey(T) is Schur-convex in ).

Theorem 3.2.3. For the procedure Rys Tet fF.(x), » €E} be a

family of continuous distributions on the real line such that
FA(x) and Fx(h(x)) are differentiable functions in x and i

= 1,...,p. Then y(xr;c,d,k) as defined in (3.2.10) is Schur-

convex in ) ¢ E provided that

)F (X) > O,

2 —

(3.2.28) f () {5w = SIF, (R0O)-h' GOF (h(x)) (e - 2
) el T
.osP

!
3
4

3

for i < j, i,j = 1,.

b

where fx(x) = g;-F (x) and h'(x) * Ix h{x).

Proof. By letting ¢(x,») = F ~](h(x)) and using Theorem 3.2.2.

P o}

yields the proof. i

We note that

(3.2.29) S u(cad,k) =s = w(aic,d k), if
1 P,

(3.2.30) £ (x) (= = =3F (A0 =n* ()F, (h(x)) (5= - +2-)F, (x)=0,

R B . S B

for i - 3, i,7 =1,...,k.
Case (i): F,(x) = F(x-5(2)), = = < (1) < = and h(x) = x+d, d > 0
where 7(%) is a Schur-convex in %, then
v () ()

(3.2.31) = F(x) = =f{x=n(1)) === = -f (x) =

ik i : .

[n this case, (3.2.30) is satisfied and s(ric,d,k) satisfies (3.2.29).
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X

Case (ii): If F (x) = F(?(TY)’ x > 0, ~(x) > 0 and h(x) = cx,
c » 1 where n(1) is a Schur-convex in i, then

\ aFé(X) X X ' X dn(é)
(3.2.32/ 31\1 = h(n [' ‘2‘("‘)" ” ".(:)] = - -(—-)—n Z f&(X) d'\i

In this case, (3.2.30) is satisfied and . (x;c,d,k) satisfies
(3.2.29).

Actually, in the above two cases, w(+;c,d,k) does not involve
v, T.e., w{xsc,d,k) is independent of -.

Let S denote the size of the subset selected by the procedure
R,- Let Q' = {u o= (5],...,3k): 5 CE, i=),...,k and there exist
such that » -~ 4

J

L A N
m T2 m m "k

Let E‘(SﬁRh) be the expected size of the selected subset using

v',-l,...,lk

R, w €', Let ) S LT , for w e a's It is easy
h> gt e Uk
to see that
K
(3.2.33) £ (S[Rh) = i op.,
@ j51 00

where

k
(3.2.34) py =0 o F 0 {n{x))dF {(x),

[ r=1 =[r] S[i]

1

and FX is the c.d.f. of T( | which is associated with ISR

(i " L

i=1,...,k. Using the same arquments a< in Gupta and Panchapkesan {37]

and Theorem 3.7.2, we have the following theorem.

Theorem 3.2.4. Let ‘F (x), » ¢ £:and «F (h(x)), » € £} be as in

the hypothesis of Theorem 3.72.3. for . « ', E (S’Rh) is Schur-convex

- W




’r’ - ” - i e — ——
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- in A, where A1) ST AMm] T2 ; e ] ; . ; Ark] and consequently
sup E(Sth) takes place at V where M1] Tt é[k] = V provided that,
Q'
for A, < A, and )y, Ay € E, the following holds;
(3.2.35) (22— - -2 F  (h(x))f, ()-(=2— - 2)F (x)f, (h(x))
S RIS AR o R D R AR R
h'(x) > 0,
for i < j, i,j = 1,...,p where Ay o= (Ai],...,xip), i=1,2.
fx](x)
Remark 3.2.1. (i) 1If ?;-TIT is nondecreasing in x for i, ; Aos then
-2
(3.2.35) is satisfied, when (1) Fx(x) = F(x-£(2)), -= < g(}) < =
and h(x) = x+d, d > 0 where £() is Schur-concave in i, or when 1

(2) F (x) = F(;zfjd, x >0, n(x) » 0, and h(x) = cx, ¢ > 1 where

n(x) is Schur-concave in A.

(i) If (3.2.35) is satisfied, then

(3.2.36) sup E(SIRy) =k sup PLCSIR, ]
0 “

Where ;20 = {l:; = ()«],...,)\k): /\] B &ka é] E Eg 1:],.-.,k}

(111) IF (1) F (x) = F(x=6(2)), == < £(3) < = and h(x) = x+d

where £()) is Schur-concave in : or (2) F§(x) = F(;Tfy), x > 0,

n(») > 0 and h(x}) = cx, ¢ > 1 where n(}) is Schur-concave in i,
fA](X)

also if ?i~(;y is nondecreasing in x for 3, ; Aps then
-2

(3.2.37) sup Em(Sth) = k P*. H
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3.3. A sufficient condition for the monotonicity in terms of

weak majorization

First we give the definition of weak majorization.

Definition 3.3.1. A vector a = (c],...‘ap) is said to weakly

majorize a vector b = (b],...,bp), if a, 2.2 a5, by >...> bp
r r
and a; > 1 byyr=1,....p. If aweakly majorize b, then
i=] i=] B B
we write a >> b
m

We state the following theorem which is the characterization of

weak majorization (see Nevius, Proschan and Sethuraman [56]).

Theorem 3.3.1. Z >~ Z' if and only if f(Z) > f(Z') for all
m
nondecreasing Schur-convex functions, where f(g) is defined for
7

p

Let X, = (X

X X, ) be a random vector of independent

UEEERRT

1 P

components where » C £ and the distribution function F\ (x) of
i

random variable X, is stochastically increasing in Ay i=1,...,p.
Let

(3.3.1) T = g(X, s---»X, ) be a function of Xy oee Xy

Let

(3.3.2) F (x) = P[T - x) = Plafty ...0x ) < x].
- "

In the following theorem, we obtain a sufficient condition for
£E.(7,2) to be nondecreasing and Schur-convex in 3 £ for some

3

function {(T,') as defined in Thegren 2.3.72.
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Tneorem 3.3.2. I R (x): 7 Tigsll ) € Eris a family of

continuous distributions on the real line such that F (x) is a

differentiable function in x ard each Ao F. (x) is stochastically
3

increasing in L and {x,-; s a bounded real-valued and differen-

1 -

tiable function in x and ., i = 1,...,p, then Ey(T,2) = Ex{g(X,),:)

is nondecreasing anc¢ Schur-convex in : ¢ £ provided

(3.3.3) (i) (g(X,),1) is nondecreasing in X, and ), and

~

oy ) : 3 3 vy 3 3
(i1) v Fi(X)(;j; - :f})v(X,ﬁ) - w(Xaﬁ)(gjq" gj:dFl(X)io,

Proof. B8y Theorem 3.2.2.and (3.3.3)-(ii), Ey(T,2) is Schur-convex

in A
Now we want to show that £.(T,) is nondecreasing in i. Let
o= (- S coand s (iooo )y dy e
P Uy gy o oLoand (3 ,Ap), SEECRREAR
Assume x > i'. We define - .’ in the sense that Ao \%, i=
T,...,p. Since F. (x) associated with the random variable X, is
4. -,
i i
stochastically increasing in .., i.e. if 1.~ o, 1= 1,...,p,
then
(3.3.4) X, o~ Yoo 1=
out

Since X, ,...,X, are independent random variables, then
4 '

(3.3.5) Yoo x

(3.3.6) A5 fale ..
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Since w(g(xx')’éi) is nondecreasing in A' and A > 1A',
(3.3.7) v(g(X0)5n) = wlglX '),

From (3.3.6) and (3.3.7), we have

(3.3.8) plal%)a) > (et )n).
- S -

Hence

(3.3.9) E¢(T,§) > Ep(T,2').

This completes the proof.

By applying Theorem 3.3.2, we can obtain the following results.

Corollary 3.3.1. If F (x) is Schur-concave in A, ¥(x,)) satisfies

(3.2.26), y(x,2) is nondecreasing in x, y(g(X,),A) is nondecreasing in

XA and A and FA (x) is stochastically increasing in ki‘ i=1,...,P,

j
then Ew(T,é) is nondecreasing and Schur-convex in ).

Corollary 3.3.2. If Fx(x) is Schur-concave in ), y(x) is nondecreasing

in x,  ¥(g(X,)) is nondecreasing in X, and Fy (x) is stochastically increasing
A z i

in Ais i=1,...,p, then Ey(T) is nondecreasing and Schur-convex in A.

By letting u(x,)) = Ft'](h(x)) and using Theorem 3.3.1 and Theorem

3.3.2, we have the following theorem.

Theorem 3.3.3. Let {Fx(x), » € E} be a family of continuous
distributions on the real line such that Fx(x) and Fx(h(x)) are

differentiable functions in x and A and F_ (x) is stochastically increasing

s

i
in A;, i=1,...,p. Let 4(2;c.d,k) be defined in (3.2.10). ’
Then y(as;c,d,k) is nondecreasing in ) € E in the sense of weak

majorization, i.e., it is nondecreasing and Schur-convex in ),

provided that

prosris -




(3.3.10) (i) Fx(h(g(lx)) is nondecreasing in X, and A and

(i) f}(xn;i; - gi?)Fé(h(X))-h'(X)fé(h(x))(g-,aq- - a—i;)
Fo(x) >0, for

i <3, 8.3 = Vye..0p, where £ (x) = g3 F, (x).
3.4. Selection of the population associated with 5[]].

If the best population is defined to be the one associated

with 5[]], where Ay < Ay i=1,...,k. We now define a class
m

of procedures RH for the selection of the population associated
Let H = H, 43 ¢ ¢ [1,=), d € [0,») be a function defined on

the real line satisfying the following conditions. For every x

(3.4.1) (i) Hc,d(x)‘i X
(ii) H],O(x) = X
(iii) HC d(x) is continuous in ¢ and d

(iv) Hc,d(x) + » as d +~ » and/or ch’d(x) +0as c+ o,

Of particular interest are the functions §3 x-d and %-- d.
A class of procedures RH for selecting a subset containing the

best is defined as follows.

. if and only if

RH: Select population s

(3.4.2) H(Ti) < min T
1<r<k

The probabiiity of a correct selection is given by
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oo

k
3.4.3)  P[CS|R.] = F. o (H(x))dF ,
( (CsIrRy) = f n l[r]( (x)) J_\m(X)

- =

where Fé(x) = ]-Fﬁ(x).

Because of the assumption (3.2.8),

(3.4.4)  PLCS[R,] s [ Ff': (H(x))dF.  (x).

(] Ang

Let 2 = {w = (Ay5...5) ) A €E, i=1,...,k and there exists some
i

i such
i such that A; ; A Vi)
Hence

(3.4.5) igf P[CS]RH] = igf @lrsc,d,k)

where

(3.4.6)  olasc,dsk) = [ F¥"T(H(x))dF, (x) and 2 €E.

Using the same method of proof as in the case of Rh’ we have the

following results.

Theorem 3.4.1. For the procedure R, ¢{Asc,d,k) is Schur-convex

in A € E, provided that

(3.8.7) (53= - 52)F, (x)-H' (x)F, (HOxD)-F, (x) (3= - 52-)F, (H(x))20,
i J o= - - i J -
for i < j, i, j=1,...,p, where H'(x) = 3% H(x).

Let @' = {w = (3y,...52, )t A; €E, i=1,...,k and there exist

1

215...9%, Such that x, > x, > ... > i, L
! k 21 m fom m 2k

Theorem 3.4.2. sup E(SIRH) takes place at V where Ay =...= x =V
Ql

provided that, for Ay < A,y Ays2p CE,
m
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(3.4.8) H'(x)féz(H(X))(gﬁT - a—A;’;)Fh(x)-féz(x)(sr]% - ii_:JT)

Fh(H(X)) >0,

for i < j, 1, j=1,...,p where A, = (Ai],...,gip), i=1,2.

3.5. Selection procedures for multivariate normal distributions

in terms of majorization.

let TloesesTy be k populations. Let LF be associated with
X; = (xi,,...,xip), i =1,...,k where X; is random vector with a
p-variate normal distribution with unknown mean vectors uy =
(“i]""'“ip) and positive definite covariance matrix I. We assume

that uy ... s A= 1,k

> U,
— ]p
It is assumed that among the k given populations, there always
exists p such that u > pr.q for all i = 1,...,k. This popula-
(k] [k] n [i]

tion is called the best population.

Let X:iqs..

each with p components, from population =

-»X;, denote n independent observation vectors,

1-‘
Let

(3.5.1)  Xi, = (Kypps Xyppoe-eoXipy)s 2 Taeensks 2= Thuiian,

ip2
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_1 3 . -
(3.5.2) Rij 0 lg] X1Jl’ 1 1, ks 3 =1, WP
(3.5.3) Yij = lz] R'IR, ] 1= ]’ -9k! J = ]) ’p’
(3.5.4) 2=l T =R i lhike d=1
ede ij n m=] _ljm 1j ] s s J 3 !p!
2 2 - -
(3.5.5) Rij Rg] Sil’ 1 ]: sk; J = ]i $p$

(3.5.6) v; T
(3.5.7) E[i] = (u(i)],...,u(i)p), i= ],...,k, and

()
Vi

U(i)] +...+ u(i)j, i= ],...,k, j = ],..-,p.

Let us denote by T(4) the population (unknown) associated

with mean vector B[i] and let Y(i)j be the observation associated
with (4)* i=1,...,k, j =1,...,p. Our goal is to select a subset
(may be empty) of the k populations so as to include the popula-

tion associated with M[K]:
(A) Assume £ is known.

We propose a selection rule as follows:

R,: Select population " if and only if

—

(3.5.8) Y..> max Y . -d, J =1,...,p-1 and
R —-1§y§k vJ

min Y _+d>Y, > max Y _-d.
T<v<k vP W T cuck vP

Let
(3.5.9) Q=0z*D
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- where
% A O ........ 0 3
!
: 0 A B
D =1 ° 0 - .
((k=1)p)x(kp) Do A 0 B
¢ 0 .0 A B
:
! T 0 0
= |o 7 . T =g
(kp)x(kp) ", pxp
0 T
1 0 -1 0 ! 0
A= ‘. , B = ", and C =141 1
| pXp 0 ° 1 pxp 0 °-1 pxp . '..]
| S 1 1

Let @ = {w = (ugs...om )t uy €Ey5 7= 1,...,k and there exists some

i such that u, > u,

Y j}, where
m J

(3.5.10) E, = {) = (A1,...,Ap): A 2ee2 Apy = <y < ©,i=1,...,p}

The following theorem gives the infimum of the probability

of a correct selection.

Theorem 3.5.1.

(3.5.11)  inf PCS[Ry] = P(Z;<d,[Z,] < d, for i € (1,2,...,(k-T)a}-
Q

{(p,2p,...,(k-1)p} and j € {p,2p,...,(k=-1)p}],

1 where (Zl""’z(k-l)p)' ~ N( o ., Q ).
| (k=-1)px1 (k-1)px(k-1)p
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Proof.
(3.5.]2) P[CSIR]] = P{Y(k)j Z_Y(v)j-d, IY(k)p-Y(v)pI < d,j=],...,p-1,

v=],ooo’k-.‘}.

i1, I o
| Note Yij - N(vj, n chCj), i=1,...,k, j=1,...,p, where

c: = (1,...,1,0,...,0), j =1,...,p.
J L Ve d
J times

Since E[k] ; E[i], i= ],...,k‘],

- YA | T —— 35T

(3.5.13) igf P[CSIR]] = P{Y;j > Y:j-d,lY:p-Y;p|<d, j=1,...,p-1,
i v=l,...,k=1},
J where

(3.5.14) (Y:],...,sz)' - N(0,T), v = 1,...,k.
o Let !: = (Y;l,...,ch)', v =1,...,k.
f Hence from (3.5.14),
(3.5.15) Y= (Yf,...¢9) - N( 0, %),
; kpx1
|
% Let Zvi=Y:i—YE,i,\)=],--ogk-],i=],c.-,p-
I Let

Z: = (Zv],...,va)' v=1,..,k-1.
Since

7 = (Zf,...,Z;_])' = DY and from (3.5.15), then Z - N(0,Q).
(k-1)px1
This completes the proof.

Theorem 3.5.2. If Q = Ds*D'= (qij) is positive definite with

. . .2 _ 2 L
ANy =T A 1)p, (k-1)p = and 45 = oo when i $ j, o and o are
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- known, then

. :
(3.5.16) sup E(S]Rl) = KP* provided that inf P[CS|R1] = P, #
Q Q ]

Proof.

k
(3.5.17) E(S|R1) = Z P{Y. > Yv -d, va-d S-Yip :_va +d,

vii, v = 1,000,k 2=1,...,p-1}

k .
i_gv
igl PUZiy < VgV Hda[Z4 0l < d,

vii, v = 1,...,k, 221,...,p-1},

; i C )
where Z, = = (ng - Y, - (VZ-VE), vti, vei=l,. ..k, 21,...,p.
Thus
: (3.5.18) 2, ={z, ,} -~ N0,Q).
- (k-1)px1

Let

By = {Z}: i, < du]Z; pledst=l e p-Tovdi,o = 1,00 K0,
Let

_ i g , . -

1'1 -(Ti\)l) where T'i\)?. = Vl-vl, \)+1 sV, 1']’--"(92' ]’---’p'

Ix(k-1)p
Hence

k
(3.5.19)  E(S|Ry) = .21 P[B,+T;].
i=

Since the joint density of Z which is defined in (3.5.18) is

Schur-concave (see Marshall and Olkin [50 ]) and since y ¢ B; and

x <y implies x ¢ B;, then by Theorem 2.1 of Marshall and Olkin [50],
m

P[B;+T.] is Schur-concave function of Tio 12 ek




B N A T NP

et

Since T, > (a;,...,a;), 1 = 1,...,k where
=i i

k
-1 2 .

A;

Vi*...#¥] 1. then from (3.5.19)

K
(3.5.20) E(S[Ry) :,_Z]
1:
k
)

P[Bi+(ai,--~'ai)]

i A

] P[Bi+(a[k],...,a[k])]

where a[k] is the largest value among {a],...,ak}. That is,
sup E(SIR]) is obtained when a)=...7a, . If 8y =...= 4, then
Q

A] =,..= Ak' Hence ay =...= 3 = 0.

Thus
k

sup E(SIR]) ) P[Bi] = k P* provided that inf P[CS|R1] = P,

i=1 Q

This completes the proof.

2 0
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(8) Letz = (° *._ ) where o is known. Without loss of generality,
(¢]

0
we can assume o = 1. We propose a subset selection rule as

follows.

R2: Select s if, and only if,

(3.5.21) V.. max ¥ .- 3% g0 ;

T<v<k

i 0] - T1,...,p-1 and



s AR W Ree

max Y - 4/2p <VYip < omin ¥ 4 QZZE.
1<p<k P /n P vk woom

Theorem 3.5.3.

(3.5.22) inf P[CS|Ry] = P[Z ; = d,]Z | < d for i=1,...,p-1]
Q - VP~

v=l,...,k-1

vi

where Zvi (v=1,...,k-1, i=1,...,p) are standard normal random

variables with

- min(i,j) % -
(3.5.23) COV(Zui’Zvj) [EEI§?T3%J for u = v
Eﬁﬂiilil for * v.

L2247
Proof.
= d/2i
(3.5.24) PICSIRY]= PLY (s 2 Vi yy - =,
4% N/
Y(v)p e —'Y(k)p = V)p ra
1=]’ ’p']’\f’:]Q---,k']}
Let
- v) (k) _ i
oYY T v ke
vi v2i/Vn i=1,...,p

Since (Y(v)i'Y(k)i

then Z . - N(0,1).
vl

Hence
vk y (o)
(3.5.25)  P[CS|R,] = P(Z , < d + ————,|Z |<d,i=1,...,p-1,
2 v e P
v o= ],...,k-]}.
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Since ng) > ng), i=1,...,k-1, then

inf PLCSIR)] = P[Z,; < 4,17 lcdy 127 2] ]
" .

where Z ., v = 1,...,k=1, i=1,...,p are N(0,1) random variables

with covariances as defined in (3.5.23). This completes the proof.

If k=2 and p = 2, we can show that

e eV eM IV
(3.5.26) i:f P[CS[RZ] = [ o = ) [a( Y-o( Y]do(x)
g (1 % Q- /f_ (1- /rZ)ﬁ

Theorem 3.5.4.
(3.5.27) PLCSIR,] > max{[e(d)-¢(-d )]p(k 1) s1-(p+1)(k=1)o(-d)}.

Proof. Let {Zvi} be defined as in Theorem 3.5.3, then

(3.5.28) PLCSIR, > PIZ ; < d,12 o} < d, i=1,..0p-TousT, . ke1]

Note that

m m
(3.5.29) PLNAJ>1-7 P[B 51
i=1 i=1 j= 1

where A],...,Am denotes a seaurqce of events, and A; the event
' n
complementary to Ai’ such that A% =y Bij’ i=1,.

J=1
Hence from (3.5.28) and (3.5.29),

(3.5.30)  PLCSIR,]

b v

1- 7 Pz ;>d]- Z PLIZ p[>d]

v, 1

1-(p-1)(k-1)e(-d)-(k-1)20(-d)

1-(p+1) (k-1)0(~d).




By [68 ] and from (3.5.28)

(3.5.31) PLCSIRY] > PL|Z . [<d, v=1,...,k=1,i=1,...,p]

Iv

1 PLIZ 4 1<d] = [o(d)-o(-) P11,

Vyl

From (3.5.30) and (3.5.31), we prove the theorem.
For given P*(%-< P* < 1), a conservative value of d (d > 0)

can be obtained by letting
maxi[e(d)-0(-d) 1P 1) 1o (pr1) (k-1)0(-d)} = P.

Let d; > O be the value such that [o(d)-0(-d)JP¢K"T) < p# ang
let d, > 0 be the value such that 1-(p+1)(k=-1)o(-d) = P*, then
the minimum d(> 0) satisfying the basic requirement is given by

d = min{d1,d2}.

Theorem 3.5.5.

{3.5.32) E(S\RZ) < k[o(d)-¢(-d)]

Proof.

k
(3.5.33) E(S|R,)= j P
J:

y _d‘.@(y. <Y +g~@,
vp Y~ vp n

for i=1,...,p=1,v¥j,v=1,...

Y oo¥em (VY -vd)
Let Z\)i = vi Ji ! ! , 1= ],...,p,\)fj,\F],...,k.

v2i//n

Then

106
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1<, vy
(3.5.34) E(SIRy)) = 7 Pz .-d+ 7 i<,
N vZipm VP
=1, . .,p-1,v#j,0=1,...,k}
K Vv ,
2L Py 2d v —— for vij,v=1,.. k) = a; (say),
le v’21'/v'n

i=1,...,p-T1.
Also,

k
E(SIRQ) 5__E]P[gzvplfﬁ,v#j,yz},2,..,,k] = A (say).
J:

T
Since P[Z .<d + Ll 045, 0=1, . K]
VZ21/vn
L V“;"‘V%J]
< ) P Z," “ d + — - s
- kT gy T VR
then vi] .
: Lok ok vg-v:) )
3.5.35) Ay <t | o (d+ (since Z_. ~ N(0,1)
kT e 4 27/ Vi
kK k Ac.qi-Ar 1
e o e(e » LD
j=1 v:l V23//n
Vil

1 k.
< s { 3 : .
where A[1]i —f"i-A[k]1 are order values of kV],...,V1,
By the same argument in Gupta and Huang |34], we can show
that the sup of Q is obtained when A[]]i =,..= A[k]i‘
Thus from (3.5.35)

ko Kk

(3.5.36) 4y <y 10 ald) = ka(d), =1, ,p-1.
R ER IR
1]

Also

P e o o | 3



e
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(3.5.37) A<
h]

!
12,51 = d]

o~ 2%

1 K

w7 L Pl
1 v=1
vij

= k[o(d)-0(-d)].
Hence from (3.5.36) and (3.5.37),
(3.5.38) E(S]Rz) < min{ke(d), k[e(d)-o(-d)]}
= k{e(d)-o(-d)}.
This completes the proof.
02 0 2
(C) Assume £ = (° =, 2) where ¢“ is unknown.
0 ‘o
We propose a subset selection rule as follows.

R3: Select population LF if and only if

- /2 dR,.
(3.5.39)  Y.o>max Y . --——4, §=1,., ,p-1and
IT 0 Y AT
/2 d R, /2 d Ry

max Y - 2Py . min Y _ 4+ ———————JZ.
v VP /-1~ WP, VP /n-1

Theorem 3.5.6.

p-1
(3.5.40) P[CS[R,] 3_1-(k-1)_z1 plt, < -d]-(k-])P[ltp] > d]
]:

where ti js a r.v. having a t-distribution with i(n-1)d.f., i=1,

«-sP.

Proof.

VZd Ry,
(2.5.41)  PLCSIR3) = PDY ()5 2 Y5 - “‘*jﬁéiﬁll’
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Y2 d R v2 d R
Y( ) - ______lklE.< Y < Y + _——_-—15123 J=]' 9p']’
v)p /T = (k)p — "(v)p T
v=l,...,k=1]
vk y(v)
= Plt,; <d- —fé;;gél—- ATt o] < dagsT, e peTveT, L keT]
(k)J
where
PR 7R 12 )
(3.5.42) t ;- )i (3773 3 T AT, ge1,.. . pavel, .. okel.
ZRk);
Since (Y(,)5-Y(iy5) - N(V§V)-V§k), 2% o)
nR2 .

and —KA 56 distributed as a r.v. of x2 with j(n-1) d.f., then t,;
ag
is a Student's t-distribution with J{(n-1) d.f.

Since vgk) 3_v§“),v = 1, ke1, 5 = 1,...,p, then

(3.5.43) igf PLESIRG] = Pt 5 < duft o] < d, §=1,...0p-1007),00ke1]

|v

k-1
1- [ Ple,; =dl- [ Pt |< d] (by (3.5.29))
Vsl v=]

-1
1-(k-1)pz Plt, < d]-(k-1)P[|t | < d]
j5p 4 p

where tj is a r.v. of a t-distribution with j(n-1) d.f., j=1,...,p.

This completes the proof.

Theorem 3.5.7.

(3.5.44)  E(S[Ry) < min{kG(d), k(6 (d)-G (-d)I}

where Gj(x) is the c.d.f. of a r.v. of a t-distribution with j(n-1)

d.f., i = 1,...,p.
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Proof.
d/2 R, .
St  §
K VoA
(3.4.45) E(S}R3)= y P
i=1
dv2? R, dvZ R,
Y - —P <Y, <Y + ——P .
o mT T T AT
for 5 = 1,...,p-1, v#i, v = 1,...,k}.
YooY, - (V-
lett . =- W J J | ATT, then t . is a Student's t-
v VZR,. v
1]
distribution with j{n-1) d.f.
p e
t.<d- R /n<T,|t | < d,
k v o= V2 "ij VP
(3.5.46) E(S|R,)=1] P
3 i=] i
(/ ji=1, .,p-],v+i,v=],...,k
Hence ]
k viayy
(3.5.47) E(S}R3) < YP{t.<d+ A4 /n=T, v#i, v=1,...,k}
._-.= VJ-‘
i=1 Ve R..
1
= 8y (say), j = 1,...,p-1
and

k
(3.5.48)  E(S|Ry)< J Pt | <d, vii, v=l,...,k}
3=45

= A (say).

As in Theorem 3.5.5, we can show that the sup of Aj is obtained

when Vi =...= vK, for j = 1,...,p-1. From (3.5.47) and (3.5.48),

J
we get A, 5_ij(d), J=1,...,p~1 and A < k[Gp(d)-Gp(-d)]- Thus

E(S|R3) < min{k[Gp(d)-Gp(-d)], ij(d), j=1,...,p-1}

= min{k[Gp(d)—Gp(-d)], kG, (d)}

_ L




m

3.6. Selection procedures for multivariate normal distributions in

terms of weak majorization

It is assumed that among the k populations, there always

exists u such that u >> ur:q, 1= 1,...,k. This population
J03 BTk] 7 ML)

is called the best population. We are using the same notation as

in Section 3.5. Llet 2 = {w € (yg,. ooy )t gy € Eys i=1,...,k and

i

there exists some j such that uj > Wy v i} where E, is defined
m _

in (3.5.10).

(A) Assume r is known.

We propose a selection rule as follows.

RS: Select population s if and only if
(3.6.1.) Y.: > max Y .-d, j =1,...,p.
W= 1<v<k vl

Using the same argument as in Theorem 3.5.1, we obtain the following

result.

Theorem 3.6.1.
(3.6.2) inf P[CS[Rs] = P[Zi <d, i=1,...,(k-1)p]
Q

where

(Z],...,Z(k_])p)' ~ N( 0 ,Q), where Q is defined in (3.5.9).
(k=1)px1

2
(B) Assume £ = (., 02) where o is known and we assume o = 1,
0 ‘o
We propose a selection rule as follows.

RG: Select population m if and only if,

SRV
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> max Y QﬁZi

(3.6.3.) V.. -
U=k W A

9 j=1’--.’po

It is similar as in Theorem 3.5.3, we can show that

Theorem 3.6.2.

(3.6.4) inf P[CSIRs] = P[Z . < d, v=l,...,k=1,j=1,...,p]
Q vl =

where Zv1 is defined in Theorem 3.5.3.
If k = 2, p =2, we can show that

d-(%)]/4x

(3.6.5) inf P[CS|R.] = [o?[-—2—]do(x).
Q 6 T\%
(1-v E)L
In a same manner as in Theorem 3.5.4 and Theorem 3.5.5,

we have the following results.

Theorem 3.6.3.

(3.6.6) PLCS|Rg] > maxt[o(d)-o(-d)IPK-T), 1p(k-1)[1-0(d) 1.

Theorem 3.6.4.

(3.6.7) E(SIRg) < ko(d).

2
(C) Assume 3 = (8.. 02) where o2 is unknown.
*o

We propose a subset selection rule as follows.

R7: Select population s if and only if
(3.6-8) Y.'j _>_max ij - /Zd Ri .I 9 j = ]’o..’pl
v /n=T

In a manner similar to that in the proof of Theorem 3.5.6,

we have
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Theorem 3.6.5.

(3.6.9)  PCS|R,] > 1-(k-1)_§]P[ti < -d]
1

where ti is the r.v. of Student's t-distribution with

i(n-1) d.f., i = 1,...,p.
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