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Abstract

We examine the limited aperture problem of physical optics
farfield inverse scattering, i.e., the problem of identifying a
target from an analysis of band-limited viewing apertures. We
show (given infc-mation from all directions) that the target may
be completely identified from an analysis of high frequency, band-
limited data. If the directions of viewing angles are limited as
well, it 1s shown that the target surface can be identified where
the target normal lies within the range of viewing directions;
outside of this range, no information is available. It is shown
that this phenomenon is totally a feature of the Fourier transform
of characteristic (non-zero) functions and independent of the
inverse scattering formalism. Numerical examples are given for the

case of a perfectly reflecting circular cylinder
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1. Introduction.

Physical optics inverse scattering constitutes a technique
whereby the shape and locaticu of an acoustical or electromagnetic
scattering target may be determined from an analysis of back-
scattered, far-field data. The fundamental identity of the method
(first discovered by Bojarski, [1]) relates a quantity p, (k)
(that 1is proportional to the back-scattering cross-section of
radar analysis), to the Fourier transform of the characteristic
function of the scattering target; 1l.e., a function which is unity
inside the target, and zero outside.

The key assumptions leading to the Bojarski identity are
(1) that the target may be modelled as an acoustically hard or
soft reflector (or as a perfect conductor in the electromagnetic
case); (2) that the physical optics approximation is valid for
the back~scattered fields; and (3) that the source and observation
ranges are large compared to a typical target dimension. The
fundamental identity’ which is derived briefly in Appendix A
for the reduced wave equation, states that

p4(K) + o (~x)

T(x) = : (1.1)
K2

~
where T (X) 1is the target characteristic function, and T(k) is
its Fourier transform. In this expression, the transform vector

k 1s given by

k* 2% k=g, (1.2)

*
Below, we shall use the alliteration POFFIS for "ghysical Optics
Farfield Inverse Scattering".
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where k is the wave propagation number, w is the (time~harmonic)
frequency, and c¢ is the propagation speed; the vector i is a
unit vector pointing in the direction of the source-observation
position. The symbol (*) denotes complex conjugation.

Therefore, if ?kg) could be measured for a sufficiently large
class of vectors x, one could in principal determine T(X) by
direct Fourier inversion. As (1.2)clearly implies, this would
necessitate that measurements be performed at all frequencies and
at all aspect angles with respect to the target about which informa-
tion is degired.

An immediate difficulty which arises with the method, there-
fore, is the lack of complete information in transform space; the
physical optics approximation is valid only in the high-frequency
regime, i.e,, as the wavenumber k approaches infinity. TFurther-
more, data that would be available from an actual experiment would
most likely be confined to some band-limited spectrum. A further
limitation cf the POFFIS method occurs because data can
seldom be meagsured at all aspect~-angles with respect to
the unknown target.

These difficulties lead to the limited-aperture
problem of the POFFIS method --~ the problem of identifying
the target structure from the limited knowledge of F(g) in g-space.
The objective of this paper *s to present solutions to the limited-
aperture problem for a physically reasonable class o. frequency

‘ and aspect-angles limited apertures.
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We show (given information from all directions) that the target
may be completely identified from an analysis of high-frequency,
band-limited data. If ine aperture is limited in aspect angles as
well, it will be shown that the target surface can be unambiguously
determined at those points where the outward normal to the target
surface lies within the range of durections defined by the aperture
in k-space. Outside of this range, no information is possible by
this method.

The limited-aperture problem has been previously examined
(from an analytical standpoint) by Lewis Eﬂ and Perry [3]. Lewis
considered a number of aspect-angles limited apertures, with the
(physically unreascnable) assumption that information was available
for all frequencies. Perry concluded that the absence of low-
frequency information leads to an ill~posed problem which is numer-
ically unstable. The primary difficulty is that the low-frequency
data constitutes a principal contribution to the gross resolution of
the function T(X) .

Additional tests of Bojarski's results were carried out numeri-
cally in papers by Tabbara [4, 5] and Rosenbaum-Raz [6]. Their re-
sults confirm the difficulties with resolution due to bandlimiting.
One purpose of this paper is to show how this shortcoming of the
method can be overcome.

The key feature of the method we describe here is that we re-
place the problem of determining TI'(X) by the problem of determining
the direcetional derivative of T(X) in some direction § . The
directional derivative E « VI'(X) 1s a highly singular function
whose essential features can be resolved from an analysis of high-

frequency data. The process of differentiating in the & direction
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In X~space corresponds to multiplication by £ - K in k-space; in
this way, one simultaneously suppresses low-frequency data while en-
hancing high-frequency data¥ Indeed, this approach was first sug-

gested in Bojarski's initial work [1], and the present work supports

and extends his ideas.

In section (2) are displayed a numbcr of computer-generated

examples for a variety of limited-data apertures. These examples

were generated from the exact back-scattered, far-field data which

was numerically computed according to a scheme by Greenspan and

Werner [7].

We remark that the advantage gained by calculating the Fourier
transform of a directional derivative is wholly a feature of Fourier
analysis. It has nothing to do with Bojarski's physical optics

identity, nor has it anything to do with the discretization and

specific calculation technique (FFT in this work) used in the in-

version of the transform. It is shown in Section 3 by asymptotic

methods why the band-limited transform behaves as it does.

More precisely, in two dimensions, we express the band-limited
inverse Fourier transform of the directional derivative as a three-
fold integral in arc length over the boundary of the target, and
k and 6 , the magnitude and angle of the transform vector K .
Under the assumption of high frequency band-limiting, the first and
third of these integrals can be calculated asymptotically by the
method of two-dimensional stationary phase [8].

The integration

in magnitude K is carried ocut exactly. The result of this cal-

culation explains the qualitative features of the numerical results

*
Multiplication by higher powers of k, correspona to higher derivatives,

further subdues the effect of low frequence data and further enhances
the effect of high frequency data.
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shown in Section (2). Furthermore, stationary phase analysis brings

out the features of the aspect-angles problem, as well; namely, given

a certain range of aspect angles in transform space, the inverse
transform is asymptotically of lower order outside of the analogous
aperture in physical space.

The extension of this analysis to the case of three dimensions

is discussed in Appendix B.
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2. Numerical Results

Figures (2.1-8) display the results of the method. They were
generated in the following way. The reduced wave equation was
solved for a point source in the exterior of a totally reflecting
circular cylinder by a method due to Greenspan and Werner [7]. The
phase and range normalized backscattered amplitude (defined below
(A.11) in the Appendix) is calculated to five place accuracy. This
is then substituted into Bojarski's basic identity (1.1) to yield
FQ9 . Table I compares the exact Fourier transform for the target
cross~section with that predicted by the inverse diffraction tech-
nique. Agreement is poor for wave numbers below ka = 10, emphaliz-
ing the need for high frequency, band-limited analysis. We remark
that the source-observation range was 25 radii, indeed in the far
field, so that this could not have accounted for the discrepancy at
moderate values of Kka.

The backscattered data was used in the formula
£V = m72 J 18k T e Eg (2.1)
for the directional derivative of the characteristic function.

Here the domain of integration is all of k-space. In particular,

we chose

E=(1,0) , (2.2)

corresponding to transverse differentiation of T(X) , an procecd to

calculate (2.1) over finite domains representing band-limited and
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aspected-angles limited apertures.

The inverse transform is calculated via a fast-Fourier trans-
form (FFT) routine. Band-limited data around k = 10, 20 and
wvas used, with a mesh size of 128 x 128 (of which most entries were

zero) and mesh-widths Ak, = AK2 = 1.1 . The resulting function

1
was then computer-displayed to yield the graphical results shown
in Figures 2.1-7).

The resolution in those diagrams is seen to be approximately
one~half the minimum wavelength associated with the domain of inte-
gration in K . The clarity of the results is also seen to be
directly a function of the frequency band-width, as expected.
Furthermore, we believe that better resolution may be attained by
curve fitting the actual output to the results predicted by the
asymptotic analysis in the next section. The "smearing" effect
near the lower and upper portions of the target is due to the fact
that we calculate the transverse derivative of T(X), and this
derivative approaches zero at these limits. This minor shortcoming
maybe overcome in one of the following ways: (1) calculating a direc-
tional derivative which does not vanish in these timits (different
E ) or (2) by calculating a higher derivative (for example, by
multiplying by K2 rather than E * K before inverting the Fourier
transform).

Figures (3.5-7) show the results from a viewing aperture which
is limited in direction, as well. The theory developed in the next
section will predict good resolution of the target surface where

the outward normal to the target lies within the family of directions
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specified by the viewing aperture; outside of this range no infor-
mation is available.

One further remark is due concerning the computer plotting
results. The theory developed in the next section is based upon
leading order asymptotic effects. There are also secondary effects,
corresponding to boundary integral contributions, etc., but these

do not appear due to normalization in the plotting process.
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3. Limited Aperture Analysis

We proceed in this section with an analysis of the integral
(2.1). Let us denote the region of K-space where the measured

function T(x) is known by D , and the characteristic function of

D by A(K :
v ¢ 1 KED
We consider the function
F@e=18" kT . (3.1)

This is the Fourier transform of the directional derivative of
I'(X) in the & direction. We note that the product of Fl(g)

and the aperture function A(K) ,

B & = K60 ¥ @, (3.2)

is known everywhere in K-space. We consider first the two-dimen-
sional version of (3.2) (Applicable when the target is known to be
a cylinder whose cross-sectional profile is sought). We introduce
as new coordinates arc length ¢ along the boundary curve 9B
and distance normal to the boundary, denoted by s (see Figure

(3.1)). The directional derivative, Pl(g) , may be represented as

~

P =€ VIE =£- 066 .

Here fi = fi(0) is the outward unit normal to 9B . A Fourier in-

version of (3.1) and use of the convolution theorem for Fourier
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transforms leads to

H(X,8) - (2m™2 J'ﬁ (@) * & A(X - X'(0))do (3.3)
oB
The objective of this analysis is to evaluate (3.3) asymptoti-

cally in the high frequency limit, i.e., for k = target anywhere

in D . We use the explicit representation of A(X) ,

AGR) = ” X g,
D

to rewrite (3.3) as

H(e,E) = (m) 2 [ do n(0) - & “ oI EXO)) g, (3.4)
3B D

The three~dimensional analogue of (3.4) is

R E) = on~> j do a(g) - EH JEEX @y (55
oB D

where o = (01,02) represents surface coordinates over 9B (Figure
(3.2)). Analysis of (3.5) is carried out in Appendix B and we

proceed with the analysis of (3.4) here.

Consider an aperture which is limited in both frequency and
directions, as illustrated in Figure (3.3); note that the K-space
aperture D must be symmetric about the origin by virtue of the
analysis leading to the physical optics identity (Appendix A,
equation (A.13)).(When the aperture directions are restricted to
one~sided viewing, it is possible to extend the data symmetrically
through the origin in k-space; the reconstructed image will then
be symmetric in physical space (Lewis [2]), and one has no informa-
tion concerning the opposite side of the target.)

Define x = KK » where « and k are the magnitude and

directions of k , and rewrite (3.4) as
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(3.6)

K
1 A

HQ(_,E) =<%1T>2 f kdk / dO;I(O) . E f eiKK(o) e Sp:¢ (0))d0 ;
0

9B QD

the angular integration in this expression is described by the

parameter 0O, which is taken to be the angle of the vector ;.
With the assumption that Ko)) 1, the expression in (3.6)

may be examined via a stationary phase analysis in the variables

(0,0). With the phase function &(0,0) defined by
®(0,0) =x(@) * X - X'(0) ,

the stationary phase conditions become

. dX (o)
d =-«x@) *+T(@)=0, T= R (3.7)
o do
. n dk (0)
G =50 - X-X()) =0, 1(0)-= : (3.8)
o} do

Let I represent the portion of the surface 3B where the family
of normals ﬁ(o) lie within the range of directions specified by
the aperture D. Then the conditions (3.7) and (3.8) will be satisfied 5
in X when the vector X - X'(o) dis orthogonal to the tangent
vector T to 9B, and when E(O) is collinear with X - X'(o0),
as illustrated in figure (3.4).
Since the k-space aperture is symmetric about the origin, there

exist two solutions, 0 = 0_, for which

E(o+) = -k () . (3.9)

There may also exist a multiple of solutions in the arc-length

variable o; however, it will be evident from further analysis
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that the stationary point o = o for which (X - X'(0)) is a

minimum will dominate,

Define the two-dimensional Hessian matrix He by

He = det[$(0,8)] ;
we note that

'
dX (Om) 2

= - - ! -
= -|X - X' (o) [xe, -| -

In this expression, X = X(om) is the curvature of the target

surface 9B at o=om , and

€ B

Q
(=]
il
P8
] +
y— —
{»d

X¢B

With these identifications, H(X,£) is asymptotically equal to

K1
_— . “o) i Cos{K|§ - X' (om)l}
H(X,E) ~|= den(o_) * & H
(" ) f m \“det(He)

Ko

that is,

. n(o) £ (Sin( |X - X' (6)]) ~ SinCey|X - X'(o,) )
H(X,E) ~ N — { - }(3.10)
m\|det (i) X - X' ()]

The function H(g,&) thus behaves in the region I (and in the
high-frequency limit) as a SinX/X function with central lobe located
on the target surface; a trace of H(lc_,'é) would therefore yield in-
formation about the unknown target in the region I.

This analysis is not valid when the Hessian matrix He becomes

singular; the vanishing of det(He) occurs on the evolute of the target

e et n S ST et B
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surface 08B. These are statlonary points of higher order. However,
one can verify that the amplitude at those points 1s zero and hence

the contribution from such a siationary point is lower order than

the contributions derived above.

The calculations leading to (3.10) have been concerned with
an estimate of contributions arising from stationary points interior
to the boundary of the o - 0 domain of integration, labeled as
9(D,B) in Figure (3.5). (Note that D = S1 + S2 + ... F 88.

In general, contributions from stationary points on the

boundary surface 9(D,B) will also occur. Define the vector U

by
u=Y2 ve(2,2) , (3.11)
udp| 2 Te] 30
[vg|2 ,

and note that

———pp—

ikd
geiKCb= ie vV.uU- _i_ 7 . (y_eikg ]
K

Then to leading order,

(3.12)
/2!
~ —iﬂz ~ - ~ " . — t
H(ZE) v S / dx f (o) « DN - PRelE©® &= K@)y,
(2m)
Ko 9(D,B)

where o describes the one-~parameter surface a(B,Qk),

0 = 0(a) , o= dag(a) ,

and
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The unit vector ﬁ = ﬁ(a) points to the exterior of 9(D,B).
A stationary phase analysis may now be performed on the remain-
ing a-integral in (3.12); these points of stationarity will yield
the 9(D,B) boundary contributions. The objective in considering
these lower order contributions is to show that no information is
forthcoming concerning those points in I on 9B whose outward
normals lie outside of the set of directions implied Ly the k-space
aperture D; outside of I, no interior stationary points exist
ana the boundary terms play the dominant role.

We begin by considering the contributions from boundaries
S5 and 87; a similar analysis will yield corresponding results
for boundaries Sg and Sg. Furthermore, the total contribution

from S1 - Sq can be seen by similar methods to vanish to leading

asymptotic order.

On the boundary Ss, the following identifications can be

made:

(C]

=¢, @ =0
0
==)|J==< )=%>w = 1
1
N = (0,-1)

Equation (3.12) then assumes the form

in/2 Kl OT

. -im o R o

H(X,E) v & / ax / G B - peled) ¢ @ X @)y
o 9

(2n)5

Identify the phase function d% as

et L RN 4
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O, = k() + X - X'());
then the condition of stationary phase becomes

dd R dX (o)
..__5 = -y (¢ ) o l(o’) =0 , 11‘— =
do 0 do

( .13)

Condition (3.13) has at least one solution o = Ocs where

k(¢ LI(ag).

=z

The factor U then has the explicit form

~T(9,) * (X - X'(05))

- A~ dk(0)
N-+U= , T= .
[(%w») « (X - X'(o >)]2 40
0 - 5
Note further that
dzcbs . d(o,)
= -k(d,) * = +x(o.),
do? 0 do 5

where x(os) again represents curvature at the point o = Ogs for

a convex body, this quantity is positive. A one-dimensional sta-

tionary phase calculation thexefore gives

K
z e'_i"/2 1 dk ~ 2
H_(X,8) ~ (n(o;) * &)
°” (x(o)) /2 (2m)3/2 / /e d
K
0
A idkk(py) » (X = X'(0)) + 7/u
M De ex o 5 },

where ﬁs is to outward normal in (o - 8) space to Ss.

An analysis of the boundary S7 (where 0 = 7 + ¢g) will yield

a similar result, with a staticnary solution in ¢ again at o = g
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the only distinction in this case 1s that now
K@ + $) = k()

and

The sum of the leading order contributions from s. and s

5 7°

therefore, gives

.~ (alg) * B (N5 U(e))
Ho (X,8) 5 > 0
(x(q))1/2(2m)?/2

fl sinjke(d) * (X~ X'(o)) + u/u}

dy,
g1/2

K
Ko
and by integration by parts (retaining only the leading order term)

(a(q) + &) (Ng+ U(g)
(X(q))1/2(2m)3/2

H5+7 (2(_, 5) o=

Cosjkk(p) * (X ~ X'(q)) + /4
X }r fg 5 } (3.14)
2oy + (& - X' (q))

Ko

The principal point to be concluded from an examination of (3.14)
is that (in the exterior of the region I as identified in Figure
(2.2)) HQ&,E) exhibits to leading oxrder a peaking behavior with

central lobe occurring in the vieinity of the line

b — e - -
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where
k($) * 2(q) =0 ;

however, H(&,E) gives no information concerning the target surface

in this region.

e
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Appendix A.
In this section, we present a brief derivation of the
POFFIS identity for acoustical wave propagation; the

electromagnetic (vector) case has been outlined by Lewis [3].
As indicated in figure (A.1), we illuminate the acous-

tically hard or soft scatterer B from a time-harmonic point

source located at 50. The incident field UI is thus given

by
U_(X,k) = o (A.1)
and the total acoustic field UT is the sum of the incident U

and a back-scattered field US , which is also measured at the

point X, :

U, = U. + U, . (A.2)

The total acoustic field UT is required to satisfy the (time-

reduced) acoustic wave equation with source at X = .
(V2 + 1<2)uT = -8(X - %) . (A.3)

In addition, we require that UT satisfy an outgoing radiation

condition at infinity, and one of the two boundary conditions
— =0 XeB (+) , (A.4)

or

. e
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U =0 XeB (-

The first (+) boundary condition models

) -

B as

19

(A.5)

an acoustically

hard reflector; the second (-) condition is the acoustically

soft case, Using (A.1l) - (A.5) and the requirement that US

also be outgoing at infinity, one may write a Kirchoff integral

expression for

U

S

20(X, - X")
Us(l{_oyk) =/]‘{Us(_}£ sk)_""‘""_"—" - G(lo
9B

.
.

an

W, (X',k)

.._)i')

s~ }dS' , (A.6)
o'

where the integration is performed over the surface (denoted 9B)

of the scatterer B

In this expression,

outgoing Green's function given by

G(X) is the free-space

A.7)

We now make a crucial assumption concerning the integrand of (A.6).

Under the integration sign appear the unknown surface field Ug and

the normal derivative

oU

S

8US

—=2 ., The physical optiecs approximation re-

on

lates UG, and —— to the incident field U

S

the scatterer by

an

e

I

on the surface of

(A.8)

N A g R R Bk Bt
.




we

-
o
P S —

— 3

Under the assumption that [X,| » [X'|
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where the (%) notation has the same connotation as before. We
define the 1lit side of the body (denoted L) and the dark side

(D) by constructing tangential rays from source to target, as

indicated in figure (A.2). The envelope of the set of points

where the rays strike the body will in general define a closed
curve I separating the body intc lit and dark sides.

Strictly speaking, (A.8) constitutes a valid identification
only for the case of plane-wave incidence against a plane-wave
reflector and in all other cases constitutes an approximation.

But the approximation is increasingly valid for small wavelength
(large k) propagation, where locally the indicent wavefront and
the target surface may be approximated by their tangent planes [9].
The separation of the surface 9B into a 1lit and a dark side

also is strictly valid only for convex scatterers.

We may now use (A.8) to rewrite (A.6) as

Ug (Xgok) v & ﬂi—; (US(X',k)G(z0 - _)g')) as' . (A.9)
L

Into this result, we now introduce the far-field approximations.

(distance to the source-

recelver point is larga compared to a typical target dimension),

we write [X, - X'| as two terms in a binomial series:

%, - X' v X =X, + X'

o~ X (A.10)
where X, = {KOI, and io represents a unit vector in the direccion
of 50 + ~ With these identifications, we have

A

e WIS 5 4 T
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ik(Xo = X5 * X")

U &'k v =
4nX0
ik(Xo - io ¢ _}_{_')
G(_}_(_O -X") e
4nX0

and equation (A.9) becomes

iZkX -
US(_)_{_,k) - 0 ﬂ {e—iZkXO. .}_(-'} ds' .
(4nX )2 on'

We may now perform the normal differentiation to obtain

12kX
U, (X,k) » 5 2ik)e 7 0 /] 12kx Xlast (A.11)
(Anx )2

Defining the phase and range normalized backscattered field

0, (Xg,k) by

o12kX,
U (X, k) = ——— p_ (Xg,k) ,
| $0 (brx)? *

then (A.11) becomes

b, (X k) = F(21K) /f ‘Zikx " Xlgst (A.12)

P The domain of integration in (A.12) is only over the lit position
L of the total surface 9B . With the objective of obtaining a
closed surface integral, we now write the analogous expression

when the source-recelver point is reflected through the origin
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[Figure (A.3)] . An analysis similar to that leading to (A.l2)

gives

~ ~ - v . !
p_(-Xgrk) = £(2dk) //n » R Ay X gg (A.13)
D

Note that the lit and dark sides have been reversed; this assump-
tion is valid only when the origin of coordinates is selected to

lie within reasonable proximity to the target compared to the

distance to the source-receiver point.

From (A.12) and (A.13), we now cenclude that

* - ~ . v . 1
b, (8K + p_(-Xy,k) = F(21k) // e Xpe 2K Kggr,

9B

and an application of the divergence theorem leads to

*
p (X ,k) + p_("_)_( sy k) - . v
+ 0 - 2 - '_tjj[/. e 21K ¢ Xlayr (A.14)
(2k)

B

Now introduce the characteristic function of the volume region

occupied by B :

I XeB
re =
0 Xx¢B

note that the Fourier transform of T(X) 1is

S RO RS YT ¢ e e e
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We may therefore rewrite (A.l4) as

~ b (Xgsk) + 0 (XgK)
Y(K)= + 0 N =0

LA K?'

vwhere K= ZkXO

Equation (A.15) constitutes the basic

POYFIS identity relating the Tourier transform of th

(A.15)

e character—

istic function F(z) to the backscattered, far-field quantities

p, (x).
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Appendix B.

In this section, we outline the analogous calculations leading to
the three-dimensional version of (2.10). Let D again represent an
aperture which is both band and aspect angles limited, as shown in

Figure (B.l). Parametricly, D is represented by

K, £ K <K

0 1

d>e[¢0,n—¢o]u[1r+d)0, 21r-d:0]
0cfo,n-0]u[r+o,2n-o]

where ¢ and © are the polar and azimuthal angles of E,
resectively: K = (CosdSinG, SingSind, Cosd). A separation of the

magnitude and angular portions of the x-integration in (2.3) leads

to
1
~ _ 1 3 21 N ~
H(X,8) = |— Kk2dk don(g) * &
2m
KO 9B
ikk(4,0) + (X - X'(0))
ﬂe Sin® d¢do (B.1)
D
Choosing

b= k($,0) * (X - X'(0)),

the stationary phase conditions become

_@9: 2 . - 1 = = = _a._‘s.
% o E-X%@)=0, 0 " %0 (B.2)
?a%’= Sin@ %‘p - X-X'(0)) =0 (B.3)
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2—'CD= E(d’ao) ¢

(4]
1

B_CI)__: ;(d”e) *
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dX'(9)
=0 (B.4)
dc1
dX' (o)
=0 (B.5)
do2

Conditions (B.l) - (B.5) imply that the unit vector k lies in

the tangent plane to 23B. A point of stationarity in (01,02) then

occurs where X - 5}(01,02) lies

lengthy calculation then leads to

H(Z, ) ~ L

along the normal line to 93B. A

£+ n Sink[X - X'| :

™ |det(u]X - X'|F + 6)|}/2|x - x']

where

(B.6)

and F and G represent the first and second fundamental co-

efficients of 9B.

Again the target surface 9B may be identified

by the peaking of the SinX/X function when Ky > Ko >> 1; this

gives information only about the portions I of the surface 9B

that have normal directions coinciding with the set of directions

contained in the x~space aperture

A calculation similar to that

D’

leading to (2.14) again leads to the

conclusion that no information concerning 9B is available cutside of

the I region,
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Exact F.T. of Charact. Physical Optics Relative
Wave~Number Function Approx. to Error, 7%
. Fe) = 220 ()

5 0.02731 0.04292 36.35

10 0.02100 0.01865 12.59

20 0.01980 0.01998 .92

30 0.00488 0.00509 4.12

40 ~0.00440 ~-0.00438 .49

50 ~0.00485 -0.00491 1.26

60 -0.00062 -0.00066 6.50

70 0.00253 0.00255 0.76

80 0.00209 0.00212 1.51

TABLE 1
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FIG. 2.5. Ky =22.5, Kyax= 375, RANGE = 25
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