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On Some Methods for Constructing
Optimal Subset Selection Procedures

by .
Shanti S. Gupta, Purdue University
and

Deng-Yuan Huang, Academia Sinica, Taipei, Taiwan

buring the past decade, selection and ranking theory has developed rapidly.

Many reasonable rules have been proposed. Some good properties have been
studied. However, very little work has been done to consider the optimality
of a selection procedure, especially in the subset selection approach. In this
paper, we are interested in working on some results for optimality. Some
classical selection rules are constructed as special cases.

Let < denote a partial ordering on the k-dimensional Euclidean space.

Let x = (x ,...,xk) and 8 = (81,...,9k), and x < x' be defined by, X, < xi,

1

i <1 - k; similarly, # <8' @ Giipi 1 <i < k. A measurable subset S of the

sample spacc is called monotone non-decreasing (with respect to <) if x €S

and x < x' implies x' € S. Let Pe(S) denote the probability measure of S under

the conditional distribution of X given 8. The distribution is said to have

stochastically increasing property (SIP) in § if Pe(S) < Pe,(S) for every

monotone non-decreasing set S and all 6 <8'. A function ¢(x) is said to be

non-decreasing (with respect to <) if ¢(x) < ¢(x') for all x <x'. Let Ee

——

denote the expectation with respect to the distribution P,

A characterization of SIP is given by the following lemma (for proof see

Lehmann [5], p.400; or see Alam [2]).

—
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Lemna Y. A family of distributions P.,J has SIP in y iftf E y(X) < EQ'W(l) for
41l non-decreasing integrable function ¢(x) and all 4 <i'.

It is casy to generalize Alam's result in [1] as follows.

fheorem 1. Let the distribution of X have stochastically increasing property in

S, and let (x,9) be non-decreasing in x and 6. Then E@“‘Eﬁﬁ) is non-decreasing

in 4.

Proof. Let £ < 5'. From the fact that Eeqiﬁ)fp :_Eeqii,gf) and Lemma 1, we

- -_—

know that anfi,g') < EG,@(E,gj). This completes the proof.

Remark 1. It should be pointed out that the dimensionality of the vectors

x and % need not be the same. The above results are true, in general.

There are given k populations w of which we wish to select a

1’”2""’"k
subset. The quality of the ith population is characterized by a real-valued
parameter .. Let & denote the whole parameter space.

Let % be a selection procedure and let R(8,6) and S(0,8) be some quantities
such that 5(#,¢) is large and R(8,8) is small.

Lehmann [7] has proved the following result.
Lemma 2. Let 3 be a o-field of subsets of the parameter space @ and let A and

y be probability distributinns over (2,8). Let A,B be two positive constants

and let & maximize the integral

0
(1) BfS(7,5)du(8)-AfR(8,8)dA(6).
Then 60 minimizes sup R(g,b) subject to
(2) inf S(v,8) > ¥
nrovided
(3) ju(-'_s,.»:o)dx(g) = sup R(8,6,)
and
(4) /S(5,5)du(8) = inf S(8,85) = 7.
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Let g TR ' > TO, j¥ir, 1 <1 <~ k, be a partition of .. such that
iy = - D
k
= . 't v.. be a distance between v, and 7., 1. = (1.,,...7T, with
J x let [ be a distance ween i L ( i1 1k)

k-1 elements (since iy is not considered), T and T, are known constants.

k
Let @ = U mi and 7. = min .. and let t. = max T, be associated with .
] RS B I 1< )

which we call the best.
5 = 3 P2 7,8) = § = i . .}: 1 -
Let 5 = (3),...,6) and $(z,8) = $(1,6,) Pl{Selectmg rrlla1 “ipr if €,

1 - i - k. Let R(l)(zﬁéi) = p_{Selecting niléi}, if t€q, and R(1,6) =
: R(l)(;,5i). Let zij be a sufficient and maximal invariant statistic for
i=1
'ii' L~ i, j <k, j#i. We know that the distribution of zij’ depends only on
T se § .

i (see [6])

Oosterhoff [8] defines a monotone likelihood ratio density for a random

vector X with m components as follows: Let 6 be an m-dimensional vector of

. . . . k. . .
parameters. A partial ordering of points in R is defined by x' < x, meaning

® A

x.'" < x. for 1 = 1,2,...,k, and the inequality is strict for at least one

1 - 1

component. The density f(irg) has monotone likeclihood ratio if for all

at<ont, [f(x,0')/f(x,8")] is non-decreasing in x.
- 1- x 2,7 X
Let the joint density of ij, j$i, be P, (Ei). Let P, be denoted by Py
—i —i
when Tip T v T Ty T Ty and by p; when i1 % o T T T Ter To Ty

Restricted Minimax Selection Procedures

Theorem 2. Supposc that pT(E) has monotone likelihood ratio. Assume that the

supremum of R(ljéo) over { occurs at T;j =Ty for all i,j, where for any i,
Py ()

1 if —— ,
if po(ii) > ¢

&, = a =,




where ¢ and a are determined by

B e

/Si(:.‘)p.l(:_i)d:.l Y.

- 0 -0 0 . . .
Then 37 = (4 ,...,5 ) minimizes sup R(1,4) subject to inf S(7,¢) ~ v.

1 k - = T -

1€ 1€Q

Proof. Let X be the distribution which assigns probability one to the point
T.o= (r..,...,:ii) and . the distribution which assigns probability % to the
points 0 C (TO,...,TO). Then by Theorem 1, we have

. 0
inf S(r,éo) = min inf 5(1360) = min S(1 ,di)
€ l=i<k 1€, 1<i<k

—

) . 0
[py = [ s(xe)du(D),
o
. 0 .
(since féipi =y, 1 <1 <Kk).

0 .0 0
sup R(t,27) = f(dl ...+ ok) Py’ and
T€.

hence (1) reduces to

(5) B/ s0r,00)du0)-AfR(z, eV)dr(8)

.

1]
> =

k
N A e
= f Z 6. Py=APg) -

Since 0 = % <1, (5) is maximized by putting 6? = 0or 1 as g p. <or > Apo.

1

k = -2 (x,-8.)7
. . - ) - n 2 ii
Example. Let g (x) = 0 g, (xi), where g (xi) = e . Let t..2
- =l i i Vo v

fv ~F LR TN T = = G - = X X 1#1 ) t oz
" ’j’ 1= j < k, j#i, ii 0, L A>0 and “ij Xi Xj’ )*1. Let 5
{ i’ , T k) and z = (21], ’:ik)'

k-1 1

T2 0, 2




AN l “ . 1 P . . . . . . s, . . . .
where L(k-l)x(k—l) =5 (l .'2) is the positive definite covariance matrix of

Z..'s. We know that

py(z;)

po(:_-l)

o-1 o-1 RS
= i ' A L' . - L: 3
explzf ) A+ A" ) Tz -2 ) Ay

is non-decreasing in zij’ j$i, and is equivalent to

0. .
We can show that the supremum of R(7,87) over i occurs at 91 = ... = Ok.
Note that the above is the Seal's procedure [9] to select a subset containing
the population associated with the largest 61'5, so called the '"best' population.

An essential complete class of multiple decision procedures.

A point X is called a change point for a function h if in some neighborhood
ot XO’
hixyh(x*) <0,
whenever x < x, 7 x*, and for some x, < X

* 1 *
] o 5 X1 h(xl)#O and h(x1)+0 with xl#xl.

Karlin and Rubin [4] have proved thc following result.

0

Lemma 3. It 9 changes sign at most once in one-dimensional Euclidean space Rl,

then

vw) = [px]wp(x)du(x)
changes sign at most once, where u is a o-finite measure on R' and p(x]w) is the
density of X with monotone likelihood ratio (MLR).
Remark: [t is useful to note that % changes sign in the same direction as ¢ if
it changes sign at all.

A decision rule dfx) is called monotone i1f

dix) =

0 otherwise.
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Let FT be the continuous distribution function of the pdf pT(i) for any vector

T, and let Fjl(y) be the supremum of the set {x: Ff(f) = yj with respect to

the partial order "<" for any recal y und 1.
Let Gi be any non-monotone rule and for any given real vector Ed =
(bil""’bik) with k-1 clements, such that

.l.' oy _ o 1Y , e

1

. . - . . . k-1
where v is a ¢-finite measurc on k-1 dim. Euclidean space R . Let

. -1 1 \
Il if 20> FU O (RO(b;,6.)),

—i
. 0 otherwise.

i L .0. . }
Then & (b.,5.) = /““'i)Pgi(:i)d“(:a)

-1, 01 .
.Fﬁi(R (gi,oiJ) ;

-

Suppose that ii is not monotone in zij’ for fixed 2o 24j. For each fixed

:iL,(£$j) define 6?(£i) as above is monotone in Zij’ and to satisfy

i 0 i ,
R'(b;,8,) = R'(b,,6.). And

i 0, Li
= 716 -¢%p. (2.)du(z, )
i 7iP N ij7r’
—i
. 0 . .
Since o, is monotone, 61-6? as a function of zij has at most one sign change in
the order of plus to minus. Using this fact, the MLR of P, (ii) and Lemma 3,
—i
we have

i 0 i
§ -
R (Li’ i) <R (11, 1) for Tij > bij'

j 0 i
§) <
Hence #(13 1) <R (liéi) for Ed > Eﬁ'

As the normal means example, a monotone procedure is the following form:

1 if z. > C,
392,y = { o=
0

1 otherwise, C = (Cj;y*i),

|
j
g
it sl deitnitainti ““*‘—ﬁ‘"“--"“ﬂ'-“-“




this is equivalent to

r — —

1 if Xy > omax(x. + Cj)’
ER

'- j
o
P 0 otherwise.

L 0

It should be pointed out that the monotone procedure 60 = (61,...,6g) is the
usual Gupta type procedure (see Gupta [3])to select a subset containing the

best population.
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