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CHAPTER 1

Introduction

1.1l Introduction and Summary

A major area of continuing statistical research has been the develop-

FAE ™ TN T T N

ment of procedures to test the conformity of data to a given hypothesis.
Such procedures are known as goodness cf fit tests. The hypothesis of in-
terest usually stems from the assumption that the sample population is

characterized by the same properties which characterize a particular dis-

tribution (simple hypothesis) or a particular family of distributions

(comgosite hypothesis). Goodness of fit tests are useful in demonstrating

by means of formal significance statements that such hypotheses are inade-
quate to explain the observations, or, in the absence of such significance

statements, providing the impetus for further data analysis based on other,

parametric, statistical techniques.

In this thesis, we are concerned with tests of the composite null

hypothesis that the distribution function of the observed sample is a

member of a specified scale-location parameter family, where the scale and
location parameters are unknown and unspecified. We first study a test of
this hypothesis proposed by Weiss [41]. Then we turn our attention to the

most common special case--that of normality--by proposing and analyzing

several tests which are large-cample analogs of the most efficacious {(based
on empirical evidence) small-sample procedures. All of our results are
asymptotic, as the sample size n tends to infinity, and all of the test
criteria which we examine are based on functions of an increasing subset of

the ordered sample values.
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By increasing subset, we mean that as the sample size tends to infinity,

the number of order statistics which we consider also tends to infinity.

- YRR
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By assuming certain relationships between the number of sample quantiles

4

in the selected subset, the separation between those quantiles, the rate
at which the quantiles move into the tails of the distribution, and the

smoothness and size of the tails of the density function of a standard

representative of the hypothesized scale-location parameter family, we are
able to assert that the selected subset of sample quantiles is asymptoti-

cally jointly normally distributed with known mean vector and covariance

matrix. The motivation behind choosing a gradually increasing subset is
that we achieve a workable distribution theory while retaining "most" of

the information contained in the sample.

The Weiss procedure is based on a quadratic form of the sample quan-
tiles which has an asymptotic chi-square distribution. Weiss proved that,
under the null hypothesis, replacing the unknown scale and location para-

meters by estimates obtained from the sample does not alter the asymptotic

distribution theory, and he also proved that his procedure is consistent.

In Chapter II, we examine the asymptotic power of the test under sequences

of contiguous alternatives of the form Hn(x) = g ; el) + en(x), where
2

G(y) is the standard representative of the scale-location parameter family

appearing in the null hypothesis and the "disturbance function" en(x)

satisfies certain regularity conditions. By letting the sequence {en(x)}

approach zero at a certain rate and with vespect to a certain measure of

S e MRS ST T R R TR

distance, we obtain a non-trivial power for the test.
In section 2.1, we explicitly define what we choose as the selected
subset of order statistics, including those assumptions required for the

asymptotic distribution theory. We also discuss the concept of asymptotic

e e




indistinguishability of sequences of distribution functions which provides
the basis for that theory. In section 2, we describe the Weiss test of
fit. 1In section 2.3, we introduce the sequence {Hn(x)}, state the assump-
tions which the functions {en(x)} must satisfy to yield a non-trivial
power, and derive several useful results based on those assumptions, in-
cluding the joint asymptotic normality of the selected order statistics
under the sequence of alternatives. Section 2.4 contains the derivation

of the asymptotic power of the test. Finally, in section 2.5 we apply

the results cf section 2.4 to two specific cases--a sequence of Weibull
distributions which approaches the exponential distribution and a sequence
of contaminated normal distributions.

In Chapter III, we turn to the composite hypothesis of normality.
Using the same approach of selecting a gradually increasing subset of order
statistics, we develop large-sample analogs of the Wilk-Shapiro and
Shapiro-Francia tests, two of the most effective (small samples) but also
least understood tests for normality. We show that the analog of the
Wilk-Shapiro statistic, which we call W(n), is asymptotically iormally
distributed under the null hypothesis as the sample size tends to infinity.
We also show that, asymptotically, the analog>of the Shapiro-Francia
statistic, which we call W*(n), suitably standardized, has the same dis-
tribution under Hy as a certain weighted sum of independent chi-square
random variables. We further prove that the tests based on W(n) and W:(n)
are consistent. Finally, we study the behavior of those tests under the
sequence of avternatives {Hn(x)} of Chapter II, except that here the
sequences of disturbance functions must satisfy differeat assumptions re-
garding the rate and manner of approach to the null hypothesis in order

to guarantee non-trivial powers. We find that the measures of distance,




or metrics, for the tests based on %(n) and %*(n) are quite complicated.
As a consequence of the power studies, we propose and analyze two addi-
tional statistics, %(n) and a*(n), which yield improved tests for
normality. We also find that, contrary to most small-sample empirical
studies, the analogs of the Shapiro-Francia test have better asymptotic
power than the analogs of the Wilk-Shapiro test, and we show by example
that the analogs of the Wilk-Shapiro test can be biased, at least if the
selected subset of order statistics is not chosen carefulily.

Summarizing Chapter III, section 3.1 contains a survey of the litera-
ture regarding tests for normality. In section 3.2, we define the statis-
tic ;(n) and determine its asymptotic distribution under the null
hypothesis. We also state in section 3.2.4 the null hypothesis result for
I;*(n), deferring the proof to Appendix B since it depends on several
results which are not used elsewhere in the thesis. 1In section 3.3, we
prove that thelﬁ—test is consistent. In section 3.4, we analyze the
power of the‘;-test under the sequence of alternatives {Hn(x)}. The
analogous results for %*(n), and are given in section 3.5. In section
3.6, we illustrate the foregoing results using the example of a sequence
of contaminated normal distributions and also compare the tests for
normality with the Weiss test discussed in Chapter II. Example 3.2 illus-
trates tre bias of %(n) and %(n). Finally, in section 3.7, we discuss
possible areas of future research.

In Appendix A, we present the results of a Monte Carlo study of the
Weiss statistic under the null hypothesis. In Appendix B, we present a
linear transformation of the selected subset of order statistics to stan-
dard normal random variables and derive the asymptotic distribution of

n
W*{n) wunder the null hypothesis as mentioned above. In Appendix C we

"
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summarize for reference purposes various formulas concerning the inverse
normal distribution function which are used frequently in Chapters II and
III.

The remainder of this introduction is devoted to a brief discussion
of some of the commonly used goodness of fit tests for continuous distri-
butions, with emphasis on tests for the null hypothesis that the sample
distribution is an unspecified member of a specified scale-location
parameter family.

1.2 EDF Tests of rit

A frequently used class of tests for simple or composite hypotheses
about continuous distributions is the class of EDF tests, so-named because
they are based on differences between the hypothesized distribution G(x)
and the empirical distribution function Gn(x). Included in this class

are tests based on the following statistics:

Kolmogorov-Smirnov: D = sup |6 (x) - 6(x)|
Cramér-von Mises: Wl = nf[Gn(x) - G(x)]sz(x)
Anderson-Darling: A% = nf[Gn(x) - G(x)]2[G(x)(l - G(x))]—ldG(x)

Letting F(x) denote the unknown distribution function of the sam-
ple population, research on the above tests has been primarily devoted to
the following cases, classified by the null hypotheses about F(x): (G(x)
is continuous in all cases)

Case 0: F(x) = G(x) completely specified

Case 1: F(x) = G(x38) where 6 is a scalar-valued nuisance parameter
Case 1A: €(.) 4is normal with unknown mean

Case 1B: G(.) is normal with unknown variance

Case 1C: G(.) 4is exponential with unknown scale parameter

Nl —— s e e —
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Case 2: F(x) = G((x-el)/ez) where el and 62 are nuisance location .
and scale parameters

Case 2A: G(.) is normal with unknown mean and variance

Case 2B: G(.) is exponential with unknown scale and location para-

meters (Durbin [12] shows how this case can be transformed to case

1C above.) "

Case 0 is the classical case and has been extensively studied. The
sampling distributions and asymptotic distributions of the statistics D,
W2, and A2 under the null hypothesis are known to be independent of the
hypothesized G(x). A summary of the r.. lts and references appear in
Darling [7]. Expressions for the powers of .e above EDF tests do not
exist in closed form. Durbin [11] has shown how the power may be approxi-
mated in the case of D by computing boundary crossing probabilities
for the tied-down Wiener process, and he has examined the asymptotic power
under contiguous alternatives with densities of the form hn(x) =1+ rn_l/2
when G6(x) is the uniform distribution. Empirical results for the
powers of the various tests are scattered throughout the literature.

When nuisance parameters are present, the EDF tests are no onger
distribution-free. The test based on D has been studied under the null
hypothesis for case 2 by Serfling and Wood [24] and cases 1 and 2 (and
the more general p-nuisance parameter case as well) by Durbin [12].

Serfling and Wood prove the weak convergence of the distribution function
of the statistic to that of a certain Gaussian process with a covariance

function which depends on G(x) and the parameters being estimated.

Durbin has developed technigques for inverting Fourier transforms to obtain

the distribution of D for finite n and has worked out case 1C in detail. i
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Using Monte Carlo methods, Lilliefors [16,17] constructed tables of criti-
cal points for the Kolmogorov-Smirnov test in cases 1C and 2A. He found

i ;i that the statistic D tended to be stochastically smaller when the unknown
parameters were estimated from the sample.

The statistic W2 has been studied under the null hypothesis in

—
s g sprede ot

: case 1 by Larling [6], in case 2A by Kac, Kiefer, and Wolfowitz [15], and
ooth W2 and A° have been studied by Stephens [3u4] for cases 1A - 1C and

P ‘ 2A. Briefly, the asymptotic distribution of each of the statistics under

the null hypothesis is the same as that of the random variable

l*!
1
: [ Y2(t)at
0

H
3
’
i

\ where Y(t) is an appropriate tied-down Gaussian process with zero mean
and covariance function depending on the statistic, the hypothesized dis-
tribution and the parameters being estimated. This distribution is the

same as that of

§ Z,/%

where Zi are i.i.d. chi-square random variables with 1 degree of freedom £
and Ai are the eigenvalues of a certain integral equation. In [30],
Stephens gives modifications of the statistics D,w% and A2 for cases 0,

1A-1C, and 2A so that the asymptotic critical points of the associated

tests may be used for finite sample sizes.
Kac, et. al. studied the asymptotic power of tests based on D and
2 e . . . .
. W™ Dby examining the ways in which those tests measure distance, showing,

in particular, that those tests are hyper-efficient relative to the optimum




chi-square test. Stephens [30], in empirical power studies on tests

based on D, WQ, A2, and two other EDF statistics, found that it was

3

better not to have the true parameter values available in conducting the
tests. Apparently, in trying to fit a density of a certain shape to the
data, being tied down to fixed parameter values, even correct ones, is

more a hindrance than a help.

1.3 OCther Tests

The oldest well-established test of fit is the chi-square test., It
is particularly well suited to the case where F(x) is discrete, and it
is known how to adapt the statistic to the case when there are nuisance
parameters which must be estimated from the sample. When F(x) 1is
continuous, however, chi-square tests are neither consistent nor do they
perform as well in general as the EDF tests mentioned above. A unified
summary of chi-square theory appears in the paper by Moore and Spruill [19].

Sample spacings, or differences between successive ordered sample
values, have provided the basis for many tests of fit. A comprehensive
review of sample spacings theory, associated tests of fit, and the related
literature is given by Pyke [20]. Under the null hypothesis that F(x)
is uniform, Cibisov [4] proved that the Kolmogorov-Smirnov test is hyper-
efficient relative to any test symmetric in the sample spacings under
sequences of continuous, contiguous alternatives of the form
hn(x) =1 + r(x)n_l/2. However, in his review of Cibisov's paper, Weiss
[37] exhibited a sequence of alternatives such that the reverse is true.
Sethuraman and Rao [25] studied the Pitman (asymptotic relative) effi-

ciencies of various tests based on sample spacings for alternatives




hn(x) = 1+ r*n(x)n_<S for 6>1/4. And Blumenthal [2] studied the large-
sample behavior of tests based on spacings when nuisance location and
scale paramerers are present.

Finally, there are many tests of fit which have been developed to
test a specific null hypothesis, the most common being that of normality.
A detailed survey of tests for normality is presented in section 3.1.
Most of these tests share the property of location and scale invariance,
thus eliminating the need for estimators of the nuisance parameters when

the null hypothesis is composite.
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CHAPTER II

ON THE WEISS TEST OF FIT

2.0 Introduction

For each n, Xl(n), X2(n),..., Xn(n) are independent, identically
distributed random variables with distribution function F(x). F(x) is
i known to be absolutely continuous with density function denoted by £(x)

- but is otherwise unknown. Formally, the decision problem of interest is

the following:

Problem P Using Xl(n),XQ(n),...,Xn(n), test the hypothesis

6, with 6, > 0

Hy: F(x) = 6((x-8,)/8,) for some 8,0, 2

0

vs.

Hy: F(x) # G((x-el)/62) for any 6,,6, with 6, >0

Thus, we are interested in determining whether or not F(x) belongs
to a specified scale-location parameter family. The function G(x) is a
standardized representative of that family; the nuisance parameters el

and 6, are unknown and unspecified.

2

The test statistic which we will be concerned with has been proposed

and analyzed under the null hypothesis by Weiss [41] and is based upon a

certain subset of the ordered sample values Yl(n) é:YQ(n) Sees Yn(n).
In this chapter, we determine the asymptotic distribution of Weiss' test
under sequences of alternatives which appreoach the null hypothesis as n
tends to infinity.

In section 2.1, we define certain parameters and state certain
assumptions which those parameters must satisfy in order to guarantee

desirable asymptotic proterties of the test statistic. We also discuss «

3 10
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; J : the concept of asymptotic indistinguishability of sequences of distribution
functions and its applications to our testing problem.

/ 4 In section 2.2, we describe the Weiss test of fit.

\ In section 2.3, we introduce a class of alternative distributions
which approach the null hypothesis as n =+ ®, ke state assumptions on

the manner and rate of approach to the null hypothesis which the sequence

of alternatives must satisfy in order to yield a non-trivial power in the

T limit, and we derive several useful results based on those assumptions.
In section 2.4, we derive the asymptotic power of the test.

In section 2.5, we give examples to illustrate the results of the

) preceding sections,

i 2.1 Preliminaries

2.1.1 Definitions and Assumptions

For each n, let » 0 < p_ < 1/2, be such that np_ 1is an integer.
Pn n n

; Further, let Kn and Ln be integers such that

Define B, = glb{x: 6(x) > 0} and B, = lub{x: G(x) < 1}. (B

) 1 may
k be -»; B, may be +0,) Define T, as

b 1

) inf {g(x): G"l(pn) <x &6 (1-p)}

7

y

oo where g(x) denotes the density corresponding to G(x). We assume the

b —

following:

1;1’
g
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paerd :
' Limp_ =0 Lim np_ = « Lim X_ =
3 ‘ | e D e B o B (2.2) .
1
Lim =0
.3
oo ani/Q (2.3)
b
1 s =
! Lim 5 0 (2.4)
n¥® NT
n
Kn .
Lim ——== =0 (2.5)
- 1/21‘3
Lim —575—— = 0
N L3/2 2 (2.6)
n n
g(x) <D <o forall x in (Bl’BQ) (2.7)
g'(x) exists and |g'(x)] < D, <= forall x in .
(Bl’BQ) (2.8)
!
f |x|g(x) < D2 <o for all % in (Bl’B2) (2.9)
’ There exist values ¢,,%, with B) < & < C2 5B,
0 < T<g(x) forall xin (5,5)
(2.10)
g(x) is nondecreasing in (Bl,z;l)
f g(x) is nonincreasing in (%,, BQ)
|
| f G
| )-2 -
| [y& g(y)] g(y)dy < (2.11)
5
! e L I
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2.1.2 Some Relations Based on the Assumptions

The assumptions (2.1)- (2.11) imply other relutions which will also
be required. These relations together with the assumptions implying

them are summarizei in Table 2.1. Verifying these relations is straight-
forward and will not be done here,

2.1.3 Notation

Throughout the chapter we will use bars over the names of random
variables which are used to illustrate various properties or represent
certain distributions in order to distinguish them from those random

variables directly connected with the problem P, Primes will often

be used to indicate differentiation of functions; they will also be used
to indicate transposes of vectors. Since no vectors will be differenti-
ated, no confusion should arise. In order to ¢liminate many unnecessary
variable names, o(.), op(.), and 0(.) notation will be used throughout.
We write "x(n) is o(y(n))"* if =x(n)/y(n) converges to zero as n » =,
Similarly, "x(n) is Op(y(n))" if x(n)/y(n) converges to zero in prob-
ability as n = «; "x(n) is 0(y(n))" if x(n)/y(n) is finite as

n + o, As is traditional, we use ¥(x) and ¢(x) to represent the

c.d.f. and p.d.f., respectively, of the standard normal (or N(0,1)) dis-

tribution. Finally, in order to simplify notation, the dependence on
n of Xl(n),...,Xn(n) and Yl(n),...,Yn(n) will be suppressed, and we
will write Xl""’Xn and Yl,...,Yn instead.

2.1.4 The Joint Asymptotic Normality of an Increasing Number of Order
Statistics

The joint asymptotic normality of a fixed set of suitably standard-
ized sample quantiles from a given continous distribution is well known

(see e.g. David [8,ch. 9]). The result below is a generalization to

the case where: (1) the number of sample quantilss is no longer fixed




TABLE 2.1

IMPLICATIONS OF THE ASSUMPTIONS

TR T T vy
H
—t, :

Relation No. Implied By
Ln
&' Lim -lj]p—' =0 (2.12) (2.1)8(2.3)
n-reo n
3
. n
B ; Lim =0 (2.13) (2.6)8(2.7)
f . s 53/2
'#
Kn
Lin —75— = 0 (2.1%) (2.8)
n-o Ln 0
pn
Lim —5 =0 (2.15) (2.4)
n*e nt
n
‘ Lim 2“4 =0 (2.16) (2.4)6(2.6)
: nreo Ln-c
3
|
! Lin —g = 0 (2.17) (2.4)8(2.6)
! n¥ LT
| nn
Lin —g75g = 0 (2.18) (2.4)6(2.6)
! nx L7
n n
B,
1
f [%%%]Qg(x)dx < w (2.19) (2.11)
B
B
2 g (x).2
[ %L g(X)J g(x)dx < » (2,20) (2.11)
| Bl
.‘?ﬁ*_‘_‘w e ot -
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but is instead allowed to depend on n and slowly increase as n does;
and (2) the underlying distribution is replaced by a sequence of under-
lying distributions, one for each value of n. We require the following

definition:

Definition 2.1. Suppose for each n, Fn(xl""’xk(n)) and Gn(xl""’xk(n))
ar~ joint cumulative distribution functions for k(n)-dimensional

random variables. The sequences {Fn} and {Gn} are Asymptotically

Indistinguishable (A.I.) if

X (n) eR(n)}| = 0

Lim |Pp (X p5eesXy 0y) eR(D)) - PGn{(xl,...,

n-o n
for any sequence of measurable regions {R(n)} of k(n)-dimensional
Euclidean space.

Suppose fn(xl""’xk(n)) and gn(xl""’xk(n)) are probability density
functious corresponding to Fn and Gn respectively. The following con-
dition (Weiss [38]) is necessary and sufficient for Asymptotic Indistinguish-
ability:

fn(Xl""’Xk(n))

gn(xl’ s ,Xk(n))

converges stochastically to 1 as n +

assuming (Xl"°°’xk(n)) has distribution Fn for each n.

(By symmetry, we can replace Fn by Gn and/or invert the aboye ratio
without affecting the result.) Definition 2.1 defines an equivalence
relaticn, and we will say that the random vectors corresponiing to {Fn}

and {6(n)} are asymptotically equivalent when {Fn} and {Gn} are A.I.
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Now, for each n, let Xl""’ih be i.i.d. random variables with

absolutely continuous distribution F_(x). Denote by ?i""’Yn the
corresponding order statistics. Let pn’Kn’Ln satisfy (2.1) through

(2.6) with L replaced by
T = inf {f (x): F-Np.) < x < F(1-p_)}
n - n “n Yn’="="n Py/7s

and assume (2.7) and (2.8) are satisfied for all n with g(x) replaced

by fn(x) and B, and B, replaced by B, Z glb{x: F_(x) > 0} and

B, = lub{x: Fn(x) < 1} vespectively. Note that (2.12) - (2.18) also

2
hold. Additionally, assume the following:

. 1/2; ;-1 = -1 s
ﬁ-l:: (n/pn) fn(Fn (pn))[Bl— F (l-pn)] = - (2.21)
and
. 1/2. ;-1 - -1 .
ﬁiﬁ (n/p). fn(Fn (1-p NIB, - F_ (1-p )] = = (2.22)

Finally, define E&(n) as

1npn+(3-l)1,n 1

-1 _
/n fn(Fn (____77_-—_——))[ann+(j-l)Ln - F ( n

npn+(j-l)Ln

)]

for § = 1,2,...,K +l.
Then Weiss [39] has shown that the distribution of the (Kn+l)—vector
Z(n) = (Ei(n),...,ﬁk +l(n)) is asymptotically equivalent to the (Kn+l)-
n

variate normal distribution with mean vector 0 and covariance matrix

Y(n) = [Gij(n)], where
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L
oij(n) = L—nf_‘—i (p, + (i-1)L_/n)(1 - p_ - (§-1)L /n)  (2.23)

for 154153 2K+
We remark that the result of Weiss [39] is actually proved in more
generality than is stated above. In particular, Weiss allows for the

possibility that the bounds Bl

on n, as might the upper bound D

and ﬁé on the support of F_(x) may depend

p on fn(x). However, for our purposes

these extensions are unnecessary. Also, returning to the assumptions of

section 2.1.1, Weiss [41] has shown that assumptions (2.9) and (2.10)

together with (2.1) - (2.8) are sufficient to insure that (2.21) and (2.22)

q;j hold. Hence, the asymptotic normality result holds with fn(x) and Fn(x)
‘ replaced by g(x) and G(x), respectively, in the definition of Z(n).
‘f ; Reiss [21] has further generalized the above results (in terms of j
. the conditions placed on the "spacing!" of the indices of the selected
- order statistics) and obtained Barry-Esseen type bounds on the rate at

which the asymptotic normality takes hold.
Our motivation for considering an increasing subset of order statistics
3 as defined above is the desire to have a manageable distribution theory

while, at the same time, not having to sacrifice too much of the informa-

tion contained in the sample. If we consider a fixed (finite) number of

sample quantiles, we have an asymptotic distribution theory which is easy

to work with, but, in neglecting the remaining order statistics, we pay ]

a high price in terms of lost information. On the other hand, in [40],
Weiss has shown for a simple hypothesis that an increasing subset of

o “.r statistics defined as above is asymptotically sufficient for the

. sample; thus, in the limit, no information is lost. (Weiss proves the

~esult for the "equally spaced" case, i.e. Ln = 1P, but his result may

, 4
|
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be easily extended to the case L, = o(npn) which we consider here.)
By asymptotic sufficiency, we mean that using only the statistics
{ann+(i_l)Ln; i=l,2,...,Kn+l} together with knowledge of the distribu-
tion G(x) governing the population from which the sample was drawn,

it is possible to generate a random n-vector with the same asymptotic
distribution as the complete vector of order statistics. Furthermore,
and of more importance in studying tests of fit, the same results holds
if Fn rather than G is the true distribution functioa for the sample,

where {Fn} converges to G according to certain regularity conditions.

2.1.5. Some Variances Related to the Multivariate Normal and the Inverse

Covariance Matrix X_l(n).

Assuming Z(n) = (Zl(n),...,ZKn+l(n)) is a (Kn+l)—var1ate normal

random variable with mean 0 and covariance matrix )(n), (2.23) implies

vav(ﬁi(n)) = var(fkn+l(n)) = pn(l +0(1)), (2.2u)

var('z'j(n) - Zj_l(n)) = (L /n)(1 +0(1)) (2.25)

and, for 1 < j,

L
—_— — — -_— ~ n 2 \
cov(Zi(n)-Zi_l(n),Zj(n)-Zj_l(n)) = - f;:I(Ln/n) . (2.26)

Futhermore, for 1 < j < K +1, var(zg(n)) is bounded by a finite constant
independent of j and n. We will frequently have cccasion to refer to
the inverse covariance matrix Z—l(n). It is easily verified that Z_l(n)

is given by cn211 (n), where c, = n(Ln-l)L;2 and zl(n) denotes the

- Yok
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E ‘{ - (Kn+l)x(Kn+l) matrix
Lk hl
\ : —
1 -
r | “n
—- +l -1
3 pn
] -1 2 -1
-1 2 -1
. (2.27)
=1 2 -1 E
2 ]
-1 "n—'+l
L Pn B 5

In appendix B, we describe a transformation of the vector 7Z(n) to a ;
vector of i.i.d. standard normal random variables. In particular, we

present a nonsingular matrix B(n) such that B'(n)Z_L(n) = IK 1 the
n k]

(Kn+l)x(Kn+l) identity matrix.

2.2 Construction of the Test

Before describing the test statistic for the problem Pn’ we first

introduce some further simplifying notation. Denote the quantity

-1 npn+(3—l)L

G G———;;————EJ by Uj(n) and g(Uj(n)) by uj(n) for j = 1.2,...,K +1.

if H0 is true, then F(x) = G((x-el)/62) for all x,

Ft) = 6, + OQG-l(t) (2.28)

1

and

£(ETH(E)) = 5(e7 (D) (2.29)
2
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/n u,(n)

for all t & (0,1). Denote ———61———4
2

zj(n;el,e2), and let z(n;el,ez)”..

ann+(j-l)bn -9 - 62Uj(n)) by

,ZKn+l(n;el,62)).

Henceforth assume without loss of generality that G_l(l/Q) =0 and
G-l(S/u) - G_l(l/u) = 1. This can be accomplished by linearly trans-
forming the parameters and has the advantage that the estimators for Ol
and 62 which we will be using will be free of constant terms which depend
on G(x).

Finally, let Al = 62Bl + el and A2 = 62B2 + el denote the bounds
on the support of F(x) under Ho.

2.2.1 Estimating the Parameters

For each n, we will estimate el and 6, by el(n) and 62(n),

respectively, where el(n) is the sample median of the sample (Xl,...,Xn),
and 62(n) is the sample interquartile range (the difference between the
third sample quartile and the first sample quartile). Denote

/E(el(n) - 8;) by R;(n) and vn(8,) - 6,) by R,(n).

Then Rl(n) and R2(n) are asymptotically jointly normally distributed

with zero means and finite variances (see, e.g., David [8,p. 2011).

Alternatively, we can write

5l(n) 0, + R (n)//n

1
(2.30)

0,(n) = 6, + Ry(n)/VA

2
We should note that there are more efficient estimators than 9l(n) and
eg(n), but the latter have the advantage of simplicity and at the same

time are "efficient enough'" for asymptotic purposes. That is,

e
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asymptotically we only require that el(n) and 62(n) approach 8
and 62 at a certain rate; in particular, that vn (el(n) - 61) and

JE(OQ(n) - 62) are finite with probability one as n -+ =,

2.2.2 The Test Statistic and Critical Region

Under the null hypothesis with el and 92 as the true parameter
values, the assumptions (2.1) - (2.10) imply that Z(n;el,62) is
asymptotically normal with mean 0 and covariance matrix Z(n). Thus,

the quadratic form
-1
. = 1 . .
M(n,61,62) = an (n,el,OQ)Xl (n)Z(n,el,62)

is asymptotically equivalent to a chi-square random variable with Kn+l

degrees of freedom. Standardizing M(n;el,ez), we obtain the result that

M(n;el,62) - (Kn+1)
V2(Kn+l)

T(n;6 92) =

l’

is asymptotically normal with mean O and variance 1.

The statistic T(n;6 62) is, of course, not suitable for testing

1°
the hypothesis of problem Pn since it involves the unknown parameters
el and 62. In {41], however, Weiss proves that el and 62 can be
replaced by their estimates 5l(n) and 62(n) without changing the
asymptotic result. The computable statistic T(n;él,az) is asymptoti-
cally N(0,1). (Weiss' proof is done under assumptions (2.4) and (2.7) -
(2.11) for specific functions pn’Kn’Ln’ but a review of the proof indi-
cates that (2.1) - (2.8) and (2.5) - (2.6) are sufficient to guarantee

the result.) Thus, for fixed o € (0,1), if we define ¢ by

¢,1-a

et [

Y

¥ Spuepary >
“..n woi sAulPanacdator Nei v
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c¢,1—a
f $(x)dx = 1 - q,
-0
a level-o test of Ho is given by
Reject H0 iff T(n;el,ez) > s, 1-0" (2.31)

The upper tail of the distribution is chosen as the critical region be-

cause T(n;61,92) tends to be larger under alternatives than under HO.
In [u4l], Weiss also shows that this test is consistent under mild regu-
larity conditions. By this we mean that for any fixed F(x) in the

alternative hypothesis, the power of the test (2.31) converges to 1 as

n tends to infinity.

2.3 A General Class of Contiguous Alternatives

The remainder of this chapter is concerned with determining the
power of the test under sequences of alternatives which approach the
null hypothesis as n gets large. Such alternatives are termed "conti-
guous." By properly specifying the rate of approach, we are able to
exhibit a power in the open interval (o,l) and thus provide a basis
of comparison between (2.31) and other known tests.

The alternative distributions Hn(x) which we will study have the

form

Hn(x) = G((x-ei)/eg) + sn(x) (2.32)

where e% and ¢ are given constants, q? > 0 and vwhere, denoting
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2

which we will refer to as '"disturbance functions," satisfy the following:

u ] % % o i i )
05B, + Of by Al and 03B, + 0% by A%, the functions en(x), which

eg(x) exists and is finite for all x in (Ai,Ag) (2.33)

-6((x-0%)/6%) < e (x) £ 1 - G((x-8%)/6%) for all x in (Ai,Ag) (2.34)

en(x) = 0 for all x £ (A*,Ag) (2.35)
A3

[ e(x)dx = 0 (2.36)
A‘t’: n

1

l ¥ Y, - \J \J

' - — - b3 % AS: .
en(x) 2 9% g((x 01)/62) for all x in (Al’A2) (2.37)

Condition (2.33) is a regularity condition. Relations (2.34) through
(2.37) insure that Hn(X) is in fact a distribution function. In most
applications, we will specify Hn(x) rather than en(x), and hence,
(2.34) - (2.37) will automatically be satisfied.

None of the above conditions specifies anything about the rate at
which the sequence of alternatives {Hn(x)} approaches G((x-Bi)/eg).

To insure that the asymptotic power will fall between the level a of the

test and 1, we define

w(n) = max{lul(n)Uz(n)l, luKn+l(n)UKn+l(n)|}

-1
e (tas))
vl(n) = """ETB?"" (2.38)
-1 -1
n = e:n(Hn (3/4)) en(Hn (1/4))
2

g6 my)  ge s
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and add the requirements:

L1/2Kl/4
Limsup _2E7§E__ w(n)lvi(n)l = d, i=1,2 (2.39)
e P,
1/2 % EES(X)JQ
Lim L_K ————dx = d
2.40
e R G hn(x) 3 ( )
1
sg(x)
- H_( ><sj§’l(1 ) R0
n ‘Pp/ X, APy
for some increasing sequence b(n) with (2.41)
L5/4
Lim b(n) = «, Lim —37%————— =0
oo n+e n rnb(n)

where dl,d2,d3 are nonnegative, finite, and not all zero. The motiva-
tion for conditions (2.39) and (2.40) will become clear in the derivation
of the power of the test. Heuristically, the integral appearing in (2.40)
is the "characteristic metric" for the test statistic T(n;al,sz). Con-
dition (2.39) requires that the estimators 5l(n) and 82(n) converge
sufficiently rapidly in some cases. If B, = -» and B, = +», it is

1 2
-1/2

easily shown that Py w(n) converges to zero as n + «. In that case,

(2.40) implies (2.39) with dl = d2 = 0 (see (2.42) below). Condition
(2.41) is a regularity condition on the tails of eg(x) which enables us
to approximate complicated sums by much simpler integrals. In most cases,

(2.41) will also be implied by (2.40).
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v
- Lemma 2.1. If (2.40) holds, then
b |
’ Lim Ll/2Kl/u sup |e (x)] < dl/2 (2.42)
g PP A-< s P
L 2
] :
, | M2/
\ n
Lim ——7>— € (H (p )) =0 (2.43)
e 1/2
n
Li/QKi/u 1
Lim =2 ¢ (W "(1-p)) =
o pif 2 n' n n (2.44)
n
Proof. For any x € (A?,Ag),

1/2,1/4 _Lu21m 0
LK e ()] = LK |£* e} (y)dy|
. 1
2 |8 (x)|
) <L 1/2Kl/4 -——————hl/2(x)dx
="n n 1/2(x)
A% 2 A%
A3 Lel(x)] 2
A% L% A%

By (2.40), the right hand side approaches d; as n > e, from which (2.42)
. . - l Y
follows. Using the same method, but over the interval (A%,H (pn)), we

obtain the sharper result (2.43) for the tail behavior of en(x). We have

(P Wi |, e B
. e A PR CRN PR W SRS XL
1




H (P n)Le! ()12

h (%)

12 "®

<t 2 pr11/2

Ay

which, after dividing both sides by pi/z

and taking limits as n =+ =,
yields (2.43). Finally, (2.44) follows in exactly the same manner when
the interval (H;l(l—pn),Ag) is used. This completes the proof of the

lemma. QED

Lemma 2.2. If (2.40) holds, then

1el (H (t))

Lim Ll/2Ki/u g' (G (t))

N Yeyat| < e
N 0 hn(Hn (t)) g6 (t))

Proof. Using the same method as in the proof of lemma 2.1, we have

¢l
L1/2Kl/4 1 en(Hn (t))

n n

g' (G~ (t))p
Ohn(H;l(t)) R

(t)at| <

-1
1e!'(H ~(t))
R NG dt}*”{jc———l—(ﬁ?—)—)a (£)7%at)
0 h (H ~(t)) 0 g(6 ~(t))

1/2

Making the transformations x = H;l(t) in the first integral and

y = G-l(t) in the second integral, the right hand side becomes

Ai Py l

Taking limits of both sides as n - » and applying (2.11) and (2.40),
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- . the result follows.
|
. 2.3.1 An Expansion
1 In this subsection, we establish the following useful relation:
-1
: -1 -1 enltiy (£))
! Hn (t) = ei + 6%6 (t) - 6% ) + Al(n,t) (2.45)
g(G ~(t))
: for te(0,1), where Al(n,t)/en(H;l(t)) goes to zero as n + » for all
te(0,1). Alternatively, we may write (2.45) as
| ¢t 1
: BE L) (47 (x) - oy - ogTH(E)) = e (HTH(£)) (1 + o(1)) (2.85")
v 5 n 1 2 n n
)
\ i or, using (2.42),
goe
i
§
; -1
1" g(G () -1 % _ ana-l - -1 -1/2 -1/4 "
N g G (H "(t) - 8% - 026 “(t)) = -e (H “(£)) + o(L ™ K, ). (2.45%)
1

To prove (2.45), let x = H; (t). Then, from the definition of Hn(x),

t = H (x) = G((x-0%)/0%) + e_(x) = G((x-0%)/0%) + € (H “F(t)),

so that

- Jon l - l &%
x = 056 “(t - e (H "(t))) + 6.

) Expanding et - sn(H;l(t))) in a Taylor series about ¢ L) yields
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?," e A 2
e e (x) e (%) /a1

3 e e - e (x)) = cl(e) - 2 =) - =5 gs(e_l(g))
i g(6 ~(t)) g (G 7(£))

for some & € (t,t—en(H;l(t). Substituting the above into the expression

: for x completes the proof.

2.3.2 Asymptotic Normality of Order Statistices and the Asymptotic
Distributions of the Estimators under the Alternatives

In order to derive the asymptotic power of the test (2.31) under the

sequence of alternatives {Hn(x)}, we will require the asymptotic normal-

ity of the (Kn+l)—vector Z*(n) = (Zi(n),...,Z§n+l(n)), where Zg(n) is
given by
i
|
; _, np_+(3-1)L _ up_+(5-1)L ]
| b (W Pyy R T Ty 4
n n n npn+(]—l)Ln n n ]

Let 1% denote inf h_(x): gt
n n n “Fn

X -

(p.) £x3% H;l(l-pn). Then the asymptotic

| normality will follow if (a) relations (2.4) - (2.6) are satisfied with
T, replaced by Tg for all feasitle (pn,Kn,Ln) combinations, and (b)

conditions (2.21) and (2.22) are satisfied with F;l(.) and fn(.) re-

placed by H;l(.) and hn(.), respectively. A sufficient condition for ;

both (a) and (b) is that Tg/Tn remains finite as n + . In particular,

1
it is sufficient to show that ?
3

-1
h_(H “(p_))
Lim g =

— =1 (2.u46) ﬂ
w2 g6 (p ) |

since the argument for the other tail is the same. Using (2.u5'), we have
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e (H-1(p )

-1 n -1
-1 - 8(6 (p ) - — (1+0(1)) ) + e (H "(p )) :
e*hn(H" (p)) i} g(6 “(p_)) N
2 -1 - -1
g(G (pn)) g(G (pn))

and the right hand side can be written using a Taylor series expansion as

e (H'(p )g' (67 )) e (H *(p )
+ + smaller order terms.

1 -
-1 2 -1
[g(6™(p )] g(6™(p))

Now, v (2.u41),

ep(fn () ep (i e,)) ny (i te,))

-1
.. (hn(Hn (pn))

g6 (p,))

)
-1 -1 -1
g6 (p)) b (HM(p ) g(6™H(p))

as n -+ o, Also, by 2.8 and (2.43),

-1 -1 -1
e (H “(p ))g'(6 “(p,)) ) le, (H,"(p )| Dy

I
N}

g(G'l(pn)) - T

—1 )

9
Ll/2Kl/llT2

n n n

:o(

and (2.1) and (2.6) together imply that the latter expression converges
to zero as n tends to infinity. Hence, (2.46) is proved. To demon-
strate that (2.46) and its counterpart for the other tail imply (2.21)

and (2.22), note that (2.21) can be written in this case as

s T ey ry 5 T
RTINS SRR PPy PESCTv e, SRS
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h (H_ (p ))
Lim ( n)l/z__________

G T, ta(e Hp ) (8,67 (p ) )+0ge (H M (p D) (1+0(1))] = -
which is easily seento be true using (2.43),(2.2), and the fact that (2.21)
is satisfied by G(x).

In summary, we have shown that the random vector 2Z%(n) is asymptoti-
cally equivalent to a (Kn+l)—variate normal random variable with mean
vector zero and covarviance matrix X(n).

A special case of this asymptotic normality yields the fact that
RE = /6(6, - H(1/2)) and R§ = /AC0, - HZX(B/w) + B N(1/m)) ave
asymptotically jointly normal with zero means and finite variances. Using
(2.45), recalling that G'l(172) = 0 and G'l(s/u) - G’l(l/u) = 1, and

neglecting terms which are asymptotically of smaller order, we can write

9 (n) = 6% + Ri/lﬁ + 05v, (n)

(2.47)

0,(n) = 0% + R§/YA + 0%v,(n)

where vl(n) and v2(n) are defined by (2.38).

2.4 The Asymptotic Power of the Test

In this section, we derive the asymptotic distribution of the test
statistic T(n;9 1,8 ) under the sequence of alternatives {Hn(x)}. In
particular, we show that T(n;él,62) is asymptotically normally distri-
buted with variance one and finite, nonnegative mean Yg given explicitly

in lemma 2.5. Knowing the value of the mean, the power is then readily

computable by referring to tables of the standard normal c.d.f.
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Throughout this section we will refer to the random vector 2Z#(n)

with components Zi(n),...,zﬁ +l(n) as defined in subsection 2.3.2. We
n
-1 npn+(j--l)Ln
will denote Hn (—_—_E_——__—) by Uﬁ(n) and hn(Ug(n)) by u§(n). In

addition, define
Aj(n) = uj(n)/egugf(n) ¢

and let A(n) denote the (Kn+1) X (Kn+l) diagonal matrix whose elements

Aij are given by

Ay(n) i=3EL,2, 005K 4L

2..(n) =
H 0 i
Finally, denote the quantity 4
/_uj(n) ~ "~
n 65 (Uﬁ(n) -6, - 62Uj(n))

- ~

by nj(n;el,ez) and the (K +1)-vector (nl(n;61,92),...,nKn+l(n;el,92))
by n(n;61,62).

Using the above notation and appropriately arranging terms, it is
easily verified that the test statistic T(n;el,ez), given by

-1/2

(20K +1)77%(c_2'(n36,,0,) 17 (m)Z(n36,,6,) - (K +1))

can be written as




32

- N A
z (A ()AMIZ#() - THK +1)
2
e o st 6,) R
2

" ~ _l ~ ~
+ n'(n;el,ez)il (n)n(n;91a92)

Expanding Aj(n) as in the preceding section, we have

e _(U%(n))g'(U,(n))
A.(n) = 1 -3 ] + 6.(n)
i 2 1
uj(n)

where Gl(n) represents smaller order terms. In particular, using the

-1/2 g L/H 2

results of the preceding section, A (n) =1+ O(L ) as n = o,

Hence, A(n) can be written as I + AK +1° where A is a diagonal
n

K +1 K_+1
n n

-1/2,- -1/4 -2

matrix all of whose diagonal entries are O(L 2 T

).
Using the above representation of A(n) together with the definition
(2.27) of Z;l(n) and the expansion (2.45'), it is straightforward to

verify the fcllowing result expressing the test statistic in a form whose

asymptotic properties can be investigated.

Lemma 2.3. Under the assymptions of section 2.3. the test statistic

T(n;el,ez) is given by

.2
c 0z
——-“———2-5 (s () +0(L 1KY 2o 4 e (K +1)
V2(K_+I) 9, (2.49)
om0 A )] 4 vm)1)
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where W#(n) is given by

z# () TH ()2 (), (2.50)

Q(n) is the sum of the following six expressions:
( )
[ul(n)(vl(ﬁ)+v2(n)) + GD(Ui(n))(l+0(l))]Zi(n) +
L > (2.51)
n
1/2 ﬁ
Tl Dy (@ ()4, ()) + e (uK +l(n))(J+o(l))JZK 4 ()
\ 7
L (n) K +1() _
_T;E; —E;—(Ri + R’U (n))Z (n) + ——62———(R + R'2 K +l(n))Z \n) (2.52)
K
/n jZ [en(U]+l(n)) - en(Ug(n))](l+0(l))(Z§+l(n) - Zg(n)) (2.53)
X
/Hvl(n)jzl 1) =, (n))(ZJ‘,rl( n) - Z‘S‘(n)) (2.54)
Kn
- . % - 7% 2.55
nv2(n)j§l (n)U]+l( n) uj(n)UJ(n))(Z]+l(n) Z](n)) C )
K
G Jlei(u (n) - us(n)IRY + (uj+l(n)Uj+l(n) - uj(n)Uj(.n))Rgl %
(2.56)
(Z§+l(n) - Zg(n))
and V(n) is given by the sum of the following four expressions:

a0 il L A

e A S Zem

[

jprenge> ~_puen

T e e
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3y g
g’
. [en(Ui(n))(l+o(l)) + ul(n)(vl(n) + v2(n)Ul(n))]2 + _ é
EE (2.57) ?
n " 2 - B
[en(URn+1(“))(l+°(l)) + uKn+l(n)(vl(n) + v2(n)UKn+l(n))] %
(" 2 ~
[en(Ui(n))(l+o(l)) + ul(n)(vl(n) + vz(n)Ul(n))] X
a1, [u, (n)(RE + REU, (n))] +

eg np, [en(U§n+l(n))(l+o(l))+-uKn+l(n)(vl(n) + v2(n)UKn+l(n))] % >(2.58)

L [uKn+1

(n)(R§ + R§UKn+l(n))J

L
n o % 2 " % 2
;:5——- {[ul(n)(Rl + R2Ul (n)))" + [uK +l(n)(Rl + RQUK +l(n))] } o (2.59)
5 np n n
n
- ' R% R% N 2
o [en(U§+l(n))(l+o(l)) + uj+l(n)(vl(n) + s t (vy(n) + g;;g)Uj+l(n))] ‘
n 2 2
n . . >
3=1 RE R
- [e_(U%(n)) (140 (1)) + u,.(n)(v,(n) + + (v,(n) + —)U,(n))]
n j ] 1 9:vVn 2 e:’:/ﬁ J
. 2 2 J
' (2.60)
From section 2.3.2, we know that cnw*(n) is asymptotically
equivalent to a chi-square random variable with (Kn+l) degrees of
freedom. The next two lemmas establishthe limiting forms for Q(n) and
V(n). First note, however, that
-1/2 _ n(Ln_l)
cn(Kn+l) ) 1/2 ’
L (K +1)
nmn
1/2 . . ¢
can he * 2placed by Kn for all asymptotic calculations.
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Lemma 2.4. The quantity Ki 2Q(n) converges stochastically to zero as

2 tends to infinity.

Proof. We shall consider each of the terms (2.51) through (2.56)

separately. Recall that for asymptotic purposes we can consider Zi(n),...,

Z§n+l(n) to be jointly normally distributed as described above.

(i) Using (2.7), (2.24) and (2.42) - (2.44), the quantity in expression

(2.51) is asymptotically normal with mean zero and variance of order

2

Ln ( 1 )2p - Ln
2 172, 1/u" Fn " __ 172 °
npn Ln Kn nynl\n
1/2 . . s aq .
Hence, Kn (expression (2.51)) is asymptotically normal with mean zero
and variance of order
L K1/2
nn
b
np
c s -1/2 -1 PR . .
which 1is 0(Kn P, ) as n tends to infinity. Applying assymption
(2.3), Ki/2 (expression (2.51)) converges stochastically to zero as n + @,

(ii) Using assumptions (2.7) and (2.9), the term in braces in expression

(2.52) is finite with probability one. Thus, since Ki/z(Ln/np ) converges
n

1/2

to zero as n + » as noted ir (i) above, K (expression (2.52)) con-
verges stochastically'to zero as n increases.

(iii) Let Sl(n) denote

K

n
jzl [en(Ug+l(n)) - an(Ug(n))]

2

“
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and let Sz(n) denote

K~1 K
n n
2i§1 j=§+l [en(U§+l(n)) - en(Ug(n))][en(Ug+l(n) - € (U$(n)).

Then, using (2.25) and (2.26), expression (2.53) is asymptotically normal

with mean zero and variance given by

L2

L_8) (n)(1+0(1)) - —= 8, (n)(1+0(1)).

Note that
* Ler (072
g,(n) = (Ln/n){f." T d¢ + o)
Aw n
1l
and
-1,-1/2
Sz(n) = -Sl(n) + o(anannl/ )

where the latter expression follows from (2.43), (2.44) and the fact that

K

n
{jzl [en(U§+l

5,(n) + S,(n) () - &, UNIY

. g2
{en(Ukn+l(n)) - en(Ui(n))}

(In the remainder of this proof, and in the proof of the following lemma,
we will frequently pass from sums to integrals in the above manner,

Assumption (2.41) insures that the errors of such approximations are always

- o adPula - - kL — o alns v
. f 2 > vier > - - N e X RIE A
-annm.mn.!ﬂ!ﬂ“’egg% ® ~ [
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3
2,
ko of smaller order than the i tegrals themselves. The formal procedure is ¢
3
A carried out in detail in appendix C, and upper bounds on the errors
i involved are obtained.)
: ] Thus, by (2.40), L 8, (n) = 01/ %n™¥2) ana (L2/m)s, () =
5/2 -5/2 s -3/2
O(Ln n ) as n = », In particular, (Ln/n) |LnSl(n)| and
-3/2 2 . .
s (Ln/n) |(Ln/n)32(n)| both remain bounded as n increases. Thus,
since (Ln/n) converges to zero, Ki/Q {expression (2.53)) converges

stochastically to zero as n =+ =,

(iv) Let Ss(n) denote

K

n 2
jEl[uj“(n) - uj(n)]
and let Su(n) denote
Kn-l K
27 Z fu, (@) = vy (m)]lu, , (n) - w.(0)].
izl J=i+l + J*l J

Then, in asymptotic probabity calculations we can assume that expression

(2.54) is normally distributed with mean zero and variance given by

L L2

mv3(n) {28, (n) (1+0(1)) + 38, (M) (2o(1))}.

Note that
B

5,(n) = (L /n){ f (B2 0a + o(1))
l

and

f




Su(n) = -Ss(n) + [uKn+l(n) - ul(n)]z.

Thus, (2.19) implies that Ss(n) = O(Ln/n), Su(n) is o(l), and, using (2.42) -
3/2 ~3/2

2 2 2
(
of lemma 2.1, both anl(n)SS(n) and .Ln/n)vl(n)Su(n) are O(L

1/2

Thus, arguing as in (ii) above, Kn (expression (2.54)) converges
stochastically to zero as n =+ o,

(v) Let Ss(n) denote

K

n 2
) [us,y (DU, (1) - ws(m)us(m)]

i=1

and le-: Ss(n) denote

K -1 K
n
27 X Lu;,, (MU, () - u.(n)U.(n)][u (n)U 1 (n) - u; (n)U (n)1.
i=] j=it+l . * o
Note that
B
sc(n) = (L /n){j [1 + xB{X) EX;] g{x)dx + o(1)}
l
and
2
8g(n) = -8.(n) + [uKn+l(n)UKn+l(n) - u, )y, (n)1°.

From (2.9) and (2.11), Ss(n) is O(Ln/n) and Ss(n) is 0(1) as n + .

Hence, arguing as in (iv) above, we have the result that Ki/Q

sion {2.5%)) converges stochastically to zero as n increases.

(vi) Let S7(n) denote

(expres-

38
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i K_
3 ‘ g Z [u3+l - uj(n)][Zg‘H(n) - Z=j'5)n)]

] . and let Se(n) denote

n
jzl[ujﬂ(n)Ujﬂ(n) - uy (102§, (n) - 28],

Then, expression (2.56) can be written as

ﬁ{ms (n) + RES(n)].
2

Imbedded in part (iv) above is the fact that K%/2S7(n) converges

stochastically to zero as n =+ «, Similarly, in part (v) it is shown that

1/28 (n) converges stochastically to zero as n increases. Hence,
Ki/Q (expression (2.56)) converges stochastically to 7zero as n -+ w.
Combining (i) through (vi) above, we have shown that K 1/2 Q(n) con-

verges stochastically to zero as n tends to infinity. This completes

the proof of lemma 2.4, QED

Define V¥ and v by

1/2,1/4

vi = ﬁiz L K vl(n)
o rs 1/2.1/4
\)2 = ﬁﬂ Ln Kn \)2(1’)) .

(We assume here that the above limits exist, as they will in most

reasonable cases. If they do not, due %o an oscillating disturbance




Lemma 2.5. As n + «, the quantity Kn

Proof. We consider each of the expressions (2.57) through (2.60) separately.
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function, we may replace vi and vg by the appropriate Limsup or Liminf
in lemma 2.5 below to obtain upper and lower non-trivial bounds on the
asymptotic power of the test. Relation (2.42) of lemma 2.1 insures that -

the above quantities remain finite as n + =,)

1/

2V(n) converges stochastically to

the constant Yg given by the sum of the following five

expressions:

1/2
L K
Lim -ILIL—{[ul(n)(vl(n) + \>2(n)Ul(n))]2+[uK +l(n)(vl(n)+v2(n)UK +l(n))]2}
e  Fn Y o
(2.61)
B2 B2 B2
! 1
d ¥ V§2I [5_%2%32g(y)dy + 2vivi( [ [& ( %Fyg(y)dy + [ g'(y)dy} (2.62)
5 8(y 12 “;Zi‘ !
MRt -1 )
2v§ Lim Li/2Ki/u [ 2 ?1 g (G-l(X)) dx (2.63)
nr3e p, b (H "(x)) g(6 "(x))

1-p, e;]m;lm))

-1
2vg Lin 11/22* n_——g16 _)) gliyygy (2.64)
N> P, hn(Hn (x)) g(6 (%))
5 B,
52 g'(y)-2
v§ [1+2f yg'ty)dy + [ [y C )] g(y)dyl. (2.65)

(i) From (2.u43) of lemma 2.1, the quantity

K1/2
nn 2(U.v.( ))
-E;:——— e (U¥(n
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converges to zero as n tends to infinity. Further, we can write

L—“lﬁ 2(0%(n) ), (n) - L‘l‘/zKi/u (U(n) L‘l‘/QK‘l‘/u (n)v, (n)
enln ulnvl(n)--—p-l—h—en'in —gﬁf—ulnvln
n n

and the right hand expression converges to zero by (2.43) and (2.39).

In a similar fashion, we can show that the contributions to Yg of all
terms in expression (2.57) which involve en(Ui(n)) are asymptotically
negligible. Using (2.44) of lemma 2.1, the same conclusion follows for
all terms in (2.57) which involve en(Uﬁ +l(n)). Eliminating those terms,

/2 (expression (2.57)) is equivalent to (2.61).

we see that K;
(ii) By assumption (2.9), the quantities ul(n)[Ri + R%Ul(n)] and
uKn+l(n)[R§ + RgUKn+l(n)] are asymptotically normally distributed with
mean 0 and finite variances. It follows from this fact, the fact implied

by (2.3) that

L K1/2 L1/2K1/u
nn

and the relations (2.43) and (2.44) that the terms involving sn(Ui(n))

and en(U§ +l(n)) in expression (2.58) approach reru stochastically as
n

1/

. . . 2 .
n increases. Neglecting those terms, we can write Kn (expression

(2.58)) as

Li/QKi/u Li/2Ki/u

——5175-—[ul(n)(vl(n) + v2(n)Ul(n))]——;i7§——{ul(n)(Ri + RgUl(n))] +
n n
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Ll/2Kl/1} 1/2 1/4

n n

——;i7§——[uKn+l(n)(vl(n) + v2(n)U (n))]————————-[uK +l(n)(R + R2 K +l(n))].
n l'l

Applying (2.39), we see that the above expression converges stochastically

to zero as n > ®»,

1/2

(iii) Using (2.3), (2.7), and (2.9), it is immediate that K- (expres-

sion (2.59)) converges stochastically to zero as n =+ @,
(iv) Let Sg(n) denote the sum in expression (2.60). Then Sg(n) can
be written as

1-p

(@ /m [ g 3072 ax + oY 272y

Pn

vhere Jn(x) is defined as

R RY
175t ((n) + — 1/2

egn 62

en(H;l(x)) + g6y (n) + —2_ e )]

and the o(.) term follows from (2.4l) as in Appendix C. Expanding

d .
o Jn(x), we obtain

"l ) .
e'(H (x)) g Ru Rx
4 0= 2 1y () 5 —L 4 (vy(m) + —o 06201
hn(Hn (x)) g6 (x)) eé eén
R .
2

+ v,(n) + —=—
2 )

2
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; : Hence, Sg(n) becomes

h 1
i Py et Rt 1P L)oo
(L /m{ | E-——————] dx + (v;(n) + 1/2) i cg—l——] dx
p, h, (H Yx)) p, &6 7(x))
R‘.': R-.': l—p
* 200, + =377 () + —7) | c-g—(iﬂ]?c L (x)ax
é 6%n P, (D (x))
R l—P R:':
- (vyn) + —2? [ (ELE (X)) L6022+ (vy(n) + =)
o%n P, &(6THx) 64n
Rf.i': l n 8 (H (X)) (G ( ))
+2(v, (0) + —37) j g X
6§n P, hn(P (x)) g(G” (x))
et
) Ry Pn Sy D) ol Lo 4
+ 2(v,(n) + l —) ) ) *) dx
/2 h_(H_ “(x)) g(6 ~(x))
2 pn n n
o o l"'p
RY R
2 g'(G” (x))
+ 2(vl(n) + o l/2)(\) (n) + " 1/2) = I, ))
2" om P, & *
3 1-p
+ 2(v,(n) + —Eg———)2 ’ gliﬁ__iﬁll
2 e='2=nl/2 P, g(6” (x))
P 1l-p -1
R¥ n €'(H_ (%))
¥ 20vy(n) + —2) [ DD ax + o1 M%7y,

% Lo,
6%n p, h (H "(x))

. Combining terms, changing variables of integration, and noting that by

(2.43) and (2.44),

T—r




Y

o -'LA_A..;AAAT.“..“, -

1-p. ¢yt

( ML B
1 p, h (H (x))

3 we obtain

Taet et o a

1 | L AS e (y)] Re Do 2 (g2

1
S4(n) = {J h Gy )+ 1/2)£ -G gvay

egn 1

R . B

R
+2(v (n) + " —75) (v, (n) - 1/2)(f (& (y)] 20e(y)dy +
§“ o5n By |

B,

[ g'(y)ay)

B

& i-p Vet
§ e (H "G o g (x))

) -
egnl/2 p. h G Yx)) g6 (x))

+ 2(vl(n) +

Ry MPnoer (i) g€

+20v,(m) + —275) [ = ¢ L (x)ax

W 1/2 -1 -1
o™ %" p h (1)) g€ ()

R* BQ B
+ (vy(n) + )[1+ﬁyg@My+jt (ﬁgwMﬂ

egn By By

+ o(L;l/2n-l/2)}.

Now let ? denote the quantity

B B, B, )

3

2
dg * Vizf L g( g (y)q2 gly)dy + 2viv (f [g (y;] yg(yldy + f g'(y)dy)
B
1l l l .
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1-p -1 -1
+ 2v&Lim Ll/QKl/l‘l ’ en(Hn () g'(6 ") dx
Yoo TR h NG g(67Hw))
l-p_ /-1 oL
+ 2viLim Ll/QKl/u : en(Hn o) g6 ) G-l(x)dx
e B b b (HTH0) g(67H))
B2 B
+ Vi 2ry 4 2f yg'(y) + I [yg Ey;] gly)dyl.
l l

Then, since (expression (2.60) = nSg(n), we can use (2.1) and (2.4) to

1/2

argue that Kn

n{products involving R% and Rg in Sg(n)} converges

1

stochastically to zero, and hence, for any €>0,

Lim P{IK;/2

helca-d

(expression (2.60)) - $| > g} =

Combining (i) through (iv) above completes the proof of lemma 2.5. QED
The asymptotic power of the test (2.31) now follows from lemmas 2.3,

2.4, and 2.5, and is given in the following theorem:

Theorem 2.1. The asymptotic power of the test (2.31) is given by

(2.686)

¢(—£' + )
2 Vg T .4

4,
z" as n> o
4
ot -
. Proof. First note that
R
i
|
]
¥
S s e - 2oty BT a T
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|
2_ . gu? '.':2 Ot -2 .
T = 05°105° + RE/V/n + v,(n)] .
; 0 !
, 2 ,
}{ LY "
A R#/Vn + v, (n) !
i 2 g
} 4
EQ and the latter expression converges stochastically to one as n -+ . From §
b lemma 2.3, we can therefore write the test statistic T(n;el,62) as
-
k-
" R%/vVn + v, (n) c_W¥(n) - (K _+1)
. 2 -
% [1+ e et ] (L r o) 4
b 5 V2(K_+1)
’ n
RE/Vn + y,(n) RE/VD + v, (n)
P 2 2" " 4-2 Q(n) 2 2°77.-2 y(n)
1 [1+ = ] (1+o0(1)) + [1 + = ] )
] 0% V2 0% /2
e

Using lemmas 2.4 and 2.5, we have

J A A c Wi (n) - (Kn+1) -
T(n;0,,0,) = = + Y /Y2 4 o (1)
V2(K_+1) g P

as n + ®, Recalling that cnw*(n) is asymptotically equivalent to a chi-

square random variable with (Kn+l) degrees of freedom completes the proof

of theovrem 2.1. QED

2.4.1 Remarks

(1) 1In theory, the asymptotic power of the test immediately obtainable
from tables of ¢(x). The quantity Yg’ however, appears quite formidable
to compute, particularly because of the terms (2.63) and (2.64). Since

G(x) 1is usually easier to work with than Hn(x), the following relation
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often helps simplify the computation:

-1 . . WL
! set (o %
en(Hn (x)) ) ezen(el + 836 (x))

h (K1 (%)) g(67H(x))

(L+o(1)) for P, < X < 1-p_. (2.67)

(2) None of the conditions imposed on the distrubance function en(x)
specifically required that Hn(x) lie outside the region encompassed by
the null hypothesis. In particular, suppose we take

ot

1
—_—_)
(n)
%

X
Hn(x) = G(

where ein) > ei and eén) > eg as n =+ », For our definition of

alternatives to be consistent, we should obtain a power equal to a for

o g et

the a-level test (2.31) when {Hn(x)} is the underlying sequence of dis-

b

tributions.

Fiprst suppose that the assumptions of section 2.3 are satisfied, i.e.

%~ X-01%
(e,(x) = 6—3=) - 6(—D)}
% %

by

Wt

satisfies (2.38) through (2.41). Then it follows that the constant Yg

equals zero and the power is given by ¢(c¢ 0‘) = o as desired. To show
2

e oAl

this, we note that for this case we have H;l(t) = Sin) 3 eén)G_l(t), ard

form (2.u5"),

; -1 ) 12
ey H ) = - BELDr(o M) + (ofM-a5)6H0)] + or7HACH).

%

n

2o 1 He PSR S AT B SR PR

e
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i
; Differentiating the above expression with respect to t yields
1 -
-1 (n) (n)
e!'(H_"(t)) 0. e ] e .
n'n 1 g' (6~ (t)) 2 g' (G (t)) -1
= - —-——-———~—43
L] 2 [~ - R+ BS ()3
' hn(Hn (t)) 2 g(6 (t)) 2 g{G (1))
3 Also,
e (W (a2 6 (™) _gs ©
v.(n) = D e N NS V-V VL ;
1 g(0) eg n n :
and
(n) .,
6, 8%
_ 2 2 1/2 i/4
vy(n) = =St + oL A
2
so that
(n) . (n) 3
0. -0u grtien
vi = Lim Li/QKi/u(-ji;;—¥£) and va = Lim Ll/2Ki/q(~2§§r—£é) . .
n-re 2 N> 2 -

In addition,

—1/2K-l/'+p ),

e (U(n)) = e (KH(p )) = = u (mDv () + vy(m)U; ()] + o(n /4 p

and similarly,

“L/21/N

e (H1-p ) =- B (0 () vy Uy (0] + oLy N

Finally, note that in this case the assumption (2.36) becomes

in) 1 2 eén) . ’/ :
0= —=——= [ g'(y)y + ~=- . yi'(yddy + 11, .
0% e
2 Bl . Bl




so that

B2 B

vif g'(y)dy + vi[] gy’ (y)dy + 1] =
B, B,

Using the above rela -ions in the expressions (2.61) - (2.65) yields
immediately the desired result that vy_ = 0.

For the sequence {Hn(x)} as defined here, it is of course not
necessary that the assumptions of section 2.3 be satisfied in order that

the test (2.31) have power equal to o. In fact, we have

aA A u (n)

/_—————-[U"(n) - e - 52Uj(n)]

~r
n

R*
(“‘u (m)3-[0.") + M ro{™ + 230, (n)
/a J

n

ﬁ

1
(-
—~
o
-+
o
~
i

1/2

. . . A ~ _l -~ ~
and it is easily shown that Kn n'(n,el,ez)zn n(n,el,62) converges to

(n)

zero in probability as n -+ « regardless of the rate at which 6 and

eé“) converge to e§ and eg.

(3) In the preceding sections we defined alternatives relative to a
predetermined procedure in order to achieve a power level between o and 1.
In particular, the functions Ln and Kn were first specified and then
the conditions (2.38) - (2.41) on the alternatives were imposed. 1In

practice, however, the true underlying distribution is unknown but fixed,

and it is Ln and Kn which must be chosen. To this end, the form of

the power function indicates that choosing Ln as large as pos.ible would

1 9
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lead to the greatest power for fixed (large) n when the underlying dis-
tribution belongs to the alternative hypothesis. The quantity Yg can

/2=

be written as Lim LnKi Yg(n), where ?é(n) is some nonnegative function

o
of the true distribution as well as the null hypothesis. Suppose we take

ih = MLn’R£= (l/M)Kn for any positive constant M greater than one. Then
it is easy to see that assumptions (2.1) through (2.6) still hold (i.e.
ig and Kh are feasible), but now Yg has been increased to Y§ = Myg,
with a corresponding increase in the asymptotic power of the test.

There are, however, additional considerations in choosing Ln’ The
interpretation of Ln is that of the "spacing" between the successive
sample quantiles which are used in computing the test statistic T(n;gl,82)
(here we mean "spacing" in terms of the indices of the order statistics,
not the values which they assume). The larger Ln is made (for fixed n),
the fewer the number (Kn+l) of sample quantiles which are used. For
"moderate" n, therefore, taking Ln large (say ns, where & is close
to 1) may result in an inferior test since very few quantiles will actually
contribute to the test statistic. Evaluation of this conjecture would
require extensive empirical studies and is not done here.

We did, however, use Monte Cario methods to study T(n;el,62) and
T(n;al,§2) under the null hypothesis. The purpose was to determine the
extent to which the distributions of whose statiscics resembled normal
distributions for small to moderate n and whether or not (a) the choice
of Ln or (b) the use of parameter estima*z2s affected the degree of
approximation to the asymptotic distribution theory. The methods and re-
sults are presented in Appendix A. We concluded from the study that the

asymptotic distribution theory is not adequate for determining the criti-

cal regions of the test (2.31) for moderate n (at least ng300 and

- . AP RR Y IR
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probably much larger). Deviations from normality were particularly evi-

dent in the tails of the empirical distributions of T(n;el,62) and

T(n;gl,52), although those deviations may have been amplified by the

limited number of replications in our study. Not surprisingly, the

distributions of the statistics exhibited greater non-normal behavior )
when the parameters 6l and 62 were estimated from the sample than

when they were known and specified. The effect of the choice of Ln

on the distributions or rate of their approach to normality was not clear.

2.5 Examples

2.5.1 Obtaining the "Standard Representative" of a given Scale-Location
Parameter Family

Throughout this chapter we have assumed that the distribution G(2)
satisfied G_l(l/2) = 0 and G_l(S/u) - G_l(l/u) = 1. As noted previously,
this assumption allowed us to use the same estimators 5l(n) and 82(n)

- without our having to carry along in our calculations certain constants
depend ng upon the particular G(x) appearing in Ho. The disadvantage
of this representation is that the parameters 6, and 62 are not the

1

"usual" location and scale paramcters. In this subsection we derive the

equations which must be solved to determine 61,92 and G(x) given the
more common form of the distribution and solve them for many useful cases.

Let F(x) = G((x-al/ez) be given. The relation G-l(l/2) = 0 implies

= ¢ Y1/4) and x. = 6 L(3/1).

that 1/2 = G(0) = F(el). Now, let x 2

1

Then, L/Y4 = G(xl) = F(02x1+el), and 3/4 = G(x2) = F(0 +el). Since

22
Ry = %y = 1, we have the following system of equations which can be solved

for 61,62 and x._:

1

- e Rl Bttt o o -




s - s the TTTTTTITRN T s A e T T T AT ST T T T s TNy Fﬂr*('v‘!wr—nvww“

52
F(el) = 1/2 .
F(92xl+91) = 1/4 . (2.68) o
P(92(l+xl)+61) = 3/4

Once el and 92 are found, G(x) = F(62x+el) is determined. For example,

suppose we are interested in the normal family F(x) = ¢((x-u)/g). Then

the equations (2.68) become

6.-1t
1 -
o( 5 ) =1/2
6,%x.,1+6,-n
oL L =1/ .
o
8,(1+x, }+6, -1 i
Akl Sl N SN .
o !
The first equation above yields 6, = u. The second equation then gives
e2xl/o = -,6745; the third equation gives 62(l+xl)/o = ,6745, and together

they imply 8, = 1.349. Thence, G(x) = &(1.349x) and g(x) = 1.3u9¢(1.349x).

Table 2.2 lists the results of the above transformation applied to five

common distributions.

2.5.2 Weibull Alternatives

A common way to study the asymptotic power of a test is to choose a
parametric family of alternatives and examine the behavior of the test as
one or more of the parameters approach limiting values. Since we are
Jdealing with a composite hypothesis which includes an entire scale-location

parameter family, we must go to a three parameter family in order to study v
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the asymptotic power of the test (2.31) using this approach. A natural
family is the Weibull famil&, which approaches the exponential family as
the "shape" parameter converges to one. This family has proved to be
particularly well suited to the metric arising in tests based on sample

spacings (Blumenthal [2]); however, the computations for the test (2.31)

are considerably more tedious.

We define the sequence of alternatives

l-ce¢ if x>0

0 otherwise

where Bn is the "shape" parameter, and where, without loss of generality,

we have taken the location and scale parameters to be 0 and 1 respectively.

Then

-x - (x > 0)

n
M
i
]

en(x)

and B -1 gn
h_(x) gx D &% (x > 0).

We first consider the assumption (2.40). Defining a(n) as Ll/QKl/u

n n °’

we will ow that

for some r, 0 < v <

satisfies the assumption, with the value of r to be determined below.

Consider the function
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n
= hn(x) -2 %41 - _EL_JX'(P/a(n))e(x —x)e-x'

a(n)

Ix—(r/a(n))e-xdx

- T
O - (l - a' '('n—) )

is finite for r < a(r), S(x,n) is clearly integiable for all r such

that a(n) > r. Furthermore, S(x,n) is easily shown to be strictly de-

creasing in n, and we show below that

Lim a2(n)S(x,n) = 2r2(x—l)2(log x)2e"X (2.69)
N

with (see [141])

T2 2 2 2
J(x-1)°(log %)% ™dx = y° - 2y + 2 + %—
)
(y = .5772157 is Euler's constant). Hence, we may use the dominated

convergence theorem to write

[+¢] 0
. . 2
%gg a2(n)£S(x,n)dx = g%ig a"(n)S(x,n)dx = (5.6474)r2

and choosing » = -4208d, satisfies (2.40).

To prove (2.69), we note that for fixed x we have

» r
. n _ e-[x - ETHTXlog X + O(ETHT)]

e—xe(r/a(n))xlogx

(1+o(1))

» 30
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as n -+ », Hence, neglecting smaller order terms,

a2(n)s(x,n) = aQ(n)e-x[X(r/a(n))(x-l) . x(r/a(n))(l-x) _ .

In order to determine the limit of the above, we treat n as a continuous

variable and denote Q%%El_ by a'(n). Using the fact.that

(r/a(n))(1-x) ,

g_nx(r/a(n))(l-x) = . _25’_ a'(n)(x-1)(log x)x
a (n)

we apply L'Hopital's rule twice and obtain

Lin S(x,n)

Lig a*(n)s(x,n) = Lip S
a (n)

(r/a(n))(x-1)

a™t(n)

X)X(::'/a(n))(l—x)J

re *(log x)[(x-1)x + (1-

= Lin,
= Illliglo Pze—x(log x)zt(x_l)zx(r/a(n))(x_l) .

(1) 2 (/2 () (1-%);

= 2r2(x—l)2(log x)2e—x

as desived.
For this example, however, it is assumption (2.39), not (2.40),
which actually determines the power of the test. In particular, we will

now show that (2.39) requires
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where a(n) = a(n)/pi and r is positive and finite.
Using the "standard representative" G(x) = 1 - (1/2(1/3)*  from
Table 2.2, tedious calculations yield the quantities appearing in defini-

tion (2.38). These expressions, neglecting smaller order terms, are

summarized in Table 2.83.

a TABLE 2.3

EXPRESSIONS REQUIRED FOR WEIBULL POWER COMPUTATION

Expression Value Expression Value
- B
&(y) 10g 3)3) HH(x) (-1og(1-x))*"n
-1 log (2(1-x)) -1 -
¢ () - log 3 en(Hn (x) L (log 1 )Qloglog—jl—
. - 1-x 1-x
a(n)
-1 - 2
g(G "(x)) (1-x)log 3 vl(n) ,r (log 2)“loglog 2
-~ log 3
a(n)
-1 -1 (log u)Qloglog I
g(6 7 (x))6 “(x) | (x-1)log(2(1-x)) oy log 3
mn
a(n) | (log 4/32loglog 4/3
v,(n)
w(n) log 2 2 Slog 3
{
)
Using the above expressions, (2.39) becomes
- 3
. = 29 (log 2) loglog 2
1 log 3
2 2
- y=r{log 4)"loglog 4  (log 4/3) loglog 4/3
d, = trl Tog 3 3log 3 1 1og 2.




el Audinn 2

58

. ’Q: = . .:: = » [ [ )
Since vi = Lim a(n)vl(n) and v = Lim a(n)v2(n) are zero, it is easily

seen that the only contribution to the quantity Yg comes from expression

(2.61). Specifically,

( (1-p_)log3 log(2(l—pn)) ;W
= {d) - 41553
a(n)log 2 8
2
Y_ = Lim a“(n) p_log 3 log(2p_ )
g P (R a, - ae——t)’
a(n)log 2 g
g J

log 3 _ 2
[log 2 dl d2]

3.4212 52,

and the asymptotic power of the test (2.31) is given by

é(e + 2,419 ZQ).

$,a

2.5.3 Normal Contamination Alternatives

We consider the sequence of alternatives

H (x) = (l-én)¢(x) + 6n¢(x+pn)

where the sequence {Gn} converges to zero as n =+ . These alternatives
provide a basis of comparison of the test (2.31) with tests designed
specifically for the normal hypothesis which we discuss in the next

chapter. Using Taylor series expansions (see example 3.1), we have
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en(x) Gn{¢(x+pn) - o(x)}

8.PlL = (B /2)% + (82/6)(x*-1)}a(x) + 0(8_p2)
and

e (0 = 8 p {-x + (p_/2)(x 1)} (x) + o(6 p?).

It is easily shown that condition (2.40) requires Gn = dé/QL;l/zK;l/up;l,

condition (2.39) is satisfied with d
/4

1= d2 = 0, and (2.41) is satisfied

Considering the quantities required for the power

_ , o L 172
5 = o(6npn), so that vE = d3

and vg = 0. Thus, in addition to (2.61), (2.64) and (2.65) make no

contribution to Yg for this example. Also, using (2.67) and taking

for b(n) = (nann)

computation, vl(n) = 6npn(l+o(l)) and v

G(x) from Table 2.2,

Py et x)) gree ™t x)) 1-p,
Lo dx = (1.349)%6_p [ [L-«(p 12)6~1(x)18 " (x)ax
P h(H'x)) g67hx)) "Ry "
n n n n
2
+ O(Snpn)

- 2 2 2
(1/2)(1.319) ann + o(ann)
from which it follows that (2.63) vanishes.- Thus

o]
g dy + (v=J'_=)2 | (1.349)5x2¢(l.349x)dx
-00

<
11§

d (1 + (1.349)2)
and the asymptotic power of the test (2.31) is given by

®( + l.99d3).
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CHAPTER III

LARGE-SAMPLE TESTS FOR NORMALITY

3.0 Introduction

In both theoretical and applied statistics, the most common distri-
butional assumption which is made is thaf of normality, and a great deal
of research has been directed toward testing the validity of that assump-
tion. 1In this chapter, we develop a test based on a gradually increasing
number of order statistics which is a large-sample analog of the Wilk-
Shapiro test for normality.

In section 3.1, we survey the literature concerning the Wilk-Shapiro
and related tests.

In section 3.2, we describe the statistic W(n). Using the asymptotic
distribution theory discussed in chapter 2, we determine the asymptotic
distribution of ch) under the null hypothesis and use that distribution
to define our test for normality.

In section 3.3, we prove that the W-test is consistent.

In section 3.4, we determine the manner and rate of approach to the
null hypothesis that a sequence of contiguous alternatives must satisfy
in order to yield a non-trivial power as the sample size n tends to
infinity.

In section 3.5, we use the results of the previous sections to define
and analyze three additional statisties which give rise to improved tests
for normality.

In section 3.6, we give examples of the behavior of these tests under
specific sequences of alternatives.

In section 3.7, we discuss the foregoing results as well as possible

60
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distribution theory discussed in chapter 2, we determine the asymptotic
distribution of w(n) under the null hypothesis and use that distribution
to define our test for normality.

In section 3.3, we prove that the W-test is consistent.

In section 3.4, we determine the manner and rate of approach to the
null hypothesis that a sequence of contiguous alternatives must satisfy
in order to yield a non-trivial power as the sample size n tends to
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areas of future research.

3.1 Goodness of Fit Tests for Normality

Since the appearance of the Wilk-Shapiro test eleven years ago,
considerable attention has been devoted to testing the compound hypothesis
that a sample of data comes from a population whose underlying c.d.f. is
an unspecified member of the normal family. The primary focus of such
research has been to understand and/or improve upon the original W-test.
We begin by discussing this test, follow that with a discussion of several
of the related tests which were subsequently proposed, and throughout,
give a brief survey of the empirical studies which have provided the fuel
for research in this area.

3.1.1 The Wilk-Shapiro W-test

The Wilk-Shapiro test was developed as a means of formalizing a
rather informal procedure for testing fit--the probability plot. Briefly,
a probability plot is a regression of the ordered observations on the
expected values of the order statistics from a standardized version of
the hypothesized distributicn.

Suppose Xl’ X2,..., Xn is a random sample with common distribution
function G(x) and denote the ordered sample values by Yl §=Y2 S oee ;=Yn.

Also suppose that the null hypothesis is true, i.e. G(x) = ¢(-}-{-§B . Then

we can write

Yi =y o+ oZi i=1,2,...,n

where Zl’ Z Zn zre the order statistics of a sample from a standard

2,...,
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normal population. Shapiro and Wilk [27] used the square of the generalized
least squares estimator of ¢ obtained from the above linear model (i.e.
the square of the slope of the regression line), divided that by the usual
symmetric sum of squares about the mean, standardized the resulting

statistic, and obtained

(m'V-lY)2
-1l -1
1
W o= nm V'V'™nm
Loy - n?
i=1
where
m, = E[Zi] Vij = cov(Zi,Zj)
| B -
m' = (ml,...,mn) vV = [Vij].

Some elementary facts about W are that it lies between 0 and 1 and is
location and scale invariant. Under the null hypoihesis, the numerator
and denominator of the above statistic are, up to a constant, estimating
the same quantity, 02. The distribution of W under the null hypothesis
was computed empirically using Monte Carlo methods and tabulated for

n = 3(1)50. Under the alternative hypothesis, Shapiro and Wilk found,
again empirically, that the values of the statistic tended to be smaller
than under the null hypothesis. No analytical results have been obtained,
either under Ho op Hl’ for finite n or asymptotically as n tends

to infinity. But in empirical studies, the W-test, which rejects Ho

for small values of W, has been shown to be at least as good and generally

better than most of the commonly used tests over various symmetric,

| :
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asymmetric, short- and long-tailed alternatives.

\ A By far the most extensive of these empirical power studies was reported
i by Shapiro, Wilk, and Chen [29]. In that study, they compared W with

, eight other tests, including the Kolmogorov-Smirnov, Cramer-von Mises,

and Anderson-Darling, over twelve families of alternative distributions.
They found the W-test to be a more sensitive indicator of non-norm. ity

“ than any of the other tests; in addition to exhibiting better power

against most alternatives, it was the only test which never had a low

i power when another test had a high power against a continuous alternative

; distribution. Stephens [30] latcr amended their results in comparing W
5

to the various EDF tests mentioned above. He pointed out that the study
£29] computed the EDF statistics by treating the means and variances of

§ the alternative distributions as if they were completely specified rather

“ . than using estimates btained from the samples. Stephens still found,
however, that the W-test was generally superior to the bhest EDF competitor,
though usually only slightly. Chen [3] studied the behavior of W under
scale and location contaminated normal distributions, finding the W-test
';.f§ to be sensitive to both types of deviations from normality, although the

3 power dropped off rapidly as the contaminating distributions approached

2T the normal.

The primary drawbacks to the use of the W-test are: 1) the coeffi-

cients cannot be computed, but must be obtained from tables, a different

set nf _.oefficients for each different value of n; and 2) the coefficients

(in particular the vij's) are only known exactly for n < 20. (Shapiro

and Wil.c used linear regression to extrapolate the coefficient values up

to n = 50.)
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.
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In a later paper [28], Shapiro and Wilk found good empirical agree-
ment between the distribution of W and a member of Johnson's SB class

of distributions.

3.1.2 Related Tests

The nonavailability of the vij's for n > 20 prompted Shapiro
and Francia [26] to propose the following statistic as an approximation

to W:

They justified the use of W¥* on the grounds that, for large n, the
order statistics {Yi} could be treated as if they were independent.
This, of course, is false, but Stephens [31] later showed that in the
normal case the vector of mean values of the standardized order statistics
is an asymptotic eigenvector of the covariance matrix of those statistics.
Thus, the statistic W* is in fact asymptotically related to W, and

has the advantage that the vec.or m is known up to n = 400, Shapiro
and Francia have computed the critical region for the W*-test, which
rejects for small values of W%, for n = 35,50(1)99. Again, no analy-
tiecal results are available, but in empirical studies [26,30,35], the
Wi-test has been shown to be very similar, but, in general, slightly
inferior in performance to the W-test, although Shapiro and Francia found
the W'-test to be more sensitive to "near normal" alternatives. Sarkadi
[22] proved the consistency of the W#-test against alternatives wizh

finite second moments.
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The most extensive analytical work in this area has been done by

De Wet and Venter [9,10], who were concerned with the statistic

)2
2 m'm
pn = n
I @, -9
i=1

—_ - — } - -1, i .
LI = —_ -
where m (m ,...,mn) with m, ® (n+l)' They determined the asymp

totic distribution of n(l - r:) -a under the null hypothesis to be

¥(7), where Y¥(y) is the distribution of

8

(X, - 1)

~ N

where X_,, X are i.i.d. standard normal random variables, and where

3> Kyoeoo
a, is a complicated function which is o(log n) as n tends to infinity.
Their methods are discussed in more detail in Appendix B. The percentiles
of Y¥(y) were computed numerically using the inverse of the characteris-
tic function. As we might expect since the ﬁg are limiting values of
the m. good agreement was found between ri and W* (for n = 99); it
would b- difficult, however, to make a rigorous statement concerning

the rer. onship between the two statistics. Further remarks about ri
and W* as well as additional empirical approximations to the distribu-
tions of W and W% appear in Stephens [33].

In otker work building on his earlier results on covariance matrices,

Stephens [32] considered the more general linear model




E(Yi) = whom, + 82w2(mi) + Bsws(mi) + ...

where 62, By>-.. are constants and w2(mi), w3(mi),... are functions
of the m, in particular, the Hermite polynomials. Under the null hy-
pothesis, 0 = 62 = 83 = ,.., and a large-sample test of the latter
event 1is proposed which may be extended to as many Bi as the experi-
menter wishes. Specifically, by choosing w2(.), w3(.),... as he did,
Stephens was able to obtain simple expressions for the estimates éz,é3,...
and, under the null hypothesis, show that standardized, studentized ver-
sions of these estimates are asymptotically independent and normally
distributed. Thus, the sum of the square estimates, ég + ég + ... has
a chi-square distribution with the number of degrees of freedom deter-
mined by the number of estimators which the experimentor wishes to
consider. Stephens' test is based on the latter distribution.

Finally, D'Agostino [5] considered tests based on the following
statistic: n
} 04 - (1/2)(e+)]Y,
izl *

’a " 3 B —2.1/2
) (v, - 17
izl

D'Agostino showed that under the null hypothesis, D, is asymptotically

A
normally distributed, but he found that n must be well over 1000 before

the asymptotic distribution is useful in determining the critical regions
of his test. Instead, he used Cornish-Fisher expansions (based on the
first four cumulants of DA) to determine the percentiles of the dis-
tribution of a standardized version of D,. In an empirical power study,

A

he found that a two-sided test based on DA was abie to detect deviations

from normality due to both skewness and kurtosis (i.e. the test is an
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"omnibus" test). He also found that this test was comparable, but again
W :: slightly inferior, to the W-test. In a later study, Theune {35] found
the Wilk-Shapiro test to be "far superior" to D'Agostino's test in de-
tecting non-normality. Theune did, however, find the D'Agostino test

to be comparable to the Shapiro-Francia test over most of the alternative

1 & distributions studied.

.,,
s Ak,

3.2 A Large-Sample Test for Normality Related to the W-Test

In this section we describe a statistic w(n) which is an analog

'y
NOFEUPRRR BT

of the Shapiro~Wilk W based on an increasing subset of the order statis-

tics. By appropriately selecting our vector of order statistics as in

the previous chapter, we are able to invoke the asymptotic distribution

theory of section 2.2.% and thereby determine the asymptotic behavior of

W(n). Based on the asymptoticdistribution of W(n) under the null
hypothesis, we will define the a-level critical region for our test. In
view of the asymptotic sufficiency result of Weiss [40], we would hope
that, at least for large n, the powers of an oa-level test based on Wn)
and an o-level test based on W (assuming the necessary coefficients
were available) would be "close" in some sense. In that event, the

large sample behavior of the W-test would help to explain the behavior

of the W-test, and at the same time, the empirically determined superi-
ority of the W-test for small samples would provide some justification

K n
J for using the W-test wher n is large. The relationship between the

two tests remains open question. Some further remarks concerning this

{
4
4 relztionship appear in subsection 3.2.4,

Before defining our test statistic, we recall some notation and results

from chapter 2.
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o | 3.2.1 Definitions .
i v Let the sequences of integers {npn}, {Kn}, and {L } be as defined
! in section 2.2.1 with the assumptions (2) through (8) replaced by
3
k |
1 . _ . - . - - .
3 %_:&g pn— 0 rlfw Kn = o %&Lno np = (3.1) |
L |
; Lim 2——— =0 (3.2)
- npnlog(l/pn)
n
Lim = 0 (3.3)
nye 3/2 2
L pnlog(l/pn)
= .
np
7} Lim —2 =0 (3,4)
n-o Lu
N .

We note that (3.2) and (3.3) above are exactly (2.4) - (2.6) where we have

b, replaced T by its value for large n (up to a constant) in the normal .

case as given by (C.10). The assumption (3.4) is new. For Ln z_ns/l+

it clearly imposes no added restrictions on our choice of parameters. For

Ln z o(ns/u), it requires in effect that our selected subset of order

statistics move into the tails fairly rapidly as n gets large.

Throughout this chapter we will denote

np_+(i-1)L
P (21

n
by Ti(n) and ¢(Ti(n)) by ti(n), for i = 1,2,...,Kn+1. Also, we will
denote ¢_l(x) by T(x) and ¢(T(x)) by +t(x). We will denote the

(Kn+l)-vector of selected order statistics by ?(n), with components given by -

e WA T o . -
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Y i=1
9 np_
v ) .
Y, 5 Y.(n) = < ann+(i_l)Ln i=2,3,.. 0K
g ann(l-p n) J“=Kn+l
where
2
t.(n) £, (n)T, (n) L T.(n) L 1+T5(n)
R EUIRELE A M A (G I g S e Yo DL St P
I T (M) p_ 1 nt (m " 3n ti(n)
(3.5)

Let %(n) = (%l""’%K +l) be the analogous order statistics selected
n
from a sample whose parent population is standard normal. Then, in view
of the asymptotic distribution theory of section 2.1.4, we can assume for

all asymptotic probability calculations that the vector %(n) has a

(Kn+l)—variate normal distribution with mean vector

F¥(n) = <‘i‘1(n>,...ﬁ‘Kn+l(n>>' = (g Ty (T2 (g Ty ()"

and covariance mat»ix V(n) whose components Vij(n)

are given by

/qﬁpn(l—pn)/ti(n) i=j=1
‘02p2/t. (), .- (n) i=1,9=K_+1
Pyt Kn+1 =4 J55,
L
. < qnpn(l-pn-(j—l)—:)/tl(n)tj(n) 1=i<jgK,
v..(n) = ———— L L .(3.6)
U (g (-1 (1op = (D)D) /e ()t () 28igiak;
L
q,(p, + (i-l)—g-)pn/ti(n)tKnﬂ(n) 22i<j=K +1
2 2 .
qnpn(l-pn)/tKn+l(n) izj=K +1

<
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The inverse of the above covariance matrix has the simpler fé%m.
B )
Ln
1+ —
PPy 9 B8
2 1
q 4
-t.t
iLan 2’t2 -t2t3
4, D) —tt 2t2 “t,t
v (n)=———ir———— 2°3 3 34 . (3.7)
n
t t 21.‘2 -t, t
YK -17K K K"K +1
n n n n
Ly
-t, t 14—
Kn Kn+l np 2
qa, q2 "Kn+l
n
. -

ny
3.2.2 The W-Test

We are concerned with the testing problem P of section 2.0, with

G(x) = &(x), the standard normal c.d.f. Analogous to the Wilk-Shapiro

n
statistic, we define our test statistic W(n) as

W) = (¥ (v (0)¥(n) 1 (3.8)
¥ (v L v () Fm) 1% (n)
where
Kn+l Kn+l
. - n
P = [I¥,m - Y. with Y. = ™ ] Y @),
i=1 i=1

N
Under HO, the numerator of W(n) may be thought of as the least squares
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. 2 v .
estimator of the variance ¢° Dbased on Y(n). The denominator, as we shall
prove later, has the same asymptotic distribution (after suitable

standardization) as the denominator of W.

Lemma 3.1. For all n,

n
(1) W(n) is location and scale invariant

(i) o ;W(n) < 1.

Proof. Identical to the proofs of Lemmas 1 and 2 of Shapiro and Wilk [27].

Lemma 3.2. As n = o,

np 1/2
q, = (T:__) (1+0(1)) (3.9)

n

Proof. The proof is based on the following formula of Feller [13,p.1931]:

(3.10)

ale

1 1
X" 3"
X X
for all x > 0. Taking x = ¢—l(l—pn) = -Tl(n) in (3.10), we have
d(x) = tl(n) and (3.10) becomes

P
1 .1 3 15 n_ 1 . _1 3

< -
1 75 (n) Ti(n) ‘I';/_(n) ty(m) - Ty(n) Ti(n) 'r_.sL(n)'

(3.10")

2 .
Multiplying both sides of (3.10') by tl(n)Tl(n)/pn and rearranging terms

yields

t.(n) 3t. (n) 15¢.(n) t_(n)T,(n) t. (n) 3t. (n)

plT (n) ~ l3 T é : P - ¥ Ti(n) < D % (n) ~ l3 - (3.11)
nl pnTl(n) pnTl(n) n nl pnTl(n)

©adomn 2N




; | g e \ 15¢,(n)  t(n)
pI3(n)  p Ton)  p Ti(n)

pnTl(n)

Substituting 3.12 ) into (3.11) we obtain

+ 1<
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3 | Multiplying both sides of (3.10') by tl(n)/pn and rearranging terms yields

(3.12)

3 - 5 .
pnTl(n) PnTl(n)

Qtl(n) 12tl(n) lStl(n) tl(n)Tl(n)

R P -t B el
pnTl(n) pnTl(n) pnTl(n) n
< =2 -
Thus, using (C.7) and (C.8),
t. (n)T, (n)
2 a1l - 1= 202+ o
n

np

2

g - TR+ ot
n

This completes the proof of lemma 3.2.

+ Tl(n) -1

- — .
pnTl(n)

1
2log(l/pn

1
2log(l/pn)

instead of the much simpler and more easily computable

answer is that even for large n., the smaller order terms in

-

(3.13)

as n + », Finally, combining the above relation with the definition

of qﬁ and using (3.2) to e .inate smaller order terms, we obtain

QED

Since we are concerned here only with asymptutic results, one might
ask wny, in view of lemma 3.2. the definition (3..) was given for q,
? T
npn/Ln he

(3.5) play a

.. - =y
e R e =
A ) ,’,Lﬁ_‘r; T s SRR,
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N
crucial role in the asymptotic distribution of W(n). The e:act difficul-
ties which arise if those terms are neglected will be pointed out later.
In many of the arguments below, however, it will be true that those terms

may be neglected for asymptotic purposes, in which case the result of

lemma 3.2 will be useful.

Let pn(n) denote the quantity

¥ (v L (n)¥(n) 72
[T )V )V ()T () 1T (n)F(n)

The next subsection of this chapter is devoted to proving the following

theorem:

Theorem 3.1. Under the null hypothesis

_5/2 3/2

EDHYE B () - ) (3.14)
L
n

is asymptotically normally distributed with mean 0 and variunce 1.

N
Thus, we define the a~level W-test for normality as fol.lows:

Reject H_ iff W(n) < ﬁ(n) +c g(n)
0 %,a
where
2
L
0 - 2.,1/2 n
' p

and 5. is the a-percentage point of the standard normal c.d.f. The
>
reason for choosing the lower tail of the distribution as our gritical

region is that under the alternative hypothesis, %(n) tends to be smaller

than under the null hypothesis (this statement is made rigorous in section

o~ -

N ).-'.....:zi

B |
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FIGURE 3.1
CRITICAL REGION gn(a) OF THE W—TEST (Schematic)
l-—
W(n)
Ny 4"
“(n)+°¢,a°(n)
0

3.3). Figure 3.1 depicts the large sample behavior of W(n) and the

eritical region ﬁn(a) of the test. In lemma 3.5 below, we show that
! 1 - j(n) is
g~ Y
. L log(l/p )
te, 0(2 n

4 3
np,

) .

Hence, (3.4) implies that the quantity g(n) converges to zero faster :
than the quantity g(n) converges to 1, and the 100(1-a)% confidence
region for w(n) approaches the curve ﬁ(n) faster than the curve

approaches its limiting value.
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3.2.3 Proof of Theorem 3.1

Since we are assuming that the null hypothesis holds, we may also

l,...,Yn are the

order statistics of a sample from a N(0,1) population. Hence, for all

assume without loss of generality by lemma 3.1 that Y

our asymptotic probability calculations, we will hereafter take the
N
distribution of ?(n) to be (Kn+l)-variate normal with mean vector T(n)

and covariance matrix V(n) as defined in the previous section. The

et Bfe L

A"
theorem will be proved by examining the Taylor series expansion of W(n)
0y
about the point T(n) and determining which terms are asymptotically

dominant. Before doing so, we introduce two lemmas which are required

for the proof.

Lemma 3.3. As n > «

2
- 1 . ‘
. m (1+0(1)) l-l,Kn-i'l
n n
var ¥, = < (3.15) v
i 1 !
_  — 0(1) i=2,3,...,K :
npnlog(l/pn) n 5
.
and
- np_ 1/2 e
0751) 0(1) i l,Kn+l
Ln
Kytl 4 ' (3.16)
L ovysn) s
J—l 1
T -1 (1+o(1))
n i=2,3,oou,K
\_ n

N
Proof. It is easily verified that wmax {var Yi} occurs at 1i=2 or i=Kn.
2<i<K
==n

‘ An application of (C.10) yields (3.15).
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¢ In proving (3.16), we first consider the case i=1 (o» i=Kn+l by
1 15 symmetry). Using the definition (3.6) and simplifying, we have
: 2 3/2 K I"n
F ] K +1 P, P, n [l—pn-(j-l)—n]
?‘ i Zl Y " ©-0e2(m) 2% L2 ) '
v J= n 1 n e 3

By (C.10), the first term is O(ELnlog(l/pn)]-l) as n + », and the second

- “""

term is approximately

p3 l}pn
(=D )1/2 n (1-x) dx ‘
2L n Lntl(n) P, “t(x)

which equals

np 1/2 Tl(n) ,
(——-0 (1- -2p_ )— . .

o2 t (n)
n
Applying (C.8), the first half of (3.16) follows. (In Chapter 3 as in
Chapter 2, we will frequently have occasion to approximate summation by
integration as above. We again refer the reader to Appendix C, where we

formally carry out this procedure and obtain upper bounds for the resulting

errors for integrals of the type appearing in this chapter.)

For i=2,3,...,Kn we have

L, ' L,
K+l p_(1-p_-(j- 1)-2) p, (p_+(i- 1)—-) L :
jzl Vi) = MO CY I Kn+l(n)t ey n(L =
Ln Ln
i L {i-l [pn+(j—l)-5J[l-pn-(i-l)—;ﬂ .
n(Ln—l) 522 nti(n)tj(n)
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K L L
. . zn [pn’r(i—l)—%JEl-pn-(j—l)—%J}
51 nti(n)tj(n)
L P, y
= n'n 1 $(x)[1-9(y)]
O(n(Ln—l)tl(n)'ti(n)) N L -1 é,f(n) 9 (y) dx
1
Ty (M)
n
[1-¢(x)]8(y)
+ £ ———$(§3-————dx (1+o0(1))}

where y o Ti(n). The first term above is o([nann]_l/2) as n -+ o, In

. . -1/2 - -
particular, since (nann) /2, Lnl(Ln/npn)l/Q, it is o(Lnl). Noting that

[ e(x)dx = [ [1-¢(x)dx,

the second ‘term above can be written as

1

- y
[(Ln-l)¢(y)] { [ ex)ax - ye(y)l.
(
1

T.(n)

Evaluating the expression in braces, we obtain {pnTl(n) + ¢(y) - tl(n)}.
An application of (C.8) completes the proof of (3.16). This completes the
proof of lemma 3.3. QED

Tt is well known that for the full set (i.e. all n) of standard
normal order statistics, the row sums of the covariance matrix are equal to
1. Equation (3.16) shows that the ratio of the common row sum for our
selecied subset of order statistics to that of the complete set is

asymptotically equal to the fraction of order statistics that we choose.

TR
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55
% Lemma 3.4. The vector T(n) is an asymptotic eigenvector of the matrix
3
3 Y V(n) correspondirg to the eigenvalue [2(L -1)] o
]
Y] -

Proof. We will denote the (Kn+l)—vector T'(n)V l(n) by +v(n), with
3 —_—

individual components Yi(n). It follows directly from the definitions that

-
t. (n) L
o 1 L, n, - ‘-
a {(l'npn“l(n)Tl(n) t,(n)T,(n)} i=l
020D | e, (T, ()t (T, ()t ()T, ()
Yi(n) = 5 i i i i-1 i-1 itl i+l
L
n .
i=2,3, .,Kn
tKn+1(“) L_
P {(1+nP e L1 (T L, ()=t ()T (n)} i=K +1
n n n n n n

.

Using (C.1), Taylor series expansions of ti_l(n)Ti_l(n) and ti+l(n)Ti+l(n)

yield
I 5 Ln 2 Ti(n)
ti_l(n)Ti_l(n) = ti(n)Ti(n) o T Ti(n)) -(—;J E;(ET
~ 2 L 4 7T.(n) 3
L 3 1+T.(n) 1, n i .
+ %(_P_) (___l_ ) - 'g(—;') (t.(n)) + 6l(:l-,.n)
n 2 i
ti(n)
(3.17)
Ln 0 Ln 2 Ti(n)
ti+l(n)Ti+l(n) = ti(n)Ti(n) + —E{l - Ti(n)) - (_E) %ETHT
2
L 3 1+T,.(n) L 4 TI.(n)3
1., ™n 1 l,™n i .
- g(-;ﬁ (——E———-) - E{_ﬁ) (E;TET) + 62(1,n)

ti(n)

where Gl(i,n) and 62(i,n) are o(Lg/nupi) as n + «. Hence,

T AT EATTRT T T
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3 I Pt (m) L L L 2T (n)
4 qn {Wt (n)T (n) + -—-(T (n)-1) + (— n) Tt—i(T)
) 9 i=1
i L by 3 1T (a) o L, T(n) 3
i ; t 3(—=) (——) + (=) (——) =~ §.(1,n)}
; 3 ti(n) 6° n tl(n) 2
3 3
E *; L 2 Tl(n) 1 Ln i Ti(n) 3 . y
g t, (n){2( n) ti(n) + 5(—5) (E;THT) + 63(1,n)} 1-2,...,Kn
o n (L -1)
o Y (n) = {
5 L
g n t1<n+1(“) L L
3? qQ {npntKn+l(n)TKn+l(n) - n( K +l(n) -1)
#
3 2
y L 2 1< @ L L3 1+T}<n+1(“)
3 (D) Ty - 5 (———) i=K_+1
k n (n) 3''n 2 n
%«’
; T (n)
) __(Ln 4 K+ 8
' 2y _%
1. . L ) ( K +l(n)) l(Kn+l,n)}
n (3.18)

where 63(i,n) = —(Gl(i,n) + 62(i,n)). We note that 63((Kn+2)/2,n) =

for all n. Let Gq(n) denote the quantity

't()L L2Tl(n) lL 31+T(n)
qn *'{;l-)'—'tl(n)Tl(n) + (T (n)-1) + (— n) -—Gl— ( —) (—— t ( ) )}

2(—’1)2a(1(“)‘

! By the definition of 4, sq(n) = 0. Also, using (3.9) and (C.7),
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L
vt (n) = TV in) = 2(Ln-1)<1+o[;§ﬂ12>ﬁ"(n>.
n

Post-multiplying both sides of the above equation by V(n), rearranging

terms and applying (3.2), the proof of lemma 3.4 is complete. QED

Remarks. The above result is not suip.-~ising in view of the work of Stephens

[31]. Working with the complete set of normal order statistics, Stephens
found that the mean vector is again an asymptotic eigenvector of the

covariance matrix, but this time corresponding to the eigenvalue ¥y = 1/2,
More generally, by solving a certain differential equation, Stephens found
that the sequence {Aj = (j+l)_l} is a sequence of asymptotic eigenvalues

for the covariance matrix of (Y Yn), with corresponding eigenvectors

FERERD
{wj} whose compecnents are the Hermite polynomials Hej(x) evaluated at
the appropriate population quantiles. Stephens' method does not yield
error terms, however, 1In our case, since the eigenvalues are approaching
zero as n increases, the asymptotic result is only meaningful provided
the error terms approach zero at a faster rate. Hence the above method
of proof.

An Example. Before continuing with the proof of the theorem, we give a
simple application of lemmas 3.3 and 3.4, using them to show that the
symmetric sum of squares estimator of the variance 02 and its analog
based on ?(n), suitably standardized, have the same asymptotic distribu-
tion. Without loss of generality, we take 02 = 1 as above. Let SQ(n)

denote

It is well know that 82(n) is approximately N(1,2/n) for large n, and

Iy
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1/2

thus, (n/2) (Sz(n) - 1) converges in law to the standard normal distri-

bution. Now consider

Kn+l
2m = st T - Y2
n izl kS

oy n
Expanding S2(n) in a Taylor series about T(n),

Kn+l Kn+l
%, _ -1 %) -1 n ay n, f
S°(n) = (K +1)7" ] Ti(m) + 2K +1)™" ] T (n)(Y; - T,(n)) :
i=1 i=l ?
Kn+l Kn+l
P T T 6,k D ELAE e -E ()
n b L il n i1 J 3
i=l j=1
where 6ij =1 if i =3 and = 0 otherwise.

Using (C.9), the first term in the above expression is easily shown to

converge to 1 as n tends to infinity:

K +1 Kn
-1 2 -1 2.2 2
(K_+1) izl%i(n) (K +1)7[2q Ty (n) + 122 T ()]

l-pn
up log(1/p )(1+o(1)) + | T2 (x)dx(1+o(1))

Py

upnlog(l/pn)(l+0(l)) + (l—2pn—upnlog(l/pn))(l+o(l))

1- o(pnlog(l/pn)).

The second term is asymptotically normal with mean 0 and variance

uK;Z%'(n)V(n)%(n), which, by lemma 3.4, can be written for asymptotic

purposes as 2n-l. And finally, since the third term has expectation

Bl S it PPN 3
s A A e~ -
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o((npn)-l) (by lemma 3.3) and stanuard deviation also o((npn)_l) (by an
argument analogous to the one used in the proof of lemma 3.7 below), it
is op((npn)—l) as n > o, Thus, (n/2)l/2(32(n) - E{SQ(n)}) converges
in law to the standard normal distribution, where E{S2(n)} converges

to 1l as n =+ o,

.~ . 3 . '\‘
Proceed *ng now with the Taylor series expansion of W(n), we have

[T )V ) F ()1 K“+lm< ) v o
Wn) = —— 000 MWL Ty SRy (¥, ¥, ()
[P v v @) 1t (m¥m)1 - i:1
(3.19)
Kn+l Kn+l
. z3§J?)(%(n>)<?i-%fi(n>)(?j-'r}‘jm))+.
i=1 j=1

where {xgl)(%(n))} denotes the set of first partial derivatives evaluated
Y v(2) . . . ’

at T(n), {wij (T(n))} the set of second partials, etc. To simplify

notation, we will hereafter denote the first (constant) term in the expan-

sion (3.19) by Sl(n), the second (linear) term by SQ(n), the third (quad-

N )
ratic) term by Ss(n), and the remaining terms (W(n) - Sl(n) - S2(n) - S3(n))

by Su(n). In lemmas 3.5 to 3.7, we deal with Sl(n), Sz(n) and

(83(n)+8,(n)) respectively.

Lemma 3.5. As n + «,

Lu

§,(n) =1 - ———{}—glog(l/pn) (1+o(1)). (3.20)
27n P,

Proof. Contained in the proof of lemma 3.4 is the fact that

y'(n) = 2(Ln—l)T'(n) + e'(n)

RSP SIS~

pr o ey - A aY Al

* vv-:.,—_ [ 'x
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where e'(n) = (el(n),...,eK +l(n)), with
r n
(Ln-l)ds(n)(l + o(1)) i=l
2 3
_ L°(L_~1) T.(n)
e;(n) = ﬁ %- L 2 5— (1+0(1))  i%2,8,...,K
n
n t.(n)
i
! - (Ln—l)Gs(n)(l+o(l)) i=Kn+l

and Gs(n) = -(Ln/npn)5/2(210g(l/pn))1/2. Thus, we have

[2(c_-DF (n)¥m) + e' (n)T(n)1?

S.(n) =
! (-0 () + 8 -DF (etn) + e (e (1)¥n)

and, after some simplification,

[e' (n)e(m)¥ (m)¥(n) - [e'(n)¥(n)]?

un2

1- Sl(n) = (1+o(1))

since M(Ln-l)2[%’(n)%(n)]2 = un2(l+o(l)) asymptotically dominates the

denominator of Sl(n). Now,

5 9 Lg(Ln-l)2 K Tg(n)
e'(n)e(n) = 2(L_-1)°6.(n) +
n 5 7 . 4
9n i=2 ti(n)
1-p
7 5 n
4L log(1l/p_) L 6
_ n’ 1 [ T 4 (1r0(1)).
55 g9 5 P
np n n t (x)

Using the method used in deriving (C.5) to evaluate the aboye integral,
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we obtain
1-p
n TB(X) oy log(l/pn) 5 _3
———=dx = g ~—z—— - —x + o(p "),
) 3 3 3 n
Py t(x) ¥n gpn
so that
uLilog(l/pn)
e'(n)e(n) = —5 (1+o(1)). (3.22)
27n p
n
Similarly,
2
%) = & —Maog(1/p ) (140(1)) (3.23)
e'(n)T(n) = 5-55;10g l/pn +0 . .

Hence, since Lim xlog X = 0,

%0
L
1-8,(n)= 3 3ioe(l/p ) (1+o(1)).
27n p
n
This completes the proof of lemma 3.5. ' QED

Lemma 3.6. The quantity S2(n) is asymptotically normally distributed

with mean 0 and variance (2L:/(27n5p2))(1+o(1)).

Proof. Since (Y - Tin)) is asymptotically ncrmal with mean vector 0,
we need only determine the variance to complete the proof. Using

y = (yl,...,yK +]) as a dummy variable and lettcing D(y) denote
1

K +1
n

2
z (Y- "y') 5
i=p Ot

we have

T T T Y T s 3 ¢ e e e, 0 g e
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V(L) , vy 1 ) y'y(n)y'(n)y
S A o vk s o
Using the facts that 2——(y'y(n)y'(n)y) = 2y.(n)y'(n)y and
Yi
2y D(y) = 2(y. —y), the above expression becomes
NI, N, Y ny
w.(l)('\') _ 2 rvi\r)Y (n)y ] (yty(n)y (n)y)(yi - y.)] (5.20)
y'(n)y(n)"~ D() D2(§) )
In particular,
m(l) ey ' (n)¥(n) (n)T(n)
(F(n)) = Iy, (n) - —————&‘HJ
ono; ¥ (n)¥n) ¥t (n)¥(n)

and using lemma 3.4, we can write the above expression for asymptotic

purposes as

(1) 1 y' (0)F(n)
W (¥ ) = 2(y.(n) - LRI % L (0))(1r0(1)). (3.25)
* noi ¥ (n)¥n)

Since Y'(n)%(n)/%'(n)%(n) " 2(Ln—l) and y.,(n)n 2(Ln-l)%i(n) as n > ®,
i

we must be careful about the smaller order terms in applying lemma 3.4 to

the quantity in parentheses in (3.25). Recalling expressions (3.21) and

(3.23), we can write

s Ln .
—HGS(n) - 66(n)Tl(n) (=1
L (L_-1) T (n)
(1), 1 n ]
w, '(T(n)) = = - 8.(n)T.(n) i=2,3,...,K (3.26)
i < 3 n3 ti(n) 6 i n
'—L“G s ()T, . ( i=K_+1
= 5(n) - 8 n)TKn+l n) i=K +
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:
; where §6.(n) = (uLS/SnSp )log(1l/p_). Noting that ¥ (n) = -q_(2log(1/p ))1/2
1 ’ 6 n n’T n’’ 1 94 n .
! as n =+ « and using (3.2), (Ln/n)Gs(n) = 0(66(n)%l(n)), so that the terms

involving GS(n) in (3.26) can be neglected for asymptotic purposes, and

the variance of S2(n) is given by the sum of the following twelve

expressions:

L pn(l-pn)

y 2 n
4q_(log l/pn)ﬁe(n)n(L Ty~ (3.27)
n tl(n) :
.‘,t' , " X Ln Pl?l
-tq_(log l/pn)<36(n,n(L 1y 3 (3.28)
n tl(n)
3 K .3
Lp n T.(n) L
202220 1/p )8R = T —(1-p (-1 (3.29)
n tl(n) j=2 tj(n)
LR 3 K .3
) _ Lp n T,(n) L ,
oo 22 (2108 1/p )" %8G (m) L+ (D) (3.30) .
i n tl(n) i=2 ti(n)
!
i
| K s
L p n T.(n) L
, 2 2 1/2.2 n‘n 3 NN oY
-gqn(zlog l/pn) Gs(n)n(L ey L t_(n)(l—pn—(:]-l) n) (3.31)
n 1 j=2 7]
242 (210g 1/p )M 262 () P lgn A (i 1)Ln) (3.32)
39, 4108 /Py 6\ Vet DT () L E(m Pa YT )
n 1 i=2 i
5 K .6
L (L -1) n T.(n) L L
Lo ) (DD Ap (D)D) (3.33)
n i=2 ti(n) n n
.y )Lg }gn Tl;(n)( ( L L
=8 _(n)— p_+(i-1)—=)(1-p -(i-1)-2 (3.34)
36 4.2, t:(n) n n p,-(i =)
2 Ln Kn Ti(n) Ln Ln
' 66(n)n(L 1) 5 (pn+(i-l)—;)(l—pn—(i-l)—a) (3.35)
n i=2 ti(n) »
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5 K-1 K .3, .3
2 Ln(Ln_l) 2 n Tl(n)TJ(n) . Ln . Ln (8.36)
5 7 3 3 (p1+(1—1)—;)(l—pn-(3-l)—a)
n i=2 j=itd tl(n)tj(n) !
K -1 K 3 3
3 n n T, (n)T (n) T.(n)T.(n) L L
o . I ; L 3(p_+(i-1)-2)(2-p_-(3-1)-2) (3.37)
ot 6017122 j=isl £, (n)tS(n) t;(n)t (n) n
n 3 t
L K=l X, (T, (n) L L
RET) So(), L LT (n)t Pyt (-1 (op - (3-1)0). (3.38)

We will now show that expression (3.36) asymptotically dominates the
other terms in the above variance. For large n, expression (3.36) is
approximately

Lo(L 1) *7By 1Py

%——g [ f x(1- y)—————l—dT GOT () 4oax.

n p, X t (x)t (y)

Evaluating the inner integral using (C.%5) this becomes

1-p 1-p 1-p
(L -1) n n .3 n

% Sn _ J' X(l X) (X) + __2_ I Xle(—x)dx - f XT(2<—)-dX+ O(P )9
n P t (x) Py P, t (%) P, t (x)

which, again applying (C.5), is easily shown to equal

n
2 L

%7 5 3(l+0(p )):
n Py
the first integral is zero by a symmetry argument; the second integral

contributes p_l(T (n)/t (n))2 plus smaller order terms, and the third
n 1 1

integral contributes (l/3)(Tl(n)/’cl(n))3 plus smaller order terms.

.- - o Py v

i - +
T o, A e Y




r’wr_: - - — e e e 7 e e g e e ere s eene et
'

88

Applying (C.7), we obtain the stated vesult.

Next we show that the remaining eleven expressions in the variance of
4, 53
Sl(n) are o(Ln/n pn) as n = o, s+ |

Applying the definitions, lemma 3.2, and (C.10), we see that

39 L"‘ (log l/pn)2
B T S— (1+o(1))

p .
n n ]

ol

[expression (3.27)]

4,653
o(Ln/n pn)

as n > o,

Expression (3.28) equeals P (expression (3.27)); so it is obviously
of smaller order.
Adding expressions (3.29) and (3.30), applying definitions, approxi-

meting summation by integration and neglecting smaller order terms, we

obtain the quantity

4 1-p

L n 3
%-—% | (l—2x)23(x) :

n" p_ t7(x)

Using (C.5) and (C.7) to evaluate the above integral, the expression becomes

It

8 I%
- §'—€~f(l+o(l))

npn

which is obviously of smaller order than (3.36) as n =+ =,

Proceeding in exactly the same manner, we add (3.31) and (3.32) and

obtain an expression of order Li(log l/pn)2/n5, vhich is again of smaller
order than (3.36) A

Approximating summation by integration and neglecting smaller order

o) . g y T e 5
A5 e s it
st i R U Pt e s Davillai £ o,
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terms, expression (3.33) becomes

5 1-p
L n 6
% —% f x(l—x)T—é—(ﬁdx
n p t ()
n

Integrating by parts twice and applying (C.5), the above expression is

easily shown to equal

5
1 '
18 6 4
n
n

(l+0(pn)),

and this is again of smaller order than (3.36).
Since (expression (3.34)) = O(pnlog(l/pn)expression (3.33)), it follows
that (3.34) is of smaller order than (3.36).

Asymptotically, expression (3.35) is approximately

L , P 72 (%)
l% 7n2(log l/pn) f x(l-x)—a—z—dx,
np_ P, t7(x)

which is O(Lg(log l/pn)2/n7pi) as n =+ », Thus, expression (3.35) is
o(expression (3.36)).
. . 3,42 . -1.2 .
Finally, since (Ln/n pn)és(n) is of(n 66(n)) as n - <, showing
that expression (3.38) is of smaller order than (3.36) will imply the

same for (3.37). But, (3.38) is approximately

16 L y a7 T(x)T(y)
n x)T(y
=3 nspz(log l/Pn) pf i x(l-y)zfzjzz§7dydx.
n n

Evaluating the inner integral this becomes

rse

[T
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v p \
: v [p T2(n)+l-p ~T. (n)t. .. ( )]l}pnxiiﬁld

NS A A PN AL K +1 n T(x) N
] o n Py

8 n 2
SEE 3 —-5—2-(log l/pn) < ? )
3 n
[ 1-p 1-p 1-p
. n 3 n n
T (%) 2 2 T(x)
~f X(l'X)_§?§7dx + [ xT°(x)ax - [ x ETEjdX
Py n n
J

.

_ It is easily shown that the expression in braces is O0(l). Hence,

b L’»}

- (expression (3.38)) = 0(—32§pn(log l/pn)Q) = o(expression (3.36)) as

n

-} n + =. Summarizing, we have shown that the variance of SQ(n) is given

by (2L:/(27n5p:))(l+o(l)), which completes the proof of lemma 3.6. QED

] ‘ . . 2,5/2 3/2
4 Lemma 3.7. The quantity S3(n) + Su(n) is op(Ln/n P, ) as n > .
Proof. We first consider Sa(n). Differentiating (3.24) witl: respect to
yj and simplifying terms, we obtain the following expression for the
second partial derivatives of Wn):
X ‘}} 1 P N T PV VY 3
&t v;(n)y;(n) 2yt y(n)y' (n)yly,-y. Ily4-y.]
A " * 3,0
. 2D(y) D" (y)
Av(2) oy by < 4
i3 O 2 Ty N
n, ! -
Y3 () = Ty ()5 -3 WG - (s ™
-y! (n)y N J
~ D (y)

(3.39)

In particular,

b At fud
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oy " n, 92 ™
Yi(n)Yj(n) 2Ti(n)Tj(n)ET'(n)Y(n)J
+ -
M2 2% (n)R(n) oY (¥ 1
"ij (T(n)) = Y'(n)y(n) >

! -1
Yi(n)?j(n)+yj(n)?i(n)+Y—S%2§£El[éij—(Kn+l) ]

["i‘"(n)ti‘(n)]2 J

v (n)¥(n)

Using the resuit of lemma 3.4, we can write the above expression for

asymptotic purposes as

3§§)<?<n)) - z(nn/n)t<Ln/n>¥i<n)%j(n> k)T - ;5. (3.40)

Since
K +1 K +1

n
B(Sy(m)} = (1/2) | wi2)

n,
RN i (T(n))vij(n),

it is straightforward to show using (3.6), (8.40) and the methods of the
proof of lemma 3.6 that the asymptotically dominating term in the above

expectation is

2 K Ly L,
) L n (pn+(1—1)—;)(l—pn—(1—l)—5)
n2(L_-1) i%2 £2(n)
n 1
which becomes
1-p
-1 -2
n [ x(1-x)t"“(x)dx (1+o(1)).
pn

Evaluating the above integral, we find that

B{S,(n)) = mepgluh>(u©u)> (3.11)
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as n > «,

Next, we obtain an upper bound on the standard deviation of Ss(n).

To do so, we use the fact that for any random variables Xy sRgs e esX s
n n
o JX,)s ) o). (3.42)
. X . 1
i=1 1=l

Note that if X is normally distributed with mean 0 and variance 02,

E(xP™} = (2m-1)(2m-3)...(1)c2"
so that

n n Ny 2.0 oy 2
var ((¥,-¥, ) (X H, )Y < B -F a0 -H, )
noon, y n 4..1/2
< [E(Y T, (n)) }E{(Yj-%j(n)) 1]
= 3var{?i}Var{§j}

.
[Lnlog(l/pn)]_z i,js{l,Kn+l}

[nLnlog(l/pn)tg(n)]—l 1e{1,K +1}

j¢{1,Kn+1}

é=const< (3.43)
[nL log(1/p )t5(mI ™0 {1,k +1)
js{l,Kn+l}
Enti(n)tj(n)]—z 1,3#(1,K_+1)

where we have used lemma 3.3 and the definition (3.6). Thus, from (3.40),

(3.42), and (3.43)
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K _+1 K +1
n

;oY |”(2)<¥<n))|o{(? & RESPCA NUI)

0{83(n)}
i=l i=l

fia

cl[nlog(l/pn):l“l + e Ll/2 -3/2

LN lo (l/p ) + cy n_ (log 1/p, )

+ cu[npnlog(l/pn)]-l

where c¢., Cys Cgs and ¢, are 0(l) as n =+ «, The asymptotically

1

dominating term in the above expression is easily seen to be the term

u

associated with ¢, ; that is, o{S (n)} 2 [np log(l/p )1 (l+0(l)) as

y?

n -+ », But, the latter expression can be written as

Li n3/2pi/2 i
°y 57z Tz (tog 1/py) T(l+o(1)).
LN S A

5/2 3/2
Pn

Applying (3.%), we see that G{S (n)} = o(L /n ). Similarly, from

5/2 3/2
Pn

oo bl), E{S (n)} is also o(L /n ). Thus, the term S3(n) is

op(O(n)) as desired.
We now deal with the higher order terms in the expansion (3.19).
Applying (3.42), the standard deviation of the kth order term (k=3,4,.

is less than or equal to

K +1 K_+1 K +1
n n

w(k) a, no oy n
yooT ... z lwe*: 5 ()oY, -Til(n>>...(Yik-?ik(n>)}.

1l=l 12=l k—l l 2 k 1l

We will find upper bounds on the quantities in the above summation which

5/2 3/2

are sufficient to show that the sum is op(Ln/ ) as n = o,

.)

R O . |
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e |
;\, To simplify notation for the remainder of the proof we define
1 9 Kn+l
. Dyt (n)yld - 2
i 1=
]
]
’ v dA(y) v 9B(y)
al(y) = " BL(y) = 22 o
iy 3y, |y iy 9y, Iy
v 32A(y) vy 32B(y)
AL () = 22 e BY.(Y) = === |
ij 3y 9y, ly i3 dy.oy. 'y
3 17]
for i,j = 1,2,.. .,Kn+l. We note that all higher order derivatives of
A(y) and B(y) are zero. We have shown previously using lemma 3.4 that

N
Ai(T(n)) L 1/2

n
s const — (log 1/p )

A(T(n))

; B! (T(n)) L
\ |-——] < const 2 (log 1/p ):L
B(T(n)) n n

/2

‘ (3.u4)

Ay (F(n)) L )
A const — (log l/pn)

Ia

ACY(n))

B'i'j(T(n)) const(Ln/n) if i=j

[

B(T(n)) const(Ln/n)2 iF i3

as n > o,

‘ Now let R(y) = log(A(y)/B(y)). It is easily seen that the general

kth partial derivative of R(y), which we will denote by ngi 3 ),
172777k
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25
involves only sums of products of the forms
" " AY . (y) A! Al
Ajljz(y) Ajaju(y) L mLy J“‘1+1(y) J“‘14’"‘2(}').
const [—ry My Fay Mgy
and
' 0 (e BY . (y) B} (y) B! (y)
Bljlj2(y) Bj3ju(j) ... mg-Ling Imgrl Imyem,
where my tm, =mytom = k. But, by applying the definitions and
rearranging terms, we also have
(1) _ (L),
Wi (F(n)) = 8, (MR~ (T(n))
1 - (1)~ (1) % (2)
ng)(?(n>) = 8 ({R;™ (F)R; ™ () + Ry (¥n)))
- )
R R ) + 18D AR ) +
n(2) _ (1) N v ypl2) N (3)
FCICHIE sy R Hem Pk + Risn(dm)) + )
RV AR ForY )
J
~ (3.45)
terms involving products of derivaties of A
R(y), where the sum of the orders of the
YO () = s ()
R i T ot < derivatives in each product is k and each

1112-.. Kk
index (i.e. il’i2’°") is represented exactly

_once in each product

J

Thus, since Sl(n) +1 as n > o,
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(k) Ln s%
W) ()| 2 Riog(1/p )] (3.46)
ii L..i = " n n
172 k
where s* = max{(k-s),[-]%i]}
and s 2 the no. of equalities among the indices il,i2,...,ik.

Next we turn to the standard deviations of i he (’B\E‘i yos .,?i ) terms in
1 k
the expansion (3.19). The argument used in obtaining (3.43) also yields

the following fact for k=3,4,5...:

var{(¥, -¥, N, ¥, ... X TN} <
o4 1y 'k *k =
(3.47)

_l .
[Lnlog(l/pn)] 1ke{l,Kn+1}

var{(Y. —&‘.(n))...(?i ¥, (n)) :const. _1
1 h k-1 k-1 [np log(1/p )17 i, #{1,K +1}

For given k, let Ik(r,m,s,s*) denote the set of integers r,m,.,s%

which satisfy

0smzk
max{0,m-2} < r < max{m-1,0}

r £ s <r + max{k-s-1,0)

8% = max{(k—s),[%}i }

Then, combining (3.46) and (3.47) we obtain

K +1 K +1 K +1
n n

n .
LoD DI et
il=l i,=1 ik= 172" "7k

-%i(n)>...(¥i
o 1

m¥i<n>)}
'k

1 k

i T S

“”ﬂ
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k-s-m+p Ln s*-(m/2) s%-(k/2) -k/2 (m-k)/2
- 3 I—
< const max {(Kn+l) { n) (log l/pn) n P
Ik(r,m,s,s*)
for k=3,4,... (where m represents the number of indices (il,...,ik)

which assume values 1 op Kn+l; r vrepresents the number of equalities
among those indices, and s and s are as defined above). By separ-
ately considering each of the four cases: (1) k even, s > k/2;

(2) k even, s < k/2; (38) k odd, s > (k-1)/2; and (4) k o0dd, s < (k-1)/2,
it is straightforward to show that the right hand side above is

asymptotically maximized by the following parameter settings:

m=r=0, s=1,2,0or 3 if k=3

m=p+1=s+1=5§l if k>3 and odd
. m=r~+l=s+l=5§Z if k>3 and even
. in which cases it becomes
( 1/2
log(l/pn) if k=3
n3 3
Py

log(l/p_) 1/4
[———D1 ]
k-3 k+3_k+1
L "n p
n n

if k>3 and odd .
const.

¥

-1/4

[Lk—2 k—2nk+2] if k>3 and even
n P

n

.

Successive terms of the above expression are decreasing in k at a

rate which is o(L_l/2

n ), while for k = 3 we have
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?(
14
L log(1/p ) 1/2 Lﬁ n(log l/pn)l/2 Lﬁ
- [-;Ts—“J " 572 372 L = oCxrm57?)
Pn Pn n o Py
4
F\
y
' as n ‘tends to infinity. Hence, a further application of (3.42)
p
establishes that the standard deviation of Su(n) is o(o(n)).
. Using (3.46) and the formula analogous to (3.43) for expectations,

it is easily shown in the same manner that the expected value of Su(n)
is also o(g(n)) as n =+ o, Thus, Su(n) is op(g(n)) as claimed. This
completes the proof of lemma 3.7. QED

Combining the results of lemmas 3.5, 3.6, and 3.7, the proof of

Theorem 3.1 is complete.

3.2.4 Discussion

In this subsection, we explain the reason for the definition (3.5) of
the quantity q,» discuss the possible relationship between ¥(n) and W,
including the introduction of a new statiftic W*(n) which is an analog
of W* of Shapiro and Francia [36], and finally, mention * me practical

considerations in choosing the parameters of our selected subset of order

statistics.

The quantity q,- In order to ensure the asymptotic normality of our
selected subset of order statistics, it was necessary to have the "tail
spacing” (npn) of the statistics different from the "internal spacing"
(Ln)° A consequence of this fact was that the elemenis of the inverse

of the asymptotic covariance matrix corresponding to the tail statistics
were too large, upsetting the "balance" inherent in the coefficients

Y(n) = V-l(n)T(n). Specifically, these coefficients were asymptotically

dominated by Yl(n), and, in fact, y'(n)y(n) was asymptotically dominated
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by Yi(n). Thus, for q, £ 1, not only would the value of the statistic
W(n) be essentially determined by the value of the tail statistics Yl(n)
and Y, +l(n), but the statistic itself would converge to zero instead of
one as nn =+ ©, in which case the W-test would no longer be consistent.
Even defining q, = (npn/Ln)l/z, its limiting form, had the effect of
allowing the tail terms to dominate both the rate of convergence of Sl(n)
to one and the variance of Sz(n). Only by defining q, aswe did werc
we able vo cause the effect of the tail statistics to be of smaller order

than the combined effect of the remaining Kﬁ—l statistics.

The relationship between ¥ and W. Probably the most intriguing and cer-

tainly the most difficult question raised by the preceding work is whether
or not we can infer anything about the large sample behavior of W Ffrom
the asymptotic distribution of ¥ under the null hypothesis (or under
the alternatives of section 3.4). In essence, does the form of the
statistic W properly encode the information about the null hypothesis
in order that the asymptotic sufficiency result of Weiss [40] may be ex-
tended to this case? If we were to take P, and Ln to be their values
if the full set of order statistics were being considered (i.e.

P, = 1/n, Ln = 1), then the variance of w(n) would be of order n-2,
vhich is what has been conjectured for W by Stephens [33] and others.
However, we of course cannot do that, and, in fact, condition (3.4) pre-
cludes any choice of the parameters which would make the variance that

small.

On the other hand, let us dei..ne an analog of the Shapiro-Francia

. [ \/ ,“
statistic W* based on Y(n) (wzth 94, 1) by
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?‘
% 1 im Y2 .
1 jl af:'f(n) = ) (n)Y‘:\l’z . (3.u48) ;
[T'(n)T(n)IS"(n)
i

Also, let ag denote the quantity

K +1 K +1
ke Ln n n —l
. w L jgl [(Ly/mT Ty () + (KHD)™ = 8,4v 5 (n)

where {vii(n)} are given by (3.6) (again with q, = 1). 1In the proof of

o lemma 3.7, ag was shown to be 0(log l/pn) as n + «, In appendix B we

prove the following theorem:

Theorem 3.2. Under the null hypothesis,

"
N n[l - W&(n)] - aﬁ (3.49)

%

!

I

!

t converges in law to Y¥(y), where ¥(y) is the distribution

2
@ (X, - 1)

) ———
l k=3 k

with Xs,Xu,... i.i.d. standard normal random variables.

The significance of Theorem 3.2 is that the analog W%(n) of the Shapiro-
Francia statistic, or, more precisely, of the De Wet-Venter rg, has the
same asymptotic distribution (under Ho and up to a shift in location) as

the corresponding statistic based on the full set of order statistics.

.
v

Thus, the form of W (n) does properly encode the information about the
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null hypothesis. We can conclude, then, that if w(n) does not behave
like W, it is because of differences between the rate at which the asymp-
totic eigenvector result (lemma 3.4) takes hold for the mean vector and
covariance matrix of ? as opposed to the rate for the corresponding re-
sult for the full set of order statistics. Progress toward rigorously

N

defining the relationship between W and W might proceed along that

line of analysis.

Practical considerations. In practice, there are two ways of choosing

the "spacing" parameter Ln:

() L =n° where 2/3 < 8 <° (such that (3.1) - (3.4) hold)

n

r(n)

(B) L, =n where r(n) *¢ as n -+ o, 2/3 <¢ <1 (such that

(3.1) - (3.4) hold).

For moderately large n, method (A) leads to larger values of Ln and,
hence, smaller values of Kn than method (B). The advantage ethod
(A) is that the asymptotic theory takes over for smaller n. ™  dis-
advantages of method (A) arve: (1) Kn+l, the number of selected order
statistics, is very small (for example, for Ln = n3/u and n = 1000,
(Kn+l) = 5); and (2) ‘the statistic W(n) is too sensitive to small devi-
ations in the tail values. Table 3.1 gives the asymptotic means and
standard deviations for W(n) for small changes in the tail percentiles
P> l-pn. Small changes in the actual values of the tail order statistics
should also have dramatic effects.

Method (B) is preferable in that smaller values of L arise; that

Y
is, the asymptotic variance of W(n) 4is smaller and we select a larger

subset of the order statistics. The problem with this method is that even
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FOR VARIOUS CHOICES OF THE TAIL QUANTILES
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CASE®
II III
n fi(n) 3(n) fi(n) 3(n) fi(n) 3(n)
100 .503 . 068 . 909 .033 . 956 .02y
150 . 5hh .052 .928 .02u . 967 .017
200 .575 .0u3 . 940 .01 .973 .013
250 .599 .037 .47 .015 . 977 .011
300 .619 .033 .953 .013 . 980 .009
350 .635 .029 . 957 012 982 .008
400 .650 .027 . 961 .010 .98u .007
450 .662 .025 . 964 .009 . 986 .006
500 .673 .023 . 966 .009 .987 .006
550 .683 021 . 968 .008 .988 .005
600 .692 .020 .970 .007 .988 .005
650 .700 .019 .972 .007 .989 .005
700 . 707 .018 . 973 .006 .990 .00y
750 714 017 .974 .006 . 980 .00u
800 .720 .016 .975 .006 .991 .00
850 .726 .016 .976 .005 .99 .00u
900 .732 0.15 .977 .005 .992 .003
950 .737 .015 .978 .005 .992 .003
1000 LT .01y .979 . 005 .992 .003
“Case L P,

I 275 o~ (1/1og n)t/?

IT L' 78 o~ (1/1og n)2/3

75 n—(l/log n)s/u

I1T n
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for moderate n, significant contributions to the mean and variance of
Q(n) come from the higher order terms in the expansion (3.19) as well
as the lower order components of the constant and linear terms.

From the practical point of view, therefore, the asymptotic theory
is not overly useful for moderately large n in actually specifying
the critical region of the test. It is useful in providing possible in-
sight into the behavior of W, in indicating how to choose Ln and Py
to give the best results (i.e. choose Ln "small" and P, "large"~-which
makes sense since both the numerator and denominator of w(n) have
interpretations as estimators of 02), and especially, in indicating how
W(n) behaves under alternative distributions so that comparisons with
other test procedures may be made. The latter results are discussed in

the remainder of this chapter.

Ny
3.3 Consistency of the W-Test

In this section we show that as n = o, the power of the sequence of
Y] .
tests based on W(n) tends to one against any fixed alternative. Through-

out this section we assume that for each n, the sample X X comes

12 %y

from the distribution H(x), where H(x) = &((x-u)/0) for any (u,0)

with o > 0. In particular, we assume that there exists some € > 0 such

that
inf sup |H~l(p) - cé_l(p) -d| > ¢
c,d 0<p<l (3.50)
c>0

where H-l(p) is defined as the smallest value of x such that H(x) > p.

(Note that the degenerate case where the support of H(x) is a single point
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is ruled out by this assumption.) Defining

lesH(x) if %<0

: n(x) = ,
' x8(1-H(x)) if x>0

we further assume that n(x) is bounded and converges to zero as |x| » «
for some &6 > 0.4. We remark at the end of this section how this regu-
larity condition may be relaxed. A sufficient condition that it hold

(see, e.g. Sen [23]) is that EH{|X|6} is finite. Our proof of consis-

tency requires the following lemma:

Lemma 3.8. There are points p¥,p%,p%, with 0 < p¥ < 1 for 1i=1,2,3,
1°72°73% =——=—— i —_—

non-overlapping open intervals I? = (p?—&*,p§+6*) with 6% > 0,

and some €% > 0 such that for any (¢,d) with ¢ > 0,

inflH L(p) - o™ (p) - a] > e* (3.51)
pelg

for at least one 1i=1,2,3.

Proof. We prove the result when H(x) is discrete. The modifications

required when H(x) is continuous are pointed out parenthetically as
we proceed.

Let x, and %, (xl < x2) be any two jump points of H(x) and
choose p?, i=1,2, such that H(xi—) < pg < H(xi), where H(x-) denotes

the limit from the left. (In the continuous case, we choose p? such

that 0 < p? < pg <1l and H—l(p) is strictly increasing for p in

some neighborhood of p?.) Let ¢ and d be the uniquely determined
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values such that ¢((xi-d)/c) = p? for i=1,2. Then, from (3.50), there

exists pg, 0 < pg < 1, such that

ol T AL S 3
|H (p3) - cd (ps) -4d] > e .
Furthermore, the continuity of c¢—l(p) + d implies that we can "shift"
pg slightly if necessary so that H(xs—) < pg < H(xs) for some jump point
g of H(x), possibly at the expense of replacing ¢ by a smaller
positive quantity €' (say). (In the continuous case, we can have H—l(p)

strictly increasing in a neighborhood of pg.)

Now consider

inf max |H_l(p§) - c¢_l(xi) - 4.
c,d 1=1,2,3
c>0

By the way the pg were chosen, the value of this quantity must be strictly
positive. We will denote the value by 2%,

We now show how the intervals I? are determined. We consider only
the case where X; € %, < Xy and 1/2 < pi < pg < 1. The other cases are
similar. The situation is depicted in Figure 3.2. The shaded boxes are
the regions where (3.51) is satisfied; that is, (3.51) holds whenever the
curve @¢((x-d)/c) passes through no more than two of the three boxes. By
the definition of €%, any normal cuvrve must pass through or outside at
least one of the points (xiie*,pg), i=1,2, or 3. These points are denoted

by =« in the figure. Since the slope of &((x-d)/c) is decreasing in x,

the worst possible case is that ¢ and d satisfy

L mj
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L aadd

X - (e%/2) - a

$( S ) = Py + &%
X, - €% - d
3

( m ) = Pj

Adding the additional equation
(D(XS - (e*/2) - d) s 36%
e P3 2

solving for &%, and taking 6? = 6%, i=1,2,3, thus yields the desired

intervals. (In the continuous case, the shaded boxes become cylinders of
width €* about the curve H(x) and the slope of H(x) in each of the
neighborhoods must, therefore, also enter the calculation, but the method

is the same.) This completes the proof of lemma 3.8. QED
Now let J?(n), i=1,2.3, denote the set

{3 p¥ - 8%/2 sp, * (j—l)Ln/n <p¥ 8%/2}.
Note that IJﬁ(n)I = largest integer < G*n/Ln. We now show that (3.51)

implies that for at least one 1x1,2,3,

Lim P{ min |?. - ot.(n) - d| 2 e*} =1 (3.52)
n-o jeJ?(n) ) J

First assume that H(x) is discrete. By the way the p? were chosen, we
may assume without loss of generality that H(xi-) < p? - &§%/2 < pg + §%/2 <
H(xi) (since otherwise we just replace Ii by its intersection with

(H(xi-),H(xi))). Thus, je J?(n) implies Yj = X with probability
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& approaching one as n =+ ®, Thus, (3.52) follows immediately from (3.51)
; . «
; for ihis case. Now assume that H(x) is continuous. We may again assume
W without loss of generality that H_l(p) is strictly increasing on I%.
Let Mij(n) denote the quantity
4 ]
[
L np_ + (3-1)L
F & " n n o %o
/E(H(Yj) - ) j e J¥n).
3
3
-, It is well known that max |M,.(n)| is finite with probability one.
3 jedt(n)
% P Writing
. M, () np +(j-1)L
?' = H l( 1j + D -~ n, ,
] /n
‘% we see that je J?(n) implies that the argument of gt above is in I?

with probability approaching one as n increases. Applying (3.51), we
again obtain (3.52).
For i=l,2,...,Kn+l, let Y?(n) denote the quantity yi(n)/l:y'(n)Y(h)]l/2 )

(where v(n) = %‘(n)v-l(n) as previously defined). Consider the quantity

B K +1
' Iyt - ¥, - Y07 (3.53)
55y 3 j
where u is defined as
Kn+l Kn+l
v{\' Y
3 oyEvosC 3, - Yo, (3.53)
51 3370 45

Y
It is easily seen that (3.53) is equal to 1 - W(n). 1In lemma 3.4 it was
/2

n, -
shown that Yg(n) = Tj(n)(l+0(Ln/npn))(Kn+l) 1 ; hence (3.53) can also
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be written as

K +1

21'1
2]

o 2 -1/2 2
3 [Tj(n)(l+0(Ln/npn))(un(Kn+l) ) - ?i + Y15,

1

Applying lemma 3.8,

3 n
Loy s u? 7T oY myso(n /mp )l 1) Y2 L ¥+ Y07
="n b b, n' n n o n 3
i=l jed¥
i
gf osn2p 2
2 6%(e¥) (nun/Ln)
with probability approaching 1 as n = «. Also,
2 2 _ N 2
(nun/Ln) > (Kn+l)un = W(n)/S" (n)
. Vv2 . . .
with S°(n) as defined in section 3.2. Thus,
5*(8*)2
1 - W(n) 2 (3.54)

Y200y + 6% (e)?

with probability approaching one as n + «. Since the sequence of critical
points for the V-test approaches one at the rate nupg/(Lﬁlog(l/pn)) (see
lemma 3.5 and Figure 3.1), consistency will follow immediately once we
establish that Pm) is op(nupg/(L;log(l/pn))) as n = o,

We now return to the function n(x). Our initial assumption implies
that n(?i) is bounded for 1 < i < K +1. Using this fact together with
the fact that /H(Hn(?j) - H(Qi)) is finite with probability one (where

Hn(x) is the empirical c.d.f. and H(x) may be discrete or continuous),




L10
it follows that the function
I? 6( (i . . H(0)
;1 (p (=1L /n) if p #(i-1)L /n <
(3.55)
¥ |5(1 (i-1)L_/n) if (i-1)L_/n > H(0)
Ii -p,~(i-L)L /n i p&-kl)nn

is finite with probability one. If H(x) is continuous, (3.55) is immedi-
ately implied by the fact that n—l/2p;l converges to zero as n > ®,

If H(x) 4is discrete and ¥i < 0, then Hn(¥i) < pn+(i-l)Ln/n, from which
the first half of (3.55) follows. Recalling our assumption on the tails

of H(x), for ¥i > 0 and H(x) discrete, l—pn-(i-l)Ln/n = Hn(?i) + 67(n),
where 67(n) is 0(¥i) and, in fact, converges to zero as the sample
quantile ?i assumes arbitrarily large values. Thus, (3.55) is established,
and for any B > 0, we can find a constant M(B) such that PH{(expression
(3.55)) < M(8)} > 1 - B.

Finally, with probability greater than 1 ~ B,

" Kn+l
s?(n) < (x+1)F 7 ¥
= n . 1
i=l
g% Kn
M(B) . -2/6 . -2/8
) .Z [pn+(l-l)Ln/n] +._ZA [l—pn—(l-l)Ln/n]
n - i=l i=itd

(where i* is defined by pn+(i*-l)Ln/n < H(0) < pn+i*Ln/n)

i%+l

gl[pn+(i-l)Ln/n]-2/6

M(B)
S X
n A

< 2M(B)p;2/6 .

ko o
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But, using (3.2),

4 4
Lnlog(l/pn) -2/8 Ln 5-(2/6) 5
4 3 n 4 8 4 *n n
np n pp(log l/pn)

which converges to zero for § > 0.4. Thus, since B can be made arbi-
n,
trarily small, S2(n) is op(nupi/(Lglog(l/pn))) as required.

Summarizing the above, we have proved

Theorem 3.3. Under the above assumptions, the W-test is consistent.

We remark that the same proof immediately yields the consistency of
the test based on Wt. The only change above is that Y?(n) = Ti(n). Also,
the restriction & > 0.4 can be relaxed by placing tighter controls on the
tail quantiles (pn and l-pn). For example, if instead of (3.2) we
assume that %i& Ln/np: = 0, then theorem 3.3 follows for & > 2/9, and

so forth.

3.4 The Asymp*otic Power of the w—Test

We wish to develop a means of comparing the W-test with other known
tests for normality. As in the previous chapter, we do so by defining a
general class of alternatives which approaches ¢(x) as n increases
and determining the exact rate and character of approach which guarantees
a non-trivial power.

The sequence of alternative distributions which we will study has

the form

Hn(x) = o(x) + en(x) (3.56)

where the disturbance functions sn(x) satisfy the following conditions:
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ep(x) exists and Ieg(x)l <D<w forall x ¢ (-w,») (3.57)

-8(x) £ e (x) 21 - @a(x) forall xe (~w,0)  (3.58)

J el (x)dx = 0 (3.59)
eﬁ(x) > -¢(x) for all x e (-»,), (3.60)

The above definition and assumptions are (2.32) - (2.37) specialized to
the normal case.

Denote by p(n,en) the quantity

Py e (1(x)) 1-Ph e (T(x)) 2 5
R v n T(x)
L (%) 17ax - [ f IOV dx] - [ f Too%n (T(x))ax]
n Pn Db
“(—> K f kS >d><f Eig"gl e (T(x))dx - [ &d j %E—:;en(’l‘(x))dx}.
p. t ( )
n n n n

n
Then, in order to guarantee a power of the W-test between the level «a

and 1, we require:

5/2_3/2
n™ p
%_J;g——?—'p(n,en) = g% (3.61)
n

for some constant d%, 0 < d* < », and, letting

12 (10g 1/p )° n3/2,8/ 3/%10g(1/p,)
- n

C(n) = max{ = ’ L }, .
pn n




77, 1o S

L

T

p—

S IR

ATt 0

T

e e e -

113

‘ en(T(x))
Lim b(n) su; |"T('>‘<')_"| = 0 (3.62)
N
-1 eﬁ(T(x))
Lim b(n)(log 1/p ) = sup |—t-(~;)—-- 0 (3.63)
pn<x<,'l.--pn

for some increasing sequence k{n) such that
Lin b(n) = =, Lin C(n)b™>(n) = 0.

The motivation for the condition (3.61) will become evident in the
course of the derivation of the asymptotic power of the test. The
quantity P(n,sn) is what might be termed the "characteristic metric!
for the test; the relation (8.61) requires that the sequence {Hn(x)}
converge to @¢(x) according to this metric at a rate proportional to
the asymptotic standard deviation of w(n) under the null hypothesis.
Heuristically, the conditions (3.62) and (3.63) insure that the alterna-
tive distributions do not oscillate too badly in the interval (pn,l-pn).
When (3.61) holds, (3.62) and (3.63) will also hold in most cases, although
an additional restriction on the parameters (Kn’Ln’Dn) may result.

The remainder of this section is devoted to proving the following

theorem:

Theorem 3.4. Under the sequence of distributions (3.56), the asymptotic

1/244 +c, ).

power of the W-test is giver by ¢((27/2) b
b

We divide the proof into two lemmas. The first introduces a sequence

of distributions {Hh(x)} which will simplify computations in the sequel.

The second contains the asymptotic distribution of W(n) under the sequence




Fm. I et aifia s e Ty e T T— T - @ v S —
3
3

11y

= of alternatives.
! Denote the function T(x) - e (T(x))/t(x) (p <xg1l-p ) by ﬁé(x),

1 with derivative

en(T(x))T(x) eA(T(x))
- ]
t(x) T(x) ~°

: BLx) = £l -

i st

Also, let Kh(x) denote the function given by

ro—

a
.,
] 0 ocxe,
A (x) = < B_(x) Py < X < 1-p_
" LY 1-p, <% <py !
§
where Ein(X) and Ebn(x) are continuous, differentiable functions which -
satisfy
aln(pn) = Bn(pn) a2n(l—pn) = Bn(l-p )
Py - St - = R'(1-
aln(pn) n(pn) a2n(l pn) Bn(l Pp)
i
Lim a, (x) = - Lim a, (X) = 4w
x>0 in %1 2n

aln(x) (a2n(x)) is strictly increasing on (O,pn) ( (l-pn,l) ).
We will not need explicit expressions for Ein(x) and Eén(x), but it
is clear that such functions exist.
Thus, Kh(x) approaches - as x + 0 and +» as x = 1. Further-

more, by (3.62) and (3.63), there exists some No such that for all "
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n >N, Eﬁ(x) (and hence Kn(x)) is strictly increasing on [pn,l—pn]
((0,1)). Since we are concerned only with asymptotic results, we lose
no generality by assuming that n > No, and we do so from now on. In
particular, we can define an absolutely continuous c.d.f. ﬁ;(y) by

specifying its inverse:

ﬁ;‘l(x) = F_(x) (0 <x<1).

We denote the corresponding density by E;(y).

Lemma 3.9. Under the above assumptions, {H (y)} and {ﬁh(y)} are

asymptotically indistinguishable.

Proof. Let {Y } be a sequence of random variables with c.d.f.'s {Hn(y)}.
We must show that hn(Yn)/Eg(Yn) converges stochastically to 1 as n =+ =,
For each n, let X be a random variable with distribution Hn(ﬁh(x)),
0 < x < 1. Then, the random variable Yﬁ z K;(Xn) has c.d.f. Hn(x):
thus we have the equivalent condition that hn(Kh(Xn))/Eg(Kg(Xn)) converges
stochastically to 1 as n = o,

Let El(n) denote the event {pn < Xn < l—pn} and Ez(n) denote
its complement. It is easily shown that PHHKA{El(n)} conyerges to 1 as

- . =~ - -}
n+e. Given E,(n), h (A (X)) =1[B(X)]" and

b, (& (X)) _ ¢(K;(xn>)il (X)) e (TR NITX) _ et (B (X))
-ﬁnan(xn)) t(Xn) 't(Xn) 't(Xn) d’(‘/_{n(xn))

Assumptions (3.62) and (3.63) imply that the expressions in brackets

converge to 1 as n + «, Purthermore,
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B(E (X)) e (T(X NTX) e (X)) 2

2 2,0\ _ )
"""_t(xn)"') = X)) - A (X)) =2 X ) [ T(%)

21og(

when El(n) occurs, and the latter expression converges to zero as
n” ®, Thus, let {Gm; m=1,2,...} be any null sequence. Then, the above

arguments imply that for each m, there is some Nm such that if n > Nm,

. h (A (X))
PH'K{il - _n—_——"“—|< Sm | El(n)} = 1.
n'n hn(An(Xn))

Finally, let {Gm} be another null sequence; let Nm by such that n:»ﬁﬁ

implies PHﬁKA{El(n)} > l-Gm. Then, n ;:max{No,Nm,ﬁﬁ} implies
hn(An(Xn))

le e} >1-38

P, + {|1 - .
m m

H A mpa
nn hn(An(Xn))

' _ . A 3

We have shown that hn(An(Xn))/hn(An(xn)) converges stochastically to 1

as desired. QED

Thus, for all asymptotic probability calculations, ﬁ;(x) can be used
in place of Hn(x). This will lead to more useful expressions from a
computational standpoint.

Let T(n) denote the (Kn+l)—vector whose elements T&(n) are given

by

L
=1 . n .
ann (pn+(l—1)—-n) i=1,K +1
Ti(n) = L

-1 . n .
H “(p +(i-1)—2) 122,3,...,K

. 5
.. ws s - aeciimner.
R L e S~enaa o n
«/m TR, -] RS AP E R ey, WY :

e e e
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and let t(n) denote the (Kn+l)—vector with elements %&(n) =

R | . . -
hn(Hn (pn+(1-l)Ln/n)), 1=l,2,...,Kn+l. Also, let e(n) denote the

b § * (Kn+l)-vector with elements
z {
1 r en(Ti(n))
tr ! qn—'E;(T l'—'l,Kn'i'l
' & =( ¢ rm)
n L i=2.3 K
ti(n) 2T
.
— n, —_—
Note that T(n) = T(n) - e(n). Finally, let I denote the

K +1
n

(Kn+l)x(Kn+l) identity matrix, J denote the (Kn+l)x(Kn+l) matrix

K +1
n

all of whose elements are 1, and M(n) denote the matrix [IK at
n
-1 . . . . .
(Kn+l) JKn+lJ’ with rows mi(n) and (i,j)th elements mij(n), i, =
l,...,Kn+l.

Lemma 3.10. Under the alternatives (3.56) subject to (3.57) - (3.63),

5/2 _3/2
1/2 n7' %p
& 2 (@) - B3
L
n

is asymptotically normally distributed with mean —(27/2)1/2d*

and variance 1.

Proof. Let §i(n) denote the quantity

¥ (n)v " (0)T(n) 72
¥ (0 )v )V () () I0T (0)M(n)T(n) ]

and let §2(n) = W(n) - §i(n). Thus, §i(n) is the constant term, and

§é(n) represents the remaining terms in a Taylor series expansion of

Leen o Ndte g,




¥(n) about the point T(n). We first consider §i(n). Denoting

s (n) - §i(n) by Z;, we have

ny
+ L Drmrmmi* T ‘
Y ()Y@ (MTF(n) v ()y()T (0)M(n)T(n)

Recalling that y'(n) = 2(Ln—l)%'(n) + e'(n), Tr(n)F(n) = (n/Ln)(l +

O(pnlog(l/pn))) and y'(n)y(n) = H(Ln—l)Q(n/Ln)(l+o(l)), we have

v (v ()T ()F)T (n)M(n)T(n) = 4<Ln-1)2<n/1.n>3<1+o(1)),

and, neglecting smaller order terms, Eh can be written as

St (n)e(n) + L;lg' (n)e(n) + (znnn)’l[ewn)%'(n)J[‘ér (n)e(n)]
I
- _

+ <2n)'2[2'<n)Z<n>J[e'(n>%(n>12+n‘lte'cn)%m)][?(n)e(n)]J

[e' (¥ @) ()F ()] + (20) " e (n)F(n) 120! (n)F(n)]

ol

171 (0% + (8 mF@IE (el + (41 )7 (m)e(n)]?

2 K +1
n

n Ti(n>32{1 r o Yer)Fm) + (20)"2[e’ m)F¥(n) I},
i=1l

| )

“ls

Finally, using the definitions of e(n) and e(n), approximating sums by
integrals, and neglecting smaller order terms, it is easily shown that
An = p(n,en)’

We next consider §é(n). To do so, we return to the notation of lemma

- Py i3 v r
S tgang, Py e
N e m it . U Al A K L5055 PO e
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3.7. We will first show that
(k)
%i“l (T = N, @) se(w) (3.64)
RPN pigee ey
as n > for all k=1,2,... and all indices ik £ {1,2,...,Kn+l}. By
(3.45), (3.64) follows immediately from the following relations:
w—— '\' —
A} (T(n)) AL(T(n)) B! (T(n)) B!(¥(n))
— = (1+0(1)) =— = = (1+o(1))
A(T(n)) ACF(n)) B(T(n))  B(T(n))
(3.65)

AY.(T(n))  AY.(¥n)) BY.(T(n)) B".(¥(n))
SRS (1+0(1)) = - (1+0(1))
AT(M)) AT B(T(n)) B(T(n))

as n =+« for i,j = l,2,...,Kn+l.
To prove (3.65), we first consider the quantity v'(n)e(n), which

can be written for asymptotic purpnses as

1-p, . 12 1Py 3
T(x) n T (%)
2n [ ET;TED(T(X))dx t 53 | ;51—;€n(T(x))dx.
P, p, t(x

Applying the mean value theorem for integrals (e.g. Bartle [1,p.327]),
(3.62), (€.8) and (C.10), we have ¥'(n)e(n) = o(nb_l(n)(log l/pn)l/Q)

as n -+ «, Using this fact,

Aé(T(n)) ZYi(n)Y'(nYT(n)

a(T(n)) [y ()T(m)1°

ALEm) v )y mEm)_ v (0)F) 2
= [ - ) ———]
ad@) e mFm® Ty )T
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< A, (T(n)) L log(1/p.)
; . i n n -1 1/2
% = [A(%(n)) + of Y] YI[1 + o(b “(n)(log l/Pn) )]
i
( At (F(n))
: = —%§z—;;—{l + o(b—l(n)(log l/pn)l/2)],
’ A n

where the last equality follows from (3.44). The remaining relations in

(3.65) are similarly established and (3.64) follows. Next we note that

since

en(Ti(n))Ti(n) eA(Ti(n))
ti(n) - ti(n)

"c'i(n) =t ()1 - 1= ()L + 8(i,n)]

- where §&(i,n) converges to zero as n + « uniformly for 1 < i §=Kn+l’
As

o - the covariance matrix of (?l""’?K +l) under the sequence of alternatives
; _ n
5 {Hn(x)} may be taken to be V(n) as defined in (3.6) for all asymptotic

purposes. Thus, we have shown that

= 1
i E{gé(n)} = E{Sz(n) + Ss(n)}(l+o(l)) = op(g(n)),

Ty and

o{8,(n)} = o(S,(n) + S4(n)}(1+o(1)) = F(n)(L+o(n)).

Thus, under the sequence of alternatives {Eg(x)}, the quantity
N n, —_— Ny ny - —_—
§ M) - 5,7 = ¢ M) - W + FHwE,

is asymptotically distributed as standard normal. Applying (3.61) and

lemma 3.9, the proof of lemma 3.10 is complete. QED

IR g e e i 5 P L R e
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' Theorem 3.4 follows immediately from lemma 3.10,

YT g T
A

3.5 Extensions

The results of section 3.4 are easily extended to the statistic W#(n),

as summarized in

AR Rl

Corollary 3.1. Assume (3.56) through (3.60) hold as well as

s ) L2
(1) (3.62 and (3.63) hold with C(n) replaced by C#*(n) = -57%—§7§C(n)
. n p
S n
: (ii) Lim np“(n,en) = dg, 0 < 4{ < ®
n-ree
% where
i - -
; Pn e (T(x)) 2 YPhe (1(x)) 2
; p"(n,en) = I [_¥(_x)__] dx - { f de}
“ n Py
; l-p
) n 2
v T(x)
N -{ TCoSn(TG)ax} .
g P,

Then, n(l - W#(n))

—_—

a* converges in law to Y¥(y - df) as n=> .

Proof. Using lemma 3.9 (with Q = 1) and expanding W®(n) in a Taylor
- series about T(n), the constant term in the expansion is given by

{{ 1- p*(n,en) as n + ., The methods used in the »>of of lemma 3.10 apply

i immediately to the quadratic and higher order terms, yielding the fact
Z} that the differences between these terms in the expansions under Hy and

Hl are op(l/n). To see that the linear term in the expansion is also

B T
e s w7 o

op(l/n), we use (3.24) (with y(n) replaced by T(n)) together with assump-
n —
tion (i) above to obtain the result that Vél) (T(n)) is

3/2
o(L,_(log 1/p )Y/

/nb(n)) as n =+ <, Hence, using (3.16), the variance
. of the linear term is of smaller order than (log l/pn)s/an(n), which is

O(l/nz). Applying Theorem 3.2, the proof of the corollary is complete. QED

.
e R T W

Y Pr = L™




g

We remark that the Schwarz inequality implies that the "metric"
p*(n,en) is always positive. The same cannot always be said to hold for
p(n,en). In fact, the W-test can have very interesting power functions,
as illustrated in example 3.2 below. The next result, however, gives

one example of a sufficient condition for p(n,sn) = p*(n,en).

Corollary 3.2. Assume that (3.58) through (3.63) hold as well as

/4

. 2 3/u _
(A) Lim ann/n =0

-0

en(T(x)) ® m
(B) < is of the form Z cm(n)T (x)
m=0
where the constants {cm(n)} satisfy
cm(n) = 0(cm_l(n)pn) m=1,2,...

Then,

p(n,e ) = p%(n,e ) = 2cg(n)pn(l+o(l))
as n+ o,

Proof. Let

1-P  34m 1-p,
e (L [

0 I_(x) ax | T2(x)dx
m=0 p, tT(x) P

p(l)

mols

=1
"3

ne~18

=]

n

1-p l-pn L
+m

n U
B R N T
pn t (X) pn
(Log l/pn)m+l

AY {
02m+l(n, 5 (1 + o(pnlog(l/pn)))

1
3

ne~38

L2
_n
n2 m=1

L2

= o ;% co(n) (p log l/pn)2)

o

DR A - |
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since the expression in brackets is identically zero for m = 0,1,2 and

i all even integers thereafter. Note that

i Py e (1(x))
g | [
! t(x)

o Pn

]2dx

e2(n)(1-2p_+0(p2))

L ot o e %

P o (Tx) 2

{ [ ———dx}

e ca(m)((1-2p)%+0(p2))

n

1-p, 2
{f T(X)e (T(x))dx}
p

TG0)°n ci(n)(l+0(p§)) = cg(n)O(pi).

n

Combining the above and neglecting smaller order terms, we see that

(1)

2 o _ 2 .
p(n,en) = 2copn +p ', and p (n,en) = CPp Finally, assume that

n5/2 3/2

2
Lim ————2— (e%(n)p.) =
n->o Li 0 n

s

.. . . 5/u
This imples that co(n) = O(Ln/(npn) , so that

5/2 3/2
n / p / L pg/u(log 1/p )2
n (1) _ n“n n _
—z o = 375 ) = o)
L n
n
by assumption (A). Thus, under (3.61), p(l) is of smaller order than
2 . 2 .
co(n)pn, and p(n,en) = p“(n,en) = 2co(n)pn(l+o(l)) as desired. QED

It is clear from the form of the power function of the W-test that
the rate of approach of alternatives to the null hypothesis which yields
a nontrivial power increases as the order of Ln decreases. Hence,
assymption (A) is quite reasonable. Examples 3.1 and 3.2 below illustrate

assumption (B) when (A) does and does not hold, respectively.
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Before turning to the examples, we introduce two additional statistics

1-py en(T(x)) 2

—{ lj; _'EW dx}
n

i
|
|
4
{
\ 1 motivated by the results above. In both p(n,en) and p“(n,en), the term
|
|
i
|
l
i

o n ,
| arose because D2(n) was used in the demoninators of W(n) and w“(n).
. . 2 ALY .
In particular, we found that replacing D"(n) by Y'Y results in the
elimination of precisely the above term from each of the two metrics.
] That, of course, does not guarantee that the tests based on the modified

statistics will have improved power, since the distributions of the

statistics under the null hypothesis, and hence the critical regions of
the tests, would be expected to change also. However, it turns out that

ny
f the asymptotic distribution of the modified W(n) does not change, and

the distribution of the modified W#(n) changes only slightly.

Formally, we define the following two statistics:

n . -1 2
%’(n) - ~ [fi‘_in)v -J(-n)?]
1 [F (V™ (n)V " (n)F(n) ¥ Y
| v . 2
ey = LT ()Y

T () T(m) Y

The asymptotic distributions of these statistics under the null and
alternative hypotheses are summarized in the last two corollaries of

this section.

R SV e e s

Lant’ 3 Gty ok ’ - .
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Corollary 3.3. Under Ho’

[

1/2 n5/2p3/2 "

(i) (2%) -——5—2——(w(n) - g(n)) converges in law to (%)

L
n

(ii) n(1 - We(n)) - aﬁ* converges in law to Wl(y), where
L Kn+l Kn+l L

4x o D n
- izl jzl[_“Ti(n)T'i(n) - 833dvy5()

and Wl(y) is the distribution of

2
(Xk-l)
k=2 X
with X2, X3,... i.i.d. standard normal random variables.

Proof. (i) Consider tne effect of replacing BQ(n) by ¥'¥ on the ex-

pansion (3.19). Since ¥, = 0, Sl(n) is unchanged. Similarly, W .(l)(W(n))
is unchanged, so that 82(n) remains the same. The only effect on

ng) (?(n)) is to eliminate the term (Kn+l)_l, but this has no bearing

on the asymptotic order of S (n). In fact, (3.44) still holds (except
that B" (.) =0 for i# j) so that the effect on S, (n) is asymptoti—
cally negllglble. In summary, the asymptotic distribution of W(n) is

the same as that of w(n) under the null hypothesis.

(ii) The proof of this result appears at the end of Appendix B. QED

Corollary 3.4. Assume (3.56) through (3.60) hold.

(i) Assume (3.61) through (3.63) hold with p(n,en) replaced by

1-p

py(n,e)) = p(n,e ) + { é

n en(T(x)) 2
<0 dx} .

n

3 - - — L ot
S t] ~ ‘
N S I TR 7 N e, ¢ e g
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Then,
5/2_3/2
1/2 n v
& —E— ) - ¥m)
L
n

/

converges in law to &(x + (27/2)l 2d*) as n -,

(ii) Assume (i} and (ii) of Corollary 3.1 hold with p*(n,en) replaced

by

l“pn en(T(x)) 2

pi(n,en) = p*(n,en) + { f <Gy ax} .
n

N
Then, n(l - W*(n)) - ag* converges in law to Wl(y—di) as n -+ =,

Proof. (i) The change in the metric from p to Py is easily verfied,
Since (3.64) remains valid, the remainder of the proof of lemma 3.10
applies and the result follows. (ii) The change in the metric from p%*
to pi is again easily verified. The proof of corollaiy 3.1 applies to
the linear and higher order terms in the expansion of W*(n) and the
result follows. QED

N
ny
Thus, the power of the test based on W(n) is strictly greater than

the power of the test based on W(n). We cannot make such a strong state~
n

merit about the power of the tests based on W*(n) and w*(n), but, in

L4

general, *(n)-tests are more powerful and often hyper-efficient with

N,
vespect to W%(n)-tests.

3.6 Examples

Example 3.1. Let Hn(x) = (l—Gn)¢(x) + 6n¢(x+xn), where 0 < Gn < 1,

n3/14

and take Ln = (log l/pn)-l. From assumption (3.4), this is "almost"
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1 as small as Ln can be made. Finally, let )‘n = Py Then
. e (x) = 6 (8(xtp ) - 8(x)),
or
e (37Hy)) = 6 (a7 y)ep ) - ).
n n n
; Using a Taylor series expansion and rearranging terms,
( P2 P P3 P2 )
n n n,.-1l n,,-1l 2
g l-—6'—(—2--—§)¢ (y)+-—6-(d> (y))
: -1 . -1
% o) =y s TN (o &
n, .-l 3 4 y
- 5¢® “(y))” + o(p (log 1/p )")
= L )
. so that ) p2 , p3 p2 N
B -1 -
| . 1- 2 2Dyl ¢ B en?
, e (87(y))
v _—?___ = P 6
y 0@ iy PR Y 3
! - m 4
3 - 2@ y)® + o(p? (20g 1/p)")
b n n
g \ 7
o
“
' Thus, both (A) and (B) of corollary 3.2 are satisfied, and
by
a% :
pn,e ) = p*(n,e ) = 2p_(p 8 )"(1+o(1)).
*:
P Also,
A
§§ - ofs - ( 6 )2
| pl(n,sn) = pi(n,en) = (p 8, (1+o(1)).
;K
I
ﬁ Finally, for purposes of comparison, the Kolmogorov-Smirnov distance is
1
i given by
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-1/2
sup |H (x) - ¢(x)| = sup |en(x)| = (2w) pnén. .
—oiy<e D LR <o

] | The conditions yielding non-trivial powers and the powers themselves for

the various tests we have considered are summarized in Table 3.2. Let

T YN

>

"A_ << B " =signify that the sequence of tests based on the statistics
n n
{An} in hyper-efficient with respect to the sequence of tests based on

the statistics {Bn}. Then, for the sequence of alternatives considered

§ : in this example,

n,
. N v " (n)
T(n;el,e2) << W(n) << W(n) << Wi(n) <<

D
where D denotes the two-sided Kolmogorov-Smirnov statistic.

Example 3.2. We again let Hn(x) = (l—Gn)é(x) + 6n¢(x+pn), except this

| time we choose

-2/5
; L =n p_ = n-(log n)
, n n

Feasibility conditions (3.2), (3.3), and (3.4) are easily verified for

these functions. Using results in the proof of corollary 3.2, we have,

neglecting smaller order terms,

- 1 2 2
p(n,en) = - 75((Ln/n)(log 1/p)) S, + 2p 8.

Note that
nn-

Poda o((ly/m)?(log /0% 8.) 188§ = o((Ly/m)(10g 1/p)2),

and
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ASYMPTOTIC POWERS UNDER Hn(x) = (1-6n)¢(x) + 6n¢(x+pn)

Sequence of tests

Condition yielding non-

Power of level-a test+

based on trivial power
& 1/2_9/u i} (eny1/2,2
W(n) n™ “p_ (log l/pn)Gn =4, ¢(c¢’a + 54) dl)
Y 1/2_7/4 1/2,2
W(n) o™ p (log l/pn)én = d2 ¢(c¢,a + (27/2) d2)
n, 1/2.3/2, _ ) )
Wi (n) n™p 76 = dg 1 W(cw’l~a d3)
v
N 1/2 _ _ -
W (n) np 8 =4, 1 wl(cwl,l-a du)
1/2_ 4
D np O = dg tf
e 1/4 1/u 2
T(n,el,ez) Ln n n6n d6 ¢(C¢,a + 1.99d6)
c'-‘
+ F,o
where ¢ is defined by [ dF(x) = a

F,o

-0

++closed form expression does not exist

oy :
Whugrsin Lo P T ‘
it i Nt e S b s i R
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2
n5/ pi/Q Lﬁ(log l/pn)2
Lim 5 5 p.8§_ <
n-o Ln n nn

implies that

Li(log l/pn)2
) = of 5 ) .

n

2

§_ = O(n_llzp:]s/2

0 (log l/pn)_

In Figure 3.3, we use the above facts in conjection with assumption (3.61)
to plot the power of the W-test as a function of the rate at which Gn
approaches zero. When § = const‘n_l/QP;5/2(log l/pn)—Q, p(n,e ) < 0,
and any power between O and & 1is obtainable by choosing the constant
appropriately. For § = const-(Ln/n)z(log l/pn)2, any power between 0
and 1 is obtainable by choosing the constant to solve the appropriate
quadratic equation.

Figure 3.3 illustrates a rather interesting phenomenon--a test which
is both biased against a sequence of contiguous alternatives and con-
sistent. As alternatives approach the null hypothesis at a very fast rate,
the test cannot discriminate between the alternatives and the hypothesized
distribution, and the power is equal to the level of the test. As the
rate of approach slows down, the test can discriminate, but because of
the bias, the power decreases rather than increases. Eventually, if the
rate of approach slows down eno'gh, the consistency property of the test
takes over and the power increases to one. What is most interesting is
that the rates at which the bias sets in and the consistency sets in are
different, resulting in a set of alternatives which are never detected by

the test.

The author knows of no analogs to the above behavior in the literature.

LRy 1) oo
A S - et s
. s bt BN vl i 2o M S5 it it ol
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FIGURE 3.3

ASYMPTOTIC POWER OF THE W—TEST
AS A FUNCTION OF THE RATE AT WHICH Gn APPROCHES ZERO

4

N
v

Power

A 1 L2
2
nl/2 nl/zpi/z(log l/pn)2 —g(log l/pn) n
n

Rate at which 6n >0

+ faster slower -
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Bias has been exhibited for both the Kolmogorov-Smirnov test (Massey [18])
and the Cramér-von Mises test (Thompson [36]). However, in each :ase, the
bias was proved only for a fixed alternative and fixed n finite; to our
knowledge, analysis similar to the above in which contiguous alternatives

are considered has not been reported.

3.7 Concluding Remarks

There are at least three results above which deserve further emphasis
in that they suggest possible areas for future research.

First, the large-sample results above for the tests based on a gradu~
ally increasing number of order statistics stand in contrast to the
empirical, small-sample, results obtained for the analogous statistics
based on all n order statistics. On the basis of the empirical studies
cited in section 3.1, the consensus in the literature has been that in

using the Shapiro-Francia test, an approximation to the Wilk-Shapiro test,

one gains computationally but pays at least a small price in terms of
sensitivity to alternative distributions. Above, we found that it was W
that approximated W*, and not vice versa, in the sense that the errors

in the approximation controlled the asymptotic distribution of W and
caused the associated test to be inferior to the w*—test in discriminating
contiguous alternatives. In section 3.2.4, we mentioned a possible
approach toward resolving the open question of the relation between the

large-sample and small-sample results.

=4

n
n n,
Second, the results for the modified statistics W and W+# suggest

that modifying W and W® in the same manner would lead to superior
tests. It would be useful to carry out empirical, small-sample, studies

on such tests. In view of the widespread acceptance of the W- and
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and Wh-tests, it would be of considerable practical value if such studies
k. . should yield results which agree with the large-sample results obtained

. here.

4

| n
i 3 Finally, the test based on W#* isworthy of further study in its own

right. In example 3.1 we found that even against alternatives which are
if particularly easily discriminated by the Kolmogorov-Smirnov test (i.e.
n,
! the Kolmogorov-Smirnov distance is maximized at the origin), the W-test

performed well. Since the metric pi(n,en) heavily weights disturbances

in the tails, it should not be difficult to find situations where the
LY

We-test is very efficient relative to the Kolmogorov-Smirnov test, and

e - g R

perhaps to the other EDF tests as well. It would also be interesting to
n,

study the empirical behavior of the W*—tcst, but, as pointed out in

RS

=Y

section 3.2.4%, for moderate sample sizes the asymptotic theory is in-

st Ty

. adequate, and even the distribution of W#(n) under the null hypothesis

R
SRS

would have to be computed empirically.

A G2 Ty P

L

g™
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APPENDIX A
i s MONTE CARLO RESULTS FOR THE WEISS STATISTIC UNDER HO v
i
In this appendix we describe the results of a Monte Carlo study of -

| the distributions of the statistics T(n;61,92) and T(n;el,ez) (defined
in section 2.2.2) under the null hypothesis of normality.
{ For each of the sample sizes n = 100, n = 200, and n = 300, we

consider three choices of the functions Lo Kn, and P, These choices are

labeled cases I, II, III as defined below.

1-¢

Case I: Ln = greatest integer < n T here 6n = (log n)_l/u
5 -82
K = greatest even integer <n [1-2n 1
| P, = (n - KnLn)/2n .
Case II: L_ = greatest even integer §:n6 where 6 = .7 -

n

P, taken as close as possible to the value in case I such that
np_ is an integer and K_ > 2
n n =

K = (n- onp )/L_ .

Case III: same as case II with 6 = .8 .

Since we were particularly interested in studying different choices
of Ln, the values of p, were made as uniform as possible in order to
minimize the effect of moving into the tails at different rates. The
values of the functions for the different cases and sample sizes are sum-

marized in Table A.l.
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TABLE A.l
PARAMETER SETTINGS FOR MONTE CARLO STUDY

n
100 200 300
Case Case Case

Parameter (I II  III I II IIiI I II 1IIT

Ln 424 39 6 |40 69 7 |54 95
Kn 16 3 2 26 4 2 32 4 2
P, <181 .14 .11 .11} .10] .115} .12q¢ .14 | .18

For each case and value of n, 100 sets of n N(2,4) random
variables were generated using the Box-Mueller method, and the statistics
T(n;el,e2) and T(n;él,82) were computed. The ordered values of the
statistics are plotted on normal probability paper in figures A.l
through A.6., Each figure contains the results of cases I, II, and III
for a specified value of n, the odd numbered figures when el and
62 were specified, the even numbered figures when they were estimated
from the samples. Deviations from linearity in the figures correspond
to deviations from normality of the empirical distributions of the
statistics.

The study was admittedly limited in scope; those conclucions we

felt were valid are discussed in section 2.4.1.
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; APPENDIX B
' | PROOF OF THEOREM 3.2 '
Throughout this appendix, we assume that Yl(n),...,Yn(n) are the
order statistics of a sample from a standard normal population. Suppressing
W; f the dependence on n, we let Y denote the (Kn+l)—vector with elements
; Y. = v . and let Z denote the (K +l)-vector with elements
i i npn+(1—l)Ln’ n
i %i = /E%i(n)(?i - Ti(n)), where n, p, L, ti(n), and Ti(n) are as
:;* defined in section 3.2.1. The distribution of ¥ is asymptotically
{ indistinguishable from the (Kn+l)—variate normal distribution with mean
vector 0 and covariance matrix Z(n) is given by (2.23).
' Before proving the theorem, it is necessary to establish a linear
Qy transformation which can be used to express %i as the weighted sum of
:\ ! Kn+l i.i.d. standard normal random variables.
3 ) B.l A Linear Transformation

Define U = (Ul,U U ), where Ui’ 11 é=Kn+l’ are i.i.d.

2ttt Kn+l
N(0,1) random variables, and let A denote the (Kn+l)x(Kn+l) matrix

with elements

-
1 i=j=1
1 i=j=2,3...,Kn
l+r 1=3=Kn+l
ags = (1 D=3,k
rz—l/2 i=l;j=Kn+I
T i=2,3,...,Kn;j:Kn+l
0 otherwise *
\
where
-1/2
Ln Ln(l+pn )

& E —— z - .
A TE N A
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. . e , -1 -1, .
It is easily verified that A'A = Zl (n) (where 21 (n) =
(n(Ln—l)/Li)Z(n) is given explicitly in (2.27)). Thus, letting B =

2,-1/2,-1
(n(Ln-l)/Ln) A

, the random vector 2% = Bll has the same asymptotic
distribution as Z and can be used in place of % for all asymptotic
probability calculations.

Let Dl(m) denote the determinant of the m x m matrix

- -
1 r
-1 1
1 r
L -1 i

where all remaining elements are zeros. Expanding by the first row,

Dl(m)

D, (m-1) + p(-1)™ L-1ymL 2 D, (m-1) + 7

Dl(m—2) + 2p = ,,. = Dl(l) + (m-L)r = 1+ mp .
Now call D(A) the determinant of A. Then, expanding by the first row

of A.

K K
D(A) = VZD (K ) + o1y M- M= VRQHK ) + 2 (B.1)
vy n Ve

It is now easily verified that the matrix B has elements bij given by

r ~
2 1 L+ (K +1-i)r j=1
_ n 1 3 . .
bi’j = [m] ——D ) < /E(l'!'(Kn'i‘l l)P) 1232 1 5 . (B.Q)
e((A-1VE + 2 ) i<
/T
\ J
We note that i. tow "~qually spaced" case, & = 1, and the trans-
formation A reduces t¢ '+ . .o"ormation given in Weiss [38].

B.2 The De Wet and Venter Theorem

The proof of Theorem 3.2 is based on the work of De Wet and Venter [9 ,
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10]. For completeness, their key theorem is included here. The notation
used in this subsection is their notation and does not refer to any
quantities defined elsewhere in this thesis.

Let 2 be i.i.d. random variables with zero means, unit

1,22,...

variances, and finite fourth moments. Let cijn (i,j=1,2,...,n) be real

numbers with c¢.. =c¢., for all i and j and set
ijn jin
T, = ) ci.nZiZ.
i, 2P

Theorem (De Wet and Venter [101). Let {bimn;i=l,2,...,n; m=1,2,...} and

{Ym; m=1,2,...} be real numbers; let {Mn} be a sequence of integers

with M~ o 3 let
— ———— n e pt—

M
A
t = Y .
P m=l "
Assume that as n =+ « ,
max Ibimnl + 0 for each m
1<i<n
max |Ib, b -8 ]|= o(t™h
Lgkomgh i imn ikn  m n
max ¥ b2 nb?k = o(t_2)
1<k, mell_ imnikn n
2 ci.n+r=zy2<oo
i, 1"
max | I e, b, b - | = ot™hy.
Lgemgi_ 4.3 ijn"imn jm n
Then,
. T (g2
Dist(T - ET ) - Dist( § v (Y. -1) )
With Y,,Y,,... i.i.d. N(0,1). .

ey e
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The assumptions of the theorem appear quite formidable to verify.

However, as De Wet and Venter point out, it is often the case that

-1
Y n s s
Cisn = e(i/n+l,3/n+l)

where c¢(+,*) is measurable, square-integrable on the unit square, and
symmetric in its arguments. Then, letting {gm} and {ym} denote the
eigenfunctions and eigenvalues of ¢ and supposing {gm} is an

orthonormal system on (0,1), selecting bimn = n”l/2gm(i/n+l) will often
satisfy the assumptions. Verification involves showing that the differences

between the various sums and the corresponding integrals are sufficiently

small.

B.3 Proof of Theorem 3.2

We consider the Taylor series expansion of W (n) analogous to the
expansion (3.19). It is easily seen ‘that the constant term in the new
expansion is identically equal to l; the linear term is identically equal
to zero, and the remaining terms are asymptotically exactly the same as in
the expansion (3.19) (with %i(n) replaced by Ti(n) since Q Z1).
Thus, as proved in lemma 3.7, the cubic and higher order terms (i.e. Su(n))
are of smaller order in probability than the quadratic term as n * « ,
and the asymptotic distribution of (1 - W%(n)) is thus the same as the

asymptotic distribution of (-S,(n)) given by
2

L K+l Ko+l
L n -1 \ n,
" i j=Zl [— Ti(n)Tj(n) (K +L) T - éijJ[Yi-Ti(n)][yj_Tj(n)]. (B.3)

We define the functions {Eij; i,j=l,2,-o-aKn+l} by

L
1-(p + (i-l)%—) i
£.. =

1] L
-(p_ + (i-l)—n‘l) i<

v
o

\
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Using ‘the definitions together with the transformation (B.2), tedious but

straightforward calculations yield the result that

L K +1 K +1
“nz n[ (n)U,U, + R(n) (B.4)
-S,(n) = — c,.(mU.U, + .
2 noLd 521 ij i3 n
where
- (1) (2) (3)
cij(n) = cij (n) - cij (n) - cij (n)
with
K +1
L n g, .E .
R R
k=1 tk (n)
2 K+1 K +1
(2) L Exi®mi
¢e.,.” (n) == —_—
1] n? y=1 me1 Glrlt (n)
(3) - Lﬁ Kh+l Kn+l Tk(n)Tm(n)
c.. n) = — £, .5 .
) D8 pe SE () Tkitm]

/2

and R(n) is op(pi (log l/pn)z) as n =+ », In writing the coefficients
for the above sums, we have used the fact that D2(A) = 2r2K§(;To(l))
as n > e,
The asymptotic expected value of N(l—%*(n)) is obviously ag,
which was shown in (3.41) to be of(log l/pn) as n =+ o ., Futhermore,
the expression
L Kn+l Kn+l
= Lo L ey
i=l j=1
in (B.4) above is completely analogous to expression (50) of De Wet and
Venter [9] with their wik replaced by gki’ except that the {Ui}
here are normally distributed, whereas the {Zi} in their expression (50)
are exponentially distributed with mean zero and variance 1. However, the

theorem stated in section B.2 depends only on the independence and certain

moment conditions of the variables, all of which are satisfied in either
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case. Hence, their derivation of the distribution of their statistic
N\
ri (9,pp. 144-5] and [10,pp. 385-6] immediately implies that n(L-W¥#(n)) -

ag is asymptotically distributed as

N8
>
=N
~

k

where X3,Xu,... are i.i.d. standard normal random variables. This

completes the procf of theorem 3.2.
"

n
In section 3.5 we introduced the statistic W%(n). Extension of the

above proof to the distribution of this statistic requires further

elaboration of the method of De Wet and Venter. Set
c(l) (2) c(3)

c(x,y) = (x,y) - ¢ (x,y) - (%,y)
with
(1) L e(z,x)e(2,y)
c (x,y) = | S g
0 t7(z)
RCON € R NN
SRR ETIC)) T BB
(3) 11 00)1ev) 1
e 7 (x,y) = ({ gm E(2,%)E(v,y)dzdv = 2 g, (x)g,(y)
where
1-x if x2y
g(x,y) =
-X if x <y

and gk(x) = Hk(T(x)) with Hk(-) the k-th normalized Hermite polynomial.
The above functions are the continuous analogs of the coefficients in (B.4).

The sequences {gl,g2,...} and {1,1/2,1/3,...} are the eigenfunctions and
(1)

eigenvalues of ¢ (x,y), so that {gs,gq,...} and {1/3,1/4,...} are the
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eigenfunctions and eigenvalues of c(x,y). This fact leads to the choices

imn gm(pn+(l-l)Ln/n) i
m= 3,4,...
Y = 1/m

in the De Wet and Venter thoerem, and the result of Theorem 3.2 follows for

W (n).
Y]
For w*(n), expression (B.3) is unchanged except that the term

(Kn+l)-l is missing. This, in turn, implies that (B.#) is unchanged except

(1) 3)

( . (2)
that cij(n) = cij (n) - S5 (n); the terms corresponding to €43 (n)

vanish. Thus, in this case, c(x,y) has eigenfunctions {g2,g3,...} and
v

eigenvalues {1/2,1/3,...}. It follows that n(1-W*(n)) - aﬁ* is asymptoti-

cally distributed as

Ie~18
=<
= N
=~

k=2

where X2,X

part (ii) of corollary 3.3. We named the above distribution Wl(y). Tables

goere are i.i.d. standard ncrmal random variables. This proves

of this distribution are not available but can be created by numerically

inverting the characteristic function as in [9].
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APPENDIX C

AUXILIARY FORMULAS

In this appendix, we collect for reference purposes various formulas
concerning functions of ¢_l(x) which were required in chapters 2 and 3.
We also illustrate the formal procedure for approximating summation by

integration and obtain upper bounds on the errors of such approximations.

C.l Derivatives, Integrals and Limits for Functions of ¢-l(x)

Derivatives. Let T(x) denote ¢_l(x), t(x) denote ¢(T(x)), and

f(x) denote t(x)T(x). Then the first four derivatives of f£f(x) are

given by

F£ ) = 1 - 12(x)
£2) () = ~21(x)/t(x)

(c.1)
£y = —201 + T20)/%(x)

£ () = a(r3x) + 1))/ (R).

It is easily verified by induction that as x approaches 0 or 1, we

have
f(k)(x) = -2-(k-2)!Tk—l(x)/tk_l(x) + (smaller order terms)

for k > 2.
Integrals. The analysis in chapter 3 required evaluation of expressions
of the form
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where k > 2 is an integer,
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b(n) .k
em) [ TELgy (c.2)
a(n) t (x)
a{n) > 0 and b(n) »1 as n + o, and where

c(n) approaches zero rapidly enough that the expression remains bounded.

Using the fact that

é% t_l(x) = T(x)/tz(x), we can obtain an iterative

relation for integrals of the form (C.2) by integrating by parts. We have
b(n) _k b(n) k-1
Tk(x) dx = Tk—z(X) Tgx) ax
a(n) t7(x) a(n) t7 “(x) t7°(x)
k-1 b(n) b(n) k-2 k
= L8 () T8y () Ty,
t "(x) a(n) a(n) t(x) t (%)
so that
b(n) .k k-1 b(n) b(n) k-2
L) gy = 2T (%) M e iy (c.)
a(n) t () to 7(x) a(n) a(n) t(x)
Similarly,
b(n) Tk-2j(x) ! Tk-2j-l(x) b(n) (k-25-1) b(n) Tk—2j-l(x)
T S ) ) R dx
a(n) t (x) t T(x) a(n) a(n) t(x)
for j =1,2,...,[k-1/2] (where [h] denotes the largest integer < h),
and

b(n) b(n)

T(x) I !
dx = 13 =y

a(n) t(x) %) a(n)

(c.u4)

Ty - T q}

»
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Combining the above, the integral in (C.2) can be written
=y
1 . 1-k k-1 'z 3 (k+1-23) (k+8-23) « « - (k-1) ;  k-2j-1 b(n)
e O R COIE I G S 3 T (x)}]
j=1 (k-1)7 a(n)
(€.5)
v3.50 00 (ko1) PER)
+ 3 (ur(-0)) 28500l T K ax.
(k-1) a(n)

Note that is a(n) -+ 0 and b(n) »1 as n -+ «, then the term

dominates the above expressions. Also note that if k is odd and a(n) =
1-b(n), then (C.2) is zero by symmetry. Finally, from (C.4),
b(n)

/ t—2(x)dx
a(n)

ot Xa(n)) + t H(b(n)))

o([a2(n)1og 1/a(m)1 Y 24[(1-b(n)) 10g 1/(1-b(n))1 7+ ?)

(c.6)

if a(n) 0 and b(n) 1 as n =+ », where the last line follows from
(C.10) below.
Limits. Using the fact [13,p. 175] that

$(x)

1 - o(x) ~ = as x>
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and taking x = ¢—l(y) (and y = 1), we obtain
T(y) . 1
Ty 4" Ty a7 -+~ 1. (c.7)
The following are also easily verified:
2

. T(y)
Lim =2 (c.8)
y+0 log(1l/y)

o BY)TY)
Lim - = -2 (c.9)
y0 ylog(1l/y)
Lim £y) = V7 . (€.10)

y=>0 y(log l/y)l/2

The corresponding limits as y = 1 are obvious,

C.2 Approximating Summation by Integration

For concreteness, we formalize the procedure used throughout chapters
2 and 3 using two expressions which are representative of those appearing in
chapter 3.
(A) Let y(r) denote the function Tj(x)/tk(x), where k is a positive
integer and j is an even integer > k. Also let a denote the quantity
P, * (i—l)Ln/n, and set i% = greatest integer égKn/2. Let S(n)

denote the sum

S
*i




and let I(n) denote the integral

Then, S(n) - I(n) = El(n) + E2(n) + Es(n) where

Ln i% qni%
El(n) = — 'Z w(ani) - [ wx)ax
i=2 P,
Ln Kn l'-pn
) = T W s [ oo
AL n(it+l)
An(if+l)
Eg(n) = - J P(x)dx .
ni®

Using the fact that ¢(x) is monotonically decreasing on

.

i a .,
Byl s I ey - eolax
152 85(i-1)
N a .
_'Lu nl
= 1T ) - wa ) ldx
i=2 an(i—l)
Ln i%
= T i§2 (‘l’(an(i_l)) - d)(a ))
Ln
== (¢(anl) w(ani,))

(0,1/2),
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s
Yoo
, : - o) p*(10g 1/p ) FTO/2)
r ! —) p, (log 1/p } .
A symmetric argument applies to |E2(n)|. Clearly, Es(n) is O(Ln/n).
] .
Thus [S(n) - Im)| s O((L /B ¥(10g 1/p ) ITF2). From (c.5), 1(w)
is 0(p3'1-k(10g l/pn)(j—k)m). Hence,
¥
S(n) = I(n)(1 + O(Ln/npn)).
(B) Let S(n) denote
" K
L n ¢ (T(a_.)) 2
2y [P ni "
D=2 t:ani:
]
and let I(n) denote
iy
-r«w“z
B 1Py e (1(x)) 2
”: L t(x) Jax .
. d:% [ n
',; Then,
% T
: ) ) no%hi e (M@ )2 e (T() 2
[S(n) - I(n)| 2 y J I[—t—(—a__.T—] - [——t—(;j—] lax .
i=2 a_,. ni
n(i-1)

el PV A

L
y S VRV LR S

v
i

¥

T ETETTRA 2 SR v bt
" 3 n v o o " m b & -
+ iw < i e i '.!“
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Since
e (T(x+(L_/n))) 2 € (T(x)) 2 L e (T(E)) e'(T(g)) € (T(8)) T(§)
= z = [-B 1 +2—= = + 2 ]
t(x+(Ln/n)) t(x) n t(a) t2(E) t(g) t(&)

for some £, x < § < x+(Ln/n), (3.62) and (3.63) imply that

L
(log l/p ) + 2

L
|S(n) - I(n)]| )
nb2(n) . nb2(n) 122l ( 5'

o2

L
o(— (log 1/p.))
nb2(n) n

where b(n) is as defined in (3.62) and (3.63). In particular, the latter
expression is o(p(n,en)). Similar results may be obtained for the integrals

of Chapter 2 using (2.4l1).
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, All of the results are asymptotic, as the sample size n tends to

! infinity, and all of the test criteria which we examine are based on

functions of an increasing subset of the ordered sample values. By increasing
subset, we mean that as the sample size tends to infinity, the number of order
statistics which we consider also tends to infinity. By assuming certain
relationships among the number of sample quantiles in the selected subset,

the separation between those quantiles, the rate at which the quantiles

move into the tails of the distribution, and the smoothness and size of the
tails of the density function of a standard representative of the hypothesized
scale-location parameter family, we are able to assert that the selected
subset of sample quantiles is asymptotically jointly normally distributed with
known mean vector and covariance matrix.

The Weiss procedure is based on a quadratic form of the sample quantiles
which has an asymptotic chi-square distribution. We examine the asymptotic
power of his test under sequences of contiguous alternatives of the form
H (x) = G((x-6,)/6_) +e(x), where G(y) is the standard representative
of the scale-ldcation pgrameter family appearing in the null hypothesis,
and the "disturbance functions" {e_(x)} satisfy certain regularity conditiong
By letting the sequence {e (%)} Spproach zero at a certain rate and with
respect to a certain measure of distance, we obtain a non-trivial power for
the test.

Turning to the composite hypothesis of normality and using the same
approach of selecting a gradually increasing subset of order statistics, we
develop large-sample analogs of the Wilk-Shapiro and Shapiro-Francia tests,
two of the most effective (small samples) but also least understood tests
for normality. We show that the analog of the Wilk-Shapiro statistic is
asymptotically normally distributed under the null hypothesis as the sample
size tends to infinity. We also show that, asymptotically, the analog of the
Shapiro-Francia statistic, suitably standardized, has the same distribution
under the null hypothesis as a certain weighted sum of independent chi-square
random variables. Up to a shift in location, the latter distribution
is the same as that derived by de Wet and Venter for an analog of the
: Shapiro-Francia test based on the complete set of order statistics. We
further prove that the tests based on the above statistics are consistent.
Finally, we study the behavior of those tests under the sequence of
alternatives {H_(x)}. We find that the measures of distance for the tests
j are quite complicated. We also find that, contrary to most small-sample
I empirical studies, the analog of the Shapiro-Francia test has better
asymptotic power than the analog of the Wilk-Shapiro test, and we show by
example that the analog of the ¥Wilk-Shapiro test can be Liased, even
| against sequences of contiguous alternatives. As a consequence of the power

studies, we propose and analyze two further statistics, modifications of those
discussed above, which yield improved tests for normality.
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