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CHAPTER I

[Introduction
r 1.1 Introduction and Summary

A major area of continuing statistical research has been the develop-

ment of procedures to test the conformity of data to a given hypothesis.

Such procedures are known as goodness of fit tests. The hypothesis of in-

terest usually stems from the assumption that the sample population is

characterized by the same properties which characterize a particular dis-

tribution (simple hypothesis) or a particular family of distributions

(composite hypothesis), Goodness of fit tests are useful in demonstrating

by means of formal significance statements that such hypotheses are inade-

quate to explain the observations, or, in the absence of such significance

statements, providing the impetus for further data analysis based on other,

parametric, statistical techniques.

In this thesis, we are concerned with tests of the composite null

hypothesis that the distribution function of the observed sample is a

member of a specified scale-location parameter family, where the scale and

location parameters are unknown and unspecified. We first study a test of

this hypothesis proposed by Weiss [41]. Then we turn our attention to the

most common special case--that of normality--by proposing and analyzing

several tests which are large-sample analogs of the most efficacious (based

on empirical evidence) small-sample procedures. All of our results are

asymptotic, as the sample size n tends to infinity, and all of the test

criteria which we examine are based on functions of an increasing subset of

the ordered sample values.

1
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I 2
By increasing subset, we mean that as the sample size tends to infinity,

the number of order statistics which we consider also tends to infinity.

ky assuming certain relationships between the number of samp'e quantiles

in the selected subset, the separation between those quantiles, the rate

at which the quantiles move into the tails of the distribution, and the

smoothness and size of the tails of the density function of a standard

representative of the hypothesized scale-location parameter family, we are

able to assert that the selected subset of sample quantiles is asymptoti-

cally jointly normally distributed with known mean vector and covariance

matrix. The motivation behind choosing a gradually increasing subset is

that we achieve a workable distribution theory while retaining "most" of

the information contained in the sample.

The Weiss procedure is based on a quadratic form of the sample quan-

tiles which has an asymptotic chi-square distribution. Weiss proved that,

under the null hypothesis, replacing the unknown scale and location para-

meters by estimates obtained from the sample does not alter the asymptotic

distribution theory, and he also proved that his procedure is consistent.

In Chapter II, we examine the asymptotic power of the test under sequences

of contiguous alternatives of the form Hn (x) = G(x ) + n(x) , where

G(y) is the standard representative of the scale-location parameter family

appearing in the null hypothesis and the "disturbance function" en (x)

satisfies certain regularity conditions. By letting the sequence {en(x)}

approach zero at a certain rate and with respect to a certain measure of

distance, we obtain a non-trivial power for the test.

In section 2.1, we explicitly define what we choose as the selected

subset of order statistics, including those assumptions required for the

asymptotic distribution theory. We also discuss the concept of asymptotic

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



I indistinguishability of sequences of distribution functions which provides

the basis for that theory. In section 2, we describe the Weiss test of

fit. In section 2.3, we introduce the sequence {Hn (x), state the assump-
%n

tions which the functions e n(x)} must satisfy to yield a non-trivial

power, and derive several usefu± results based on those assumptions, in-

cluding the joint asymptotic normality of the selected order statistics

under the sequence of alternatives. Section 2.4 contains the derivation

of the asymptotic power of the test. Finally, in section 2.5 we apply
I

the results of section 2.4 to two specific cases--a sequence of Weibull

distributions which approaches the exponential distribution and a sequence

of contaminated normal distributions.

In Chapter III, we turn to the composite hypothesis of normality.

Using the same approach of selecting a gradually increasing subset of order

statistics, we develop large-sample analogs of the Wilk-Shapiro and

Shapiro-Francia tests, two of the most effective (.small samples) but also

least understood tests for normality. We show that the analog of the

Wilk-Shapiro statistic, which we call W(n), is asymptotically iormally

distributed under the null hypothesis as the sample size tends to infinity.

We also show that, asymptotically, the analog of the Shapiro-Francia

statistic, which we call W*(n), suitably standardized, has the same dis-

tribution under H0 as a certain weighted sum of independent chi-square

random variables. We further prove that the tests based on (n) and *(n)

are consistent. Finally, we study the behavior of those tests under the

sequence of alternatives {Hn (x)} of Chapter II, except that here the

sequences of disturbance functions must satisfy differeat assumptions re-

garding the rate and manner of approach to the null hypothesis in order

to guarantee non-trivial powers. We find that the measures of distance,

------- 7 X
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or metrics, for the tests based on W(n) and W*(n) are quite complicated.

As a consequence of the power studies, we propose and analyze two addi-

tional statistics, W(n) and W*(n), which yield improved -tests for

normality. We also find that, contrary to most small-sample empirical

studies, the analogs of the Shapiro-Francia test have better asymptotic

power than the analogs of the Wilk-Shapiro test, and we show by example

that the analogs of the Wilk-Shapiro test can be biased, at least if the

selected subset of order statistics is not chosen carefuily.

Summarizing Chapter III, section 3.1 contains a survey of the litera-

ture regarding tests for normality. In section 3.2, we define the statis-

tic W(n) and determine its asymptotic distribution under the null

hypothesis. We also state in section 3.2.4 the null hypothesis result for

W*(n), deferring the proof to Appendix B since it depends on several

results which are not used elsewhere in the thesis. In section 3.3, we

prove that the W-test is consistent. In section 3.4, we analyze the

power of the W-test under the sequence of alternatives {Hn (x)}. The

analogous results for W*(n), and are given in section 3.5. In section

3.6, we illustrate the foregoing results using the example of a sequence

of contaminated normal distributions and also compare the tests for

normality with the Weiss test discussed in Chapter II. Example 3.2 illus-

trates tle bias of W(n) and t(n). Finally, in section 3.7, we discuss

possible areas of future research.

In Appendix A, we present the results of a Monte Carlo study of the

Weiss statistic under the null hypothesis. In Appendix B, we present a

linear transformation of the selected subset of order statistics to stan-

dard normal random variables and derive the asymptotic distribution of

W*(n) under the null hypothesis as mentioned above. In Appendix C we

4 4
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summarize for reference purposes various formulas concerning the inverse

normal distribution function which are used frequently in Chapters II and

III.

The remainder of this introduction is devoted to a brief discussion

of some of the commonly used goodness of fit tests for continuous distri-

butions, with emphasis on tests for the null hypothesis that the sample

distribution is an unspecified member of a specified scale-location

parameter family.

1.2 EDF Tests of fit

A frequently used class of tests for simple or composite hypotheses

about continuous distributions is the class of EDF tests, so-named because

they are based on differences between the hypothesized distribution G(x)

and the empirical distribution function Gn(X). Included in this class

are tests based on the following statistics:

Kolmogorov-Smirnov: D sup IGn(x) - G(x)

00

Cramer-von Mises: W = nf[Gn(x) - G(x)I2dG(x)

Anderson-Darling: A nf[Gn(x) - -
___________ Gx)] [G(x)(l G(x))] dG(x)

-00

Letting F(x) denote the unknown distribution function of the sam-

ple population, research on the above tests has been primarily devoted to

the following cases, classified by the null hypotheses about F(x): (G(x)

4" is continuous in all cases)

Case 0: F(x) G(x) completely specified

Case 1: F(x) = G(x;O) where 6 is a scalar-valued nuisance parameter

Case 1A: G(.) is normal with unknown mean

Case 1B: G(.) is normal with unknown variance

Case 1C: G(.) is exponential with unknown scale parameter

A A,
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Case 2: F(x) = G((x-O1)/I2) where 01 and 02 are nuisance location

and scale parameters

Case 2A: G(.) is normal with unknown mean and variance

Case 2B: G(.) is exponential with unknown scale and location para-

meters (Durbin [12] shows how this case can be transformed to case

1C above.)

Case 0 is the classical case and has been extensively studied. The

sampling distributions and asymptotic distributions of the statistics D,

W2, and A2 under the null hypothesis are known to be independent of the

hypothesized G(x). A summary of the r,_ Its and references appear in

Darling [7]. Expressions for the powers of .e above EDF tests do not

exist in closed form. Durbin [11] has shown how the power may be approxi-

mated in the case of D by computing boundary crossing probabilities

for the tied-down Wiener process, and he has examined the asymptotic power

under contiguous alternatives with densities of the form h nx) = 1 + rn-1/2

when G(x) is the uniform distribution. Empirical results for the

powers of the various tests are scattered throughout the literature.

When nuisance parameters are present, the EDF tests are no onger

distribution-free. The test based on D has been studied under the null

hypothesis for case 2 by Serfling and Wood [24] and cases 1 and 2 (and

the more general p-nuisance parameter case as well) by Durbin [12].

Serfling and Wood prove the weak convergence of the distribution function

of the statistic to that of a certain Gaussian process with a covariance

function which depends on G(x) and the parameters being estimated.

Durbin has developed techniques for inverting Fourier transforms to obtain

the distribution of D for finite n and has worked out case 1C in detail.:4 . _ ___
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Using Monte Carlo methods, Lilliefors [16,17] constructed tables of criti-

cal points for the Kolmogorov-Smirnov test in cases 1C and 2A. He found

that the statistic D tended to be stochastically smaller when the unknown

parameters were estimated from the sample.

2The statistic W has been studied under the null hypothesis in

case 1 by Darling [6], in case 2A by Kac, Kiefer, and Wolfowitz [15], and

ooth W2  and A2  have been studied by Stephens [34] for cases 1A - 1C and

2A. Briefly, the asymptotic distribution of each of the statistics under

the null hypothesis is the same as that of the random variable

1
f Y (t)dt
0

where Y(t) is an appropriate tied-down Gaussian process with zero mean

and covariance function depending on the statistic, the hypothesized dis-

tribution and the parameters being estimated. This distribution is the

same as that of

2 1

where Z. are i.i.d. chi-square random variables with 1 degree of freedom
I

and X. are the eigenvalues of a certain integral equation. In [30],

Stephens gives modifications of the statistics D,W2 and A2 for cases 0,

IA-lC, and 2A so that the asymptotic critical points of the associated

tests may be used for finite sample sizes.

Kac, et. al. studied the asymptotic power of tests based on D and

2
W by examining the ways in which those tests measure distance, showing,

in particular, that those tests are hyper-efficient relative to the optimum

7 7F W\
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chi-square test. Stephens [30], in empirical power studies on tests

2 2based on D, W , A , and two other EDF statistics, found that it was

better not to have the true parameter values available in conducting the

tests. Apparently, in trying to fit a density of a certain shape to the

data, being tied down to fixed parameter values, even correct ones, is

more a hindrance than a help.

1.3 Other Tests

The oldest well-established test of fit is the chi-square test. It

is particularly well suited to the case where F(x) is discrete, and it

* - is known how to adapt the statistic to the case when there are nuisance

parameters which must be estimated from the sample. When F(x) is

continuous, however, chi-square tests are neither consistent nor do they

perform as well in general as the EDF tests mentioned above. A unified

summary of chi-square theory appears in the paper by Moore and Spruill [19].

Sample spacings, or differences between successive ordered sample

values, have provided the basis for many tests of fit. A comprehensive

review of sample spacings theory, associated tests of fit, and the related

literature is given by Pyke [20]. Under the null hypothesis that F(%)

is uniform, Cibisov [4] proved that the Kolmogorov-Smirnov test is hyper-

efficient relative to any test symmetric in the sample spacings under

sequences of continuous, contiguous alternatives of the form
nx)/r(x)n - 2

hn(W) = 1 + rHowever, in his review of Cibisov's paper, Weiss

[37] exhibited a sequence of alternatives such that the reverse is true.

Sethuraman and Rao [25] studied the Pitman (asymptotic relative) effi-

ciencies of various tests based on sample spacings for alternatives

M



h(x) = 1 + r (x)n for 6a;1/4. And Blumenthal [2] studied the large-

sample behavior of tests based on spacings when nuisance location and

scale parameters are present.

Finally, there are many tests of fit which have been developed to

test a specific null hypothesis, the most common being that of normality.

A detailed survey of tests for normality is presented in section 3.1.

Most of these tests share the property of location and scale invariance,

thus eliminating the need for estimators of the nuisance parameters when

the null hypothesis is composite.

4 1



CHAPTER II

ON THE WEISS TEST OF FIT

2.0 Introduction

For each n, X (n), X2(n),..., X (n) are independent, identically1 2 n

distributed random variables with distribution function F(x). F(x) is

known to be absolutely continuous with density function denoted by f(x)

but is otherwise unknown. Formally, the decision problem of interest is

the following:

Problem Pn: Using X1 (n),X 2(n),...,Xn(n), test the hypothesis

H0: F(x) G((x-el)/6 2) for some 61,e2 with 02 > 0

vs.

H1 : F(x) G((X-el)/6 2 ) for any 6l02 with 82 > 0

Thus, we are interested in determining whether or not F(x) belongs

to a specified scale-location parameter family. The function G(x) is a

standardized representative of that family; the nuisance parameters 01

and 02 are unknown and unspecified.

The test statistic which we will be concerned with has been proposed

and analyzed under the null hypothesis by Weiss [41] and is based upon a

certain subset of the ordered sample values Y (n) :i Y2(n) ... Yn(n).

In this chapter, we determine the asymptotic distribution of Weiss' test

under sequences of alternatives which approach the null hypothesis as n

tends to infinity.

In section 2.1, we define certain parameters and state certain

assumptions which those parameters must satisfy in order to guarantee

desirable asymptotic proterties of the test statistic. We also discuss

10



the concept of asymptotic indistinguishability of sequences of distribution

functions and its applications to our testing problem.

In section 2.2, we describe the Weiss test of fit.

In section 2.3, we introduce a class of alternative distributions

which approach the null hypothesis as n + -. We state assumptions on

the manner and rate of approach to the null hypothesis which the sequence

of alternatives must satisfy in order to yield a non-trivial power in the

limit, and we derive several useful results based on those assumptions.

In section 2.4, we derive the asymptotic power of the test.

In section 2.5, we give examples to illustrate the results of the

preceding sections.

2.1 Preliminaries

2.1.1 Definitions and Assumptions

For each n, let p 0 < p < 1/2, be such that np is an integer.n9 n n

Further, let K and L be integers such thatn n

SKnL n - 2npn' (2.1)

Define B1  glb{x: G(x) > 0} and B2 = lub{x: G(x) < 11. (B1 may

be -=; B2 may be +-.) Define T as

inf {g(x): G-(pn) P x S G-1(1-Pn)

where g(x) denotes the density corresponding to G(x). We assume the

following:

All
- t!
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Lim pn = 0 Lim npn Lim Kn (2.2)
n->w ~o n-),w

1

K 1/2 (2.3)n-4o pn K

L

K n~Lira n2 fo al0 n BB 2~B

L B1,2 n (2.4)
" g-)  < nTn

K
Lim n 0f l (2.5)

12 y(Y]
23 y

n

Lim L3/2T2 -0 (2.6)

n n

•g(x) < D < for all x in (BI,B 2 )  (2.7)

91(x) exists and lg'(x'jl < D1 
< - for all x in

(BIB2) (2.8)

jxjg(x) < D2 < for all x in (BI,B )  (2.9)

There exist values 1, 2 with B1  1 < C2 B2

0 < C < g(x) for all x in ( i, 2) (2.10)

g(x) is nondecreasing in (BI, I

g(x) is nonincreasing in (42, B 2)

f [y g(y]2 g(y)dy < (2.11)

B g(y)
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2.1.2 Some Relations Based on the Assumptions

The assumptions (2.1)- (2.11) imply other relutions which will also

be required. These relations together with the assumptions implying

them are summarizei in Table 2.1. Verifying these relations is straight-

forward and will not be done here.

2.1.3 Notation

*Throughout the chapter we will use bars over the names of random

variables which are used to illustrate various properties or represent

certain distributions in order to distinguish them from those random

variables directly connected with the problem pn" Primes will often

be used to indicate differentiation of functions; they will also be used

to indicate transposes of vectors. Since no vectors will be differenti-

ated, no confusion should arise. In order to eliminate many unnecessary

variable names, o(.), o (.), and 0(.) notationi will be used throughout.p

We write "x(n) is o(y(n))" if x(n)/y(n) converges to zero as n .

Similarly, "x(n) is o (y(n))" if x(n)/y(n) converges to zero in prob-p

ability as n - ; "x(n) is 0(y(n))" if x(n)/y(n) is finite as

n - oo. As is traditional, we use 4,(x) and c(x) to represent the

c.d.f. and p.d.f., respectively, of the standard normal (or N(Ol)) eis-

tribution. Finally, in order to simplify notation, the dependence on

n of X (n),...,Xn(n) and Y (n),...,Yn(n) will be suppressed, and we
1 n 1' n

will write X ,...,X n and Yn,...,Y instead.

2.1.4 The Joint Asymptotic Normality of an Increasing Number of Order

Statistics

The joint asymptotic normality of a fixed set of suitably standard-

ized sample quantiles from a given continous distribution is well known

(see e.g. David [8,ch. 9]). The result below is a generalization to

the case where: (1) the number of sample quantiles is no longer fixed

ilizm A-!
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TABLE 2.1

IMPLICATIONS OF THE ASSUMPTIONS

Relation No. Implied By

Ln

Lim n 0 (2.12) (2.1)&(2.3)
n nP

n

Lim = 0 (2.13) (2.6)&(2.7)n+ n+- / 2

n

K
Lim n 0 (2.14) (2.6)
n- L1/2 Tn n

Pn

Lim -n 0 (2.15) (2.4)
4n- nT
n

1* n

Lim 2 4 0 (2.16) (2.4)&(2.6)
n-* L2"t

n n

n

Lim = 0 (2.17) (2.4)&(2.6)
n- > L3T 6

n n

Li n n = 0 (2.18) (2.4)&(2.6)nLim 5/2T4

n n

B
f gl(x)]2gxd < (2.19) (2.11)

B g(x)

B2 g'(x).12
f x =y g(x)dx < o,(2.20) (2.11)

1

B 1 '-L."
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but is instead allowed to depend on n and slowly increase as n does;

and (2) the underlying distribution is replaced by a sequence of under-

lying distributions, one for each value of n. We require the following

definition:

Definition 2.1. Suppose for each n, Fn(Xl,...,Xk(n)) and Gn(xl,.. .Xk(n))

ar joint cumulative distribution functions for k(n)-dimensional

random variables. The sequences {F n  and {G n  are Asymptotically

Indistinguishable (A.I.) if

Lim IPF {(xU1 ...'Xk(n)) eR(n)} - G {(Xl" .. Xk(n) eR(n)}l 0
n- n n

for any sequence of measurable regions {R(n)} of k(n)-dimensional

Euclidean space.

Suppose fn(xl ... IXk(n)) and gn(xl ."**Xk(n)) are probability density

functions corresponding to Fn  and Gn  respectively. The following con-

ditirn (Weiss [38]) is necessary and sufficient for Asymptotic Indistinguish-

ability:

fn(Xl'"' k(n))t l 1-gn(Xl ... Xk(n)) converges stochastically to 1 as n

assuming (X1,...,Xk(n)) has distribution Fn for each n.

(By symmetry, we can replace F by G and/or invert the above ratio
n n

without affecting the result.) Definition 2.1 defines an equivalence

relaticn, and we will say that the random vectors corresponling to {Fn }n

and tG(n)I are asymptotically equivailent when {F Iand {G Iare A.I.
n n
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Now, for each n, let X n,...,X be i.i.d. random variables with

absolutely continuous distribution F (X). Denote by Y 1,..Yn the

corresponding order statistics. Let pn ,Kn Ln satisfy (2.1) through

(2.6) with T replaced byn

Tn inf {fn(X): Fn(p) . x < Fnl(l-Pn)},Tn  n n

and assume (2.7) and (2.8) are satisfied for all n with g(x) replaced

by fn(x) and B and B replaced by B1 glb{x: F (x) > 0) and
n 1 B2  B1 n

lub{x: F (x) < 1} respectively. Note that (2.12) - (2.18) also

hold. Additionally, assume the following:

ik1/2 -l 1-2.1

Lim (n/pn) fn(Fn(pn)[B1 - Fnl(l-p)] - (2.21)
n-> o

and

Lim (n/p X1/ 2f (F 1 (1-Pn))[B2 - F 1 (1-Pn)] . (2.22)

n--c n n n

Finally, define Z.(n) as

n n n npn+(j-l)Ln n n

for j 1,2,...,Kn+1.

Then Weiss [39] has shown that the distribution of the (K +1)-vector

~(nn
S (n(n),l ) ) is asymptotically equivalent to the (Kn+l)-

n

variate normal distribution with mean vector 0 and covariance matrix

I(n) [aij (n)], where

J1
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L
Cij (n) L -n-1 (pn + (i-l)Ln/n)(1 - pn - (j-l)L n/n) (2.23)

n

for 1$ i S j S Kn +1.

We remark that the result of Weiss [39] is actually pzoved in more

generality than is stated above. In particular, Weiss allows for the

possibility that the bounds B and B on the support of F (x) may depend
1 2 n

on n, as might the upper bound D on f (x). However, for our purposes
1n

these extensions are unnecessary. Also, returning to the assumptions of

section 2.1.1, Weiss [41] has shown that assumptions (2.9) and (2.10)

together with (2.1) - (2.8) are sufficient to insure that (2.21) and (2.22)

hold. Hence, the asymptotic normality result holds with f (x) and F (X)
n n

replaced by g(x) and G(x), respectively, in the definition of f(n).

Reiss [21] has further generalized the above results (in terms of

the conditions placed on the "spacing" of the indices of the selected

order statistics) and obtained Barry-Esseen type bounds on the rate at

which the asymptotic normality takes hold.

Our motivation for considering an increasing subset of order statistics

as defined above is the desire to have a manageable distribution theory

while, at the same time, not having to sacrifice too much of the informa-

tion contained in the sample. If we consider a fixed (finite) number of

sample quantiles, we have an asymptotic distribution theory which is easy

to work with, but, in neglecting the remaining order statistics, we pay

a high price in terms of lost information. On the other hand, in [40],

Weiss has shown for a simple hypothesis that an increasing subset of

o ,'.r statistics defined as above is asymptotically sufficient for the

* sample; thus, in the limit, no information is lost. (Weiss proves the

.,esult for the "equally spaced" case, i.e. Ln npn, but his result may

4
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be easily extended to the case Ln = o(nPn) which we consider here.)

By asymptotic sufficiency, we mean that using only the statistics

(nPn+(ip )Ln i=l,2,...,K n+l} together with knowledge of the distribu-

tion G(x) governing the population from which the sample was drawn,

it is possible to generate a random n-vector with the same asymptotic

distribution as the complete vector of order statistics. Furthermore,

and of more importance in studying tests of fit, the same results holds

if F rather than G is the true distribution function for the sample,n
where {F } converges to G according to certain regularity conditions.

n

2.1.5. Some Variances Related to the Multivariate Normal and the Inverse

Covariance Matrix Y-l(n).

Assuming Z(n) = (Zl(n) ... ,ZK +l(n)) is a (Kn+l)-variate normal
n

random variable with mean 0 and covariance matrix X(n), (2.23) implies

var(Zl1(0)) var(Z K +1l(n)) = Pn(l + o(i)), (2.2u)
n

var(Zj(n) - Zj1 (n)) (L n/n)(1 + o(l)) (2.25)

and, for i < j,

L
cov(zi(n)-Z (n), fZ.(n)-_ (n)) - n (L /n) 2 . (.2.26)

1 iL -1l n-
n

Futhermore, for 1 < j .K +1, var((n)) is bounded by a finite constant
_ nj

independent of j and n. We will frequently have occasion to refer to

the inverse covariance matrix -l(n). It is easily verified that J-1(n)

is given by C (n), where cn n(L -1)Ln2 and Zl(n) denotes the

cn n n n andeos

4
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(K +l)x(Kn +1) matrix
!n

Ln
npn

2 -1

- 2-2 -1

t . (2.27)

L- -+

npn

In appendix B, we describe a transformation of the vector Z(n) to a

vector of i.i.d. standard normal random variables. In particular, we

present a nonsingular matrix B(n) such that B'(n) 1-(n) = IK +i, the
n

(Kn+l)x(Kn +l) identity matrix.

2.2 Construction of the Test

Before describing the test statistic for the problem Pn, we first

introduce some further simplifying notation. Denote the quantity
nPn+ (j-i)Ln

G-1n n n ) by U.(n) and g(U.(n)) by u.(n) for j nl12,...,Kn+1.

S.if H0  is true, then F(x) G((x-0 1)/02) for all x,

F-(t) = 81 + 02G-(t) (2.28)

and
1

f(F-l(t)) =7-g(G (t)) (2.29)

2
*
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rnu. (n) -o- U(n)b
for all t e (0,1). Denote 02 np+(j-l)L 1 62Uj(n)) by

'2 n n

Zj(n;61, 2) , and let Z(n; 1,02),... ,ZKn +1 (n;01 ,02)).

Henceforth assume without loss of generality that G (1/2) = 0 and

G 1(3/4) - G-I(1/4) = 1. This can be accomplished by linearly trans-

forming the parameters and has the advantage that the estimators for 01

and 02 which we will be using will be free of constant terms which depend

on G(x).

Finally, let A, = 02B + 0 and A = 02B + 0 denote the bounds
1 21 1 2 2 2 1

on the support of F(x) under H0.

2.2.1 Estimating 'the Parameters

For each n, we will estimate 0I and 02 by ;1(n) and ;2(n),

respectively, where 0 (n) is the sample median of the sample (X ... ),
1 1

and 0 (n) is the sample interquartile range (the difference between the
2

third sample quartile and the first sample quartile). Denote

Yi(el(n) - 01) by R1 (n) and Vn(2- 02) by R2(n).

Then Rl(n) and R2 (n) are asymptotically jointly normally distributed

with zero means and finite variances (see, e.g., David [8,p. 201]).

Alternatively, we can write

01 (n) =1 + Rl(n)/Fn

(2.30)

02(n) 02 + R(n)/n

We should note that there are more efficient estimators than 0 (n) and

0e2(n), but the latter have the advantage of simplicity and at -the same

time are "efficient enough" for asymptotic purposes. That is,

W_ T,3a61K,------
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asymptotically we only require that 01(n) and 02 (n) approach 81

and 62 at a certain rate; in particular, that n (0 (n) - and
A

n(O2 (n) - 0 2) are finite with probability one as n 4 .

2.2.2 The Test Statistic and Critical Region
Under the null hypothesis with 01 and 62 as the true parameter

values, the assumptions (2.1) - (2.10) imply that Z(n; 1,02) is

asymptotically normal with mean 0 and covariance matrix J(n). Thus,

the quadratic form

SM(n;61l.o2) c nZ'(n;1.6 2:)l l(n)Z(n;010 2)

is asymptotically equivalent to a chi-square random variable with K n+1

degrees of freedom. Standardizing M(n;01,0 2 ), we obtain the result that

M(n;0 1,02) - (Kn +1)
T(n; 1 .2) /( n+1i'2(Kn+1)

is asymptotically normal with mean 0 and variance 1.

The statistic T(n;6 1,82 ) is, of course, not suitable for testing

the hypothesis of problem Pn since it involves the unknown parameters

01 and 0 . In [411] however, Weiss proves that 01 and 62 can be
1A2

replaced by their estimates 6 1(n) and 6 2(n) without changing the
1A2

asymptotic result. The computable statistic T(n;0 1,02 ) is asymptoti-

cally N(0,1). (Weiss' proof is done under assumptions (2.4) and (2.7) -

(2.11) for specific functions p ,K ,L , but a review of the proof indi-
nn n

cates that (2.1) - (2.3) and (2.5) - (2.6) are sufficient to auarantee

* ;I the result.) Thus, for fixed a e (0,1), if we define ci by
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fl-(x)dx 1 -a,

a level-a test of H is given by

^ A

Reject H iff T(n;O1,82) > C (2.31)
0 Tn0, 2) CD,1-a*

The upper tail of the distribution is chosen as the critical region be-
A A

cause T(n;6 1,02) tends to be larger under alternatives than under H0.

In [41], Weiss also shows that this test is consistent under mild regu-

larity conditions. By this we mean that for any fixed F(x) in the

alternative hypothesis, the power of the test (2.31) converges to 1 as

n tends to infinity.

2.3 A General Class of Contiguous Alternatives

The remainder of this chapter is concerned with determining the

power of the test under sequences of alternatives which approach the

null hypothesis as n gets large. Such alternatives are termed "conti-

guous." By properly specifying the rate of approach, we are able to

exhibit a power in the open interval (c,l) and thus provide a basis

of comparison between (2.31) and other known tests.

The alternative distributions Hn (x) which we will study have the

form

H (x) G((x-O*)/6) + n(x) (2.32)
n 1 2 n

where 0* and 0* are given constants, 0* > 0 and where, denoting
2

'ke
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6*B + * 2y 2* an B+0 by A*, the functions e (x), which
2 1 1 by 2~ an 1* 2 n

which we will refer to as "disturbance functions," satisfy the following:

e£"(x) exists and is finite for all x in (A* ,A*) (2.33)
n~1 2

-G((x-O*)/O*) <S e (x) .l1 G((x-O*)/B*) for all x in (*A)(2.34)
1 2 -n 1 2 1 2

ECx) 0 for all x (A*,A*) (2.35)

2
f ce'(:')dx =0 (2.36)

E'(x) .- ((X-O)/O*) for all x in (A* * (2.37)
n 21 2 1'A2'

Condition (2.33) is a regularity condition. Relations (2.34) through

(2.37) insure that H (x) is in fact a distribution function. In most

applications, we will specify HnCx) rather than En (x), and hence,

(2.34) - (2.37) will automatically be satisfied.

None of the above conditions specifies anything about the rate at

which the sequence of alternatives {Hn (x)} approaches G((x-O*)/B*).

-~ To insure that the asymptotic power will fall between the level a of the

test and 1, we define

w~n) rax{IulCn)U,(-,n)I, lK+l~n)J (1 n)I)
n n

V (n) = /2) (2.38)

1 g(0)

'Ie (H (3/4)) (H- (1/4))
n n Dn

2 gCG- (3/4)') gCG- (1/4))

.L.
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and add the requirements:

L 1/2 K1/4
Limsup n 12n w(n)jv inl = d.i i=1,2 (2.39)

pn
A"' 2

L /2 2 [e&(x)]
Lim n n A* hn(x) dx = d3  (2.40)n- A C

Lim b(n) sup h- = 0

nH _ H .l(p n)<X <H - l( l P n n

for some increasing sequence b(n) with (2.41)

L55/4
Lim b(n) =, Lim n 0

n+co n+oo n 3/4T b(n)
n

where dl,d 2,d3 are nonnegative, finite, and not all zero. The motiva-

tion for conditions (2.39) and (2.40) will become clear in the derivation

of the power of the test. Heuristically, the integral appearing in (2.40)

is the "characteristic metric" for the test statistic T(n;0 1 ,2 ). Con-

dition (2.39) requires that the estimators 1(n) and e2(n) converge

sufficiently rapidly in some cases. If B1  - and B2 + , it is

--1/2easily shown that pn w(n) converges to zero as n + -. In that case,

(2.40) implies (2.39) with dI = d2 = 0 (see (2.42) below). Condition

(2.41) is a regularity condition on the tails of O"(x) which enables us
n

to approximate complicated sums by much simpler integrals. In most cases,

(2.41) will also be implied by (2.40).

..... .. ...
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Lemma 2.1. If (2.40) holds, then

Lim L1/2K1/4 sup le1(X)j < d1/2 (2.42)n- n A*<x<A*t..1 2
L1/2K 1/4

Lim n n C (Hn1(pn)) 0 (2.43)
4 fl4 co p" 2  nfl I

L- 1/21/

Lim n n sn(H l=_0n
Li 1/2 nn l-Pn 0 (2.44)

n-i Pn

Proof. For any x c (As A*),

~~1 2
L 1/2 K1/41 ) L1/2 K1/4 Ix n(~yn n n~x~ = J' e'(y)dyl

n n nn n Al°A.

< L1/2 K1/4 f~ nc(x)l 1/2 ,,~d

i n

<= 2 n n 1 1/2

nn hn (x)n{L KI 2 2[() dx}i/{fA

B(.g hn hn(X) h (X)dx}

By (2.40), the right hand side approaches d3  as n + , from which (2.42)

-1
follows. Using the same method, but over the interval (A*,Hn(pn)), we

!! I obtain the sharper result (2.43) for the tail behavior of e (x). We havei, n

-1 -. . Hnl~pn)[ (x)32 Hnp )
(p) 2

'U'i/"i/K (Hnl(pn) ( Ln K1 / 2  f  hn X } d1/2{ h h (x )dx}I1/2

n n n n n n nn x
A* n

~~IL
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,H nl(p n)[e'(x)] 2  _.
<L K1/2 f n dx 1/2 1/2
= n n h hnX W Pn

which, after dividing both sides by p1/2 and taking limits as n +

yields (2.43). Finally, (2.44) follows in exactly the same manner when

the interval (Hn (l-pn),A*) is used. This completes the proof of the

lemma. QED

Lemma 2.2. If (2.40) holds, then

L iH nl(t)) g,
Lim1/ n If (G-l (t))G-l(t)dtl <

hn n H1(t)) g(G- (t))
n n

Proof. Using the same method as in the proof of lemma 2.1, we have

n n Oh -l (t)tdt)5
L 1/2KI1/4 f en(Hnl~ g,(G-1 (t)l-G-l(t)dtl

n n 0 hn(Hnl(t)) g(-l(t))
n n

-1
1 e (H (t)) 1,t- l

{L K1/2f[ n n 2 dt}1/2 f[ (G t(t)),-l(]2dt}1 /2
nn 0 hn(H n(t)) 0 g(G- (t))

Making the transformations x = H (t) in the first integral andn

y G- 1 (t) in the second integral, the right hand side becomes

A" 2 A*

{K1/2f2&x 1/2 2g t(y) 2 1/2
{L KZZ . dx} /{f,2g dy

n n h (x)g(y) dy
A n 1*

Taking limits of both sides as n + and applying (2.11) and (2.40),

...

!.
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the result follows.[ 2.3.1 An Expansion

In this subsection, we establish the following useful relation:

H -(t) = 0* + eG -(t) 6~(n() + A (n,t) (2.45)
n 1 21 g(G Wt) 1

for te(O,1), where A (n,t)/c (H- (t)) goes to zero as n -~for all

te(O,l). Alternatively, we may write (2.45) as

g( )(-(t) - - O*G '(t)) = ~(H- (t)) (1 +o(l)) (2.45?)
n 1 2n n

2

or, using (2.42),

-g(G Wt) (H-l(t) -* O- eG 1(tW) - C (H1l(t)) + o(L-1 /2K-1/4* (2.45"1)
0* n 1. 2 n n n n

2-

;~;4To prove (2.45), let x =H (t). Then, from the definition of H Wx,

$ t H (x) G((x-O)/O*) e (x) G((x-O*)/O*) c (

so that

x =O*G (t C (H ())+e
~ 2 n n

Expanding G- (t -e (H- (t))) in a Taylor series about G- (t) yields
n n
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e(x) g2 x) -
~2

G-13tG.1 t n n gf(G ()
ng(G l(t)) 2 g 3(G l(E))

for some e (t,t-c (H n(t). Substituting the above into the expression
nfn

for x completes the proof.

2.3.2 Asymptotic Normality of Order Statistics and the Asymptotic

Distributions of the Estimators under the Alternatives

In order to derive the asymptotic power of the test (2.31) under the

, sequence of alternatives {Hn (x)), we will require the asymptotic normal-

ity of the (K +1)-vector Z*(n) (Z*(n),...,Z* (n)), where Z-(n) isn
n*given by

1 nhn(H1  J-1)Ln (- n np n+(j-l)Ln

n n n np"+(j-l)L n

Let T* denote inf h (X): H-l(pn ) 
. x H Hn(l-P )  Then the asymptotic

x

normality will follow if (a) relations (2.4) - (2.6) are satisfied with

T replaced by T* for all feasible (p ,K ,Ln) combinations, and (b)

conditions (2.21) and (2.22) are satisfied with F -(.) and f (.) re-
.- ln n

placed by H (.) and h (.), respectively. A sufficient condition forn n

both (a) and (b) is that T*/T remains finite as n =. In particular,
n n

it is sufficient to show that

h (Hn(pn))
Lim n - n ~l(2.46)

2 G-lpn+co g( pn)

since the argument for the other tail is the same. Using (2.45'), we have
n°1

A" I
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l" en (H n (p n)) (_
g ~(Gl(pn -i ~i)) + s'(Hn2 (pn)

hn(Hn1 (p)) g(G 1 (pn +o(l))
n~ nn

2 g(G-l(pn))

and the right hand side can be written using a Taylor series expansion as

en(H- 1l(pn))g,(G-1 (pn) (nI(p
1 - n n 1 + + smaller order terms.

. [Eg(G-l(pn))] g(G-l(pn )

Now, Ly (2.41),

sc(H l(pn)) CHn(p)) hn(Hnl(pn)  hn(Hnlpn))

g(G-l(p)) h (H 1 (p )) g(G-1
n n n (n))g(G (p n)

as n . Also, by 2.8 and (2.43),

n(H- 1(pn))g'(G- 1(pn) l(H- (pn))lDl

g(G(p)) n

p/2

= (/2K/4T2),

n n n

and (2.1) and (2.6) together imply that the latter expression converges

to zero as n tends to infinity. Hence, (2.46) is proved. To demon-

strate that (2.46) and its counterpart for the other tail imply (2.21)

and (2.22), note that (2.21) can be written in this case as

LW_
V " ..
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h i/h(Hnl(pn

Limn/2-) n___ n gG1 1 (H(B -
n-Li m  (Pn) 1(p [g(G -(pn))(B 1-G (p ))+ 0* n (Hnl(p ))(l+o(l))]

n

which is easily seento betrue using (2.43),(2.2), and the fact that (2.21)

is satisfied by G(x).

In summary, we have shown that the random vector Z,.(n) is asymptoti-

cally equivalent to a (Kn+l)-variate normal random variable with mean

vector zero and covariance matrix J(n).

A special case of this asymptotic normality yields the fact that
-l A

R1 = n(O1 - Hn1(1/2)) and R = ¢ (02 - Hn (3/4) + Hn (1/4)) are

asymptotically jointly normal with zero means and finite variances. Using

-1l -1 -l1
(2.45), recalling that G (1/2) = 0 and G (3/4) - G (1/4) = 1, and

neglecting terms which are asymptotically of smaller order, we can write

01(n) = 01 + R/,/" + Ovl(n)

(2.47)

02 (n) 0* + R //i + ~v2 (n)

where v (n) and v2 (n) are defined by (2.38).

12

2.4 The Asymptotic Power of the Test

In this section, we derive the asymptotic distribution of the test
rA

statistic T(n;ee 2 ) under the sequence of alternatives {Hn(x)}. In

particular, we show that T(n;0 1, 2 ) is asymptotically normally distri-

buted with variance one and finite, nonnegative mean Yg given explicitly

in lemma 2.5. Knowing the value of the mean, the power is then readily

computable by referring to tables of the standard normal c.d.f.

. .--
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Throughout this section we will refer to the random vector- Z*(n)

with components Z*(n),...,Z +(n) as defined in subsection 2.3.2. We
n

-1 nP n+(J-l)L n
will denote H ( n ) by U'(n) and h (U*(n)) by u'(n). Inn n )nj
addition, define

lXj(n) = u.(n)/O u*(n)

2 j

and let A(n) denote the (Kn +1) x (Kn +1) diagonal matrix whose elements

Xij are given by

rX.(n) i=j=l,2,...,Kn+l
X. .j(n) 0/

Finally, denote the quantity

u.(n) - ^n *(U*(n) 6 81 - 82 U ( n ) )

A A A A A A

by n(n;61,6) and the (Kn +1)-vector (n1(n;6 1 ,82 ),...,nKn+l(n;O1,62))

by n(n;8 1,02).

Using the above notation and appropriately arranging terms, it is
easily verified that the test statistic T(n;0 1,02), given by

-12A A1

[2(Kn+l)]-/ (c nZ,(n;6 1 ,0 2) 
1 (n)Z(n;e1 ,02) - (Kn+l))

can be written as

.1!
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V*,(n)AWn) l (n)A(n)Z*(n) c cnl(K n 1)

2 n~ (n1)

S2Z*(n)A-l(n (2.48)
^2

wen(n;1, 2 ) sm l(n)n(n ; l 
g2

Expanding X j(n) as in the preceding section, we have

Cn(U*(n))g'(Uj(n))
X (n) n 1 2 + 6 1 ( n )

u.i(n)

where 6 1(n) represents smaller order terms. In particular, using the4/ 1/4-.
results of the preceding section, X.(n) = 1 + o(L-I 2 K-I/1 T-2 ) as n .

J n n n
Hence, A(n) can be written as IK +1 + AK ,+1 where AK +1 is a diagonal

n n n

matrix all of whose diagonal entries are O(L-1/ 2K-1/4T-2).

n n n

Using the above representation of A(n) together with tLe definition

(2.27) of Jll(n) and the expansion (2.45'), it is straightforward to

verify the following result expressing the test statistic in a form whose

asymptotic properties can be investigated.

Lemma 2.3. Under the assymptions of section 2.3, the test statistic

T(n;0 1,02) is given by

c 2
n 2 {W,(n)[1+0L-lKl/ 2T )] c- 1 (K +1)

A2 n n n -n n

n 2 (2.49)

-Q(n)[I+0(L- K/2 K-I /4 )] + V(n)]}
n n n

A Jq
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where W'(n) is given by

Z*' (n)l-l(n)Z*(n), (2.50)

Q(n) is the sum of the following six expressions:

Eul(n)(vl(n)+V2(n)) + c (U*(n))(l+O(1))]Z*(n) +
1 2n 1 1

L (2.51)
n

n1/2

[U Kn~(n)(vl(n)+v2 (n)) + e (U* (n))(].+o(1))]Z +l(n)
n n n

L ul(n) UKl +i n ) )

(R* + R*UI(n))Z*(n) + s (R* + R*U Ks (n))Z (n (2.52)
n2 1 K+

K
n

V [c n(U.1(n)) - e (U*(n))](1+o(1))(Z9 +l(n) - Z](n)) (2.53)

K
n

nv (n) I (u (n) - u (.n))(Z@+ (n) - *(.n)) (.2.54)
j=l j+1 j+1 1

K
n

nv2 (n) I (u (n)U (n) - u (n)Uj(n))(Z ± (n) - Z,(n)) (2.55)
jl j+1 +1

K
n

1 [(u 1 (n) - u (n))R* + (u (n)U (n) - u.(n)U(.n))R] x
4~ 2= :1 j+1 j+1 ) j 2 (2.)2j=l

(2.56)
(Z+l(n) - Z*(n))

and V(n) is given by the sum of the following four expressions:
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[C (U*(n))(1±0 (1)) + ul(n)(v (n) + v2WUlWA 2  +

-n (2.57)
[Cc(U* +l(n))(l+o(l)) + UK l(n)(vl(n) + v2 (n)UK (n)2

n n

[Cn(U*(n))(l+o(l)) + ul(n)(v 1 (n) + v2(n)Ul(n))] x

2L [u.(n)(R* + R*U (n))] +

2L. 1 2 1

2* np [Cn(U* l(n))(l+o(1))+uK +l(n)(vl(n) + v2 K (n))] x (2.58)n Kn n

/u (n)(R* + R*U (n))] (.
n n

Ln. n {[ul(n)(R + R*U1 (n))]2 + [u l(n)(R* + R*U l(n))]2 (2.59)

2 n

[n (U*+ (n))( l+o(l)) + u J
+l(n)(v (n) + (2n  + U )U 1 (n))] 2

K fl )+ln j+1n 13+~i
n 2 2nl

- E (U'(n))(lio(1)) + u (n)(v (n) + R + (v2 (n) + 8n/ )U '(n ))]

42 2
(2.60)

From section 2.3.2, we know that c nW*(n) is asymptotically

equivalent to a chi-square random variable with (K +1) degrees of

freedom. The next two lemmas establishthe limiting forms for Q(n) and

V(n). First note, howevcr, that

n(L -1)
c (K +1)'1 /2  1/

n~ ~ nn /

1/2
can he ---placed by K for al] asymptotic calculations.n
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Lemma 2.4. The quantity K1/2Q(n) converges stochastically to zero as

n tends to infinity.

Proof. We shall consider each of the terms (2.51) through (2.56)

separately. Recall that for asymptotic purposes we can consider Z*(n),...,

K +1(n) to be jointly normally distributed as described above.n

(i) Using (2.7), (2.24) and (2.42) - (2.44), the quantity in expression

(2.51) is asymptotically normal with mean zero and variance of order

L 2  Ln 1 2 p L

n2 L1/2K1/4  n 1p1/2
nP nL n n

Hence, KI/2  (expression (2.51)) is asymptotically normal with mean zeron

and variance of order

L K
1/2

nn
npn

which is O(Kn pn) as n tends to infinity. Applying assymption
n n

(2.3), K 1/2 (expression (2.51)) converges stochastically to zero as n Co.
n

(ii) Using assumptions (2.7) and (2.9), the term in braces in expression

1/2(2.52) is finite with probability one. Thus, since Kn (L/np ) converges' n (n/nn

cv1/2 nto zero as n as noted ir (i) above, K (expression (2.52)) con-n
z verges stochastically to zero as n increases.

(iii) Let Sl(n) denote

K
n2n[e M(U10~) - (U*(n))] 2

j=l

tA2



36

and let S (n) dnt

K n-21 Kn

2 [C [(U* l(n)) e (U*(n))][E: (U* (n)- e (U*c(n)).

Then, using (2.25) and (2.26), expression (2.53) is asymptotically normal

with mean zero and variance given by

L S (n)(1+0(l1)) - S (n)(1i-0(1)).

nl1 n 2

Note that

2 e'(x)]2
S (n) ( n /n){fn h W dx + o(l))

A*" n

and

S2 (n) -S 1 () Opn Ln Kn

where the latter expression follows from (2.43), (2.44) and the fact that

so 2

{en(W.± (n)) -e (U*(n))12

(In the remainder of this proof, and in the proof of the following lemma,

we will frequently pass from sums to integralF in the above manner,

Assumption (2.41) insures that the errors of such approximations are always
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of smaller order than the i.'tegrals themselves. The formal procedure is

carried out in detail in appendix C, and upper bounds on the errors

involved are obtained.)

Thus, by (2.40), LnSl(n) = O(L3/ 2n- 3/ 2 ) and (L2 /n)S2 (n)

O(L n n-  ) as n - . In particular, (L n/n)- ILnSl(n) 1 andn nn

(Ln/n)-_3/2(L2/n)S2(n)1 both remain bounded as n increases. Thus,

since (L n/n) converges to zero, K n expression (2.53)) converges

stochastically to zero as n

(iv) Let S 3(n) denote

K
I [U j+l (n) u uj(01]

2

and let S4(n) denote

SK-I Kn n
2 1 Eui+l(n) - ui(n)][u. (n) - u.(n)].
i1 j=l i 1 j~l

Then, in asymptotic probabity calculations we can assume that expression

(2.54) is normally distributed with mean zero and variance given by

L L2
2 nnnv (n){-.S (n)(l+o(l)) + -S(n)(l+o(l))}.1 n 3 2 4

n

Note that
B .g'(x) 2

S3(n) (L /n){ f - ) x + o(l))
B1

and
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S4(n) -S3(n) + [uK +1 (n) -
1l(n)] 2

n

Thus, (2.19) implies that S 3(n) = O(L n/n), S 4(n) is o(1), and, using (2.42)

of lemma 2.1, both Ln2(n)S (n) and (L2/n)v (n)S (n) are O(L 3/2n-3/2

Thus, arguing as in (ii) above, KI/2  (expression (2.54)) convergesn

stochastically to zero as n .

(v) Let S (n) denote
5

Kn
jlEuj.l(n)Uj l(n) - WU (n)] 2

j=1 J+ ~ i

and le: S 6(n) denote

K -1 K
n n

2 1 1 [u. 1 (n)U.i1 (n) - u.(n)Ui(n)][u (n)U (n) - u.(n)U.(n)].
i=l j=i+l +1 1 3 j±1 j±

Note that
B2 2g9(x) 2 ,

S5(n) = (Ln/n){f [1 + X-g-j gjx)dx + o(l)}
5n B1  g(x)

and

S6 (n) -S 5(n) + [uK +1 lU K +1 
(n ) - lWUl (n)]

n n

From (2.9) and (2.11), S5 (n) is O(Ln/n) and S6(n) is 0(i) as n + .

1/2
Hence, arguing as in (iv) above, we have the result that KI/  (expres-n

sion (2.51)) converges stochastically to zero as n increases.

(vi) Let S7 (n) denote
7

L7 .T _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _
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K
n

E u (n) u u(n)][Z'. (n) -Z*)n)]
j=l j+l ) j+1 j

and let S 8(n) denote

K
n
[Uj (n)Uj (n) - uj(n)][Z +l(n) - Z4(n)].

j=l j+l j+l j j+1 3

11
* Then, expression (2.56) an be written as

,() + RS 8 (n)].

1' 1/2
Imbedded in part (iv) above is the fact that K S 7(n) converges

stochastically to zero as n + . Similarly, in part (v) it is shown that

K1/2 S8(n) converges stochastically to zero as n increases. Hence,

KI/2  (expression (2.56)) converges stochastically to zero as n + -

nn
Combining Mi through (vi) above, we have shown that K 12Q n) con-

n

verges stochastically to zero as n tends to infinity. This completes

the proof of lemma 2.4. QED

Define v* and v by

= Lim Ln 1 n)

... .1/2. 1/4
v*,*Lim L 2K 14V (n)2 n n 2

(We assume here that the above limits exist, as they will in most

* °reasonable cases. If they do not, due to an oscillating disturbance

I
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funcion wemayreplce * ad 2 by the appropriate Limsup or Liminf

in lemma 2.5 below to obtain upper and lower non-trivial bounds on the

j asymptotic power of the test. Relation (2.42) of lemma 2.1 insures that

the above quantities remain finite as n + .

Lemma 2.5. As n +-- , the quantity K 12V(n) converges stochastically to
n

the constant y g given by the sum of the following five

expressions:

L K 1/
2

Lim n Pn {[u 1(n)(v 1(n) + v 2(n)U 1(n))] 
2 + [u K +1l(n)(V 1(n)+ v 2(n)U K +1(n))]

2

n-w ~n n n

(2.61)

d + f2 - g1 yd + 2,,* [L-(.X)fjyg(y)dy + f g'(y)dy} (2.62)13 g~;]gy) d 2 ~f
B1 B 1  g(y) B1

2v* LimL 1 /2 K1/4 n _ n g'(G (x)) dx (2.63)
1 n n h (H l(x)) g(G_ (x))

1 P n n'H- x ) -

1/2 1/4 f nH 1nx)) (G1 (x)) -1
2v* Lim L K n l1 G (x)dx (2.64)

2 n-)- n n p h (H -1(x)) g(G -1(x))
n n n

B B
2 2f

B1  1

Proof. We consider each of the expressions (2.57) through (2.60) separately.

(i) From (2.43) of lemma 2.1, the quantity

L K 1/
2

n n e2(U*c(n))
Pn nl1
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converges to zero as n tends to infinity. Further, we can write

L KI/2 LI/ 2K1/4  L1/2K1/4
n n 2(U*(n))ul(n)vl(n) = n n (U(n)) n n u(n)vl(n)P n 1p11/2 -n1 /2 1 1

and the right hand expression converges to zero by (2.43) and (2.39).

In a similar fashion, we can show that the contributions to y of all

terms in expression (2.57) which involve c (U*(n)) are asymptotically
nl1

negligible. Using (2.44) of lemma 2.1, the same conclusion follows for

all terms in (2.57) which involve e (U* (n)). Eliminating those terms,n K+

1/2 n
we see that KI/  (expression (2.57)) is equivalent to (2.61).n

(ii) By assumption (2.9), the quantities ul(n)[R* + R*UI(n)] and

uK +l(n)[R* + R*U (n)] are asymptotically normally distributed with
K +1 1 2K +1

n n
mean 0 and finite variances. It follows from this fact, the fact implied

by (2.3) that

L K1 12  Lll2Kll4

nn _ (n n

~11
n 1/2pn P

and the relations (2.43) and (2.44) that the terms involving e (U*(n))
n

and cn (U* (n)) in expression (2.58) approach zeru stochastically as
nK +1

n increases. Neglecting those terms, we can write K1 /2 (expression' n

(2.58)) as

1/ 2K 1/4 1/21/4
n nn E n u(n)(v1(n) v W2nUl(n)) n n [u(n)(RI + R*UI(n)) ] +
p/2 12 1 1/2 1 21

n n

A,
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L1/2K/4 L1/2 K1/4
n nrn nr1 /2 (n)(l(n) + v n)U (n))] - u (n)(RI + R"U (n))].

n)K + 1 v2  K n+1 p1/2 K n+1 1 2 +1n Pn n

Applying (2.39), we see that the above expression converges stochastically

to zero as n- .

(iii) Using (2.3), (2.7), and (2.9), it is immediate that KI/2  (expres-

sion (2.59)) converges stochastically to zero as n + n

(iv) Let S9(n) denote the sum in expression (2.60). Then S9 (n) can

be written as

(L /n)( d J (x)]2 dx o(L- 1/2n-1/2
n dx n n

'Pn

where J (x) is defined as

-1 -1 R___ 1 R__

en (Hn (x)) + g(G (x))[v1 (n) + 1 2 + (V2(n) + n1/2)G-l)

2 2

and the o(.) term follows from (2.41) as in Appendix C. Expanding

d Jn(x), we obtain
d-x J

d n(H 1(x)) -(x) n n ) gt(G-(x) + 1+ 2
-1 n-x)[1 v(n) 1/2 +(V 2(n) + 12)G- (x)

dxn h (H l(x)) g(G- (x)) On On 1
n n 2 2

4R4.

2+ V (n) + 6n/---
2.1/2

2
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Hence, S9 (n) becomes

1-P n C' (H n 1W) R .lPn g,(G-(x)) 2-
(Ln/n){ f ) j2dx +(v (ni) + ni ) fn g x dx

pn hn(H n1 )n p g(G (x))

-7 - n -1
+~ ~ ~~~~~K 2( I (nn /)0 n /)f g'(G -1(x))12 G-l(x~dx

On) -  (v2(n) 2n  P g(G (x))2 2en

i-p(V (2n) + R-all ) 2 fn g'(G -1(x)),- (x)] 2dx + (V2(n) +  8 1 2K * 12 Pn g(G1(x))2 - ( n) 1/2

i' 8 7 /  1) Pn hn(Hnl (x )) g(- x)

+(n n g(G) W (x) dx
n 2_ r h (H1l(x)) g(G_1(x))2C n) nl n

R' 2 xl  n n Png ( )G-(x) d
+ 2(v (n) + i -  g1

v n n gn(Gg((x))-d

O-n (Hn2 2 p g(G /W )2

1--1

+ 2(v2 (n) + -2 1 f dx
O'n p g(G (x)

2n

R Tf e'(Hn Wx) -1/2-1/2
+ 2(v2(n) + Qc 1 2 ph(())dx +o(L n-12I O n1/2  Pn hn(Hnl1 xW )  n

Combining terms., changing variables of integration, and noting that by

(2.43) and (2.44),

p . .

,
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1 n (H (x))-1/4
1 dx o(Lf hn(H n(x)) n n

we obtain

L AI(Y 2 Rj B2

SA (y)g(y) 2
S9 (n) = { h( ) d + (vl(n) + ~n B- j g(y)dy

A. 2: 1

1* B2

+ 2(v 1 (n) + )(n) + n-* 1  ) g(y) ygy)dy +

22 1

B2

B1

-P n g(Hn-1 ) (G C-ix)) dx
2(v (n) + 1/2 n n(H 1

em n p h n CH x)) g(G W)

1-P 1 , -1
R* 1 -n et(H (x)) g'(G (x))

+ 2(v2(n) + 1/2)1 -1 x G 1(x)dx
n Wn P h (H (x)) g(G-(x))

2 Pn n n

B B

(v (n) + R )2[1+ 2f yg'(y)dy + r ly)] 2g(y)dy]

2 +m 1 /2  B B g(y)
n 2 1 1

+ o(L-1/n-i2}
n

Now let denote the quantity

B B B
2] g2(y)d2 2 Cg (y )  2 2

d + v -12- y)d + 2vlv*( [- ]yg(y)dy + l (y)dy)
KIp3 1 g~y) B B gyL 1 B1 B 1
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1/l-P n en(H l1x)) gI(G-1 W))
+ 2*gimn. L 1/2K/ f Pn h(n l~ )  g(- x

1n-oo n p~ h n(H nC1x)) g(G (xW)

-1P -1-
2v*Lim L 1/2 K1/4 -pn €(H. (x)) g'(G -(x))

n n (H(x)) g(G- x))

B B
22 2

+*2Eg'(y) 2

+ 2El + 2f ygt (y) + f [yg-()] g(y)dy].
2 B1  B g

Then, since (expression (2.60) = nS9 (n), we can use (2.1) and (2.4) to

argue that K1/2n{products involving RE and R in S9 (n)} converges

stochastically to zero, and hence, for any e>0,
1/2

Lim P{1K n  (expression (2.60)) - > e} = 0
iK nn

Combining i) through (iv) above completes the proof of lemma 2.5. QED

The asymptotic power of the test (2.31) now follows from lemmas 2.3,

2.4, and 2.5, and is given in the following theorem:

Theorem 2.1. The asymptotic power of the test (2.31) is given by

1

12 c,,) (2.66)

as n+-.

Proof. First note that

4k4

I

I

' - - , ,.-.. .. ,4, . . , ,= - -- . : .Z. - .,L-&
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2~ 0*[0* (n)]- 2

e2 2 2 2~ V2
2

-2 + / 2(n) -2

lemma 2.3, we can therefore write the test statistic T(n;; 1, 02) as

R*/n + v2 (n) 2 c W*(n) - (K +l)
[l + - /2n) ] (l + o(l)) +

REl+n2 + v2(n) -2 Q(n)R + v2 -2 V(n)

Using lemmas 2.4 and 2.5, we have

c W*(n) - (K n +1)
T(n;0 1,02) = n n Yg/r + Op.2(K~l)gp

as n - -. Recalling that c W*(n) is asymptotically equivalent to a chi-n

square random variable with (Kn +1) degrees of freedom completes the proof

of theorem 2.1. QED

2.4.1 Remarks

(1) In theory, the asymptotic power of the test immediately obtainable

from tables of (x). The quantity Yg, however, appears quite formidable

to compute, particularly because of the terms (2.63) and (2.64). Since

G(x) is usually easier to work with than H (X), the following relation

n
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often helps simplify the computation:

- .q(H 1W Ocnl( O + 6GlW
(1 2(1)2 for P n <  x < -Pn (2.67)

hn(H x)) g(G (x) )
n n

(2) None of the conditions imposed on the distrubance function e n(x)

specifically required that H nx) lie outside the region encompassed by

the null hypothesis. In particular, suppose we take

x _ (n)

H (x) G( 1n o(n)
02

where (n) .- and (n) 0* as n + . For our definition of
1 2 2

alternatives to be consistent, we should obtain a power equal to a for

the a-level test (2.31) when {Hn (x)} is the underlying sequence of dis-

tribut ions.

First suppose that the assumptions of section 2.3 are satisfied, i.e.

(C (x) G( ) -n O(n) 0
02 2

satisfies (2.38) through (2.41). Then it follows that the constant y
g

equals zero and the power is given by (c ) = a as desired. To show

this, we note that for this case we have H- (t) 6(n) 6 (n)G (t), andn 1 2l

I -form (2.45"),

-1.l n (n)^,oLl2n/
(nHnlt)) : (G-t))r( (n)_01) + (02 -_)G-l(t)] + ).

2
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Differentiating the above expression with respect to t yields

-n n 1~2 2 g'(G ~ 2 0.-2 [+ g(G (t))-l
h (H- (t)) 0 g(G 1t) 2 g(G (t))

Also,

(H1(1/2))

lo (n n n - 2 (-/ -/
1g(O) G*n

and

l(n (n) 2 * 2 (-1/2K-1/4)
2 2~ no( n

so that

v* LimL 1 2 K 1 /4 1 anid v* Lim L 1 2 K 1 4
0 *2

In addition,

e (*(n) (H- 1(p )) -u (n)[v (n) v WU (n (n)] + o(L 1 /2K-1 /4 )
n1n n n 1 1 2 1n n n

and similarly,

C ~ ~ U (H1(p u (n)[v (n) + v WnUK 1(n)] + o(L 1 /2 K 1/4 Pn
n 1 1 nn n

Finally, note that in this case the assumption (2.36) becomes

(n)_,,* B2  %(1) ,.

1 0
0 0* f' g.yd + j-,(y)dy + 1]1,

2
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so that

B2  B2

v'f g'(y)dy + v*[f gy'(y)dy + 1] = 0.
1B!  B1

Using the above rela'ions in the expressions (2.61) - (2.65) yields

immediately the desired result that y. = 0.

For the sequence {Hn (x)} as defined here, it is of course not

necessary that the assumptions of section 2.3 be satisfied in order that

the test (2.31) have power equal to a. In fact, we have

u.(n)

T(n;1,0) = - 01 - 02U.(n)

0 12 0* 1 2)2

I *n ~ 02 )U.(n)]-EOn + - 2 -(Un0* 1 2 2 -Z]U (n)

2 Fn F

u.(n)
S(R* D

2

K1/2 , ^ ^ ln n O , 2 :,and it is easily shown that K 1(n;/l22) ) converges to

and '(n ; '2 n n0, 2)cnegst
(n)

zero in probability as n -- regardless of the rate at which 01 and

(n)0 converge to O and 0.2 12

(3) In the preceding sections we defined alternatives relative to a

predetermined procedure in order to achieve a power level between a and 1.

In particular, the functions L and K were first specified and then
n n

the conditions (2.38) - (2.41) on the alternatives were imposed. In

practice, however, the true underlying distribution is unknown but fixed,

and it is L and K which must be chosen. To this end, the form ofn n

the power function indicates that choosing Ln  as large as posible would

ni V-L~ls I
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lead to the greatest power for fixed (large) n when the underlying dis-

tribution belongs to the alternative hypothesis. The quantity yg can
112-

be written as Lim LnKn yg(n), where y (n) is some nonnegative function

of the true distribution as well as the null hypothesis. Suppose we take

T = ML ,K = (1/M)K for any positive constant M greater than one. Then

it is easy to see that assumptions (2.1) through (2.6) still hold (i.e.

L and Kn are feasible), but now y has been increased to yg = Myn n g g g

with a corresponding increase in the asymptotic power of thj test.

There are, however, additional considerations in choosing L . Then

interpretation of Ln is that of the "spacing" between the successive
L

sample quantiles which are used in computing the test statistic T(n;el,02 )

(here we mean "spacing" in terms of the indices of the order statistics,

not the values which they assume). The larger Ln  is made (for fixed n),

the fewer the number (Kn +1) of sample quantiles which are used. For
n6

"moderate" n, therefore, taking Ln large (say n , where 6 is close

to 1) may result in an inferior test since very few quantiles will actually

contribute to the test statistic. Evaluation of this conjecture would

require extensive empirical studies and is not done here.

We did, however, use Monte Carlo methods to study T(n;01 ,02) and
^V 2

T(n; 1, 2 ) under the null hypothesis. The purpose was to determine the

extent to which the distributions of whose statiscics resembled normal

distributions for small to moderate n and whether or not (a) the choice

of Ln or (b) the use of parameter estimates affected the degree of

approximation to the asymptotic distribution theory. The methods and re-

sults are presented in Appendix A. We concluded from the study that the

asymptotic distribution theory is not adequate for determining the criti-

cal regions of the test (2.31) for moderate n (at least n<300 and

-- i _ _ _ _
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probably much larger). Deviations from normality were particularly evi-

dent in the tails of the empirical distributions of T(n; 1,62) and

T(n;O 1,09) although those deviations may have been amplified by the

limited number of replications in our study. Not surprisingly, the

distributions of the statistics exhibited greater non-normal behavior

when the parameters 01 and 62 were estimated from the sample than

when they were known and specified. The effect of the choice of Ln

on the distributions or rate of their approach to normality was not clear.

2.5 Examples

2.5.1 Obtaining the "Standard Representative" of a given Scale-Location
Parameter Family

Throughout this chapter we have assumed tnat the distribution G(x)

satisfied G- (1/2) = 0 and G-1 (3/4) - G- (1/4) = 1. As noted previously,

this assumption allowed us to use the same estimators 0 1(n) and 0 2(n)

without our having to carry along in our calculations certain constants

depend:ng upon the particular G(x) appearing in H0. The disadvantage

of this representation is that the parameters 61 and 02 are not the

"usual" location and scale paramcters. In this subsection we derive the

equations which must be solved to determine 01,62 and G(x) given the

more common form of the distribution and solve them for many useful cases.

Let F(x) = G((x-O1/62) be given. The relation G-I(1/2) 0 implies

that 1/2 G(0) F(01 ). Now, let x1 = G (1/4) and x2 = G (3/4).

Then, 1/4 G(xI) F(02Xl+01 ), and 3/4 = G(x2) F(02x2+e1 ). Since

x2 - x1 = 1, we have the following system of equations which can be solved

for 61,02 and x

6I

K __ _
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F( l) 1/2

F(82 x 1+) = 1/4 (2.68)

F(02(l+x1 )+6 1 3/4

Once 01 and 02 are found, G(x) = F(62x+61 ) is determined. For example,

suppose we are interested in the normal family F(x) = ¢((x-i)/o). Then

the equations (2.68) become

= 1/2
a

)D 3/4
21111

a

The first equation above yields 01 = 1. The second equation then gives

02x1/a = -.6745; the third equation gives 82 (l+x1 )/a = .6745, and together

they imply 02 1.349. Thence, G(x) = D(l.349x) and g(x) = 1.349 (1.349x).

Table 2.2 lists the results of the above transformation applied to five

common distributions.

2.5.2 Weibull Alternatives

A common way to study the asymptotic power of a test is to choose a

parametric family of alternatives and examine the behavior of the test as

one or more of the parameters approach limiting values. Since we are

d-eal.,, w,I a composite hypothesis which includes an entire scale-location

*" parameter family, we must go to a three parameter family in order to study

V
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the asymptotic power of the test (2.31) using this approach. A natural

family is the Weibull family, which approaches the exponential family as

the "shape" parameter converges to one. This family has proved to be

particularly well suited to the metric arising in tests based on sample

spacings (Blumenthal [2]); however, the computations for the test (2.31)

are considerably more tedious.

We define the sequence of alternatives

-Xn
[1 -e if x>O

H n(x)
0 otherwise

where an is the "shape" parameter, and where, without loss of generality,

we have taken the location and scale parameters to be 0 and 1 respectively.

Then

E W = e-x - eX a (x >0)
n

and On-i1 _x n

hn(X) = OnX e (x > 0).

L1/2 1/14
We first consider the assumption (2.40). Defining a(n) as Ln K

nn

we will ow that

r

n  1 a(n) for some r, 0 < r <

satisfies the assumption, with the value of r to be determined below.

Consider the function

r
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[c ()]2 2  x + -]-(r/a(n) e(x n-x)e X.
S(x,n) - h (x) e

h n W n a(n)n

Since

fx- (r/a(n))e-Xdx r( an)~0

is finite for r < a(r), S(xn) is clearly irstegi able for all r such

that a(n) > r. Furthermore, S(xn) is easily shown to be strictly de-

creasing in n, and we show below that

Lim a2(n)S(xn) 2r 2(x-l) 2(log x)2e-x  (2.69)
n4'

with (see [14])

C2
f(x_l)2(log x)2e-xdx Y 2 _ 2y + 2 +

6
0

(y .5772157 is Euler's constant). Hence, we may use the dominated

*I convergence theorem to write

22 2Lim a (n)fS(xn)dx fLim a2 (n)S(x,n)dx (5.6474)r
fl0 0

and choosing r .4208d satisfies (2.40).~3.
To prove (2.69), we note that for fixed x we have

_x n -[ - a-Txlog x + 0(a-n )]
e e

= e-Xe (r/a(n))xlog x (1+o (1))

e!!
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as n + =. Hence, neglecting smaller order terms,

a 2(n)S(x,n) = a 2(n)e-[x x (r/a(n))(x-l) + x(r/a(n))(l-x) - 2].

In order to determine the limit of the above, we treat n as a continuous

variable and denote da(n) by a'(n). Using the fact.that
dn

d (r/a(n))(l-x) _ r a'(n)(x-1)(log x)x(r/a(n) )(l-x )

-x a(n)

we apply L'Hopital's rule twice and obtain

L* 2 Sz(x,n)
a a (n)S(x,n) = -2

a-2 (n)

Ire-X(lg x)[(x-l)x
(r /a (n ))(x-l ) (l-x)x (r/a (n ))(l-x )

a-l (n)

Sr2e-X(log x ) 2 (xl)2 x(r/a(n))(x-l) +

(l~x)2x(r/a(n))(l-x)]

2 2 2-xX

2r 2(x-1) 2(log x)2 e
-x

as desired.

For this example, however, it is assumption (2.39), not (2.40),

which actually determines the power of the test. In particular, we will

now show that (2.39) requires

8n  a 1 n)

A%
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1/2where a(n) a(n)/p n and r is positive and finite.

Using the "standard representative" G(x) =1 - (/13)x from

Table 2.2, tedious calculations yield the quantities appearing in defini-

tion (2.38). These expressions, neglecting smaller order terms, are

s u m m a r i z e d i n T a b l e 2 .3 .T 
A L 2 .

EXPRESSIONS REQUIRED FOR WEIBULL POWER COMPUTATION

Expression Value [Expression Value

g1)1 lY H-1

-1 log (2(1-x)) -1

G(x) - log 3 e n (H n (x) r (log 1 2 lgo
~~~. ~~a(n) T lolgj-

-') (log 2) 2loglog

g(G (x) (-x)log 3 v 1(n) 2
a~n) log 3

2-l -l "(og 4) loglog 4

T(n) (log_4/3 loglog 4/3

w(n) log (n2lo

~ Using the above expressions, (2.39) becomes

1 lo3

di 2r log 2) loglog (lg2/)

(log44 lo 4-lg43 loglog 4/3] log 2.

d 2 4T log 33log
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Since v* Lim a(n)v (n) and v* Lim a(n)v (n) are zero, it is easily1 n- 1 2 n4- 2

seen that the only contribution to the quantity y comes from expression

(2.61). Specifically,

(1-P n)log 3 log(2(l-pn)) 2
rd d]

a(n)log 2 -2 log 3

Yg Lim a2(n) log 3 - log(2pn , 2

a(n)log 2 1 2 log 3

- log 3 d 2

log d1 d21

-2
3.4212 r

and the asymptotic power of the test (2.31) is given by

-2
c + 2.419 r

2.5.3 Normal Contamination Alternatives

We consider the sequence of alternatives

Hn (x) (1-6 )D(x) + 6n (X+pn)

where the sequence {6 n  converges to zero as n + . These alternatives

provide a basis of comparison of the test (2.31) with tests designed

specifically for the normal hypothesis which we discuss in the next

chapter. Using Taylor series expansions (see example 3.1), we have
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n(x) = 6n (X+Pn) -4(x)}

= 6n~ ~ (P/2)x + (p 2/6)(x 2 -1) ¢ x 3 ( nn n nn 4(X+ 6nn

and

2 2
n,(X ) = 6nPn{-X + (Pn/2)(x -1)}(x) + o(6npn).

It is easily shown that condition (2.40) -requires 6 = d1/2 L-1 /2K 1 /4 -1
n 3 n n

condition (2.39) is satisfied with dI = d2 = 0, and (2.41) is satisfied

1/4for b(n) = (nLnPn) . Considering the quantities required for the power

computation, v(n) = 6p(l+o(1)) and v = O(6nPn); so that v* -1
1 n n2 n 1 3

and v* = 0. Thus, in addition to (2.61), (2.64) and (2.65) make no2

contribution to y for this example. Also, using (2.67) and taking

G(x) from Table 2.2,

1-Pn O'(HN (x)) g'(G-1 (x)) 2 -Pnf n n 1G1x)x ( 1.349)2 6npn [1- (Pn /2)D-l(x)]-l(x)dx

ph n(H n(x)) g(G (x)PPn Pn

+ 0(60 p )
n n

1'42 2 2
(1/2)(1.349) 6nP + 0(6 np)

from which it follows that (2.63) vanishes.. Thus

Yg d3 + (v*) f (1.349) x24(1.349x)dx
-co

d (1 + (1.349)2

and the asymptotic power of the test (2.31) is given by

b.(c, + 1.99d3).I3

5-..1
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CHAPTER III

LARGE-SAMPLE TESTS FOR NORMALITY

3.0 Introduction

In both theoretical and applied statistics, the most common distri-

butional assumption which is made is that of normality, and a great deal

of research has been directed toward testing the validity of that assump-

tion. In this chapter, we develop a test based on a gradually increasing

number of order statistics which is a large-sample analog of the Wilk-

Shapiro test for normality.

In section 3.1, we survey the literature concerning the Wilk-Shapiro

and related tests.

In section 3.2, we describe the statistic k(n). Using the asymptotic

distribution theory discussed in chapter 2, we determine the asymptotic

distribution of W(n) under the null hypothesis and use that distribution

to define our test for normality.

In section 3.3, we prove that the W-test is consistent.

In section 3.4, we determine the manner and rate of approach to the

null hypothesis that a sequence of contiguous alternatives must satisfy

in order to yield a non-trivial power as the sample size n tends to

infinity.

In section 3.5, we use the results of the previous sections to define

and analyze three additional statistics which give rise to improved tests

for normality.

In section 3.6, we give examples of the behavior of these tests under

specific sequences of alternatives.

In section 3.7, we discuss the foregoing results as well as possible

60
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areas of future research.

3.1 Goodness of Fit Tests for Normality

Since the appearance of the Wilk-Shapiro test eleven years ago,

considerable attention has been devoted to testing the compound hypothesis

that a sample of data comes from a population whose underlying c.d.f. is

an unspecified member of the normal family. The primary focus of such

research has been to understand and/or improve upon the original W-test.

j We begin by discussing this test, follow that with a discussion of several

of the related tests which were subsequently proposed, and throughout,

give a brief survey of the empirical studies which have provided the fuel

for research in this area.

3.1.1 The Wilk-Shapiro W-test

The Wilk-Shapiro test was developed as a means of formalizing a

rather informal procedure for testing fit--the probability plot. Briefly,

a probability plot is a regression of the ordered observations on the

expected values of the order statistics from a standardized version of

the hypothesized distribution.

Suppose Xl, X2,..., Xn is a random sample with common distribution

function G(x) and denote the ordered sample values by Y1 n 2 .Yn'

Also suppose that the null hypothesis is true, i.e. G(x) ,(x ThenA u

we can write

Y. = + aZ. i 1,2,...,n

where Zi, Z2,..., Zn are the order statistics of a sample from a standard

'
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normal population. Shapiro and Wilk [27] used the square of the generalized

least squares estimator of a obtained from the above linear model (i.e.

the square of the slope of the regression line), divided that by the usual

symmetric sum of squares about the mean, standardized the resulting

statistic, and obtained

-1 2
(mtV Y)

n 2

( , - y)

i=l

where

m . E[Z.]I V .. = cov(ZiVZ.)

m' (m1 ,...,mn) V = [ViI].

Some elementary facts about W are that it lies between 0 and 1 and is

location and scale invariat. Under the null hypothesis, the numerator

and denominator of the above statistic are, up to a constant, estimating

2the same quantity, a . The distribution of W under the null hypothesis

was computed empirically using Monte Carlo methods and tabulated for

n = 3(1)50. Under the alternative hypothesis, Shapiro and Wilk found,

again empirically, that the values of the statistic tended to be smaller

than under the null hypothesis. No analytical results have been obtained,

either under H0 or H1 , for finite n or asymptotically as n tends

to infinity. But in empirical studies, the W-test, which rejects H0

for small values of W, has been shown to be at least as good and generally

better than most of the commonly used tests over various symmetric,
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asymmetric, short- and long-tailed alternatives.

By far the most extensive of these empirical power studies was reported

by Shapiro, Wilk, and Chen [29]. In that study, they compared W with

eight other tests, including the Kolmogorov-Smirnov, Cramer-von Mises,

and Anderson-Darling, over twelve families of alternative distributions.

They found the W-test to be a more sensitive indicator of non-norm,'.ity

than any of the other tests; in addition to exhibiting better power

against most alternatives, it was the only test which never had a low

power when another test had a high power against a continuous alternative

distribution. Stephens [30] latcr amended their results in comparing W

to the various EDF tests mentioned above. He pointed out that the study

[29] computed the EDF statistics by treating the means and variances of

the alternative distributions as if they were completely specified rather

than using estimates btained from the samples. Stephens still found,

however, that the W-test was generally superior to the best EDF competitor,

though usually only slightly. Chen [3] studied the behavior of W under

scale and location contaminated normal distributions, finding the W-test

to be sensitive to both types of deviations from normality, although the

power dropped off rapidly as the contaminating distributions approached

the normal.

The primary drawbacks to the use of the W-test are: 1) the coeffi-

cients cannot be computed, but must be obtained frow. tables, a different

set rf oefficients for each different value of n; and 2) the coefficients

(in particular the v. 's) are only known exactly for n : 20. (Shapiro

and Wilx used linear regression to extrapolate the coefficient values up

to n 50.)
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In a later paper [28], Shapiro and Wilk found good empirical agree-

ment between the distribution of W and a member of Johnson's SB class

of distributions.

3.1.2 Related Tests

The nonavailability of the v ij s for n . 20 prompted Shapiro

and Francia [26] to ppopose the following statistic as an approximation

to W:

(my)2
m'm

n -2
(Yi -)

i 1

They justified the use of W* on the grounds that, for large n, the

order statistics {Yi} could be treated as if they were independent.

This, of course, is false, but Stephens [31] later showed that in the

nor nal case the vector of mean values of the standardized order statistics

is an asymptotic eigenvector of the covariance matrix of those statistics.

Thus, the statistic W* is iv' fact asymptotically related to W, and

has the advantage that the veco m is known up to n = 400. Shapiro

and Francia have computed the critical region for the W*-test, which

rejects for small values of We , for n = 35,50(1)99. Again, no analy-

tical results are available, but in empirical studies [26,30,35], the

W*-test has been shown to be very similar, but, in general, slightly

, , Iinferior in performance to the W-test, although Shapiro and Francia found

the W*-test to be more sensitive to "near normal" alternatives. Sarkadi

[22] proved the consistency of the W*-test against alternatives wi'h

* finite second moments.

'7-1 X
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The most extensive analytical work in this area has been done by

De Wet and Venter [9,10], who were concerned with the statistic

-2
(my)

2 m'm
r
S n -2

i=l

where MI (in."''i) with mi = ( D -). They determined the asymp-
1 n 1 n+1

totic distribution of n(l - r) - a under the null hypothesis to be
n n

T(y), where (y) is the distribution of

2
CO (X - 1)x k

k=3 k

where X3, X4,. are i.i.d. standard normal random variables, and where

a is a complicated function which is o(log n) as n tends to infinity.
n

Their methods are discussed in more detail in Appendix B. The percentiles

of T(y) were computed numerically using the inverse of the characteris-

tic function. As we might expect since the mi  are limiting values of

2

the mi., good agreement was found between r and W* (for n = 99); it
1 n

would b- difficult, however, to make a rigorous statement concerning

2
the rei. onship between the two statistics. Further remarks about rn

and W* as well as additional empirical approximations to the distribu-

tions of W and W* appear in Stephens [33].

In other work building on his earlier results on covariance matrices,

Stephens [32] considered the more general linear model
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E(Y.) = j+ ami + 2w2(m i ) + 3w3(m i ) +

where 2' 83,.... are constants and w2 (mi), w3(mi),... are functions

of the mi, in particular, the Hermite polynomials. Under the null hy-

pothesis, 0 = 2 = 3 .. , and a large-sample test of the latter

event is proposed which may be extended to as many i as the experi-

menter wishes. Specifically, by choosing w2(.) , w3(.),... as he did,

Stephens was able to obtain simple expressions for the estimates 2 03,...

/ and, under the null hypothesis, show that standardized, studentized ver-

sions of these estimates are asymptotically independent and normally

distributed. Thus, the sum of the square estimates, 82 + 2 + ... has

a chi-square distribution with the number of degrees of freedom deter-

mined by the number of estimators which the experimentor wishes to

consider. Stephens' test is based on the latter distribution.

Finally, D'Agostino [5] considered tests based on the following

statistic: n
I [i - (1/2)(n+l)]Y.

DA i=l nDA i
3  y) 2]l/ 2[n (Y i-

i=l

D'Agostino showed that under the null hypothesis, DA is asymptotically
AA
normally distributed, but he found that n must be well over 1000 before

the asymptotic distribution is useful in determining the critical regions

of his test. Instead, he used Cornish-Fisher expansions (based on the

first four cumulants of D A ) to determine the percentiles of the dis-

tribution of a standardized version of DA. In an empirical power study,

he found that a two-sided test based on DA was abie to detect deviations

from normality due to both skewness and kurtosis (i.e. the test is an

4;~~ ~~~~~~~~~~~~~~~~~~ ra____________ _________________________
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"omnibus" test). He also found that this test was comparable, but again

slightly inferior, to the W-test. In a ldter study, Theune [35] found

the Wilk-Shapiro test to be "far superior" to D'Agostino's test in de-

tecting non-normality. Theune did, however, find the D'Agostino test

to be comparable to the Shapiro-Francia test over most of the alternative

distributions studied.

3.2 A Large-Sample Test for Normality Related to the W-Test

In this section we describe a statistic I(n) which is an analog

of the Shapiro-Wilk W based on an increasing subset of the order statis-

tics. By appropriately selecting our vector of order statistics as in

the previous chapter, we are able to invoke the asymptotic distribution

theorv of section 2.2.4 and thereby determine the asymptotic behavior of

N(n). Based on the asymptoticdistribution of i(n) under the null

hypothesis, we will define the a-level critical region for our test. In

view of the asymptotic sufficiency result of Weiss [40], we would hope

that, at least for large n, the powers of an a-level test based on k(n)

and an a-level test based on W (assuming the necessary coefficients

were available) would be "close" in some sense. In that event, the

large sample behavior of the w-test would help to explain the behavior

of the W-test, and at the same time, the empirically determined superi-

ority of the W-test for small samples would provide some justification

flJfor using the W-test when n is large. The relationship between the

two tests remains open question. Some further remarks concerning this

relationship appear in subsection 3.2.4.

Before defining our test statistic, we recall some notation and results

from chapter 2.

4;

iJ
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3.2.1 Definitions

Let the sequences of integers {npn, {K n}, and {L } be as defined

in section 2.2.1 with the assumptions (2) through (8) replaced by

L pn 0 L' Ks = o L np oo (3.1)

L
n nn n n

L n o n 0 (3.2)

a n =0 (33)
Ln 2p2log(l/p)

3n pn
L= 0 (3,)

n

We note that (3.2) and (3.3) above are exactly (2.4) - (2.6) where we have

replaced T by its value for large n (up to a constant) in the normaln

case as given by (C.10). The assumption (3.4) is new. For L > n3/4

it clearly imposes no added restrictions on our choice of parameters. For

L n = o(n3/4), it requires in effect that our selected subset of order

statistics move into the tails fairly rapidly as n gets large.

Throughout this chapter we will denote

_ln np n (i-l)L n

n

by Ti(n) and (Ti(n)) by ti(n), for i = 1,2,...,K +1. Also, we will

-1denote -(x) by T(x) and 4(T(x)) by t(x). We will denote the

(Kn+l)-vector of selected order statistics by '(n), with components given by

n-
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qnYnpn  i=l

Yi - Yi(n) Ynp n+(i-l)Ln  i=2,3,"''Kn

qnYn(-Pn i=Kn +1

where

) Tnn)l2n ) 1 L l+T2 (n)
n 1 1 1 1 LTn) 11 1/2

qn2L n T (n)n p + T 1 (n)n+ t () + 3-)2 (  2 ] .1 t1(n)

(3.5)

Let (n) = ,... +1) be the analogous order statistics selected
~n

from a sample whose parent population is standard normal. Then, in view
*1

of the asymptotic distribution theory of section 2.1.4, we can assume for

all asymptotic probability calculations that the vector (n) has a

(Kn+1)-variate normal distribution with mean vector

T(n) = Rl(n),...,TK +1(n))' - (qnTl(n),T2(n),..,,T K (n),qnTK n+(n))'
n n n

and covariance mat-Ax V(n) whose components v..(n) are given by
1)

qPn(-Pn )/t(n) 
i=j=+

qpn /tl(n)tK +l(n) i=l,j=Kn+1
n

L
-Pn-(j-1)-L)/t (n)t (n) 1=i<j<K

L
v () n L L .(3.6)
1) n(L n-1)nn

vjn)- nLn1) (Pn +  (i-)-)1-Pn-(J-1)--E)/ti(n)t (n) 2<i:j::Kr

n n n n i.

L
n(P+ (i-l)--)p t (n)t (n) 2<i<j=K +1
qnpn + n n i K +1 = nn
2 2
qPn(-Pn)/tK +1 (n) i=j=Kn+l

n

1

"* ., ... ."• *2 . ,* .I. , -** -, , . .
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The inverse of the above covariance matrix has the siMapler form:

1+ Ln

q 2 1 2

1i 2 2t 2  _L _______ 2 ~2 3

V (n)= 2 3 3 3 4 .(3.7)

2-t K 1t K 2t K -t Kt K+
n n n n n

K nK n+1 np n 2

q q2  K +1

3.2.2 The W-Test

~, IWe are concerned with the testing problem pn of section 2.0, with

G(x) = -$(x), the standard normal c.d.f. Analogous to the Wilk-Shapiro

4- statistic, we define our test statistic W(n) as

-[T'(n)V-
1(ON)~n (3.8)

Nn) 1 - -1 "' "2
Fii"(n)V- (n)V- (n)T(n)]D (n)

where
K +1 K +1
n 1 n .

Dn (n) n)-Y(01J with Y.(n) =(K +l) Y.()
I n i1

Under H0, the numerator of W(n) may be thought of as the least squares
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2 '
estimator of the variance a based on Y(n). The denominator, as we shall

r -.prove later, has the same asymptotic distribution (after suitable

standardization) as the denominator of W.

Lemma 3.1. For? all n,

(i) W(n) is location and scale invariant

(ii) 0 SW(n) < 1.

Proof. Identical to the proofs of Lemmas 1 and 2 of Shapiro and Wilk [27].

Lemma 3.2. As n ,

npn 1/2
q -) (1+o(1)) (3.9)

n

Proof. The proof is based on the following formula of Feller [13,p.1 93]:

1 1 +3 15 l-(x) <1 1 + 3(3.10)
x 3 5 7 4(x) x 3 5

x x x x x

for all x > 0. Taking x = D-l(1-p) -Tl(n) in (3.10), we have

J(x) = t1 (n) and (3.10) becomes

1 1 3 15 Pn 1 1 3
Tl(n) 357 t(n35 (31)

T3(n) T (n) T'(n) 1 T(n) T 3(n) T5(n)" (3.101)
1 1 n T 11

Multiplying both sides of (3.10') by t Tl(n)/P and rearranging

y t 1  n

yields

t1 (n) 3t1 (n) 15tl(n) t1 (n)T (n) 2 t1 (n) 3t1 (n)
p T (n) 3 51 1 p T (n) 3 1. (3.11)p n T1(n) pnTl(n) pnT5(n) Pn1 pnT1(n) pnT3(n)

n 1 n 1 n"

.. .'t 7'*
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Multiplying both sides of (3.10') by t1(n)/p n  and rearranging terms yields

t (n) 3t (n) 15t (n) t (n tl(n) 3t (n)
n-15 7 1 T(n) +  1 < (3.12)

T3(n) pT (n) p T17(n)  p 3 (n )  pn T5 (n)

Substituting(3 .12 ) into (3.11) we obtain

2tl(n) 12tl(n) 15tl(n) t (n)T (n) 23 5 7 Pn +~n-

p T3(n) pnTl(n) pT 1(n) 3 n 1
nl1 n 1(n n1 (3.13)

2t (n) 3t 1 (n)

pnT1(n) p T1 (n)

Thus, using (C.7) and (C.8),

t 1( WT 1(n) 2 ~. 1
n) T1 (n) - 1 -2(1 + O(2log(l/p n)

as n -**-. Finally, combining the above relation with the definition
2

of q and using (3.2) to e .Ainate smaller order terms, we obtain

2 np n1
q n L n 1+O(2g(l/p

n ))

This completes the proof of lemma 3.2. QED

Since we are concerned here only with asymptutic results, one might

ask why, in view of lemma 3.2, the definition (3.) was given for

2instead of the much simpler and more easily computable qn = np /L ? The

answer is that even for large n, the smaller order terms in (3.5) play a

. .
-UU - q
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crucial role in the asymptotic distribution of W(n). The e:act difficul-

ties which arise if those terms are neglected will be pointed out later.

* In many of the arguments below, however, it will be true that those terms

may be neglected for asymptotic purposes, in which case the result of

lemma 3.2 will be useful.

Let Pi(n) denote the quantity

1"'1 2; ['(n)V (n)' n)]2

.ET[ '(n)V-iL(n)v-"l(n)T(n)]T'(n)T(n).

The next subsection of this chapter is devoted to proving the following

theorem:

Theorem 3.1. Under the null hypothesis

5/2 3/2

212 n2~ (Mn)-n) (3.14)2 L2

n

is asymptotically normally distributed with mean 0 and variance 1.

Thus, we define the c-level W-test for normality as fo.lows:

Reject H0 iff W(n) < 1(n) + c n(n)

where

L2
,2 1/2 n(n) ,'-27 5/2 3/2n Pn

and c is the c-percentage point of the standard normal c.d.f. The

reason for choosing the lower tail of the distribution as our qritical

region is that under the alternative hypothesis, W(n) tends to be smaller

than under the null hypothesis (this statement is made rigorous in section

I q,.
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FIGURE 3.1

CRITICAL REGION R (a) OF THE W-TEST (Schematic)
n

[(n)

0

n

3.3). Figure 3.1 depicts the large sample behavior of W(n) and the

critical region Wn (a) of the test. In lemma 3.5 below, we show that

1 -P(n) is

OLg4nlog(I/pn)

0( 4 3'
n pn
n

Hence, (3.4) implies that the quantity aq(n) converges to zero faster

than the quantity r(n) converges to 1, and the 100(1-a)% confidence

region for ?(n) approaches the curve r(n) faster than the curve

approaches its limiting value.

K -- ------- --
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3.2.3 Proof of Theorem 3.1

Since we are assuming that the null hypothesis holds, we may also

assume without loss of generality by lemma 3.1 that YI,...,Yn are the

order statistics of a sample from a N(O,1) population. Hence, for all

our asymptotic probability calculations, we will hereafter take the

distribution of (n) to be (Kn+l)-variate normal with mean vector T(n)

and covariance matrix V(n) as defined in the previous section. The

theorem will be proved by examining the Taylor series expansion of (n)

about the point T(n) and determining which terms are asymptotically

dominant. Before doing so, we introduce two lemmas which are required

for the proof.

Lemma 3.3. As n

1 (1+o(1)) i=l,K +1

L* n log(l/p n) n (.5

~(3.15)
var Y.

np 0(i) i,3 Knnlcg(i/Pn),'

and

nPn 1/2 i=lKn+1(-) 0(1) n
nn

n

n (3.16). [ vij(n)

A p a0n i=2,3, n
ri

"'Proof. It is easily verified that max {var Yi}  occurs at i=2 or i=K.
S2<i<K n

=n
An application of (C.10) yields (3.15).
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In proving (3.16), we first consider the case i=l (o i=K n+1 by

symmetry). Using the definition (3.6) and simplifying, we have

K +1 p 2 p3/2 K LlP (j_1).. Injn p n n
Sij(n) 2 1/21/2

j=l (Ln-l)t 1(n) Ln n t1(n) j2 t.(n)

By(C.10), the first term is O([Lnlog(l/Pn)] - ) as n + ,and the second
term is approximately

3 l-Pn

Pn) 1/2 n f (l-x) dx
2Lnn Lnt1 (n) pn t(x)

which equals

3np 1/2 T (n)
(2L53-- (l n (n)

n

Applying (C.8), the first half of (3.16) follows. (In Chapter 3 as in

Chapter 2, we will frequently have occasion to approximate summation by

integration as above. We again refer the reader to Appendix C, where we

formally carry out this procedure and obtain upper bounds for the resulting

errors for integrals of the type appearing in this chapter.)

For i=2,3,...,K we have

K +1 (j Ln L
n n(n+(-ln L nvi (n) qn [ '

j=l = I tl n tK 1Wi( n )  +]n(L n-1)+
n

L L
L i-1 [p +(j-J.)-][1-Pn- ( ni-)-a]

n n nJL±n nJi
n(Ln1 )  i ntWt(n)n j=2
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K L L
n [p i n]

n n -n n
nti(n)t.(n)

L nPnqn 1 W I~)l¢y]d
=0(nT(Lnl)tl(n)tijn)) + gn--- Tl- ) CY)] •

I T (n) ())
K +1T TK +1i( n )

+ nf l-OW(xl¢Yldx (i+0(i))1}

y

where y N Ti(n).- The first term above is o([nPnLnJ- /2) as n + o. In

priuasne(pL-1/2 =-1 1/2 -1
particular, since (nPnL) = L nLn/np n) , it is o(Ln). Noting that

nnn n n

-Y a

f 4,(x)dx =f [l-0Nx)]dx,
-a y

.

the second term above can be written as

I -

. [(Ln-l)y)]-I { f ,(x)dx -yy)}.
T1(n)

I'1
4I Evaluating the expression in braces, we obtain {pnTl(n) + (y) - tl(n)}.

I An application of (C.8) completes the proof of (3.16). This completes the

proof of lemma 3.3. QED

* It is well known that for the full set (i.e. all n) of standard

normal order statistics, the row sums of the covariance matrix are equal to

1. Equation (3.16) shows that the ratio of the common row sum for our

selected subset of order statistics to that of the complete set is

4 asymptotically equal to the fraction of order statistics that we choose.

• .*
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1-Lemma 3.4. The vector -(n) is an asymptotic1eigenvector of the matrix

V(n) corresponding to the eigenvalue [2(L n-1)]

Proof. We will denote the (Kn+1)-vector T' (n)V-l (n) by y(n), with

individual components yi(n). It follows directly from the definitions that

tl1(n) Lt (n- T (n) - t(n)T(n)}
1n n 1 1

Y(n) 2(L n-1 )  t (n){2t1(n)Ti(n)ti-lWTil(n)ti+lWTi+l(n)}

n i=2 ,3 . ., , n

tK + (n) Ln nn {(l+---)t. WnT_ (n)-t_ WnT (n)} iKn+1
q n nP n K n + K n +1 K n n

Using (C.1), Taylor series expansions of ti (n)T (n) and t (n)T (n)

yield

6 n t )2 T.(n) )
ti-WnTi-(n) t WinTi(n) T 2" (n)) -(-a ) .(n

nn 2 n1 nT2(n)Ti(n) 3+3 n ( .n) - ) (-i ) + 61(i'n)

1
(3.17)

L L 2Ti(n)
tlWTl(n) ti(n)Ti(n) + (1 - T2(n)) - (n)

1 i n 1 n ti(n)

Ln3 1+T2(n) L 4 r.(n) 3
3 ( 2(n  (t.n) ± %2(i,n)

t.(n)11

where 6 (i,n) and 62(i,n) are o(Ln/n pn) as n - . Hence,

,

4-,
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t (n) L L L 2 Tl(n)
l1 n n T 2_(n)l_) +

l n l )T(n) +  (-) t-(n)

L 3 2+T2(n) L 4 Tl(n) 3+ 1 (-a) (t n 1 ) + 1 ( - n ) ( 1-- ) - 62(l'n)}
3 2 6 n ~ t (n)2

t (n) 1

L 2 T.(n) 1 L 4 Ti(n) 3
i n .(n in 77___ 3

n (L-1) I

Y ((n) =-~L
n tK + (n) L L

n n

+ n( n)  1+TK +1 ( n )
+ i (-) ( - n. I (__a n i=K +1

n t (n) n 2 nK n+1 t K 1(n)n ~ K+
n

IL T (n)
+ I 4K n+1 3
6--a) ( ) - 6 (K+1,n)}t K +(n) 1

n +(3.18)

where 63(i,n) -(61(i,n) + 62(i,n)). We note that 63 ((Kn+2)/2,n) 0

for all n. Let 6 4(n) denote the quantity

(n) L L 2  L 2 T (n) L3 1+T(n)
l~n)[--1 (n)T (n) + n(T (n)-l) + n)(_--._ ()n- -- nn 1 1 -- (lT - ) + - tl(n)

_2( 12ln .

n

By the definition of (n) 0. Also, using (3.9) and (C.7),

I6
* 4 _ _ _ 

_ - ~
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':: '(n) T(n)v-l(n) =2(Ln-1)(1+0[- ]))TI ( n ) .

nn

Post-multiplying both sides of the above equation by V(n), rearranging

terms and applying (3.2), the proof of lemma 3.4 is complete. QED

SRemarks. The above result is not sui.p.-ising in view of the work of Stephens

[31]. Working with the complete set of normal order statistics, Stephens

found that the mean vector is again an asymptotic eigenvector of the

covariance matrix, but this time corresponding to the eigenvalue y = 1/2.

More generally, by solving a certain differential equation, Stephens found

that the sequence {X= (j+l)- I} is a sequence of asymptotic eigenvalues

for the covariance matrix of (Yl,...,Y n), with corresponding eigenvectors

{w.} whose components are the Hermite polynomials He.(x) evaluated at)
the appropriate population quantiles. Stephens' method does not yield

error terms, however, In our case, since the eigenvalues are approaching

zero as n increases, the asymptotic result is only meaningful provided

the error terms approach zero at a faster rate. Hence the above method

of proof.

An Example. Before continuing with the proof of the theorem, we give a

simple application of lemmas 3.3 and 3.4, using them to show that the
2symmetric sum of squares estimator of the variance a and its analog

based on Y'(n), suitably standardized, have the same asymptotic distribu-

2 2tion. Without loss of generality, we take a = 1 as above. Let S (n)

denote

n
S(Y. Y

i=1

It is well know that S 2(n) is approximately N(l,2/n) for large n, and

- 1.
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thus, (n/2) 12(S 2(n) - 1) converges in law to the standard normal distri-

bution. Now consider

K +1n

S (n) (Ks+l)-  ( -

Expanding 2S (n) in a Taylor series about T(n),

K +i K +1
n,2 - n -2 n
S (n) (Kn +1)-I  T i(n) + 2 (K n+1)

-  T()(Y T )
i=l

K +1 K +n n -i

S(Kn+1) -1 . 7. .~i-(K +1) )(Y.-Ti(n))(Y.-q'(n))
i=1 j=l1 .

* where 6.. 1 if i j and 0 otherwise.

Using (C.9), the first term in the above expression is easily shown to

* converge to 1 as n tends to infinity:

K +1 KSn n
(K n+l)- il 7. (n)= (Kn +1)-1[2 nT 1 (n) + i=2 T2" (n)]

1-p

4p log(l/p )(l+o(1)) + f T2(x)dx(l+o(l))n nn

4D log(l/p )(l+o(l)) + (1-2p -4pnlog(l/pn))(l+o(1))
n n n n n

- 1 - O(Pnlog(/Pn)).

The second term is asymptotically normal with mean 0 and variance

4K T'(n)V(n)(n), which, by lemma 3.4, can be written for asymptotic

n1
purposes as 2n- . And finally, since the third term has expectation

* 4

* ) - ... -

* A ' j
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o((nPn)-l) (by lemma 3.3) and stanard deviation also o((npn)-l) (by an

argument analogous to the one used in the proof of lemma 3.7 below), it

is o p((nPn)) as n .Thus, (n/2)l/( (n) - E{ WD)} converges

in law to the standard normal distribution, where E{S 2(n)} converges

to 1 as n +Thnv

Proceet'ng now with the Taylor series expansion of W(n), we have

K +1

[( VT(n)-V (n)n)'T]2  ) )

(3.19)
K +1 K +1

n n 1-(2) (An iA +n j T ! " ( ( n ) ) ( i - Ti ( n00 ( j - ji nW ) +..

where {!l) (T(n))} denotes the set of first partial derivatives evaluatedi

at w(n) { .(T(n)) the set of second partials, etc. To simplify

notation, we will hereafter denote the first (constant) term in the expan-

sion (3.19) by S1 (n), the second (linear) term by S2 (n), the third (quad-

ratic) term by S3(n), and the remaining terms (W(n) - S (n) - S2(n) - W)
31 S2( S3()

by S W(n). In lemmas 3.5 to 3.7, we deal with S (n), S2 (n) and

(S3 (n)+S4W)) respectively.

Lemma 3.5. As n +,
4

S (n) (1 n og(i/P o(1)). (3.20)
27n P

Proof. Contained in the proof of lemma 3.4 is the fact that

1'(n) 2(L-l)T'(n) + el(n)
bn
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t,. where e'(n) (e,(n),...,eK +l(n)), with
n

(Ln-1)65(n)(1 + o(i)) i l

L.n 2 L(Ln- 1) T 3(n)
e. (n) 2 1 (n) (1+o()) i=2,3,...,K

31 2n
n t.(n)

I

- (Ln-1) 65 (n)(1±o(l)) i=Kn+1

and 65(n) = -(Ln/nPn) 5/2(21og(i/P ))1/2 . Thus, we have

[2(Ln-1)TI(n)T(n) + e'(n)(n)]2

1 [4(L-1)T'(n);T(n) + 4(L-1)T'(n)e(n) + e'(n)e(n)T'(n)T(n)

and, after some simplification,

"~ 2

1 - 1(n) =[e'(n)e(n)q'(n)T(n) [e'(n)T(n)]o
4n2

22 2
since 4(Ln-1) ET'(n)T(n)] = 4n (1+o(i)) asymptotically dominates the

denominator of S (n). Now,

U.4 2 K 6
262(22 Ln(Ln-1) n T.(n)

e'(n)e(n) = 2(Ln-l) 2n) + n 4
9n4  i=2 t. (n)

L7  : 5 -Pn
4Lnlog(l/pn) +_1LT6_

- 71°g1/Pn ) + 1 n f T6(x) dx (1+o(1)).
n5 p5 n5  t 00n P

Using the method used in deriving (C.5) to evaluate the above integral,

left -i I1 .. . -
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we obtain

6-Pn 6 log(l/p n)T(x) dx - 3 3 n (P 3 ),

p t(x) P 9pnn n n

so that

5
4L log(l/pn)

e'(n)e(n) = -(+()). (3.22)
3 327n Pn

Similarly,

e'(n)~(n) -* nl1og(l/pn) (1+o(1)). (3.23)
n

Hence, since Lim xlog x = 0,
x- O

L4L

1-S(n) ( +log(0/p)  (1)).27n 4p

This completes the proof of lemma 3.5. QED

Lemma 3.6. The quantity S2 (n) is asymptotically normally distributed

4 5 3with mean 0 and variance (2LMn/(27n Pn))(l+o(l)).

Proof. Since ( - kn)) is asymptotically normal with mean vector 0,

we need only determine the variance to complete the proof. Using

y (y1,...,y K +i as a dummy variable and letcing D(y) denote
n

K +1n 2
S(Yi - y ')

we have

& 'I
Ii
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11 y(n)y' (n)y]

W ) (Y) 1 [Y' Dy)y"
T)(n(n(n yi (n) y

Using the facts that -i(y'y(n)y'(n)y) = 2yi(n)yl(n)y and

D -(y) 2(Yi-), the above expression becomes

(2 y.(:)y'(n)y (y'y(n)y'(n)y)(Yi - y ' )

- ., - 1 (3.24)

In particular,

-( 2 [(n)T(n)] Y:(n)T(n)
W. (nl))(n ][yi(n )  i(n)],

1 ( Y'Cn)y(n)[ '(n)T(n) 1'(n)T(n)

and using lemma 3.4, we can write the above expression for asymptotic

purposes as

, n_  y' (n))! i(n) -i(n))(l+o(1)). (3.25)' ' l)( n)) (Yin) (n)T(n)

Since y'(n)T(n)/T'(n)T(n) A' 2(L -1) and y.(n) -- 2(L n-l)T(n) as n
n 1

we must be careful about the smaller order terms in applying lemma 3.4 tothe quantity in parentheses in (3.25). Recalling expressions (3.21) and

(3.23), we can write

Lnn

-6 5 (n) - 66(n)T1 (n)

L L -1) T.3(n)
n n 1

W. (T(n))- 3 3 2 6 (LT T (n) i2,3,...,Kn  (3.26)
1 n t (n)1

"in 2(n) 6 6(n)T i (n) i=2,3,,.

- n n
:..: i=n+1
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where 66(n) = (41,3/3n 3 pn)log(1(/Pn Noting that l(n) = -qn(21og(i/Pn))I1
/2

as n - and using (3.2), (L n/n) 5 (n) = o(S66(nTlI(n)), so that the terms

involving 65 (n) in (3.26) can be neglected for asymptotic purposes, and

the variance of S2(n) is given by the sum of the following twelve

expressions:

4qL4(log l/p )2(n)n Pn (1-Pn) (3.27)n n 6 nL-1

n t2 (n)

L 
2

-4 4 n n n (.8
-q4(log i/Pn)66 (n)n(Ln-) 2 (3.28)

n t1(n)

3 K T L

2)21/25 L np n nT.(n n
3qn(21og (n) X I_(1_p (j-l)-- )  (3.29)

ln n 6 n t (n) j=2 t.(n) n n

1 n)

3--qn(2°g i/Pni/266(nn tl1(n) i=2 -Pt(n) il- (.0

2 L nKn T.(n) L

S l )1/2 2 (n nPn " n(J-1)-) (3.31)3-q(21°g i/Pn °6 +n (n-11l)n ])

3 6Kn 1(n) 2 t (n)
Lp K nTWL

-22 1)/262(n) 1nn p n) (3.32)

1~ ~ ~~n I~(nl Kn T n)( )
S 7%o 1/p _ .n)(L )_) (l_1n_ (l-p (3.31)

nn 1 =2 1 nn

L Kn TI.(n) L L-22 nn Lp nT.3.3)
n 6(n)-o -- (Pn+(i-l)-n)(-n- )--) (3.32)

n i=2 ti(nt3 K 64

2 (KL n T. (n)
_2,_n__,_p_(_l.)(_nil) (3.33)

n i2 t. (n) 
n

1
3K4L n T(n) L L.

2 ~ t.n n n n,_

2(n) I 1(±(. fl)l(l)...n) (3.35)
p6 n(L -1) ~ n \n n n

n i=2 t.i(n)(
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L5(L-l)Kn-  Kn Ti(n)T.(n )  L L(2nn 4 _ I. 1 1 3 (p +(i)n)(l_p (j ) 2 _) (3.36)
9 3 3(nn i=2 j i+1 t ()t(n nn nn

-L3  Kn-1 Kn T.(n)T3(n) T3(n)T(n) L L
3n 1 3](3 + i (i-)- )(1-)n-(j-i)-2) (3.37)

LiK-i T.(n)T. (n) Ln  L

i ((n) 3 n) n n n n
3n i =2 i+ ti (~ i (n j (~ n

We will now show that expression (3.36) asymptotically dominates the

other terms in the above variance. For large n, expression (3.36) is

approximately

7 3 i-p i-pS2 Ln(Ln-I) n n 3 3

n Pn x t Wxt (y)

Evaluating the inner integral using (C.5) this becomes

3 i--P i-P<L(L i) n i- n 21 n 3n-  (x) 2 T (x) f T (xf n x(i-x) --- x f x-- j ' x - f --4 --dx 0(p )I p (x) t (x)

i ~which, again applying (C.5), is easily shown to equal

L42 n (1+O(P
n -J n p n

the first integral is zero by a symmetry argument; the second integral

pnp(Ti(n)/ti(n)) plus smaller order terms, and the third

integral contributes (i/3)(T (n)/t (n)) plus smaller order terms.

Ij

9 (i *f --,
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Applying (C.7), we obtain the stated ,esult.

Next we show that the remaining eleven expressions in the variance of

S (n) are o(L /n5p3 ) es n -.
1n n

Applying the definitions, lemma 3.2, and (C.l0), we see that

34 (log i/Pn)
2

32nn
[expression (3.27)] = - (1+0(1))

S53
= o(Lg/n 5P n

as n

Expression (3.28) equeals pn (expression (3.27)); so it is obviously

of smaller order.

Adding expressions (3.29) and (3.30), applying definitions, approxi-

meting summation by integration and neglecting smaller order terms, we

obtain the quantity

L4 -n 3-
'9n f (1-2x) z

n Pn t (x)

Using (C.5) and (C.7) to evaluate the above integral, the expression becomes

8(+())

9 6
n p

which is obviously of smaller order than (3.36) as n .

Proceeding in exactly the same manner, we add (3.31) and (3.32) and

obtain an expression of order Ln(log i/p n 2/n5 which is again of smaller

order than (3.36)

Approximating summation by integration and neglecting smaller order

I

4t J
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terms, expression (3.33) becomes

5 1-p
L n T6(x)

n Pn t(x)

Integrating by parts twice and applying (C.5), the above expression is

easily shown to equal

L5

1 n__1_5L
18 6 4 n0(P))n pn

and this is again of smaller order than (3.36).

Since (expression (3.34)) =0(pnlog(l/pn )expression (3.33)), it follows

that (3.34) is of smaller order than (3.36).

Asymptotically, expression (3.35) is approximately

L6 1-Pn 216 7n (log I/Pn 2 f x _ T W x,
n Pn

which is 0(L 6 (log 1/Pn )n 7p2 ) as n + . Thus, expression (3.35) is

o(expression (3.36)).

Finally, since (L /np )66 (n) is o(n 66(n)) as n - , showing

that expression (3.38) is of smaller order than (3.36) will imply the

same for (3.37). But, (3.38) is approximately

L4  1-p1-L n -Pn n16 n(log 1/p) 2  f f x(,-y)T(x)T(Y)d.9 5n2 l g 1/n x-Yt(x)t(y)-yx

nn n x

Evaluating the inner integral this becomes

L i - --U-.



90

1-pn

CpT1(n)t-l-p -T (n)t (n] ' x ) x
ni4 n n ~ I(+ tX)

n n8- -n 2 1 - nA T x

npnn p

Iti as hwnta teep-pininbae i-p 0l).Hece

n p 

nt is. euarizinshowe hae exsion inth branc is S() Hncegve
L 2

by(expres(ion (3. 38) 0( p(l) hc omlp)s th oepreson (flm3.6 asD
n n

o L2 /n5/2 P3/2 )a

Lema 37. he uaniy (n) 2 5(n is o (L Inpys
3 4 pn -

Prof W frscnsDS('). Difrnitn (3.4 it)epett

ijnY 1 n ___ ___ ___ ___ ___ ___

2D(y D (n),

i 2 '2 "n

-yn) 4l 
fl

(3.39)

In particular,

0=3
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.(n)y.(n) 2T. (n)Y.[(n)[r (nyn]
n-(2)(()_ ,~ 4 2T (n)T(n) [T (n)T(n)]
wi] (n)=y(n)y(n)

1(n -n Y (n)T (n)+yj(n)T (n)+ 2 n) ( [6 1j- (K n +1)-

[ , T(n)T(n) ]

Using the result of lemma 3.4, we can write the above expression for

asymptotic purposes as

w .(T(n)) 2(L /n)[(L /n)T.(n)T (n) + (K +1) - 6..]. (3.40)
i1 n n i n)

Since

*K +. K +1n n

. E{S 3(n)} (1/2) j )T v (n ),

it is straightforward to show using (3.6), (3.40) and the methods of the

proof of lemma 3.6 that the asymptotically dominating term in the above

expectation is

L L
L K (P +(i-l)-n)(1-Pn(i-1)2)
2n n n n n

n (Ln-1) i-2 t.(n)

which becomes

i-P

n-I  f x(1-x)t-2(x)dx (1+o(1)).
Pn

Evaluating the above integral, we find that

E{S (n))1 2n log(l/pn) (l+o(1)) (3.41)
3- n

r:
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as n 4  .

Next, we obtain an upper bound on the standard deviation of S 3(n).

To do so, we use the fact that for any random variables x, x2 ,...,x n ,

n no( iC( ) (3.42)
i~l i=1

b2

Note that if X is normally distributed with mean 0 and variance a 2

E{X 2m } = (2m-l)(2m-3)...(1)0
2,

so that

Vax{ 0 . n) s E{Yi-Ti(n)) (Y.-T.(n))

:- [E{Yi-Ti(n)) 4 }E{(Yj-T.(n))
4}]11/ 2

3var{Y }Var{O j}
:i

[Lnlog(l/P n)-2 i,je{l,Kn+l}

[nL nlog(l/p n )t(n)]- ie{l,Kn+l}

j {1,Kn+l}

< const (3.43)

[nLnlog(i/Pn2 )1]-i i{1,K+1}
jc{lKn+l}

-2[nti Wt (n)]- 2  i,ji{l,Kn+1}

where we have used lemma 3.3 and the definition (3.6). Thus, from (3.40),

(3.42), and (3.43)
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K +1 K +1n n 1 1 1({S 3 (n)}-- <~ w i~ ijv '2)(T(n))Ja{( i- Ti (n))( J- iJ(n))}

= cl[nlog(l/pn)I-  + c2L1n log(u/P) + c3n- (log i/P)
21 n 2 -3/32

+ c4[npnlog(l/p n)i

where cl, c2, c3, and c4  are 0(l) as n . The asymptotically

dominating term in the above expression is easily seen to be the term

associated with c4 ; that is, a{S 3(n)} :Sc4[npnlog(i/pn)]-(l+o(l)) as

n '. But, the latter expression can be written as

52 3/2 1/2
n n n -(log i l(l+o(1)).c4  5/2 3/2 L2 n

n n

o2/n5/2 3/2
Applying (3.4), we see that a{S (n)} = o(Ln p ) Similarly, fom

is lso 23 n ~n iialfo
,,.41), E{S 3 (n)} is also OLn/n pn ). Thus, the tem S3(n) is

o (a(n)) as desired.

We now deal with the higher order terms in the expansion (3.19).

Applying (3.42), the standard deviation of the kth order term (k=3,4,...)

is less than or equal to

K+1 K + K +1

S 2 (n))O i (n))1...
il 1i2=1 ik=l 112 k k k

We will find upper bounds on the quantities in the above summation which
2 (b" 5/2 3/2,are sufficient to show that the sum is o (L / n as n

pn
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To simplify notation for the remainder of the proof we define

2K 2 n)2
A(y) = [Y'(n)y]2 B(2) (yi-y

i= 1

( A(y) BB(y)

( 2A(y) B(

A' j(y) = J 1j ayay. y
2.] Yi..~Yy 3YY)

for i,j 1,2,...,Kn+l. We note that all higher order derivatives of

A(y) and B(y) are zero. We have shown previously using lemma 3.4 that

A A(T(n)) L

const n (log 1/p
A((n)) - /

B! (T(n)) L

B() I const n (log 1/p)1/2

B(T(n))

(3.44)
A'.(Tn)) L

I ]  S. const _- n (log 1/P )2

1)n 2A(f(n))n

B'.(T(n)) const(L /n) if i=j

B(T(n)) const(L /n)2  if ilj

~sn-~n

a s n

Now let R(y) log(A(y)/B(y)). It is easily seen that the general

(k)kth partial derivative of R(y), which we will denote by R. ik(Y),
12• • k
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involves only sums of products of the forms

l (y) A (y) A! +y )  A (
(11 ) j3j Y) ]m n 1m +m (y

const A'] 2. . 1 ]1 '1 1 2(
A(y) A(y) A(y) A(y) A(y)

and
,l2( Bl! . (y) B! (y) B! (y)

const [- I'y BIy I
B(y) B(y) B(y) B(y) B(y)

where mI + m2  m m3+ m4 = k. But, by applying the definitions and

rearranging terms, we also have

w l)( (n)) S I(n)Rl )((n))

'- ((n) ) - S (n){R(1)()(n))R(1)((n)) + R )(T(n))}

R())(T(n))R 2)((n)) + Rl)fin))i 21(T(n))

(1) 1~ (2 j (3)

Wi(S(n)) = (n) Rl)(T(r)R, (T(n)) + R ?(T(n)) +
ijk 1 k 1)k

R. 1)R()R ) (T(n))Rkl (T(n))

(3.45)
terms involving products of derivaties of

R(y), where the sum of the orders of the
W(k) (i(n)) S (n)

1 i2 1 derivatives in each product is k and each

index (i.e. il,i2"...) is represented exactly

once in each product

Thus, since S (n) 1 as n - ,



96

Lns
0k) Lf 51wk (T(n))l < [--log(l/pn)] (3.46)
1 2- k

k+l.

where s* max{(k-s),[ -- )

and s the no. of equalities among the indices il,i2,... ,ik.

Next we turn to the standard deviations of Lhe (Y.l,...,4.k) terms in

the expansion (3.19). The argument used in obtaining (3.43) also yields

the following fact for k=3,4,5...:

Var{(% (i-i(n))(' (i-2 (n ) ) .. . (Yik-T i n))}

1~:. 2 2 'k 1k

(3.47)

• ~ ~~VatO T ( i(in)) .. -T •(ni~~i )) -[cnogi/n)] -ti.

1. k-. 1k-l costnpog(l/p ] i 1kt{JK n +1}

For given k, let Ik(r,m,s,s*) denote the set of integers r,m,,,s*

which satisfy

0<m<k

max{o,m-2} _ r <5 max{m--1,0}

r < s < r + max{k-;-..,O)

s* -max{(k-s),[-- -jt

2

Then, combining (3.46) and (3.47) we obtain

K +1 K +1 K +1.. n ii (T(n))IG{0 il_(in))...0 i _(I'M))

i= i2=1 ik 1 1 2"- k 1 1 k k
!2 k

I f-
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k-s-m+r L s*-(m/2) s*-(k/2) -k/2 (m-k)/2
< const • max (K ±1) (log i/Pn) n P

n nnn
I Ik (,m,s,s*)

for k=3,4,... (where m represents the number of indices (il,... k )

which assume values 1 or K +1; r represents the number of equalitiesn

among those indices, and s and s* are as defined above). By separ-

ately considering each of the four cases: (1) k even, s . k/2;K (2) k even, s < k/2; (3) k odd, s > (k-l)/2; and (4) k odd, s < (k-l)/2,

it is straightforward to show that the right hand side above is

asymptotically maximized by the following parameter settings:

m=r=O, s=1,2,or 3 if k=3

m=r+l=s+l- 2 if k>3 and odd

Lmk+2 if k>3 and even

in which cases it becomes

1/2log(l/p) if k=3
33
n

log(l/p n ) 1/4
It nc t [Lk-3fk+3 k±l ]  if k>3 and odd
'const, 3 n k3Pnk~

k 2k2n2-/
• r~k2 k- k+2 - 1/ 4

[L p Pn n k if k>3 and even
n n

Successive terms of the above expression are decreasing in k at a

nrate which is O(Lnl/2 while for k =3 we have

In

I
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log(l/pn) 1/2 L2  n(log /P )1 /2 L2n n o-n

n n3p3  n 5/2 3/2 L' 5/2 3/2nn n Pn n nP

as n tends to infinity. Hence, a further application of (3.42)

establishes that the standard deviation of S 4(n) is o(o(n)).

Using (3.46) and the formula analogous to (3.43) for expectations,

it is easily shown in the same manner that the expected value of S4(n)

is also o(O(n)) as n + -. Thus, S4 (n) is o p((n)) as claimed. This

completes the proof of lemma 3.7. QED

Combining the results of lemmas 3.5, 3.6, and 3.7, the proof of

Theorem 3.1 is complete.

3.2.4 Discussion

In this subsection, we explain the reason for the definition (3.5) of

the quantity qn, discuss the possible relationship between W(n) and W,

including the introduction of a new statistic W-(n) which is an analog

of W* of Shapiro and Francia [36], and finally, mention , ne practical

considerations in choosing the parameters of our selected subset of order

statistics.

The quantity qn" In order to ensure the asymptotic normality of our

selected subset of order statistics, it was necessary to have the "tail

spacing" (np n) of the statistics different from the "internal spacing"

(Ln). A consequence of this fact was that the elements of the inverse

of the asymptotic covariance matrix corresponding to the tail statistics

were too large, upsetting the "balance" inherent in the coefficients

Y(n) V (n)T(n). Specifically, these coefficients were asymptotically

dominated by yl(n), and, in fact, y'(n)y(n) was asymptotically dominated

S
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2
by yI(n). Thus, for q 1, not only would the value of the statistic

N n) be essentially determined by the value of the tail statistics Y (n)

and Y (n), but the statistic itself would converge to zero instead of
K +1
n

one as n =, in which case the -test would no longer be consistent.

Even defining qn = (np nL )l/2 its limiting form, had the effect of

allowing the tail terms to dominate both the rate of convergence of SI(n)

? to one and the variance of S2(n). Only by defining qn as we did were

we able To cause the effect of the tail statistics to be of smaller 3rder

than the combined effect of the remaining Kn-1 statistics.

The relationship between and W. Probably the most intriguing and cer-

tainly the most difficult question raised by the preceding work is whether

*or not we can infer anything about the large sample behavior of W from

the asymptotic distribution of W under the null hypothesis (or under

the alternatives of section 3.4). In essence, does the form of the

statistic i properly encode the information about the null hypothesis

in order that the asymptotic sufficiency result of Weiss [40] may be ex-

tended to this case? If we were to take p and L to be their values
n n

if the full set of order statistics were being considered (i.e.

-2
l/n, L = 1), then the variance of W(n) would be of order n

which is what has been conjectured for W by Stephens [33] and others.

However, we of course cannot do tht, and, in fact, condition (3.4) pre-

cludes any choice of the parameters which would make the variance that

small.

On the other hand, let us dei. ne an analog of the Shapiro-Francia

statistic W* based on Y(n) (w.th q 1) by

I.I
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"e2 = (3.48)
[T'(n)T(n)]S (n)

Also, let a* denote the quantity
n

K +1 K +1C n -1n I Y [(Ln/n)Ti(n)Tj(n) + (Kn+I )-I  6 IjVi(n)
i=1 j=1 li

where {vj(n)} are given by (3.6) (again with q 1). In the proof of

lemma 3.7, a* was shown to be 0(log 1/pn) as n o. In appendix B wen n
prove the following theorem:

Theorem 3.2. Under the null hypothesis,

nil - W*(n)] - a* (3.49)n

converges in law to Tjy), where Y(v) is the distribution of

S(X~ -1)

k
k=3

with X3,X 4... i.i.d. standard normal random variables.

The significance of Theorem 3.2 is that the analog W'(n) of the Shapiro-

Francia statistic, or, more precisely, of the De Wet-Venter r has the

same asymptotic distribution (under H and up to a shift in location) as

the corresponding statistic based on the full set of order statistics.

Thus, the form of W-(n) does properly encode the information about the
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null hypothesis. We can conclude, then, that if ?(n) does not behave

like W, it is because of differences between the rate at which the asymp-

totic eigenvector result (lemma 3.4) takes hold for the mean vector andI covariance matrix of Y as opposed to the rate for the corresponding re-

sult for the full set of order statistics. Progress toward rigorously

defining the relationship between W and W might proceed along that

line of analysis.

Practical considerations. In practice, there are two ways of choosing

the "spacing" parameter L :
6n

(A) L n n where 2/3 < 6 < (such that (3.1) - (3.4) hold)n

(B) L = n where r(n) c as n , 2/3 < c < 1 (such thatn

(3.1) - (3.4) hold).

For moderately large n, method (A) leads to larger values of Ln and,

hence, smaller values of K than method (B). The advantage ethodn

(A) is that the asymptotic theory takes over for smaller n. ' dis-

advantages of method (A) are: (1) Kn+1 , the number of selected order

statistics, is very small (for example, for Ln = n and n = 1000,

(Kn l) = 5); and (2) the statistic W(n) is too sensitive to small devi-

ations in the tail values. Table 3.1 gives the asymptotic means and

standard deviations for k(n) for small changes in the tail percentiles

Pn' 1-Pn" Small changes in the actual values of the tail order statistics

should also have dramatic effects.

Method (B) is preferable in that smaller values of Ln arise; that
An

is, the asymptotic variance of W(n) is smaller and we select a larger

subset of the order statistics. The problem with this method is that even

,
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TABLE 3.1

ASYMPTOTIC MEANS AND ViRIANCES OF W(n)

FOR VARIOUS CHOICES OF THE TAIL QUANTILES

CASE*

II III
n 5(n) d(n) D(n) Ef(n) D(n) d(n)

100 .503 .068 .909 .033 .956 .024

150 .544 .052 .928 .024 .967 .017

200 .575 .043 .940 .019 .973 .013

250 .599 .037 .947 .015 .977 .011

300 .619 .033 .953 .013 .980 .009

350 .635 .029 .957 .012 .982 .008

400 .650 .027 .961 .010 .984 .007

450 .662 .025 .964 .009 .986 .006

* 500 .673 .023 .966 .009 .987 .006

550 .683 .021 .968 .008 .988 .005

600 .692 .020 .970 .007 .988 .005

650 .700 .019 .972 .007 .989 .005

700 .707 .018 .973 .006 .990 .004

750 .714 .017 .974 .006 .990 .004

800 .720 .016 .975 .006 .991 .004

850 .726 .016 .976 .005 .J9i .004

900 .732 0.15 .q77 .005 .992 .003

950 .737 .015 .978 .005 .992 .003

1000 .741 .014 .979 .005 .992 .003

*Case Ln p

n5n(/o n) /

.1/2'7 5  -(1/log n) /
I n

75 -(1/log n)
23/

IIn n
3/4

• 75 n -llgn
III n

__ _ _ __j
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for moderate n, significant contributions to the mean and variance of

i(n) come from the higher order terms in the expansion (3.19) as well

as the lower order components of the constant and linear terms.

From the practical point of view, therefore, the asymptotic theory

is not overly useful for moderately large n in actually specifying

the critical region of the test. It is useful in providing possible in-

sight into the behavior of W, in indicating how to choose Ln and pn

to give the best results (i.e. choose Ln "small" and pn "large"--which

makes sense since both the numerator and denominator of W(n) have

interpretations as estimators of a2 ), and especially, in indicating how

*, W(n) behaves under alternative distributions so that comparisons with

other test procedures may be made. The latter results are discussed in

* i the remainder of this chapter.

3.3 Consistency of the W-Test

In this section we show that as n , the power of the sequence of

tests based on W(n) tends to one against any fixed alternative. Through-

out this section we assume that for each n, the sample X1 1 ...,Xn comes

from the distribution H(x), where H(x) = I((x-p)/a) for any (ia)

with a > 0. In particular, we assume that there exists some e > 0 such

that

inf sup IH-(p) - c#-l(p) - dl > e
c,d O<p<l (3.50)

Sc>O

where H (p) is defined as the smallest value of x such that H(x) > p.

(Note that the degenerate case where the support of H(x) is a single point

I
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is ruled out by this assumption.) Defining

( xl6H(x) if x<0

n(x)

x6(I-H(x)) if x>0

we further assume that n(x) is bounded and converges to zero as lxi

for some 6 > 0.4. We remark at the end of this section how this regu-

larity condition may be relaxed. A sufficient condition that it hold

(see, e.g. Sen [23]) is that EH{lxl 6} is finite. Our proof of consis-

tency requires the following lemma:

Lemma 3.8. There are points p*,p*,p*, with 0 < P < 1 for i=,2,3,

non-overlapping open intervals I* = (p*-6*,p4+6*) with 6* > 0,
1 1 1

and some c > 0 such that for any (cd) with c > 0,

inflIH-(p) - c-l (p) - dl > e* (3.51)
PCI*

for at least one i=1,2,3.

Proof. We prove the result when H(x) is discrete. The modifications

required when H(x) is continuous are pointed out parenthetically as

we proceed.

Let xI and x (X < x ) be any two jump points of H(x) and

choose p*, i=1,2, such that H(x.-) < p* < H(xi), where H(x-) denotes

the limit from the left. (In the continuous case, we choose p* such
i

that 0 < py < p* < 1 and H (p) is strictly increasing for p in
1" :

some neighborhood of pi.) Let c and d be the uniquely determined
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values such that 4((xi-d)/c) pt for i=l,2. Then, from (3.50), there

exists p*, 0 < p* < 1, such that

Al A

I p - (p - dl > e

3 3

Al A

Furthermore, the continuity of c4(p) + d implies that we can "shift"

p* slightly if necessary so that H(x3-) < p* < H(x3) for some jump point

x of H(x), possibly at the expense of replacing e by a smaller

positive quantity e' (say). (In the continuous case, we can have H (p)

strictly increasing in a neighborhood of pt.)

Now consider

I inf max JH-(p ) - c- 1(x .
c,d i=1,2,31
c>O

By the way the p* were chosen, the value of this quantity must be strictly
1

positive. We will denote the value by 2e*.

We now show how the intervals I are determined. We consider only

the case where xI < x2 < x3  and 1/2 < p* < p* < 1. The other cases are

similar. The situation is depicted in Figure 3.2. The shaded boxes are

the regions where (3.51) is satisfied; that is, (3.51) holds whenever the

curve 4D((x-d)/c) passes through no more than two of the three boxes. By

the definition of e*, any normal curve must pass through or outside at

least one of the points (xi± *,p ), i=1,2, or 3. These points are denoted

by * in the figure. Since the slope of 4((x-d)/c) is decreasing in x,

the worst possible case is that c and d satisfy



7 - ,

106

C)Y

(N C4
CN)

CD E-

co

4;0

41NN

I I to

.'C~ "_1 C9x -Ia.



107

x1 - (W*/2) - d( c ) = P* 6

x- - d

Adding the additional equation

x - (*/2) - d 36*
@( c ) 2 §+7

solving for 6*, and taking 6= 6*, i=1,2,3, thus yields the desired

1
intervals. (In the continuous case, the shaded boxes become cylinders of

width e* about the curve H(x) and the slope of H(x) in each of the

neighborhoods must, therefore, also enter the calculation, but the method

is the same.) This completes the proof of lemma 3.8. QED

Now let J*(n), i=1,2.3, denote the set

fiJ p* - */2 < pn + (j-l)Ln/n < pi + 6'/2}.

Note that IJ*(n)l = largest integer < 6n/L . We now show that (3.51)

J implies that for at least one i=1,2,3,

Lim P{ min s1. - cT.(n) - dl > e*} 1 (3.52)
n-*, jeJ (n) J

First assume that H(x) is discrete. By the way the p* were chosen, we
1

may assume without loss of generality that H(xi-) < - 6"/2 < pi + 6'/2 <

A&. H(xi) (since otherwise we just replace I* by its intersection with

(H(x.-),H(xi))). Thus, je J*(n) implies Y. = x. with probability

k
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approaching one as n . Thus, (3.52) follows immediately from (3.51)

for Lhis case. Now assume that H(x) is continuous. We may again assume

without loss of generality that H-l(p) is strictly increasing on I*.

Lot Mij(n) denote the quantity

np + (j-l)T

n(H()- n ) J (n).
) n I.

It is well known that max IM. (n)I is finite with probability one.
j eJ*(n) j

Writing

-I(Mij(n) np+(j-l)Ln

n n

we see that jc J*(n) implies that the argument of H above is in I*

with probability approaching one as n increases. Applying (3.51), we

again obtain (3.52).

For i=l,2,...,Kn+l, let y (n) denote the quantity Yi(n)/[y'(n)Y(h)]1i 2

(where y(n) T'(n)V- (n) as previously defined). Consider the quantity

K +1
n

K +1 K +1I ,*Y M I (Y. - (3.53)

j=l 3 jl ]

It is easily seen that (3.53) is equal to 1 - W(n). In lemma 3.4 it was
shown that +(n) +l)-/ 2; hence (3.53) can also
sT (n)(l+0(L/np))(K

n

I_7
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be written as

K +1

u n IT.(n)(l+0(L n/nP n))u n(Yn _/2) +Uj~l 3 p)(~1nl )~

Applying lemma 3.8,

2' x 2(Kn2l-vi/

V 1 - (n) > u2  [(n)(l+O(Ln/npn))(u( +) - Y " + .]
_i n i]j J

I:

> (,2 2> 6 '.() (nun /Ln)

with probability approaching 1 as n + . Also,

- 2 n 2 "
(nun/L)> (Kn+l)u W(n)/S2(n)

with S (n) as defined in section 3.2. Thus,

i( > ' ( )2 (3.54)
I -2 2(n) + P (e*) 2

with probability approaching one as n co . Since the sequence of critical

n n nnI poits fo theW-test approaches one at the rate n /(L log(i/Pn)) (e

lemma 3.5 and Figure 3.1), consistency will follow immediately once we

establish that is o( p /(L log(l/p ))) as n .

We now return to the function n(x). Our initial assumption implies

. that n(Y.) is bounded for 1 <_.i <K +1. Using this fact together with
n

the fact that n(H n('.i) - i is finite with probability one (where

H n(X) is the empirical c.d.f. and H(x) may be discrete or continuous),

.. .. W-
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it follows that the function

I i(ni-)Ln/n) if p +(i-l)L /n < H(O)

I' 1(pn+(i*l)n~ n-

"Ic IYil 6(1-Pn-(i-l)Ln/n) if p+(i-l)L n/n > H(O)

is finite with probability one. If H(x) is continuous, (3.55) is immedi-

ately implied by the fact that n pn converges to zero as n - c.

If H(x) is discrete and Y. < 0, then H (Y.) pn+(i-l)L /n, from which
I n 1 = f n

the first half of (3.55) follows. Recalling our assumption on the tails

of H(x), for Y. > 0 and H(x) discrete, 1-pn-(i-l)Ln/ H (Y.) + n (n),

where 6 7 (n) is O(Yi) and, in fact, converges to zero as the sample

quantile Yi assumes arbitrarily large values. Thus, (3.55) is established,

and for any 8 > 0, we can find a constant M(W) such that P H{(expression

(3.55)) < M( )} > 1 -

Finally, with probability greater than 1 -

K +1

S (n) :.(K +l)

K
nn

M(W) [pn+(i-l)Ln/n] 2 /6 ± [1-P 2(i/!)L n]-2/6
Kn i~l i=i*+l nn

i+l

n in

< 2M()p 2 /6

n

-za- - 44-



But, using (3.2),
4. 4

L log(l/pn) -2/6 n 5-(2/6) 5
Pn 4 8 1p 4 Pn (log l/p)

n n Pn(log 1/Pn

which converges to zero for 6 > 0.4. Thus, since a can be made arbi-

trarily small, S2(n) is o p(n p3 /(L1o i/n ))) as required.

Summarizing the above, we have proved

Theorem 3.3. Underthe above__. assumptions, the -test is consistent.

We remark that the same proof immediately yields the consistency of

the test based on W*. The only change above is that y'(n) E T.(n). Also,

the restriction 6 > 0.4 can be relaxed by placing tighter controls on the

tail quantiles (p and 1-p ). For example, if instead of (3.2) we
n n

assume that lim L /np 0 0, then theorem 3.3 follows for 6 > 2/9, and
n-), n n

* .so forth.

3.4 The Asymp-otic Power of the W-Test

We wish to develop a means of comparing the W-test with other known

tests for normality. As in the previous chapter, we do so by defining a

general class of alternatives which approaches D(x) as n increases

and determining the exact rate and character of approach which guarantees

a non-trivial power.

The sequence of alternative distributions which we will study has

the form

.n (x) (x) + Cn(x) (3.56)

72 Awhere the disturbance functions en(x) satisfy the following conditions:

In
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Pin(x) exists and l"(x)I < D < c for all x c (-oo) (3.57)

-4x) <. C (X) < 1 - (x) for all x C (-o,co) (3.58)

f e'(x)dx 0 0 (3.59)

e'(x) > -4(x) for all x e (-oo). (3.60)n

The above definition and assumptions are (2.32) - (2.37) specialized to

the normal case.

Denote by p(n, n ) the quantity

l-P n 2 (T(x)) 1-Pne(T(x)) 2 1-Pn T(x) 2

f It(x) ]2dx f  t(x) dx]- [ (T(x))dxj

Pn Pn Pn

L 2 l-Pn -Pn 3 l-Pn 4 l-Pn

1(_n) { f T2 ()dx f ETx In(T(x))dx x  f T-2x) n , ,)dx}.
Pn Pn Pn t2x)

Then, in order to guarantee a power of the W-test between the level a

and 1, we require:

5/2 3/2
n Pn

Lim p(n ) d* (3.61)
n- L2  p n

n

for some constant d*, 0 < d* < -, and, letting

L2(log /Pn) 3 / 2 p3/2log(l/PnPnn g/n)

C(n) S max{ LnPn Ln

k . 4 , ._ . N, ---"... . . *.. ' ., ... , .' i z ':."
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e (T (X)[ Lim b(n) su, (T(.))
pn<x..L- t (x) 0 (3.62)
Pn n

< c'(T(x))

Lm b(n)(log 1/P )-  sup I t(x) = (3.63)
p n<x<l-Pn

for some increasing sequence b(n) such that

Lim b(n) , W C(n)b-2(n) = 0.n n

The motivation for the condition (3.61) will become evident in the

course of the derivation of the asymptotic power of the test. The

quantity P(n,e n ) is what might be termed the "characteristic metric"

for the test; the relation (3.61) requires that the sequence {Hn(x)}

converge to D(x) according to this metric at a rate proportional to

the asymptotic standard deviation of ?(n) under the null hypothesis.

Heuristically, the conditions (3.62) and (3.63) insure that the alterna-

tive distributions do not oscillate too badly in the interval (pn,!-pn).

When (3.61) holds, (3.62) and (3.63) will also hold in most cases, although

an additional restriction on the parameters (K n,L ,Pn ) may result.

*The remainder of this section is devoted to proving the following

theorem:

Theorem 3.4. Under the sequence of distributions (3.56), the asymptotic

1/2
power of the '-test is given by P((27/2)1 d* + c

We divide the proof into two lemmas. The first introduces a sequence

of distributions {Tn(x)} which will simplify computations in the sequel.

The second contains the asymptotic distribution of W(.n) under the sequence

4L
... , --c c --- -. ,.:-.Ma" - .A . . ...N-" & ; .m
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of alternatives.

Denote the function T(x) - en(T(x))/t(x) (p n.<l-Pn) by n(X),n n~ n n

with derivative

e (T(x))T(x) eA(T(x))

B'(x) = t-1(x)[1 - n
n t(x) T(x)

Also, let An(x) denote the function given by
n

a in(x) 0 < x < pn
-J
An(x) B (x) Pn < x < l-Pn

n n n n

a2n(x) 1-p < x < Pnn-Pn

where a n(x) and a 2n(x) are continuous, differentiable functions which

satisfy

aln(pn= n(Pn a n(1-Pn  =n(1-Pn
ln n n n a 1p)~lpp=()2n n n n

a n(pn) =B-(pn) aEn(1-Pn) Bi(I-Pn)

Lim a ln(X) -c Lim a C2n(X) +oln x+ 2n

We will not need explicit expressions for ain(x) and a2n(x), but it

is clear that such functions exist.

Thus, E(x) approaches -- as x + 0 and +- as x + 1. Further-

more, by (3.62) and (3.63), there exists some N such that for all
0
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n > NO, n(x) (and hence A n(x)) is strictly increasing on [p nl-Pnj

((0,1)). Since we are concerned only with asymptotic results, we lose

no generality by assuming that n > N0 , and we do so from now on. In

particular, we can define an absolutely continuous c.d.f. Hn(y) by
n

specifying its inverse:

(x-l (x) (0 < x < 1).

We denote the corresponding density by hn(Y).

Lemma 3.9. Under the above assumptions, {H (y)} and {Hn(y)} are

asymptoticaly indistinguishable.

Proof. Let {Y } be a sequence of random variables with c.d.f.'s {H (Y)}.n n

We must show that h (Y ) FnY n ) converges stochastically to 1 as n + w.
n n nyn)

For each n, let Xn  be a random variable with distribution H n(Kn x)),

0 < x < 1. Then, the random variable Y* K (X ) has c.d.f. H x):
n n n n

thus we have the equivalent condition that hn (A n(X n))/h n(A n(X n)) converges

stochastically to 1 as n .

Let E (n) denote the event {pn < Xn < 1-p n} and E 2(n) denote

its complement. It is easily shown that PH T {E1 (n)} converges to 1 as
11 n

n + .Given E(n), hn(A(X)) [B'(X )]- and1 n n n n n

hn(9 (X (X)) e(T(Xn)) e (T(X ))T(Xn) ElA -(Xn))n nn nn n n n n n n n n
(n ) Lr t(Xn  ( n  ((n)nXn ) )  t

nn n n n n T(

Assumptions (3.62) and (3.63) imply that the expressions in brackets

converge to 1 as n + . Furthermore,

T
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(n(Xn) )  2(n 6n n(T(Xn))TX n) n(T(X n)) 2
2log( t(Xn) ) =  (Xn) - An(-Xn j2t]

t(n nntXn TXnl

when E (n) occurs, and the latter expression converges to zero as

n . Thus, let {6m m=1,2,...} be any null sequence. Then, the above

arguments imply that for each m, there is some Nm  such that if n > Nm

PH {! h n n < e I E (n)} = 1.
~~n n n( (n

Finally, let {6 ) be another null sequence; let N by such that n> N
m m m

implies PH . {El(n)} > 1-m Then, n > max{No,Nm ,Nm implies
n n

h ({K (Xn))

n n h(A(X)) m m
n n n

We have shown that h (9 (X ))/n (W (X )) converges stochastically to 1
n nn n nn

as desired. QED

Thus, for all asymptotic probability calculations, H (x) can be usedn

in place of H (x). This will lead to more useful expressions from an

computational standpoint.

Let T(n) denote the (K n+1)-vector whose elements Ti(n) are given

by

--1 Ln- - l (pn +(i-l)--) i=l,K +1

n nn n

T.(n) = L
n- (Pn+(i-i ) i=2,3,... K

nn
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and let T(n) denote the (K n+1)-vector with elements T h(n)

~nin(pn+(i-l)Ln/n)), i=1,2,.. 'K n1. Also, let e(n) denote the

(K +l)-vector with elements

C (T.i(n))
n 1 i1l,K +1
n .n) n

e.(n)(Tn)
i T .(n)) i=2,3,. ..,K

Note that f(n) = T(n) - e(n). Finally, let I K 1denote the
n

(K n -)x(K n±1) identity matrix, J K+1 denote the (K n l)x(K n+1) matrix

all of whose elements are 1, and M(n) denote the matrix [I K +

(K n 1)J ] + , with rows m.i(n) and (i,j)th elements m..j(n), i,j

1,...,K n±1.

Lemma 3.10. Under the alternatives (3.56) subject to (3.57) -(3.63),

12n5/2 P3/2
n l/2n fn

') L-j (W(n) - pn)

is asymptotically normally distributed with mean -(27/2) /d*

and variance 1.

Proof. Let E (n) denote the quantity

-. [~T(n)V- (n)Tf(n)] 2

and let ~2(n) W(n) - S (n). Thus, S (n) is the constant term, and

S 2(n) represents the remaining terms in a Taylor series expansion of

* ~~~~~ ~ ~ T I ____ ___7_______



(NO about the point Tf(n). We first consider S (n). Denoting

S 1(n) - S1 n) by E n we have

[y'(n)T(n)] 2  ________________2

Recalling that Y'(n) =2(L lT()e (n), e (n) (n) we/ have +

2 3

an, C(n~y(n)T(n)TIn)T'l(n)M(n)T(n) =4(L- 1) (/ 101

~fe(n)e(n) + Ln- e'(n)e(n) + (n - [e'(n)T(n)Jfe'(n)e(n)]

+ (2n) [e(n)e(n)e'(n)+(n) +en(n)(n)] [e()(

L~~~ ~ [e'nN 3Ee~nT(n) +(2n)][ e(n)(n)] 2 Lt [el(ne~n)]
nn

'f() 1+n e(n)(ri) + (2n) 2 [e'(n)T(n)J I.
n il

Finally, using the definitions of e(n) and e(n), approximating sums by

integrals, and neglecting smaller order terms, it is easily shown that

A P(n,F )
.4 ~n n

We next consider 2(n). To do so, we return to the notation of lemma
d 2
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3.7. We will first show that

. (k)
w "(T(n)) = wo (3.64)

12... k 1 2 k

as n for all k=l,2,... and all indices ik e {l,2,...,Kn +11. By

(3.45), (3.64) follows immediately from the following relations:

ACT(n)) B(Cn)) BIC(n))
11 (1+0(1)) - (+o(1))

A(T(n)) A(f(n)) B(f(n)) B(T(n))

(3.65)

M' .((n)) ABI! n) B'(Cn)) B" (T(n))

(1+o()) (1+o())
A(f(n)) A(T(n)) B(T(n)) B(T(n))

as n for i,j = 1,2,..., Kn+l.

To prove (3.65), we first consider the quantity y'(n)e(n), which

can be written for asymptotic purposes as

l-pn  , L2 1-pn3
n TS3x)2n x)(T(x))dx + If e (T(x))dx.

P t(x)n 3n t3 n
nn (x)

Applying the mean value theorem for integrals (e.g. Bartle [l,p.327]),

(3.62), (C.8) and (C.10), we have y'(n)e(n) o(nb-(n)(log i/Pn)1/2)

as n 4 . Using this fact,

Al(T(n)) 2y.(n)y'(n)T(n)

A(T(n)) [y2(n)Y(n)]2

A!(T(n)) Yi(n)y'(n)-e(n) y'(n)T(n)j n

(T(n) [y(n)(n 2  (A~(T~n)T y. n~y(Y' y'(n)T(n)2

J i r _ur
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AT(n)) L log (l/p)-1/
A~'())nb(n)n

1ITn)- 1/2-- l + otb (n)(log l/p ))]
A~i(N))

where the last equality follows from (3.44l). The remaining relations in

(3.65) are similarly established and (3.64i) follows. Next we note that

since

t.(n) t.(n)[1 - e n(T i(n))T i(n). es(Ti(n))1  t.(n)[l + 6(i,n)]1. a t.i(n) t.i(n) 1

where 6(i,n) converges to zero as n 4-- uniformly for 1< i <~ K +1,

AUj
the ovaranc matix o ~~'* 'K~) under the sequence of alternatives

nn

purposes. Thus, we have shown that

E{S2 (n) E{S 2(n) + S 3(n)1(l~o(l)) o p( (

and

C{ (n)} 05(n) + S (n)}(l~o(l)) 6(n)(l~o(n)).
2 S2 3 C

Thus, under the sequence of alternatives {nxlteqaiy

ar (n)[W(n) S (n)] ar (n)[W(n) ' 7(n)] + No WT)L

is asymptotically distributed as standard normal. Applying (3.61) and

lemma 3.9, the proof of lemma 3.10 is complete. QED
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Theorem 3.4 follows immediately from lemma 3.10.

3.5 Extensions

The results of section 3.4 are easily extended to the statistic W*(n),

as summarized in

Corolay 3.1. Assume (3.56) through (3.60) hold as well as 2
L

(i) (3.62 and (3.63) hold with C(n) replaced by C*(n) n 3/0
j ~n P

(ii) Lim np*(n,en) dt, 0 < d* <
n .

where

'l-Pn e (T(x)) 2 -Pn e n(T(x)) 2

(n t(x) t(x)
SPn Pn

1-Pn 2
f - { f -S n(T(x ))dx }

J Pn

Then, n(l - W*(n)) - a* converges in law to T(y - d*) Ls n + .
n

Proof. Using lemma 3.9 (with qn 1 ) and expanding W*(n) in a Taylor

series about T(n), the constant term iii the expansion is given by

4 1 - p-(n,en) as n . The methods used in the Dof of lemma 3.10 apply

I immediately to the quadratic and higher order terms, yielding the fact

that the differences between these terms in the expansions under Ho and

H are o (1/n). To see that the linear term in the expansion is also
11 p

0 o (1/n), we use (3.24) (with y(n) replaced by T(n)) together with assump-

4 tion (i) above to obtain the result that W. (T(n)) is

3/2
O(Ln(log i/pn) /nb(n)) as n . Hence, using (3.16), the variance

4V ,of the linear term is of smaller order than (log l/pn)3/nb2(n), which is

2 n
0(1/n ).Applying Theorem 3.2, the proof of the corollary is complete. QED
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We remark that the Schwarz inequality implies that the 
"metric"

p*(n, n ) is always positive. The same cannot always be said to hold for

p(n, n). In fact, the -test can have very interesting power functions,

as illustrated in example 3.2 below. The next result, however, gives

one example of a sufficient condition for p(n, n) p'(n

Corollary 3.2. Assume that (3.56) through (3.63) hold as well as

(A) 2 3/4
(A) Lim p/n  0nnn

cn (T(x)) 00
(B) t(x) is of the form I cm(n)Tm(x)

M=O

where the constants {c m(n)} satisfyI.
cm(n) = O(cm-1 (n)pn) m=1,2,...

Thenn,

p(n,e, ) =p*(n,e,) 2 2 (n)p (l+o(1))

as n -.

Proof. Let

L2 c 1-Pn 3+m l-Pn
(1) 1 n I C(n)[ T(x) dx f 2(x)dx

n m0 Pn t(x) pn

1 n4 1-P

f- n 1 4 (x)dx f T l+m(x)dx]
nt2(x) pn

22

=~~ 0n t- (x)n (Plgi/n2

n
L 2
n
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since the expression in brackets 4.s identically zero for m 0,1,2 and

all even integers thereafter. Note that
,V

!! -P n e (T(x))

fIn i 2 22
x)) 2 c2(n)((l-2Pn+O(p))

S t~x)0n n

{ Pn

1-P

1-n n(T(x)) 2 2 (-P)+~~

n 2 2 2 2

f f t(x) dx} = c0(n)(l+Q2p n) = n))
Pn

1-nT(x) 2 22
f =~)P (rx)x c 1(n)(l+0(p ) n co (n)0(p n).

Pn

Combining the above and neglecting smaller order terms, we see that

P(n, = 2c0P + p (1) and p*(n, n) = c0P n. Finally, assume that

5/2 3/2nm n Pn 2 d*

Lim (C (n)p = -

n->, L2  0 n
n

5/4ThLs imples that c0 (n) = O(L/(npn) , so that

5/2 3/2 9/4 2
n Pn (1) Lnpn (log i/Pn) 2

L2 p =( n3/4  )o(l)
n

by assumption (A). Thus, under (3.61), p is of smaller order than

c2(n)pn, and p(n, n) = P.(n,n) = 2c0(n)pn(1+o(l)) as desired. QED

It is clear from the form of the power function of the W-test that

the rate of approach of alternatives to the null hypothesis which yields

a nontrivial power increases as the order of L decreases. Hence,
n

assymption (A) is quite reasonable. Examples 3.1 and 3.2 below illustrate

assumption (B) when (A) does and does not hold, respectively.
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Before turning to the examples, we introduce two additional statistics

motivated by the results above. In both p(n,c ) and pu(n,e n), the term

Pn e (T(x)) 2
_{ f n dx}

f t(x) x
Pn

arose because D (n) was used in the demoninators of W(n) and ?*(n).

In particular, we found that replacing D (n) by Y'Y results in the

elimination of precisely the above term from each of the two metrics.

That, of course, does not guarantee that the tests based on the modified

statistics will have improved power, since the distributions of the

statistics under the null hypothesis, and hence the critical regions of

the tests, would be expected tochange also. However, it turns out that

the asymptotic distribution of the modified W(n) does not change, and

the distribution of the modified W*(n) changes only slightly.

Formally, we define the following two statistics:

[T (n)v-l(n ) ] 2

W(n) X -[T,(n)v-l(n)v-lWnT(n]I'

*( ) = [TI(n)b ]2
W1. (n))

[TI(n)TWn)IM

The asymptotic distributions of these statistics under the null and

alternative hypotheses are summarized in the last two corollaries of

this section.
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Corollary 3.3. Under H0 ,

5/2 3/2
27 1/2 n pn '2 Pn (?(n) - )(n)) converges in law to ¢(x)

n

4.,

(ii) n(l - ?*(n)) - a** converges in law to T (y), where
n

K +1K +1
L n n L
n'4 a** =T- I X [h (n)T (n) 6I.]v ij(n)

n n i=l j=l " "

and Tl(y) is the distribution of

C (Xk-l)

k=2 
k

with X2 , X3 ,... i.i.d. standard normal random variables.

Proof. (i) Consider tne effect of replacing D2(n) by on the ex-

pansion (3.19). Since . = 0, S1 (n) is unchanged. Similarly, i(((n))

is unchanged, so that S (n) remains the same. The only effect on
2

w.2) ((n)) is to eliminate the term (Kn+l) 1 , but this has no bearing
3K]

on the asymptotic order of S3 (n). In fact, (3.44) still holds (except

that B'.(.) = 0 for i $ j) so that the effect on S (n) is asymptoti-3]4

cally negligible. In summary, the asymptotic distribution of ?(n) is

the same as that of W(n) under the null hypothesis.

(ii) The proof of this result appears at the end of Appendix B. QED

Corollary 3.4. Assume (3.56) through (3.60) hold.

01

(i) Assume (3.61) through (3.63) hold with p(n,e) replaced by
4n

1-Pn e (T(x)) 2

Pl(n,En) = n + { t(x) dx}
I Pn
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Then,

1/2 5n2 3/2

27 n p " n

n Pn ((n) - P(n))27L

n

converges in law to 4(x + (27/2)1/2d*) as n .

(ii) Assume (i) and (ii) of Corollary 3.1 hold with p*(n,s ) replaced

S-Pn 
en (T(x)) 

2p*(n,cn =p,(n~en + {f ndx}
1 n nt(x)

Pn

Then, n(l - W*(n)) - a** converges in law to Tl(Y-d*) as n
n1

Proof. (i) The change in the metric from p to p1  is easily verfied.

Since (3.64) remains valid, the remainder of the proof of lemma 3.10

applies and the result follows. (ii) The change in the metric from p*

to P0 Ls again easily verified. The proof of corollary 3.1 applies to

4,

the linear and higher order terms in the expansion of ?*(n) and the

result follows. QED

Thus, the power of the test based on ?w(n) is strictly greater than

the power of the'test based on (n). We cannot make such a strong state-

ment about the power of the tests based on *(n) and N(n), but, in

general, W*(n)-tests are more powerful and often hyper-efficient with

respect to Wi.(n)-tests.

3.6 Examples

Example 3.1. Let H (x) (1-6 )$(x) + 6 n(x+Xn), where 0 < 6n  1,
n n n n n

and take L~ n n log 1/p) 1  From assumption (3.4), this is "almost"

nI
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as small as Ln  can be made. Finally, let Xn Pn" Then

4n(X) = 6n((X+P) - (),

or

C(-l(y)) = On((-l(y)+p y).

Using a Taylor series expansion and rearranging terms,

2 3 2P Pn -P -
6 _ j_ (y) + (- (y))2

-1y !n ,-l

$(D (y)+p) y (y))
n n

3
Pn* (y)3 O(p4(log 1

so that 2 3 2
P Pn Pn (y +Pn( -1,))2

nnn (-(y))6
go -(y)) -3n~

(Pn -( )3 0(p4 (log 1/p) )
4 OD (y) + nn

Thus, both (A) and (B) of corollary 3.2 are satisfied, and

p(n,en ) p*(nen) = 2Pn(pn )2(l+o(1)).

TAlso,

2
P (n, ) P= (nen) (p 6n)2(l+o(l)).

n1 11 n n n

Finally, for purposes of comparison, the Kolmogorov-Smirnov distance is

given by

* A ~ - '~'',T&
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sup IHn(X) - (x)I sup Ien(X) (27)pn2p 6n .

The conditions yielding non-trivial powers and the powers themselves for

the various tests we have considered are summarized in Table 3.2. Let

"A << B " signify that the sequence of tests based on the statistics
n n

{A n } in hyper-efficient with respect to the sequence of tests based on

the statistics {Bn }. Then, for the sequence of alternatives considered

in this example,

T(n;.le 2) << W(n) << (n) << *(n) <<

where D denotes the two-sided Kolmogorov-Smirnov statistic.

Example 3.2. We again let H (x) = (1-6n )(x) + 6 n(X+P ), except this

time we choose

.8 n-2/5

L n=n .
n- (lo

g

n Pn

Feasibility conditions (3.2), (3.3), and (3.4) are easily verified for

these functions. Using results in the proof of corollary 3.2, we have,

'' neglecting smaller order terms,

122
p(n, n) - 7 ((Ln/n)(log 1/p n))2pn + 2pn 6.

Note that

Pn6n o((Ln/n)2 (log ip/) pn) iff 6n= o((Ln/n)2(log i/Pn)2)

and

I
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TABLE 3.2

ASYMPTOTIC POWERS UNDER H n(x) = (1-6 n)4 (x) + 6 n (x+p n)

Sequence of tests Condition yielding non- Power of level-a test t
based on trivial power

Aj1/2 9/4 1/2 2
W(n) n pn (log 1/p n5 )s d 1  ((c Pa+ (54) d 1

WNO n 1 /2 p7/4 (log lip )s d2  cDc + (27/2)1/2 d 2
n nn 2 Da2

ru 1/2 3/2

W-(n) n P6 d1 T(

n n 4 1 T,1-a 4

D n 1/ n6 n d 5t

A~;; e L1/ 4 n1/4 p6 d -D(c + 1.99d 2
T~~ 1 02) n n n 6 ,D a

F ,a
*iwhere cFa is defined by f dF(x) =a

ttclosed form expression does not exist
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n5 /2 P3/2  L2 (log 1/p) 2

Lm--n nPn 6<C
Lim L 2 2n n

n nfn
n

implies that

2 (log 1/pn2
-/2 -5/2 -2 (lo n/p "

6 0(n p~ (log l/p) 0( 2n

In Figure 3.3, we use the above facts in conjection with assumption 03.61)

to plot the power of the ?-test as a function of the rate at which n
approaches zero. When n = c -nstn-1/2 -5/2(log i/Pn )-2  p(n) < 0,

n Pn ~n' n

and any power between 0 and a is obtainable by choosing the constant

For n= const(Ln/n (log 1/pn2 , any power between 0

and 1 is obtainable by choosing the constant to solve the appropriate

quadratic equation.

Figure 3.3 illustrates a rather interesting phenomenon--a test which

is both biased against a sequence of contiguous alternatives and con-

sistent. As alternatives approach the null hypothesis at a very fast rate,

the test cannot discriminate between the alternatives and the hypothesized

distribution, and the power is equal to the level of the test. As the

rate of approach slows down, the test can discriminate, but because of

the bias, the power decreases rather than increases. Eventually, if the

rate of approach slows down eno'gh, the consistency property of the test

takes over and the power increases to one. What is most interesting is

that the rates at which the bias sets in and the consistency sets in are

different, resulting in a set of alternatives which are never detected by

the test.

The author knows of no analogs to the above behavior in the literature.

. .-_____________- - - ----- !--
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_2 FIGURE 3.3

ASYMPTOTIC POWER OF THE W-TEST

AS A FUNCTION OF THE RATE AT WHICH 6 APPROCHES ZEROI ~ n

Power

1 2  1
nl1/2n 1/2 5/2.(o. /p2 nlo / )2 n 1/4

n n loi/n 2-(o i/n )

n

Rate at which 6 0
n

+ faster slower

A
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Bias has been exhibited for both the Kolmogorov-Smirnov test (Massey [18])

and the Cramer-von Mises test (Thompson [36]). However, in each .ase, the

bias was proved only for a fixed alternative and fixed n finite; to our

knowledge, analysis similar to the above in which contiguous alternatives

are considered has not been reported.

3.7 Concluding Remarks

There are at least three results above which deserve further emphasis

in that they suggest possible areas for future research.
First, the large-sample results above for the tests based on a gradu-

ally increasing number of order statistics stand in contrast to the

empirical, small-sample, results obtained for the analogous statistics

based on all n order statistics. On the basis of the empirical studies

cited in section 3.1, the consensus in the literature has been that in

using the Shapiro-Francia test, an approximation to the Wilk-Shapiro test,

one gains computationally but pays at least a small price in terms of

sensitivity to alternative distributions. Above, we found that it was

that approximated N, and not vice versa, in the sense that the errors

in the approximation controlled the asymptotic distribution of W and

caused the associated test to be inferior to the Wq-test in discriminating

contiguous alternatives. In section 3.2.4, we mentioned a possible

approach toward resolving the open question of the relation between the

large-sample and small-sample results.

Second, the results for the modified statistics W and MI suggest

that modifying W and W* in the same manner would lead to superior

tests. It would be useful to carry out empirical, small-sample, studies

on such tests. In view of the widespread acceptance of the W- and



133

and W*-tests, it 4ould be of considerable practical value if such studies

should yield results which agree with the large-sample results obtained

here.

Finally, the test based on W* is worthy of further study in its own

'I right. In example 3.1 we found that even against alternatives which areI particularly easily discriminated by the Kolmogorov-Smirnov test (i.e.

the Kolmogorov-Smirnov distance is maximized at the origin), the -test

performed well. Since the metric p*(n,cn) heavily weights disturbances

A' in the tails, it should not be difficult to find situations where the

'* -test is very efficient relative to the Kolmogorov-Smirnov test, and

perhaps to the other EDF tests as well. It would also be interesting to

study the empirical behavior of the *-tcst, but, as pointed out in

. ~section 3.2.4, for moderate sample sizes the asymptotic theory is in-

adequate, and even the distribution of W*(n) under the null hypothesis

would have to be computed empirically.

'4<

'- ,.



APPENDIX A

MONTE CARLO RESULTS FOR THE WEISS STATISTIC UNDER H0

In this appendix we describe the results of a Monte Carlo study of

the distributions of the statistics T(n; 1,02) and T(n;6 1,02 ) (defined

in section 2.2.2) under the null hypothesis of normality.

For each of the sample sizes n = 100, n 200, and n = 300, we

consider three choices of the functions L, Kn, and pn These choices are

labeled cases I, II, III as defined below.

Case I: L = greatest integer < n n where 6 = (log n)-1
/ 4

n n

6 62

K n greatest even integer 5 n n El - 2n n]n

=(n - KnL)/2n

Case II: L = greatest even integer < n where 6 = .7n

pn taken as close as possible to the value in case I such that

npn is an integer and Kn> 2

K n (n - 2npn)/L n

Case III: same as case II with 6= .S

Since we were particularly interested in studying different choices

of Ln, the values of pn were made as uniform as possible in order to

minimize the effect of moving into the tails at different rates. The

values of the functions for the different cases and sample sizes are sum-

marized in Table A.l.

134
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j ,TABLE A.1

PARAMETER SETTINGS FOR MONTE CARLO STUDY

n

100 200 300
Case Case Case

Parameter I II III I II III I II III

L 4 24 39 6 40 69 7 54 95
n

K 16 3 2 26 4 2 32 4 2
n

p .18 .14 .11 .11 .10 .115 .121 .14 .18

For each case and value of n, 100 sets of n N(2,4) random

variables were generated using the Box-Mueller method, and the statistics
f AA

T(n;el,02) and T(n;el,02) were computed. The ordered values of the

statistics are plotted on normal probability paper in figures A.1

- through A.6. Each figure contains the results of cases I, II, and III

for a specified value of n, the odd numbered figures when 01 and

02 were specified, the even numbered figures when they were estimated

4 from the samples. Deviations from linearity in the figures correspond

>1 to deviations from normality of the empirical distributions of the

* statistics.

The study was admittedly limited in scope; those conclusions we

feltwere valid are discussed in section 2.4.1.

A

'i/
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APPENDIX B

PROOF OF THEOREM 3.2

Throughout this appendix, we assume that Y (n),... n(n) are the

order statistics of a sample from a standard normal population. Suppressing

the dependence on n, we let denote the (Kn +1)-vector with elements

. = ynPn+(i-l)Ln, and let Z denote the (Kn +1)-vector with elements
n n

= vt.(n)(. --T.(), where n, pn, Ln, ti(n), and T.(n) are as

defined in section 3.2.1. The distribution of is asymptotically

indistinguishable from the (K n+l)-variate normal distribution with mean

vector 0 and covariance matrix 1(n) is given by (2.23).

Before proving the theorem, it is necessary to establish a linear

transformation which can be used to express Z. as the weighted sum of1

K +1 i.i.d. standard normal random variables.
n

B.1 A Linear Transformation

Define U = (UI,U2,...,UK +i
), where Ui, 1=< i = l Knl, are i.i.d.

n
N(O,1) random variables, and let A denote the (K n+l)x(Kn +1) matrix

with elements

j i=j=l

1 i=j=2,3...,K n

l+r i=j=K +ln

a. = -1 (i-l)=j=2,3,...,K

-1/2
r -  i .l;j=K +In

r i=2,3,... ,K ;j-K +1

0 otherwise

where

L n  L (1+p -1/2)
Z -= and r L(lp-

np n n
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i'.. It is eaiyvrfe that :flz 111n) whereS B11(n

disribtio a nd anbe used in place of for all asymptotic

probability calculations.

Let D (m) denote the determinant of the m x m matrix

11 1r

where all remaining elements are zeros. Expanding by the first row,

D 1(in) =D 1(m-l) + r(-l)m1 (-l1) = D 1(M-l) + r

D' 1 (m-2) + 2P D 1 (1) + (m-l)r= 1 + mr

Now call D(A) the determinant of A. Then, expanding by the first row

of A.

K K
D(A) = Y'D 1(K ) (l, t) 'l+K nr) + £. (B.1)

It is now easily verified that the matrix B has elements b.. given by

1+(K +l-i)r j=l

b. [ 1 t(l+(K +l-i)r) i Lj >1 .(B.2)

Ij nLn -1A) n

We note L-hat Jo tb- "'owi .y spaced" case, k2= 1, and the trans-

,Aformation A reduce-mt. ... ormation given in Weiss [38].

4 B.2 The De Wet and Venter Theorem

The proof of Theorem 3.2 is based on the work of De Wet and Venter [9
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10]. For completeness, their key theorem is included here. The notation

used in this subsection is their notation and does not refer to any

quantities defined elsewhere in this thesis.

Let ZI,Z2,... be i.i.d. random variables with zero means, unit

variances, and finite fourth moments. Let c.. Ci,j=l,2,... ,n) be real
ij n

numbers with c.. = c.. for all i and j and set
n n n

jn T = c.. Z.Z..n ij in 1 ]

Theorem (De Wet and Venter [10]). Let {b. ;i=l,2,...,n; m=l,2,...} and

lYm; m=1,2,...} be real numbers; let {Mn } be a sequence of integers

with M --co;let M
n - M

t = 1 Y~
n m

Assume that as n + ,

max Ibimnl 0 for each m
l<i<n

max Ib bik - 6mk (t-l
l<k,m<M n i n

2 2 = ~-2)
max b biikn- n

l<k,m<M in C
j. r Y .7 < 00

max b c.. b . -Y O(t-)"
lk,m<M i ln imn mn m n

Then,

Dist(T - ) Dist( I Y(Y 2 _1)
n n 1

with Y,Y 2,... i.i.d. N(0,1).

: 12
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The assumptions of the theorem appear quite formidable to verify.

However, as De Wet and Venter point out, it is often the case that

C ijn =n-c(i/n+l,j/n+l)

where c(.,') is measurable, square--integrable on the unit square, and

symmetric in its arguments. Then, letting {g } and {ym} denote the

eigenfunctions and eigenvalues of c and supposing {gm} is an
-i~/2g

orthonormal system on (0,1), selecting bm = nl gm(i/n+l) will often

K satisfy the assumptions. Verification involves showing that the differences

between the various sums and the corresponding integrals are sufficiently

small.

B.3 Proof of Theorem 3.2

We consider the Taylor series expansion of WN(n) analogous to the

expansion (3.19). It is easily seen 'that the constant term in the new

expansion is identically equal to 1; the linear term is identically equal

to zero, and the remaining terms are asymptotically exactly the same as in

the expansion (3.19) (with T.(n) replaced by Ti(n) since qn = 1).

Thus, as proved in lemma 3.7, the cubic and higher order terms (i.e. S4 (n))

are of smaller order in probability than the quadratic term as n cc

and the asymptotic distribution of (1 - W*(n)) is thus the same as the

asymptotic distribution of (-S2 (n)) given by
I2

L n L ( 1 (3__n [- T_ Ti )T(n) + (Kn+1)- - 6ij]EYiTi(TJ]Ej[.-T.(n)]. (B.3)
n n n l
i=ljl -i ni) i

We define the functions { ; ij=1,2,...Kn+l by

i)
L

1-(n+ (i-l)- ) i j

(P + L< j

ni n
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Using the definitions together with the transformation (B.2), tedious but

straightforward calculations yield the result that

LK n+1 K n+1L KnlKn

-nS (n) = -nc. . (n)U.U. + R(n) (B.4)
2 ni=l j=l

where

c..(n) c 1.. (n)- c 2 1 (n)- c9.. (n)

with 1) 1) 1) 1]

K +1
L n

(1) () n I
ij n k~l tk2(n

L2 K +1 K +1
c.. n kimj
ij (n) 2 m X tk(n)tm(n)

n k1 ml k m
L2 Kn +1 Kn +1

C(3)(n n I I kij - k ~L n t k (n)Tm(n) ki mj
k~l m~l

and R(n) is op(pl/2 (log ip/P) 2 ) as n o. In writing the coefficients

2 2 2for the above sums, we have used the fact that D (A) = Pr K n(.o(l))n

as n+-.

The asymptotic expected value of N(l-ru (n)) is obviously a*,n'

which was shown in (3.41) to be o(log i/p) as n + . Futhermore,

the expression

K +1 K +1L n n
n Y c . (n)U.U.

i=l j=l )

in (B.4) above is completely analogous to expression (50) of De Wet and

Venter [9] with their i replaced by ki' except that the {U.1
ik ki

here are normally distributed, whereas the {Z.} in their expression (50)1

are exponentially distributed with mean zero and variance 1. However, the

theorem stated in section B.2 depends only on the independence and certain

moment conditions of the variables, all of which are satisfied in either

I_
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case. Hence, their derivation of the distribution of their statisticI2 n [9,pp. 144-5] and [10,pp. 385-6] immediately implies that n(l-W':(n)) -

a' is asymptotically distributed as

"0 X 
k

k=3 k

where X3,X4,... are i.i.d. standard normal random variables. This

completes the proof of theorem 3.2.
AU
't

In section 3.5 we introduced the statistic W*(n). Extension of the

above proof to the distribution of this statistic requires further

elaboration of the method of De Wet and Venter. Set

c(x,y) c (1) (x,y) - c(2) (x,y) - c(3 ) (x,y)

with

c( 1(X,y) f j (z'x) (z,,y dz

0 t2(z)

0 0(  t(z)t(v)

c (Xy) 0 f (z) (z,x)x(v,y)dzdv -g (x)g2(y)

(xy) 0 t(z)t(v) 2 2 2
00

where

' 1-x if x >y
(x,y) { fx 2

-x if x < y

and gk(x) Hk(T(x)) with Hk() the k-th normalized Hermite polynomial.

The above functions are the continuous analogs of the coefficients in (B.4).

The sequences {gl,g2,...} and {1,1/2,1/3,... are the eigenfunctions and

(1)eigenvalues of c (x,y), so that {g3,g4,...1 and {1/3,1/4,...} are the

{g- -,g4'
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eigenfunctions and eigenvalues of c(x,y). This fact leads to the choices

b. gm (p n+(i-l)L /n)
m =3,4,...

Ym 1/m

in the De Wet and Venter thoerem, and the result of Theorem 3.2 follows for

For N*(n), expression (B.3) is unchanged except that the term

(' (n +1)-  is missing. This, in turn, implies that (B.4) is unchanged except
(.1) (3) (2)

that c (n) = c. ) (n) - c ( 3 ) (n); the terms corresponding to c.. (n)
iJ1) 1)

vanish. Thus, in this case, c(x,y) has eigenfunctions {g2,g3, ..} and

eigenvalues (1/2,1/3,...1. It follows that n(l-N(n)) - aft is asymptoti-r n
cally distributed as

2
I k -[ k

k=2

where X2,X3,... are i.i.d. standard normal random variables. This proves

part (ii) of corollary 3.3. We named the above distribution Tl(y). Tables

of this distribution are not available but can be created by numerically

inverting the characteristic function as in [9].

'1



APPENDIX C

AUXILIARY FORMULAS

In this appendix, we collect for reference purposes various formulas

-1concerning functions of -(x) which were required in chapters 2 and 3.

We also illustrate the formal procedure for approximating summation by

integration and obtain upper bounds on the errors of such approximations.

C.1 Derivatives, Integrals and Limits for Functions of l(x)

Derivatives. Let T(x) denote -1 (x), t(x) denote 4(T(x)), and

f(x) denote t(x)T(x). Then the first four derivatives of f(x) are

given by

f(1(x) 1 - T2 x)

f (2)(x W -2T(x)/t(x)

(C.1)
; f()(x)= -2(1 + T2(x))/t2(x)

f() 2 2
(f4 3 321+T()/

f(4)(x) -4(T3(x) + T(x))/t 3x).

) ' It is easily verified by induction that as x approaches 0 or 1, we

have

Wk k-l k-lf(x) = -2"(k-2)!T (x)/t x) + (smaller order terms)

for k > 2.

Integrals. The analysis in chapter 3 required evaluation of expressions

* of the form

149
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b(n) k
c(n) f Tk(x) dx (C.2)

a(n) t (x)

where k L 2 is an integer, a(n) -- 0 and b(n) 1 as n + , and where

c(n) approaches zero rapidly enough that the expression remains bounded.

d2Using the fact that x t-l(x) =T(x)/t2(x), we can obtain an iterative

relation for integrals of the form (C.2) by integrating by parts. We have

b(n) b(n) k-i
(x) dx T (x) T(x) dx

I k d fj k-2 2a(n) t (x) a(n) t (x) t (x)

Tkl(x) b(n) b(n) Tk-2(x) k
(x) - f {(k-l) + (k-2) L-- dx,

tk-(x) a(n) a(n) t kx) t (x)

so that

b(n) Tk ) 1 T b(n) b(n) Tk-2(x )
kxd -i l-() - k dx. (C.3)

dx l kl~ f kxJa(n) tk(x) t k x) a(n) a(n) tkCx)

Similarly,

b(n) Tk-2Ji) 1 Tk-2j-l b(n) ji) b~n) k 2 jl1
f x dx - k-i x) (k-2l k dx

a(n) tk (x) k-i -(x) a(n) k-i a(n) t (x)

for j l,2,...,[k-l/2] (where [h] denotes the largest integer .h),

and

b n) b(n)
f Tx dx ( C.4)

a(n) t k(x) k-1 tk-l(x) a(n)
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Combining the above, the integral in (C.2) can be written

k-l

1 1-k k-i E-2 i k12)k32)-(1 -j1 b(n)
~~T t (x)~{T (x) + f }~){ k l 2 ) k 3 2 ) * ( ~ ) T k : l x Ia n

j~l (k-1)' ~n

(0.5)
b(n)

+ .+(-l k) 13. -- 1 t.j (xd

Note that is a(n) +0 and b(n) +~ 1 as n + cthen the term

1 T kl (x b(n)

kltkl(x) a(n)

dominates the above expressions. Also note that if k is odd and a(n)

1-b(n), then (0.2) is zero by symmetry. Finally, from (0.4),

b(n) - 2 2
f t- (x)dx =o~t- (a(n)) + tl (b(n)))

a(n)

=o([a 2(n)log l/a(n)] -1/2 +[(-b(n)) 2log l/(l-b(n))
1 1/2

(0.6)

if a(n) - 0 and b(n) -*1 as n +-co where the last line follows from

(0.10) below.

Limits. Using the fact [13,p. 175] that

- ~x)
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and taking x = D-1 y) (and y 1 1), we obtain

T(y) 1-1

t(y) p as y i . (0.7)

The following are also easily verified:

2
Lim T(y) 2

ylog(l/y)

Lim t(y) = F. (C.10)
yO y(log i/y)

The corresponding limits as y + 1 are obvious.

C.2 Approximating Summation by Integration

For concreteness, we formalize the procedure used throughout chapters

2 and 3 using two expressions which are representative of those appearing in

chapter 3.

(A) Let i(x) denote the function TJ(x)/tk(x), where k is a positive

integer and j is an even integer > k. Also let a . denote the quantity
ni

(i-l)L /n, and set i* greatest integer S K /2. Let S(n)

denote the sum

KL n
n- I (ani)
n i=2 n

II
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and let I(n) denote the integral

l-Pn

f V(x)dx
Pn

Then, S(n) - I(n) El(n) + E2(n) + E3 (n) where

L i* ani*El(n) -- I (ani f * (x)dx
1i2 Pn

iK 1 -Pn
n n

E2(n) -n (af) f x)dx
2 n x npi~di=i+l(i+l )

an(i*+l)

E 3(n) f- f i(x)dx
ani,

Using the fact that 4(x) is monotonically decreasing on (0,1/2),

i* a.
1El(n) X ni l (ani) - V(x)Idx

ii 2 a

* ni

< X f I (an) - (an(i 1 ))Idx
i'}i=2 a n(i-1)

L i*
= ((a(i)) -(a

n i2 ni-

Al Ln
-- ( (a) -(a

1n n1 nd
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0 (-2) p-k (log 1/) Q-0/2%nn n

A symmetric argument applies to IE 2(n)I. Clearly, E 3(n) is O(L nIn).

Thus IS(n) - I(n)I is 0((L In)p- (log l )jk/2 From (0.5), I(n)
n nn

is O(p1- (lo1 / jk/ Hence,

S(n) =I(n)(l + O(L n/np n)

(B) Let §(n) denote

K
L n e (T(a .)) 2
n i= n ni

and let 1(n) denote

1-P1-p (n (T(x)) 2

f t(x) 'Idx.

Then,

K a
n ni e n(T(a .)) 2 e n(T(x)) 2

(n (n 1 2 x d

i=1a,

n~i-1
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Since

c n(T(x+(L /n))) 2 n (T(x)) 2 L n (T(E)) £?(T( )) c (T( )) T(E)

t(x+(Ln /n)) .] t(x) n + 2 Ent) t + nt()

for some E, x < E < x+(Ln/n), (3.62) and (3.63) imply that

L L Kn T(ani)

1S(n) - I(n)l 0(2 2n (log i/Pn) + 2 b n I i ni 1)nb2(n) nb2(n) i=2 t- i

L
nOn2(n (log liPn))

nb (n)

where b(n) is as defined in (3.62) and (3.63). In particular, the latter

expression is o(p(ncn)). Similar results may be obtained for the integrals

of Chapter 2 using (2.41).

4
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