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INTRODUCTION

In practice, there often do arise situations in which the

researcher wishes to choose the best (or the t best) from a group

of k populations, where the "bestness" of a population is based on

ranking them according to the value of some characteristic of

interest. In such situations, the classical tests of homogeneity

are inadequate in the sense that they have not been designed to

answer several possible questions in which the researcher may

really be interested. Bahadur [1], Mosteller [54] and Paulson

[ 59] were among the first research workers to recognize the

inadequacy of the usual tests of homogeneity and to consider

more meaningful formulations in order to answer these questions.

These developments set the stage for the early investigations

of multiple decision problem which have now come to be known

as selection and ranking problems.

In the theory of selection and ranking procedures, there are

two basic formulations to the problem. The first one is called

the indifference zone formulation due to Bechhofer [13 ] and the

other is the subset formulation due to Gupta [29]. The goal

of the basic problem in the formulation of Bechhofer is to choose

one of the populations as the best. The researcher is required

to specify an "indifference zone" in the parameter space and the
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procedure determines the smallest sample size so that a certain

probability condition is satisfied whenever the unknown parameters

lie in the "preference zone". For example, if we are interested

in selecting the population with the largest mean in N(ei,l),

i=l,...,k, the indifference zone is the set of all O's such that

the largest and the second largest differ by an amount < 6",

whereas the "preference zone" is the set of all 6's such that the

above difference > 6*. Other contributions to this indifference

zone formulation have been made by Bechhofer and Sobel [16],

Sobel and Huyett [70 ], Barr and Rizvi [12], Desu and Sobel [22],

Bechhofer, Kiefer and Sobel [15], Santner [64] and others. The

goal of the basic problem in the subset selection formulation of

Gupta is to select a subset of the given populations which depends

on the outcome of the experiments and is not fixed in advance

such that it includes the best population with a specified minimum

probability regardless of the unknown configuration of parameters,

i.e., over the whole parameter space. Some recent results in the

area of subset selection formulation are Gnanadesikan and Gupta [28],

Gupta and Studden [43], Gupta and Panchapakesan [38],

Gupta and Santner [41], Huang [46] and Wong [72].

Many problems in reliability can be considered in the context

of selection and ranking problems. For example, one may wish to

choose one or more of the several systems or components which has

the largest mean life or the largest median life. In general,

reliability problems also deal where the distributions are unknown

but assumed to belong to a class of distributions such as that
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having an increasing failure rate (IFR). Such distributions form

a special cases of what are now commonly known as restricted

families of probability distributions. The investigations of

Barlow and Gupta [5] form the initial efforts on ranking problems

for such families. Other contributions to selection problem for

the restricted families of probability distributions are Gupta and

Panchapakesan [39,40] and Patel [58]. This area of research still

remains largely unexplored.

The main investigation of this thesis is to propose and study

selection procedures for some problems.

Chapter I deals with some selection and ranking procedures

for restricted families of probability distributions. In

Section 1.1, definitions of various partial orderings on the

space of distributions are given. In Section 1.2, we propose and

study a selection rule for distributions which are convex-ordered

with respect to specified distribution G. Some properties of this

selection rule are discussed. The asymptotic relative efficiencies

of this rule with respect to some other selection rules are derived.

Section 1.3 deals with the selecting the best population using the

indifference zone approach. In Section 1.5, we propose and study

a selection rule for distributions which are s-ordered with

respect to G where we are interested in the scale parameter case.

The estimation of ordered parameters from the k unknown distribu-

tions is discussed in Section 1.8.

Chapter II discusses some interval estimation problems from

k populations. We are interested in finding the smallest sample
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size N to be chosen from each population such that the probability

that a given confidence interval I which is based on T[k ]  lmax T
l<i<k

(Ti is an appropriate statistic from i-th population) contains at

least one good population, is at least P*, where P* is a specified

number, 0 < P* < 1. Also we are interested in finding the smallest

sample size N such that the probability that I contains all good

populations (or excludes all bad populations) is at least P*.

Section 2.2 deals with the above problems for the location parameter

case. The infima of coverage probabilities are obtained. For scale

parameter case, the above problems are investigated in Section 2.3.

In Section 2.4, we illustrate the above results by means of two

examples.

In some situations, one has to deal with a vector-valued

parameter Xi associated Xi" In such cases one may consider

comparing populations or Xi's in terms of majorization and weak

majorization of these vectors. Chapter III deals with such

problems. The parameter space is partially ordered by means of

majorization or weak majorization. Selection procedures are

proposed and studied. In Section 3.2, a class of procedures

Rh for selecting the best population is defined. A sufficient

condition is obtained for the infimum of the probability of a

correct selection to be Schur-convex in A. Also another sufficient

condition for the same infimum of the probability of a correct

selection to be nondecreasing and Schur-convex in X is obtained

in Section 3.3. Section 3.5 and 3.6 deal with selection procedures

Li
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for multivariate normal distributions in terms of majorization

and weak majorization. Various cases corresponding to the

known or unknown common covariance matrix E are studied. Properties

of these selection procedures are also established.
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CHAPTER I

SELECTION PROCEDURES FOR RESTRICTED FAMILIES

OF PROBABILITY DISTRIBUTIONS

1.1 Introduction

In many problems, especially those in reliability theory, one

is interested in using a model for life length distribution which

belongs, for example, to a family of distributions having increasing

failure rate (IFR), or increasing failure rate on the average (IFRA).

Such distributions form special cases of what are now commonly known

as restricted families of probability distributions. These are

defined more precisely later in this section. The idea of using

such families stems from the fact that in many cases the experimenter

cannot specify the model (distribution) exactly but is able to say

whether it comes from a family of distributions such as IFR, IFRA.

Families of probability distributions of these types have been

studied by several authors, see, for example, Barlow, Marshall and

Proschan [7]. These authors have mainly concerned themselves with

probabilistic aspects of these distributions. To some extent, there

have been some investigations dealing with statistical inference for

some of these families; see for example, Barlow and Proschan [8], [9],

Barlow dnd Doksum [3].
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In this chapter we are interested in studying multiple decision

procedures for k (k > 2) populations which are themselves unknown but

which are assumed to belong to a restricted family. First we give

some notations and definitions. A binary ordering relation (.) is

called a partial ordering in the space of probability distributions

if

(a) F < F for all distributions F, and

(b) F < G, G <H imply F <H.

Note that F -< G and G -< F do not necessarily imply F - G.

We now define some of the special order relations of interest to

us (see Barlow and Gupta [5]).

i) F is said to be convex with respect to G (written F . G) ifc

and only if G IF(x) is convex on the support of F.

(ii) F is said to be star-shaped with respect to G (written F G)
I*

if and only if F(O) = G(O) = 0 and G1 F(x) is increasing in
x

x > 0 on the support of F.

(iii) F is said to be r-ordered with respect to G (F < G) if and
r

only if F(0) = G() Gand x is increasing (decreasing)

for x positive (negative) on the support of F.

(iv) F is said to be s-ordered with respect to G (F -< G) if and
S

only if F(O) = G(O) - and G-IF is concave-convex about the

origin, on the support of F.

If G(x) = l-e- x, x > 0, then F < G is equivalent to saying thatc
F has increasing failure rate (IFR). The class of IFR distributions

has been studied by Barlow, Marshall and Proschan [ 7].
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Again if G(x) = l-e-  x x > 0, F < G is equivalent to saying

that F has increasing failure rate on average (IFRA). The class of

IFRA distributions has been studied by Barlow, Esary and Marshall [4].

The r-ordering has been defined and investigated by Lawrence [48].

The s-ordering and c-ordering have been studied by Van Zwet [71]

and Lawrence [48].

In the statistical literature, selection problems for restricted

families were first investigated by Barlow and Gupta [ 5]. Some

further results in this direction and a review of some important

results concerning inequalities for restricted families and problems

of inference for such families have been given by Gupta and

Panchapakesan [39]. The selection of the population with largest

a-quantile from distributions which are star-shaped with respect to

the folded normal distribution has been considered by Gupta and

Panchapakesan [40]. In a recent paper, Patel [58] has studied the

selection of IFR populations which differ only in the scale

parameters. His procedure is based on the total life statistic

until r-th failure.

In Section 1.2, we propose and study a selection rule for

distributions which are <c ordered with respect to a specified

distribution G assuming there exists a best one. Some properties

of this rule are discussed. The infimum of the probability of

a correct selection is obtained and an asymptotic expression is

also given. We also study the asymptotic relative efficiencies of

this rule with respect to some selection procedures. Section 1.3

6. . . . .'L r -' ... . .. . . . . . . .. . . . . .. .. . . . . . . ".. . . . . . . . .I I ll ' . . . .. . . .. . . . . . . . . . f " -. ..
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deals with the selecting the best population in the frame work of

Section 1.2 using the indifference zone approach. In Section 1.4,

we propose a selection procedure for distributions that are <

ordered with respect to G. Section 1.5 deals with selection proce-

dure with respect to the means for distributions that are s-ordered

with respect to G where we are interested in the scale parameter

case. The distribution of Vi (see Section 1.5) is also investi-

gated. Section 1.8 deals with estimation of ordered parameters

from k unknown distributions where we are interested in the scale

parameter case.

1.2 Selection rules for distributions "<c ordered with respect to

a specified distribution G.

Let , be the class of absolutely continuous distribution

functions F on R with positive and right-(or left-) continuous

density f on the interval where 0 < F -- 1. It follows that the

inverse function F-1 is uniquely determined on (0,1). We take

F-(0) and F-l(1) to be equal to the left hand and right hand

endpoints of the support of F. For F, G E i, consider the following

transformation (see Barlow and Doksum [ 3])
F-I(t)

(1.2.1) H 1(t) = F g[G-IF(u)]du, 0 < t < 1.F (0)

We assume that G is always fixed. Since HF (the inverse of H) is

strictly increasing on [0,1], HF is a distribution. We know that

F -< G if and only if HF is convex on the interval where 0 < HF < 1.
c
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Since G is assumed known we can estimate HF by substituting the

empirical distribution Fn of F; that is

n(1.2.2) Hn (t) = HF1(t) f ( g[G-1Fn(U)du

n F-1 (0)

and
r,n r

(1.2.3) H(n  n f g[GFn (u)]du n g[G- n)](Xi,n- Xi-l,n )

F-(o) i=l

where Xi is the i-th order statistic in a sample of size n from
1 ,n

F and XO,n - 0.

xIf G(x) = l-e for x > 0, then (1.2.3) can be written as

(1.2.4) H+ (r) + EX X + (n-r+l)X I.

n n n l,n r-l,n + r,n

We say that X + + X + (n-r+l)X is the total life statis-Wesyta l,n . r-l,n Xr,n

until failure from F. Thus, Hl(r) I 1total life statistic
tic u r-th nn n until r-th failure

(A) Selection procedure and its properties

Let T, ... ,7k be k populations. The random variable Xi associa-

ted with fi has distribution function Fi, i = 1,2,...,k, where F. C

(i = 1,..., k). Let F[k ] denote the cumulative distribution function

(c.d.f.) of the "best" population. For example, if we are interested

in the quantile selection problem, the "best" population may be

defined as that F[k] (unknown) which satisfies (a) below.

We assume that

(a) F[i](x) - F[k](x) for all x, i = 1,...,k-1;
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(b) there exists a distribution G such that

F[i ]  -' G i =  1,...,k,

where -< denotes a partial ordering relation in the space of

probability distributions. It should be pointed out that the

condition (a) above may also imply that F[k] is the distribution

with the largest (smallest) parameter. For example, if

Fi(x) = F(xi) for x - 0, o. > 0 (i = 1,...,k), then Fk] is the

distribution with the largest oi. We are given a sample of size n

from each r i (i = 1,..., k). Our goal is to select a subset from

the k populations so as to include the population with F[k ]. Let

=IF=(F 1 ....,Fk): a aj such that Fi(x) > F.(x) 0: ij}. Let

r
(1.2.5) T. 7 a. Xi  for i = 1 . k

1 l X ;j ,n. . .

r

(1.2.6) T = a. Y.
j=l j ,n

where Xi;j, n is the j-th order statistic from Fi, Yj,n is the j-th

order statistic from G, r is a fixed positive integer (1 < r < n),

aj = g G- g G-'(j) for j = 1,... r-l

and a = g G-l(r-).
r n

For selecting a subset containing F[k] , we propose the selection

rule R as follows:

RI: Select population i if and only if

6.i
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(1.2.7) T. max T.l j.k J

where cI = cl(k,P*,n,r) is some number between 0 and 1 which is

determined as to satisfy the probability requirement

(1.2.8) inf PiCS!RI! 1 *

where CS stands for a correct selection, i.e., the selection of

any subset which contains the population with distribution F[k ] .

Let T(i) be associated with F[i ] and Wi(x) be the c.d.f. of T(i)

from F We now state a few preliminary lemmas.

Lemma 1.2.1. (Lehman [49] p. 112) Let F(x) be a distribution

function on the real line. If y(x) is any nondecreasing function

of x, then E j,(X) is a nonincreasing function of F, i.e., if Fl(x)

F2 (x) for all x, then f,(x)dF2 (x) < fy(x)dFl(X).

Lemma 1.2.2. Let X1, ..., Xn be i.i.d. with distribution F(x). Let

be a function of X1, ...,Xn which is nondecreasing in each of its

arguments. Then E1(X1, ... IXn) is nonincreasing function of F.

Lemma 1.2.3. (Gupta and McDonald [35]) Let X = (Xjll.... In.

Xkl .... X kn) be a vector valued random variable ofil ni (- 1)

independent components with Xij having the distribution Fi(x),

j 1,....ni, i = 1,... k. Let ;, be a function of X11,.. xI

Xkl .... Xknk which, for any fixed i, is a nondecreasing (nonincreas-

ing) function of Xill... Xin when the other components of X are held

fixed. Then Ep(X) is a nonincreasing (nondecreasing) function of

r..
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The following two lemmas are from Barlow and Proschan [8 ].

n n
Lemma 1.2.4. (a) ( 7 aiXi ) i (0) _ ai  [ (Xi) - .(0)] for alli=l 1~

0 L Xl '_..., Xn .b and for all convex q on [O,b] if and only if

n
o , Ai  X a. 1 for i = 1,2,...,n.

j=i J

n n
(b) i X a(O) Ia.[p(X.) - ;(O)] for all 0 X X1  .. < Xn

and for all convex q on ( if and only if A1 > 1, A2  1 ...,I

Ak 1 1, Ak+ l , 0,...,A n 0 for some k (0 < k < n).

n n
Lemma 1.2.5. (a) 4( 7 a iXi) . a , )i=I il 1l

for all star-shaped p on [O,b] and all 0 .: X <...< Xn - b if and

only if there exists k (I _ k _ n) such that

o A' .1 < Ak < 1 and A =. .= A = 0.

n n
(b) (Y a.X.) > aio(X i) for all 0 < X,<. < X and for alli-I 1 i i=1 -_ '-

star-shaped on (-o, ) if and only if there exists k (I < k < n)

such that

A1  Ak Ak+l .. A = 0.

Lem Il1_.2.. Let Fl , F2 be two distribution functions such that

Fl(x) > F2 (x) Vx.

Let Ti = , b Xijn i = 1,2

where b. > 0 for j E A, A - {l,2,...,n} and Xi;j, n is the j-th

order statistic from Fi, i = 1,2.

Then P[T 1  x] _ P[T 2  x].

Proof.
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*1 if T > Xi-

Let i (Xil ..... Xin)

0 otherwise

where Xil,...,. in are n observations from Fi (i = 1,2).

Since Yi (Xil X. in) is nondecreasing in each of its

arguments, by Lemma 1.2.2 we have

E ,I(Xll .. .. ln) < 2(X21 .. .. 2n)

That is P[T l , x] , P[T 2 > x]

This proves the Lemma.

We now state and prove following theorem which is more general than

that of Patel [58].

Theorem 1.2.1. Let Fi, G E i, Fi(x) > F[k](x ) Vx and i = 2,. k,

F[k](0) = 0 and F [k] -<G.

If a1 - 0 for j 1,2,...,r, G 1(0) 0 0, g G-1 (0) < 1 and ar > c l ,

then

(1.2.9) P[CSJR 1] > GT k( )dG(X)

where GT(x) is the c.d.f. of T.

Proof. P[CSIRI] = P[T(k) > c I T(i ) , i k]

-= k-1 k -l x
f 1" Wi ( )dWk(X)
0 i= l  1

f w~( -/ (X) (By Lemma 1.2.6)
o kc1  kx

= P[Zk > cIZ j , j Q

where Zl,...,Zk are i.i.d. with c.d.f. Wk(x).
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Let %(x) rG- F[k](x).

Nete that
r(1.2.10) Zi j l a'

i st i X;j n

where X* • is the J-th order statistic in a sample of size n1 ;j,n

from F[k] ,  =,

(1.2.11) P[Zk > CI max Z.] = P[,(l Zk) > (Zi), i = 1,...,k-1]
1<j<k

r -
Since aj = g G(0) < 1 and aj 0 vj = l,...,r, then, by

Lemma 1.2.4 (a) and (1.2.10),

r
(1.2.12) Z i)-Lj< I aj i (X'I; j , n ) .

r

Since L a_ > 1 and L a > 1 for i = 1,... r, we have, by

Lemma 1.2.4 (b) and (1.2.10),

(1.2.13) ( 1 j al
k 1 j=1ClZ ) YC j X ;,)

(1.2.14) X . Y
i;j,n st i;j,n

where Y i;j,n is the j-th order statistic from G, i = 1,2,...,k.

Thus from (1.2.11), (1.2.12), (1.2.13) and (1.2.14),

r r
P[Zk > cI max Zi] > P[ > c Y

1<i<k > 1 Yk;j,n - l j= i;j,n'

i- x , ,.. .k l

f G T (c)dGT(X)
GTi (0)

This completes the proof.
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The constant c1  c1(k,P*,n,r) satisfying (1.2.8) is determined by

f G k-l(-)dGT~)>P n

g G n (r-1 >ic

We now consider two specific distributions G(x). If G(x) 1-leX,

x > 0, then we have following result which generalizes the result of

Patel [58].

Corollary 1.2.1. If F.x)- F k(x) 'V x and i = l,...,k, F k(0)=O,

-x r- 1F~k G, G(x) 1- x > 0 and n > max~r, T-}~-, then
c 1

(1.2.15) inf P[CSIR1] = 00 H k-l (?)dH(x)
0 1

where H(x) is the c.d.f. of a x2random variable with 2r d.f.

Proof. If G(x) 1-e- then a. = for 1,,..,-
jn

and a =-(n-r+1).r n

Also L >1 . n r- 1
AloLar> iff n>

By Theorem 1.2.1 and the fact that 2nT is distributed as x2 with 2r

M~., the result follows.

If G(x) =x for 0 < x < 1, then we have the following result which is

a special case of Theorem 2.1 of Barlow and Gupta [5].

Corollary 1.2.2. If F i(x) > F [k](x) V x and i = 1,...,k, F (k](O)=O,

F k 4G and G(x) = x for 0 < x <
c

then
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(1.2.16) inf P[CSJR,] = fH 1 ( -)dHr (x)
0 1

where H r(x) is the c.d.f. of the r-th order statistic from G.

Proof. If G(x) =x 0 < x < I then a.i = 0 for j =,..r1and

a r = 1 By Theorem 1.2.1, the result follows.

We state and prove the following theorem about the asymptotic evalu-

ations of the probability of a correct selection.

Theorem 1.2.2. If F., G c i for all i =I,.. ,k and

(i) Fi(x) > F [k )v x, i =l,...,k, and Fk 'G

(ii) G(x) has a differentiable density g in a neighborhood of

its .%-quantile 11 and g( ) 0,

ii) g G is uniformly continuous on [0,1), G-1(x) is convex and

there exists an ri, 0 - ,-1, such that for r, - y < 1, g G1 (y) is

nonincreasing and l-Y is nondecreasing in y, then as n

(1.2.17) P[CSIR 1] j k C + CL-gca (

where -~ct as n q~ 1 -t and D(x) is the standard normal c.d.f.
n

Proof. See the proof of Theorem 1.2.1, we have

(1.2.18) P[CSJR1]c a .
11~ ~ L~ > [k ClmxZ

where Zl, ... Zk are i.i.d. with c.d.f. Wk(x) and Wk(x) is the c.d.f.

of Tk)

By Theorem 2.2 of Barlow arid Van iwet [11] and (iii),
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(1.2.19) sup g FG-  I (u)]du - x g[G-IF](u)]dulO a.s.

F k(0) F-1 (0)w here] [

where F[k]n is the empirical distribution of F[k].

Then we have (see Barlow and Doksum [3]), for n large,

(1.2.20) Zi st Y i;r,n

where Y. is the r-th order statistic from HF and H-1  (the
1 ;r,n F[k] F [k]

inverse of HF ) is defined in (1.2.1). Since F[k] <G, therefore
[k]

HF[k] is convex. Since G-l(x) is increasing and convex, therefore

G-IHF (x) is convex. Since HF k< G and G- (o) < 0, therefore
[k] [k] c

H F G. In a manner similar to the Theorem 2.1 of Barlow andF[kJ

Gupta [5], we have

(1.2.21) P[Y max Yi > P[Y; C Y;' i Q
l<i<k i;rn k;rn > 1 i;rn

where Yt is the r-th order statistic from G, i = 1,. ..,k. From
1 ;r,n

(1.2.18), (1.2.20), (1.2.21) and using the fact that

Y. N(na , a ),
,;r,n ng2(,)

the theorem follows.

Consistent with the basic probability requirement, we would like

the size of the selected subset to be small. Let S be the size

of the selected subset. One criterion of the efficiency of

the procedure RI is the expected value of the size of the subset.

If in addition to the assumptions of the lheorem 1.2.1,
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we assume that (a) F[l](x) - Fi(x) > F~ll(-) for all x > 0,

1,2,... ,k, where > 1 is given and (b) G -< F
C

We have the following theorem.

Theorem 1.2.3.

(1.2.22) E(SIR I) <k f G kl x)dG
G() T c1 xGT(x)

where GT(x) is the c.d.f. of T.

k
Proof. E(S R1 ) = PIT i > c T,, for j / i].

By Lemma 1.2.6, we have

P[T i >clTjj i] < P[T* > cTt, j = l,..,k-l]

where T* has c.d.f. W1 (x) for = 1,... ,k-1 and -- has c.d.f. W1 (X).

So that E(SIRI) < k P[T* > clT, j = 1,...,k-1]

= k P[Zk6 > CZ j , j = 1,...,k-1]

where Z] .... ,Zk are i.i.d. with cdf W1 (X).

Hence

E(SIRI) < k P[6 Zk > Zj, j z 1,2,..., k]
1

Let %(x): G- I F[ I
] (x)

since G -< F[l] then - q(x) is convex.

c

Using the same approach as in Theorem 1.2.1



20

and - > ar' we haveand rCl a r ,_"C '

P[ Zk > Z, j = 1,2,...,k] P[- Z* > Z*, j =

= f Gk-I( - - x)dGT(x )G-I T) Cl

G(0)

where Z*, ...,Z* are i.i.d. random variables with c.d.f. GT(x).

This proves the theorem.

Before discussing properties of the selection rule RI, we give some

preliminary definitions. Let ' denote the set of all k-tuples

F = (F1,... ,Fk). Let PF(i) denote

PF(i) = PFBT(i) is selectedrR]

when -(i) is associated with F[i ] .

Definition 1.2.1. A rule R is strongly monotone in (i if

PF(i) is , in F when all other components of F
F(') is[i]

are fixed

+ in F[j](ij) when all other components of

r are fixed.

Definition 1.2.2. A rule R is monotone means

PF(i) - PF(j) for all F E ,? with F [i](x) > F[j](x).
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Definition 1.2.3. A rule R is unbiased if P < PF(k) for all F E Q

with F [i](x) F[k](X).

Definition 1.2.4. A rule R is consistent with respect to si' means

inf P[CS!R] - 1 as n

Theorem 1.2.4. If ai > 0 for i 1,... r, then Rl is strongly

monotone in

Proof.

I if T(i)  > c max T

Let ( ) = ) l<j-k Ti)

0 otherwise

since ai > 0, T(i) is nondecreasing in each of its arguments for

i =

So that W(x) is nondecreasing function of X(i)l .... ,X(i)n when the

other components of X are held fixed and p(X) is nonincreasing

function of X I.... X(j)n ( i) when the other components of X

are held fixed where X(j) 1 ,.... X(j)n are n observations from

F[j]j = 1,..,k). Since Ep(X) = PF(i), by Lemma 1.2.3, it follows

that R1 is strongly monotone in (i)"

Remark 1.2.1. (1) If a rule R is strongly monotone in T(i) for

all i = 1,...,k, then R is montone and

Inf P[CSIR] = Inf P[CSJR]

where rj0 =F F Fe =  F (F .... 9Fk): F1  =... Fk).

(2) If R is monotone, then it is unbiased.

(3) If Fi(x) = F(x,oi), i=l,... ,k and Ti is a consistent estimator of

6i, then R1 is consistent.

(4) If Fi, G E i, Fi  G, i=l, .. ,k and the condition (iii) (excluding

G- (x) is convex) of Theorem 1.2.2 is satisfied, we can show that

R1 is consistent.
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The selection of the population with largest Fi (i=l,.. ,k) can be

handled analogously. We assume F i](x) - FEl](X), i=l,...,k, and

F[E] c-<G. The rule for selecting the population with F[] is

R2 : Select population -i if and only if

(1.2.23) c2  Ti lmin T.
hi-k J

where c2 (O - c2" 1) is determined so as to satisfy the basic

requirement. In a manner similar to the proof of Theorem 1.2.1,

if Fi, G E i, F[il(x) F[1](x) Vx and i = 1,...,k, F[1](O) = 0

and FrI- <G and if a. > 0 for j 1....r, G-I(0) - 0, g G 1 (0) < 1
cand a[ ]

and ar > c2 , then
oo -k-l

(1.2.24) P[CSIR k- Gx)dGT(x)
I2 - T 2c ~dT~

G1 (0)

where G T(x) = -GT(x).

(B) Efficiency of procedure R1 under slippage configuration.

We consider slippage configuration Fil](x) = F(X), i = 1,2,..,k-1,

and F[k](x) = F(x), 0 . 1. Let E(SIR) denote the expected subset

size using the rule R. Then E(S R)-P[CS!R] is the expected number

of non-best populations included in the selected subset. For

a given C 0 0, let nR(E) be the asymptotic sample size for which

E(S!R)-PfCS R} = C. We define the asymptotic relative efficiency

A R E(R,R*, ,) of R relative to R* to be the limit as c 0 of the
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nR) nR(0

ratio R i.e. ARE (R,R*;,) - lir " --

Under the slippage configuration, for large n, we have (see

Theorem 1.2.3)

(1.2.25) E(S!R1 ) = P[CSIRl] + (k-I)P[T(1 ) 1_ CI  max T iM

(1.2.26) P[T(1 ) c max T (i)] P[Y" cl max Yi]
i(l ii l

where Y1 .... Y'k are independent and Yi is the r-th order statistic

from HF for i - 1,...,k. The right-hand side of (1.2.26) is

equal to n 2
xah(a )(l- ))

(1.2.27) J ( - a,,)a, I

k-2(x I na
Cl a h(a )( - ( (x)

where c, is the constant used in defining RI , a is the (unique)

,-quantile of HF (X) and h(x) is the density function of HF (X).
[k] [k]

From now on, it is assumed that k = 2. Therefore (1.2.25) reduces to

(1.2.28) E(SIR,)-P[CSIR I ] i)(-h(a,)a"(l - i-) -n +

Let (- - (x +(l -C , )  _ )d(x) =p.

Barlow and Gupta [5] have proved that

1 -22D + D 3 D +

c I  n 23/2 n

where D= -I ) -itP

r g
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Now, setting the right hand side of (1.2.28) equal to E and using

c 1 , we obtain
n.

(1.2.29) n R (E [C-)?K ()1l+," ) -,/12 D 6a h(a] 2

22 2 1[ah2(a )(I_ ,)2] -  .

Comparison with Barlow-Gupta Procedure

Barlow and Gupta [5] propose a procedure R3, for a quantile

selection problem.

R3: Select population 7i if and only if

(1.2.30) Tr, i > c3 max Tr,j1 -j<krj

where c3 (0 < c - 1) is chosen to satisfy P[CSIR] > P* and T r i is

the r-th order statistic from Fi where r < (n+l)u < r+l. A similar

expression for nR3(c) (see Barlow and Gupta [5]) is

-E- 2 2 2f2 2 1
nR 3( [ (% ) - (C) (1+ ) ,/ 2 D f( l )] [rt u (1 6

where f is the density of F with unique a-quantile, t,

(1.2.31) ARE(RI,R3;.) = lim
E-O naR h (a)

If G(x) 1-e-x , x - 0 and F(x) = l-e-x , x > 0, then

(1.2.32) Ar E(t'\ R3 ;) - -(--J- log (l-") , 1

0.4803, , 1
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Conmparison with Guta Procedure

Gupta L30] gave a selection procedure for gamma populations
x

.i's with densities 1 xa-l e Ix , 0, > 0, i 1 ,2,...,k.:'l ~~ ~~~~~ (a),) r  
x .O i >O i= 2...k

The procedure R4 is

R 4: Select population 'i if and only if

(1.2.33) > c4  max X

where i is the sample mean of size n from 7! and c4 is the largest

constant (0 <c4  1) chosen so that P[CSJR 4] > P*.

For k = 2, [] = and [2] =  
, Barlow and Gupta [5] have prove that

nR3(-

(1.2.34) ARE(P 3,P4 ;) = lim n--- R )

2 2
2(l- )2 [ f(.- )] 

2

It is easy to show that

(1.2.35) ARE(R I R4 ;A) = ARE(R,,R 3;,)ARE(R 3,R4 ;6)

: log :: ,,i

,# (1--)a h(a )
t t

If G(x) = I-e-x for x 0 and a =

then

2 2
(1.2.36) ARE(RI R4 ) = )l-o2- 2

2(I-iS
Therefore as .s -, 1l, we get
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(1.2.37) ARE(RI,R 4 ;,tl) - li9

It is easy to see that

2
_, l

(1.2.38) AREI ,R4 ) 1, , 2

< 1

Comparison of RI and R5 from uniform distribution

Suppose ,l and are two independent uniform populations with

distribution functions Fi (i 1,2).

F.(x) = 0< x <.

x >.

where = [i] 112] =

A sample size n is drawn from each of the two populations. Let T.*i

be the total life statistic until r-th failure from 7. (i 1,2)

where r - (n+l) - r+l.

The procedure R5 is given by
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R 5: Select population 7ii if and only if

(1.2.39) >C 5  max T
1 <j4k J

where c5 is chosen so that P[CSIR] P. Le T* be associated

[i(i)

(1.2.40) E(S R) P[CSIR5  P[T*1  cT*2) P[Tj > T-~ T ]

where Ti, T are two independent total life statistic until r-th

failure from uniform distribution over (0,1). By Gupta and

Sobel [42],

(1.2.41) Ti_ ,N(0,1) as n

where u = nc(2n-un+l) =nct(2-ct)
2n+l 2

1J (-ac n2(2-a) 2n 2 +cx 3 fl3

4n 12n 2

=An where A - +(~ 2 2 3

Hence u zu =B where B (2a
0 

A

From (1.2.40), we have

Ti-u' c5  Tb-ul

E(SIR )- P[CSlR5 PI = _l (- +( -I

5c 5  0 0j-)~

where Z11 Z 2 are i.i.d. with N(0,1).

Hence

E(SIR5) -P[CS[R 51 f ':'Ec- x-(l- C)B/ri ]d (x)

5 5
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B/n

C5

Let E(S R5) - P[CSJR 5] E > 0, we obtain

(1.2.42) (L- 1) E'_,,

c5  c /~ 2 a
5

Note that

inf P(CSJR 5] = P[Tj > c5 T ]

where Ti, T are defined as above.

T'-u' T'-ul u
P[T i > cT ] =P[L C 15[-_ + (c_1 u]

P[Z1 > c5Z2 + (c5-1)Bv]

where Z,, Z2 are i.i.d. with N(0,1).

Hence

P[Tj > cT ] 1(5 x -(l )Bn)d,(x)

-( L -)Br,
c5

5

Setting inf P[CS R5 ] = P*, we obtain

- (1 - -)B, = :' (P*)vl 1--
5 c,

(1-c5)Vn D/i + c where D= B

f D

We see that c5  1 D

L 1
+5
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From (1.2.42),

(I + - +)[I +212 1 2 D 2D 2

6 B E) -1 + [1 ++ ]

v - 1) + / D { +1
B 67

Thus

I (E)/1+6 2 _ v2 6P-l(p*) 2. .R 5  E )B ( 1 -6 ))

If we assume that G(x) = x for 0 < x < 1, then the nR (E) is

given by (1.2.29) with a. = a, h(a ) = 1, no, a and g(n ) 1.

Hence

nRl( )
(1.2.44) ARE(RI,R 5;6) = li€ nRSE)

B B2(-) _ 3(1-a)( 2-a)2
Ct 3(1_ )(2_oa)2+a 2

= 0.931, a - 1
2"

= 0 .6 7 5 , - 3

4"

- 0.574, a .

(C) Selection procedure for distribution < ordered with respect to
c

Weibull distribution

Assumed that the specified distribution G(x) is a Weibull

distribution. In other words, G(x) is given by

1-e-  for x > 0

G(x) = I
0 for x < 0
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where x' 0 and attention is restricted to a > 1 which is assumed

known.

In this case, we use the statistic T# which is defined byI I

r

(1.2.45) T. = Xu • + (n-r)X' n i
• ~~ i i ~jn;r, ' ..

(as before, X i;j,n denote the j-th order statistic from Fi, i=l,...,k).

Since G(x) is convex with respect to the exponential distribution if

a > 1 and since the convex ordering is transitive, the family of

distributions which are convex with respect to Weibull (a 1 1) will

have IFR distribution. Thus our interest here is in a special subclass

of IFR distributions.

The rule for selecting the population which is associated with F[k]

is as follows,

R6: Select population 7i if and only if

(1.2.46) T > c6  max Tt
- l<j<k J

where c6 (0 < c6 < 1) is determined so as to satisfy the basic

probability requirement.

Using the fact that if F . G and F(O) = G(O) = 0
c

then F - G for > l,

c
where F is the c.d.f. of X, F(x) is the c.d.f. of X, G is the

c.d.f. of Y" and G(y) is the c.d.f. of Y.

Also,

G-F (Xn) t i-th order statistic from G*(x) l-e" x,

x 1 0wn St

x > 0 where X ln < ..< X n,n are order statistics from F. In a
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manner similar to the proof of Theorem 1.2.1, one can prove the

following theorem.

Theorem 1.2.3. If Fi(x) - F[k](x) Vx and i = 1...,k,

F[k(0) = 0, F c<G, G(x) = l-e-x . , x > 0, x > 0 and 1(> 1)
[k] [k]

r-l

is known. If n _ maxfr, r- , then
_ 1-c6

inf P[CSR] -I ( 6)dGT(X)

(1.2.47) inf P[CS6R G k GT

where GT(X) is the c.d.f. of a )2 random variable with 2r d.f.

(D) Selection with respect to the means for Gamma populations

Let Tl .. ,7 k be k populations with densities

ri(x) = x e"', x --0, 0, 1 > I , i = I k.
7T T

Let Ri(x) be the distribution function of ni, i = 1,...,k. We

are given a sample of size n from each ni" Let T be total life

statistic until r-th failure from

Let ap] < ...< be the ordered values of ai's. We are

interested in selecting the population with the largest value

[k] (unknown). Since the mean of -i is ,-, selection of the

population with largest mean is equivalent to selecting the

population with largest value, I[k]" The subset selection rule

based on Ti is:

R7: Select population i if and only if

ml
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(1.2.48) T* > c7  max *

l 7IJ k J

where c7 (0 c7 ' 1) is chosen to satisfy

P[CS!R71 *

Since the rule R7is scale invariant, we can assume 6&=1

Case 1: All1 are unknown and -.1. Let (= = (ail .. ck): cti > 1 Vi

R. -<G(x) = l-eX , x ,0, i =1,. ..,k.
c

In this case, by Corollary 1.2.2, we have the following result.

If n >' max~r, r- e 1n [CI fH k I x)dH(x),
thecin [CI 7] 0 c

where H(x) is the c.d.f. of a x2r.v. with 2r d.f.

Case 2: aiare unknown but assume 1I~ < ~ i = 1,..,k and A is

known.

Let R A(x) be the c.d.f. of X with density function

___A-] -,'Ar A (x) x e ,x > 0, > 0.

Let h(x) be the density function of a x 2 r.v. with 2r d.f.

Theorem 1.2.4.

(1..49 P[sIR] kI 2n 2nh[2ny) -x(124) PCJ 1>f H cX) r y) e dx,

where y = R-1 (I-e-x).
A

Proof. P[SR1= P[ )>c7 max Tj]

where Tti) is associated with 1,l. . .,k.
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Since R A(x) < Ri(x) < G(x) = l-e-x , by Lemma 1.2.6, then

(1.2.50) P[CSIR 7] > P[T *> c7  max Tt**
S - l<j<k-l J

where T**is the total life statistic until r-th failure from G(x)

and Tj*(j = l,...,k-l) is the total life statistic until r-th

failure from R A(x).

Since A I then RA -< G.
c

Let ( (x) = G1IR (x).

(1.2.51) P[T**> c7 Tt*,j=l,..,k-l1] = P[c4(! T**)> y(-- T**) j=l,...,k-l]

c 7  (n-r+l)c 7

By Lemma 1.2.4 (a) with al = ar-l = n ar n

ai = 0 for i > r+l

and c x)-t Y where X is a r.v. with distribution RA

Y is a r.v. with distribution G,

we have

( 1 .2 .5 2 ) P [ q( T * * ), 7 - ) = , . ..k l P [ , ( T * * )> - n

n _ ni j_ 2n j

j = 1.. ...k-l]

where Y. (j = 1,... ,k-l) is a r.v. with x2 with 2r d.f. From

(1.2.50), (1.2.51) and (1.2.52), we have

Hk- 1 2n
P[CSIR 7] > H k( x)dB(x),

7 0 7

where B(x) = P[ ( T**)< x].

Since q(x) = -k, (l-RA (x)), then ( (x) = Rl(l-eX).

Ai
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Thus

B(x) P[T**< n c-(x)] = H(2n W-l(x))

= H[2n R-l(1-e-X)].
A

Now

dB(x) = h[2ny] d(2ny)CTT-

h(2ny)2n ex where y = (l-e-X).

AJJ

So that,

Hk1(!2C x)dB(x) f H k-(2n x) 2nh(2ny) e-Xdx.

This completes the proof.

Let S denote th'e size of the selected subset. The expected

value of S when R7 is used is given by

k
(1.2.53) E(SIR 7) I P[T" > c max T*].7 i=l 7l<j<k

Let ,2' = fa_ = (a l,...,ak): 1 < A, i = l,...,k).

For a E r,', since R (X) < Ri(x) < G(x) = l-e
-x , then

k
E(SIR 7) < I P[T*> c7 max T*]

where T**is the total life statistic until r-th failure from RA (x)

and Tt*(j = 2,..., k) is the total life statistic until r-th

failure from G(x).

Hence E(SR 7) < k P[T**> c7 max T**j

7 2jk J

so that,
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(1.2.54) sup E(SIR 7) : k IRk -(X)dS(x)77)

where R(x) (S(x)) is the c.d.f. of total life statistic until I
r-th failure from G(x) (R A(x)).

1.3. Selecting a best population - using indifference zone approach.

Let T1 ..... k be k populations. The random variable Xi associ-

ated with has an absolutely continuous distribution Fi. We assume there

exists a F[k](x) such that F (x) , Fk( ) for all x, i=l,...k-l and

6 (0 < 6 < 1) is specified. Let

(1.3.1) 2 = (F = (F19 ... Fk): 2ajsuch that

Fi(x) > Fj-() V i jI

The correct selection is the choice of any population which is

associated with F[k]. We propose the selection rule R8: Select

population 7ri if and only if

(1.3.2) Ti = max T. where Ti is defined as in Section 1.2.l<j<k 1

We want the P[CS>R8] _ P*, for all F , where P* ( < < 1)

is specified.

Theorem 1.3.1. If F., G E J, i 1,...,k, Frk](O) 0 0, Frk ] < G

and G-1(0) < 0. If a1 > 0, j =
gG- I (0) <I < and ar > 6,

then

I.
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(1.3.3) P[CSIR 8] G f G-l(?)dGTX

where GT(x) is the c.d.f. of T.

Proof. P[CS!R8 = [T) > max T

Since F [](6x) > i=1(x , .,k1 it follows from Lemma 1.2.6 that

PC~R]=P[T (k) > VTt1 j $

TI vi f k]

the same argument as in Theorem 1.2.1, we have our theorem.

Remark 1.3.1. inf P[CSJR] =f G k-l(?-)dG (x) if G-1(0) = 0.

G-1 0)

For given k, 5, P* and G(x), we can possibly find the values of

the pair (n,r), (n > r) which satisfy

(1.3.4) ar> r and f G kl(? )dG

If G(x) = x for 0 < x < 1, we can always find the values of the

pair (n,r), (n > r) which satisfy

0

In this case, GT(x) is the c.d.f. of r-th order statistic based on a

sample of size n from G.

If GWx = I-e-x for x _. 0 (see Patel [58]), we can find

the smallest integer r which satisfies
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G (-l()dG (x) P * where GT(x) is the c.d.f. of a x random variablebT 6 T Tx
with 2r d.f. Since -a > 1 iff n > 17 the minimum n

r-l

satisfies n > max{r, r-l

1.4. Selection procedure for distribution <ordered with respect to G.

Let t(> 0) be a given number. Let Ni(t) be the number of failures

in time t among the n units on life test from 7i which has a

continuous distribution Fi , i = 1,...,k. We assume that

(1.4.1) Ni(t) > 1, i = 1,...,.k,

and there exists a F[k](x) such that Fi(x) > F [k](X) for all x,

i = 1,...,k. The correct selection is the choice of any

population which is associated with F.[k ]  Let Ti be the total life

statistic until Ni(t)-th failure from population 7i. Let T M be

associated with F[i]. We propose the rule

(1.4.2) R9 : Select ri = Ti > c9  max T.
l<j<k J

where c9(0 < c9 < 1) is chosen so that P[CSIR 9] > P*.

Theorem 1.4.1. If Fi(x) > F[k](x) Y x, i = 1,..., k and F[k ] < G,

then

(1.4.3) P[GSIR] k (x-) W

0 c9 2

where Al(x)(A2kx)) is the c.d.f. of total life statistic until n-th

(first) failure from G.

I
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Proof. From (1.4.1), we have

P[CS'R9 ] = P[T() > c9 max T

P[T' c9 T* for j 1,... ,k-1]

T*r

where -- is the mean of a sample of size n from F i=l....k-l

and n is the first order statistic from F[k].
Let

(1.4.4) T = 7 X. for j 1....k-1.

where Xjl...,Xjn are i.i.d. from F[k] , j = 1,...,k-1.

sinc F (x) - Frk(x) then T**> T*. Hence
J-t

(1.4.5) P[T* > coT, jfk] > P[T* c T** jfk].- - 9 j '

Let x) G- FI  WLet (x)= GF[k](x).

(1.4.6) P[T > c Tt*, j k] = P[ n- > c ( Tt*), jtk]

Since , is starshaped, then

(1.4.7) 1 l Tk >I Tk
S n9 - c n

By Lemma 1.2.5 (a) and (1.4.4),

(1.4.8) ( T *) . 1- "

Note that cY(-'-) s Yk where Y is the first order statistic of

size n from G and (X j,) has distribution G, j 1,...,k-1,

2. 1,... ,n.
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n

Let Y l Xj j = l,..,k-l.

From (1.4.7) and (1.4.8), the right-hand side of (1.4.6) is greater than

or equal to

P[ Y > y., j=l,...,k-1] P[(nY)> Y j=l,...,k-l]
nk nj c9  k

A A-l ( -)dA0; 9
Te .,.f is complete.

1.5. Selection with respect to the means for distributions s-ordered

with respect to a specified distribution G.

Let the random variable Xi associated with iT. have an absolutely

continuous distribution F. Assume that Fi(x) = F(2X-), i=l, .. ,k,
1 1 e1

F -< G and F and G are symmetric about 0. As before, let
s

o <' [k] be ordered values of unknown o, (i = 1,..., k).

A best population is defined as the one having e[k] . We are given

a sample of size n from each of the k populations. Assume that n

is large. Let

(1.5.1) Ti  -r 'Xi;r,,n-Xi;r,+l,n-...- Xi,zi,n +Xi; i+l,n ..

+ (n-r+l)X i
1;r,n"

where X. < 0 < X. <.. .< Xi  are
where Xi~l~n - - ;zi,n - ;,.+l,n - - ;~

order statistics from Fi(x), and r',r are given integers such

that 1 e r' < 9,i, n r > Pi' i 1,...,k.

Similarly, let
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(1.5.2) T = r'Y ri, Yr+~ -.- ,n +Y +1,n +..+(n-r+I)Y r,n

where Y ln _* .,,, Y 0 .1  .+ ~ Y n are order statistics

from G. Then, for selecting a subset containing [k'we propose

the following selection rule:

R 10: Select population >if and only if

(1.5.3) T i c 10  max T.

1 jk J

where cio (0 -cio 1) is determined as to satisfy the probability

requirement, inf P[CSIR 101 -'- P*, where CS stands for a correct

selection, i.e., the selection of any subset which contains the

population with 0[k] and.?(l,.Jk: >0il,.k

Let 7~ (i) be associated with [i], i =1,... ,k. Now, we give

a theorem pertaining to the computation of the minimum probability

of a correct selection.

Theorem 1.5.1. If F.(x) = F( -) x and i = 1,. ..,k, F -< G and
-1 5i

F and G are symmetric about 0.

If lim t,,~ lim r = t and c min't', l-tL,n n n 10-

then,

(1.5.4) lim inf P[cSIR 10  Hkl(x-~)dH(x)
101c 1

where H(x) is the c.d.f. of T defined in 1.5.2.

Proof. P[CSJR 10]j = P[T (k) .c 10 T (j) j=l,. ..k1

whr (j) r (i )r',n (i)r'+l,n-*' (i)Q, ), n +X(i. )+ 1 ,n

+ (n-r+l)x (~~

MEMEL- UIM(iMMrMn



41

and X x 0 <* - X ~ X are
(,ln(i),n (i)zi)In' (i)n,n

order statistics from T,(i),

It is easy to see that

(1.5.5) inf P[CS!R10] = P[T > clOT>, j=1,. ..,k-1]

where T' -rY. ir,-''*. .Y. iZj,+ Y. * +nr
1 ;r, i;z. +1,n+*+(-~) ~

and Yi~~ < .. Y 0 0< Y. i~,,+l,n Y* * Y. n are order

statistics from F(x).

Let ' (x) =G-1 F(x).

(1.5.6) P[T1  > c10T'] = [ T ) (-T. j,.,k1.

By Corollary 2.9 of Lawrence [48] with i 0  1 (i), Jo = (i)+1,

and

-ri Zr'
n
1 r' < ,j < (

a ~nM
n (i) < r

n-r+1 j =r

n

o n j>r

then

1 )+ .. n-r rf + l ;( 1 )Y

+ nL (Yi w n )n + i.; , jl..k

Also by Corollary 2.10 of Lawrence [481 with j0 r'-l, jo n+l,
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O O.j r'

nc] j ~ (k)
nc10

a- I -
nc (k) j r

n-r+1 j
nd0O

0 j >r

-r' n-r+l-1 and -r+1
nc10 nC 10

then

1 T 1 (Y(
)- nc , k;r,n -.- nc - k; (k) n)

(1 5. ) (-1 0  T10 10 nk)$

1 ~ n-r+1 (y
+ 10 k 0 k(k)+ I " nC ;r,n

Now (Yj;i,n ) st V.;in' j = 1,...,k, i= 1,. ..,n, where Vj;i, n

is the i-th order statistic from G(x), j = 1,...,k.

Let
T" = - 'V -" "" "vi.+
i  -r i r',n - Vi + Vi +1,nS;r ,n '(i ,n ( )

+ (n-r+l) Vi ;r,n' i = 1,...,k.

From (1.5.6), (1.5.7) and (1.5.8), we obtain

P[T > C T5 , j~k] > P[T" > c10T, j , k-]

Since G is symmetric about 0, as n becomes large,

T- T, j = 1,...,k.
3 st

Thus
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k-l o r n- "P[CSIR1 o] f Hk- )dH(x) if c - min{ -r
0 10 10- min n

This proves the theorem.

Corollary 1.5.1. If Fi(x) = F(, -) Vx and i = 1,...,k, F G, F is
1 S

symmetric about 0 and g(x) = dGAX) -1 -xlx
dx = e ,

r' = t' 1 r 1
If lim t < ' lim r = t > 1 and cO < min{t', 1-ti,

n-m n-

then, as n is large,

(1.5.9) inf P[CSIR1 o] f [k-l x +( ) - ]dD(x)
Q -- clO C

Proof. Considering

Z-1 r
T* = -i(Yi,n-Yi+l,n ) + +X (n-i+1)(Y i n-Yil n)i=r' Z 1'

where Y1,n <...< Y zn < 0 < Y +I <... < Yn are order
,n - " -n ,n,n

statistics from G(x).
2

Since 2 T* is distributed as a x r.v. with 2(r-r'+l) d.f.

(see Lawrence [47]) and T* has same distribution as T when n is
2.

large, then 2 T is distributed as x with 2(r-r'+l) d.f.

By Theorem 1.5.1,
>c 1> max V.]

P[CSR 10] -P[Vk - cO k

2

where V1 ,... ,Vk are i.i.d. from x with 2(r-r'+ 1) d.f.

Since Vi  N(2(r-r'+l), 4(r-r'+l)), then

1 1 + -clO

P[Vk c max V.] Cf : - (r__ + /YrT)d4(x)
1.j k 10 clO

This proves the corollary.



44

Assume X Jn< ... < X kn <X k+l n < ... < X n are the order statistics

from distribution G where - G(x) g(x) = e ,xl < x < ~

Define

(1.5.10) V. j= i =b. n
nfn

where H~i~ n (n gG- On) (Xjn -~ )

Now we want to get the limiting distribution of V n (as n is large).

Le T vrn n V- 1  To obtain the asymptotic distribution of T n

we use the following result. Let Xln< .. *< X nn be the order statistics

n
from Gand S~ L(±)X.n n il n i,n'

2 2 Gt]st_ (G) = 2 f f L(G(s))L(G(t))G(s)[l-Gt]st
s<t

where L satisfies the condition (ii) of following lemma.

Lemma 1.5.1. (Moore [53])

If 2< and

(i) EJX[ flG1l(u)ldu <
0

(ii) L is continuous on [0,1] except for jump discontinui ties

at a, ...* laMs and L' is continuous and of bounded variation on

[0,l] - (l . al

then

(1.5.12) S~ n - f xL(G(x))dG(x)]l N(0,o )2

Let
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(1.5.11) Sn - ( 1 - ( ).

n =n i=1

Then using an argument similar to the one in Barlow and Doksum [3]

1 L(') Xi=Sn n n~ i,n

where L(i) = g G n 2 n ) [g G1(+)-g G

1
Since 1 = x for 0 < x <

1-x for 1 < x <

then

2('-) for <
L =n 2 n

2 n for

Thus we can consider

n
(1.5.12) L(-)X i

n n n i,n

1 1

2x -- for <

where L(x)

f 2x for y < x <

We can show that

f xL(G(x))dG(x) = 0.

It follows from Lemma 1.5.1,

rh Sn N(O,a2(G)).

where
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(1.5.13) 2(G) = 2 f f L(G(s))L(G(t))G(s)(l-G(t))dsdt.
s<t

2 1t L(s) sds] L(t) -t)dt

J()= 2 f[f G-1ss Lt (-t)dtg G- (s) g G 1(t)

lP t L(s) t)_ sds] lt) t+2 f E 1 sds -I j dt
0g (s) gG s) g G(t)

1 5 1Lt~-t

+ 2 fI[f L s(s_) sds + f L(s) sds]-L'-"- -tG_ dt
.1 0 gg-l(s) gG-l(s) g G-(t)

= 2 + 2 - =5.

By Theorem 2.1 of Barlow and Van Zwet [111, Hnl1) G(X a.s.
n n,n

Since G(Xn) + 1, therefore H-1 (1) 1 a.s.
nn n

Now Tn = Hl1) hence by Slutsky's theorem,

we have the following result.

Theorem 1.5.2.

V
(1.5.14) ( ( ,1

1.6. Selecting a subset which contains all populations better than

a control.

In addition to 7I' .... k' we have a control population r0" Let

7 i have a continuous distribution Fi, i = O,l,...,k. We are given

a sample size n from each of the (k+l) populations 7i, i = 0,1,..., k.
Let Ki be the unique x-quantile, i = 0,1,...,k. A population i

(i = 1,2,..., k) is defined as better than the control i0 if i 0
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We want to select a subset such that the probability is at least
P* (I < < 1) that all populations 7i (i = 1,...,k) for which

k

ai > Ea0 will be included in the subset. We regard any such

selection a correct selection (CS). We assume that for a fixed

i, i = 1,...,k, either Fi(x) > Fo(x) or Fi(x) < Fo(x) V x > 0.

Thus Ti is better than n0 iff Fi(x ) : Fo(x) V x > 0. Here

IT0 is not known and we assume F0 <G. Let Ti be the r-th order

statistic from Fi where r < (n+l)a < r+l and let Hi be the c.d.f.

of the r-th order statistic from Fi, i = 0,1,...,k. We propose the

rule R as follows,

Rl Select 7i if and only if

(1.6.1) Ti  > C T

where cl1 (0 < Cll < 1) is determined to satisfy the basic probabil-

ity requirement. Let t be the number of i's better than 0 and let

A be the index set for those ri, t is unknown. Let G r(x) be the

c.d.f. of the r-th order statistic of sample size r from G. Let s

be the set of (k+l)-tuples (F0,Fl,... Fk).

Theorem 1.6.1. If F0 < G and for a fixed i, i = 1,..., k, either

Fi(x) Fo(x) or Fi(x) < F0 (x), x > 0, then

(1.6.2) inf P(CSJR ] k (cllx)dGr(X) where r(x)=l-Gr(x)

Proof. P[CSRI11] = P[T i > cll To  i E A]

iEA [l-Hi(cllx)]dHo(x)
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Since Fi(x) < F0 (x) for i E A, then Hi(x) < Ho(x).

Thus

P[CSjRII] > f , [1-H 0 (cllx)]dHo(x)
0 iC&

= I [1-H 0(C11 X)]t dH0 (x) f [l-H 0 (Cllx)]kdHo(x)
0 0

= P[ min Zi > Cl1 ZO]
1<i<k

where Z0, Zl,...Zk are i.i.d. with c.d.f. Ho(x). Since F0 . G

(see Barlow and Gupta [5]), then

P[l<i<kn Zi > Cl ZO] > f['r(CllX)] dGr(x).

This completes the proof.

1.7. Quantile selection rule for a restricted family of distributions

We assume that each Fi(G) has a unique a-quantile i and

Fi(0) = 0 : G(O), i 1,2,..., k.

Let [1]a <...< [k be ordered values of Ci.' l,..,k. A

best population is defined as the one having E[k],. Let Ti

denote the r-th order statistic from Fi, where r < (n+l)a < r+l.

The rule we propose is

R12: Select 7i if and only if

(1.7.1) T i > max T - c12
1 <j-k ~ 1

where c12 (0 < c1 2  1 1) is determined so as to satisfy the probabil-

ity requirement P[CS1R 1 21 > P*.
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As before let Q be the set of all k-tuples (Fl,..,Fk). Also

if F has a unique a-quantile , we define F < G if and only~S*

if F(O) = 0 = G(O) and G-IF(x) is concave-convex about the

on the support of F.

For example, if G(x) = l-e-x, then F -< G is equivalent to
S*

saying that F(x) is DFR for x < r and F(x) is IFR for x >

on the support of F. We are interested in this "turning point"

Let H .(x) be the c.d.f. of the r-th order statistic from" r,i

F[i ] and let G r(x) be the c.d.f. of the r-th order statistic from

G.

Theorem 1.7.1. If F [i](x) > F[k](x), x > 0 and i = 1,...,k,

F[k ] < G and F G n ), for y > 0, then
S*[k] YF,[k] >G(y

(1.7.2) Inf P[CSJR 2] f G k-(x+c1 2 )dGr(X)
0

where G (x) is the cdf of r-th order statistic from G.

Proof.
k-l

(1.7.3) P[CSJR 1 2] = J iH H (x+cl2)dHr,k(x )

0 i=r,i

> f [Hr,k(x+cl2)]k 1 dHr,k(X) = PX r,> max Xr,i-c 1
0 , 1k<i<kl rI c

where Xrl" .. r,k are i.i.d. r.v.'s with distribution Hr,k .

Let , (x) = (-x) = -
[k] r Hr,k(X). Since G F[k](x) is concave-

convex about F[k] , then c '(x) is decreasing in x for 0 < x <
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and W'(x) is increasing in x for x >

So that c,'(x) > V'(F[k,) V x > 0. Since F[k](y+ [k]_) > G(y+n,)

for y > 0, then F[k](x) > G(X+n-k for x >

Hence GF [k(x)- >1.x-I[k],

Let A(x) : G-IF[](x) G-IF([k]) F[k(x) n' then

A(x) - A(9[j >

Let X F[k]' then A' _([k]) > .

Since A(x) = A'(x) f [k](X)
ed-x g[G-lF[k](x)]

then A'( [N]) - gQ [ k) > 1.

Hence c'(x) > 1 V x > 0.

c max X r,i) - ( (Xk)-

Since max Xr, i - Xr, k  - C'(t) for some t such that
mxXr,i -Xr,k

Xrk t <max Xr,i and +IXri) = Yri has distribution Gr,

then

max Y - Y max X - X
1<i<k r,i r,k - l<k r,i rk

From (1.7.3), we obtain

P[CSIR, 2] P[ max Y - Y < c12 ]
1<i<k ri r,k

f f G k-l(x+c 2)dG(X).0
This completes the proof.
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1.8. Estimation of ordered parameters

We assume that Fi(x) = v() V x and i = 1,...,k, where F.

and ei are unknown and ui  0, i = ],...,k. Lct

0[l] *... 0Ik] be ordered values of ei's. We assume that

each Fi(F) has a unique c-quantile i(F), i = 1,...,k.

Let [l] <-< 1[k] be ordered values of Ci's. We are given a

sample of size n from each of the k populations. Let Ti be
the total life statistic until r-th failure from Fi , i~l,....,k,

T*(T) be the total life statistic until r-th failure from F(G)

and let Tt be the r-th order statistic from Fi, i = 1,. ..,k,

where r < (n+l)a < r+l.

Let T<... T[k ] be order values of Ti's

and let TtI<...< T~k be order values of Tt's. Let T(i) and

T~i) be associated with e[i ] , i = 1,...,k.

(A) Estimation of o[i] based on T[i].

Theorem 1.8.1. If F <G, F(O) = G(O) = 0 and if
c

00 = f xdF(x) =f xdG(x) where is known, then
0 0

(1.8.1) P[e[i] 1 T[i ]] > s if < < o(n-r+l),

where A = W-(1 0 k-i+1) and W(x) is the c.d.f. of T from G.

Proof. P[o[i ] < A T i PTi] A6 i

{ L]=PT 1 i
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- Since P[T ]is a non-increasing function of o (1 £ k)iii < I

(see Chen and Dudewicz [20 ]), then

PET > kil[T te)

= k-i+l [T*_

By Theorem 4.6 of Barlow and Proschan L 8],

Pki+1 T k-i+l T 1.

1W)Jk -i+l 1(- k- i+l k -i+1

Letx y2(2r) denote the 100a~ percent point of a chi-square distribution

with 2r d.f. Again, by Theorems 3.3 and 2.4 of Barlow and Proschan

[9], we have the following theorems.

Theorem 1.8.2. If F is IFRA and f xdF(x) 0 where ,0is known,
0

then

(1.8.2) PL [j., c1 T [i]] where

( 2 if x 2 (2r) 2(n-r+l)
OX 2 (2r)1

(n-rl) ifx 1_,(2r) _2(n-rt-)

where =k-i+l

Theorem 1.8.3. If F is IFR and fxdF(x) = 90where 00is known,
0

then
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whr cr_ 2nk(1.8.3) P[C[i I> c 2T li]] > 2 whr 2  2,

L 1 JOx L.l ,(2r)I

and 1

22r

Let 1 , 32 (0 ,1','2 < 1) be such that I + B2-1 = y where y is

fixed and 0 < y < 1. By Theorems 1.8.2, and 1.8.3 and the fact that

P(AB) > P(A)+P(B)-l with A =  [i] i Cl TLil } and B [i] r c2T[i]j,

we have the following theorem for two-sided confidence interval

of

Theorem 1.8.4. If F is IFR and f xdF(x) a 0 where e0 is known,
0

then

(1.8.4) P[c2Tr) < 9l < clT[i ]

where cl, C2 are defined as above.

(B) Estimation of [i] based on T[i,

Theorem 1.8.5. If F <G, then

if bl (n-r+l) > 1

(1.8.6) P[r[i] < clT[i ] ] > I where c n

]if A(n-r+) 1

where A1  and

wx (d-6 f T
- T)

W(x) is the c.d.f, of T from G.
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Proof. P[ [i] c CT i]]

> k-i+l[T 1_

>i) - c I [i] ]  (see Theorem 1.8.1)

pk-i+l [T iI

= pk-l+l [T* _ ]
-c

=ki1 1 F-I( )] = kN-i+I[(l* ) >1]
pk-i+l[T* >- [F(cT*)

In a manner similar to the proof of Theorem 3.1 of Barlow and

Proschan [9], we can show that

1

P[F(c 1T*) _ ] k-I

Hence

P[-[i < C T~i ] "#

Looking at Theorem 2.1 of Barlow and Proschan [ 9], we can

have the following theorem.

Theorem 1.8.6. If F -< G and F(O) 0 - G(O), then
C

A2  if n I

(1.8.7) P[ > c2 T[i]] 
> '2 where c2  2

'ELi] > i2 ] f2n  2 -

G-I and

2 1

W(x) is the c.d.f. of T from G.

Lt 2 (0 ' ,i2 1) be such that 1 + 21 = where is

fixed and 0 - 1. By Theorem 1.8.5 arid Theorem 1.8.6, and the fact that

if F(O) = 0 = G-1(0) 0 , then F < G =F -< G we
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have the following theorem for two-sided confidence interval of

i-D].

Theorem 1.8.7. If F <G and F(O) = 0 = 1 (0), then
c

(1.8.8) P[c 2T [i] i ClT 1 i]] [ -

(c) Estimation of [i] based on T*
[]

Theorem 1.8.8. If F <G, then
*I

GIG (l_ k-i+l)

(1.8.9) (1) P[rti -
_ i _ if A =I( 1-[i G-I- ( ) -

AI

T*. G _ 1 (:T)

(2) PL if > - _ .
[i] > '%2 G- I (a)

Proof. First, we want to prove (1).

T_] = P[T*
pl~iil -, A 1[i] __ 1 [ ]

> Pk-i- [T*i ) > Alr[i]] (see Theorem 1.8.5)

= {l-P[T*i ] li]k-i+l

= l-j( l [i [i k-i+l = l F ( l ) k-i+l

where Fj(x) is the c.d.f. )f the j-th order statistic from F.

Since G-IF(x) = GIFj(x) , it follows that Fx) = G GI F(x). Hence

jJa
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F( F( ) GjG-1 F(Ar)

G[ [AG'IF(1 )] (since F G and 0 < A< )

-1

= Gj l (ki )]

S1k '- l
G G[G- (1-

so that

1-Fj(Ik-i+l) k-i+l

Now, we want to prove (2).

P[[i - TJ] P[T* ]-2 [] 2[i ]

> [T(i ) < 2 ,[i]]l

i 2

: {GJG 1F(A 2;)}i

> GJ[A 2G-F( )]1 (since F < G and 2 > 1)

{ A2 G- = G.G-(
This completetheg proo

This completes the proof.
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CHAPTER II

INTERVAL ESTIMATION AND SELECTION PROCEDURES

FOR A SET OF GOOD POPULATIONS

2.1. Introduction

In practice, one is always faced with the problem of selecting

the better ones from a group of populations. Here, we consider

such kind of problems. Suppose that we are given k(k > 2) popula-

tions .... 97 k with distributions F(x,oi) where 0i lies in an

interval A on the real line, i = 1,...,k. The quality of the i-th

population is characterized by the real-valued parameter Gi . The

population with the largest 9-value is called the best population.

A population is considered a good one if its quality does not fall

too much below that of the best population. If d(ei,e.) is a

suitable distance measure between and n. and if =0[k]

max ( 90... 0k), population 7i is

good, if d(:.[k],;) ,

(2.1 .1)

bad, if d(e k],' i) A

where A is a given positive constant. Let Xi (Xil .... Xin),

i = 1,... ,k be mutually independent random samples, each of size n,

from population -,, i 1,. ..,k resp.ictively. Let T. i T(X.) be

1-M-m
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an appropriate n'.ti'ndtor of .. Let qn(t,".i) and Gn(t,) i  be the

density functin Lnd hfe distribution function of Ti, respectively.

The result, )t tnw. rii i.ter relate to two cases,

(i in t' ' n.t-. , -, t--,., -, < -, and

(2. 1.2)
(i n(*. i )  = (t ) t 0, " > 0.

If the distribution function F(x,(.) of i belongs to a

location parameter family, then F(x, i ) = F(x-o.). The distribution

function G n(t,.) of-i which is based on a random sample size n is

not necessary of the form r.(t-,.i), but we can always find a

statistic T. such that Ti has the distribution function of the

form Gn (t-'.i). For example, let be k normal populations

2
with unknown means 1 .. ok and a common known variance u Let

Ti = Xi be the sample mean of 7i based on a sample of size n. In

this case, G (X,'i.) (the c.d.f. of Xi) is of the form G (X,,)
n 11n 1

G (X-'i), where Gn(X) (- x).
n i'x n (

If the distribution function F(x,oi) of ni belongs to a scale

parameter family, then F(x,o i) F(-) , x -0 , o > 0. As before
11.

we can find a statistic Ti such that Ti has the distribution func-

tion of the form Gn(-). The results of this chapter deal with
n

the cases when G (to i) is one of the two forms in (2.1.2).n 1

In Definition (2.1.1) we take d as d or ds , respectively,LS

whenever oi is a location parameter or is a scale parameter for

the density of Ti. dL and dS are defined as dL(a,b) = a-b,

ds(a,b)
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Estimation of 0[k] based on (T1,... ,Tk) has been considered by

several authors. Construction of two-sided and one-sided confidence

intervals for B[k] based on

(2.1.1) T[k ] = max Ti

l<i<k

was considered by Dudewicz [24], Dudewicz and Tong [26], Saxena and

Tong [65] and others.

For problem of selecting the good populations from a given

collection was considered by Desu [21], Carroll, Gupta and Huang

[ 19] and others.

We consider confidence interval I which is based on T[k ] "

In this chapter, we are interested in finding the smallest sample

size N such that the probability that I contains at least one good

population is at least P* where P* is a specified number, 0 < P* < 1.

The probability that I contains all good populations and the proba-

bility that I excludes all the bad population are discussed.

In Section 2.2, we investigate the above problems for location

parameter case. The infima of coverage probabilities are obtained.

Some special cases are discussed. In Section 2.3, we investigate

the above problems for scale parameter case. In Section 4, we

discuss the above problem for the means of normal populations and

for the scale parameters of the gamma populations.

2.2. Results for the location parameter case.

In this section, we assume that o is a location parameter

for Ti, i = 1,...,k. It is assumed that there is no a priori
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knowledge about the oi's. For arbitrary fixed dI, d2 ) dl+d 2 > 0, the

confidence interval is defined as

(2.2.1) 1  = (T[k]-d 1 , T[k] + d2)

where T l xi[k] = l<kT.

For the location parameter case, we say that population vri is

(2.2.2) good if i >  [k]-"

bad if 0i < j[k]-"

where 0[k] = max ei

1 l<i<k

For given e = (19 ,... 9nk) and > 0, let a,(1) denote the

probability that I contains at least one good population, let

,t(2) denote the probability that I contains all good populations

and let ai (3) denote the probability that 1 excludes all the bad

populations.

Let us denote the ordered c-values by e[l] <.-.< O[k ] and

let 2 be the parameter space which is the collection of all possible

parameter vectors o = l' ..... 9k). For given \ > 0, let m denote

the unknown number of bad populations in the given collection of k

populations. Clearly we have 0 _ m ' k-l.

Let

(2.2.3) 'm ' l] "" [m] [k]" 0 [r+l] " ' [k]

Then
k-1

(2.2.4) r = m•

We need the following lemma before we prove some theorems.
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Lemma 2.2.1. Define f(r) = ACr-BDr, r = 0,1,...,m where A > B > 0.

If either (i) 1 < C < D or (ii) 1 > C > D > 0, then

(2.2.4) min f(r) = min[f(O),f(m)].
O<r<m

Proof. Assume 1 < C < D. For r = 0,1,...,m-1,

f(r+l)-f(r) = ACr(C-I)-BDr(D-I)

f(r+l) < f(r) if and only if A ()r <D- r = 0,1,...,m-l.

C I 'A C r+l <D- ISine < 1) C-

hence

f(r+2) < f(r+l).

Similarly, one can show that if f(r+l) > f(r) then f(r) > f(r-l).

Hence the lemma follows.

If 1 > C > D > 0, then by a similar argument as above, the

result follows.

This completes the proof of the lemma.

Now we want to discuss the probability that I1 contains at

least one good population and the infimum of this probability over

i. We need the following lemma.

Lemma 2.2.2. If the family of density functions {gn(t-o): o C AlI

has a monotone likelihood ratio, for every n > 1, then for arbitrary

fixed dl,d 2 satisfying dl+d 2 > ,

(2.2.5) inf ,,(I) = min{Gm(A+dl)G n  (dl)-Gn(A- )  n (-d2
m G k m d -Gk m( -n (d n -d )
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Proof. For j C '

(2.2.6) £(l) = PfT[k]-dl < ,[i] < T[k]+d 2 . for some i, i=m+l,...,k}

l-P 4i] (:I, for each i = m+l, ... ,k

l-P{T[k]+d 2 < [m+l] T-PT[k]-di > 9lk]} (since

d1 +d2 > J)

= P{T[k]d k]  - P{T[k]+d 2 < Em+l]}

k k.- G G [Ej n[[k]+dl-[J]] jl n[[m+l]--J]

Let '= k]- [i ' = 1,... k, then 0 Sk <  k-I < "  <1 4k [i' ~k 'k " m+l

% < m < <

Hence
k k

(2.2.7) (1) = , G ( +dl) - 0 Gn(j- m+1-d2).
- j ~l n d=

It is easy to see that ce(1) is nondecreasing in 6m+l' where

- < ,A. Lets -

'm+2 >'m+l m+l = 6m+2' then
+d,) 2 +l)- F G-d G 2(-d2

.,(1) = ji G +d)G 2 (6m+2+dl 
J m+  njm+22 n

- j~m- jml
j m+2 j m+2

In this case, also we can see that ,(l) is nondecreasing in m+2'

where m+3 < 6m+2 < A. Let m+2 = (m+3" Repeating the process with

each j, j m+l,... ,k-l, thus we have

m km a k -
(2.2.8) Q inf (1) = G n( J+d )G n-m (dl)-j=I Gn(nj - d2 )Gn -m(d 2)

H 1  n 1 J=.

where H1I ~~M+i' k~-1): 0 " k- I 'm+1
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For i = 1,2,.... ,m,

2_Q = g(6 )fA-B 2iMd , g(6i+dl )

k- m k-m mwhere A G n (dl)j l Gn(6j+d l) and B = Gn (-d2 )
j  Gn (6.d2)"

j~i j~i

g(6i-d2)Since A > B and g(6i+dl) is non-increasing in 6i > A, i = 1...

then Q is greater than or equal to the right hand side of equation

(2.2.8) with either 6i = A or 6i = l' i = , ...m.

Tnus

(2..9) Q >O ~mm in (G r(A+dl)G -m dl)-G r(tA-d2)G k-m( -d2(2.2.9) Qm
0<r~mn In 1 n 22

By Lemma 2.2.1, we get

(2.2.10) inf ae (1) = min{G m(dl) Gk-m(-d 2 ),Gn(A+dpGk-m(d
PM n G d ) k-m(. 2 }

m Gm(A-d )G -~(d)
n 2 2))

This completes the proof.

Theorem 2.2.1. If the family of density functions {gn(t-o): 9 E AI}

has montone likelihood ratio, for every n > 1, then for arbitrary

fixed dl,d 2 satisfying dl+d 2 > A,

(2.2.11) inf (1) = minfGn(dl)-Gn(-d 2), Gk(dl)-g4(-d2,

G k-m (d,)gm( +d,)-Gk-m( -d2)mAd
) ml ,- i

n ~ A" 'm=l ... .k-l}.

k-i
Proof. Since p = , by Lemma 2.2.2, we have

m=O m

(2.2.12) inf m () ra i min[A km-B k-B, Ak-mCm-Bk-mDm]}
.! - ** .. , -17



64

where A Gn(dl), B = Gn(-d 2), C z Gn(,',+ d1) and D = Gn(!.-d2 ).

By Lemma 2.2.1, min [Aknm-Bk -,,] = min[A-B, Ak -Bk]. From
O<m. k-i

(2.2.12), we get

(2.2.13) inf ,(1) = min A-B,Ak-BkAk-mcm-Bk-mDM, m=1,2,. .. k-l,.

This completes the proof.

Corollary2.2._. Let the family of density functions {g n(t-e):

. have a montone likelihood ratio, for every n > 1. For

arbitrary fixed d1 , d2 satisfying g(-d 2 : g(d1 ) and dl+d 2

then

(2.2.14) inf (I) = min{Gn(di)-Gn(-d ,Gk(dI)-Gk(-d 2),

Gn(d )Gn- l (A+dl)-Gn(d 2 )Gn- l ('-d2)

Proof. By Theorem 2.2.1, we get

(2.2.15) inf ,(1) = min{A-B,Ak-Bk,Ak-mCm-Bk-mDm, m=l,...,k-l

where A Gn(dl), B = Gn(-d 2), C = Gn(,'+O 1) and D = Gn(,,-.-d2 ).

Consider

(2.2.16) f(m) = Ak-mcm - Bk-mDm

= Ak(C) M  - Bk(D)m ,  m - 0,1,...,k-1.

Let

G n(x+d1 )

dp(x) - gn(X+dl) gn(x-d 2)

dx G 2  fn(X-d 2 )-Gnx+d1)
n(Xd 2 )



g(x-d 2) 

6

since d2  -di, gcx-d is nondecreasing in x >0 and g(-d 2) >gd)

then d~~)< 0 for x > 0. Thus C'. < ,(0) A
dx -

By Lemma 2.2.1 and 1 < thenf

(2.2.17) min f(m) mninff(0), f(k-)).

Hence from (2.2.15) and (2.2.17),

inf ciiil) =minA-B, A k_ B k f(0), f(k-l))

kk kl k-i,
=min{A-B, A S k AC lBD ~

This completes the proof of the corollary.

Now we wish to discuss the probability that 1I1 contains all

good populations and the infimum of this probability over

Lemma 2.2.3. If the family of density functions 'g (t-.):n

S has a monotone likelihood ratio, for every n _1, then for

arbitrary fixed d1,d 2 satisfying d 1+d 2 > A

(2.2.18) inf q(2) - min min [Gn(d ik --r G rl(-n+dl

m0<:r--k-m-2 0<u-mn
[G (-d )k+k-m-r- -1 r+l(-
n [G(~ 2 ) n ( 2)".

Proof. For m

(2.2.19) (i2) = P -, [T d T,] .
[i] '[[k] '[k j2]

k k

= -1 n (o[m+l] '[j]+d) jlGn(I[]-[ d2

k k
G j 1 id 1 ) - i G n -d2
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where ] [k] - ,[]' j  1..., k and

k k- 1 ."'" 1 m I.

Since ;.(2) is nonincreasina in , where 'm+2 'ii 7" then

() --Q where

k-I k-I
(2.2.20) Q A G ( -.+dl)-B Gn(j-d2 ),

j 2 Jj=r+2
m

A G (j +dl )G n (dj)Gn(- ',+dI) and
j=l
m

B G (-d )G )n = : G (,j-d2)Gn( ,.-d2)Gn( -d 2).
n: 1

For i m+2,....k-l,

k-I k-I gn(-i-d 2)

i j m+2 j~m+2 g i I
*j~ri

Again, since d2 >.-d1 and gni-d) is nondecreasing in "i'

i -m+2,.. ,k-l, then Q is greater than or equal to the right hand

side of equation (2.2.20) with either .l 0 or S - i = m+2,

k-l.

Let H1  ( ii!+2.. ,k~i) " 0 -i " m+1

Hence,

(2.2.21) inf , (2) min [mG r(-+d, kn  (dl)-BGn(-d 2

H " O-_r e k -m -2 2n 2

G k-m-2-r( t-d2 ) '

nk 2rAd

Let H2  - ( . . if): " I' i

In a manner similar as above, for r 0,l,...,k-n-2, we Can show

that



67

(2.2.22) infAGr(_A+dl )k--2-r, k-m-2-r )]H n ) n  td B r ( -d2 )g n  ( -2)]

min fG r + l  k-m-l-r+R, EG ( k-m-l-r+O n - d )[ndl - n n -2 )]

Gr+I (-d2 )).

From (2.2.21) and (2.2.22), we have our Ieiiina.

k-1
Since w= U s, , by L.mma 2.2.3, we can have the following theorem.

111 = "m--O

Theorem 2.2.2. If the family of density functions gn (t-o): 0 C A11

has a monotone likelihood ratio, for every n 1 1, then for arbitrary

fixed dl,d 2 satisfying dl+d2 > A,

(2.2.23) inf ,(2) irin min min {[G(d )] k+z-m-r- I

Q Onm.:k- 0.-:r<k-m-2 0< ,<in
G r+I (-A+dl)-[Gn(A-d2 ] k+ z - m - r - I Gr + I (-d2) }

Lemma 2.2.4. Suppose that (i) gn(t) = gn(-t) > 0 fer all t and

(ii) the family of density functions {gn(t-)): 0 C AI) has a

monotone likelihood ratio, for every n > 1. For arbitrary fixed

d1 ,d 2 satisfying d1 = d2  U. A,

(2.2.24) inf ,,)(2) =  min{Ak - l - l -l k - - 0I D, Ak-lB-ck - lD, ABk n l- l -

k-m-l Am+ lk-m-l- m+l k- m- l
CD ,A B -C D I

where A = Gn(dl), B Gn(-A+dl), C = Gn(A-d2 ) and D = G'(-2).

Proof. By Lemma 2.2.3, we have

(2.2.25) inf ,,n(2) m n rin 1Ak+t"-m-r-IB r+l- k+ -m- ri I
0 r -m-2 0, ,,nm
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where A, B, C and D are defined as above.

Consider

(2.2.26) Q = min Ak+ -mB -iiCk nFr
0-- r k -r-

Now we want to ,howB D
A C

Let f(x) C (x-d)-GC(x-d) for Ci x d.
n

gfLx (x- d)I- (-d] 0, 0 x d.
dx n '

Since C : d, f(') f 0~ ind (t) 71-C -),we can see

tatB B
thtA C'

By Lemma 2.2.1 anrd f rom ~?226),

".2.27) Q in'A k+---IB-C k+ m2, A +i B k-m-lC + k-m-li

Tram'2.2.25' and (2.2.27),

?2. 2. 28 ) j rif _(2) min.' mm [A B-C -D],

niln LA' kr--Ci- Bkr J'

x:ra2. 2. 1 and (722K e m

") ? i () m rlin[A k - tn- k -rnI- I~~ B-C k-I2]
1171 f L -rn- mi- k-1- mii k-n

[:Ii n[1.AB -CU' ,A B -C D

Thin complete; the proof.

Sincep - I bv t -mma 2.4 and Lemma 2. 2.1, we can

obtain the fol lowiino rem'itl.

(7,)rolIla r& .? Suppo- e that (i q ~t) -q~(t o t 0

r( 1 the f ami I of (ln ty uri t.irlW q ~~ - ha, a
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monotone likelihood ratio, for every n > 1. For arbitrary fixed

dl,d2 satisfying d1 = d2 = d > A,

(2.2.30) inf a (2) = min{A-C,Ak-Bk,ABk-l-CDk-1 Ak-lB-ck-lD)

where A, B, C and D are defined as in Lemma 2.2.4.

Now we wish to discuss the probability that I, excludes all

the bad populations and the infinium of this probability over P.

Lemna 2.2.5. For o C

(2.2.31) a (3) > l-Gk-m(dl)G(-A+dl )

Proof. For o(_ Q ml

(2.2.32) afo(3) = P[o[i ]  11,  i

I P[Ll1 T [k]+d 21+P[O[m] [k]

k k
= =In Gn (o [l]-O[j]-d2)+l'-11 G n([m]-O1j]+dl).

j=l j=l
Let (Si  

=  ('[k]-O[i], i = 1,2, ... ,k.

k k
(2.2.33) (0(3) = 1+jii Gn(, j- 1 -d 2 )- i1 G n  j -  m+ d l )

- j=l n j=l n j 1

ic (3)

since < 0 for I> 62' by letting 6I 1 o, then

k
(2.2.34) 0 (3) > 1 - ii Gn -m+d1).

- j=2

Since the right hand side of (2.3.34) is nonincreasing in 6. for

j = 2,3,...,-..,k-l, and is nondecreasing in it follows
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k
that the infimum of 1- if G (6j-6 +d,) over the set ((62,...,6ki):

j=2 n j M

0 kl <..6+1 < < .6 62) is achieved at l :."=0 6_1 < < aml < < l

6k-l = A, 6m = A and s2 = 6m- = " Thus

(2.2.35) C (3) > I-Gn - (dl)Gn(dl-A)

The proof is complete.

k-I
Since 2 =  U Qm' by Lemma 2.2.5, we can easily lead to the

m=O
following theorem.

Theorem 2.2.3. For arbitrary fixed dl,d 2 satisfying dl+d 2 > 0,

(2.2.36) XO (3) > l-Gn(dl)Gn( - A+dl ) .

Remark 2.2.1. (i) The right hand side of (2.2.36) is independent

of d2. That is, for a given d1 and for any fixed d2 satisfying

dI+d 2  0 0, a0 (3) is bounded below by l-Gn(dl)Gn(-A+dl). If the

confidence interval is defined as I, = (T[k]d,,-) where dI is

any given number, then inf ao(3) can be obtained as follows.

(2.2.37) inf aio(3) l-Gn(dl)Gn(-A+dl).

(ii) If we assume a (4) is the probability that Il contains

at least one good population and also I, excludes all bad popula-

tions, then ro(4) . (1) + ,( (3) - 1. From (2.2.11-) and (2.2.36),
0

we get

(4) >minGn -

Gnk (-d )Gm(A-d2),m11=l,...,k-l}-G(dl)G n(-A+dl),
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Similarly, we can find the lower bound of (5) which is defined

as the probability that I contains all good populations and

also I excludes all bad populations.

Let S' be the number of non-best (bad) populations that enter

1I. We are interested in E(S'), the expected size (over Q) of

non-best populations that enter II.

Theorem 2.2.4.

(2.2.38) sup E(S') < (k-l)Gn(d I)

Proof. For 0 E Qm5
m

(2.2.39) E(S) = I P[o~i] I I

m k kiiGI Gn(0 ]o~]d2)
- Y { ni Gn(O [i-o[j]+dl) -jI (l

i=l j=l = n

k k
m{ i Gn(()[k]-,[j]+dl)- (o G n( )j~l nj=l Ol-~]d

m k-l
m{ f Gn(o [k]-[j]+dl) I! G (o[kyn[j]+dl)Gn(dl)-n j~ j=m+l 1 )k-[]d

Gn (-d2 ) - [011 ]-O[k]-d 2]}

< m{Gn(dl)G k
-ll- 1 (A+dl)G n(O[k] - [ ]+dl)Gn(d 2)

Gk-I ]-0 d}
Gn  [1] d>[k]-d2

< m Gn(d l)Gk
'm-l (A+d,).

k-l
since Q U m , thenm=0m

(2.2.40) sup E(S') max(m Gn (d kr -(A+d m=O, ,k-l1

(k-i )Gn(dl).
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In the following, we deal with special values of dl,d 2 and A.

Case (i): Arbitrary but fixed d,d 2 satisfying d+d 2 " 0 and

0. Since 0, the only good population is the one associated

with :[k]' Applying the earlier result,
k k

( 2 .2 .4 1 ) i n f - (l ) in ' ( 2 ) - n - (d , ) - G n G ( dn -d

a result obtained by Dudewic. and Tong [263. Also, in this case

(2.2.42)(3) l-(d)

Ca-se _ii) - One side (lower) confidence interval. Arbitrary but

fixed d, and d- with . Our confidence interval is now

I1 - (Trkrdj, ). We can show thai

(2.2.43) inf 1 ) Gk

(2.2.44) inf -t (2) =  Gn(d ) 1-l(-:.+d )and

2 .2 .4 5 ) i n f ,. ( 3 ) G- l -,+ d

Case (iii): One side 1upp-r) (:onfidence interval. Arbitrary

fixed d2, dI . and 0 0. Now our confidence interval 's

defined as =  T[k]+ dl ) ), e can '-Mow that

(2.2.45) inf (1) = I G-dr ,

(2.2.46) inf (2) I- k- .d )G(- and

(2.2.47) inf -1'(3)
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1.3. Result for" the calf, :,.r.w,e , .o

in this section, we 1u 3 scale parameter for T,

1 I.......It is assurtd that there is no a priori knowledge

btlout tne 'a

It , K for- t(2 3.1) n (t, , i) I n i

0 for t 0,

for 0, k k.

For arbitrary fixed ir, i- ,:Y: j,. a 1 and b 1 , if the

confidence interval is definoi i

(2.3.2) 1' -- ( Tk F L [

wnere T[k ]  v1x T'

Let be a given positive (onstxit., 1. We say population l

$?. 3. 3 good if 1

bad if

where '[k] ". ix 1
!.i k

For iven and 1, () denote the probability

that 1, contain' at ,10!T oric ood poulpuation, let (2) denote thi,

prnbability tha f c,-)ntin ,li I .;),r,, population and let (3) denote

the probability thit oxclu iis ali the o,,,d populations. Using the

51120 arqu,,cnts a', m 1,cti . t :i the followinq resu1ts.
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Theorem 2.3.1. If the family of density functions {gn(-): Cn,2 }

has monotone likelihood ratio, for every n I 1, then for arbitrary

fixed a, b satisfying a , o, . I and ab ., then

(2.3.4) inf ( ) -rain 1,, , Gk(a) G k(l_
n n

' • , m, k-m l I Gm __

, n b n(6.

orollarj 2.3.. Let the family of density functions AnX)

• i has monotone likeIihood ratio, for every n :.: 1 For

arbitrary fixed a,b sitivfyir(i a 1, 1, gn(i-) I gn(a) and ab >

(2 3.5) inf I..1) min f, G aI- ),G k(a)-Gk(nk ) ' Gn(a)G k- l (a!,-
1 k-i

Gn() n  b i

Theorem .'. . f the 2 ,_,,i ef density functions gn ,j : ' "2'

has a ,ionotone likelihoes rtio, for every -1 , then for arbitrary

fixed ,, s;atisfyinj , 1, . I an, al '

-1) j (l r2 " n G n(a)]k+ -ni-r-i
- , --l ., r" I-si-? -n,

(d~ . k+~-in-r- 1r+l

Theorem 2.3.3. For arbitr,ir' fixed a and b 1,

(2.3.7) . (3) l-Gn(a)G t ( a,.

LetS' be the number of non-he(;t (had)pnnulations that enter 12.

Also we can obtain the followInq result.
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Theorem 2.3.4.

(2.3.8) sup E(S') _ (k-l)Gn(a).

In the following, we deal with some special values of dl ,

d2  and ,.

Case _i): Arbitrary fixed a,b satisfying a 1- 1 and b _ 1 and 1.

Since 1 1 the only good population is the one associated with

[k]" Applying the earlier results,

(2.3.9) inf -(I) =inf ,(2) inGn() ,(a ,

a result obtained by Saxena and Tong [66]. Also, in this case

(2.3.10) 
2(3) - {i ' a)

Case (ii): One side (lower) confidence interval. Arbitrary

but fixed a 1-. and b = , with 1 1. Our confidence interval

is defined as 1, (a T~k],). 'e can show that

k'
.3.11) inf I.( G I

(2.3.12) inf .,(2) C (ajG k ( ind

(2.3.13) inf (3) 1 -Gn (a)G ( )

Case (iii): One side (jpper) ci fnnd ,  interval. For arbitrarv

fixed b, a and 1. cW eur ,:mfi ence interval is defined as,

2 = Ikb i'
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We can show that

(2.3.14) inf -,(1) l-G n(-),

(2.3.15) inf (2) = 1-G (-)G k- () andn n 1b

(?.3.16) inf 3 .

2.4. Some examples.

We shall discuss the above problem for the means of normal

populations and for the scale parameter of the gamma population.

Let =l' 2'2..k be k normal populations with unknown means

2
'2'... k and a common known variance 2 Let Xi be the sample

mean from -. based on a sample of size n. Let

0.4.l) T. X. and T = max.. .1 1 [k] mak 1.

Let G (X,i) be the c.d.f. of X, from 1,, i = l,...,k. In this

case, G n(X,. i) 
=  Gn(x-.i) and

(2.4.2) G (x) ' X)nn

where , is the standard normal distribution function. The

confidence interval I1 is of the form (T k]-dlP T[k +d ),

whpre dl+d- . In this case, applyinn Theorem 2.2.1, we get

k nI_ ' r i ,k- - im
.o4.3) i nf (1) r m A-L, A ~ -

where

A :(----), D = ' - ), - and = -

hLI
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For a given P*, A > 0, d, > 0, d2 > 0 and dl+d 2 > A, since

lim A = 1, lIr B = 0, lir C = 1 and lim D 0, there exists a
n ,n - n->- ri--.

smallest integer N such that for every n > N, we have inf ci(1) > P*.

Let x, be the unique solution of ?(dlx)-,!(-d 2x) = P*. Let x2 be

the unique solution of o k(dlx)-: k(-d 2x) -- P*. Let Ym be the unique

solution of

'km~ 1 ',M(AdI k-m(-d 2x),on((A-d2)x)= P*, m=l,2,..,k'l;

Let

N. = 2], i = 1,2 and Mi  = [2 y2 ] ,  i = 1,...,k-1,

where [x] denotes the smallest integer . x. It follows that

the smallest sample size N required to satisfy inf c (1) > P* is

given by

(2.4.4) N =  miniN i  Mj, i=1,2, j=l,...,k-l}

Consider the probability that 1 contains all good populations.

For given P*, A > 0, d, . n and d2  0, then

lim Gn (d1) 1, iim Gn(-A+dl) 1 and lim Gn(-d 2) = 0.

By Theorem 2.2.2, we can always find the smallest sample size N

which satisfies

(2.4.5) inf , (2) _ P*.

Consider the probability that 1I excludes all good populations.

for given P*, A > 0, d1, d2 such that dl+d 2 > 0 and dI  A, then

lirN G(-A+d I) = 0.
n -iv
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By Theorem 2.2.3, we can always find the smallest sample size N

required to satisfy

(2.4.6) inf * (3. 0*

Now let u,. consider i' )roh lJr: iri relation to the scale

parameters of the poplatn. ,t 2..-k be k gamma

distributions. The distrihution associated with '. has the

density function g(x, ,.) wlre

(2.4.7) ----- - x t( for x > 0

0 otherwise.

We assume that the shape parameter , ic the same for all populations

and -t is known. Let Ti be the sample sum from 7i based on n observa-

tions and let T [k max Ti. Then the confidence interval is

given by

bT ) nerp anb2.4.8 ,  
2 a T Fk] [k]

Let G n(x,K.i) be the c.d.f, of Ti  from i -- 1,...,k.

In this case, G (X i) (x( - -  an( d

(2.4.9) Gn (x) is the c.d.f. cf a samila distribution

with scale parameter I and -ri<ea.raul~er n. Since the condition

in Theorem 2.3.1 holds, we ,Let

. ''1,: ,i ! l( ')-G ij , V.

(2.4.1 il inf l = h"

C - (a )Grr(a )-Gk-mm(i)Gin(b),r=l ,.... k-11



For given P*, I , a , 1 with ab .,since lira G (a),
n,

Ir Gn 0 and lir G (a) =, there exists a smallest integer
nl . n

N such that for every n N, we have inf (1) >_ P*.

Let N be the smallest positive intener such that Gn(a)-

n' . Let N2 he the smallest positive integer such that

Gna -G P*. LtrM he the sirallest positive integer such
t n t G n ai O3 (a ) - k ( 1 h , , -

It fol ow-, that the -,mrll,t sar ple ize N required to satisfy

inf (1) P is i,.,n ho/

(2.4.11) = N , M1, i ,1 j 1,2,... ,k-l

Consider the prohabi ir, that I, contains all good populations.

For a given p, a and 1 , then

1 ir Cn a) 1 , li r, 1 and 1 ii () = 0.
n .. n n nn - b

By Theorem 2.3.2, we can aIway. find toe smallest sample size N

required to satisfy if ) 0*

Consider the ,robah lit1 that I. excludes all good populations.

For given P*, 1, o rn a ,ith . , then Irn G(-) r .
nt -,

Py Theorem 2. 3. 3, we ca r I, i the a11 es t sample size N

required to satisfy of (3 t

Remark ?3.1. ,i) If the Iampit ,i:e N is preass"qned and P* and

are 3iiven, tnen the cfrnfidere interv,il 1 can always he found

fro! (2.2.11), (2.2 nd) al ( .. , with n(x) as defined in

2.4.?) so that inf i(i) I*, .,,.
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Similarly, the confidence int,,rva can always be obtained

from (?.3.4), (2.3.6) and (2.3.7) with Gn(x) as defined in

(2.4.9) so that inf .(i) -P , i - ,?,3.

(ii) In location parameter case, if ti:- Population with the

smallest -value is cAled n.he t o. i on. Let be ;iven,

we say population .

(2.4.12) good if i

bacl if

where m[l] mi-

hen the confi dence i nterva i

(2.4.13) 1  (T Vl]- Ti] d,

LlLwhere T = ramin T4.
Tjr li-k

The Calculation of the coveraqe proabilities (i), 1,2,3

ard their irfima ca n a n ,nd 1 , arly as in Section 2.2.

The scale parameter case CL m n,ind -! in a similar manner.
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CHAPTER III

SELECTION PROCEDURES IN TERMS OF

MAJORIZATION AND WEAK MAJORIZATION

3.1. Introduction

Over the last fifty years, majorization and Schur functions

have been applied to develop many useful inequalities in many

branches of mathematics. Some of the references are: Schur [67],

Ostr)wski [57 ], Hardy, Liittlewood and P6lya [45], Beckenbach and

Eellman [17], Marshall and Proschan [52] arid Marshall and

Olkin [50 1. In recent times the techniques of majorization and

Schur functions have been applied to probability and statistics

(see, for example, Marshall, Olkin and Proschan [51], Rinott [62],

Proschan and Sethuraman [61], Nevius, Proschan and Sethuraman

[55] and Gupta and Wong [44]).

Recently, Nevius, Proschan and Sethuraman [56] introduced

a stochastic version of weak majorization. They have discussed

some properties and made some applications.

Gupta [32] defined a class of selection procedures and

considered some of its properties. Some additional results

concerning the properties of this class of procedures were

obtainled by Gupta and Pan(hapikc-lan [36], Gup ta and
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Panchapkesan [37] defined a class of selection procedures which

is a natural generalization of the class considered by Gupta [32].

In that paper, they obtained a sufficient condition for the

probability of a correct selection to he nondecreasing in A when

1' = ' ' ' k where N is the parameter associated with v i

i= 1,..., k. They also obtained the supremum of the expected

size of the selected subset and showed that if the sufficient

condition holds, it takes place when the Xi's are equal.

In this chapter, we order the parameter space by means of

majorization or weak majorization and propose some selection

procedures when the parameter xi associated with 7i, i=l,...,k

is a vector. Section 3.2 defines a class of procedures Rh for

selecting the population associated with vector -[k] (see

Section 3.2 for definitions). A sufficient condition is obtained

for the infimum of the probabilitylof a correct selection to be

Schur-convex in A. Also another sufficient condition is obtained

for the supremum of the expected size of the selected subset to
take place when -A1 =." " -k" Some special cases of interest are

discussed. In Section 3.3, a sufficient condition is obtained

for the same infimum of the probability of a correct selection

to be nondecreasing and Schur-convex in X. Section 3.4 defines

a class of procedure RH for the selection of the poiulation with

vector ' Some properties of the selection procedure are

briefly discussed. Section 3.5 and 3.6 deal with selection procedures

for multivariate normal distributions in terms of majorization
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and weak majorization of mean vectors. Various cases corresponding

to the known or unknown common covariance matrix E are studied.

Properties of these selection procedures dre also established.

3.2 A class of selection procedures Rh(and some properties)

for vector-valued in terms of majorization

First we give the definitions of rajorization, Schur-concave

and Schur-convex functions.

Definition 3.2.1. A vector a a is said to majorize

a vector b (b,... b), if a p, b L bp, and
r r

il bi, r = 1,... ap-, while ai we write,
~i=l - =l 1 i=1

a b.
'Ti

The above definition is according to Beckenbach and Bellman

[ 17] and differs slightly from that of Hardy, Littlewood and

Polya [45].

Definition 3.2.2. H is called a Schur-concave (Schur-convex)

function if H(a) <_ H(b) (H(a) " H(b)) whenever a > b. A Schur
m

function is a function which in either Schur-concave or Schur-

convex.

From above definitions, we know that majorization is a partial

ordering in RP , the p-dimensional Luclidean space and Schur functions

are functions that are monotone with respect to this partial

ordering. Now we state the following theorem.
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Theorem 3.2.1. (Ostrowski [571)

Assume H is defined for Z1 z. Zp and first partial

derivatives of H exist. Then H(Z) . H(Z') for all Z - Z' if
m

and only if

.2.1) - . 0, for i j, i, j=!,...,p.. i  , --

Let l ''k be k populations. Let * be an interval on

the real line. Associated with i is a vector X = (Xil, ...,X. )
ip

i 7l ,...,k where Xij has density ij x), i = l,...,k, j=l,....p.

We assume that Aij and ,il ipI i=l,...,k. We say that

is better than r. if = il 'ip) - = (>l'... p

It is assumed that among the k given populations, there always

exists one population which is better than others. This is equiva-

lent to saying that there exists a such that >-[k] for
m

all i = 1,...,k. This population is called the best population.

If there are more than one "best" population, then we assume that

one of them is tagged as the best. Based on one observation

XI,...,X ip from population -- we construct a suitable statistic

Ti  = g(Xil.,i = l.... . Let F. (x) = P[T i  < x] be the
-1

distribution function of Ti from population i Based on the

values of Ti from 17P i 1 1,...,k, we wish to define a class of

procedures for selecting a non-empty subset of the k populations

such that the probability is at least P* (i k) P* ,tath

population associated with is included in the selected subset.

L~
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Let

(3.2.2) E ( , ) 1  _ . A, i= .." p

and

(3.2.3) Q - x-i E E, i=l,...,k and there exists

some i such that A. X for each j}.
Sm

We wish to define a selection rule R such that

(3.2.4) inf P[CSIR] _ P*.

Let h - hc,d; c E [1,-), d E [0,-) be a function defined on

the real line satisfying the following properties: for every real

X,

(3.2.5) (i) hc,d(X) > x

(ii) hl1 o(x) = x

(iii) hc,d(X) is continuous in c and d

(iv) hc,d(x) t - as d -) - and/or xhcd(x) t - as c - , xfO.

Some functions satisfying these properties that will be of interest

are cx, x+d and cx+d. Now, we define a class of procedures

Rh as follows.

Rh: Select population iri if and only if

(3.2.6) h(Ti) > max Tr.
l<r<k

Because of (3.2.5)-(i), the procedure Rh will always select a
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non-empty subset. Let T be tha random variable associated

with irij and let F, be the cumulative distribution function

(c.d.f.) of T(i ) ,  i=--,...,k, we have

(3.2.7) P[CSIRh] P[h(T(k) -T i=l ,... ,k-l]

k-1
= F F (h(x))dF, (x).

i=l Il

We now assume that the distributions are Schur-concave in ,

i.e., for x > <, F, and F. are distinct and
m

(3.2.8) F (x) F,(x), for all

Then

P[CSRh] f Fk-  (r,(x) dF (x).
- [k]

Hence

(3.2.9) inf P[CSIRh] inf .( ; c,d,k)

where

(3.2.10) ,(;;c,d,k) =  F -l(h(x))dF, (x), X E E.

In the following theorem, we are interested in a sufficient

condition for the Schur-convexity of E,(T,;2) where 1(x,.,) is some

real-valued function, P=(s"I .F ,p) and T=g(Xl .... X.p) is a func-

tion of X5  ....X Let F (x) = P[T K1.
1p -

Theorem 3.2.2. Let F. (x), E: be a family of continuous

distributions on the real line such that F (x) is a differentiable

function in x and ' nd let A(x,) b a bounded real-valued and

differentiable function in x and i, i -- 1,... p. Then E,(T, )

is Schur-convex ir, 2 ,_ E provided that
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AF (x) 7  (~x~i

(3.2.11)0, for i-j,i,

Proof. We arjue alonri th ,- 1ines of the proof of Theorem 2.1 of

Gupta and Panchapkesan 7-',]. We assurne that F (x), c E has the

s support 1. Let

(3.2.12) A(, ) EIT,,) ( 1x,x)dF, kx).

FConsider u 1 , Y2 ' E, where u = (uiII, . . u. ), i =1,2,

Hi u 2  .. u. I . c 1,2 and assume u u Definil 'i ip -1 -2'

(3.2.13) A 1(Y1,'u2) = f :(x'u 2 )dFu (x),

(3.2.14) A(u,) ul yxu)aF,,(x),

and

(3.2.15) B(u1 ,U-)) = A 1 u,)+ ( 1 u9

By integrating A(u,) by port (see Gupta and Panchapkesan [7)

(3.2. 16) B 1',l -- a ter- 4 fdenender t of u

+ '[.(x,u,)f (x)-. (x,ujr (x)]dx
j T "12 u1

where i,'(x,u) (x,,) an ix) ~- F (X).

For j j, we havc.

(3?.7 (( , ' ,(x,u1 ) _ (xu1 )
ii I Jj U -- 'I

F~ (x) U x
1 J ~ul

X-1' I d----------------------------------- - 1d
-' i i U1]
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We can show that, for . ....

(3.2.18) , _ ) .8 , _ i= ul

where x = (,il .... S and

From (3.2.18) we get

(3.2.19) B(X,. ) 2. -1,

and

(3.2.20) B(xx) 2 8 l ,)*
j j U

From (3.2.19) and (3.2.20), we get

(3.2.21) (( - ,) (( j' j Uli I-UlJ

If

-F (x)

Fu2 ((x, 2 )

(3.2.22) > 0, V i < j,
)Fu (X) , ( iju

(;Uli J : lj  (x 1 u l i  'WUlj) X 1U ) . .

then from (3.2.17),

(3.2.23) ( - 1 )B(ul,u2) 0 for i -- j, i,j=l,...,p.
lUli WIUlj . . ...

Hence if (3.2.22) holds, we have from (3.2.21)

(3.2.24) () ( - --*)(,,) 0 for i < j, i,j=l,...,p.
1 3

Note that

(3.2.25) B(,,, ) ? A(,).

Applying Theorem 3.2.1 and from (3.2.24),
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it follows that B(,,)) in Schur-convex 
ir \ if (3.2.22)

holds. Since u, = Y 2 , then A(U) is Schur-:onvex in X if (3.2.11)

holds.

This completes the proof of the theorem.

In some cases, we will be dealing with the function (x,X)

such that it satisfies

(3.2.26) Ix)) "'" .x' )

then (- 1 j)(x,A) 0, j, i,j l1...,p. Hence

we have the following result.

Corollary 3.2.1. If ,Ix, ) satisfies (3.2.26), then Ey(T,x) is

Schur-convex in .A if

(3.2.27) )Fx) (x,.) 0, i < j, i, j= ,....p.A.2. 7 ( x 1La - --

Corollary 3.2.2. If F (x) is Schur-concave in A E E, Ix)

satisfies (3.2.26) and 4(x,)) is nrindecreasing in x, then EW(T,A)

is Schur-convex in A E.

Froof. Since F (x) is Schur-concave in C E,

-- L -j-)F (x) 0, for i j, i, j-l,...p.

Also ,(x,%) is nondecreasing in v, then-- .(x,) - 0.

Hence by Corollary 3.2.1, the re'ault follows.

As a special case, if (x, ) r (x), then we have the following

result.
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Corollary 3.2.3. If F (x) is Schur-concave in x and i(x) is

nondecreasing in x, then E(T) is Schur-convex in x.

Theorem 3.2.3. For the procedure Rh, let F.,(x), A C E} be a

family of continuous distributions on the real line such that

Fi(x) and F;(h(x)) are differentiable Lunctions in x and

i 1,...,p. Then q(x;c,d,k) as defined in (3.2.10) is Schur-

convex in C E provided that

(3.2.2) f (x)()F(h(x))-h'(x)f (h(x))( - )F (x) 0,
for i < j, i,j = 1,...,p,

where f (x) andF (x) a dx

Proof. By letting y(x,_) Fkl (h(x)) and using Theorem 3.2.2.

yields the proof.

We note that

(3.2.29) <- ,(;c,d,k) 4.. -:- - (_;c,d,k), if
P

(3.2.30) f (x)( ' -)F (h(x))-h'(x)f (h(x))(--L )F.(x)=O,
.3 - - i 3 -

for i J, i,j 1,...,k.

Case (i): F,(x) F(x-,.(,)), . < I < and h(x) x+d, d > 0

where ( is a Schur-convex in \, then

(3.2.31) , F (x) f - (x-., ) = - ,(x)

1 - c 1

In this case, (3.2.30) is, satisfied and i,(_;c,d,k) satisfies (3.2.29).
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Casejii): If F (x) = F(7--)). x 0, O (;) > 0 and h(x) cx,

c 1 1 where s(A) is a Schur-convex in _, then

F'(x)
(3.2.32) f(X[ fx

In this case, (3.2.30) is satisfied and (A;c,d,k) satisfies

(3.2.29).

Actually, in the above two cases, i,(A;c,d,k) does not involve

!, i.e., (_X;c,d,k) is independent of

Let S denote the size of the subset selected by the procedure

Rh. Let f!' = =  (l ....- k): 9 i E, i=l,...,k and there exist

:l,...,~k such that 2
P'im '2 m m k

Let E (SIRh) be the expected size of the selected subset using

,h~ ( f' Let l] for -. It is easy

h' M m m

to see that

k
(3.2.33) E (S Rh) Pi

where
k

(3.2.34) : F (h(x))dF, (x),
i r~l [r]"
r~i

and F, is the c.d.f. of T(i) which is associated with

il . ... k. Using the same arguments ac in Gupta and Panchapkesan [37]

and Theorem 3.?.2, we have the following theorem.

Theorem 3.2.4. Let iF,(x), 1 C F. and F (h(x)), E ( be as in

the hypothesis of Theorem 3..3. For , , F (S Rh) is Schur-convex

h.
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in , where -Afl] "" m -\ [n+l] < < [k] and consequently
m m m

sup E(SIRh) takes place at V where [] ."= A[k] = V provided that,

for xI < X2 and xI' 2 E E, the following holds;
m

(3.2.35) fF ()-_)_ ')F (x)f (h(x)).
ilj 2 -2 ii j - 2

h'(x) > 0,

for i < j, i,j 1,...,p where = ( , Ai), i=1,2.

f~ (x)

Remark 3.2.1. (i) If is nondecreasing in x for -I < 2' then
m

-2

(3.2.35) is satisfied, when (1) FA(x) = F(x-()), -< (

and h(x) = x+d, d > 0 where (A) is Schur-concave in X, or when

(2) F A(x) = F( x), x 0 0, 1(A) > 0, and h(x) = cx, c > 1 where

n() is Schur-concave in A.

(ii) If (3.2.35) is satisfied, then

(3.2.36) sup E (S!Rh) = k sup P[CS!Rh]

where z = o= (....... k I ='"= Xk' i E E, i=l,... k}

(iii) If (1) Fx(x) F(x-F(x)), -, < F(X) < and h(x) = x+d

where (_) is Schur-concave in i or (2) F W(x) F(x-), x _ 0,

n() > 0 and h(x) = cx, c I where r( ) is Schur-concave in A,

f (x)

also if is nondecreasing in x for I m -2' then

(3.2.37) sup E (SIR h k P*.
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3.3. A sufficient condition for the monotonicity in terms of

weak majorization

First we give the definition of weak majorization.

Definition 3.3.1. A vector a = (d, ..... a p) is said to weakly
majorize a vector b = (b ,. ... bp ), if a >. .> ap, bI  >. .. bp

r r
and , a. > bi , r = 1,..., p. If a weakly majorize b, then

ii=l

we write a > b.
m

We state the following theorem which is the characterization of

weak majorization (see Nevius, Proschan and Sethuraman [56]).

Theorem 3.3.1. Z >> Z' if and only if f(Z) > f(Z') for all
m

nondecreasing Schur-convex functions, where f(Z) is defined for

'7
Z . > L.

Let X (Xl ... ,X, ) be a random vector of independent
- X Ip

components where :X C E and the distribution function F, (x) of

random variable X. is stochasticelly increasing in Xi. i=],... ,p.

Let

(3.3.1) T = g(X\ , ... IX, ) be a function of X, .. . ,X,
A1 pA

Let

(3.3.2) F (x) = P[T x! - P[q(X , ...,X ) < x1.

In the following theorem, we obtain a sufficicnt condition for

F,(T,,) to be nondecreat inq and S(ehur-ronvex in L E for some

function ,(T, ac d' fined in Thnnroti;, . .

SS
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ie r em 3. 2. If <i,(x) - I ..... p E is a "awily of

continuous distributions on the real line such that F(Y.) is a

differentiable function in x. dr each i, F. (x) is stocnasticaily

increasing in and (x,' 'c a bounded rea-valued and differen-

tiable function in x end .,, i = 1,..., p, then Ep(T,x) = Ei (g(X,))

is nondecreasing and Schur-convex in ,, . E provided

(3.3.3) (i) (g(,,),x) is nondecreasing in X and A, and

ii) F_ (x TvX (x (x A>x

for i < j, i,j I ..., p.

Proof. By Theorem 3.2.2.and (3.3.3)-(ii), Ei(T,x.) is Schur-convex

in t .

Now we want to show that [.(T,x) is nondecreasing in \. Let

-', .... p"' . n . ( i .. .. " - -p"

Assume :> .. We define in the sense that \< i

1,... ,p. Since F, (x) associated with the random variable X, is

stochastically increasing in *ip i.e. i i =,

then

(3.3.4) X, XY. i ,

Since X, ... .,X, are independeft random variables, then
.1 p

(3.3.5) X --

By (3.3.3)-(i), since .(g(X,,) is nondecreasing in X, then

(3. 3.61 X,(X ) ) ix .
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Since p(g(X .)X) is nondecreasing in V' and x > V,

(3 3. )'P g( X )' ) -xI) )

From (3.3.6) and (3.3.7), we have

(3.3.8) pWgx) x) > (g(XX1) ,X').
- st

Hence

This completes the proof.

By applying Theorem 3.3.2, we can obtain the following results.

Corollary 3.3.1. If F X(x) is Schur-concave in x, ip(x,x) satisfies

(3.2.26), p(x,x) is nondecreasing in x, ~g(),)is nondecreasing in

Xx and X and F, (x) is stochastically increasing in Xi., i1,Is...,*p,

then E p(Tx) is nondecreasing and Schur-convex in X.

Corollary 3.3.2. If F X(x) is Schur-concave in x, jdx) is nondecreasing

in x, *S~(X0)) is nondecreasing in Xand F,* C x) is stochastically increasing

in xi, i=l,.. .,p, then Eip(T) is nondecreasing and Schur-convex in X.

By letting ,,(x,x) =F X (h(x)) and using Theorem 3.3.1 and Theorem

3.3.2, we have the following theorem.

Theorem 3.3.3. Let {F (X), A C E! be a family of continuous

distributions on the real line such that F~ (x) and F (h(x)) are

differentiable functions in x and x and F (x) is stochastically increasing

in Xi. i=l ,. . . p. Let ip( ;c,d,k) be defined in (3.2.10).

Then 4,(.A;c,d,k) is nondecreasing in xCE in the sense of weak

majorization, i.e., it is nondecreasinq and Schur-convex in x,

provided that
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(3.3.10) (i) F,(h(g(X,)) is nondecreasing in X, and x and

(ii) f (x)(-L - -- )F,(h(x))-h'(x)f,(h(x))( - .

F,(x) > 0, for
i < j, ij = l,...,p, where f (x) d

()=-~ Axx).

3.4. Selection of the population associated with X[l.

If the best population is defined to be the one associated

with x[l]' where [l] < xii, = 1,... k. We now define a class
m-

of procedures RH for the selection of the population associated

with Ill.

Let H z Hc,d; c E [l,-), d E [0,o) be a function defined on

the real line satisfying the following conditions. For every x

(3.4.1) (i) H c,d(x) < x

(ii) Hlo(X) = x

(iii) Hc,d(x) is continuous in c and d

(iv) H c,d(x) + - as d - and/or XHcd(X) + 0 as c -.

Of particular interest are the functions 2-, x-d and - d.

A class of procedures RH for selecting a subset containing the

best is defined as follows.

RH: Select population ni if and only if

(3.4.2) H(Ti) < min Tr

The probability of a correct selection is given by
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(3.4.3) P[CSIRH] = k r2 _r(H(x))dF l (x),
- r=2 [r] -1]

where F X (x) = l-F Xx).

Because of the assumption (3.2.8),

(3.4.4) P[CS[R H ] > k -I_(Hix))dF_ ( x ).

Let o = = ({w ,...,Ok): _ E E, i=l,...,k and there exists some
i

i such that x < A vj}.

Hence

(3.4.5) inf P[CSIR] inf ygA;cd,k)

where

(3.4.6) q(;c,d,k) =f Fk 1 (H(x))dF (x) and x E E.

Using the same method of proof as in the case of Rh, we have the

following results.

Theorem 3.4.1. For the procedure RH, qx;c,d,k) is Schur-convex

in x E E, provided that

(3.4.7) (a -- -)F (x).H'(x)f (H(x))f (x)(-2- -.. -)F (H(x))_0,

for i < j, i, j=l,...,p, where H'(x) =dH(x)dx

Let Q' = = (_l,...,Xk): i E E, i=l,...,k and there exist
911 .. 9. suh hatX,> Xg > "" > X 9k}"

I m 2m m k

Theorem 3.4.2. sup E(SIRH) takes place at V where X1 ,..

provided that, for Xl < -2' -l'-2 E E,
m

____ ___ ___ __
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(3.4.8) H'(x)f ( -- (x)-f(x)(
-2 li aflj .l -2 i Xlj)

F X1l{H(x)) > 0,

for i < j, i, j=l,...,p where X= (kil,...,_ki), i = 1,2.

3.5. Selection procedures for multivariate normal distributions

in terms of majorization.

Let wl""'nk be k populations. Let ri be associated with

S(Xil,. ) i = 1,.. .,k where X is random vector with a

p-variate normal distribution with unknown mean vectors pi =

Uil"' i) and positive definite covariance matrix E. We assume

that pil >'">-pip, 1,...,k.

It is assumed that among the k given populations, there always

exists P[k] such that P[k] > p[i] for all i = l,...,k. This popula-

tion is called the best population.

Let X!l,..,Xn denote n independent observation vectors,

each with p components, from population i"

Let

(3.5.1) X : (Xil ,  Xi2q, ... ,Xip ), i : l,...,k, = 1,...,n,

LI
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(3.5.2) - 1 X l,...,k, j ,
n X

(3.5.3) Y , i = 1,...,k, j = ,...,P,

n

(3.5.4) S2 _ 1 _ i i = 1,...,k, j = .,p,Ij n ml X ij m  iJ"""

(3.5.5) R £j = i 1,...,k,I = S i-1 1 , . , ,j = l . .p

(3.5.6) V. = +i + = 1,...,k, 3 = 1,...,P,

(3.5.7) 1= (i)l' ... (i)p) i = 1,...,k, and

V(i) + . ( i = 1 , . p

j : u i1 " i)j' ' ''

Let us denote by ff(i) the population (unknown) associated

with mean vector Up] and let Y(i)j be the observation associated

with f(i), i = l,...,k, j = 1,...,p. Our goal is to select a subset

(may be empty) of the k populations so as to include the popula-

tion associated with '_[k]'

(A) Assume E is known.

We propose a selection rule as follows:

RI: Select population i if and only if

(3.5.8) Y.i. > max Y . - d, j = 1,...,p-I and
1 <V<k V

min Y + d > > max Y P-d.

l<v<k vp - il<v<k v

Let

(3.5.9) Q = D D'
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where

A 0 ........ 0 3

10 A

D = 0 0

((k-I)p)x(kp) A 0

0 0 .... 0 A B

fT 0 0

* 10 T , T = CEC'
(kp)x(kp) pxp

(0 T

A = ". ,B = ". ) and C = 1)
pxp " xp "- pxp".

Let S = {w- = (El""'.-k): - EE l, i = 1,...,k and there exists some

i such that Pi > j j}, where
m

(3.5.10) El = {X= ( xp >"> Xp 9- < 
<

The following theorem gives the infimum of the probability

of a correct selection.

Theorem 3.5.1.

(3.5.11) inf P[CSIR1I = PZi<d,jZ.I< d, for i E {l,2,...,(k-l)i}-

{p,2p,...,(k-l)pl and j E {p,2p,...,(k-l)pj],

where (Zl,...,Z(kl)p)' N( 0 Q

(k-l)pxl (k-l)px(k-1)p
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Proof

(3.5.12) P[CSIRI] = -1,(k) > Y(u)j-d'Y(k)p-(v)p' d

I =l,...,k-1}.

Note Yij - N(v1 , cjcj), i = 1,...,k, j=1,...,p, where
1j ,0 n 0), j I . , .

j times

Since -[k] = 2[i],

(3.5.13) inf P[CSIR1] = P{Y > Y*.-d,jY* -Y* J<d, j=l,...,p-1,Q - v kp vp
v1l,.. .,k-1},

where

(3.5.14) (Y*,..,Y*)' N(O,T), v = 1,... k.

Let Y* = (Y*I y* 1,..v,
-V ,... VP

Hence from (3.5.14),

(3.5.15) Y = (Y,...,Y) - N( 0,
kpxl

Let Z =Y*. v 1 ,k-I i : ,
Vi vi ki' ,..p

Let

Z* (Z v ,..,k-

Since

Z =(Z*,...,Z*_)' = D Y and from (3.5.15), then Z - N(O,Q).

(k-l)pxl

This completes the proof.

Theorem 3.5.2. If Q = DE*D'= (qij) is positive definite with

qll q(k-l)p,(k-1)p = 2 and qij= when i and are
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known, then

(3.5.16) sup E(SIR1) KP* provided that inf P[CSIR1) P*

Proof.

k
(3.5.17) E(SJR 1) = NPY. iz Y~ d, Y -d <Y.p < YVp + d,

i=1 ii V P v p

k
= J1 P{Z.v < (V'-Vv)+d~lz1  ,I < d

zv 9- _ p

vti, v = 1,...,k, i,.,-}

where Z. (Y - V. ) (VVV i), vfl, V'l=l, . .k, II, .. p.
iVi v V9, i 9. 1i

Thus

(3.5.18) z. UZ~ iv N(O,Q).

(k-i )pxl

Let

B1  2;: Ziz_ dJiZ d,,l,.,plv~~ = 1,. ..,k).

Let

lx(k-I)p

Hence

k
(3.5.19) E(SjR1) = P[B.+Ti.

Since the joint density of Z which is defined in (3.5.18) is

Schur-concave (see Marshall and 01kin [50 ]) And since y E B1i and

x< y implies x E B. then by Theorem 2.1 of Marshall and 01kin [50],
m

PEBi+T1] is Schur-concave function of Ti. i = I..k
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Since T. > (a.,...,a.), 1 1,.. .,k where
m 1 1

kk
i1 1 1

k

< P[B +(a '.ak)

where a [k] is the largest value among fal,...,akl. That is,

sup E(SIR1) is obtained when al= ... =ak. If a, .. ak, then

Al .. Ak. Hence a, .. ak =0.

Thus
k

sup E(S1R1) = P[Bi] k P* provided that inf P[CSIR1] =P*.

This completes the proof.

2 0
(B) Lets z (a 2) where a is known. Without loss of generality,

0 a
we can assume a =1. We propose a subset selection rule as

follows.

R:Select 7r. if, and only if,

(3.5.21) Y. > max Y .- dvr~j for j 1 ,...,p-1 and
1J <v<k An
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max Y d r2- y min Y + dv7
1. < Vp vr- - lev<k vP n

Theorem 3.5.3.

(3.5.22) inf P[CSIR2I P[Zmi< d,jZvp < d for i=l,...,p-1]
2 vl,. ..,k-l

where Z~ vi , .k1 i~l,...,p) are standard normal random

variables with

(3.5.23) Cov(Z 1,Z *)= [i n-- -I~ for j,) U-21~j for p v.

Proof.

(3.5.24) P[CSIR 21= P{Y(k)i y- '(v)i-dT

- j ~ (k)p <- p An

Let

y(vyi (~ v) (k v 1,.,k1

Since ~() -y (k - 1( v)Vi) 2i

then Zv N(0,1).

Hence

V~k)_Vv)
(3.5.25) P[CSIR2] P[Zji d +- ~1Zp
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Since V1 k) > V."), i ,...,k-l, then

inf P[CSJR = P[ZVi< d,1Z j< d, i=lk-, 1

V- v=1,l ,-

where Zvi, v = 1,..., k-1, i=l,...,p are N(0,1) random variables

with covariances as defined in (3.5.23). This completes the proof.

If k = 2 and p = 2, we can show that

1 1/4 (1)1/4 1 1/4d- x d- 2y x -d-(!-) x
(3.5.26) inf P[CSJR 2] / P( )[2( )-€( )]da(x)

Theorem 3.5.4.

(3.5.27) P[CS!R 2] > max{[@(d)-¢(-d)]P(k- ),I-(p+l)(k-1)@(-d)}.

Proof. Let {ZVi} be defined as in Theorem 3.5.3, then

(3.5.28) P[CSIR 2] > P[Z < d,!Z d, i=1,....p-l,v=l,...,k-1].

Note that
m m m

(3.5.29) P[ n A.] > 1- l 7 P[Bi ]
" II

where A,... ,A denotes a seournce of events, and A! the event
n

complementary to Ai such that A' U B., i=l,...,m.1 1 j=l

Hence from (3.5.28) and (3.5.29),

k-l
(3.5.30) P[CS!R 2] > I- 7.P[Z i>d]- 7 P[IZ P >d]

v,'i v=l

= 1 -(p-I) (k-1) (-d)- (k-l)2s(-d)
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By [68] and from (3.5.28)

(3.5.31) P[CSJR 2] , P[IZvi ild, v=l,...,k-l,i=l,...,p]

> 7 P[IZviL d ] = [P(d)_-(d)]P ( k

V~i

From (3.5.30) and (3.5.31), we prove the theorem.

For given P*(I < P* < 1), a conservative value of d (d >0)

can be obtained by letting

max{[D(d)-,(-d) ]p (k- ), l-(p+l)(k-1)d(-d)} = P*.

Let d, > 0 be the value such that [4(d)-D(-d)] p(k-i) = P* and

let d2 > 0 be the value such that l-(p+l)(k-l)4 (-d) = P*, then

the minimum d(> 0) satisfying the basic requirement is given by

d = min{dl,d 2 }.

Theorem 3.5.5.

(3.5.32) E(SIR 2 ) < k[i(d)-D(-)]

Proof.

d/2Tk Yji > Y Vi dV2

k
(3.5.33) E(SIR2 )=pP =

Fnp JP -Yj vp /n-

for i=l,...,p-l,vfj,v=l,...,k }.

YVi-Yj-(VV, -Vi

Let Z ~i , 1,... p,vj,v=l,... ,k.

Then
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(3.5.34) E(SR d.i .. ,z2) - v T/

k - vp f Vi

Sp{ZVi d + T____- for ,4j,v=l,...,k} = A (say),

ij . .. ,p l

Also,
k

E(SIR 2) P[ Z <d,v\j,v=l,2,...,k] = A (say).
j-1

j- V
Since P[Zi<d + -

42- i

k-ZT / P[Z - d 4 --
v 1 - /i/v'

then Ii
k k J

1..5 A < (d+ -- V  ) (since Z N(0,1))
j 1= 1 ,'21/ - i

k k ArUli-A v i
VTT l  , d + I )

k-I Q (say)

where A[1]i <...< A[k]i are order values of V I . k"-i [~ i .. . i "

By the same argument in Gupta and Huang [34], we can show

that the sup of Q is obtained when A[l]i =...- A[kji.

Thus from (3.5.35)

k k
(3.5.36) ' (d) = ki(d) Ii I p-I

i - k- - -. ... ) .. . .
j=l A=

Also
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k 1 k
(3.5.37) A < I P[IZVpI < d]

j=1 v=l
V~j

Hence from (3.5.36) and (3.5.37),

(3.5.38) E(SIR 2) <min{k(d), k[D(d)-D(-d)]}

This completes the proof.

(C) Assume z = , 02) where 2 is unknown.
0 "o

We propose a subset selection rule as follows.

R3 : Select population ni if and only if

- / dRi.

(3.5.39) Yij > max Yv- J = l,...,p-l and
V An

rd Rip 2d R.max Yp VP i- < Y . < min Y Vp +  P
V vn- P - vp AiTJ

Theorem 3.5.6.

p-l
(3.5.40) P[CSIR 3] > l-(k-l) I p[t i < -d]-(k-l)P[Itpl > d]

i=l

where ti is a r.v. having a t-distribution with i(n-l)d.f., i=l,

...'p.

Proof.

(3.5.41) P[CSIR 3] = P[Y(k)j >- Y(v)j (k j



109

Y ~ RMkp < YF R(k)p = p-

(k~p)(v~p)

=~ v d J - -iT,jt VPI < d,j=l,...,p-l,v=l,...,k-1]

1-R(k)j

where

(3.5.42) ~ V (v~f(k)jf(VJ )-Vj~k) ~ij1,j,.,~=,. k

V3 (k)j

Since (Y Y N(V(.v)_V(.k), ,i2

nR 2  
2Vj k~

and --- - is distributed as a r.v. of x2 with j(n-1) d.f., then v
Cy

is a Student's t-distribution with J(n-I) d.f.

Since 0(k) > v(.vv = 1,. ..,k-1, j = 1,... ,p, then

k-i
>1- P[t v < dl- X P[Itv j< d] (by (3.5.29))

v,3

p-i

where t.i is a r.v. of a t-distribution with j(n-1) d.f., j:1,...,p.

This completes the proof.

Theorem 3.5.7.

(3.5.44) E(SIR 3) <. nin{kG,(d), k[G p(d)-G P(-d)]}

where G.(x) is the c.d.f. of a r.v. of a t-distribution with j(n-1)

d.f., j =1..p
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Proof.

Yi. > Y

k )
(3.4.45) E(S1R3 P

"= d/ Ripd/2RY 2-R p< Y. <_Y + d r-Rip

vP IhT - ip Y\)P V-PT

for j l,...,p-1, vfi, v 1,...,k).

Let V .Y .(Vv Vi)
L vJ-iJ j! v'n-1T, then t j is a Student's t-Le Vj V~R. Rij

distribution with j(n-1) d.f.
v i

V.-V.
k t vi 12 vr i i v p <-

(3.5.46) E(SIR 3 )=k dd P

j = , . , - ,V~i, v=l,...,k

Hence

k Vi-V.
(3.5.47) E(SIR 3) < _ZPtvj < d + - T-, vii, v= ... k}i= - ~V7 Rij

= A. (say), j = 1,... ,p-1.

and
k

(3.5.48) E(SIR 3)< Z P{It < d, vti, v1l,...,k}
i=l

A (say).

As in Theorem 3.5.5, we can show that the sup of A is obtained

when V Vk, for j = l ..,p-l. From (3.5.47) and (3.5.48),

we get A < kGj(d), j=l,...,p-1 and A < k[G p(d)-G p(-d)]. Thus

E(SIR 3 ) <.-mnfk[Gp(d)-Gp(-d)], kGj(d), j=l,...,p-l}

min{k[G p(d)-G p(-d)], kGj(d)}
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3.6. Selection procedures for multivariate normal distributions in

terms of weak majorization

It is assumed that among the k populations, there always

exists P[k) such that P[k] 1 [i]' i = l,...,k. This population
m

is called the best population. We are using the same notation as

in Section 3.5. Let Q = {w E (Pl,...,14): ui E E1, i=l,...,k and

there exists some j such that ,j >> Pi Y i} where E is defined

in (3.5.10).

(A) Assume z is known.

We propose a selection rule as follows.

RS: Select population vi if and only if

(3.6.1.) Yij > max Yvj -d, = 1,...'p

l<v<k

Using the same argument as in Theorem 3.5.1, we obtain the following

result.

Theorem 3.6.1.

(3.6.2) inf P[CSIR 5] = P[Z i fd, i = l,...,(k-l)p]

where

(Zl,...,Z(k-l)p)' - N( 0 ,Q), where Q is defined in (3.5.9).
(k-l)pxl

20
(B) Assume 0. 2 ) where a is known and we assume a = 1.

0 'a
We propose a selection rule as follows.

R6 : Select population ni if and only if,

A,
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(3.6.3.) Yij ml<vk " j,....p.

It is similar as in Theorem 3.5.3, we can show that

Theorem 3.6.2.

(3.6.4) inf PECSIR 6] = PZvj . d, v=l,...,k-l,j-1,...,p]

where Zvi is defined in Theorem 3.5.3.

If k = 2, p - 2, we can show that

1 1/4
(3.6.5) inf P[CSIR 61 = 2[(7)I x= -]ds(x).

~~(1-/T)

In a same manner as in Theorem 3.5.4 and Theorem 3.5.5,

we have the following results.

Theorem 3.6.3.

(3.6.6) P[CSIR 61 >max{[(d)-o(-d)]p(k'l), 1-p(k-1)[1-t(d)]}.

Theorem 3.6.4.

(3.6.7) E(SIR 6 ) <_ kD(d).

20
(C) Assume Z - (Y. 2) where o2 is unknown.

0 "°0

We propose a subset selection rule as follows.

R7 : Select population i if and only if

(3.6.8) Y. max Y d Rij J
V / ZT

In a manner similar to that in the proof of Theorem 3.5.6,

we have



113

Theorem 3.6.5.

(3.6.9) PECSIR]1 > 1-(k-1) P~t. < -d]

where ti is the r.v. of Student's t-distribution with

i(n-1) d.f., i 1..p
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